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PKEFACE.

AMONG the many advances in the progress of mathematical

-^^^ science during the last forty years, not the least remarkable

are those in the theory of functions. The contributions that are

still being made to it testify to its vitality : all the evidence points

to the continuance of its growth. And, indeed, this need cause no

surprise. Few subjects can boast such varied processes, based

upon metliods so distinct from one another as are those originated

by Cauchy, by Weierstrass, and by Riemann. Each of these

metliods is sufficient in itself to provide a complete development

;

combined, they exhibit an unusual wealth of ideas and furnish

unsurpassed resources in attacking new problems.

It is difficult to keep pace with the rapid growth of the

literature which is due to the activity of mathematicians,

especially of continental mathematicians : and there is, in con-

sequence, sufficient reason for considering that some marshalling

of the main results is at least desirable and is, perhaps, necessary.

Not that there is any dearth of treatises in French and in

German : but, for the most part, they either expound the pro-

cesses based upon some single method or they deal with the

discussion of some particular branch of the theory.

The present treatise is an attempt to give a consecutive

account of what may fairly be deemed the principal branches of

the whole subject. It may be that the next few years will see

additiofns as important as those of the last few years : this account

would then be insufficient for its purpose, notwithstanding the

breadth of range over which it may seem at present to extend.

My hope is that the book, so far as it goes, may assist mathe-

maticians, by lessening the labour of acquiring a proper knowledge

of the subject, and by indicating the main lines on which recent

progress has been achieved.

No apology is offered for the size of the book. Indeed, if

there were to be an apology, it would rather be on the ground

of the too brief treatment of some portions and the omissions

of others. The detail in the exposition of the elements of several
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important branches has prevented a completeness of treatment

of those branches : but this fuhiess of initial explanations is'

deliberate, my opinion being that students will thereby become

better qualified to read the great classical memoirs, by the study

of which effective progress can best be made. And limitations of

space have compelled me to exclude some branches which other-

wise would have found a place. Thus the tlieory of functions of

a real variable is left undiscussed : happily, the treatises of Dini,

Stolz, Tannery, and Chrystal are sufficient to supply the omission.

Again, the theory of functions of more than one complex variable

receives only a passing mention ; but in this case, as in most

cases, where the consideration is brief, references are given

which will enable the student to follow the development to

such extent as he may desire. Limitation in one other direction

has been imposed : the treatise aims at dealing with the general

theory of functions and it does not profess to deal with special

classes of fuQctions, I have not hesitated to use examples of

special classes : but they are used merely as illustrations of tlie

general theory, and references are given to other treatises for

the detailed exposition of their properties.

The general method which is adopted is not limited so that

it may conform to any single one of the three principal inde-

pendent methods, due to Cauchy, to Weierstrass and to Riemann

respectively : where it has been convenient to do so, I have

combined ideas and processes derived from different methods.

The book may be considered as composed of five parts.

The first part, consisting of Chapters I—VII, contains the

theory of uniform functions : the discussion is based upon power-

series, initially connected with Cauchy's theorems in integration,

and the properties established are chiefly those which are con-

tained in the memoirs of Weierstrass and Mittag-Leffler.

The second part, consisting of Chapters VIII—XIII, contains

the theory of multiform functions, and of uniform periodic

functions which are derived through the inversion of integrals

of algebraic functions. The method adopted in this part is

Cauchy's, as used by Briot and Bouquet in tlieir three memoirs

and in tlieir treatise on elliptic functions ; it is the method that
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lias been followed by Hermite and others to obtain the properties

of various kinds of periodic functions. A chapter has been

devoted to the proof of Weierstrass's results relating to functions

that possess an addition-theorem.

The third part, consisting of Chapters XIV—XVIII, contains

the development of the theory of functions according to the

method initiated by Kiemann in his memoirs. The proof which

is given of the existence-theorem is substantially due to Schwarz
;

in the rest of this' part of the book, I have derived great assist-

ance from Neumann's treatise on Abelian functions, from Fricke's

treatise on Klein's theory of modular functions, and from many
memoirs by Klein.

The fourth part, consisting of Chapters XIX and XX, treats

of conformal representation. The fundamental theorem, as to the

possibility of the conformal representation of surfaces upon one

another, is derived from the existence-theorem : it is a curious fact

that the actual solution, which has been proved to exist in general,

has been obtained only for cases in which there is distinct

limitation.

The fifth part, consisting of Chapters XXI and XXII, contains

an introduction to the theory of Fuchsian or automorphic functions,

based upon the researches of Poincare and Klein : the discussion is

restricted to the elements of this newly-developed theory.

The arrangement of the subject-matter, as indicated in this

abstract of the contents, has been adopted as being the most

convenient for the continuous exposition of the theory. But the

arrangement does not provide an order best adapted to one who is

reading the subject for the first time. I have therefore ventured

to prefix to the Table of Contents a selection of Chapters that

will probably form a more suitable introduction to the subject for

such a reader ; the remaining Chapters can then be taken in an

order determined by the branch of the subject which he wishes

to follow out.

In the course of the preparation of this book, I have consulted

many treatises and memoirs. References to them, both general

and particular, are freely made : without making precise reserva-

tions as to independent contributions of my own, I wish in this
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place to make a comprehensive acknowledgement of my obligations

to such works. A number of examples occur in the book : most of

them are extracted from memoirs, which do not lie close to the

direct line of development of the general theory but contain

results that provide interesting special illustrations. My inten-

tion has been to give the author's name in every case where a

result has been extracted from a memoir : any omission to do so

is due to inadvertence.

Substantial as has been the aid provided by the treatises and

memoirs to which reference has just been made, the completion of

the book in the correction of the proof-sheets has been rendered

easier to me by the unstinted and untiring help rendered by

two friends. To Mr William Burnside, M.A., formerly Fellow of

Pembroke College, Cambridge, and now Professor of Mathematics

at the Royal Naval College, Greenwich, I am under a deep debt

of gratitude : he has used his great knowledge of the subject in

the most generous manner, making suggestions and criticisms that

have enabled me to correct errors and to improve the book in

many respects. Mr H. M. Taylor, M. A., Fellow of Trinity CoUfege,

Cambridge, has read the proofs with great care : the kind assist-

ance that he has given me in this way has proved of substantial

service and usefulness in correcting the sheets. I desire to

recognise most gratefully my sense of the value of the work which

these gentlemen have done.

It is but just on my part to state that the willing and active

co-operation of the Staff of the University Press during the

progress of printing has done much to lighten my labour.

It is, perhaps, too ambitious to hope that, on ground which

is relatively new to English mathematics, there will be freedom

from error or obscurity and that the mode of presentation in this

treatise will command general approbation. In any case, my aim

has been to produce a book that will assist mathematicians in

acquiring a knowledge of the theory of functions : in proportion

as it may prove of real service to them, will be my reward.

A. R. FORSYTH.
Trinity Collecje, Cambridge,

25 February, 189.3.



PREFACE TO THE SECON]) EDITION.

iN issuing the second edition of this treatise, I desire to express

my grateful sense of the reception which has already been

accorded to the book. When it was first published, I could not

but fear that, if from no other reason than the breadth of range

which it covers, it would contain blemishes in the way of inaccuracy

and obscurity. During the preparation of the second edition, I

have had the advantage of suggestions and criticisms sent to me
by friends and correspondents, to whom my thanks are willingly

returned for the help they thus have afforded me ; my hope is that

improvement has been secured in several respects. The principal

changes may be indicated briefly.

Some modifications have been made in the portion that is

devoted to the theory of uniform functions : no substantial

additions have been made to this part of the book, but new

references are given for the sake of readers who may wish to

acquaint themselves with the most recent developments.

The exposition of Schwarz's proof of the existence of various

classes of functions upon a Riemann's surface has been considerably

changed. The new form seems to me to be free from some of the

(lithculties to which exception has been taken from time to time:

the general features of the proof have been retained.

Several sections have been inserted in Chapter XVIII, which

are intended to serve as a simple introduction to the theory of

birational transformation of algebraic equations and curves and of

Riemann's surfaces. Moreover, as that part of the book is occupied

with integrals of algebraic functions and with Abelian functions, it

seems not unnatural that a proof of Abel's Theorem should be

given, as well as some illustrations : this has been effected in some

supplementary notes appended to Chapter XVIII. With minor

exceptions, these additions constitute the whole of the new matter

relating to algebraic functions and their integrals.
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The chief omission from the contents of the former edition is

caused by the transference, to the second volume of my Theo7'y of

Differential Equations, of the sections that discussed the properties

of certain binomial differential equations of the first order. The

space thus placed at my disposal has been assigned to the theory

of birational transformation ; and I have been enabled to keep the

numbering of the paragraphs the same as in the former edition

with only very few exceptions.

The increased size of the book has prevented me, even more

definitely than before, from attempting to discuss some of the

subjects left undiscussed in the first edition. The volume will

probably be regarded as sufficiently large in its present form :

I hope that it may continue to be found a useful introduction to

one of the most important subjects in modern pure mathematics.

A. II. F.

Trinity College, Cambridge,

31 October, 1900.
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THE differences between the present edition and tlie second

edition are not substantial.

The general plan of the book is unaltered ; and no change has

been made in the numbering of the paragraphs. Not a few

detailed changes have been made in places as, for instance, in the

establishment of the fundamental functions in the Weierstrass

theory of elliptic functions ; but some chapters remain entirely

unaltered.

The theory of conformal representation is important in particular

ranges of subjects such as hydrodynamics and electrostatics ; so

I have included a note giving some applications of that theory to

some branches of mathematical physics. It is intended only as

an introduction ; but it may suffice to shew that many analytical

results are common to these selected ranges, though they are ex-

pressed in the various vocabularies appropriate to the respective

subjects.

In passing from the first edition to the second, I omitted certain

sections which discussed the properties of certain differential equa-

tions of the first order. These sections are now contained in the

second volume of my Theorif of Differe^itial Equations. Owing
to their importance as illustrations of the theory of functions, I

have included a note stating the results.

Here and there, throughout the book, some further examples

have been added. At the end of the book, I have given a set of

some two hundred miscellaneous examples, which have been

collected from Cambridge examination papers. For making the

collection, I am indel>ted to Mr C. H. Kebby, B.Sc, A.R.C.8., a

demonstrator in the department of mathematics and mechanics in

the Imperial College of Science and Technology, London.

Tlie Staff of the University Press have shewn to me the same

courteous consideration that I have exjjerienced for many years
;

6 2
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and they have achieved the task of printing the volume within a

brief period in spite of their grave depletion by the demands of

this world-wide war. To- all of them, who have been concerned

with the book, I tender my most cordial and appreciative thanks.

A. R. F.

Imperial College of Science and Technology,

London, S.W.

11 October, 1917.
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CHAPTER T.

General Introduction.

1. Algebraical operations arc either direct or inverse. Without

entering into a general discussion of the nature of rational, irrational, and

imaginary quantities, it will be sufficient to point out that direct algebraical

operations on numbers that are positive and integral lead to numbers of the

same character ; and that inverse algebraical operations on numbers that are

positive and integral lead to numbers, which may be negative or fractional

or irrational, or to numbdrs which may not even fall within the class of real

(juantities. The simplest case of occurrence of a quantity, which is not

real, is that which arises when the square root of a negative quantity is

required.

Combinations of the various kinds of quantities that may occur are of

the form x + iy, where x and y are real, and i, the non-real element of the

(juantity, denotes the square root of — 1. It is found that, when quantities

of this character are subjected to algebraical operations, they always lead

to quantities of the same formal character; and it is therefore inferred that

the most general form of algebraical quantity is a? + iy.

Such a quantity x + iy, for brevity denoted by z, is usually called a

complex variable * ; it therefore appears that the complex variable is the

most general form of algebraical quantity which obeys the fundamental laws

of ordinary algebra.

2. The most general complex variable is that, in which the constituents

X and y are independent of one another and (being real quantities) are

separately capable of assuming all values from - oo to + oo ; thus a doubly-

infinite variation is possible for the variable. In the case of a real variable,

it is -convenient to use the customary geometrical representation by measure-

ment of distance along a straight line; so also in the case of a complex

variable, it is convenient to associate a geometrical representation with

the algebraical expression ; and this is the well-known representation of

* The conjugate complex, viz. j; - iy, is frequently denoted by z^.

F. F. 1
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the variable x + iy by means of a point with coordinates x and y referred

t(» rectangular axes*. The complete variation of the complex variable z

is represented by the aggregate of all possible positions of the associated

point, which is often called the point z ; the special case of real variables

being evidently included in it because, when y = 0, the aggregate of

possible points is the line which is the range of geometrical variation of the

real variable.

The variation of z is said to be continuous when the variations of x and //

are continuous. Continuous variation of z between t\vo given values will

thus be represented by continuous variation in the position of the point z,

that is, by a continuous curve (not necessarily of continuous curvature)

between the points corresponding to the two values. But since an infiniti'

number of curves can be drawn between two points in a plane, continuity of

line is not sufficient to specify the variation of the complex variable; and,

in order to indicate any special mode of variation, it is necessary to assign,

either explicitly or implicitly, some determinate law connecting the variations

of X and y or, what is the same thing, some determinate law connecting

x and y. The analytical expression of this law is the equation of the curve

which represents the aggregate of values assumed by the variable between

the two given values.

In such a case the variable is often said to describe the part of the curves

between the two points. In particular, if the variable resume its initial

value, the representative point must return to its initial position ; and then

the variable is said to describe the whole curve f.

When a given closed curve is continuously described by the variable,

there are two directions in which the description can take place. From

the analogy of the description of a straight line by a point representing a

real variable, one of these directions is considered as positive and the other

as negative. The usual convention under which one of the directions is

selected as the positive direction depends upon the conception that the curve

* This method of geometrical representation of imaginary quantities, ordinarily assigned to

Gauss, was originally developed by Argand who, in 1806, published his Essai sur une maniere

de reprhenti'r les quantites imaginaires dam les conatructions geoinetriques. This tract was

republished in 1874 as a second edition (Gauthier-Villars) ; an interesting preface is added

to it by Hoiiel, who gives an account of the earlier history of the publications associated with

the theory.

Other refereuces to the historical development are given in Chrystal's Text-book of Algebra,

vol. i, pp. 248, 249; in Hulzmuller's EiiiJ'ii lining in die Theorie di-r isogomlen VenoandschafU-n

und der confonuen Abhilduiigen, verbuiidru niit Anioendungen anf mathematische Physik, pp. 1—10,

21 23; ill Schlomilch's Compftidium der hoheren Analysis, vol. ii, p. 38 (note) ; and in Casorati,

Teorica delle funzioui di variahili complessf, only one volume of which was published. In this

connection, an article by Cavley (Quart. Journ. of Math., vol. xxii, pp. 270—308; Coll. Matli.

Papers, t. xii, pp. 459—489) may be consulted with advantage.

t In these elementary explanations, it is unnecessary to enter into any discussion of

the effects caused by the occurrence of singularities in the curve.
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is the boundary, partial or complete, of some area ; under it, that direction is

taken to be positive which is such that the bounded area lies to the left of

the direction of description. It is easy to see that the same direction is taken

to be positive under an equivalent convention

which makes it related to the normal drawn

outwards from the bounded area in the same

way as the positive direction of the axis of y
is usually related to the positive direction of

the axis of x in plane coordinate geometry.

Thus in the figure (fig. 1), the positive

direction of desciiption of the outer curve

for the area included by it is DBF: the

positive direction of description of the inner

curve for the area without it (say, the area

excluded by it) is AGB; and for the area

between the curves the positive direction of description of the boundary,

which consists of two parts, is DEF, AGB.

3. Since the position of a point in a plane can be determined b}^ means

of polar coordinates, it is convenient in the discussion of complex variables

to introduce two quantities corresponding to polar coordinates.

In the case of the variable z, one of these quantities is {x- + y-)^, the

positive sign being always associated with it; it is called the modulus*

(sometimes the absolute value) of the variable and it is denoted, sometimes

by mod. 2^, sometimes by \z\. The modulus of a complex variable is quite

definite, and it has only one value.

The other is 6, the angular coordinate of the point z : it is called the

argument (and, less frequently, the aviplitude) of the variable. It is

measured in the trigonometrically positive sense, and is determined by

the equations

x= z\cos,d, y=\z\ sin 6,

so that z = \z\ e^\ The actual value depends upon the way in which the

variable has acquired its value ; when variation

of the argument is considered, its initial value

is usually taken to lie between and 27r or, less

frequently, between — tt and + tt. The argu-

ment of a variable is not definite : it has an

unlimited number of values differing from one

another by integer multiples of 27r. This

characteristic property will be found to be of

essential importance.
Fig. 2.

Der absvlt'te Betrufi is often used by German writers.
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As z varies in position, the values of \z\ and Q vary. When z has com-

pleted a positive description of a closed curve, the modulus of z returns to

the initial value whether the origin be without, within, or on, the curve.

The argument of z resumes its initial value, if the origin 0' (fig. 2) be with-

out the curve ; but, if the origin be within the curve, the value of the

argument is increased by lir when z returns to its initial position.

If the origin be on the curve, the argument of z undergoes an abrupt

change by tt as z passes through the origin ; and the change is an increase

or a decrease according as the variable approaches its limiting position on the

curve from without or from within. No choice need be made between these

alternatives ; for care is always exercised to choose curves which do not

introduce this element of doubt.

Later on, it will appear that, for the discussion of particular types of

functions of z, a knowledge of the actual value of z or the actual position

of z is not sufficient ; account has to be taken of the fact that the argument
of ^ is not uniquely determinate.

4. Representation on a plane is obviously more effective for points at a

finite distance from the origin than for points at a very great distance.

One method of meeting the difficulty of representing great values is to

introduce a new variable z' given by z'z-=\: the part of the new plane for

z which lies quite near the origin corresponds to the part of the old plane

for z which is very distant. The two planes combined give a complete

representation of variation of the complex variable.

Another method, in many ways more advantageous, is as follows. Draw
a sphere of unit diameter, touching the ^-plane at the origin (fig. 3) on

the under side : join a point z in the plane to 0', the other extremity of

Fig. 3.

the diameter through 0, by a straight line cutting the sphere in Z.

Then Z is a unique representative of z, that is, a single point on the

sphere corresponds to a single point on the plane : and therefore the variable



4.] THE COMPLEX VARIABLE 5

can be represented on the surface of the sphere. With this mode of

representation, 0' evidently corresponds to an infinite value of z ; and points

at a very great distance in the 2-plane are represented by points in the

immediate vicinity of 0' on the sphere. The sphere thus has the advantage

of putting in evidence a part of the surface on which the variations of

great values of z can be traced*, and of exhibiting the uniqueness of

2 = X as a value of the variable, a fact that is obscured in the represent-

ation on a plane.

The former method of representation can be deduced by means of the

sphere. At 0' draw a plane touching the sphere : and let the straight line

OZ cut this plane in /. Then z is a point uniquely determined by Z
and therefore uniquely determined by z. In this new /-plane take axes

l)arallel to the axes in the ^-plane.

The points z and z' move in the same direction in space round 00'

as an axis. If we make the upper side of the ^•-plane correspond to the

lower side of the /-plane, and take the usual positive directions in the

planes, being the positive trigonometrical directions for a spectator looking

at the surface of the plane in which the description takes place, we have

these directions indicated by the arrows at and at 0' respectively, so

that the senses of positive rotations in the two planes are opposite in

space. Now it is evident from the geometry that Oz and O'z' are

parallel ; hence, if 6 be the argument of the point z and d' that of the

point z , so that 6 is the angle from Ox to Oz and & the angle from O'x

to O'z , we have

<9 -f (9' = 27r.

t:^ .1. 1 • 1 . 1
Oz 00'

Further, by similar triangles, j^, = jy-, ,

that is, Oz.O'z'=00'-==\.

Now, if z and z be the variables, we have

z= Oz . e^', z = O'z' . e*'',

so that zz=Oz.O'z' .6^0+^''^

= 1.

which is the former relation.

The /-plane can therefore be taken as the lower side of a plane touching

the sphere at 0' when the j-plane is the upper side of a plane touching

it at 0. The part of the 2^-plane at a very great distance is repiv.sented on

the sphere by the part in the immediate vicinity of 0'. Conversely, this

part of the sphere is represented on the very distant part of the ^-plane.

Consequently, the portion of the sphere in the immediate vicinity of 0' is a

space wherein the variations of infinitely great values of z can be traced.

* This sphere is sometimes called Neumann's sphere; it is used by him for the representation

of the complex variable throuKbout his treatise Vorlrsiingen ilher llieiiiann'ii Theorie (It AbrVxchrn

Intcgrale (Leipzig, Teubner, '2nd edition. lHs4).
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But it need hardly be pointed out that any special method of represent-

ation of the variable is not essential to the development of the theory of

functions; and, in particular, the foregoing representation of the variable,

when it has very great values, merely provides a convenient method of

dealing with quantities that tend to become infinite in magnitude.

5. The simplest propositions relating to complex variables will be

assumed known. Among these are, the geometrical interpretation of opera-

tions such as addition, multiplication, root-extraction ; some of the relations

of complex variables occurring as roots of algebraical equations with real

coefficients ; the elementary properties of functions of complex variables

which are polynomial, or exponential, or circular, functions ; and simple

tests of convergence of infinite series and of infinite products*.

6. All ordinary operations effected on a complex variable lead, as

already remarked, to other complex variables; and any definite quantity,

thus obtained by ^operations on z, is necessarily a function of z.

But if a complex variable w be given as a complex function of x

and y without any indication of its source, the question as to whether

w is or is not a function of z requires a consideration of the general idea

of functionality.

It is convenient to postulate xi -f- iv as a form of the complex variable w,

where ii and v are real. Since w is initially unrestricted in variation, we

may so far regard the quantities u and v as independent and therefore as

any functions of x and _?/, the elements involved in z. But more explicit

expressions for these functions are neither assigned nor supposed.

The earliest occurrence of the idea of functionality is in connection with

functions of real variables ; and then it is coextensive with the idea of

dependence. Thus, if the value of X depends on that of x and on no other

variable magnitude, it is customary to regard X as a function of x ; and

there is usually an implication that X is derived from x by some series of

operations f.

A detailed knowledge of z determines x and y uniquely ; hence the values

of XI and v may be considered as known and therefore also w. Thus the

value of w is dependent on that of z, and is independent of the values

* These and other introductory parts of the subject are discussed in Chrystal's Text-booh of

Algebra, Hobson's Treatise on Plane Trigonometry, Bromwich's Tlwory of infinite xeries, and

Hardy's Course of pure mathematics.

They are also discussed at some length in the translation, by G. L. Cathcart, of Harnack's

Klements of the differential and integral calculus (Williams and Norgate, 1891), the second and

the fourth books of which contain developments that should be consulted in special relation

with the first few chapters of the present treatise.

These books, together with Neumann's treatise cited in the note on p. ;'), will hereafter be cited

by the names of their respective authors.

t It is not important for the present purpose to keep in view such mathematical expressions

as have intelligible meanings only when the independent variable is confined within limits.
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of variables unconnected with z ; therefore, with the foregoing view of

functionality, w is a function of z.

It is, however, equally consistent with that view to regard w as a complex

function of the two independent elements from which z is constituted ; and

we are then led merely to the consideration of functions of two real

independent variables with (possibly) imaginary coefficients.

Both of these aspects of the dependence of w on z require that z be

regarded as a composite quantity involving two independent elements w'hich

can be considered separately. Our purpose, however, is to regard z as the

most general form of algebraical variable and therefore as an irresolublc

entity ; so that, as this preliminary requirement in regard to z is unsatisfied,

neither of the aspects can be adopted.

7. Suppose that w is regarded as a function of z in the sense that it.

can be constructed by definite operations on z regarded as an irresolubh-

magnitude, the quantities u and v arising subsequently to these operations

by the separation of the real and the imaginary parts when z is replaced by^

X + iy. It is thereby assumed that one series of operations is sufficient for

the simultaneous construction of u and v, instead of one series for u and

another series for v as in the general case of a complex function in § 6.

If this assumption be justified by the same forms resulting from the two

different methods of construction, it follows that the two series of opera-

tions, which lead in the general case to n and to /;, must be equivalent to

the single series and must therefore be connected by conditions ; that is,

u and V as functions of x and y must have their functional forms related.

We thus take

II + iv = IV =f(z) =f{x + iy)

without any specification of the form of/. When this postulated cquatio)i

is valid, we have
div _dw dz _ ., dw
dx~'d^ da-"-' ^~^~dz'

dw _dw dz _ .^, , _ div

dy~Tz dy~-^
^"^~'^'

, ,
, .. dw \ dw dw ^, ^and therefore --=-—=: — (1)

dx I oy dz ^ '

equations from which the functi<inal form has disappeared. Inserting the

value of w, we have
. d , ,

. . h , . ,

z „ (It + XV) = -- (// + iv\
ox oy

whence, after equating real and imaginary jiarts.

dv da du dv

dx dy' dx dy

These are neces.sarv relations bi-tween the functional forms of n ai

.(2).
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These relations are easily seen to be sufficient to ensure the required

functionality. For, on taking w = u + iv, the equations (2) at once lead to -

dw _1 dw
dx i dy

'

.. . . dw dw ..

that IS, to z^ +1 ^r- =0,
ox dy

a linear partial differential equation of the first order. To obtain the most

general solution, we form a subsidiary system

dx _ dy dw
1 ~ T " IT

It possesses the integrals w, x + iy; then from the known theory of such

equations we infer that every quantity w satisfying the equation can be

expressed as a function of x + iy, that is, of z. The conditions (2) are thus

proved to be sufficient, as well as necessary.

8. The preceding determination of the necessary and sufficient condition.s

of functional dependence is based upon the existence of a functional form
;

and yet that form is not essential, for, as already remarked, it disappears

from the equations of condition. Now the postulation of such a form is

equivalent to an ;issumption that the function can be numerically calculated

for each particular value of the independent variable, though the immediate

expression of the assumption has disappeared in the present case. Experience

of functions of real variables shews that it is often more convenient to use

their properties than to possess their numerical values. This experience is

confirmed by what has preceded. The essential conditions of functional

dependence are the equations (1), and they express a property of the function w,

viz., that the value of the ratio -, is the same as that of tt- , or, in other
dz ox

words, it is inde])endent of the manner in which ds ultimately vanishes by

the approach of the point z + dz to coincidence Avith the point z. We are

thus led to an entirely different definition of functionality, viz. :

—

A complex (fKcmtity w is a function of another coinjdex (juantity z, when

they change together in such a manner that the value of -r~ is independent of

the value of the differential element dz.

This is Riemann's definition* ; we proceed to consider its significance.

We have

dw
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Let
<f>

be the argument of dz; then

dx cos

;uid therefore

dx + idy cos
<f>
+ / sin

(f)
^

'

dx + idy

dw , idu .dv .&u dii]
, .,. {du .du .dn dv\

a2 - [?x dx dy oij] [ex dx dy oy]

Since -v- is to be independent of the value of the differential element dz,

it must be independent of <j> which is the argument of dz ; hence the coefficient

of e~-** in the preceding expression must vanish, which can happen only if

du _ dv dv _ 3m ,^

dx dy' dx dy
.•••-•

These are necessary conditions : they are evidently also sufficient to make

,^ independent of the value of dz and therefore, by the definition, to secure

that 10 is a function of z.

By means of the conditions (2), we have

dw _du . do __ div

dz dx dx dx'

J ,
dw .du dv 1 dw

and also :7-=-*o+^=^^'dz dy dy i oy

agreeing with the former equations (1). They are immediately derivable from

the present definition by noticing that dx and idy are possible forms of dz.

It should be remarked that equations (2) are the conditions necessary

and sufficient to ensure that each of the expressions

ud.r — vdy and ndx + udy

is a perfect differential—a result t)f great importance in many investigations

in the region of mathematical physics. Within that region, the quantities

lb and V are frequently called conjuyate functions. Sometimes they are

called harmonic functions ; but the latter term usually has a wider signi-

ficance associated with classes of functions that satisfy- the equation of the

potential in ordinary three-dimensional space.

When the conditions (2) are ex))ressed, as is soUR-timrs convcMicnt, in

terms of derivatives with regard in the modulus of z, say ?•, and the

argument of z, say 6, they takr tht- new forms

du _ I a I' dv _ 1 du
,

dr~ rdS' dr~~r?e ^~'

'
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We have so far assumed that the function has a differential coefficient

—

an assumption justified in the case of functions which ordinarily occur. But

functions do occur which have different values in different regions of the

2r-plane, and there is then a difficulty in regard to the quantity -r- at the

boundaries of such regions ; and functions do occur which, though themselves

definite in value in a given region, do not possess a differential coefficient at

all points in that region. The consideration of such functions is not of

substantial importance at present : it belongs to another part of our subject.

It must not be inferred that, because -j- is independent of the direction

in which dz vanishes when /" is a function of .?, therefore -y- has only one
dz ^

value. The number of its values is dependent on the number of values of w;

no one of its values is dependent on dz.

A quantity, defined as a function by Riemann on the basis of this

property, is sometimes* called an analytic function ; but it seems pre-

ferable to reserve the term analytic in order that it may be associated

hereafter (§ 34) with an additional quality of the functions.

9. In the same way as the complex variable z is represented upon

a plane, which is often called the s-plane, so the complex variable w is

also represented upon a plane, which is often called the w-plane. The

two variables can obviously be represented upon different parts of the

2r- plane. The relations of the two planes to one another, or of the

different parts of the same plane, when there is a functional connection

between z and w, will be the subject of later investigations ; one important

property will, however, be established at once.

Let P and 2> be two points in different planes, or in different parts of

the same plane, representing w and z respectively ; and suppose that P and

p are at a finite distance from the points (if any) which cause discontinuity

in the functional connection between the two variables. Let q and r be

any two other points, z + dz and z + hz, in the immediate vicinity of p

;

and let Q and R be the corresponding points, iv + dw and w + hw, in the

immediate vicinity of P. Then

, div J ^ dw ^div = -r^ dz, ow = ,- bs,
dz dz

the value of ,
- being the same for both equations, because, as iv is a function

of z, that quantity is independent of the differential element of z. Hence

hw _hz
dw dz'

on the ground that -7- is neither zei-o nor infinite at z, which is assumed not

*^ Harnack. § S4.
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to be a point of discontinuity in the functional connection. Expiissing all

the differential elements in terms of their moduli and arguments, let

dz = ae^', dw = rje'^',

hz = tr'e*', hi' = ri'e*',

and let these values be substituted in the foregoing relation ; then

7]' _ a

7} <T

Hence the triangles QPR and qpr are similar to one another, though

not necessarily similarly situated. Moreover, the directions originally chosen

for pq and pr axe quite arbitrary. Thus it appears that afunctional connection

between two complex variables establishes the similarity of the corresponding

infinitesimal elements of those parts of two planes which are in the immediate

vicinity of the points representing the tivo variables.

The magnification of the w-plane relative to the 2^-plane at the corre-

sponding points P and p is the ratio of two corresponding infinitesimal

lengths, say of QP and qj). This is the modulus of ~r ', if it be denoted by

ni, we have
diu 1- _ fdii\- /dv\- _ /du\" /S^Y"

dz \ ~[dx) '^
[dwj " [dyJ

"^
[d^J

_ du dv du dv

dx dy dy da:

'

Evidently the quantity m, in general, depends on th(! variables and

therefore it changes fi-om one point to another ; hence a functional relation

between w and z does not, in general, establish similarity of finite parts of

the two planes corresponding to one another through the relation.

It is easy to prove that to = az f b, where a and b are constants, is the

only relation which establishes similarity of finite parts; and that, with this

relation, a must be a real constant in order that the similar parts may be

similarly situated.

If V + iv = w = cf> (z), the curves u = constant and v = constant cut at

right angles: a special case of the proposition that, if <f(x + iy) = ii + ve^'

.

where \ is a real constant and //, v are real, then u = constant and r = constant

cut at an angle X.

The process, which establishes the infinitesimal similarity of two planes

by means of a functional relation between the variables of the planes, may be

called the conformal representation of one plane on another*.

* By Gauss {Ges. Werke, t. iv, p. 2()2) it was styled confonne AbhUdumj. the name

universally adopted by German mathematicians. The French title is reprtneiitatinn •onfortne ;

and, in Enf^'land, Cayley has used orthomorplionin and mthomorphir trnmforvnitioii.
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The discussion of detailed questions connected with the conformal representation is

deferred until the later part of the treatise, principally in order to group all such

investigations together; but the first of the two chapters, devoted to it, need not be

deferred so late, and an immediate reading of some portion of Chapter XIX. will tend

to simplify many of the explanations relative to functional relations as they occur in

tlie early chapters of this treatise.

10. The analytical conditions of functionality, under either of the

adopted definitions, are the equations (2). From them it at once follows that

dhi dht _
dx^ dy-

dx- dy-

so that neither the real nor the imaginary part of a complex function can be

arbitrarily assumed.

If either part be given, the other can be deduced. For example, let u be

given ; then we have

dx dy '^

du 7 du ,

and therefore, except as to an additive constant, the value of v is

/(
du , du ,

In particular, when u is an integral function, it can be resolved into the

sum of homogeneous parts

Ui + Uo + u.', + . .
.

;

and then, again except as to an additive constant, v can similarly be

expressed as a sum of homogeneous parts

Vi + V2 + Vr.+ ....

It is easy to prove that

du,n du,n

by means nf which the value of v can be obtained.

The case, when n is homogeneous of zero dimensions, presents no

difficulty : foi- then we have
ii = h->r aO,

V = c — (I log r,

where a, b, c are constants.

Similarly for other special cases : and, in the most general case, only

a (juadraturc is necessary.
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The tests of functional dt'})(.'ntlence of one complex variable on another an-

of effective importance in the case when the supposed dependent variable

arises in the form n + iv, where a and v are real ; the tests are, of course

superfluous when w is explicitly given as a function of z. When w does

arise in the form u + iv and satisfies the conditigns of functionality, perhaps

the simplest method (other than by inspection) of obtaining the explicit

expression in terms oi z is to substrtute z — hj for ./• in u + iv; the simplified

result must be a function of z alone.

11. Conversely, when \ju is explicitly given as a function (jf z and it

is divided into its real and its imaginary parts, these parts individually

satisfy the foregoing conditions attaching to u and v. Thus log r, where r

is the distance of a point z from a point a, is the real part of log(2 — (/):

it therefore satisfies the equation

d-u d'-u _

Again, </>, the angular coordinate of z relative to the same point a, is

the real part of —i\og{z — a) and satisfies the same equation: the more

usual form of (^ being tan~^ {(3/ — 2/o)/(^ - «o)l , where a^Xo + iyo- Again, if

a point z be distant r from a and r from b, then log(?-/r'), being the real

part of log {(z - a)/{z- b)], is a solution of the same equation.

The following example, the result of which will be useful subsequently* u.ses the

property that the value of the derivative is independent of the differential element.

Con.sider a function iv=w-- log;

where r' is the inver.se of c with regard to a circle, centre the origin and radius A'.

Then

z— c'\
'

Let

dog

so the curves, u = constant, are
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whence '^=
i?2-.2X^ '

^=
Ji^-r^)^'

Now if dn ho an element of the normal dnawu inwards at z to the circle JVzM, we have

dz= dx+ idy — —dn. cos -^ — idn . sin ^
= —e^^dn,

where •(//^( = £AV) is the argument of ; relative to the centre of the circle. Hence, since

dw _ _1 1_
dz z — c z — d''

du .dv dw / I 1 \ ^i
we have T" + * T" = jt^ = ( >

)
<^ •

dn an dn \z — c z — cJ

But 5=5e"+ pe"^',

so that z-c= ^^f'^fj (
lie'^' - Xre»'"),

and z-c' = - #^!y., (X^e*'' - /;.-)

;

/• /l"— /"-A"

t^M c/v /2- '/'^X^ j,/^ ^ ^ ^

and theref..re ^„ +t^= M-?^ ' 'P Xrc> - /2e-' " X ^^^^^C^

Hence, equating the real parts, it follows that

du^ (/?-'-r-'\^)^

dn~ \R{m-r^){m-^Rr\cos{y\r-a)-\-X^r'^y

the differential element dn being drawn inwards from the circumference of the circle.

The application of this method is evidently effective when the curves w= constant,

aiising from a functional expression of vj in terms of j, are a family of non-intersecting

algebraical curves.

Ex. 1. Prove that, if Zy and z^ denote two complex variables,

\Zl+Z2\<\Zi\ + \h\^ !2l-22|^|Sll~i^2|-

Ex, 2. Find the values of w and v when tv is defined as a function of z in the following

cases :

—

(i) z=^{io+ iy;

(ii) i= (H-cosw)e"'';

,..., l-{l-z)h
,„ .,

,
(ui) -

—^ s =e , W-, log w.

H-(l-2)4

In each (;ii.se, trace the curves u= a, v= c, regarded as loci in the plane of x, y.

Ex. :J. Shew that x- - y- - •2ix)/ is not a function of z; and that

./3 - 3.1V/2+ i (3.);^y - y'^) + ax

is a function of z only when a= 0.

Ex. 4. Shew that a possible value of /' is

[x-y){x^+ A.vy+y^);

and determine the associated value of w in terms of z.

Determine also the value of ro in terms of z when the preceding expression is the value

of u — v.

Ex. .'>. Find the value of c, and of </; in terms of 2, when

sin a;

cosh y - cos X
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Ex. 6. I'rove tluit, when .r and 1/ ;irc
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which, when satisfied, ensure the existence of w^ ; hence

1 9w, _ 1 3 fdw\

i dy i dy\dx)

_ d /I dvA

dx \i dyj

_dwi
dx

'

shewing, as in § 8, that the derivative -y^ is independent of the direction in

which dz vanishes. Hence w, is a function of z.

Simihirly for all the derivatives in succession.

(ii). Since the functional dependence of a complex is ensured only if the

value of the derivative of that complex be independent of the manner in

which the point 2 + dz approaches to coincidence with z, a question naturally

suggests itself as to the effect on the character of the function that may be

caused by the manner in which the variable itself has come to the value of z.

If a function has only one value for each given value of the variable,

whatever be the manner in which the variable has come to that value, the

function is called uniform*. Hence two different paths from a point a to a

point z give at z the same value for any uniform function ; and a closed

curve, beginning at any point and completely described by the 2^-variable

will lead to the initial value of w, the corresponding w-curve being closed, if 2-

has not passed through any point which makes lu infinite.

The simplest class of uniform functions is constituted by rational

functions.

(iii). If a function has more than one value for any given value of the

variable, or if its value can be changed by modifying the path in which

the variable reaches that given value, the function is called multi/orm'f.

Characteristics of curves, which are gi-aphs of multiform functions corre-

sponding to a 2^-curve, will hereafter be discussed.

One of the simplest classes of multiform functions is constituted b)

algebraical irrational functions, that is, functions defined by an irresolublc

algebraic equation /(w, 2) = 0, where/ is a polynomial in w and z.

The rational functions in (ii) occur when /is of only the first degi'ee in w.

(iv). A multiform function has a number of different values for the same

value of z, and these values vary with z : the aggregate of the variations of

any one of the values is called a branch of the function. Although the

function is multiform for unrestricted variation of the variable, it often

happens that a branch is uniform when the variable is restricted to

particular regions in the plane.

* Also monodromic, or monotropic; with German writers the title is eindeutig, occasionally,

ciniindrig.

\ Also pohjtriipir ; with German writers the title is inchrdeutig.
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(v). A point in the plane, at which two or more branches uf a inullifonn

function assume the same vahie, and near which thosi' branches are inter-

changed (§ 94, Note) by appropriate modification in the path of z, is called a

branch-point* of the function. The relations of the branches in the immediate

vicinity of a branch-point will be discussed hereafter.

(vi). A function, which is monogenic, uniform and continuous over any

part of the ^-plane, is called Jwlomorphic\ over that part of the plane. When
a function is called holoniorphic without any limitation, the usual in»pIication

is that the character is preserved ovei- the whole of the plane which is not at

infinity.

The simplest example of a holomorphic function is a polynomial in the

variable.

(vii). A root (or a zero) of a function is a value of the variable for which

the function vanishes.

The simplest case of occurrence of roots is in a rational integral

function, various theorems relating to which (e.g., the number of roots

included within a given contour) will be found in treatises on the theory

oi equations.

(viii). The infinities of a function are the points at which the value of

the function is infinite. Among them, the simplest are the polesl of the

function, a pole being an infinity such that in its immediate vicinity the

reciprocal of the function is holomorphic.

Infinities other than poles (and also the poles) are called the singular

points, or the singularities, of the function : their classification must be

deferred until after the discussion of properties of functions.

(ix). A function, which is monogenic, uniform and, except at poles,

continuous, is called a meromorphic function§. The simplest example is a

rational fraction.

13. The following functions give illustrations of some of the preceding

definitions.

(a) In the case of a meromorphic function

F{zl

./(^)

Also critical point, wliicli, liowever, is sometimes used to include all special points of a
f'lmctipn

; with German writers the title is I'crzio'-ionnnxpiinkt, and sometimes Winduuifapunkt.
French writers use point <!, ntmiiicntiim, aud Italians punto di tjirameuto and pnnto di

diramazione,

t Also synectic.

X Mso polar discontinuities; also {55 32) accidental singularities.

§ Sometimes regular, but this term will be reserved for the description of another property of

functions.

F. F. 2
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where F and /' are polynomials in z without a common factor, the roots are

the roots of F {z) and the poles are the roots of / {z). Moreover, according

as the degree of F is greater or is less than that of f, z = ao is a pole or a

zero of ?/,'.

(6) If w be a polynomial of order ??, then each simple root of iv is a

bra,nch-point and a zero of w"', where vi is a positive integer ; z = oo is

a pole of lu ; and z = ao is a pole but not a branch-point or is an infinity

(though not a pole) and a branch-point of W- according as n is even or odd.

(c) In the case of the function

1

sn-
z

(the notation being that of Jacobian elliptic functions), the zeros are given by

- = iK' + 2mK+2niiK',
z

for all positive and negative integral values of wi and of in'. If we take

- = iK' + 2mK + 'Im'iK' + ^,
z

where ^ may be restricted to values that are not large, then

w=(-l)™A-sn^,

so that, in the neighbourhood of a zero, w behaves like a holomorphic

function. There is evidently a doubly-infinite system of zeros ; they are

distinct from one another except at the origin, where an infinite number

practically coincide.

The infinities of xo are given by

1

z

for all positive and negative integral values of n and of n . If we take

^ = 1nK^- 2n'iK' + ^,

then -=(-l)"sn^,

so that, in the immediate vicinity of f=0, - is a holomorphic function.

Hence ^=0 is a pole of w. There is thus evidently a doubly-infinite system

of poles; they are distinct from one another except at the origin, where an

infinite number practically coincide. But the origin is not a pole; the

= 27iK+2n'iK',
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function, in fact, is there not determinate, for it has an infinite munber of

zeros and an infinite number of infinities, and the variations of vahie are not

necessarily exhausted by zeros and infinities.

For the function—~
, thi- origin is a p(»int which will hereafter be called

sn -
z

an essential singularity.

Ex. Obtiiii essential singularities of the functions

c', sinh , tanh :.



CHAPTER 11.

Integration of Uniform Functions.

14. The definition of an integral, that is adopted when the variables

are complex, is the natural generalisation of that definition for real variables

in which it is regarded as the limit of the sum of an infinite number of

infinitesimally small terms. It is as follows :

—

Let a and z be any two points in the plane ; and let them be connected

by a curve of specified form, which is to be the path of variation of the

independent variable. Let f{z) denote any function of ^; if any infinity

oi f{z) lie in the vicinity of the curve, the line of the curve will be chosen

so as not to pass through that infinity. On the curve, let any number of

points Zx, 2., ..., ^„ in succession be taken between a and z; then, if the sum

{z, - a)f(a) + {z,-z,)f{z,) + ... + (^ - ^„)/(^„)

have a limit, when n is indefinitely increased so that the infinitely numerous

points are in indefinitely close succession along the whole of the curve from

a to z, that limit is called the integral oi f{z) between a and z. It is denoted,

as in the case of real variables, by

l''f(z)dz.
J a

It is known* that the value of the integral of a function of a real variable

between limits a and b is independent of the manner in which, under the

customary definition, the interval between a and h is divided up. Assuming

this result, we infer at once that the same property holds for the complex

integral

rf(z)dz;
J a

for, if f{z) = a + iv, where u and v are real,

f {z) dz = udx — vdy + iudij + ivdx,

and each of the integrals

judx, \vdy, Judy, fvd.r,

* Harnack's Introduction to the Calculus, (Cathcarfs translation), §§ 103, 142.
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taken between limits corresponding to the extremities of tlie curve, is inde-

pendent of the way in which the range is divided up.

The limit, as the value of the integral, is associated with a particular

curve : in order that the integral may have a definite value, the curve

(called the path of integration) must, in the first instance, be specified*.

The integral of any function whatever may not be assumed to depend in

general only upon the limits.

We have to deal with converging series; it is therefore convoriieiit to state the

(loHnitions of the terms used. For proofs of the statements, developments, and appli-

cations in the theory of convergence, as well as the various tests of convergence, see

Bromwich's Theory of infinite series, Carslaw's Fovrier's series and integrals, Hobson's

Functions of a real variable, and Pringsheim's article in the Encyclopiidie der mathema-

tisrheii Wissenschaften, t. i, pp. 49— 146, where full references are given.

A series, represented hy
ay, 172, r/;j, ... ad inf.,

is said to conrerge, when the limit of S,,, whei'c

S,, = a^ + a..-\-...+a„.

as n increases indefinitely, is a unique finite quantity, say *S'. When, in the .same circum-

stances, the limit of »S„ either is infinite or, if finite, i.s not unique (that is, may be one of

several quantities), the series is said t to diverge.

The neces.sary and sufficient condition that the .series

«i, a,, «),...

should converge is that, corresponding to every finite positive quantity 6 taken as small

as we please, an integer m can be found such that

!«n+l+fl„ + 2-|-... +«„ + ,•
I

<e,

for all integers n such that n ^ m, and for every positive integer /•.

When the series

converges, the series

a\, a.,, a;i, ...

converges; and it is said to converge ahsoluteli/. When the series of moduli j^i j, la,!, i«3|, •••i

does not converge, though the series «,, a.^, a-.,, ...converges, the convergence of the latter

is said to Ije conditional. In a conditionally converging .series, the order of the terms

must be kept : derangement of the order can lead to different limits ; and any a.ssigned

siuuf as a limit, can V)e obtained by ap{)r()priatc derangement. In an absolutely converging

.serie.s, the order of the terms can be derangc<l without affecting the limit to which the

series converges ; the convergence is sometimes called unconditional.

These definitions apply to all infinite series, whatever be the source of theii' terms.

AVhen the terms depend upon a variable quantity z, and the convergence of the .seiies is

considered as z varies, we have farther classifiaitions. Denote the series by

/.(-), /i(^), /:i(2),-'id inf.,

* Tills specification is tacitly supplied when the variables are real: the variable puint moTes

along the axis of x.

\ Sometimes the serie.s, such that the limit of .s„ when n is infinitely liir^'e is one of a

number of finite iiuantities (depending upon the way in which N„ is formed), are called nscilhiting.
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and suppose that it converges for all values of i within a definite region. When any

small quantity 8 has been chosen, and a positive integer tii can be determined, such that

for every value of u > m and for all values of z in the region, the convergence is said to be

uniform (sometimes contintious).

Convei'gence may be uniform without being absolute ; it can be absolute without being

uniform.

When a series converges for all values of s such that \z\< r, but not for
|
s

!
> »-, then

the circle, centre the origin of the variable z and radius equal to r, is called the circle of

convergence: and the radius is sometimes called the radius of convergence. A series

such as
'(,,, a^z, a.ji-, ... ad inf.,

converges absolutely within its circle of convergence, though not necessarily on its

circumference. It does not necessarily converge uniformly within its circle of convergence

;

but if /•' is a positive quantity, less than the radius of convergence by a finite quantity

which can be taken small, the series converges uniformly within the circle of radius r'

concentric with its circle of convergence.

Again, when a uniformly converging series is integrated term by term over a finite

range, the resulting series also converges uniformly. But a uniformly converging series

can be diflferentiated term by term only if the series of derivatives converges.

15. Some inferences can be made from the definition of an integral.

(I.) The integral along any path from a to z passing through a jjoint ^ is

the sum of the integrals from a to ^ and from ^ to z along the same path.

Analytically, this is expressed by the equation

r f{z) dz = (\f{z) dz + j'fiz) dz,

the paths on the right-hand side combining to form the path on the left.

(II.) When the path is described in the reverse direction, the sign of the

integral is changed : that is,

jy(z)dz=-j[f(z)dz,

the curve of variation between n and z being the .same.

(III.) The integral of the sum of a finite number of terms is equal to

the sum of the integrals of the sejxirate terms, the path of integration being

the same for all.

(IV.) If a function f{z) be finite and continuous along any finite line

between tivo points a and z, the integral
j f{z)dz is finite.
J a

'
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Let / denote the integral, so that we have / as the limit i>f

hence i/| = limit of S (z,.+, — z,.) f{Zf)\
I
>-=o

'

I

< t\z,^,-2..\J(Zr)\.

Because f(z) is finite and continuous, its modulus is finite and there fort-

must have a superior limit, say M, for points on the line. Thus

^f(Zr)\^M,

so that
! ^f < limit of MZ

\
z,.+i — z,.

\

<MS,

where S is the finite length of the path of integration. Hence the modulus

of the integral is finite ; the integral itself is therefore finite.

No limitation has been assigned to the path, except finiteness in length
;

the proposition is still true when the curve is a closed curve of finite length.

Hermite and Darboux have given an expression for the integral which

leads to the same result. We have as above

i=jy(z)dz,

and \J^'\< i/(^)l id^l

= eS~ j(z)\\dz\,
.' a

where ^ is a real positive quantity less than unity. The last integral involves

only real variables; hence* for some point f lying between a and z, we have

J(Z) dz =
/(|):f

dz

so that / =^.S' f{^)\.

It therefore follows that there is .some argument a such that, if X = de"^,

This form proves the finiteness <jf the integral ; and the result is the

generalisation t to complex variables of the theorem of mean value just

quoted for real variables.

* By what is usually called the " First theorem of mean value,' in the integral calculus ; for

a proof, see Carslaw's Fourii'r'n nerifx and inti'ijraU, %'A\\.

+ Hermite, Cours h la Jucultt (tfi scienceg de Paris (4"'- i-d.. lH9l), p. 5y, where the reference

to Darboux is piven.
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(V.) When a function is expressed us a uniformly converging series, the

integral of the function along any path of finite length is the sum of the

integrals of the terms of the series along the same path, provided that path

lies within the circle of convergence of the seines:—a result, which is an

extension of (III.) above.

Let Uq + Ui + »... + ... be the converging series ; take

f{z)= «o + «l+ ••• + II n + R
where

j
R

j
can be made infinitesimally small with indefinite increase of n,

because the series converges uniformly. Then by (III. ), or immediately from

the definition of the integral, we have

j
f{z) dz = Uodz + I u,dz +...+ [ Undz +1 Rdz,

the path of integration being the same for all the integrals. Hence, if

e= \~ f{z)dz- i r n,„dz,

we have 0=1 Rdz.

Let R' be the greatest value of
;

R
j

for points in th<.' path of integration

from a to z, and let S be the length of this path, so that S is finite;

then, by (IV.),

Now S is finite ; and, as n is increased indefinitely, the quantity R' tends

towards zero as a limit for all points within the circle of convergence and

therefore for all points on the path of integration provided that the path lie

within the circle of convergence. When this proviso is satisfied,
\

©
{

becomes

infinitesimally small and therefore also @ becomes infinitesimally small, with

indefinite increase of n. Hence, under the conditions stated in the enuncia-

tion, we have

!~ f{z)dz- i !\(,„dz = 0,

which proves the proposition.

16. The following lemma* is of fundamental importance.

Let any region of the plane, on which the 2r-variable is represented, be

bounded by one or more simplef curves which do not meet one another:

each curve that lies entirely in the finite part of the plane will be considered

to be a closed curve.

* It is pioved by Kiemann, (iex. Wi'ikv, p. 12, aud is made by him (as also by Caiichy) the

basis of certain theorems relating to functions of complex variables.

t For the immediate purpose, a curve is called simple, if it have no multiple points. The

aim, in constituting the boundary from such curves, is to prevent the superfluous complexity that

arises from duplication of area on the plane. If, in any particular case, multiple points existed,

a method of meeting' the dilVicolty would he to take each simple loop as a boundary.
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Ifp and q be anij hvo functiona of x and y, which, for all points within the

reijion or along its boundary, are nniforni, finite and continuoits, then the

integral

//(l-l)"^'
extended over the whole area of the region, is equ(d to the integral

Jipdx + qdi/),

taken in a positive direction round the whole boundary of the region.

(As the proof of the proposition docs not depend on any special form of

region, we shall take the area to be (fig. 5) that which is included by the

curve Q.P.Qs'P: and excluded by P^QJPJ^, and excluded by P.'P,. The

positive directions of description df the curves are indicated by the arrows;

and for integration in the area the ])(>sitivc directions are those of increas-

ing X and increasing y. )

?/

First, suppose that both j) and </ are real. Then, integrating with regard

to X, we have*

\^^[d.rdy=l\qdyl

where the brackets imply that the limits are to be introduced. When the

limits are introduced along a line (-V^/^,'... parallel ttt the apcis of x, then,

since CQiQi'... gives the direction <>f integration, we have

[qdy] = - q^dy, + q.'dy,' - qjly, + q-Uly.! - qjiy, + q^dy^,

where the various differential elements are the projections on the axis of
//

of the various eh-ments of the boundary at points along CQiQi'..-.

* It is in this integration, and in tlu- coiiesiiomlint,' iiitej,'iation for ]>, that tlu- proptrties of

tlie function 7 are assumed. Any deviation fiom uniformity, tiniteness or continuity within the

region of inte^jration would render necessary some ei|uatiou dilTerent from the one ni\ea in

tlic text.
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Now when integration is taken in the positive direction round the whole

boundary, the part of jqdy arising from the elements of the boundary at the

points on GQ^Qi'... is the foregoing sum. For at QJ it is q-.'dyj because the

positive element dy.', which is equal to CD, is in the positive direction of

boundary integration ; at Q:, it is — 73^3/^ because the positive element dy,.

,

also equal to CD, is in the negative direction of boundary integration
;

at Q.2 it is qJdyo, for similar reasons; at Q., it is — q,dy.,, foi- similar i-easons;

and so on. Hence
[qdyl

corresponding to parallels through C and D to the axis of ./•, is e(pial to

the part oi' Jqdy taken along the boundary in the positive direction for all

the elements of the boundary that lie between those parallels. Then when

we integrate for all the elements GD by forming flqdy], an equivalent is

given by the aggregate of all the parts oi Jqdy taken in the positive direction

round th(> whole boundary ; and therefore

dq
.1/

^^dxdy=Jqdy,

on the suppositions stated in the enunciation.

Again, integrating with regard to y, we have

\\£d3cdy^J[pdx'\

= — y^dx^ + pi'dxj — 2hda;., + p.!dx./ — p-.d^,; +2h!dx./,

when the limits arc introduced along a line BP^P^... parallel to the axis

of y : the various differential elements are the projections on the axis of x of

the various elements of the boundary at points along BP^P^'....

It is proved, in the same way as before, that the part of — Jpdx arising

from the positively-described elements of the boundary at the points on

BP^Pi ... is the foregoing sum. At P/ the part of Jpdx is — pi'dx/, because

the positive element dx-^^', which is equal to AB, is in the negative direction

of boundary integration ; at P.. it is p-^dx^, because the positive element

dx.^, also equal to AB, is in the positive direction of boundary integration
;

and so on for the other terms. C-onsequently

corresponding to parallels through A and B to the axis of y, is equal to

the part of Jjidx taken along the boundary in the positive direction for all

the elements of the boundary that lie between those parallels. Hence

integrating for all the elements AB, we have as before

// av
^"^"^'^ ^ ~ ^^^"^ '

and therefore
lli? ~

") I
^^^if — iiP^^ + qdy).
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Secondly, suppose that p and q are C(>m})lex. When they are resolve^

into real and imaginary parts, in the forms p + ij)" and 7' + iq" respectively,

then the conditions as to uniformity, finiteness and continuity, which apply

to jy and q, apply also to p', q', p'\ q" . Hence

and
IKI^'

- 1^') dxdy = JH/'d.r + q"d,,),

and theref( )r( /

1
J^ _ -^^

j
dxdy = j{pd.r + qdy)

:

which proves the proposition.

No restriction on the properties of the functions p and 7 at points

that lie without the region is imposed by the proposition. They may have

infinities outside, they may cease to be continuous at outside points, or they

may have branch-points outside ; but so long as they are finite and continuous

everywhere inside, and in passing from an}^ one point to any other point

always acquire at that other the same value whatever be the path of passage

in the region, that is, so long as they are uniform in the region, the lemma
is valid.

17. The following theorem due to Cauchy * can now be proved :

—

//' a function f(z) he holomorphic tliroiighout any region of the z-plane,

then the integrcd ff{z)dz, taken round the whole boundary of that region, is zero.

We apply the preceding result by assuming

owing to the character of f{z), these suppositions are consistent with the

conditions under which the lemma is valid. Since jo is a function of z, we

have, at every point of the region,

dp _ I dp

dx i dy'

and therefore, in the present case,

da- dx dy

'

There is no discontinuity <>r infinity of p or 7 witiiin the region : hencr

//(:dx ay/

' For an account of the gradual development of the theory and, in particular, for a

statement of Cauchy's contributions to the theory (with references), see Casorati, Teorica

delle funzioui di vuriahili complesse, pp. 64^90, 102— lOG. The general theory of functions,

as developed by Briot and Bouquet in their treatise Th^orie des fonctiom elliptiqufi, is based

upon Cauchys method.
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the integral being- extended over the region. Hence also

jXpd.r + <jdy) = 0,

when the integral i.s taken round the whole boundary of the region. But

pdx + qdy --^ pdx + ipdy

= pdz

^f{z)dz,

and therefore \f\z)dz=0,

the integral being taken round the whole boundary of the region within

which f{z) is holomorphic.

It should be noted that the theorem requires no limitation on the

character oi f{z) for points z that are not included in the region.

The result can also be established by a slightly different use of the

original theorem. Writing

f{z) = u + iv,

where, after the hypotheses concerning f{z), the real functions u and v

are uniform, finite, and continuous for all points within the region or along

the boundary, we have

jf{z) dz =J{n + iv) (dx + idy)

= J{uda: — vdy) + ij{vdcc + udy).

Owing to the character of u and v, we have

taken over the whole region : liut

du dv

dy dec

'

and therefore

j(ud,r-vdy) = 0.

Similarly »

/(*.„*. =//(!- 1) «,,

taken over the whole region : but

du _ dv

dec dy

'

and therefore

jiudx + vdy) = 0.

Hence, with the assumptions made as to f{z), we have

ff(z) dz = 0.

Some important j)ropositi<>ns can be derived by means of the theorem, as

follows.
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18. When (I function f(z) is Itoloinorpliic over (tni/ rontiniiuia; region

of the plane, the intecfral i f(z)(lz is a holominphic function of z, provided the

points z and a its well us the whole path of inter/ration lie within that region.

The general definition (§14) of an integral is associated with a specified

path of integration. In order to prove that the integral is a holomorphic

function of z, it will be necessary to prove (i) that the integral acquires thu

same value in whatever way the point 2 is attained, that is, that the value is

independent of the path of integration, (ii) that it is finite, (iii) that it

is continuous, and (iv) that it is monogenic.

Let two paths ayz and a/3z between a and z be drawn (fig. <i) in the

continuous region of the plane within which f{z) is

holomorphic. The line ayz^a is a contour over the area

of which f{z) is holomorphic ; and therefore Jf(z) dz

vanishes when the integral is taken along a.yz&a.

Dividing the integral into two parts and implying by

Zy, zp that the point z has been reached by the paths

072', a^z respectively, we have Fig. <i.

and therefore

r'f(z)dz+r f(z)dz=o,
I a J z^

r\f(z)dz=-j'' f{z)dz

= \f{z)dz.
J a

Thus the value of the integral is independent of the way in which z has

acquired its value ; and therefore I f{z) dz is uniform in the region. Denote

it by F(z).

Secondly, f{z) is finite for all points in the region. After the result

of § 17, we naturally consider only such paths between a and z as are finite in

length, the distance between a and z being finite. Hence (§ 15, IV.) the

integral F(z) is finite for all points z in the region.

Thirdly, let z' (= z + 8z) be a point infinitesimally near to z; and consider

I
f{z)dz. By what has just been proved, the path from a to z can be taken

afizz' ; therefore

\' f(z) dz = I 'j\z) dz + ("/{z) dz
- J a Jo ' z

rz+6z rz rz+Sz

or f{z) dz -
j
f{z)dz = /(z) dz,

. (I . n •' z

F(z + Sz) - F(z)=j'^ y{z)dz.that
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Now at points in the infinitesimal line from z to z\ the vahie of the

continuous function f{z) differs only by an infinitesimal quantity from its

value at z ; hence the right-hand side is

where
j
e

j

is an infinitesimal cjuantity vanishing with hz. It therefore follows

that

F{z^-hz)-F{z)

is an infinitesimal quantity with a modulus of the same order of small

quantities as \hz\. Hence F {z^ is continuous for points z in the region.

Lastly, we have

,^, , F{z-Vhz)-F{z)
and thereiore t;

—
6Z

has a limit when hz vanishes ; and this limit, f{z), is independent of the

way in which Zz vanishes. Hence F{z) has a differential coefficient; the

integral is monogenic for points z in the region.

Thus F {z), which is equal to

\\f{z)dz,
J a

is uniform^ finite, continuous, and monogenic ; it is therefore a holomorphie

function of z.

As in § 16 for the functions j) and q, so here iov f{z), no restriction is

placed on properties of f{z) at points that do not lie within the region

;

so that elsewhere it may have infinities, or discontinuities, or branch-points.

The properties, essential to secure the validity of the proposition, are

(i) that no infinities or discontinuities lie within the region, and (ii) that the

same value of f{z) is acquired by whatever path in the continuous region

the variable reaches its position z.

Corollary. No change is caused in the value of the integral of a

holomorphie function between two points when the path of integration

between the points is deformed in any maimer, provided only that, during the

deformation, no part of the path passes outside the boundary of the region

within which the function is holomorphie.

This result is of importance, because it permits the adoption of special

forms of the path of integration without affecting the value of the integral.

k

19. When a function f {z) is holomorphie over a part of the plane

bounded by two simple curves {one lying within the other), equal values of

jf{z) dz are obtained by integrating round each of the curves in a direction,

which—relative to the whole area enclosed by each of them—is positive.
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The ring-formed {)(>rtioii of the plane (tig. 1, p. :V) wliich lies between

the two curves is a region over which /(£^) is huloniorphic; hence the integral

jf(z)dz taken in the positive sense round the whole of the boundary of

the included portion is zero. The integral consists of two parts : firet, that

round the outer boundary the positive sense of which is DEF; and second,

that round the inner boundary the positive sense of which for the portion of

area between ABC and DEF is ACB. Denoting the value of ff(z)dz round

DEF by (DEF), and similarly for the other, we have

(ACB) i- {DEF) = 0.

The direction of an integral can be reversed if its sign be changed, .so that

(ACB) = - (ABC): and therefore

(ABC) = (DEF).

But (ABC) is the integral jf(z)(/z taken rounti ABC, that is, round the

curve in a direction which, relative to the area enclosed by it, is positive.

The proposition is therefore proved.

The remarks made in the preceding case as to the freedom from limitations

on the character of the function at places not within the bounded area are

valid also in this case.

Corollary I. When the integral of a function is taken round the whole

of any simple curve in the plane, no change is caused in its value by continuously

deforming the curve into any other simple curve provided the function is

holoniorphic over the part of the plane in which the deformation is effected.

Corollary II. When a function f(z) is holomorphic over a continuous

portion of a plane hounded by any number of simple non-intersecting curves,

all but one of tuhich are external to one another and the remaining one of

which encloses them all, the value of the integral ff(z) dz taken positively round

the single external curve is equal to the sum of the values taken round each

of the other curves in a direction which is positive relative to the area enclosed

by it.

These corollaries are of importance in many instances, as will be seen

later. The simplest instances arise in finding the value of the integrals of

meromorphic functions round a curve which encloses one or more of the

poles ; the fundamental theorem, also due to Cauchy, for these integrals is

the following.

20. Let f(z) denote a function which is holomorphic over any region in

the z-plane, and let a denote any point within that region ; then

Itti J z — a

the integral being taken positively round the whole boundary of the region.

With a as centre and a very small radius p, describe a circle C, which

will be assumed to lie wholly within the region ; this assumption is justifiable
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because the point a lies within the region. Because /(^) is holoniorphic over

the assigned region, the function /(^)/(^ - «) is holomorphic over the whole of

the region excluded by the small circle ('. Hence, by Corollary II. of § 19, we
have

f}.' z — a c) z — a

the notation implying that the integrations are taken positively round the

whole boundary B and round the circumference of G respectively.

For points on the circle C, let z — a = pe^', so that 6 is the variable for

the circumference and its range is from to 27r ; then we have

z — a

Along the circle f{z)=f{a + pe^'); the quantity p is very small and f{z) is

finite and continuous over the whole of the region, so that /(a + pe*') differs

from f{a) only by a quantity which vanishes with p. Let this difference

be 6, which is a continuous small quantity ; thus
|
e

j

is a small quantity

which, for every point on the circumference of C, vanishes with p. Then

[l^'''^ dz = i\'^ \f{a)+e]dd

2'7rif{a) + ir
J

ntegrg

dong t

• J

ede.

If E denote the value of the integral on the right-hand side, and rj the

gi-eatest value of the modulus of e along the circle, we have, as in § 15,

< 27rr).

Now let the radius of the circle diminish to zero. Then 7; also diminishes

to zero and therefore \E\, necessarily positive, becomes less than any finite

quantity however small, that is, E is itself zero ; and thus we have

i^^^^'' dz=27rif(a),
c'z — a •

which proves the theorem.

When a is not a zero oi' f{z), this result is the simplest case of the integral

f(z)
of a meromorphic function. The subject of integration is - —

, a function

which is monogenic and uniform throughout the region and which, every-

where except at z = a, is finite and continuous ; moreover, 2 = a is a pole.
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because in the immediate vicinity of a the reciprocal of the subject of

integration, viz. (z — a)//{z), is holomorj)hic.

The theorem may therefore be expressed as follows :

—

If g (z) be a meromorphic function, which in the vicinity of a can be

expressed in the form f{z)j{z — a) where /(«) is not zero, and which at all

other points in a region enclosing a is holomorphic, then

- . jg {z) dz = \\\n\t o( {z — a)g{z) when z= a,

the integral being taken round a curve in the region enclosing the point a.

The pole a of the function g (z) is said to be simple, or of the first order,

or of multiplicity unity.

Gorollai-y. The more general case of a meromorphic function with a

finite number of poles can easily be deduced. Let these be a,, ..., a„, each

assumed to be simple ; and let

G {z) ={Z - tti) (Z - a.2). ..{Z - Ctn).

Let f{z) be a holomorphic function within a region of the e-plane bounded

by a simple contour enclosing the n points a^, it,, ..., a„, no one of which is a

zero oif{z). Then since

1=11 1

we have

We therefore have

(r (z) r=l G' («r) ^ — ttr
'

/(£)^| 1 f(z)

G {Z) r= l G' («r) Z — ttr'

.' (t (z) r=l G (ar) J Z— ttr

each integral being taken round the boundary. But the preceding proposition

gives

\^ ttr

dz = 27n/(«r),

because f{z) is holomorphic over the whole region included in the contour;

and therefore

the integral on the left-hand side being taken in the positive direction*.

The result just obtained expresses the integral of the meromorphic

function round a contour which includes a finite number of its simple poles.

It can be obtained otherwise from Corollary IL of § 19, by adopting

* We shall for the future assume tlmt, if no direction for a complete integral be specified, the

positive direction is taken.

V. F. 3
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a process similar to that adopted above, viz., by making each of the curves in

that Corollary circles round the points a^, ..., a„ with radii sufficiently small

to secure that each circle is outside all the others.

Ex. 1. A function f{z) is holomorphic over an area bounded by a simple closed

curve; and a, b, c are three points within the area. Find the vahie of the integral

J_. f
/(^)

dz
2ni J{z-a){z-b){z-c)

taken round the curve ; and shew what it becomes

(i) when a and b coincide,

(ii) when a, b, c coincide.

Ex. 2. Let S(-\ denote the sum of any set of selected terms of the series

1 + ^ + ^+..., If|<hl,

and let /(0 = «o+ aiC+«2C''+ --M

where /(^) is a holomorphic function of f within the range; shew that the sum of the

same set of terms selected from /{() can be expressed in the form

L-f-f>-(-0-2iri

21. The preceding theorems have sufficed to evaluate the integral of

a function with a number of simple poles. We now proceed to obtain

further theorems, which can be used among other purposes to evaluate

the integral of a function with poles of order higher than the first.

We still consider a function f(z) which is holomorphic within a given

region. Let a be a point within the region which is not a zero of /(z)
;

we have

/(„)>! )/(£)<;, ,

^ ^ ' 2Tn J 2— a

Let a + 8a be any other point within the region, so that, if a be near the

boundary,
|
Ba

\

is to be chosen less than the shortest distance from a to

the boundary ; then

/(a + 8a) = ^.
I

-^-^—. - dz,
•' ^ ' 27n } z-a-da

and therefore

/(a + Ba) -/(a) = ^. |
(-^^ -, -zii:yJ/(^)

^^

27ri .1 |(^ - af ^ {z- af{z-a - ha)\ ^ ^^^ ^'

the integral being in every case taken round the boundary.

Since /(^) is monogenic, the definition of /'(a), the first derivative of

f(a), gives /'(a) as the lin)it of

/(a + Ba) -f(a)
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when 8a ultimately vanishes ; hence we may take

/(a + 8a)-/(a)
,,^^^

Oil

where cr is a quantity which vanishes with Ba and is therefore such that
j
a

\

also vanishes with Ba. Hence

^•' ^
' 27n .1 {{z — ay (z — af{z — a — 6a)]

^

dividing out by Ba and transposing, we hwe nave

•^ ^ 27n ' (z - a)- 27n .' (z — a)- {z — a- Ba)

As yet, there is no limitation on the value of Ba ; we now proceed to a

limit by making a + Ba approach to coincidence with a, viz., by making Ba

ultimately vanish. Taking moduli of each of the members of the last

equation, we have

I r// . 1 r fi^) J I I

Sci r fiz) -,
I

j

-^

2771 .' (z — af \ ,

27TI ; (z — a)" {z — a - Ba)
\

, ,
l^al

! f f(z) , I

'

-Itt \' (z — ay(z — a — Ba)
j

f(2)
Let the greatest modulus of -. —\-h s^x for points z along the° {z — ay(z — a — Ba) ^ °

boundary be M, which is a finite quantity on account of the conditions

applying to f(z) and of the fact that the points a and a + Ba lie within

the region and are not on the boundary. Then, by § 15,

1

1"?

^n^ ^-^<^^ < ^S>
I

.' {z — ay {z — a — Ba)

where S is the whole length of the boundary, a finite quantity. Hence

l/'w-^LL-^..^^ ^•^u\Mms.
IT27rt.' {z-af

When we proceed to the limit in which Ba vanishes, we have
j
8a

|

=
and

I

cr
I

= 0, ultimately ; hence the modulus on the left-hand side ultimately

vanishes, and therefore the quantity to which that modulus belongs is itself

zero, that is.

/(„)_ ^. I

/(£>& = 0,
•^ ^ ' "Itti ; {z - a)-

This theorem evidently corresponds in complex variables to the well-

known theorem of ditferentiation with respect to a constant under the

integral sign when all the ({uantities concerned arc real.

3—2
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Proceeding in the same way, we can prove that

/>_̂ 8«)-/-(a) ^2!|/(^^^^
da 27r* .' (z — af

where ^ is a small quantity which vanishes with Ba. Moreover the integral

on the right-hand side is finite, for the subject of integration is everywhere

finite along the path of integration which itself is of finite length. Hence,

first, a small change in the independent variable leads to a change of the

same order of small quantities in the value of the function f (a), which

shews that /' (a) is a continuous function. Secondly, denoting

fia + Sa)-f(a)

by Sf (a), we have the limiting value of --^—- equal to the integral on

the right-hand side when 8a vanishes, that is, the derivative of /'(a) has

a value independent of the form of 8a and therefore /' (a) is monogenic.

Denoting this derivative by /" (a), we have

Thirdly, the function /' (a) is uniform : for it is the limit of the value

of •'^ ^ ~— ; and both /(a) and f (a + 8a) are uniform. Lastly, it

is finite; for (§ 15) it is the value of the integral h—• 7 \. dz, in which
^ l-m {z — af

the length of the path is finite and the subject of integration is finite at

every point of the path.

Hence /' (a) is continuous, monogenic, uniform, and finite, throughout

the whole of the region in which f{z) has these properties : it is a holo-

morphic function. Hence :

—

When a function is holomorphic in any region of the plane hounded by

a simple curve, its derivative is also holomorphic tvithin that region.

And, by repeated application of this theorem :

—

When a function is holomorphic in any region of the pkme hounded hy

a simple curve, it has an unlimited number of successive derivatives each of
which is holomorphic within the region.

All these properties have been shewn to depend solely upon the holo-

morphic character of the fundamental function ; but the inferences relating

to the derivatives have been proved only for points within the region and

not for points on the boundary. If the foregoing methods be used to prove

them for points on the boundary, they require that a consecutive point shall

be taken in any direction ; in the absence of knowledge concerning the

fundamental function for points outside (even though just outside), no

inferences can be drawn justifiably.
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An illustration of this statement is furnished by the hypergeometric

series which, together with all its derivatives, is holoniurphic within a circle

of radius unity and centre the origin. The series converges everywhere
on the circumference, provided 7 > a + yS. But the corresponding condition

for convergence on the circumference ceases to be satisfied for some one of

the derivatives and for all which succeed it : as such functions do not then

converge, the circumference of the circle must be excluded from the region

within which the derivatives are holomorphic.

Ex. Let F{z) and G{z) denote two functions of z, holomorphic in a region enclosing

the point a, which is a zero of G {z) and a non-zero of F(z)
;
prove that

1 ( ^i^) ^, _ f" («) G' («) - F{a) G" (g)

2,rt-j{(?(2)}2«' {G'{a)f

when a is a simple root of 6^(2)= 0, ajid that

JL /"-^(^)^ _ QF' (a) G" (a) - 2F(a) G'" (a)

2ntJG{z) 3{(?"(a)P

when a is a double root of G{z) = 0, both integrals being taken round a .small contour

which encloses a but no other zero of G{z).

22. Expressions for the first and the second derivativ^es have been

obtained.

By a process similar to that which gives the value of /'(a), the derivative

of order n is obtainable in the form

liri ^ {z- aY+'

the integral being taken round the whole boundary of the region or round

any curves which arise from deformation of the boundary, provided that no

point of the curves in the final form of the boundary or in any intermediate

form of the boundary is indefinitely near to a.

In the case when the curve of integration is a circle, no point of which

circle may lie outside the boundary of the region, we have a modified form

for/<'"(a).

For points along the circumference of the circle with centre a and radius

/•, let z — a = re^\ so that, as before,

dz
- = id0:
a

then and 27r being taken as the limits of 0, we have

I /-Sir

/w (rt) = -^^ I"
\-^'f(a + r^') dd.

•' ^ ' 27rr» '0

Let M be the great(5st value of the modulus of /(z) for points on tht
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circumference (or, as it may be convenient to consider, for points on or within

the circumference) : then

I

/ '"' (a)
I

<
2^j^ I

i

e-""'
1 i / (a + r^')

\

dd

<^r Mdd

M
< n !

—
.

Now, let a function ^ {z) be defined by the equation

^ ^ '
z — a

r

evidently it can be expanded in a series of ascending powers oi z — a which

converges within the circle. The series is

, / N ir (-. z — a (z — aY
</,(^) = i¥|l + -^+^—-^+...

so that -^ =" V. 1 + 0^ + 1)- + •••

Hence W(-
L dz^'

so that, if the value of the nth derivative of (f>{z), when z = a, be denoted

by <^w (a), we have |/"*' (a)
j

< <^'"' (a).

These results can be extended to functions of more than one variable

:

the proof is similar to the foregoing proof. When there are two variables,

say z and /, the results may be stated as follows :

—

For all points z within a given simple curve C in the 2^-plane and all

points / within a given simple curve C" in the ^'-plane, let f{z, z') be a

holomorphic function ; then, if a be any point within C and a' any point

within C",

d''+'''f{a, a )

da" da''''

where n and n' are any integers and the integral is taken positively round the

two curves C and C".

If M be the gi-eatest value of \f(z, z')\ for points z and z' within their

respective regions when the curves C and C are circles of radii ?-, r' and

centres a, a', then

I

3«+»'/(a, a')
, , ,

M
' ^—

—

~ <n\n !
•

rtu' ! r r fjz, z') ^

.

i^-rrif J] {z - a)"+^ {z - a')"'+^

and if ^ (z, ^)
M

{^-~)i}-'^)
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when z = (f and /= a' in the derivative of
(f>(2, z).

A function (^, rehited in this manner to a function /' in association with

which it is constructed, is sometimes called* a dontinant function.

23. All the integrals of merouiorphic functions that have been considered

have been taken along complete curves : it is necessary to refer to integrals

along curves which are lines only from one point to another. A single

illustration will suffice at present.

Consider the integral I
-~— dz ; the function f{z) is

supposed holomorphic in the given region : z and Zf, are

any two points in that region. Let some curves joining

z to z^ be drawn as in the figure (fig. 7).

Then f—— is holomorphic over the whole area en- '
j,j „

closed by z^^zSz^: and therefore we have
j

-^ dz = 0, the integral being

taken round the boundary of that area. Hence, as in the earlier case, we have

J .-„ z -a J - , z -a

The point a lies within the area enclosed by z^yz^Zg, and the function

f(z)
'

is holomorphic, except in the immediate vicinity oi' z = a; hence

|-Zil)rf, = 2«/(<,).

the integral on the left-hand side being taken round Zojz^z,^. Accordingly

J zo ^ — (^ } z^ z -a •' ^
'

f(z)We denote by g {z), so that g {z) is a function which has one pole a

in the region considered.

The preceding results are connected only with the simplest form of

meromorphic functions; (jther simple results can be derived by means of the

other theorems proved in §§ 17—21. Those which have been obtained are

sufficient however to shew that: The integral of a meromorphic function

j'g (z) dz, from one point to another of the region of the function, is not in

general a uniform function. The value of the integral is not altered by

any deformation of the path which does not meet or cross a pole of the

* Poincar^ uses the term majorante.
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function ; but the value is altered when the path of integration is so

deformed as to pass over one or more poles. Therefore it is necessary to

specify the path of integration ivhen the subject of integration is a mero-

morphic function ; only partial deformations of the path of integration are

possible without modifying the value of the integral.

24. The following additional propositions* are deduced from limiting

cases of integration round complete curves. In the first, the curve becomes

indefinitely small ; in the second, it becomes infinitely large. And in neither,

are the properties of the functions to be integrated limited as in the preceding

propositions, so that the results are of wider application.

I. If f{z) he a function which, whatever he its character at a, has no

infinities and no branch-points in the immediate vicinity of a, the value of

Jf(z) dz taken round a small circle with its centre at a tends towards zero

when the circle diminishes in magnitude so as ultimately to be merely the

point a, provided that, as \z — a\ diminishes indefinitely, the limit of {z — a)f{z)

tend uniformly to zero.

Along the small circle, initially taken to be of radius r, let

z — a= re^\

, dz . ,^
so that = %av,

z — a

and therefore Jf{z) dz = i\ {z - a)f(z) dd.
Jo

Hence \Jf{z)dz\ = \r{z-a)f{z)de
\J

r2n

! ft

•2jr

{z-a)f(z)\dd

2»r

< 27rM',

where M' is the greatest value of M, the modulus of (z — a)f(z), for points

on the circumference. Since (z — a)f{z) tends uniformly to the limit zero

as 1-2 — a
I

diminishes indefinitely, \Jf(z)dz\ is ultimately zero. Hence the

integral itself Jf{z) dz is zero, under the assigned conditions.

Note. If the integral be extended over only part of the circumference of

the circle, it is easy to see that, under the conditions of the proposition,

the value of ff{z) dz still tends towards zero.

* The form of the first two proi)ositions, which is adopted liere, is due to Jordan, Cours

d^Analyse, t. ii, § 256.
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Corollary. If (z - a)/{z) tend uniforinly to a limit k as \z-a\
diminishes indefinitely, the value ofjf{z)dz taken round a small circle, centime

a, tends towards 'lirik in the limit.

of
I

—r, taken round a verv suviW circle centre a, where a i.s

not the origin, i.s zero: the vahie of / round the .same circle is ^. (~Y

.

J(a-z){a + z)i i V'V

Neither tlie theorem nor the corollary will apply to a function, such as sn
,

which has the point a for an essential singularity: the value of (2-a)sn , as

I

2- a
I

diminishes indefinitelj^ does not tend (§ 13) to a uniform limit. As a matter of

fact, the function sn has an infinite number of poles in the immediate vicinitv of <i

z-a ^

;vs the limit z=-a is being reached.

II. Whatever he the character of a function f{z) for infinitely large values

of z, the value of ff(z) dz, taken round a circle loith the origin for centre, tends

towards zero as the circle becomes infinitely large, provided that, as \z\

increases indefinitely, the limit of zf{z) tend uniformly to zero.

Along a circle, centre the origin and radius R, we have z = Re^', .so that

dz
ide,

ff(z)dz = i( ^zf(z)de.
Jo

Hence
| Jf(z) dz\ = \i 'zf(z) dO I

z

and therefore

< [^^\zf{z)\d6
.'o

<
[''^ Mde
Jo

< lirM',

where M' is the greatest value of M, the modulus of zf(z), for points on

the circumference. When R increa.ses indefinitely, the value of M' is zero

on the hypothesis in the proposition; hence \lf{z)dz\ is ultimately zero.

Therefore the value of //(^) dz tends towai-ds zero, under the assigned con-

ditions.

Note. If the integral be extended along only a jmrtion of the circumfer-

ence, the value of jf{z) dz still tends towards zero.

Corollary. If zf{z) tend uniformly to a limit k as z increases

indefinitely, the value of \f{z) dz, taken round a very large circle, centre the

oHgin, tends toivards ^-rrik.

Thus the value of j (1 - 2")~irf* round an intinitely large circle, centre the origin, is zero

if n > 2, and is in if n = 'l.



42 GENERAL PROPOSITIONS [24.

III. If all the infinities and the branch-points of a function lie in a finite

region of the z-plane, then the value of jf{z) dz round any simple curve, which

includes all those points, is zero, provided the value of zf{z), as \z\ increases

indefinitely, tends uniformly to zero.

The simple curve can be deformed continuously into the infinite circle

of the preceding proposition, without passing over any infinity or any

branch-point ; hence, if we assume that the function exists all over the plane,

the value of f f(z)dz is, by Cor. I. of § 19, equal to the value of the integral

round the infinite circle, that is, by the preceding proposition, to zero.

Another method of stating the proof of the theorem is to consider

the corresponding simple curve on Neumann's sphere (§ 4). The surface

of the sphere is divided into two portions by the curve*: in one portion lie

all the singularities and the branch-points, and in the other portion there is

no critical point whatever. Hence in this second portion the function is holo-

morphic ; since the area is bounded by the curve we see that, on passing back

to the plane, the excluded area is one over which the function is holomorphic.

Hence, by § 19, the integral round the curve is equal to the integral round

an infinite circle having its centre at the origin and is therefore zero, as

before.

Corollary. If, under the same circumstances, the value of zf{z), as

\

z
I

increases indefinitely, tend uniformly to k, then the value of ff(z) dz round

the simple curve is ^irik.

Thus the value of / —, along any simple curve, which encloses the two points
./(a2-22)i » .>

1 '

a and - a, is 27r ; the value of

f dz

;(1_22)(1_ ^2,2)1^

round any simple curve enclosing the four points 1,-1, y, -t, is zero,/: being a non-

vanishing constant; and the value of J ( I — i-") ^ -> rf.j, taken round a circle, centre the

origin and radius greater than unity, is zero when n is an integer greater than 1.

dz
But the value of /,, , , \ , ,,i

/• dz

round any circle, which has the origin for centre and includes the three distinct points

«!, eg, ^3, is not zero. The subject of integration has 2=qo for a branch-point, so that the

condition in the proposition is not satisfied ; and the reason that the result is no longer

valid is that the deformation into an infinite circle, as described in Cor. I. of § 19,

is not possible because the infinite circle would meet the branch-point at infinity.

* The fact that a single path of integration is the boundary of two portions of the surface

of the sphere, within which the function may have different characteristic properties, will be

used hereafter (§ 104) to obtain a relation between the two integrals that arise according as the

path is deformed within one portion or within the other.
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25. The further consideration of integrals of functions, that do not possess

the character of uniformity over the whole area included by the curve of in-

tegration, will be deferred until Chap. IX. Some examples of the theorems
proved in the present chapter will now be given.

Ex. 1. It is sufficient merely to mention the indefinite integrals (that is, integrals from
an arbitrary jioint to a point z) of rational integral functions of the variable. After the

preceding explanations it is evident that they follow the same laws as integrals of similar

functions of real variables.

Ex. 2. Consider the integral / ; ^—r-. , taken round a simi)le curve.

When n is 0, the value of the integral is zero if the curve do not include the point a,

and it is 2iTi if the curve include the point a.

When n is a positive integer, the value of the integral is zero if the curve do not

include the point a (by § 17) ; and the value of the integral is still zero if the curve do
include the point a (by § 22, for the function f{z) of the text is 1 and all its derivatives

are zero). Hence the value of the integral round any curve, which does not pass through

a, is zero.

We can now at once deduce, by § 20, the result that, if a holomorphic function be

constant along any simple closed curve within its region, it is constant over the whole

area within the curve. For let t be any point within the curve, z any point on it, and C
the constant value of the function for all the points z; then

(^)

the integral being taken found the curve, so that

dz.

27ri J Z-t

since the point t lies within the curve.

E.V. 3. The integral ^.h)log
z+ 1

2-1
dz is taken round a circle, centre the origin

and radius greater than unity; and the function f{z) is holomorphic everywhere within

the circle. Prove that the value of the integral is

/(!)-./•( -1).

Ex. 4. Consider the integral [e-'^dz.

holomorphic; therefore (§ 17) the

1/

Consider the integral J

In any finite part of the plane, the function <?"**

integral round the boundary of a rectiingle

(6g. 8), bounded by the lines .v= ±a, y=0,

9/ = h, is zero: and this boundary can be

extended, provided the deformation remain

in the region where the function is holo<»

morphic. Now as a tends towards infinity,

the modulus of e~'-, being g-^ + i^, tends

towards zero when y remains finite ; and

therefore the preceding rectangle can be

extended towards infinity in the direction of the axis of .i; the side b of the rectangle

remaining unaltered.

Fig. 8.
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Along A'A, we have z= x: so that the value of the integral along the part A'A of the

boundary is I e~^-o?.r.

Along AB, we have z= a-\-iy, so that the value of the integral along the part AB

is i
I

e-i^ + ifPo^y.

Along BB', we have z=x + ib,so that the value of the integral along the part BB'

/:

Along B'A\ we have z=-a + iy, so that the value of the integral along the part

B'A' is i
I

e-(-« + «»=rfy.
.' 6

The second of these portions of the integral is e~"" . i' . I e^-"-"!" o?y, which is easily seen
.'

to be zero when the (real) quantity a is infinite.

Similarly the fourth of these portions is zero.

Hence as the complete integral is zero, we have, on passing to the limit,

whence e^" \ e-=^-^-'''^dx= \ e-='"dx= A,

-^"^ (cos 'ihx - i sin 'ibx) dx= irie'^'^

;

and therefore, on equating real parts, we obtain the well-known result

e-*- cos 2hxdx= irle-^''.

/.:

/.

This is only one of numerous examples* in which the theorems in the text can be

applied to obtain the values of definite integrals with real limits and real variables.

Ex. 5. By taking the integral le~'''-dz along the perimeter of a sector of a circle

between the radii of a circle given ^ = 0, 6 = \Tr, and the intercepted part of the circum-

ference of radius r which is ultimately increased without limit, establish the value

(J7r)i for each of Fresnel's integrals

I
cos u^ du,

I
sin u'^ du.

Jo Jo

Ex. 6. Prove that, when a'^+ h'^ < 1, the value of the integral

/:

a cos.r4-^sni x+ y— ^' dx,
a cos a-+6 sin A- -f-

1

foi- real values of x within the range, is

(1-

27r r aa + b^ \

* See Briot and Bouquet, Thcorie des fonctions elliptiques,\ (2nd ed.), pp. 141 et sqq., from

which examples 4 and 8 are taken.
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Ex. 7. Evaluate the following integrals by tlxe process of contour integration :—

/•N [ COS ax , . . ,

i) I r-;,—rrv .,- ,x ax, where a is real ;

f^ cos ax— COS bx J ..... [^ e^-e^'
,

(n)
j^

-, dx; (m)
j _^ J^ dx,

where a and b are real and lie between and 1
;

(iv) / r -c/.r, where < a < 1.

Ex. 8. Consider the integral I dz, where /^ i.s- a real positive quantity less than

unity.

The only infinities of the subject of integration are the origin and the point - 1
;

the branch-points are the origin and «= oo. Everywhere else in the plane the function

behaves like a holomorphic function; and, therefore, when we take any simple closed

curve enclosing neither the origin nor the point —1, the integral of the function roinid

that curve is zero.

Choose the curve, so that it lies on the positive side of the axis of x and that it is

made up of :

—

(i) a .semicircle C^ (fig. 9), centre the origin and radius R which is made to increase

indefinitely :

(ii) two semicircles, Cj and C2, with their centres at and - 1 respectively, and with

radii r and r', which ultimately are made infinitesimally small

:

(iii) the diameter of Cg along the axis of x excepting those ultimately infinitesimal

portions which are the diameters of Cj and of c^-

The subject of integration is uniform within the area thus enclosed although it

is not uniform over the whole plane. We shall take that value of r"-' which has its

argument equal to {n-\)6, where 6 is the argument of z.

The integral round the boundary is made up of four parts.

(a) The integral round C3. The value oi z. rr^j »« 1^1 increa.ses indefinitely, tends

uniformly to the limit zero ; hence, as the radius of the semicircle is inci-eased indefinitely,

the integral round C, vanishes (§ 24, 11., Xote).

.R -

1

(6) The integral round c,. The value of z.'-- , as \z\ diminishes indefinitely,

tends uniformly to the limit zero ; hence as the radius of the semicircle is diminished

indefinitely, the integral rovuid r;, vanishes (§ 24, I., Note).
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(c) The integral round e^. The value of (1 + 2) j— , as 1
1 + 2 1

diminishes indefinitely

for points in the area, tends uniformly to the limit (-l)"-', i.e., to the limit e^""^^"'.

Hence this part of the integral is

being taken in the direction indicated by the arrow round c^, the infinitesimal semicircle.

Evidently —— =id6 and the limits are tt to 0, so that this part of the whole integral is

1+2

.

.("-)-
J%<^

(d) The integral along the axis of x. The parts at - 1 and at which form the

diameters of the small semicircles are to be omitted ; so that the value is

{/:!""+ /-!...+ /J} ITi.''-

This is what Cauchy calls the principal value of the integral

Since the whole integral is zero, we have

aid «=/^ l-~
d^-,

princii)al values being taken in each case. Then, taking account of the arguments, we have

} ^-x Jo l-x

Since i7re""''+/^+ /^'= 0, we have

.so that
I'—Q cos nn — 77 sin nir, Q sin nrr = tt cos 7nr.

Hence I ^r^ dx=P= n cosec nir,

J I-+X

r^ rgn — l

I , dx=Q=iTCotmT.
J l-x

Ex. 9. In the same way it may be proved that

I ,— „ dx=-t- 2 o)-"^ 'e ,

J _^ \+x'» nr=i

i-
where n is an integer, a is positive and w is e ''".
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Ex. 10. By considering the integral \e~' z"~^ dz round the contour of the sector of a

circle of radiu.s r, bounded by the radii 6 = 0, 6 — a, where a is les.s than hn and n is positive,

it may be proved that

/ {r"-^e~'''=°'"cosO+ 7-sina)}o?r= r(7i)cos(/3+ Ha),

on proceeding to the limit whon r is made infinite. (Briot and Bouquet.)

Ex. 11. liy considering the integral J(2-- l)'"2~<'*~'"~i
rfr, tiiken round a semicircle,

pro\'e that

provided the real part of m is greater than - 1.

Similarly deduce the value of

r siu^'^ e cpH" 6 e"^ (id,

where the real parts of m and ?i are each greater than - 1, from a consideration of the

integral

taken round a semicircle.

(Many of the results stated in de Haan, Nouvelles tables d'inte'grales definies, can be

obtained in a similar manner.)

Ex.12. Consider the integral I -^-^ , where 7i is an integer. The subject of integration

is meromorphic: it has for its poles (each of which is simple) the n points u>^ for r=0,

1, ..., n-\, where co is a primitive nth root of unity ; and it has no other infinities and no

branch-points. Moreover the value of ——-, as |2| increases indetinitel}', tends imiformly

to the limit zero ; hence (§ 24, iii.) the value of the integral, taken round a circle centre

the origin and radius > 1, is zero.

This result can be derived by means of Corollary II. in § 19. Surround each of the

poles with an infinitesimal circle having the pole for centre ; then the integral round

the circle of radius > 1 is equal to the sum of the values of the integral round the

infinitesimal circles. The value round the circle having w'" for its centre is, by § -20,

(limit of ^ ^ ,
when z — m''

Hence the integral round the large circle

n r=0

= 0.

f e'^
Ex. 13. By considering the integral i ^,

—- dz, taken round a .semicircle, prove that

/* cos cur , n . f^ sin ax . n

provided a is positive.
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Ex. 14. Taking as the definition of Bernoulli's numbers that they are the coefficients

in the expansion

e-~\ x^2 „,ti
' (2m)!-

pfove (by contour integration) that

7? =3l(2m)- I J_

In the same way, obtain expressions for the coefficients, in the expansion in powers of x,

of the quantity

(Hermite.)

Ex. 15. In all the preceding examples, the poles that have occurred have been

simple : but the results proved in § 21 enable us to obtain the integrals of functions

which have multiple poles within an area. As an ^instance, consider the integral

/.
round any curve which includes the point i but not the point -i, these

(l+s^)""^^

points being the two poles of the subject of integration, each of multiplicity 7t + l.

We have seen that /(") («) = |^- [ /g_^)i^i ^2'

where f {z) is holomorphic throughout the region bounded by the curve round which the

integral is taken.

In the present case a is z, and /(e) = . ^^^ ; so that

^n\ (-1)"

n\ (3 + i)2" + i/'"'(^)-.W,^V,2«.n

and therefore /<"> {i)= ,

7). I
j)2n+l- n\

Hence we have

dz 2771 ,,.,.- 2?i

!

{\j^Z^)n+l nl-' ^' K!7i!22»

In the case of the integral of a function round a simple curve which contains several

of its poles, we first (§ 20) resolve the integral into the sum of the integrals round simple

curves each containing only one of the points, and then determine each of the latter

integrals as above.

Another method, that is sometimes possible, makes use of the exi)res.sion of the uniform

function in partial fractions. After Ex. 2, we need retain only those fractions which are of

the form A/(z — a): the integral of such a fraction is ^iriA, and the value of the whole

integral is therefore 2iri2A. It is thus sufficient to obtain the coefficients of the inverse

first powers which arise when the function is expressed in partial fractions corresponding

to each pole. Such a coefficient A, being the coefficient of —— in the expansion of the

function, is called by Cauchy the residue of the function relative to the point.

For example,

i _ -
-^ /-i- + -"- + -^1 +^-L ' - + '^^ +-^1
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so that the residues rehitive to the points -1, — w, -co- are 5, i|a), jco- respectively.

Hence if we take a semicircle, of radius >1 aud centre the origin with its diameter

along the a.xis of y, so as to lie on the positive side of the axis of y, the iircn between the

semi-circumference and the diameter includes the two points - co and - w- ; and therefore

the value of

f dz_
J i^+ lf'

taken along the semi-circuuifercnce and the diameter, is

that is, the value is - ^ ni.

Ex. 16. Ijct )( denote I | •

—

y-- dzdz', f being a rational mtegi-al function

2^,„„2"'i''' of the complex variables 2, z', the integrations being taken in the positive sense

round the closed contours C, C, of which C is a circle of unit radius with its centre

at the origin. Shew that «= if C lies wholly inside C, or if C and C lie wholly outside

one another, and that ?«= — 47r-2J,„„, (m=0, 1, 2, ...) if C completely surrounds C.

Discuss also the value of u if C is a circle passing through the points ±t but not

coinciding with C, a.nd f {z, z') = f { - z, —z').

(Math. Trip., Part II., 1898.)

Note. For further applications of Cauchy's theory of residues, together with many

references to Cauchy's own results, Lindelof 's monograph Le calcul des residux (Gauthier-

Villars, 1905) may be consulted.



CHAPTER III.

Expansion of Functions in Series of Powers.

26. We are now in a position to obtain the two fundamental theorems

relating to the expansion of functions in series of powers of the variable

:

they are due to Cauchy and Laurent respectively.

Cauchy's theorem is as follows* :

—

When a function is holomorphic over the area of a circle of centre a, it can

he expanded as a series of positive integral powers of z — a, converging for all

within the circle.

Let z be any point within the circle ; describe a concentric circle of

radius r such that

\z — a\ = p <r< R,

where R is the radius of the given circle. If t /.' •-.,X
denote a current point on the circumference of the / /'

\
", \

new circle, we have / •' \ \

dt

dt
z

lirij t — a
1 - In" Fi«. 10.

t — a

the integral extending along the whole circumference of radius r. Now

1 ^ z — a fz — a\- fz-aV^ \t—a!
1+-: + .-— + + +

n+i

, _2 —

«

t — a \t — aj \t — aj z — a'
t—a t—a

so that, by § 15 (III.), we have

.

J^'^ 27rijt-a'^*^ 2'7riJ(t-ay'^^^ + 27^^ J (T^^^O^^
"^^

zirij t — z \t - a)

* Exercices d'Anahjac et de Physique Mathematiqne, t. ii, pp. 50 et seq.; the memoir was first

made public at Turin in 1832.
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No\v/(0 is holomorphic over the whole area i)f the circle; ht-nce, if t be

not actually on the boundar}^ of the region (§§ 21, 22), a condition secured by

the hypothesis r<R, we have

and therefore

f{z) = f{a) + {z-a)

Let the last term be denoted by L. Since \z- a\=p and \t — a\ = r\

it is at once evident that \t -z\'^r — p. Let M be the greatest value of

\f{t)
i

for points along the circle of radius r ; then M must be finite, owing to

the initial hypothesis relating to/(^). Taking

t-a = re^,

so that dt = i(t -a) do,

we have |ii = e!:Vf'/«
^'

27r .' t-z{t- a)"

I

1 f
--^

27r r''(r-p)Jori/(o' ft

\dd

M
rn (r -

p)

Now ?' was chosen to be gi'eater than p\ us n becomes infinitely large,

(-) becomes infinitesimally small. ALso M [1 —
-] is finite. Hence as

n increases indefinitely, the limit of \L\, necessarily not negative, is in-

finitesimally small and therefore, in the same case, L tends towards zero.

It thus appears, exactly as in § 15 (V.), that, w^hen n is made to increase

without limit, the difference between the quantity/(^) and the first n+ 1

terms of the series is ultimately zero ; hence the series is a converging series

having/ (2:) as the limit of the sum, so that

f(z)=f(a) + (z-a)f'(a) + ^^^^f"(<')-\- c+^^^V ""(")+

which proves the proposition under the assigned conditions. It is the form

of Taylor's expansion for complex variables.

Note. A series, such as that on the right-hand side and not necessarily

arising, through the expansion of a given function f{z), is frequently denoted

by P (z — a), where P is a general symbol for a converging series of positive

integral powers of z - a : it is also sometimes* denoted by P (^
|

a). Con-

formably with this notation, a series of negative integral powers of z — a

* Weierstrass, Geg. Werkc, t. ii, p. 77.

4—2
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would be denoted by P (
J

: a series of negative integral powers of z

either by P (-] or by P{z\'X>), the latter implying a series proceeding in

positive integral powers of a quantity which vanishes when z is infinite,

that is, in positive integral powers of z~^.

If, however, the circle can be made of infinitely great radius so that the

function f{z) is holomorphic over the finite part of the plane, the equivalent

series is denoted by G {z — a), and it converges over the whole plane*.

Conformably with this notation, a series of negative integral powers of ^ — a

which converges over the whole plane is denoted by G (-^7- )
•

Ex. If the expansion, taken in the form Ua+ aiZ + aoZ'-if ..., be valid over the whole of

the finite part of the plane, then the limit of

as TO increases indefinitely, is zero. More generally, if the circle of convergence of the

series be of radius r, then the limit of the preceding quantity is 1/r. (Cauchy.)

27. The following remarks on the proof and on inferences from it should

be noted.

(i) In order that {t — z)-'^ may be expanded in the required form, the

point z must be taken actually within the area of the circle of radius R,

and therefore the convergence of the series P {z — a) is not established for

points on the circumference.

(ii) The coefficients of the powers oi z — a in the series are the

values of the function and its derivatives at the centre of the circle ; and the

character of the derivatives is sufficiently ensured (§ 21) by the holomorphic

character of the function for all points within the region. It therefore

follows that, if a function be holomorphic within a region bounded by a

circle of centre a, its expansion in a series of ascending powers of z — a,

which converges for all points within the circle, depends only upon the values

of the function and its derivatives at the centre.

Conversely, a converging power-series in z — a, having assigned

coefficients f{a), f («), • • • , defines a uniform function within the radius

of convergence of the series.

But instead of having the values of the function and of all its derivatives

at the centre of the circle, it will suffice to have the values of the holomorphic

function itself over any region at a or along any line through a, the region

or the line being not merely a point. The values of the derivatives at a cjin

be found in either case; for/ '(6) is the limit of \f{b-\-hh)-f(h)]lhb, so that

the value of the first derivative can be found for any point in the region or

on the line, as the case may be; and so for all tiic derivatives in succession.

* It then is ofteu called an iuleiiral function.
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(iii) The form of Maclaurin's series for complex variables is at once

derivable by supposing the centre of the circle at the origin. We then

infer that, if a function he holomorphic over a circle, centre the origin, it can be

represented in the form of a series of ascending, positive, integral poivers of the

variable given by

f{z) =/(0) + ^^-'(0) + |^,/"(0) + ...,

where the coefficients of the various poivers of z are the values of the derivatives

of f{z) at the origin ; and the series convergesfor all points within the circle.

Thus, the function e^ is holomorphic over the finite part of the plane

;

therefore its expansion is of the form G{z). The function log(l + z) has a

singularity at — 1 ; hence within a circle, centre the origin and radius unity,

it can be expanded in the form of an ascending series of positive integral

powers of z, it being convenient to choose that one of the values of the

function which is zero at the origin. Again, tan~^ z- has singularities at the

four points z* = — \, which lie on the same circumference ; choosing the value

at the origin which is zero there, we have a similar expansion in a series,

converging for points within the circle.

Similarly for the function (1 + zy\ which has — 1 for a singularity unless

n is a positive integer.

(iv) Darboux's method* of derivation of the expansion oi f{z) in

positive powers of z — a depends upon the expression, obtained in § 15 (IV.),

for the value of an integral. When applied to the general term

= L say. It gives L = \r (t_ J fiX\

where t, is some point on the circumference of the circle of radius r, and X is

a complex quantity of modulus not greater than unity. The modulus of -r.

is less than a quantity which is less than unity ; the terms of the series of

moduli are therefore less than the terms of a converging geometric progress-

ion, so that they form a converging series; the limit of \L\, and therefore

of L, can, with indefinite increase of n, be made zero and Taylor's expansion

can be derived as before.

oc

Ex. 1. Prove that the arithmetic mean of all values of 2"" 2 a,,;", for points lying along

a circle
|
2

|

=?• entirely contained in the region of continuity, i.s «„. (Rouche, Gutzmer.)

Prove also that the arithmetic mean of the square-s of the moduli of all values of

2 avZ^i for points lying along a circle '\z\= r entirely contained in the region of continuity,

is equal to the sum of the squares of tlie moduli of the terms of the soi-ies for a point on

the circle. (Gutzmer.)

* LiouviUe, 3""' Ser., t. ii, (1876), pp. 2'.tl—312.
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Ex. 2. Prove that the function 2 a"^"^,

is finite and continuous, as well as all its derivatives, within and on the boundary of tlit>

circle
|
2

|

= 1, provided
|
a

|
< 1. (Fredholm.)

Ex. 3. The radii of convergence of the series

/(2)=ao+ «i2+ a22^ + ..., g{z') = K-\-Wz'+ h^^^- + ...,

are p and p ;
prove that pp is the radius of convergence of the series

Denoting the singularities of /(s) by s^, s.^,..., and those of g (2') by s/, So',..., prove

that the singularities of h (2") are given by v«„', for all values of m and 71. (Hadamard.)

Ex. 4. (See also Ex. 2, § 20.) It is possible to express the sum of selected terms

in the form of a definite integral. Thus, writing

c,„= --./('")(«),
wi !

*

for m = l, 2,..., consider the finite series

>S'=Co+ Ci (2-a)+ ...+c„(2-a)"

Zni J t-a
t — a

2in ) t-z \
\t-aj J

Ex. 5 Establish the following results in a similar manner :

—

(i) Cpiz-a)r>+ Cp^r{z-ay^' + ...+c,{z-ay

2ni J t-z \\t-aj \t-aj J
'

(ii) Co+ c.2{z-af+ Ci{z-ay + ...

J_ f fit) (t-a)

27Ti J{t-z){t+ z-2a) '

(iii) Ci + C3(2-a)2 + C5(2-a)''+...

2771 J{t-z){t+ z-2a)

28. Laurent's theorem is as follows* :

—

A function, which is holomorphic in a part of the plane bounded by two

concentric circles with centre a and finite radii, can be expanded in theform

of a doable series of integral powers, positive and negative, of z — a ; and the

series converges in the part of the plane between the circles.

* Comptes Itendus, t. xvii, (1848), p. 939.
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Let z be any point within the ivgi(>n bounded by the two eii-cles of radii

Ti and Bl \ describe two concentric circles of

ladii r and ?•', such that

R>r>\z- n >r' > R

.

Denoting by t and by .v current points on the

circumference of the outer and of the inner

circles respectively, and considering the space

which lies between them and includes the point

z, we have, by § 20,

/(^)
Fig. 11.

a negative sign being prefixed to the second integral because the direction

indicated in the figure is the negative direction for the description of the

inner circle regarded as a portion of the boundary.

Now we have

fz - aY+'
t — a ^ z — a

I
z — a\~ (z — ay^ \t — aj

,
= 1 + 7 + -^ + +

t — z t — a \t — aj \\

'z — a\

1 -

this expansion being adopted with a view to an infinite converging series,

because I is less than unity for all points t\ and hence, by § 15,

H- z\t-al
dt.

Now each of the integrals, which are the respective coefficients of powers of

z—a, is finite, because the subject of integration is everywhere finite along

the circle of finite radius, by § 15 (IV.). Let the value of

be ^iriu,. : the quantity Ur is not necessarily equal to f^^^ia) -h r !, because no

knowledge of the function or of its derivatives is given for a point within

the innermost circle of radius R'. Thus

^r—. \t-^ dt = Wo + (2 - a) ?/, + (z- a)- u. + .

.

Ziri J t — z

ZTTt Jt-z \t — aJ

The modulus of the last term is less than

JL feV^'

(z-a)"u.
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where p is \z — a\ and M is the gi-eatest value of !/(0i for points along

the circle. Because p < r, this quantity diminishes to zero with indefinite

increase of n ; and therefore the modulus of the expression

J
. \PQdt-u,~{z-a)u,- -{z-aYun

'llTl J t — Z

becomes indefinitely small with unlimited increase of n. The quantity itself

therefore vanishes in the same circumstances ; and hence

L. ipQ. dt = u, -^ {z - a) u, + ¥{z-a)'^u,n+ ,

Ztti J t— z

so that the first of the integrals is equal to a series of positive powers. This

series converges within the outer circle, for the modulus of the (m 4- 1/^ term

is less than

M 0'

which is the (m + 1)'^'' term of a converging series.

As in § 27, the equivalence of the integral and the series can be affirmed

only for points which lie within the outermost circle of radius R.

Again, we have

\z-aJz z — a \z — aJ ^ s — a

z — a

this expansion being adopted with a view to an infinite converging series,

because is less than unity for all points s. Hence
z — a

1 [li^ds= -^^ !f{s)ds+ +-, ^^ ks-a)"f(s)
27njs-z z-a^iriy'^^ (z - a)"+' 27n J

^ /yv/

27ri j \z — aJ z — s

^ ,
ds

ds.

The modulus of the last term is less than

/ry+-
"' \p/ '

P

where M' is the greatest value of \f(s) \

for points along the circle of radius

r'. With unlimited increase of ?i, the modulus of this last term is ultimately

zero ; and thus, by an argument similar to the one which was applied to the

former integral, we have

2'7rih-z'^^~z-a^(z-ay^ ^(z-ar^ '

where v^n denotes the integral j (s - ay"'-\f(s) ds taken round the circle.
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As in the former case, the series is one which converges, its converg-

ence being without the inner circle ; the equivalence of the integral and

the series is valid only for points z that lie without the innermost circle of

radius R

.

Thp coefficients of the various negative powers oi z—a are of the form

1-jTi ' 1 \s - a)
'

a form that suggests values of the derivatives of /'(s) at the point given by

= 0, that is, at infinity. But the outermost circle is of finite radius:
s — a

and no knowledge of the function at infinity, lying without the circle, is

given, so that the coefficients of the negative powers may not be assumed

to be the values of the derivatives at infinity, just as, in the former case, the

coefficients Ur could not be assumed to be the values of the derivatives at the

common centre of the circles.

Combining the expressions obtained for the two integi-als, we have

f{z) = Uo + (z — a) ?/i + {z — a)- Uo + ...

+ (z - a)-' v^ + (z - a)-- v., + ....

Both parts of the double scries converge for all points in the region between

the two circles, though not necessarily for points on the boundary of the

region. The whole series therefore converges for all those points: and we

infer the theorem as enunciated.

Conformably with the notation (§ 26, Note) adopted to represent Taylor's

expansion, a function f{z) of the character required by Laurent's Theorem

can be represented in the form

the series Pj converging within the outer circle and the series P., converging

without the inner circle ; their sum converges for the ring-space between the

circles.

29. The coefficient ii,> in the foregoing expansion is

Stti Jt — a

the integral being taken round the circle of radius /•. We have

t-a
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for points on the circle ; and therefore

fcW
2.-^'<^)'

f cW
so that

j
?((,

i

<
I o -^^< < ^^',
J Ztt

M' being the greatest value of Af«, the modulus of f(t), for points along the

circle. If M be the greatest value of 1/(^^)1 for any point in the whole

region in which f(z) is defined, so that M' ^ M, then we have

\no\<M,

that is, the modulus of the term independent of 2^ — a in the expansion of

f(z) by Laurent's Theorem is less than the greatest value of \f{z) \
at points

in the region in which it is defined.

Again, (z — a)~™'f{z) is a double series in positive and negative powers of

z — a, the term independent of z — a being /r,„ ; hence, by what has just been

proved, \Um\ is less than p~'^M, where pis, \z— a\. But the coefficient u^
does not involve z, and for any point z we can therefore choose a limit. The

lowest limit will evidently be given by taking z on the outer circle of radius

R, so that
I

Wm
I

< MR~^. Similarly for each coefficient ?'„,; and therefore we
have the result :

—

If f{z) he expanded as by Laurent's Theorem in the form
00 00

Wo + S {z — ay w,„, + S (2- - a)-"* v,n,

m = \ w=l

then
I

u,n
I

< MR~"\
\
v,n

\
< MR'"",

where M is the greatest value of \f{z)\ at points tuithin the region in which

f{z) is defined, and R and R' are the radii of the outer and the inner circles

respectively.

Corollary. If M(r) denote the greatest value of \f(z) \
for values of z

on the circumference of the circle \z — a\ = r, then

1

11,^ \
< r-'^M (r),

I

v,n
I

< r'"M (r) :

which may be lower limits than the preceding. As above, we have

de
.-\tm

taken round the circle \z — a\ = r; so that

\<\<\f^^\m\<\^^M{r)^M{r).

Similarly, as «,„ is the term independent of z — a in the Laurent expansion

of {z — a)~"^f{z), we have

I
^'»n

I

^ greatest value of \(z — (t)~'^f(z)
|

along \z — a\=r

^ 7--™ M (?•)

;

and so for v,„.
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30. The following proposition is pi-actically a corollary fioni Lament's

Theorem :

—

W/iei) a function is holomorphic over all the plane which lies outside a

circle of centre a, it can be expanded in the form of a series of negative integral

poivers of z. — a, the series converging ever i/where in that part of the plane.

It can be deduced as the limiting case of Laurent's Theorem when the

radius of the outer circle is made infinite. We then take /• infinitely large,

and substitute for t by the relation

t — a = re^',

so that the first integral in the expression (i), p. 55, for/(2') is

•'- dO
^i:^f^>

t — a

Since the function is holomorphic over the whole of the plane which lies

outside the assigned circle, f{t) cannot be infinite at the circle of radius r

when that radius increases indefinitely. If f(t) tend towards a (finite)

limit k, which must be uniform owing to the hypothesis as to the functional

character of/(^), then, since the limit of (t — z)j{t — a) is unity, the preceding

integral is equal to k.

The second integral in the same expression (i), p. 55, for f(z) is

unaltered by the conditions of the present proposition ; hence we have

f{z) = k + (z— a)- 1 Vi +(z — a)~'- t'o + . . •

,

the series converging without the circle, though it does not necessarily

converge on the circumference.

The series can be represented in the form

\z-a

conformably with the notation of § 26.

Of the three theorems in expansion which have been obtained, Cauchy's

is the most definite, because the coefficients of the powers are explicitly

obtained as values of the function and of its derivatives at an assigned

point. In Laurent's theorem, the coefiicients are not evaluated into simple

expressions. In the corollary from Laurent's theorem the coefficients are,

as is easily proved, the values of the function and of its derivatives for infinite

values of the variable. The essentially important feature of all the theorems

is the expansibility of the function in converging series under assigned

conditions.

31. It was proved (§ 21) that, when a function is holomorphic in any

region of the plane bounded by a simple curve, it has an unlimited number

of successive derivatives each of which is holomorphic in the region. Hence,
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by the preceding propositions, each such derivative can be expanded in

converging series of integral powers, the series themselves being deducible
by differentiation from the series which represents the function in the region.

In particular, when the region is a finite circle of centre a, within which

f{z) and consequently all the derivatives oif(z) are expansible in converging
series of positive integral powers of ^ - a, the coefficients of the various

powers oi z -a are—save as to numerical foctors—the values of the

derivatives at the centre of the circle. Hence it appears that, luhen a function
is holomorphic over the area of a given circle, the values of the function and all

its derivatives at any point z within the circle depend only upon the variable

of the point and upon the values of the function and, its derivatives at the

centre.

32. Some of the classes of points in a plane that; usually arise in

connection with uniform functions may now be considered.

(i) A point a in the plane may be such that a function of the variable

has a determinate finite value there, always independent of the path by
which the variable reaches a; the point a is called an ordinary point* of

the function. The function, supposed continuous in the vicinity of a, is

continuous at a : and it is said to behave regidarly in the vicinity of an

ordinary point.

Let such an ordinary point a be at a distance d, not infinitesimal, from

the nearest of the singular points (if any) of the function ; and let a circle of

centre a and radius just less than d be drawn. The part of the ^--plane lying

within this circle is called f the domain of a; and the function, holomorphic

within this circle, is said to behave regularly (or to be regular) in the domain
of a. From the preceding section, we infer that a function and its derivatives

can be expanded in a converging series of positive integral powers oi z — a

for all points z in the domain of a, an ordinary point of the function : and

the coefficients in the series are the values of the function and of its derivatives

at a.

The property possessed by the series—that it contains only positive

integral powers of ^ — a—at once gives a test which is both necessary and
sufficient to determine whether a point is an ordinary point. If the point a.

he ordinary, the limit of {z — a)f{z) necessarily is zero when z becomes equal

to a. This necessary condition is also sufficient to ensure that the point is

an ordinary point of the function f{z), supposed to be uniform ; for, since

f{z) is holomorphic, the function (z — a)f(z) is also holomorphic and can be

expanded in a series

Uq + w, (z — a) + u., (z — a)- + ...

,

* Sometimes a regular point.

t Tlie (rermau title is Umgebuiig, the Frenclv is domaine.
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converging in the domain of a. The quantity /<„ its zero, being the vahie

of {z — a)f{z) at a and this vanishes by hypothesis; hence

(z - a)/ (z) = {z-a) {«, +u.(z-a) + ...},

shewing that f{z) is expressible as a series of positive integral powers of

z — (I converging within the domain of a, or, in other words, that f{z) certain! v

has a for an ordinary point in consequence of the condition being satisfied.

(ii) A point a in the plane may be such that a function /{z) of the

variable has a determinate infinite value there, always independent of the

path by which the variable reaches a, the function behaving regularly for

points in the vicinity of a ; then -7—^. has a determinate zero value there, so

that a is an ordinary point of t-t"^- The point a is called a pole (§ 12)

or an accidental singularity* of the function.

A test, necessary and sufficient to settle whether a point is a pole of

a function, Avill subsequently (§ 42) be given.

(iii) A point a in the plane may be such that /"(2) has not a determinate

value there, either finite or infinite, though the function is definite in value

at all points in the immediate vicinity of a other than a itself.

Such a point is called f an essential singularity of the function. No
hypothesis is postulated as to the character of the function for points

at infinitesimal distances from the essential singularity, while the relation

of the singularity to the function naturally depends upon this character at

points near it. There may thus be various kinds of essential singularities

all included under the foregoing definition, even for uniform functions;

one cla.ssification is effected through the consideration of the character of

the function at points in their immediate vicinity. (See § 88.)

One sufficient test of discrimination between an accidental singularity

and an essential singularity is furnished by the determinateness of the value

at the point. If the reciprocal of the function have the point for an ordinary

point, the point is an accidental singularity— it is, indeed, a zero for the

reciprocal. But when the point is an essential singularity, the value of the

leciprocal of the function is not determinate there ; and then the reciprocal,

as well as the function, has the point for an essential singularity.

In these statements and explanations, it is assumed that the essential

singularity is an isolated point. It will hereafter be seen that uniform

functions can be constructed for which this is not the case; thus there are

uniform functions which have lines of essential singularity. For the present,

we shall deal only with es.sential singularities thcit are isolated points.

* Weierstrass, Ges. Werke, t. ii, p. 78, to whom the name is due, calls it aunxerueseHtliche

singulare Stelle; the term non-essential is suggested by Mr Cathcart, Harnack, p. 148.

t Weierstrass calls it ucscntliche singuldre Stelle.
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Ex. 1. Consider the function cos - in the vicinity of the origin.

The value at z= clearly is indeterminate; but it tends to limits that depend upon

the mode by which z approaches the origin.

Thus suppose that z approaches the origin along the axis of imaginary quantities ; and

let z= ai, where a is real and can be made as small as we please. Then •

1 ' -'-

if a be i)C)sitive then the first term, and if a be negative then the second term, can be

made larger than any assigned finite quantity by sufficiently diminishing a : that is,

by these methods of approach of z to its origin, the function cos - ultimately acquires an

infinite value.

Next suppose that z approaches the origin along the axis of real quantities, and

assume it to have positive values, (the same reasoning applies if it has negative values)

;

in particular, consider real values of z, such that O^z^ ^, where /3 is a quantity that may
be assigned as small as we please. When /3 is assigned, take any positive integer m, such

that

2m + \ >^
so that m will be any integer lying between some one integer (that will be large, in

dependence upon the value of /3) and infinity. Let

where C ^n fi. positive quantity such that ^ ^ ^ tt ; then

1 1

and so < ? < /3. For such values we have

cos ~ = ( — l)"*-! sin^,

and therefore with the range of ( from to tt, the function ranges continuously in

numerical value between and 1. In particular, when ^=0, the function has a zero

value; (also when f= 7r, but this in efiect gives the next greater value of m); and this

holds for each of the integers m so assumed. Hence it follows that within the range

0^2^/3 for real values of z, no matter how small the real quantity /3 may be assigned,

the function cos - has an unlimited number of zeros ; also that, within the same range,

the function cos - — k (where k is a real quantity not greater than unity) has an unlimited

number of zeros.

Kr. 2. Consider the function cos - in the vicinity of the origin, when tlic variable z is

made to ai)proach the origin along the spiral = fir, where z^re^', and ;x is a parametric

quantity; and shew that, in the immediate vicinity of the origin along this path,

sinh u ^ cos - ^ cosh 2a.

Discuss the jwssibility of so choosing the approach of z to the origin as, for values of z

such that \z\ < y where y is a quantity that may be made as small as we please, to

make cos- acquire a value A+iB.
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Ex. 3. Shew that the function cosec ha.s an unlimited nunibor of poles in tiie

immediate vicinity of its essential singularity s= 0.

Ex. 4. Consider the variations in value of the func-lioii rz f,)r values of z, such that

c
I

is not greater than some assigned .small quantity k.

1

Tn particular, consider the possibility of e^ cither acquiring, or tending to, any assigned

1

value A. The values of z for which e~ = A are given by

_ =2/-7r/+ log J,

where k is any integer, positive or negative. Let J=ae"', where a and a are real;

so that

- = i2kiT+ a) I + log a.

If z=x+ i>/ as usual, then

J^,-(2/,-7r + a)i4-loga;

and therefore all the points, for which e~ ac([uires the value ^1, lie upon the circle

^ log a

Accordingly, we consider an arc of this circle which lies within the circle

x-+ i/- = k'-.

1

Not every point on the arc leads to the value ^-1 of e^; for taking any point (^, rj^

on it, let

^log« = 2?«7r+ ^,

where m is an integer, and 0^0 < 'In; thus

I2—^2 = ~ ^ (^""^ + ^) + log a,

1

so that the value of e~ is g
oga-M^/Hn-^ e)^ _„g-<'i^ which is only the sjune as at?"' for

particular points. It is however clear that ' e- 1 is the .same for all points on the circular

arc.

1

The values of z for which e~ = A are given l^y

1
z=

(2k7r+ a)i+loga '

where k is an integer. It is manifest that a value of k (say X-,) can be cho.sen for which

.2; < ",

this inequality holding for all values of k greater than /j : so th.it the function e- acquires

the value A at an milimited number of points in the region \z\ < k. Further, by

sufficiently increasing /•, we «in make
|
z \ sm.aller than any assigned quantity however

small; and therefore A is one of the (unlimited number of) values of e- as 2 ultimately

becomes zero.
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It may be remarked at once that there must be at least one infinite

value among the values which a uniform function can assume at an essential

singularity. For if/(^) cannot be infinite at a, then the limit o^{z — a)f{z)

would be zero when z = a, no matter what the non-infinite values of /(^)

may be, and no matter by what path z acquires the value a ; that is, the

limit would be a determinate zero. The function {z — a)f{z) is regular in

the vicinity of a : hence by the foregoing test for an ordinary point, the point

a would be ordinary and the value of the uniform function f{z) would be

determinate, contrary to hypothesis. Hence the function must have at least

one infinite value at an essential singularity.

Further, a uniform function must be capable of assuming any value G
at an essential singularity. For an essential singularity oi f\z) is also an

essential singularity of f{z) — G and therefore also of -zj^
—p- The last

function must have at least one infinite value among the values that it

can assume at the point; and, for this infinite value, we have f{z) = C
at the point, so that f{z) assumes the assigned value C at the essential

singularity.

Note. This result, that a uniform function can acquire any assigned

value at an isolated essential singularity, is so contrary to the general idea of

the one-valuedness of the function, that the function is often regarded as not

existing at the point; and the point then is regarded as not belonging to the

region of significance of the function. The difference between the two views

is largely a matter of definition, and depends upon the difference between

two modes of considering the variable z. If no account is allowed to be

taken of the mode by which z approaches its value at an essential singularity

a, the function does not tend uniformly to any one value there. If such

account is allowed, then it can happen (as in Ex. 4, above) that z may
approach the value a along a particular path through a limiting series of

values in such a way that the function can acquire any assigned value in the

limit when z coincides with a after the specified mode of approach.

33. There is one important property possessed by every uniform funct-

ion in the immediate vicinity of any of its isolated essential singularities

;

it was first stated by Weierstrass*, as follows:

—

In the immediate vicinity of

an isolated essential singularity of a uniforni function, there are positions at

which the function differs from an assigned value by a quantity not greater

than a non-vanishing magnitude that can be made as small as we please.

* Weierstrass, Ges. Werke, t. ii, pp. 122—124; Durege, Eleiiieiite tier Tln-orie der Fuiiktioiien,

p. 119; Holder, Math. Ann., t. xx, (1882), pp. 1H8— 143; Picard, " Memoire sur les fonctions

entieres," Annales de VEcolc Norm. Sup., 2"'" Sur., t. ix, (188U), pp. 145

—

1{'>6, which, in this

repard, should be consulted in connection with the developments in Chapter V. See also § 62.

Picard's proof is followed in the text.
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Let a be the singularity, C an assigned value, and e a non-vanishing

magnitude which can be chosen arbitrarily small at i»ur own disposal ; and in

the vicinity of a, represented b}'

\z-a\< p,

consider the function 77—r-- ^- For values of z in the range

{)<\z-a\<p,

this function may have poles, or it may not.

If it has poles, then at each of them f(z) — C=0: that is, the function

f(z) actually attains the value C, so that the difference between f(z) and G
for such positions is not merely less than e, it actually is zero.

If it has no poles, then the function

1

f{z)-C
is regular everywhere through the domain

<\z — a\< p,

because no point in that domain is either a pole or an essential singularity.

Accordingly, by Laurent's theorem, it can be expanded in that domain in a

converging series of positive and negative powers, in the form

1

fiz)-G
= i(o^ (z-a)ici + + (2: — «)" '"» + •

Vj V.y v„,

z-a {z-af ' {z-af

Choose a quantity p such that 0< p' <p. The series of positive powers

converges everywhere within and on a circle, centre a and radius p' : let 8(2)

denote its value at z. The series of negative powers converges everywhere

in the plane outside the point a ; and therefore the series

Vi +^^ + 7 ^„ +Z-a {z — af

converges everywhere outside the point a : let T{z) denote its value, so that

1 -s(.)+^'<^>
f{z) — G z — a'

Accordingly, as 1»S^(^)| is finite and \T{z)\ not zero—it may be a nipidly

increasing quantity as \z — a\ decreases—choose |-^— a| so that, while not

being zero, it gives the modulus of the right-hand side as greater than -.

As z — a occurs in a denominator, this can be done. Then, for such a value

of z, 111
>

and therefore

which proves the theorem.

\f{^)-C\ e

l/(^)-Ci<6,
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It may hapi^eii that the function attains the value C only at the essential singularity,

where C is one of its unlimited number of values. Thus to find the zeros of the function

cosec in the vicinity of the origin, we must have sin - infinite at them ; this can only

occur when z becomes zero along the axis of imaginaries, and cannot occur for any value

of z such that \z\> 0. Such a value is called an exceptional value ; the discussion of

exceptional values is effected by Picard in his memoir quoted.

Ex. Discuss the character of the functions cos (1/s), tan(l/2) for values of I s
|
which

.1
are very small ; and the character of the functions tan z, e"', 2-"e^, e ~, z logs, for values

of
I

2
I

which are very large.

34. Let f{z) denote the function represented by a series of powers

Pj {z — a), the circle of convergence of which is the domain of the ordinary

point a, and the coefficients in which are the values of the derivatives of

f {z) at a. The region over which the function f{z) is holomorphic may
extend beyond the domain of a, although the circumference bounding that

domain is the greatest of centre a that can be drawn within the region.

The region evidently cannot extend beyond the domain of a in all directions.

Take an ordinarx^ point h in the domain of a. The value at h of the

function f{z) is given by the series Pj (6 — a), and the values at h of all its

derivatives are given by the derived series. All these series converge within

the domain of a and they are therefore finite at h ; and their expressions

involve the values at a of the function and its derivatives.

Let the domain of h be formed. The domain of h may be included in

that of a, and then its bounding circle will touch the bounding circle of the

domain of a internally. If the domain of h be not entirely included in that

of a, part of it will lie outside the domain of a ; but it cannot include the

whole of the domain of a unless its bounding circumference touch that of

the domain of a externally, for otherwise it would extend beyond a in all

directions, a result inconsistent with the construction of the domain of a.

Hence there must be points excluded from the domain of a which are also

excluded from the domain of h.

For all points z in the domain of h, the function can be represented by

a series, say P^{z—h), the coefficients of which are the values at h of the

function and its derivatives. Since these values are partially dependent

upon the corresponding values at a, the series representing the function may

be denoted by P^ (z - b, a).

At a point z in the domain of b lying also in the domain of a, the two

series Pj (z — a) and F^ {^ — b, a) must furnish the same value for the

function f(z) ; and therefore no new value is derived from the new series Pg

which cannot be derived from the old series 1\. For all such points the new

series is of no advantage ; and hence, if the domain of b be included in that

of a, the construction of the series P2{z — b,a) is superfluous. Thus, in

choosing the ordinary point b in the domain of a we choose a point, if

possible, that vyill not have its domain included in that of a.
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At a point z in the domain of h, which does not lie in the domain of a,

the series P.^iz — h,a) gives a vahu- for f{z) which cannot be given by

P, {z~a). The new series P., then gives an additional representation of the

function ; it is called * a continuation of the series which represents the function

in the domain of a. The derivatives of Po give the values of the derivatives

of /"(2) for points in the domain of h.

It thus appears that, if the whole of the domain of h be not included in

that of a, the function can, by the series which is valid over the whole

of the new domain, be continued into that part of the new domain excluded

from the domain of a.

Now take a point c within the region occupied by the combined domains

of n and h ; and construct the domain of c. In the new doniain, the

function can be represented by a new series, say Pj {z — c), or, since the

coefficients (being the values at c of the function and of its derivatives)

involve the values at a and possibly also the values at b of the function

and of its derivatives, the series representing the function may be denoted

by Pji^j — c, a, b). Unless the domain of c include points, which are not

included in the combined domains of a and b, the series P3 does not give

a value of the function which cannot be given by Pj or P2: we therefore

choose c, if possible, so that its domain will include points not included in

the earlier domains. At such points z in the domain of c as are excluded

from the combined domains of a and b, the series P^ (z — c, a, b) gives a value

for f{z) which cannot be derived from Pj or Po ; and thus the new series

is a continuation of the earlier series.

Proceeding in this manner by taking successive points and constructing

their domains, we can reach all parts of the plane connected with one

another where the function preserves its holomorphic character; their

combined aggi-egate is called f the region of continuiti/ of the function.

With each domain, constructed so as to include some portion of the region of

continuity not included in the earlier domains, a series is associated, which is

a continuation of the earlier series and, as such, gives a value of the function

not deducible from those earlier series ; and all the associated series are

ultimately deduced from the first.

Each of the continuations is called an Element of the function. The

aggregate of all the distinct elements is called a monogenic analytic function

:

it is evidently the complete analytical expression of the function in its region

of continuity.

Let z be any point in the region of continuity, not necessarily in the

circle of convergence of the initial element of the function; a value of the

• BiermanD, Theorie der anahjtischen Functionen, p. 170, which may be consulteJ in

connection with the whole of § 34 ; the German word is Fortsetzung.

t Weierstrass, Ges. Werkc, t. ii, p. 77.

5—2
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function at z can be obtained through the continuations of that initial

element. In the formation of each new domain (and therefore of each new

element) a certain amount of arbitrary choice is possible ; and there may,

moreover, be different sets of domains which, taken together in a set, each

lead to z from the initial point. When the analytic function is uniform, as

before defined (§ 12), the same value at z for the function is obtained,

whatever be the set of domains. If there be two sets of elements, differently

obtained, which give at z different values for the function, then the ana-

lytic function is multiform, as before defined (§ 12); but not every change

in a set of elements leads to a change in the value at 2 of a multiform

function, and the analytic function is uniform within such a region of the

plane as admits only equivalent changes of elements.

The whole process is reversible when the function is uniform. We can

pass back from any point to any earlier point by the use, if necessary, of

intermediate points. Thus, if the point a in the foregoing explanation

be not included in the domain of h (there supposed to contribute a continu-

ation of the first series), an intermediate point on a line, drawn in the

region of continuity so as to join a and 6, would be taken ; and so on,

until a domain is formed which does include a. The continuation, associated

with this domain, must give at a the proper value for the function and its

derivatives, and therefore for the domain of a the original series Pj {z — a)

will be obtained, that is, Pi {z — a) can be deduced from Pa (•^ — b, a) the

series in the domain of b. This result is general, so that any one of the

continuations of a uniform function, represented by a poiver-series, can be

deduced from any other ; and therefore the expression of such a function in

its region of continuity is potentially given by one element, for all the

distinct elements can be deduced from any one element.

35. It has been assumed that the property, characteristic of some of the

uniform functions adduced as examples, of possessing either accidental or

essential singularities, is characteristic of all such functions; it will be proved

(§ 40) to hold for every uniform function which is not a mere constant.

The singularities limit the region of continuity ; for each of the separate

domains is, from its construction, limited by the nearest singularity, and the

combined aggregate of the domains constitutes the region of continuity when

they form a continuous space*. Hence the complete boundary of the region

of continuity is the aggregate of the singularities of the function f.

* Cases occur in which the region of continuity of a function is composed of isolated spaces,

each continuous in itself, but not continuous into one another. The consideration of such cases

will be dealt with briefly hereafter, an 1 they are assumed excluded for the present : meanwhile,

it is sufficient to note that each continuous space could be deduced from an element belonging to

some domain of that space and that a new element would be needed for a new space.

t See Weierstrass, Ges. Werke, t. ii, pp. 77—79; Mittag-Leffler, " Sur la representation analy-

tique des fonciions monogfenes uniformes d'une variable ind6pendante," Acta Math., t. iv, (1884),

pp. 1 et seq., especially pp. 1—8.
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It may happen that a function has no singularity except at infinity; the

region of continuity then extends over the whole finite part <>f the plane but

it does not include the point at infinity.

It follows from the foregoing explanations that, in order to know a

uniform analytic function, it is necessary to know some element of the

function, which has been shewn to be potentially sufficient for the derivation

of the full expression of the function and for the construction of its region of

continuity. But the process of continuation is mainly descriptive of the

analytic function, and in actual practice it can prove too elaborate to be

effected *.

To avoid the continuation process, Mittag-Leffler has devised f another

method of representing a uniform function. Let a be an ordinary point of

the function, and let a line, terminated at a, rotate round it. In the vicinity

of a, let the element of the function be denoted by P{z — a); and imagine

the continuation of this element to be effected along the vector as far as

possible. It may happen that the continuation can be effected to infinity

along the vector ; if not, there is some point a' on the vector beyond which

the continuation is impossible. In the latter case, the part of the vectorij:

from a' to infinity is excluded from the range of variation of the variable.

Let this be done for every position of the vector; then the part of the plane,

which remains after these various ranges have been excluded, gives a star-

shaped figure, which is a region of continuity of the uniform function of

which P{z — a) is the initial element. The function manifestly can be

continued over the whole of this star, by means of appropriate elements; but

there is no indication as to the necessary number of elements. Instead of

using the elements to express the function, Mittag-Leffler constructs a single

expression, which is the valid representation of the function over the whole

star; the expression is an infinite series of polynomials, and not merely a

power-series.

Thu.s let there be a power-series

wliich converges uniformly in a region round the j)oint a; the radius of convergence of the

series is r, where \jr is the upper limit of the quantities {bjn !)". Let the star-shaped

figure be constructed ; the following is the simplest form of expression svs obtained by

Mittag-Leffler to represent, over the whole star, the function of w^hich the foregoing series

is an element. Let the quantity

'A.-t-V^.H-Ap /g-t

I,! X.j:...Xp! V p

* Some examples have been constructed by I'rof. M. J. M. Hill, Proc. Loud. Math. Hoc.

vol. XXXV, (1903), pp. 388—41G.

t Exact references are given at the bej^inniiig of Chapter VIL

X In effect, this is a section, in the sense used in § 103.
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which is a polynomial, be denoted by gp (z) ; and take

Mittag-Leffler's expression is

1,2,.

2 G^{z):
1 =

and it converges everywhere within the star.

Again, an element representing a function is effective only within its own

circle of convergence, while it may be known that the function is holomorphic

over some closed domain which touches the circle of convergence externally.

The process of continuation would make it possible to obtain the analytical

representation over the whole domain by means of appropriate elements

:

but again there is no indication as to the necessary number of elements.

Painleve * has shewn how to construct a single expression, which is the valid

representation of the function over the whole domain ; this expression also is

an infinite series of polynomials, and not merely a power-series.

For the establishment of these results, we refer to the memoirs quoted.

36. The method of continuation of a function, by means of successive

elements, is quite general ; there is one particular continuation, which is

important in investigations on conformal representation. It is contained in

the following proposition, due to Schwarzi*:

—

// an analytic function w of z be defined only for a region S' in the

positive half of the z-plane, and if continuous real values of w correspond to

continuous real values of z, then w can he continued across the axis of real

quantities.

Consider a region S", symmetrical with S' relative to the axis of real

quantities (fig. 12). Then a function is

defined for the region S" by associating

a value Wo, the conjugate of w, with z^,

the conjugate of ^.

Let the two regions be combined

along the portion of the axis of ^ which

is their common boundary; they then

form a single region S' + S".

Consider the integrals

^
—

. I ^, dz and -—

;

'Z'mJs'Z-c, 2-771 J,

taken round the boundaries of >S" and of S" respectively. Since w is

continuous over the whole area of S' as well as along its boundary, and

S" ^0 - ?
dzo

* Coviptes Rendvs, t. cxxvi, (1898), pp. 320, 321

the beginning of Chapter VII.

t Crelle, t. Ixx, (1869), pp. 106, 107, and Ges. Math. Ahh., t. ii, pp.

Theorie generale des surfaces, t. i, § 130.

see also the references to Painlev^ at

8. See also Darboux,
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likewise Wq relative to S" , it follows that, if the point ^ be in S', the value of

the first integral is w (^) and that of the second is zero ; while, if ^ be in S",

the value of the first integral is zero and that of the second is tVo (0- Hence
the sum of the two integrals represents a unique function of a point in either

»S" or S". But the value of the first integral is

1 ;• ^ wclz 1 [^ w (x) dx

iTTi .^ Jf 2 - C ^TTlJ A ^- G

the first being taken along the curve BGA and the second along tht- axis

AwB ; and the value of the second integral is

1 [^ Wo {x) dx

•I'm J _4 ^0- ?

the first being taken along the axis BxA and the second along the curve

ADB. But
Wo (x) = w {x),

because conjugate values lu and u'o correspond to conjugate values of the

argument by definition of tu^, and because w (and therefore also Wq) is real

and continuous when the argument is real and continuous. Hence when the

sum of the four integrals is taken, the two integrals corresponding to the

two descriptions of the axis of x cancel ; we have as the sum

rvo dz.1 [^ wdz 1 r
^

r-- iC) -r + ^r—. (D
IttiJ b z — i^ lin J X27riJ ^)i z — ^ ' liTi ] A Zq — ^'

and this sum represents a unique function of a point in S' + S". These two

integrals, taken together, are

1 r iv'dz

taken round the whole contour of S' + S", where w' is equal to w{^) in the

positive half of the plane and to Wo(t) in ^he negative half.

For all points ^ in the whole region S' + 8", this integral represents a

single uniform, finite, continuous function of ^; its value is w{^) in the

positive half of the plane and is iVo(^) in the negative half; and therefore

Wo{^) is the continuation, into the negative half of the plane, of the function

whifch is defined by w{^) for the positive half.

For a. point c on the axis of a-, we have

V) (z) - w (c) = A(z-c)-\- B (z - c)- +C(z- cf + ...;

and all the coefficients A, B, C, ... are real. If, in addition, w be such

a function of z that the inverse functional relation makes z a uniform

analytic function of w, obviously A must not vanish. Thus the functional

relation may be expressed in the form

lu (z) — w (c) = (z — c) P(z- c),

where P (z — c) does not vanish when z = c.



CHAPTER IV.

General properties of Uniform Functions, particularly of those

WITHOUT Essential Singularities.

37. In the derivation of the general properties of functions, which will be

deduced in the present and the next three chapters from the results already

obtained, it is to be supposed, in the absence of any express statement to

other effect, that the functions are uniform, monogenic and, except at either

accidental or essential singularities, continuous*.

Theorem I. A function, which is constant throughout any region of the

plane however squall, or which is constant along any line hotuever short, is

constant throughout its region of continuity.

For the first part of the theorem, we take any point a in the region of the

plane where the function is constant ; and we draw a circle of centre a and

of any radius, taking care that the circle remains within the region of

continuity of the function. At any point z within this circle, we have

f(z) =f(a) + {z- d)f'(a) + ^^^^f" (a) + ...,

a converging series the coefficients of which are the values of the function

and its derivatives at a. Let a point a + Sahe taken in the region ; then

f (a) = Limit of -^-^
^

^-^—̂

,

which is zero because f{a + Sa) is the same constant as f{a): so that the

first derivative is zero at a. Similarly, all the derivatives can be shewn to

be zero at a ; hence the above series after its first term is evanescent,

and we have

/(^)=/(«X

that is, the function preserves its constant value throughout its region of

continuity.

The second result follows in the same way, when once the derivatives are

proved zero. Since the function is monogenic, the value of the first and

* It will be assumed, as in § 35 (uote, p. 68), that the region of continuity consists of a single

space. Functions, which exist in regions of continuity consisting of a number of separated

spaces, will be discussed in Chap. VII.
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of each of the successive derivatives will be obtained, if we iimki' the

differential element of the independent variable vanish along the liiif.

Now, if a be a point on the line and a + 8a a consecutive point, we have

/(« + Sa) =/(a) ; hence/' (a) is zero. Similarly the first derivative at any

other point on the line is zero. Therefore we have /' (a + Ba) =/' (a), for

each has just been proved to be zero: hence /" (a) is zero. Similarly the

value of the second derivative at any other point on the line is zero. So on

for all the derivatives : the value of ^ach of them at a is zero.

Using the same expansion as before and inserting again the zero values

of all the derivatives at a, we find that >

so that under the assigned condition the function preserves its constant value

throughout its region of continuity.

It should be noted that, if in the first case the area and in the second the

line reduce to a point, then consecutive points cannot be taken ; the values

at a of the derivatives cannot be proved to be zero and the theorem cannot

then be infen-ed.

Corollary I. If two functions have the same value over any area of

their common region of continuity however small or along any line in that

region however short, then they have the same values at all points in their

common region of continuity.

This is at once evident : for their difference is zero over that area or along

that line and therefore, by the preceding theorem, their difference has a

constant zero value, that is, the functions have the same values, everywhere

in their common region of continuity.

But two functions can have the same values at a succession of isolated

points, without having the same values everywhere in their common region

of continuity ; in such a case the theorem does not apply, the reason being

that the fundamental condition of equality over a continuous nriM or along

a continuous line is not satisfied.

Corollary II. A function cannot be zero over any area of its region

of continuity hoiuever small, or along any line in that region hoivever short,

without being zero everywhere iri its region of continuity.

It is deduced in the same manner tis the preceding corollary.

If, then, there be a function which is evidently not zero everywhere, we

conclude that its zeros are isolated points though such points may be multiple

zeros.

Further, in any fnite area of the region uf continuity of a function that is

subject to variation, there can be at most only a finite number of its zeros, when
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no point of the boundary of the area is an essential singularity. For if there

were an infinite number of such points in any such region, there must be a

cluster in at least one area or a succession along at least one line, infinite in

number. Either they must then constitute a continuous area or a continuous

line where the function is everywhere zero : which would require that the

function should be zero everywhere in its region of continuity, a condition

excluded by the hypothesis. Or they must be so close to some point, say c,

that the function has an unlimited number of zeros within a region

\Z — C\<€,

where e can be made as small as we please : and so for non-zero values of the

function. After the general properties which have been established, and

the proposition of § 33, it is clear that c is an essential singularity of the

function, contrary to the hypothesis as to the region of continuity of the

function.

It immediately follows that the points within a region of continuity,

at which a function assumes any the same value, are isolated points ; and

that only a finite number of such points occur in any finite area.

This result may be established in another way.

Let f{z) be a uniform monogenic function ; we proceed to shew that,

when /(a) is not zero, we can choose a region round a in which /(2^) nowhere

vanishes. We have

/ (z) = Oo + «! (^ — a) + fto {z —ay ->r ...,

where a^ is not zero, the series iov f{z) converging absolutely and uniformly

for values of z such that

\z — a\^r <R.

Within or on the circle r, let M be the greatest value of

I

»! + ttg (2^ — a) + . . .
I

,

so that M is, of course, finite. Let

so that s is finite ; and take values of z such that

\z— a\^(T <s.
Then

\f{z)\^\a,\-\z - aWa^-V a.,{z - a) + ...\

>ao — a-M

so that, at no place within this region can/(^) vanish.

Now let c be a zero of/(^) of order n, so that

f(z)^(z-crg(z),
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where g(c) is not zero and (/{z) is uniform and monogenic. By what hius just

been proved, we can choose a region round c such that g (z) has no zero within

it. Then obviously /(•2') has no zero within that region except at the place c

;

in other words, the zero oif{z) is an isolated point.

38. Theorem II. The multiplicity m of any zero a of a function is

finite provided the zero he an ordinary point of the function, supposed not to he

zero throughout its region of continuity ; and the function can he expressed in

the form
(z-arcpiz),

where cf) (z) is holomorphic in the vicinity of a, and a is not a zero of (j) {z).

Let f(z) denote the function ; since a is a zero, we have /(«) = 0.

Suppose that/' {a),f" (a), vanish : in the succession of the derivatives

of /, one of finite order must be reached which does not have a zero value.

Otherwise, if all vanish, then the function and all its derivatives would

vanish at a; the expansion o( f{z) in powers oi z — a would lead to zero as

the value oi f{z), that is, the function would everywhere be zero in the

region of continuity, if all the derivatives vanish at a.

Let, then, the mth derivative be the first in the natural succession which

does not vanish at a, so that m is finite. Using Cauchy's expansion, we have

= {z-a)^<f>{z),

where
<f>

(z) is a function that does not vanish with a and, being the quotient

of a converging series by a monomial factor, is holomorphic in the immediate

vicinity of a.

Corollary I. If infinity he a zero of a function of multiplicity m and

at the same time be an ordinary point of the function, then the function can he

expressed in theform

where
<f>

(-) is a function that is continuous and differentfrom zero for infinitely

large values of z.

The result can be derived from the expansion in § SO in the sanir way as

the foregoing theorem from Cauchy's expansion.

Corollary II. The number of zeros of a function, account being taken oj

their multiplicity, which occur within a finite area of the region of continuity

of the function, is finite, luhen no point of the boundary of the area is an

essentia I singula rity.

By Corollary II. of § 37, the number of distinct zeros in the limited area

is finite, and, by the foregoing theorem, the multiplicity of each is finite;
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hence, when account is taken of their respective multiplicities, the total

number of zeros is still finite.

The result is, of course, a known result for a pol5niomial in the variables

;

but the functions in the enunciation are not restricted to be of the type of

polynomials.

Note. It is important to notice, both for Theorem II. and for its Corol-

lary I., that the zero is an ordinary point of the function under consideration :

the implication therefore is that the zero is a definite zero and that in the

immediate vicinity of the point the function can be represented in the form

P{z - a) or -P (-) , the function P(a — a) or P f—
j
being always a definite

zero.

Instances do occur for which this condition is not satisfied. The point

may not be an ordinary point, and the zero value may be an indeterminate

zero ; or zero may be only one of a set of distinct values though everywhere

in the vicinity the function is regular. Thus the analysis of § 13 shews that

z = a is a point where the function sn has any number of zero values and

any number of infinite values, and there is no indication that there are not

also other values at the point. In such a case the preceding proposition does

not apply ; there may be no limit to the order of multiplicity of the zero, and

we certainly cannot infer that any finite integer m can be obtained such that

(z - a)-"*
(f)

(z)

is finite at the point. Such a point is (§§ 32, 33) an essential singularity of

the function.

39. Theorem III. A multiple zero of a function is a zero of its

derivative ; and the midtiplicity for the derivative is less or is greater by

unity according as the zero is not or is at infinity.

If a be a point in the finite part of the plane which is a zero of /(^)

of multiplicity n, we have

f{z) = {z-arcj>(z),

and therefore /' (z) = (^ - «)"-i
{ncf) (z) + (z - a) <^' (z)].

The coefficient of (z — a)"~^ is holomorphic in the immediate vicinity of a and

does not vanish for a ; hence a is a zero for /' (z) of decreased nmltiplicity

n - 1.

If ^^ = 00 be a zero oi' f(z) of multiplicity r, then

f(z) = Z-r<f>(l
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where <f>[-] is holomorphic for very large values of z and does not vanish at

infinity. Therefore

The coefficient of 2"''"' is holomorphic for very large values of 2, and does

not vanish at infinity; hence 2r= 00 is a zero of/' (2;) of increased multiplicity

r + 1.

Corollari/ I. If a function be finite at infinity, then 5 = x is a zero of the

first derivative of multiplicity at least two.

Corollari/ II. If a be a finite zero oi f{z) of multiplicity ??, we have

f{z) z-a (}>{z)'

Now a is not a zero of 6 (z); and therefore ^ . is finite, continuous, uniform
<f>{z)

and monogenic in the immediate vicinity of a. Hence, taking the integral

of both members of the equation round a circle of centre a and of radius

so small as to include no infinity and no zero, other than a, of / (z)—and

therefore no zero of
(f)

(z)—we have, by former propositions,

40. Theorem IV. A function must have an mfinite value for some finite

or infinite value of the variable.

If M be a finite maximum value of the modulus for points in the plane,

then (§ ^2) we have

i/""(«)i<"4#.

where r is the radius of an arbitrary circle of centre a, provided the whole of

the circle is in the region of continuity of the function. But as the function

is uniform, monogenic, finite and continuous everywhere, this radius can be

increased indefinitely ; when this increase takes place, the limit of

i/<")(a)l

'is zero, and therefore/"" {a) vanishes. This is true for all the indices 1,2....

of the derivatives.

Now the function can be represented at any point z in the vicinity of a

by the series

/(a) + {z- a)f' («) 4 ^-^^V" («) + • • • >
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which degenerates, under the present hypothesis, to /(a), so that the function

is everywhere constant. Hence, if a function has not an infinity somewhere

in the plane, it must be a constant.

The given function is not a constant ; and therefore there is no finite

limit to the maximum value of its modulus, that is, the function acquires

an infinite value somewhere in the plane.

Corollary I. A function )nust have a zero value for some finite or

infinite value of the variable.

For the reciprocal of a uniform monogenic analytic function is itself a

uniform monogenic analytic function ; and the foregoing proposition shews

that this reciprocal must have an infinite value for some value of the

variable, which therefore is a zero of the original function.

Corollary II. A function must assume any assigned value at least once.

Corollary III. Every function which is not a mere constant must have

at least one singularity, either accidental or essential. For it must have

an infinite value : if this be a determinate infinity, the point is an accidental

singularity (§ 32) ; if it be an infinity among a set of values at the point, the

point is an essential singularity (§§ 32, 33).

41. Among the infinities of a function, the simplest class is that con-

stituted by its poles or accidental singularities, already defined (§ 32) by the

property that, in the immediate vicinity of su<;h a point, the reciprocal of

the function is regular, the point being an ordinary (zero) point for that

reciprocal.

It follows from this property that, because (§ 37) an ordinary zero of a

uniform function is an isolated point, every pole of a uniform function is also

an isolated point : that is to say, in some non-infinitesimal region round a

pole a, no other pole of the function can occur.

Theorem V. A function, which has a point c for an accidental singularity,

can he expressed in the form
{z-c)-4>{z),

where n is a finite positive integer and ^{z) is a continuous function in the

vicinity of c.

Since c is an accidental singularity of the function f(z), the function -^—^

is regular in the vicinity of c and is zero there (§ 32). Hence, by § 38, there

is a finite limit to the multiplicity of the zero, say ?i (which is a positive

integer), and we have
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where x(^) ^^ nniforni, monogenic and continuous in the vicinity of c and is

not zero there. The reciprocal of -^^ (z), say
<f>

(z), is also uniform, monogenic

and continuous in the vicinity of c, which is an ordinary point for (f){z);

hence we have

f{z) = {z- c)-» cf> (z),

which proves the theorem.

The finite positive integer n measures the multiplicity of the accidental

singularity at c, which is sometimes said to be of multiplicity n or of

order n.

Another analytical expression for f{z) can be derived from that which

has just been obtained. Since c is an ordinary point for 4> {2) and not a zero,

this function can be expanded in a series of ascending, positive, integral

powers of 2 - c, converging in the vicinity of c, in the form

<l,{z) = P{z-c)

= U,, + H,{Z-C)+ ... + Hn-i {Z - C)"-^ + W„ (z - c)" + . .

.

= «o + "1 (^ - c) + ... + "„_i (z - c)"-i + {z- c)" Q{z- c),

where Q {z - c), a series of positive, integral, powers of z — c converging in the

vicinity of c, is a monogenic analytic function of z. Hence we have

^/ X Mo "1 11,i-i .^ ,

^ (^)

=

ii^r + r^ -i)^ + ...+ — + (^ - 0),

the indicated expression ior f{z), valid in the immediate vicinity of c, where

Q{z - c) is uniform, finite, continuous and monogenic.

Corollary. A function, tvhich has z = x for an accidental singularity of

multiplicity n, can be expressed in the form

where <f>[-] is a continuous function for very large values of \

z
|,
and is not

zero ivhen z = <X) . It can also he expressed in the form

a,z'' + a,z"-' + ... + o„_, z-\-qI\

where Q (-) is uniform, finite, continuous and monogenic for very large values

of\z\.

The derivation of the form of the function in the vicinity of an accidental

singularity has been made to depend upon the form of the reciprocal of the

function.

As the accidental singularities of a function are isolated points, there is

only a finite number of them in any limited portion of the plane.
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42. We can deduce a criterion which determines whether a given

singularity of a uniform function f\z) is accidental or essential.

When the point is in the finite part of the plane, say at c, and a finite

positive integer n can be found such that

{z-crf{z)

is not infinite at c, then c is an accidental singularity.

When the point is at infinity and a finite positive integer n can be found

such that

z-f{z)

is not infinite when z= oc , then z—qc is an accidental singularity.

If the condition be not satisfied in the respective cases, the singularity

at the point is essential. But it must not be assumed that the failure of the

limitation to finiteness in the multiplicity of the accidental singularity is

the only source or the complete cause of essential singularity.

Since the association of a single factor with the function is effective in

preventing an infinite value at the point when the condition is satisfied,

it is justifiable to regard the discontinuity of the function at the point

as not essential, and to call the singularity either non-essential or accidental

(§ 32).

43. Theorem VI. The poles of a function, that lie in the finite part

of the plane, are all the poles (of increased multiplicity) of the derivatives of

the function that lie in the finite part of the plane.

Let c be a pole of the function f{z) of multiplicity }) : then, for any point

z in the vicinity of c,

f{z) = (z-crP<f>(z),

where
<f)

(z) is holomorphic in the vicinity of c, and does not vanish for z = c.

We have

/' (2) = (Z- C)-P f (Z) -p{z- C)-^- </) {Z)

= (^ _ c)-P-' {{z - c)
<i>'

(z) - p<}> (z)}

where %(^) is holomorphic in the vicinity of c, and does not vanish for z = c.

Hence c is a pole of/' (z) of multiplicity p + 1. Similarly it can be shewn

to be a pole of/""' (z) of multiplicity p + r.

This proves that all the poles of f(z) in the finite part of the plane are

poles of its derivatives. It remains to prove that a derivative cannot have

a pole which the original function does not also possess.

Let a be a pole of /' (z) of multiplicity m : then, in the vicinity of a,

f'{z) can be expressed in the form
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where ylr{z) is holoniorphic in the vicinity of a anil does not vanish for z = a.

Thus
ylr{z)=f{a) + {z-a)ylr'{a)+...,

ylr (a) '\!r'(a)

and therefore /' (z) = ^:_-y„ +
^^ _ ^^„.-i

+ • • • >

so that, integrating, we have

f(,.= ±(^ ±M^___
•' ^ ' {m -l){z- a)'"-' On -2){z- a)'"-^ "

' *

'

When there is no term in log (z — a) in this expression, f(z) is uniform :

that is, a is a pole o{ f(z). When there is a term in log (z — a), then f{z) is

not uniform.

An exception occurs in the case when m is unity : for then

< ^ — a z '.

the integral of which leads to

f(z) = y{r(a)\og(z-a) + ...,

so thaty'(^) i-*^ 110 longer uniform, contrary to hypothesis. Hence a derivative

cannot have a simple pole in the finite part of the plane ; and so this exception

is excluded.

The theorem is thus proved.

Corollary I. The r^'' derivative of a function cannot have a pole in the

finite part of the plane of multiplicity less than r + 1.

Corollary II. If c be a pole off{z) of any order of multiplicity /i, and

if f^'^ (^) ^^ expressed in theform

{z - c)''+*- {z- c)'*+'-i
'

tJiere are no terms in this expression luith the indices — 1, — 2, ..., — r.

Corollary III. If c be a pole of /(^) of multiplicity /), wo have

f'{z)^ -p
^

<t>'{z)

f{z) z-c (f>{z)'

where (z) is a holoniorphic function that does not vanish for z = c, so that

^—— is a holomorphic function in the vicinity of c. Taking the integral of

round a circle, with c for centre, with radius so small as to exclude all

other poles or zeros of the function f{z), we have

Corollary IV. If a simple closed curve include a number N of zeros

of a uniform function f(z) and a number P of its poles, in both of which
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numbers account is taken of possible multiplicity, and if the curve contain

no essential singularity of the function, then

iTriJ f
^^dz = N-P

the integral being taken round the curve.

f (z)
The only infinities of the function -^ .; / within the curve are the zeros

- f{z)

and the poles of /(^). Round each of these draw a circle of radius so small

as to include it but no other infinity ; then, by Cor. II. § 19, the integral

round the closed curve is the sum of the values when taken round these

circles. By the Corollary II. § 39 and by the preceding Corollary III., the

sum of these values is

= 2n — ^p

= N-P.
It is easy to infer the known theorem that the number of roots of a

polynomial of order n is n, as well as the further result that 2Tr (N—P)
is the variation of the argument oi f{z), when z describes the closed curve

in a positive sense.

Ex. 1. A function f{z) is uniform over an area bounded by a contour ; it has no

essential singularity within that area; and it has no zero and no pole on the contour.

Prove that the change in the argument of f{z), as z makes a complete description of the

contour, is 27r (?i ~p), where n is the number of zeros and p is the number of poles within

the area. (Cauchy.)

Ex. 2. Prove that, if F{2) be holomorphic over an area of simple contour, which con-

tains roots «!, a2,...of multiplicity mj, »i2,...and poles q, Co,...of multiplicity pi,p2,...

respectively of a function f{z) which has no other singularities within the contour, then

-U lF{z)-(^dz=2m,.F{a,.)-2^PrF{Cr),

the integral being taken round the contour.

In particular, if the contour contains a single simple root a and no singularity, then

that root is given by

the integral being taken as before. (Laurent.)

Ex. 3. Discuss the integral in the preceding example when Fiz) — log z, and the origin

is excluded by a small circle of radius p, less than the smallest of the quantities
|
a,.

|
and

] cv I

.

(Goursat.)

44. Theorem VII. //' infinity he a pole of f\z), it is also a pole of

f (z) only when it is a multiple pole of f(z).

Let the multiplicity of the pole for f{z) be ii : then for very laige values

of z we have

f{z) = Zncl^Q,
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where
(f>

is holoiiiorphic for very large values of z and does not vanish at

infinity ; hence

The coefficient of 2"~^ is holomorphic for very large values of z and does not

vanish at infinity ; hence infinity is a pole off'(z) of multiplicity n — 1.

If n be unity, so that infinity is a simple pole of /(^), then it is not a

pole of /'(2); the derivative is then finite at infinity.

45. Theorem VIII. A function, which Jias no singulamty in a finite

part of the plane, and has z — y: for a pole, is a polynomial in z.

Let n, necessarily a finite integer, be the order of multiplicity of the pole

at infinity: then the function /(0) can be expressed in the form

a^z^ + ai^»-' + + an-xz + Q (-) >

where Q\~] is a holomorphic function for very large values of z, and is finite

(or zero) when z is infinite.

Now the first n terms of the series constitute a function which has no

singularities in the finite part of the plane : and f{z) has no singularities

in that part of the plane. Hence Q,\-\ has no singularities in the finite part

of the plane : it is finite for infinite values of z. It thus can never have an

infinite value : and it is therefore merely a constant, say a„. Then

f{z) = a^z'^ + ai^'^-i + + an-iZ + «„,

a poljTiomial of degree equal to the multiplicity of the pole at infinity,

supposed to be the only pole of the function.

The above result may be obtained also in the following manner.

Since z = <X) is a pole of multiplicity n, the limit of z~^^f{z) is not infinite

when 2 = 00 .

Now in any finite part of the plane the function is everywhere finite, so

that we can use the expansion

/(^)=/(0) + ^/"(0)+ +l!/<")(0) + ii,
n\

"'^^^^ ^^'^^i^i^^th'

the integral being taken round a circle of any radius r enclosing the point z

and having its centre at the origin. As the subject of integration is finite

everywhere along the circumference, we have, by Darboux's expression in

(IV.) §15,

t"+i r — z

6—2
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where t is some point on the circumference and \ is a quantity of modulus

not greater than unity.

Let T = re^" ; then

fir)
By definition, the limit of --^ as t (and therefore r) becomes infinitely

large is not infinite; in the same case, the limit of (l— e~"j is unity.

Since
|

X
|

is not greater than unity, the limit of \/r in the same case is zero

;

hence with indefinite increase of r, the limit of R is zero, and so

/(^)=/(0) + ^/'(0)+ +~,/"M0),

shewing as before that f(z) is a polynomial in 2.

46. As the quantity n is necessarily a positive integer*, there are two

distinct classes of functions discriminated by the magnitude of 71.

The first (and the simpler) is that for which n has a finite value. The

function then contains only a finite number of terms, each with a positive

integral index ; it is a polynomial or a rational integral function of z, of

degree n.

The second (and the more extensive, as significant functions) is that

for which n has an infinite value. The point .s = x is not a pole, for then

the function does not satisfy the test of § 42 : it is an essential singularity

of the function, which is expansible in an infinite converging series

of positive integral powers. To functions of this class the general term

transcendental is applied.

The number of zeros of a function of the former class is known : it is

equal to the degree of the function. It has been proved that the zeros of a

transcendental function are isolated points, occurring necessarily in finite

number in any finite part of the region of continuity of the function, no

point on the boundary of the part being an essential singularity; but no

test has been assigned for the determination of the total number of zeros of

a function in an infinite part of the region of continuityf.

Again, when the zeros of a polynomial are given, a product-expression can

at once be obtained that will represent its analytical value. Also we know

* It is utinecessary to consider the zero value of ?i, for the function is then a polynomial of

order zero, that is, it is a constant.

t In connection with the zeros of a transcendental function, as expressed in a Taylor's series,

a paper by Hadamard, Liouville, 4°>'= S6r., t. viii, (1892), pp. 101—186, may be consulted with

advantage.
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that, if a be a zero of any uniform analytic function of multiplicity n, the

function can be represented in the vicinity of a by the expression

(x - a)"
(f)

(z),

where
(f)(2) is holomorphic in the vicinity of a. The other zeros of the

function are zeros of (b(z); this process of modification in the expression

can be continued for successive zeros so long as the number of zeros taken

account of is limited. But when the number of zeros is unlimited, then the

inferred product-expression for the original function is not necessarily a

converging product ; and thus the question of the formal factorisation of a

transcendental function arises.

47. Theorem IX. A function, all the singularities of luJnch are accid-

ental, is a rational meromorphic function.

Since all the singularities are accidental, each must be of finite

multiplicity; and therefore infinity, if an accidental singularity, is of finite

multiplicity. All the other poles are in the finite part of the plane ; they

are isolated points and therefore only finite in number, so that the total

number of distinct poles is finite and each is of finite order. Let them be

«!, a,, , ft/x of orders m^, m^, , m^^ respectively: let w be the order

of the pole at infinity : and let the poles be arranged in the sequence of

decreasing moduli such that
j
a^

|

>
| a^_i |

> >
|
a-i !

.

Then, since infinity is a pole of order in, we have

f(2) = a,nz^ + a,„_,2'«-' + +a,z+f (z),

where fi^) is not infinite for infinite values of z. Now the polynomial

!l ttiZ^ is not infinite for any finite value of z ; hence f (z) is infinite for all

the finite infinities of f{z) and in the same way, that is, the function fo(2)
has tti , , a^ for its poles and it has no other singularities.

Again, since a^ is a finite pole of multiplicity m^, we have

/"«=(.-:>;+ +j^//-W'

where f (z) is not infinite for z = a^ and, as f (z) is not infinite for z = x
,

evidently f (z) is not infinite for z = 00 . Hence the singularities of /, (z) are

merely the poles Oj , a^_i; and these are all its singularities.

Proceeding in this manner for the singularities in succession, we ultimately

reach a function f^i{z) which has only one pole rtj and no other singularity,

so that

/'W =(7^+ ^--s. + ^W.

where g(z) is not infinite for z = ai. But the function f^(z) is infinite only
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for z = ai, and therefore g (z) has no infinity. Hence g(z) is only a constant,

say ko : thus

g (z) = ko.

Combining all these results we have a finite number of finite series to add

together : and the result is that

f(z) = gA^) +9M

where gi{z) is the series /i,-o + «i2+ + a„,2'", and -W is the sum of the

finite number of fractions. Evidently g.^ {z) is the product

{z - a,)'"' {z - ao)'"^ (z- a^y^
;

and g.2 (z) is at most of degree

//ii + nu + + iii^ — 1.

If F{z) denote gj(z)g.^(z) + g2{z), the form of f{z) is

F(z)

that is, f{z) is a rational meromorphic function.

It is evident that, when the function is thus expressed as a rational

fraction, the degree of F{z) is the sum of the multiplicities of all the poles

when infinity is a pole.

Corollary I. A function, all the singularities of ivhich are accidental,

has as many zeros as it has accidental singularities in the plane.

When 2 = 00 is a pole, it follows that, because f{z) can be expressed in

the form
F{z)

the function has as many zeros as F(z), unless one such should be also a zero of

gs (z). But the zeros ofg., (z) are known, and no one of them is a zero of'F{z), on

account of the form of f(z) when it is expressed in partial fractions. Hence

the number of zeros of/(^) is equal to the degree of F(z), that is, it is equal

to the number of poles of f(z).

When ^ = CO is not a pole, two cases are possible
;

(i) the function f(z) may

be finite for ^^ = cc , or (ii) it may be zero for 2- = oo . In the former case, the

number of zeros is, as before, equal to the degi-ee of F(z), that is, it is equal

to the number of infinities.

In the latter case, if the degree of the numerator F {z) be k less than

that of the denominator g. (z), then z = oo is a zero of multiplicity k ; and it

follows that the number of zeros is, equal to the degree of the numerator

together with k, so that their'number is the same as the number of accidental

singularities.
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Corollary II. At the beginning of the proof of the theorem of the

present section, it is proved that a function, all the singularities of which are

accidental, has onlj' a finite number of such singularities.

Hence, by the preceding Corollary, such a function can have only a finite

number of zeros.

If, therefore, the number of zeros of a function be infinite, the function

must have at least one essential singularity.

Corollary III. When a uniform function has no essential singularity,

if the (finite) number of its poles, say Ci, ..., c,n, be vi, no one of them being

at z= CO , and if the number of its zeros, say a-^, ... , a,,,, be also m, no one of

them being at z= x> , then the function is

,-^\\Z — Cr>

except possibly as to a constant factor.

When ir = X is a zero of order n, so that the function has ni — n zeros, say

ai, Oo, ..., in the finite part of the plane, the form of the function is

m - n

n {z - ar)
r = l

.

m '

U {Z- Cr)
r=l

and, when z = x> is a pole of order p, so that' the function has in — p poles,

say Ci, Co, ..., in the finite part of the plane, the form of the function is

m
U{z- a,)
r=l
m-p '

n (Z-Cr)

Corollary IV. All the singularities of rational meromorphic functions

are accidental.

48. Some properties of the simplest functions thus defined may con-

veniently be given here*. We shall begin with polynomials.

(i) Let P{z) denote

a„i2"» + ttm-i^'""' + + a,^ + tto,

where the coefficients a are constants which may be complex ; it is con-

tinuous, for every one of the finite number of terms is continuous ; it

is finite for all finite values of z \ and \P{z')\ tends to become infinite as

' z
I

tends to become infinite.

* For these and other properties, reference may be made to Jordan's Vaurs d'Analyie, t. i,

p. 198.
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Further, a finite value of
|

^
|

can be determined which will make
\
P (z)

\

greater than any assigned finite value, say A. For we have

|P(^)|>ia,„,,||^|"'-|a„,_,||^|—^-|a„,_,||^|'"-2- _ja,!Ul-|ao|

>,U|mj|„
I

] «m-i I I

am-2 I
I «i I I

«0 1]
^'

' 1'
"^' \z\ \z\' \z\^' i^rr

so that, when \2
\

> 1,

\P(z)\>
I

z
I

I

|a,„| - |^(U,„_ii + |a„,,_,| + +
I

a, 1 +
I
aollj .

Now take

c = ,-—,
{I a,n-i

I

+
I
«'m-2 1 + + \a,\ + \ao\ + A];

then \P(z)\>A + \a,n\(\z\-c).

Hence if \z\, already supposed greater than unity, is also greater than c

should c be greater than unity, we have

\P(z)\>A,

for values of z such that
|

^^
| > 1, \z\>c.

(ii) Next, the equation P(z) = always has a root. The quantity

I

P (^)
I

is continuous, is never negative, and tends to become infinite as

I

z
I

tends to become infinite. Hence, if it cannot be zero, there must be

at least one minimum value greater than zero beloAv which it cannot fall.

Denote this value by /x ; and suppose it acquired for the value c of z, so that

iP(c)| = M.

Construct a circle of radius greater than \c\, and take a place c + h lying

within that circle. Then

P(c + h) = P(c)+hP(c) +
+m!^""'^^^'

where the coefficient of h'^ is a^, a quantity diff"erent from zero. As
(hypothetically) P(c) is not zero, the first term and the last term in

P{c + h) do not disappear ; but intervening terms may disappear, and

so we write

P{c + h) = P (c) + brh' + br+J>'-+' + + aji'>\

where r is the lowest index of the powers of h that survive. Now choose h

in such a way that
|
h

\

is small enough to secure the inequality

while at the same time

r {arg. h] + {arg. Br] = {arg. P (c)} + (2n + 1) tt.
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SO that the arguments of B.Ji'' and P {c) differ by an odd multiiik' nf tt.

Hence, if

P(c) = 'P(c)|e'«,

then Brh^ = -\Br}f\e^,

so that P (c) + B,h'=
{

I P (c)
I

-
i

BM
' ] e'\

and therefore
i

^ (c) + BA^
{

= i P (c)
|

-
|
Brh- \

.

Now P(c + h)=P (o) + JfB, + h'-^'B,.+, + ...;

consequently

\P(c + h)\<\P{c)+h'-Br\ +
\
h'-+'Br+,

i

+ . . .

^\P(c)\-\hrBr\ + \hr+^\\Br^,\ + ...

^\P{c)\-\h\r{\Br\-\h\\Br^,\-...].

As
I

Br \
differs from zero, the coefficient of -

|
/i

i**
on the right-hand side is

positive when |A| is quite small ; consequently, for such values of A,

|P(c + /0|<|P(c)|,

that is, the modulus of P(^) in the immediate vicinity of c can be made less

than |P(c) |, contrary to the hypothesis that \P{c)\ is a minimum different

from zero. Thus there cannot be a minimum different from zero, and \ P{z)\

can always be diminished so long as it is different from zero. Hence there

must be a value of z which makes P (z) zero.

It now follows, by the customary argument, that there are m such values,

(iii) Any rational function of z, say w, is of the form

where Q (z) and P (z) are polynomials in z of degrees m and n respectively.

Every zero of Q (z) is a zero of w. Every zero of P (z) is a pole of w.

The place z= oo is a pole of lu if m > n, and it is of order jn — n; it is a zero

of w if m < w, and it is of order ni—n; it is neither if m = n. The number

of poles is equal to the number of zeros, being the greater of the two

integers m and 7i.

Two results, which are of use in one method of estaljlishing some of the special

cases of Abel's theorem concerning integrals of algebraic functions, may be noted.

Let the roots of P(z) be simple, say a,, ..., a„. Let 4 be the coefficient of 2» in P{z).

Then

(a) when ?n, the order of Q{z), is le.ss than n — l,

rlrP'iar)-^'

(/3) when m = n- 1, and /i, is the coefficient of r""' in Q{z),



CHAPTER V.

Transcendental Integral Functions,

49. We now proceed to consider the properties of uniform functions

which have essential singularities.

The simplest instance of the occurrence of such a function has already

been referred to in § 42 ; the function has no singularity except at ^ = x
,

and that value is an essential singularity solely through the failure of the

limitation to finiteness that would render the singularity accidental. The

function is then an integral function of transcendental character ; and it is

analytically represented (§ 26) by G {z\ an infinite series in positive powers of

z, which converges everywhere in the finite part of the plane and acquires

an infinite value at infinity alone.

The preceding investigations shew that uniform functions, all the singu-

larities of which are accidental, are rational functions of the variable—their

character being completely determined by their uniformity and the accidental

nature of their singularities, and that among such functions having the same

accidental singularities the discrimination is made, save as to a constant

factor, by means of their zeros.

Hence the zeros and the accidental singularities of a rational function

determine, save as to a constant factor, an expression of the function which

is valid for the whole plane. A question therefore arises how far the zeros

and the singularities of a transcendental function determine the analytical

expression of the function for the whole plane.

We have to deal with converging products ; it is therefore convenient to state, as for

converging series, the definitions of the terms used. For proofs of the statements,

developments, and applications, as well as the various tests of convergence, the references

which were given at the beginning (p. 21) of Chapter II. may be consulted.

When a series of quantities

«i, «2) «3> ••• y'd inf.

is given, the infinite product

n (i+«,)
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is said to converge when the limit of n„, where

n„=n (! + «,),

as 11 incrciises indefinitely, is a unique finite quantity P difierent from zero. (The la.st

condition, that P should not be zero, is omitted by some writers : as our products arise

through quantities involving z and do not vanish for every value of z, no difficulty

is caused. See also Pringsheim, Math. Ann., t. xxxiii, p. 125.) When, in the same

circumstances, the limit of n„ either is infinite, or is zero, or if finite is not unique

(that is, may be one of several quantities), the infinite product is said to diverge.

The necessary and sufficient conditions that the product should converge are : that II„

is finite and different from zero, "however large n may be ; and that, corresponding to

every finite positive quantity e taken as small as we please, an integer in can be found

such that

for all integers n such th.it n "^m and for every integer r.

When the product

n(H-|«al)
s=o

converges, the product

n (!+?<«)
3=0

also converges ; and it is said to converge absolutely. In an absolutely converging product,

the factors may be arranged in any order without affecting the convergence or the value

of the product. The convergence is sometimes called unconditional. The necessary and

sufficient condition for the absolute convergence of the product is that the series

should converge absolutely.

When the series ?<i, ?/..» %> ••• does not converge absolutely, while the product n (1 +?<,)
S=0

converges, the convergence of the infinite product is called conditional. The tests differ

according as the quantities u are real or complex : we shall not be concerned with

conditionally converging infinite products.

The instances, which we shall have to consider, are those where the quantities u

depend upon a variable (comijlex) quantity z. The convergence is required a,s z varies, the

quantities u being regular functions throughout the region in which z varies. When any

small quantity 8 has been chosen, and a positive integer m can be determined, such

that

for every value of n'^m, for all positive integers r, and for all values of z within the

region, the convergence of the infinite product is said to be uniform within the region.

Convergence of an infinite product may be uniform without being unconditional;

it may be unconditional without being uniform.

When an infinite product converges uniformly and unconditionally within a given

region, then every partial product, which is formed by tivking any number of factors

in the original product, also converges uniformly and unconditionally within that region.

When an infinite product converges uniformly and unconditionally within a regi<}n,

the series constituted by the logarithms of the factors (that is, taking the principal
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logarithms, whose imaginary part is ia, where n'^a'^-jr) also converges uniformly

and unconditionally at all points within the region except the zeros of the factors: and

the logarithmic series can be difterentiated, if the series of the derivatives of the terms in

this logarithmic series itself converges uniformly. In other words, we can (under the

condition stated) take logarithmic derivatives of an infinite product, which converges

imiformly and unconditionally within a region ; and the infinite series is equal to the

logarithmic derivative of the value of the product.

50. We shall consider first how far the discrimination of transcendental

integral functions, which have no infinite value except for ^ = oo , is effected

by means of their zeros*.

Let the zeros a^, a„, a-^, ... be arranged in order of increasing moduli; a

finite number of terms in the series may have the same value so as to allow

for the existence of a multiple zero at any point. After the results stated

in § 46, it will be assumed that the number of zeros is infinite ; that,

subject to limited repetition, they are isolated paints ; and, in the present

chapter, that, as n increases indefinitely, the limit of
|

a„
|
is infinity. And it

will be assumed that
|
aj > 0, so that the origin is temporarily excluded from

the set of zeros.

Let z be any point in the finite part of the plane. Then only a limited

number of the zeros can lie within and on a circle centre the origin and

radius equal to \z\; let these be a^, a.^, ... , ajt-i, and let a^ denote any one of

the other zeros. We proceed to form the infinite product of quantities m,.»

where ii,. denotes

and gr is a rational integral function of z which, being subject to choice, will

be chosen so as to make the infinite product converge everywhere in the

plane. We have

•°g«'=.'''-.ri(|)"'

a series which converges because I 2:
| < |

a,. . Now let

''-1 1 (zY
9r

„^i n \a,./

^ 1 / zV^
then log Ur= — S -

(
—

1 ,

and therefore Ur = e "-»"V"'/.

* The following investigations are based upon the famous memoir by Weierstrass, " Zur

Theorie der eindeutigen analytischen Functioneu," published in 1876: see his Ges. Werke, t. ii,

pp. 77—124.

In connection with the product-expression of a transcendental function, Cayley, "M^moire sur

les fonctions doublement p^riodiques," Liouville, t. x, (1845), pp. 385—420, or Collected Mathe-

matical Papers, vol. i, pp. 150—182, should be consulted.
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Hence U Ur = e
-*'-<- "V "J

^

if the expression on the right-hand side is finite, that is, if the series

1 / 2 \"

converges. Denoting the moduhis of this series by M, we have

CD X 1
; ^

r=k n = s n ar

so that sM< X 2 '

r = k n = s
I
(^r

< s ^
Z_\'

whence, since 1 — — is the smallest of the denominators in terms of the last
a*

I

sum, we have

sMU-
00

I

«• |«

< 2 -
tt/t

I J r=k ^ar\

If, as is not infrequently the case, there be any finite integer s for which

(and therefore for all greater indices) the series

and therefore the series 2
|
a^ |~*, converges, Ave choose s to be that least

r=k

integer. The value o( M then is finite for all finite values of z; the series

1 /2\"» " 1 / 2 \»

2 2 -(-)
r = k n = a ^ KUrJ

converges unconditionally, and therefore

n Ur
T = k

is a product, which converges unconditionally, when
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Moreover, it converges uniformly. We have

l+ l'

n Ur

I

n Vr

\z\'

H^.W
'"''''

-1.

Now the series S
j

r;. converges ; hence when any finite quantity e is

assigned, we can choose an integer I such that, for all integers I" ^ I,

r=l"\ <^r I*'

Denoting by p any positive quantity which is less than
]

a^ I , consider a region

in the ^^-plane given by \z\^ p. Let 8 denote any assigned finite quantity,

however small ; and, after 8 is assigned, choose a quantity e so that

e<Log(l + a),

1-
ai

taking the principal logarithm. Then

i+r

n Ur

n Ur
r=k

V |aj|[ -1<(1 + S)-1<S

shewing that the product converges uniformly for all values of z such that

\z\^p. But I can be taken as large as we please : so that the product

converges uniformly for all finite values of z.

Let the finite product

be associated as a factor with the foregoing infinite converging product. Then

the expression

is an infinite product, converging uniformly and tniconditionally for all finite

values of z, provided the finite integer s he such as to make the series X |ar|~*

converge.
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51. But it may happen that no finite integer s can be found which will

make the series

converge*. We then proceed as follows.

Instead of having the same index s throughout the series, we associate

with every zero Ur an integer mr, chosen so as to make the series

M-(-y
converge. To obtain these integers, we take any series of decreasing real

positive quantities e, e^, Co, ..., such that (i) e is less than unity and (ii) they

form a converging series ; and we choose integers /»r such that

These integers make the foregoing series of moduli converge. For,

neglecting the limited number of terms for which
j

^
j
^ |

a i e, and taking the

first term for rtt such that

'at\

we have for all succeeding terms (rz=k + l, k + 2, ...)

and therefore

Hence, except for the first A: — 1 terms, the sum of which is finite, we have

< — (e + e, + 6.,+ ...),

which is finite because the series e + e, + €«+.. . converges. Hence the series

. = iia,Aa„/
IS a convergmg series.

Just as in the preceding case a special expression was formed to serve as

a typical factor in the infinite product, we now form a similar expression

for the same purpose. Evidentlv

* For instance, there is no finite integer t that can make the infinite series

(log2)-* + (log3)-» + (log4)-'+...

converge. This series is given in illustration by Hermite, Cuurs a lafaculte ilen Sciem-e)i, (4"' ^d.,

1891), p. 86.
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if
I

a;
I

< 1. Forming a function E{x, m) defined by the equation

in j-r

E {x, m) = {\ — cc) e''"^
^

,

- s ^^we have E {x, m) = e
'"^ ^"-+^

^

In the preceding case it was possible to choose the integer m so that

it should be the same for all the factors of the infinite product, which was

ultimately proved to converge. Now, we take x = — and associate rUn as

the corresponding value of m. Hence, if

f(z)=nE(^,mX

where
] ak-i |

<
1

2;
|
<

|

a^
|

, we have

The infinite product represented by/(^) will converge, if the double series in

the exponential be a converging series.

Denoting the double series by S, we have

I'S'I
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for t=l, 2, ..., A — 1 ; their number being finite, their product is finite and

therefore the modified infinite product still converges. We thus have

«=1 \«n

it is an unconditionally converging product.

In the same way as for the simpler case, we prove that the infinite

product converges uniforndy for finite values of z.

Denoting the series in the exponential by g^ (z), so that

"la \ f z

r=ir\aj

we have E (— , 7»J ={\--\ ei',.^)

and therefore the function obtained is

z
G(z)=U 1-

The series gn usually contains only a limited number of terms ; when the

number of terms increases without limit, it is only with indefinite increase

of
j
a„ |, and the series is then a converging series.

Since the product G (z) converges uniformly and unconditionally, no

product constructed from its factors E, say from all but one of them, can

be infinite. The factor

«n J \ an

vanishes for the value z = a„ and only for this value ; hence G (z) vanishes for

z = a-n. It therefore appears that G{z) has the assigned points a,, a^, Og, ...

for its zeros.

Further, take any finite quantity, say p ; and let a,„ be such that

p<\a,n\<\a,n+i.< ....

Then G{z)=U E{^ ,mn] U ( l + f ^ ^-i ^ ^"'^^

But
-m+\ [\ aJ )

The double sum in the index is a series, which converges unconditionally for

values of z such that \z\< p; and therefore it is expressible in the form

P{z, m+ 1), which is a power-series converging absolutely for those values.

I
Hence e-^f^-"") can be expressed in the form

'

1 + viiZ + m^z- + ...,

F. F. 7
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eonverging absolutely for values of z such that \z\< p. Also each of

the finite number of factors E[— , m,J, for ?i = l, ..., m, is expressible in a

series of the form

1 +ni^ + /?2'2''+ .-.,

which converges absolutely for finite values of z and therefore for values of z

such that \z\<p. The product of all these ?i + 1 series is also an absolutely

converging series, of the form

which is an expression for (x{z^ representing it as a holomorphic uniform

function. Clearly we can take p as large as we please without affecting the

foregoing argument.

In the first place, since G {z) is a uniform analytic function which has no

singularity in any finite part of the plane and which clearly is transcendental,

the value ^ = oo is an essential singularity of Q (z).

In the second place, G {z) has no zero other than the assigned zeros. For

let a be a value of z ; and choose m sufficiently large to secure that a lies

within the region of convergence oiP{z, m + l); hence e-^(2.»»+i) is finite for

z = a. No one of the factors

^C-„''"")
(?i= 1, ..., m)

can vanish, if a is not included in the set a-^, a^, ..., a^n- Therefore G could

not vanish for a, proving the statement.

It should be noted that the factors of the infinite product G {z) are the

expressions E. No one of these expressions, for the purposes of the product,

is resoluble into factors that can be distributed and recombined with similarly

obtained factors from other expressions E\ for there is no guarantee that

the product of the factors, when so modified, would converge uniformly and

unconditionally. It is to secure such convergence that the expressions

E have been constructed.

It was assumed, merely for temporary convenience, that the origin was

not a zero of the required function ; there obviously could not be a factor of

exactly the same form as the factors E, if a were the origin.

If, however, the origin were a zero of order X, we should have merely

to associate a factor z^ with the function already consti-ucted.

We thus obtain Weierstrass's theorem :

—

It is possible to construct a transcendental integral function such that it

shall have infinity as its only essential singularity and have the origin (of

multiplicity X), a^, a.^, as, ... as zeros; and such a function is

11 ^(1-- )e^»'^'
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where gn{z) is a rational, integral function of z, the form of which is dependent

upon the laiv of succession of the zeros.

52. But, unlike uniform functions with only accidental singularities, the

function is not unique : there are an unlimited, number of transcendental

integral functions with the same series of zeros and infinity as the sole essential

singulaHti/, a theorem also due to Weierstrass.

For, if Gi (z) and G (z) be two transcendental, integral functions with the

same series of zeros in the same multiplicity, and z= x as their only essential

singularity, then

GA^
G{z)

is a function with no zeros and no infinities in the finite part of the plane.

Denoting it by G2, then

l^dG^

G, dz

is a function which, in the finite part of the plane, has no infinities; and

therefore it can be expanded in the form

C, + 2a_z + SC,z-+...,

a series converging everywhere in the finite part of the plane. Choosing a

constant C^ so that Gn(0) = e^", we have on integration

where g (z) = Co + C^z + C^z- + ...,

and g (z) is finite everywhere in the finite part of the plane. Hence it follows

that, ifg (z) denote any integral function of z which is finite everyiuhere in the

finite part of the plane, and if G{z) he some transcendental integral function

with a given series of zeros and z = cc as its sole essential singularity, all

transcendental integral functions with that series of zeros and z = -jo as the

sole essential singularity are included in the form

G{z)e^<'\

Corollary I. A function which has no zeros in the finite part of the

plane, no accidental singularities, and z = <xi for its sole essential singularity,

is necessarily of tJie form

ivhere g {z) is an integral function of z finite everywhere in the finite part

of the plane.

Corollary II. Every transcendental function, which has the same zeros

in the same multiplicity as a polynomial A {z)—the number, therefore, being

necessarily finite—,tuhich has no accidental singularities, and has z= 00 for its

sole essential singularity, can be expressed in the form

A (z)e'J^'K

7—2
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Corollary III. Every function, which has an assigned set of zeros

and an assigned set of poles, and has z = co for its sole essential singularity^

is of the form

ffpW '

luhere the zeros of Go (z) are the assigned zeros and the zeros of Gp {z) are the

assigned poles.

For if Gp(z) be any transcendental integral function, constructed as in

the proposition, which has as its zeros the poles of the required function in

the assigned multiplicity, the most general form of that function is

Gj,{z)e^^^\

where h (z) is integral. Hence, if the most general form of function which

has those zeros for its poles be denoted by/(^),

f(z)G,(^)e'^^^^

is a function with no poles, with infinity as its sole essential singularity, and

with the assigned series of zeros. But if Go (z) be any transcendental integral

function with the assigned zeros as its zeros, the most general form of function

with those zeros is

Go{z)e<'^'>;

IZ)and so f{z) Gp (z) e^ <^' = Go {z) e^

whence /(^) = -^x e^'"',

in which g (2) denotes g (z) — h (z).

If the number of zeros be finite, we evidently may take Go(z) as the

polynomial in z with those zeros as its only zeros.

If the number of poles be finite, we evidently may take Gp{z) as the

polynomial in z with those poles as its only zeros.

And, lastly, if a function has a finite number of zeros, a finite number
of accidental singularities, and ^^ = oc as its sole essential singularity, it can

be expressed in the form

where P and Q are polynomials. This is valid, even though the number of

assigned zeros be not the same as the number of assigned poles; the sole

effect of the inequality of these numbers is to complicate the character of the

essential singularity at infinity.

53. It follows from what has been proved that any uniform function,

having z = 00 for its sole essential singularity and any number of assigned
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zeros, can be expressed as a product of expressions <tf the form

1 _ i-^ e£/„(^i.

Such a quantity is called* a primary factor of the function.

It has also been proved that :

—

(i) If there be no zero a„, the primary factor has the form

(ii) The exponential index gn{z) maybe zero for individual primary

factors, though the number of such factors must, at the utmost,

be finite f.

(iii) The factor takes the form z when the origin is a zero.

Hence we have the theorem, due to Weierstrass :

—

Every uniform integral function of z can he expressed as a product of

primary factors, each of the form

(Ar^ + Oe^*",

vjJiere g {z) is an appropriate polynom,ial in z vanishing with z, and luhere k, I

are constants. In particular factors, g (z) may vanish ; and either k or I, but

not both k and I, may vanish with or ivithout a non-vanishing exponential

index g{z).

54. It thus appears that an essential distinction between transcendental

integral functions is constituted by the aggregate of their zeros : and we may

conveniently consider that all such functions are substantially the same when

they have the same zeros.

There are a few very simple sets of functions, thus discriminated by their

zeros : of each set only one member will be given, and the factor e^*^', which

makes the variation among the members of the same set, will be neglected

for the present. Moreover,, it will be assumed that the zeros are isolated

points.

I. There may be a finite number of zeros; the simplest function is then

a polynomial.

II. There may be a singly-infinite set of zeros. Various functions will

be obtained, according to the law of distribution of the zeros.

Thus let them be distributed according to a law of simple arithmetic

progression along a given line. If a be a zero, ca a quantit}' such that - (o
,

is the distance between two zeros and arg. to is the inclination of the line,

we have
a + mco,

* Weierstrass's term is Prim/unction ; see Get. Werke, t. ii, p. 91.

t Unless the class (§ 59) be zero, when the index is zero for all the factors.
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for integer values of m from — oo to + oo , as the expression of the set of

the zeros. Without loss of generality, we may take a at the origin—this

is merely a change of origin of coordinates—and the origin is then a

simple zero: the zeros are given by mo), for integer values of m from

— X) to + 00 .

Now S— =- S - is a diveriring series; but an integers—the lowest
mco CO m ^ '^

value is s = 2—can be found for which the series 2{— ) converges uncon-

ditionally. Taking 5=2, we have

q,niz)= - - - =
,

so that the primary factor of the present function is

and therefore, by § 52, the product

- ' z

converges uniformly and unconditionally for all finite values of z.

The term corresponding to m = is to be omitted from the product ; and

it is unnecessary to assume that the numerical value of the positive infinity

for m is the same as that of the negative infinity for m. If, however, the

latter assumption be adopted, the expression can be changed into the ordinary

product-expression for a sine, by combining the primary factors due to values

of m that are equal and opposite. In any case, we have

, . W . TTZ
f{z) = - sni — .

This example is sufficient to shew the importance of the exponential term in the

primary factor. If the product be formed exactly as for a polynomial, then the function is

>»=P f z\
2 n (

1

in the limit when both f and q are infinite. But this is known* to be

(-' r sm- .

Another illustration is afforded by (iauss's n-function, which is the limit when k is

infinite of

12-3 k
^.,

{z+l){z+2)......{z + k) '

* Hobson's Trigonometry, § 287.
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This is transformed by Gauss* into the reciproavl of the expression

o--)i,{('-4)(,^)"'}.

thatis,of (1+.) n {(n-^)e--'*"^(™"^.)|,

the primary factors of which have the same characteristic form as in the preceding

investigation, though not the sjime Hteral form. This is jissociatcd with the (ianuna

Function t.

It is chiefly for convenience that the index of the exponential part of the primary
3-1 I / z\"'

factor is taken, in $ 50, in the form 2 - (
—

) . With equal eft'ectiveuess it may l>e
^

n=i n \aj

taken in the form 2 - b,. „2" provided the series
»=i n •"

2 2 I- (ir ,.-«,•"") 2"!
r=fcn=lU ' J

converges uniformly and unconditionally.

Ex: 1. Prove that each of the products

for 771= + 1, ±3, ±5, to infinity, the term for n = being excluded from the latter

product, converges uniformly and unconditionally, and that each of them is equal to

cos^. (Hermite and Weyr.)

Ex. 2. Prove that, if the zeros of a transcendental integral function be given by the

series

0, ±<o, ±4(u, ±9a), to infinity,

the simplest of the set of functions thereby determined can be expressed in the form

Ex. 3. Construct the set of transcendental integral functions which have in common

the series of zeros determined by the law m2a)i + 2??io)2 4-a)3 for all integral values of m
between - x and +x ; and express the simplest of the set in terms of circular functions.

Ex. 4. A one-valued analytical function satisfies the equation

f{x)=-xf(ax),

where \a\j^l; it has a simple zero at each of the points t= «"'(/h = 0, ±l,...)and no

other zero, and it is finite for all values of x which arc neither zero nor infinite. Shew

that it has essential singularities at x=0, j;=x ; and resolve it into primary factors.

(Math. Trip., Part II., 1898.)

* Geg. Werke, t. ill, p. 14.5; the example is quoted in this connection by Weierstraws, Get.

Werke, t. ii, p. 15.

t On the theory of the Gamma Function, a paper by Barnes, Messenger of Mathematia, t. xxix,

(1900), pp. 64—128, may be consulted. K^-ferences to later memoirs on the subject are to be found

in Whittaker and Watson's Modern Analynig {'Iwi ed.).
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Ex. 5. Three straight Hues are drawn through a point equally inclined to one

another ; and by means of three infinite series of lines, respectively parallel to these three

lines, the plane is divided into an infinite number of equilateral triangles. Construct an

integral uniform function which vanishes at the centre of each of the triangles.

(Math. Trip., Part 11. , 1894.)

Ex. 6. Take a series of concentric circles

af-^'if-^n (71=1,2,3,...).

in the plane ; and four common radii

5 = 0, 5= ^7r, 5=7r, e= %iz.

Construct a function which shall vanish at every one of these radial points on the

circumferences : and express it by means of circular functions.

55. The law of distribution of the zeros, next in importance and sub-

stantially next in point of simplicity, is that in which the zeros form a

doubly-infinite double arithmetic progression, the points being the oo ^

intersections of one infinite .system of equidistant parallel straight lines

with another infinite system of equidistant parallel straight lines.

The origin may, without loss of generality, be taken as one of the zeros.

If 0) be the coordinate of the nearest zero along the line of one system

passing through the origin, and a! be the coordinate of the nearest zero along

the line of the other system passing through the origin, then the complete

series of zeros is given by
11 = inw -H m'o)',

for all integral values of in and all integral values of m between — oo and

-f 00 . The system of points may be regarded as doubly-periodic, having o)

and G)' for periods.

It must be assumed that the two systems of lines intersect. Other-

wise, ft) and o)' would have the same argument, and their ratio would be a

real quantity, say a ; and then

n~ = ?H 4- m a.
0)

If a be commensurable, let - denote its value, where p and q are positive

integers having no common factor ; also let - be expressed as a continued

fraction, and let —, denote the convergent next before the last (which, of

course, is -
) . Then

^=J>
pq-pq=±l;

and therefore — = - = + (n'o)' — qco) = co",

p q -''
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that is, o)' and w are integral multiples of a single period w" \ and the

apparently double system of points would be singly-periodic.

When a is incommensurable, the number of pairs of integers for which

m-^in'a may be made less than any assigned small quantity 8 is infinite;

and then the functiou would have an unlimited number of zeros in any

assigned small region round the origin. This would make the origin an

essential singularity instead of, as required, an ordinary point of the tran-

scendental integral function. Hence the ratio of the quantities ta and (a' is

not real.

56. For the construction of the primary foctor, it is necessary to render

the series

converging, by appropriate choice of integers Sm,m'' It is found to be

possible to choose an integer s to be the same for every term of the series,

corresponding to the simpler case of the general investigation, given in § 50.

As a matter of fact, the series

diverges for s=\ (we have not made any assumption that the positive and

the negative infinities for m are numerically equal, nor similarly as to m')\

the series tends to a finite value for s = 2, but the value depends upon the

relative values of the infinities for m and m ; and s = 3 is the lowest integi-al

value for which, as for all greater values, the series converges uncon-

ditionally.

There are various ways of proving the unconditional convergence of the

series Sn-*^ when /i > 2 : the following proof is based upon a general method

due to Eisenstein*.

jre = oo n = ao

First, the series S S (v/i- + ?i-)~'* converges unconditionally, if /i > 1.

m=-co «=-Q0

Let the whole series be arranged in partial series : for this purpose, we

choose integers k and I, and include in each such partial series all the terms

which satisfy the inequalities
2* < m ^ 2*+',

2' < n ^ 2'+',

so that the number of values of ?« is 2'-' and the number of values of n is 2'.

Then, \{ k -\-1 = 2k, we have

2-" < 2-'+' < 2'* + 2'^ < m- + n-,

so that each term in the partial series ^ ^^.m
•

'^^^^ number of terms in the

* Crelle, t. xxxv, (1847), p. 161. A geometrical exposition is Riven by Halphen, Traite des

fonctions elliptiques, t. i, pp. 358—362; and another by Goursat, Coura d'Analyse Math^matique,

t. ii, § 324.
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partial series is 2* . 2', that is, 2=^ : so that the sum of the terras in the

partial series is

Expressing the latter in the form

1 1_
2*1^^ • 2^ (fl^)

'

and taking the upper limit of k and I to be j), ultimately to be made infinite,

we have the sum of all the partial series

;i,
;> 1 1

^
;t=o ^=0 2*'^' • 2^'^-^'

1 _ 2-(M-i)

which, when p = oo
, is a finite quantity if //. > 1.

Next, let 6) = a + jBi, &)' = 7 + hi, so that

n = mw -\- nw = 7tm + ny + i (ni0 + n8)
;

hence, if 6 = ma + ny, </> = m^ + nB,

we have \n\^= 0- + (fi-.

Now take integers 7' and 5 such that

r<^<r+l, 5<(/)<s+l.

The number of terms H satisfying these conditions is definitely finite and is

independent of in and n. For since

m {aS — ^y) = 68 — <^y,

n(a8-/3y)=-e/3+(f>a,

and aB — 0y does not vanish because m' /(o is not purely real, the number of

values of in is the integral part of

(r+l ) B-sy
aB — ^y

less the integral part of

rB - (s + l)7

aB — ^y

that is, it is the integral part of (7 + B)/(aB — /3y), or is greater than it by

unity. Similarly, the number of values of 71 is the integral part of

(a + /3)/(aS-^7),

or is greater than it by unity. Let the product of the two numbers be g ;

then the number of terms H satisfying the inequalities is q.
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Then I.l\n-^ = ^^(0"- + 4>')-i-

^(y^:l;(r-^-6-)-^

which, by the preceding result, is finite when fj,> I. Hence

!i^ (///&) + /n'o)')--''

converges unconditionally when /u, > 1 ; and therefore the least integer s, for

which

S— {yuQ} +nico')~''

converges unconditionally, is 3. But this series converges unconditionally for

any real value of s w^hich is definitely greater than 2.

.

The series 22 (7n<»> + w'w')"- has a finite sum, the value of which depends* u})on

the infinite limits for the summation with regard to m and m'. This dependence is

inconvenient, and it is therefore excluded in view of tlie present purpose.

Ex. Prove in the same manner that the series

22 2(7H,2+ wi2"'^+ +mj)-'',

the multiple summation extending over all integers nii, Wj, , ?«„ between - oo and

+ 0C, converges unconditionally if 2/x>«. (Eisenstein.)

57. Returning now to the construction of the transcendental integral

function the zeros of which are the various points fl, we use the preceding

result in connection with § 50 to form the general primary factor. Since

5=3, we have

^^'^^KliuT

and therefore the primary factor is

Moreover, the origin is a simple zero. Hence, denoting the required function

by o- (z), we have

<T(z) = zU n|(l-^),n^*

as a transcendental integral function which, since the product converges uni-

formly and unconditionally for all finite values of z, exists and has a finite

value everywhere in the finite part of the plane ; the quantity H denotes

mco + m'oi', and the double product is taken for all values of m and of in

between - x and + oo , simultaneous zero values alone being excluded.

This function will be called Weierstrass's o--function ; it is of import-

ance in the theory of doubly-periodic functions which will be discussed in

Chapter XI.

* See a paper by the author, Qiuirt. .fuurn. of Math., vol. xxi, (1H8G). pp. 2<jl
—

'280.
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Ex. If the doubly-infinite series of zeros be the points given by

Q. = 7?i-<i)i + 2mno)2+ n'^03
,

0)1, 0)2, o>3 being complex constants such that Q does not vanish for real values of m and n,

then the series

2 2 Q-*

converges for s= 2 but not for s= l. The primary factor is thus

and the simplest transcendental integral function having the assigned zeros is

The actual i)oints that are the zeros are the intersections of two infinite systems of

parabolas.

58. One other result—of a negative character—will be adduced in this

connection. We have dealt with the case in which the system of zeros is a

singly-infinite arithmetical progi-ession of points along one straight line, and

with the case in which the system of zeros is a doubly-infinite arithmetical

progression of points along two different straight lines. We proceed to prove

that a uniform transcendental integral function cannot exist with a triply-

infinite arithmetical progression of points for zeros.

A triply-infinite arithmetical progression of points would be represented

by all the possible values of

PiHi -I- p.J[l^_ -\r p-ifls

for all possible integer values for p^, p.,, p^ between — x and -f 00 , where no

two of the arguments of the complex constants Hi, Qo, Oj are equal. Let

nr=wr + iwr', (r=l,2, 3);

then, as will be proved (§ 107) in connection with a later proposition, it is

possible*—and possible in an unlimited number of ways—to determine

integers p^, p.^, p^ so that, save as to infinitesimal quantities,

Py
. ^ ^

P2 ^ P-^

all the denominators in which equations differ from zero on account of the

fact that no two arguments of the three quantities Hi, Vl.,, flj are equal. For

each such set of determined integers, the quantit}'

is zero or infinitesimal. If it is zero, then (as in § 107 for periods) the triple

infinitude is really only a double infinitude. If it is infinitesimal, then (as

at the end of § 55) the origin is an essential singularity, contrary to the

< * Jacobi, Ges. Werke, t. ii, p. 27.
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hypothesis that the only essential singularity is for 2 = x . Hence a uniform

transcendental function cannot exist having a triply-infinite arithmetical

succession of zeros.

59. In effecting the formation of a transcendental integi-al function by

means of its primary fiictors, it has been proved that the expre.ssion of the

primary factor depends upon the values of the integers which make

a converging series. Moreover, the primary factors are not unitpie in f(»rm,

because any finite number of terms of the proper form can be added to the

exponential index in

i'-^y

1 ^

the added terms will only the more effectively secure the convergence of the

infinite product. But there is a lower limit to the removal of terms with the

highest exponents from the index of the exponential ; for there are, in general,

least values for the integers Wj, m^, ..., below which these integers cannot be

reduced, if the convergence of the product is to be secured.

The simplest case, in which the exponential must be retained in the

primary factor in order to secure the convergence of the infinite product, is

that discussed in § 50, viz., when the integers m^, m^, ... are equal to one

another. Let 7n denote this common value for a given function, and let

m be the least integer effective for the purpose: the function is then said*

to be of class m, and the condition that it should be of class m is, that the

integer m be the least integer to make the series

n = \

converge, the constants a,i being the zeros of the function.

Thus algebraical polynomials are of class ; the circular functions sin z

and cos z are of class 1 ; Weierstrass's cr-function and the Jacobian elliptic

function sn z are of class 2, and so on : but for no one of these classes do the

functions mentioned constitute the whole of the functions of that class.

60. One or two of the simpler properties of an aggregate of transcendental

integral functions of the same class can easily be obtained.

Let a function f{z), of class n, have a zero of order r at the origin and

have a,, a,, ... for its other zeros, arranged in order of increasing moduli.

Then, by § 50, the function f{z) can be expressed in the form

f{z) = e" '^» z"- n \(l - -) ei'J^'l

,

* The French word is genre; the Italian is tfenere. Laguerre (see references on p. 113)

appears to have been the first to discuss the class of transcendental integral functions.
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where gi(z) denotes the series 2 -
( — ) and G(z) must be properly determined

to secure the equality.

Now consider the series
» 1

,•=1 ai''{ai-z)

for all values of z that lie outside circles round the points a, taken as small

as we please. The sum of the series of the moduli of its terms is

« 1 1

.•=1 \ai\^+'

\'-^

Let d be the least of the quantities 1 , necessarily non-evanescent

because z lies outside the specified circles ; then the sum of the series

1 » 1

which is a converging series since the function is of class n. Hence the

series of moduli converges, and therefore the original series converges.

Moreover, the series S |ai|"~"~^ converges. Denoting by e any real positive

quantity, as small as we please, we can choose an integer m such that

p=ij.

for all integers yu. ^ m and for all positive integers ?•. Accordingly, for the

values of z considered, we have

1--^

€

d'

for all integers fi ^ m, for all positive integers ?', and for all the values of z.

Hence the series converges unconditionally and uniformly within the specified

region of variation of z ; let it be denoted by S (z), so that

CO
Y

^^'^^i=ia/'{ai-z)'
We have

0£).e'(.) + '-Vl 1(1.1 + ,.. + -^—!-
[

a,

= G'(z)+--z^:^ -

z , = iai"(ai-2)

G'{z) + l-z%S(z),
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Each step of this process is reversible in all cases in which the original product

converges. If, therefore, it can be shewn of a function f{z) that •^.
^

- takes

this form, the function is thereby proved to be of chiss ;/,

If there be no zero at the origin, the term - is absent.

If the exponential factor G (z) be a constant so that G' {z) is zero, the

function f{z) is said to be a simple function of class n.

61. There are several criteria, used to determine the class of a function

:

the simplest of them is contained in the following proposition, due to

Laguerre*.

If, as z tends to the value oo , a very great value of \z\ can he found for

tuhich the limit of ^""77^/. where f{z) is a transcendental integral function,

tends uniformly to the value zero, then f{z) is of class n.

Take a circle, centre the origin and of radius R equal to this value of
j ^ ,

;

then, by § 24, II., the integral

1
I

1 /^(0 dt

27rij P/(0 t-z'

taken round the circle, is zero when R becomes indefinitely great. But the

value of the integral is, by the Corollary in § 20,

2iri] «« fit) t-z'^ 'lirii t" fit) t-z^ 'Iiri .Ci j <" fit) t-z'

taken round small circles enclosing the origin, the point z, and the points

ai, which are the infinities of the subject of integration; the origin being

supposed a zero of fit) of multiplicity r. Now

1 i'^'l/ll^ d^^lf'i^)
27rij t" fit) t-z z" fiz)

'

1 /•"».' I f'it) dt _ 1 1

27ri j P fit) t-z~ Ui" Oi-z'

•md
1 P"' I fit) dt ^ <f>iz)_ r

liri] V" fit) t-z 2« 5»+»'

where ^ iz) denotes the polynomial

f/"(0 A d \f'it) r] .— ^"-' if'it) r

Xfit) «P dtXfit) (»-i)!rf<"-M7(0 t

when^ is made zero. Hence

1/'J^)+ V 1. f^>.^=o
z''Jiz) "1 a," (a,- - 2) ^" z"^'

* Comptes Rendus, t. xciv, (1882), p. 636 ; G-luvres Completes, t. i, p. 172.
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and therefore

which, by § 60, shews that f(z) is of class n.

Corollary. The product of any finite number of functions of the same

class n is a function of class not higher than n ; and the class of the product

of any finite number of functions of different classes is not greater than the

highest class of the component functions.

Note 1. In connection with Weierstrass's theorem in § 52, one remark

may be made as to its influence upon the class of a function ; it will be

sufficiently illustrated by taking e^' sin 2 as an example. Laguerre's test

shews that the class is two, whereas by the test of § 60 the class apparently

is unity. The explanation of the difference is that, in § 60, the zeros of the

generalising factor e^<^' of § 52 are not taken into account. It is true that all

these zeros are at infinity ; but their existence may affect the integer, which

is the least that secures the convergence of the series 2
|
ai\~^~^. Thus the

zeros of the function e'^' sin z are nnr, where m = 0, + 1 , . . . , ± 00 , arising

from sin z : and

ip^, —ip'~,

each occurring p times, where p is an infinite positive integer : the latter

arising from e^^ by regarding it as the limit of

(-^J
when p is an infinite positive integer. In order that the critical series may

converge, it is necessary that, as these new zeros are at infinity, the integer n

should be chosen so as to make

p\(iph-''-'\+p\{- ¥)-""-'

\

vanish. The lowest value of ?i is two ; and therefore the function really is of

class two, agreeing with the result of Laguerre's test.

More generally, consider a function

F(2)=e"^'^f{2),

where f{z) is of class n, and G (z) is itself an integral function. On the

application of Laguerre's test, the limit of

when \z\ increases indefinitely, is the limit of z~'"' G' (z). Thus F(z) is not

of class n, unless G {z) is a polynomial in z of degree ^ n. If G (z) is a

polynomial of degree m>n, then F{z) is of class m. If G{z) is a transcen-

dental integral function, F{z) is of infinite class.
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Of course, this is not the only manner in which functions of infinite chiss

can arise. Thus consider an integral function having log 2, logo, log 4, ... for

its infinite succession of zeros. It has been noted (p. 95, foot-note) that no finite

integer s exists such that the series S (log n)~* converges ; consequently the

class of the series is infinite*.

Note 2. Borelf introduces the notion of the order of an integral function

as distinct from the class of the function. In the preceding investigation (§ 59),

the class of the equation is taken to be the lowest integer s (if any) for which

the series
V

fj
-s-i— "71

(where Oj, a.,, ••• are the zeros arranged in non-descending magnitude of

moduli) converges absolutel}'. Borel takes the order of the function tu be the

lowest real quantity for which the same series converges absolutely ; so that,

if yu, be the class and /x' the order of a function,

fx' ^ fl < p,' + I.

Thus the class of the product

«=i (V nj

is unity, because 2 is the lowest integer which makes the series ^ n~* converge;
w = l

its order is 1 -i- k, where k is any quantity greater than zero but as small as

we please, because the series 2 n~'~* converges.

The following are the chief references to memoirs discussing the class of functions :

—

Laguerre, Comptes Eendus, t. xciv, (1882), pp. 160—163, pp. 635—638, ib. t. xcv, (1882),

pp. 828—831, ib. t. xcviii, (1884), pp. 79—81+
; Poincare, Bidl. des Sciences Math., t. xi,

(1883), pp. 136—144; Cesaro, Coinptes Bendus, t. xcix, (1884), pp. 26—27 (followed

(p. 27) by a note by Hermite), Giornale di Battaglini, t. xxii, (1884), pp. 191—200
;

Vivanti, Giornale di Battaglini, t. xxii, (1884), pp. 243—261, pp. 378—380, ib. t. xxiii,

(1885), pp. 96—122, ib. t. xxvi, (1888), pp. 303—314; Hermite, Cours d la facuUe

des Sciences (4""* ed., 1891), pp. 91—93; Hadamard, Liovville, 4"« Ser., t. ix. (1893),

pp. 171—214; Borel, Acta Math., t. xx, (1897), pp. 357—396, Lecons sur les fonctions

entiires, (1900), ch. ii.

E.V. 1. Prove that the cla.ss of the functions sin z, 1 +^ sin i is unity.

Ex. 2. The function

i = \

where the quantities c are constants, n is a finite integer, and the functions fi{z) are

polynomials, is of class unity.

* For functions of infinite class, reference may be made to Hlnmenthal's monoKraph

Principes de la theorie des fonctions entieren d'ordre in/mi (1910).

t Lemons snr les fonctions entiires, p. 26.

X All these are included in the first volume of the (Euvres de Laguerre, (1898, Gauthier-

ViUars).

F, F. 8



114 EXAMPLES [61.

Ex. 3. If a simple function be of class ?«, its derivative is also of class n.

Ex. 4. Discuss the conditions under which the sum of two functions, each of class ?i,

is also of class n.

Ex. 5. Examine the following test for the class of a function, due to Poincare.

Let a be any number, no matter how small provided its argument be such that e"^

vanishes when z tends towards infinity. Then f{z) is of class n, if the limit of

vanish with indefinite increase of z.

A possible value of a is 2 Ciaj"""^, where c,- is a constant of modulus unity.

Ex. 6. "\'erify the following test for the class of a function, due to de Sparre*.

Let X be any positive non-infinitesimal quantity ; then the function f{z) is of class n,

if the limit, for ?h = oo , of

|«,,J"~HI«m + l|-|«ml}

be not less than X. Thus sin z is of class unity.

Ex. 7. Let the roots of (9""''=1 be 1, a, a-, , a"; and let f{z) be a function

of class n. Then forming the product

n f{a'z\
s=o

we evidently have an integral function of 2" + i; let it be denoted by i^(2" + i). The roots

of i^(2" + i) = are aia", for i=l, 2, , and s= 0, 1, , n; and therefore, replacing 2""^^

by z, the roots of i^(2)= are ai" + S for t = l, 2,

Since f{z) is of class 11, the series

converges unconditionally. This series is the sum of the first powers of the reciprocals of

the roots of F{z)=0; hence, according to the definition (p. 109), F{z) is of class zero.

It therefore follow's that from a function of any class, a function of class zero with a

modified variable can be deduced. Conversely, by appropriately modifying the variable of

a given function of class zero, it is possible to deduce functions of any required class.

Ex. 8. If all the zeros of the function

-12^
^ ' /, 2 \ ,.=, r aj y

be real, then all the zeros of its derivative are also real. (Witting.)

* Comptt's Rendus, t. cii, (1886), p. 741.



CHAPTER VI.

Functions with a Limited Number of Essential Singularities.

62. Some indications regarding the character of a function at an

essential singularity have already been given. Thus, though the function

is regular in the vicinity of such a point a, it may, like sn (1/^) at the origin,

have a zero of unlimited multiplicity or an infinity of unlimited multiplicity

at the point ; and in either case the point is such that there is no foctor of

the form {z — a)^, which can be associated with the function so as to make the

point an ordinary point for the modified function. Moreover, even when the

path of approach to the essential singularity is specified, the value acquired

may not be definite : thus, as z approaches the origin along the axis of x,

so that its value may be taken to be 1 -^ (4<mK + x), the value of sn (l/z) is not

definite in the limit when m is made infinite. One characteristic of the

point is the indefiniteness of value of the function at the essential singu-

larity, though in the vicinity the function is uniform.

A brief statement and a proof of this characteristic were given in § 82 ;

the theorem there proved—that a uniform analytical function can assume

any value at an essential singularity—ma}^ also be proved as follows. The

essential singularity will be taken at infinity—a supposition that does not

detract from generality.

Let f{z) be a function having any number of zeros and any number

of accidental singularities and z = cc for its sole essential singularity; then

it can be expressed in the form

•^^-^ G,(z)
'

where Gi{z) is polynomial or transcendental according as the number of zeros

is finite or infinite, and G.i{z) is polynomial or transcendental according as

the number of accidental singularities is finite or infinite.

If Gn{z) be transcendental, we can omit the generalising factor e^*.

Then/(2) has an infinite number of accidental singularities; each of them

8—2
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in the finite part of the plane is of only finite multiplicity and therefore some

of them must be at infinity. At each such point, the function G2 {z) vanishes

and G^ {z) does not vanish ; and so/ (2^) has infinite values for z = x>

.

If Go {z) be polynomial and G^ {z) be also polynomial, then the factor e^ '*>

may not be omitted, for its omission would make f{z) a rational function.

Now z= 00 is either an ordinary point or an accidental singularity of

G,{z)IGAz);

hence as g {z) is integral, there are infinite values o{ z which make

G,{z)'
infinite.

If G2{z) be poljmomial and G^iz) be transcendental, the factor e^'^' may
be omitted. Let a,, a^, ... , (in be the roots of G^ {z) : then taking

f(z)= V ^^r +Gn(z),
)• = I

Z — (J,)-

we have Ar = 7t4V^x ,

G, (ar)

a non-vanishing constant ; and so

where Gn (z) is a transcendental integral function. When z = ao , the value

of G^(z)IG2(z) is zero, but Gn{z) is infinite ; hence /(2) has infinite values for

z = ao .

Similarly it may be shewn, as follows, that f(z) has zero values for z= 00 .

In the first of the preceding cases, if Gi (z) be transcendental, so that f(z)
has an infinite number of zeros, then some of them must be at an infinite

distance; f(z) has a zero value for each such point And if G:^(z) be

polynomial, then there are infinite values of z which, not being zeros of

G^iz), make f(z) vanish.

In the second case, when z is made infinite with such an argument as to

make the highest term in g(z) a real negative quantity, then f{z) vanishes

for that infinite value of z.

In the third case, f(z) vanishes for a zero of G^ (z) that is at infinity.

Hence the value of f{z) for ^ = oc is not definite. If, moreover, there

be any value neither zero nor infinity, say C, which f{z) cannot acquire

for z = oc , then

f{z) - C

is a function which cannot be zero at infinity, and therefore all its zeros are

in the finite part of the plane : no one of them is an essential singularity, for
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f{z) has only a single value at any point in the finite part of the plane

;

hence they are finite in number and are isolated points. Let //, {z) be

the polynomial having them for its zeros. The accidental singularities of

f{z)—0 are the accidental singularities of/(^); hence

where, if G^iz) be polynomial, the exponential h{z) must occur, since f{z),

and therefore/ (2') — C, is transcendental. The function

^^^^~f{z)-G H,{zf

evidently has 2: = x for an essential singularity, so that, by the second or

the third case above, it certainly has an infinite value for ^ = x , that is,

f{z) certainly acquires the value (7 for ^^ = x .

Hence the function can acquire any value at an essential singularity.

63. We now proceed to obtain the character of the expression of a

function at a point z which, lying in the region of continuity, is in the

vicinity of an essential singularity h in the finite part of the plane.

With b as centre describe two circles, so that their circumferences and

the whole area between them lie entirely within the region of continuity.

The radius of the inner circle is to be as small as po.ssible consistent with

this condition ; and therefore, as it will be assumed that 6 is the only

singularity in its own immediate vicinity, this radius may be made very

small.

The ordinary point z of the function may be taken as lying within the

circular ring-formed part of the region of continuity. At all such points in

this band, the function is holomorphic ; and therefore, by Laurent's Theorem

{§ 28), it can be expanded in a converging series of positive and negative

integral powers of z — h, in the form

lia + Ui {z — h)-\- iu(z — b)-+...

+ v,(z -b)-' + Vo{z - br- + ...
;

the coefficients Un are determined by the equation

"-^fu^*^"'' ("=0.1,2,...),

the integrals being taken positively round the outer circle, and the coefficients

Vn are determined by the equation

Vn = :^.j{t'-br-^f{t')dt',

the integrals being taken positively round the inner circle.
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The series of positive powers converges everywhere within the outer circle

of centre b, and so (§ 26) it may be denoted by P{z — b); and the function P
may be either polynomial or transcendental.

The series of negative powers converges everywhere without the inner

circle of centre 6 ; and, since b is not an accidental but an essential singularity

of the function, the series of negative powers contains an infinite number of

terms. It may be denoted by G( r], a series converging for all points

in the plane except z=b, and vanishing when z — b= X)

.

Thus f(,) = G(^^^) + F{z- b)

is the analytical representation of the function in the vicinity of its essential

singularity b ; the function G is transcendental and converges everywhere in

the plane outside an infinitesimal circle round b, and the function P, if

transcendental, converges for sufficiently small values of \z — b\.

Had the singularity at b been accidental, the function G would have been

polynomial.

Corollary I. If the function have any essential singularity other than

6, it is an essential singularity of P{z — b) continued outside the outer circle

;

but it is not an essential singularity of Gi ^j, for the latter function

converges everywhere in the plane outside the inner circle.

Corollary II. Suppose the function has no singularity in the plane

except at the point b ; then the outer circle can have its radius made infinite.

In that case, all positive powers except the constant term Uq disappear

:

and even this term survives only in case the function have a finite value at

infinity. The expression for the function is

Vy v..

z-b. iz-b)- '"'

and the transcendental series converges everywhere outside the infinitesimal

circle round b, that is, at every point in the plane for which . j-. remains

less than any assigned quantity, however large. Hence the function can be

represented by

This special result is deduced by Weierstrass from the earlier in-

vestigations*, as follows. If f(z) be such a function with an essential

* Weierstrass, Ges. Werlo', t. ii, p. 102.
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singularity at b, and if we change the independent variable by the

relation

1

then/(2') changes into a function of /, the only essential singularity of which

is at / = X) . It has no other singularity in the plane ; and the form of the

function is thei-efore G(z'), that is, a function having an essential singularity

at b, but no other singulanty in the plane, is

Corollary III. The -most general expression of a function having its

sole essential singularity at b, a point in the finite part of the plane, and any

number of accidental singularities, is

i^.)

where the zeros of the function are the zeros of G^, the accidental singidarities

of the function are the zeros of G^, and the function g in the exponential is a

function which is finite for all finite values of j.

This can be derived in the same way as before ; or it can be deduced

from the corresponding theorem relating to transcendental integral functions,

as above. It would be necessary to construct an integi'al function G.2{z'),

having as its zeros

ct] — 6 ' a„ — b'""'

and then to replace z by r ; and G. is polynomial or transcendental,

according as the number of zeros is finite or infinite.

Similarly we obtain the following result :

—

' Corollary IV. A unifomi function of z, which has its sole essential

singularity at b, a point in the finite part of the plane, and no accidental

singulaHties, can be represented in the form of an infinite product of primary

factors of the form

C4,-)
which converges uniformly and unconditionally everywhere in the plane outside

an infinitesimal circle drawn round the point b.
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The function g( r] is an integral function of . vanishing when

Y
vanishes ; and k and / are constants. In particuhir factors, g i

j j

may vanish ; and either k or I (but not both k and /) may vanish, with or

without a vanishing exponent g f

y )
•

If a,- be any zero, the corresponding primary factor may evidently be

expressed in the form m
Similarly, for a uniform function of z with its sole essential singularity at b

and any number of accidental singularities, the product-form is at once

derivable by applying the result of the present Corollary to the result given

in Corollary III.

These results, combined with the results of Chapter V., give the general

theory of uniform functions with (»nly one essential singularity.

64. We now proceed to the consideration of functions, which have a

limited number of assigned essential singularities.

The theorem of § 63 gives an expression for the function at any point in

the band between the two circles there drawn.

Let c be such a point, which is thus an ordinary point for the function
;

then in the domain of c, the function is expansible in a form Pj (z — c).

This domain may extend as far as an infinitesimal circle round an essential

singularity b, or it ma}^ be limited by a pole d which is nearer to c than b is,

or it may be limited by an essential singularity / which is nearer to c than b

is. In the first case, we form a continuation of the function in a direction

away from b ; in the second case, we continue the function by associating

with the function a factor {z - d)'^ which takes account of the accidental

singularity ; in the third case, we form a continuation of the function

towards /. Taking the continuations for successive domains of points in the

vicinity of/, we can obtain the value of the function for points on two circles

that have / for their ccmnnon centre. Using these values, as in § 63, to

obtain coefficients, we ultimately construct a series of positive and negative

powers converging outside an infinitesimal circle round/. Different express-

ions in different parts of the plane will thus be obtained, each being valid

only in a particular portion : the aggregate of all of them is the analytical

expression of the function for the whole of the region of the plane where the

function exists.

We thus have one mode of representation of the function ; its chief

advantage is that it indicates the form in the vicinity of any point, though it
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gives no suggestion of the possible modification of character elscwlit-rc. This

deficiency renders the representation insufficiently precise and complete ; and

it is therefore necessary to have another mode of representation.

65. Suppose that the function has n essential singularities «,, Uo, ..., o„,

and that it has no other singularity. Let a circle, or any simple closed

curve, be drawn enclosing them all, every point of the boundary as well

as the included area (with the exception of the n singularities*) lying in

the region of continuity of the function.

Let z be any ordinary point in the interior of the circle or curvf; .ind

consider the integral

J t — z

taken round the curve. If we surround z and each of the n singularities by

small circles with the respective points for centres, then the integi-al round

the outer curve is equal to the sum of the values of the integral taken round

the ?H- 1 circles. Thus

'liri'st-z 'l-m^A-z -I'm J aj - ^

and therefore

j_.|./:Wrf(=_L.[.M,,_j_..( AOrf,
27n ' zt — z 27n J ,t — z 27n Jar t — z

The left-hand side of the equation is f(z).

Evaluating the integrals, we have

27rl'a,.t — Z \z — ar)

where Gr is, as before, a transcendental function of vanishing when
z — ar

1
IS zero.

z — a,.

Now, of these functions, G,.( i converges everywhere in the plane
\Z — f/,-/

outside the infinitesimal circle round a,., (say except at cir) : and therefore, as

n is finite,

z — o,.

is a function which converges everywhere in the plane except at tln' // |K'int3

«!, •••, An-

Because z = x is not an essential singularity oi' f{z), the radius ot the

circle in the integral .1 "-— dt may be indefinitely increased. The value
M'/i I J g t Z 9

* This phrase will frequently be used &<* an abbreviation for " the inlinilesimal regions

enclosed bv infinitesimul circles round the singularities."
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of f(t) tends, with unlimited increase of t, to some determinate value C which

is not infinite ; hence, as in § 24, II., Corollary, the value of the integral is

C. We therefore have the result that f{z) can be expressed in the form

G+ i G,

or, absorbing the constant C into the functions G and replacing the limitation

that the function Gy ( ) shall vanish for =0, by the limitation

that, for the same value = 0, it shall be finite, we have the theorem*:

—

2 — Ur

If a given function f{z) have n singularities ttj, .... a-^, all of ivhicli are in

the finite part of the plane and are essential singularities, it can be expressed

in the form

,.= 1 \Z — UrJ

where G,- is a transcendental function, converging everywhere in the plane

outside an infinitesimal circle round ar, and having a determinate finite

1 '*
. , .

value gr for -=0, such that S gr is the finite value of the given func-
z — a^ ,.=i'

tion at infinity.

Corollary. If the given function have a singularity at oo , and n singu-

larities in the finite part of the plane, then the function can be expressed in

the form
n /I

G(z)-+ 1 Gr( - —
,.=1 V^ - a,.

where Gr is a transcendental or a polynomial function, according as a,, is an

essential or an accidental singularity : and so also for G (z), according to the

character of the singularity at infinity.

66. Any uniform function, which has an essential singularity at z = a,

can (§ 63) be expressed in the form

^iA.-a)^^^'-''^'

for points z in the vicinity of a. Suppose that, for points in this vicinity,

the function f(z) has no zero, and that it has no accidental singularity.

Therefore, among such points z, the function

1 df(z)

f(z) dz

* The method of proof, by an integration, is used for brevity : the theorem can be established

by purely algebraical reasoning.
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has no pole, and therefore no singularity except that at a which is essential.

Hence it can be expanded in the form

'(f^J + ^(-«).

where G converges everywhere in the plane except at a, and vanishes for

^ =0. Let— a

\z — a) z — a dz [ \z—a))

where G^ i ) converges everywhere in the plane except at a, and vanishes

for -^ = 0.
z — a

Then c, evidently not an infinite quantity, is an integer. To prove this,

describe a small circle of radius p round a: then taking z — a = pe^\ so that

" = id0, we have
: — a

J_HM dz = P(z-a)dz + cidO + ^ \g, {-^S\ dz,
f(z) dz ' dz \ \z — al)

and therefore

Now jP {z — a)dz is a uniform function : and so is f{z). But a change

of 6 into 6 + 217 does not alter z or any of the functions : thus

and therefore c is an integer.

67. If the function /(^) have essential singularities ai,...,a„ and no

others, then it can be expressed in the form

C+lgr' ^

1 \Z — UrJ

If there be no zeros for this function f{z) anywhere (except of course such

as may enter through the indeterminateness at the essential singularities),

then

_]_ dfiz)

f{z) dz

has n essential singularities «i, ..., «„ and no other singularities of any kind.

Hence it can be expressed in the form

6'+ i Gr( ^ -
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where the function G. vanishes with . Let
z — ar

V^- — arJ z — a-r dz { \Z — ar,

where Gr ( | is a function of the same kind as G,-
\z — Ur/ \z — ayi

Then all the coefficients c,., evidently not infinite quantities, are integers.

For, let a small circle of radius p be drawn round a^: then, \i z — ar = pe^, we

have

Crdz = Grid 6,
z

and -^^ = dP, {z - a,).
z - a.

We proceed as before : the expression for the function in the former

case is changed so that now the sum 2Pg (^r — a,.) for s = 1, ...,?'— 1,

r + 1, ..., n is a uniform function ; there is no other change. In exactly the

same way as before, we shew that every one of the coefficients c,. is an

integer.

Hence it appears that if a given function f{z) have, in the finite part of

the plane, n essential singularities a-^, ..., an and no other singularities, and if

it have no zeros anywhere in the plane, then

f (z) dz i=i z-tti i=i dz [ \z-

where all the coefficients Cj are integers, the functions G converge ever3avhere

in the plane except at the essential singularities, and Gi vanishes for

z - ai

Now, since /(2') has no singularity at co
, we have for very large values of z

/W = «. + v+S + -.

*°d y (,) = __!_ _^_..„

and therefore, for very large values of z,

_Jl_ ^^^ = _ -' - + —' +
y {z) dz Mo z'^ -2*

Thus there is no constant term in ,., -r -

, , and there is no term in -
. But

f{z) dz z

the above expression for it gives C as the constant term, which must therefore
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vanish : and it gives Sc,- as the coefficient of -
, for t^ ]^/

(
) will begin

with - at least ; thus Ic; nmst therefore also vanish.

Hence for a function /{z), which has no singularity at ^ = oo and no

zeros anywhere in the plane, and of which the only singularities are the /*

essential singularities at a^, a.,, .... «„, we have

/ (z) dz i=\z — Ui i=i dz [ \z - (li.

where the coefficients c,- are integers subject to the condition

If (/„ = 00 , so that i = X is an essential singuUirity in addition to a-^, t/j,

... , a„_,, there is a term G{2) instead of (t„ (
—— j ; there is no term, that

corresponds to
—"— , but there may be a constant C. Writing
Z dn

with the condition that G(z) vanishes when z = 0, we then have

M-l
Ci

+ #.ie(.)l+"2|-{G/
^

f(z) dz iZiZ-ai dz^ i=\dz\ '\z-ai

where the coefficients c,- are integers, but are no longer subject to the

condition that their sum vanishes.

Let R* {z) denote the function

U{z- a,)"',

t=i

the product extending over the factors associated with the essential

singularities of f{z) that lie in the finite part of the plane ; thus R* {z)

is a rational meromorphic function. Since

1 dR* {z) ^ ^ a
R* {z) dz iZi z - Ui'

1 df(z) 1 dR*(z) ^ ^ ^ 1^^ f
1 \)

^

we have

f(7) liz~ ~ R*(z) dz ~ ,ri dz

where Gn ( - ) is to be replaced by G (z) if a„ = x
, that is, if .? = x be an

\z - tin'

essential singularity of /(^). Hence, except as to an undetermined constant

factor, we have

f{z) = R*{^)U /''^,

which is therefore an analytical representation of a function witli )t essential
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singularities, no accidental singidaHties, and no zeros : and the rational

function R* (z) becomes zero or oo only at the singularities of f{z).

If ^ = 00 be not an essential singularity, then jR* (^r) for ^ = oo is equal to

unity because Sc, = 0.

^=l

Corollary. It is easy to see, from § 43, that, if the point a,- be only an

accidental singularity, then c,- is a negative integer and Gi f j
is zero : so

that the polar property at ai is determined by the occurrence of a factor

{z — aif< solely in the denominator of the rational meromorphic fuuction R* {z).

And, in general, each of the integral coefficients ci is determined from the

expansion of the function f'{z)-^f{z) in the vicinity of the singularity

with which it is associated.

68. Another form of expression for the function can be obtained from

the preceding; and it is valid even Avhen the function possesses zeros

not absorbed into the essential singularities!.

Consider a function with one essential singularity, a,nd let a be the

point. Suppose that, within a finite circle of centre a (or within a finite

simple curve which encloses a), there are m simple zeros a, /?, . .
.

, \ of the

function f{z)', assume in to be finite, and also assume that there are no

accidental singularities within or on the circle, or at a merely infinitesimal

distance from its circumference. Then, if

f{z) = {z-oi){z-^)...{z-\)F{z),

the function F {z) has a for an essential singularity and has no zeros within

the circle. Hence, for points z within the circle,

F{z) z-a dz{ ^\z-a))

where G^[ )
converges uniformly everywhere in the plane outside a

small circle round a and vanishes with —— , and P{z-a) is an integral

function converging uniformly within the circle ; moreover, c is an integer.

Thus

F{z) = A{z-dre''^^^^e^''''-''''''.

Let {z -ol){z- 13)... {z - >^) = (^ - «)'" |l +^ + • • • + ^J^ly

= (^—r9.{-]r^

t See Guicliard, Theorie den points singuliers essentiels, (Th^se, Gauthier-Villars, Paris, 1883),

especially the first part.



68.] A FUNCTION 127

then f(^) = (^-cir9.{/_^)F{z)

Now of this product-expression for/(z) it should be noted :

—

(i) That m + c is an integer, finite because m and c are finite

:

(ii) The function e ^-~"^ _can be expressed in the form of a series con-

verging uniformly everywhere outside a small circle round a, and proceeding

in powers of in the form

z — a {z - a)-

It has no zero within the circle considered, for F(z) has no zero. Also gr, (
— )

\z-aj

is a polynomial in , begimiing with unity and containing only a finite

number of terms : hence, multiplying the two series together, we have as the

product a series proceeding in powers of in the form

1+ -^ + 7—^,+ --->
z — a [z — ay

which converges uniformly everywhere outside any small circle round a. Let

this series be denoted by H f
j

; it has an essential singularity at a and

its only zeros are the points a, /3, ..., X, because the series multiplied by

a, ( ) has no zeros

:

^ \z-aj

(iii) The function JP (z — a) dz is a series of positive powers of ^ — a,

converging uniformly in the vicinity of a; and therefore ^/^(^-a)'^^ can be

expanded in a series of positive integral powers of ^^ - a, which converges

in the vicinity of a. Let it be denoted by Q{z — a) which, since it is a

factor of F{z), has no zeros within the circle.

Hence we have

fiz) = A(z-aY Q{z -a) H (^^-^^ ,

where fx is an integer; H[ ] is a series that converges every^vhere

outside an infinitesimal circle round a, is equal to unity when _ vanishes,

and has as its zeros the (finite) number of zeros assigned to f(z) within a
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finite circle of centre a ; and Q (z - a) is a, series of positive powers of ^ - a

beginning with unity which converges (but has no zero) within the circle.

The foregoing function f{z) is supposed to have no essential singularity

except at a. If, however, a given function have singularities at points

other than a, then the circle would be taken of radius less than the distance

of a from the nearest essential singularity.

Introducing a new function /j (z) defined by the equation

f(z) = A{z-ayH(-^]Mz),

the value of /j {z) is Q {z — a) within the circle, but it is not determined by

the foregoing analysis for points without the circle. Moreover, as (z — ay-

and also H i ) are finite everywhere except in the immediate vicinity of

the isolated singularity at a, it follows that essential singularities of f(z)

other than a must be essential singularities of /i (z). Also since /i (z) is

Q (z - a) in the immediate vicinity of a, this point is not an essential

singularity of /[ (z).

Thus /i (z) is a function of the same kind as f(z) ; it has all the essential

singularities of f{z) except a, but it has fewer zeros, on account of the m

zeros of fiz) possessed by ^
(

] . The foregoing expression for f(z) is
\Z — Q//

the one referred to at the beginning of the section.

If we choose to absorb into fi{z) the factors e
' ^'-«' and eJ'-P(^-«)«'«^

which occur in

A(z- «.)'"+"
g, (j^) e

^' ^^ e
/ ^ (^- «) <i^

.

an expression that is valid within the circle considered, then we obtain a

result that is otherwise obvious, by taking

f{z) = iz-arg,(^^~^f,{z),

where now g^ [ ) is polynomial in , and has for its zeros all the

zeros within the circle; /x is an integer; and /j (z) is a function of the same

kind as f(z), which now possesses all the essential singularities of f(z), but

its zei-os are fewer by the m zeros that are possessed by g^ (— -
j

.

69. Next, consider a function f(z) with n essential singularities a,,

Wo,..., a,i but without accidental singularities; and let it have any number

of zeros.
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When the zeros are limited in ninaber, they nuiy hv takni to ]u- isolated

points, distinct in position from the essential singularities.

When the zeros are unlimited in number, then at least one of the

singularities must be such that the zeros in infinite number lie within

a circle of finite radius, described round it as centre and containing no other

singularity. For if there be not an infinite number in such a vicinity of

some one point (which must be an essential singularity : the only alternative

is that the zeros should form a continuous aggregate, and then the function

would be zero everywhere), the points are isolated and there must be an

infinite number outside a circle \z\= R, where R is a, finite quantity that

can be made as large as we please, say an infinite number at ^^ = x . If

2 = oo be an essential singularity, the above alternative is satisfied : if not,

the function, as in the preceding alternative, must be zero at all other parts

of the plane. Hence it follows that, if a uniform function have a finite number

of essential singularities and an infinite number of zeros, all but a finite

number of the zeros lie within circles of finite radii described round the

essential singularities as centres ; at least one of the circles contains an

infinite number of the zeros, and some of the circles may contain only a finite

number of them.

We divide the whole plane into regions, each containing one but only one

singularity and containing also the circle round the singularity ; let the

region containing (/,• be denoted by Cj, and let the region Cn be the part of

the plane other than (7,, C.,, ..., C^-i.

If the region C^ contain only a limited number of the zeros, then, by § 68,

we can choose a new function /, (z) such that, if

\Z Hi/

the function /', (z) has rt, for an ordinary point, has no zeros within the region

Cj, and has a.,, a-s, ..., a„ for its essential singularities.

If the region C\ contain an unlimited number of the zeros, then, as in

Corollaries II. and III. of §G8, we construct any transcendental function

(r, (

)
, having a^ for its sole essential singularity and the zeros in C, for

all its zeros. When we introduce a function rfi {z), defined l)y the equation

/w=^'G-^.)-'"«^>-

the function f/i{z) has no zeros in C\ and certainly has a.,, a.^, ..., t/„ i..i

essential singularities; in the absence of the generalising factor of (r,, it can

have «, for an essential singularity. By § 07, the function y, (z), defined by

". ( ' )

7li(z) = (z-a,re ^--'"\
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has no zero and no accidental singularity, and it has «j as its sole essential

singularity : hence, properly choosing c^ and Aj , we may take

so that /i (z) does not have a^ as an essential singularity, but it has all the

remaining singularities of g^ (z), and it has no zeros within Cj.

In either case, we have a new function /j (z) given by

f(z) = (z-a,y^G,(^^^^^yt\(z),

where /a, is an integer. The zeros oif{z) that lie in C\ are the zeros of G,; the

function /i (^) has a^, as, ..., a„ (but not aj for its essential singularities,

and it has the zeros off{z) in the remaining regions for its zeros.

Similarly, considering C.,, we obtain a function /a (2), such that

/(^) = (^-a,)M.G^,(^_^-J./;(4

where fi2 is an integer, G2 is a transcendental function finite everywhere except

at tta and has for its zeros all the zeros of/j (z)—and therefore all the zeros of

f(z)—that lie in Cg. Then/, (^) possesses all the zeros of /(^) in the regions

other than C^ and C,, and has a^, Ui, ..., a„ for its essential singularities.

Proceeding in this manner, we ultimately obtain a function /„ (z) which

has none of the zeros of f{z) in any of the ?i regions Cj, Co, ..., C'n, that is,

has no zeros in the plane, and it has no essential singularities; it has no

accidental singularities, and therefore /"„ (z) is a constant. Hence, when we
n

substitute, and denote by S* (z) the product 11 {z — aiYi, we have

f(z) = S*(z) U gJ ^
i = l \Z — Ui

which is the most general fortn of a function with n essential singularities, no

accidental singularities, and any number of zeros. The function S* (z) is a

rational function of z, usuallt/ meromorphic in form, and it has the essential

singularities of f(z) as its zeros and poles; and the zeros of f{z) are dis-

tributed among the functions G,-.

As however the distribution of the zeros by the regions C and therefore

the functions G (- j ai-e somewhat arbitrary, the above form though general

is not unique.

If any one of the singularities, say a„,, had been accidental and not

essential, then in the corresponding form the function G,n ( )
would be

\z — a^nJ

polynomial and not transcendental.



70.] WITH ESSENTIAL SINGULARITIES 131

70. A function f{z), which has nmj finite ti umber of accidental singu-

larities in addition to n assigned essential singularities and any number of
assigned zeros, can be con.structed as follows.

Let A {z) be the polynomial which has, for its zeros, the accidental

singularities of/ (2), each in its proper multiplicity. Then the product

f(z)A{z)

is a function which has no accidental singularities; its zeros and its essential

singularities are the assigned zero.s and the assigned essential singularities of

f{z), and therefore it is included in the form

18*{z)n\G
,=1 ( \z-a,

where S* {z) is a rational meromorphic function having the points a, , a.,, . .. , a^

for zeros and poles. The form of the function/ (2) is therefore

71. A function f{z), which has an unlimited number of accidental singu-

larities in addition to n assigned essential singularities and any number of
assigned zeros, can be constructed as follows.

Let the accidental singularities be a', j3', .... Construct a function / {z),

having the n essential singularities assigned to f{z), no accidental singu-

larities, and the series a', jS', ... of zeros. It will, by §69, be of the form of a

product of n transcendental functions Gn+i, ..., G^^, which are such that a

function G has for its zeros the zeros of/ (2:) lying within a region of the plane,

divided as in § 69 ; and the function Gn^i is associated with the point a,-.

Thus

f{z) = T*{z)hG,,^,i—^^^
i=i \Z ai

where T* (z) is a rational meromorphic function having its zeros and its

poles, each of finite multiplicity, at the essential singularities off(z).

Because the accidental singularities of f(z) are the same points and have

the same multiplicity as the zeros of f (z), the function f(z) f\ {z) has no

accidental singularities. This new function has all the zeros of f {z), aud
a,, ..., a„ are its essential singularities; moreover, it has no accidental singu-

larities. Hence the product /(^)/i (^) can be represented in the form

5* (^) II Gi ' ^

and therefore we have
z — a,/

8*{z)
G, ( -L"

\z - a,-

as an expression of the function.
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But, as by their distribution through the n selected regions of the plane

in § 69, the zeros can to some extent be arbitrarily^ associated with the

functions (?j, G«, ..., Gn and likewise the accidental singularities can to some

extent be arbitrarily associated with the functions Gn+i, Gn+o, ..., Gon, the

product-expression just obtained, though definite in character and general,

is not unique in the detailed form of the functions which occur.

The fi-action iTiir/^\

is rational, neither >S'* nor T* being transcendental ; it vanishes or becomes

infinite only at the essential singularities Uj, a^, ..., a^, being the product

of factors of the form (z — aiY'i, for i = 1 , 2, . .
.

, w. Let the power {z — aiY^x

be absorbed into the function GijGn+i for each of the n values of i; no

substantial change in the transcendental character of Gi and of G„+i is

thereby caused, and we may therefore use the same symbol to denote the

modified function after the absorption. Hencef the most general product-

expression of a uniform fmotion of z, which has n essential singularities

«!, tta, ..., an, any unlimited number of assigned zeros, and any unlimited

number of assigned accidental singidarities, is

n ^
n — ^.)

•G ' 1

^z — a-i

The resolution of a transcendental function with one essential singularity

into its primary factors, each of which gives only a single zero of the function,

has been obtained in § 63, Corollary IV.

We therefore resolve each of the functions Gj, ..., G.2n into its primary

factors. Each factor of the first n functions will contain one and only one zero

of the original functions f{z) ; and each factor of the second n functions will

contain one and only one of the poles of f{z). The sole essential singularity

of each primary factor is one of the essential singularities off(z). Hence we

have a method of constructing a uniform function with any finite number of

essential singularities as a product of any number of primary factors, each

of which has one of the essential singularities as its sole essential singularity

and either (i) has as its sole zero either one of the zeros or one of the

accidental singularities oi' f{z), so that it is of the form

'-^)e"(^^;
z — c'

or (ii) it has no zero and then it is of the form

t Weierstrass, Ges. Werke, t. ii, p. 121.
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When all the primary factors of the latter form are combined, they constitute

a generalising factor in exactly the same way as in § 52 and in § 63,

Cor. III., except that now the number of essential singularities is not

limited to unity. The product converges uniformly for all finite values of z

that lie outside small circles round the singularities ; and similarly for infinite

values, if the function is regular for ^ = 30 .

Two forms of expression of a function with a limited number of essential

singularities have been obtained : one (§ 65) as a sum, the other (§ 69) as a

product, of functions each of which has only one essential singularity. Inter-

mediate expressions, partly product and partly sum, can be derived, e.g.

expressions of the form

^ «(--)

^ Gn^i ^
But the pure product-expression is the most general, in that it brings into

evidence not merely the n essential singularities but also the zeros and the

accidental singularities, whereas the expression as a sum tacitly requires that

the function shall have no singularities other than the n which are essential.

Note. The formation of the various elements, the aggregate of which is the complete

representation of the function with a limited number of essential singularities, can be

carried out in the same manner as in § 34 ; each element is associated with a particular

domain, the range of the domain is limited by the nearest singularities, and the aggregcite

of the singularities determines the boundary of the region of continuity.

To avoid the practical difficulty of the gradual formation of the region of continuity

by the construction of the successive domains when there is a limited number of

singularities (and also, if desirable to be considered, of branch-points), Fuchs devised

a method which simplifies the process. The basis of the method is an appropriate change

of the independent variable. The result of that change is to divide the plane of the

modified variable f into two portions, one of which, G.,, is finite in area and the other of

which, (j'l, occupies the rest of the plane; and the boundary, common to 6-', and Go, is

a circle of finite radius, called the discriminating circle* of the function. In G., the

modified function is holomorphic; in (?, the function is holomorphic except at j['=co
;

and all the singularities (and the branch-points, if any) lie on the discriminating circle.

The theory is given in Fuchs's memoir " Ueber die Darstellung der Functionen coiu-

plexer Variabeln, ," Crelle, t. Ixxv, (1872), pp. 176—223. It is corrected in details

and is amplified in Crelle, t. cvi, (1890), pp. 1—4, and in Crelle, t. cviii, (1891),

pp. 181—192; see also Nekrassoff", Math. Ann., t. xxxviii, (1891), pp. 82—90, and

Anissimoff", ]ifat/>. Ann., t. xl, (1892), pp. 145—148.

* Fuchs calls it Gicn:kreis.



CHAPTER VII.

Functions with unlimited Essential Singularities, and Expansion

IN Series of Functions.

In addition to the memoirs mentioned below, as being the basis of the present chapter,

there are several others (alluded to at the end of ^ 35) of the greatest importance, dealing

with the general theory of uniform analytic functions and particularly with their analytical

representation by an infinite series of polynomials in the variable. Among these, specially

worthy of note, are :

—

Runge, Acta Math., t. vi, (1885), pp. 2-29—248
;

Hilbert, Gott. Nachr., (1897), pp. 63—70;

Painleve, Comptes Reiidus, t. cxxvi, (1898), pp. 200-202, 318—321, 385—388, 459-461,

lb. t. cxx^^ii, (1899), pp. 1277—1280, ib. t. cxxix, (1899), pp. 27—31 ; see also his

thesis, quoted in i^ 86

;

Phragm^n, Comptes Rendus^ t. cxxviii, (1899), pp. 1434—1437;

Mittag-Leffler, Acta Math., t. xxiii, (1900), pp. 43—62, where references are given

to earlier records of the investigations; also Camb. Phil. Trans., (Stokes Jubilee

volume), t. xviii, (1900), pp. 1—11; and Acta Math., t. xxiv, (.1901), pp. 183—244.

See also Borel, Logons sur la theorie des fonctions, (Gauthier-Villars, Paris, 1898),

ch. vi.

A comprehensive reference may here be given to the Collection de monographies sur la

theorie des fonctions, piihliee sous la direction de M. Emile Borel. The earliest of

them is the monograph by Borel just quoted ; and some of them deal solely with

functions of real variables.

72. It now remains to consider functions which have an infinite number

of essential singularities*. It will, in the first place, be assumed that the

essential singularities are isolated points, that is, that they do not form a

continuous line, however short, and that they do not constitute a continuous

* The results in the present chapter are founded, except where other particular references are

given, upon the researches of Mittag-Leffler and Weierstrass. The most important investigations

of Mittag-Leffler are contained in a series of short notes, constituting the memoir " Sur la theorie

des fonctions uniformes d'une variable," Comptes lieiidus, t. xciv, (1882), pp. 414, 511, 713, 781,

938, 1040, 1105, 1163, t. xcv, (1882), p. 335; and in a memoir " Sur la representation analytique

des fonctions monogenes uniformes," Acta Math., t. iv, (1884), pp. 1—79. The investigations of

Weierstrass referred to are contained in his two memoirs " Ueber einen functionentheoretischen

Satz des Herrn G. Mittag-Leffler," (1880), and " Zur Functionenlehre," (1880), both included in

the volume Ahhandlunfjen aun der Functionenlehre, pp. 53—66, 67—101, 102—104, Gen. Werhe,

t. ii, pp. 189—199, 201—233. A memoir by Hermite, " Sur quelques points de la theorie des

fonctions," ^c(a fioc. Fenn., t. xii, pp. 67—94, Crelle, t. xci, (1881), pp. 54—78, maybe consulted

with great advantage.
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area, however small, in the plane. Since their number is unlimited and

their distance from one another is finite, there must be at least one point in

the plane (it may be at 2^ = oo ) where there is an infinite aggregate of such

points. But no special note need be taken of this fact, for the character of an

essential singularity does not enter into the question at this stage ; the

essential singularity at such a point would merely be of a nature different

from the essential singularity at some other point.

We take, therefore, an infinite series of quantities a,, a^, «;,, ... arranged in

order of increasing moduli, and such that no two are the same : and so we

have infinity as the limit of
j

a„
j

when v = cc .

Let there be an associated series of uniform functions of z such that

i'oY all values of i, the function <?, ( — )
, vanishing with -

, has a,- as
\z — ail z — di

its sole singularity ; the singularity is essential or accidental according as

Gi is transcendental or polynomial. These functions can be constructed

by theorems already proved. Then we have the theorem, due to Mittag-

Leffler:

—

It is ahvays possible to construct a vniform analytic fanction F(z),

having no singularities otJier than «j, a.,, fta, ... and such that for each

determinate value of v, the difference F{z)— G^ ( )
is finite for z = a^

and therefore, in the vicinity of a^,, is expressible in the form P(z-a^).

73. To prove Mittag-Leffler's theorem, we first form subsidiary functions

F^(z), derived from the functions G as follows. The function G^'
"^ ^ ^

\z — a,

converges everywhere in the plane except within an infinitesimal circle round

the point a„; hence within a circle \z^ = p, where p is less than Uy^, it is a

monogenic analytic function of z, and can therefore be expanded in a series

of positive powers of z which converges uniformly within the circlt- z = p.

say

gJ-^) = Iv,z>^,
\z — ayl ^=0

for values of z such that z^^p< a^ . If a^ be zero, there is evidently no

expansion.

Let e be a positive quantity less than 1, and let e,, e,,, €3, ... be arbitrarily

chosen positive decreasing quantities, subject to the single condition that lie

is a converging series, say of sum A : and let e^ be a positive (juantity inter-

mediate between 1 and e. Let g be the greatest value of G'..( ^_ -j| for

points on or within the circumference l2i = eo|«„|; then, because the series

^ v^z'^ is a converging series, we have, by ^ 29,

v^z>' ^g,
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Hence, with values of z satisfying the condition \z\-^e\dv\, we have, for

any value of //«,

ji. - m t J 1-- a)'

since e < eo. Take the smallest integral value of m such that

9 /e^^"'

it will be finite and may be denoted by m^. Thus -sve have

for values of z satisfying the condition \z\^e\a^\.

We now construct a subsidiary function F^ (z) such that, for all values of z,

I 1 \ "'"-7^

\z — a^l „=o

then, for values of
[

2^
|

which are ^ e
|

a„
|

,

Moreover, the function S v^z*^ is finite for all finite values of 5; so that, if we

take

</).,(s) = ^-'"-^. V

then ^^ (2) is zero at infinity, because, when ^ = 00
, G^ ( —

j
is finite by

hypothesis. Evidently ^viz) is infinite only at 2 =a„, and its singularity is

of the same kind as that of Q^, [ ) .

74. Now let c be any point in the plane, which is not one of the points

«'i, ^2, a-i, ... ; it is po.ssible to choose a positive quantity p such that all the

points a lie without the circle \z-c\=p. Let a, be the singularity, which

is the point nearest to the origin satisfying the condition
[

a^
|
>

|
c

j
+ /o ; then,

for points within or on the circle, we have

<e,
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when 5 has the values t-, i/+ 1, i* + 2 Introducing the snlisi( I iarv runctiuiis

F^, {z), we have, for such vahies of z,

\Fs{z)\^e,,

and therefore S F, {z) .^t\F, {z)
'

00

< S 6«

a finite quantity. Also let h denote any assigned finite positive quantity,

however small ; an integer /x' can be chosen so that S e^ < S, for all integers

^ ^ ^', and for all positive integers r. For these same integers, we have

"J FAz) '<'^t\ Fs(z)
, ^ 'S'e,^ 8.

It therefore follows that the series S Fg (z) converges uniformly for all

values of z which satisfy the condition \z - c\^p. Moreover, all the functions

Fi(z), Fziz),..., Fr-i{z) are finite for such values of z, because their singularities

lie without the circle \z — c\= p; and therefore the series

! FA^)
>• = !

converges uniformly for all points z within or on the circle \z — c\= p, where

p is chosen so that all the points a lie without the circle.

The function, represented by the series, can therefore be expanded in the

form P{z — c), in the domain of the point c.

If a„i denote any one of the points a^, do, ••., and we take p' so small that

all the points, other than a,n, lie without the circle

z — «„,
I

= p',

then, since F^iz) is the only one of the functions F which has a singularity

at u,,^, the series

h[Fr(z)},

where S"* implies that F,n{z) is omitted, converges uniformly in the vicinity

of rt, and therefore it can be expressed in the form P (z — «,„). Hence

iFA2)=F.A^) + F(z-a,n)
r = l

^ ' P,{z-a,„),
Z - (I,
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the difference of i?'„, and Gm being absorbed into the series P to make P, . It

thus appears that the series S F^ {z) is a function which has infinities only

at the points a^, cu, ..., and is such that

SFr{z)-Gr,

00

can be expressed in the vicinity of a,^ in the form P {z — «,„). Hence S F^ (z)
r=l

is a function of the required kind.

75. It may be remarked that the function is not unique. As the

positive quantities e were subjected to merely the single condition that they

form a converging series, there is the possibility of wide variation in their

choice : and a difference of choice might easily lead to a difference in the

ultimate expression of the function.

This latitude of ultimate expression is not, however, entirely unlimited.

For, suppose there are two functions F{z) and F {z), enjoying all the assigned

properties. Then as any point c, other than ai,a2, ... , is an ordinary point for

both F (z) and F {z), it is an ordinary point for their difference : and so

F {z) - F {z) = P{z-c)

for points in the immediate vicinity of c. The points a are, however,

singularities for each of the functions: in the vicinity of such a point ctj,

we have

F(z) = G,(^-^yP{z-a,),

F{z) = G^(^^--) + P(z-ad,
\Z — tii I

since the functions are of the required form : hence

F{z)-F{z) = P{z-ai)-P{z-ai\

or the point cti is an ordinary point for the difference of the functions. Hence

every finite point in the plane, whether an ordinary point or a singularity

for each of the functions, is an ordinary point for the difference of the

functions : and therefore that difference is a uniform integral function of z.

It thus appears that, if F (z) be a function with the required properties, then

every other function with those properties is of the forin

F{z)+G{z),

where G (z) is a uniform integral function of z either transcendental or

polynomial.

The converse of this theorem is also true.
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Moreover, the function G(z) can always be expressed in a form S gy{z), if

it be desirable to do so : and therefore it follows that any function with the

assigned characteristics can be expressed in the form

I {FAz)+gAz)\.
v=l

Note. In the preceding investigation, the integers m^ have not been limited to be the

same for each of the functions G. The simplest sets of functions evidently arise when a

common value can be assigned to the integers; they then correspond to Wcierstrass's

converging infinite products (^§ 50, 59—61), arranged according to their class. But as

with the converging infinite products (§ 51), it may happen that no common' value can

be assigned : and then the preceding investigation, in its most general form, estalilishes

the existence of the functions.

It does not, however, indicate that the expression is unique. If, for instance, the

series of functions G be

G„
.V — loge n

'

for n=\, 2,,.,, the function formed by the preceding method is

^
j .r'»« 1 1

_

n=l 1 (loge »)'"« ^" - loge « J
' "

and there is no finite integer which, when assigned as the conmion value of the

integers m„, will make the series converge.

But we may \ise the function

2
n=i n loge n (.^* - log« n)

'

which satisfies all the conditions and is a converging .series*.

76. The following applications, due to Weierstrass, can be made so as

to give a new expression for functions, already considered in Chapter VI.,

having 2^ = oo as their sole essential singularity and an unlimited number

of poles at points a^, a^, —
If the pole at a^ be of multiplicity ??i,-, then (2 - a,)"''/(z) is regular at

the point a,: and can therefore be expressed in the form

i c^{z- ciiY.

Wi -1

Hence, if we take fi (z) = S c^ (2 - a.)-'"'+^
/x =

we have f{z) =fi (z) + P(z- «,•)•

Now deduce from /{(z) a function Fi(z) as in § 73, and let this deduction be

effected for each of the functions/',- (2). Then we know that

iF,(z)
i = \

* This remark was made to me by Prof. A. C. Dixon.
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is a uniform function of ^ having the points a^, cu, ... for poles in the proper

multiplicity and no essential singularity except z = cc . The most general

form of the function therefore is

2 {F,{z) + gr{z)].
r=l

Hence a7ii/ uniform analytical function ivhich has no essential singularity

except at infinity can he expressed as a sum of functions each of ivhich has only

one singularity in the finite part of the plane. The form of Fr {z) is

f.{^)-Gr{z\

where fr{z) is infinite at z = a,., and Gr{2!) is a properly chosen integral

function.

We pass to the case of a function, having a single essential singularity at

c and at no other point, and any number of accidental singularities, by taking

/ = as in § 63, Cor. II. : and so we obtain the theorem :

—

z -c '^

Any uniform function ruhich lias only one essential singularity, say at c,

can he expressed as a sum of uniform functions each of which has only one

singularity different from c.

Evidently the typical summative function F,.(z) for the present case is of

the form

/,(.) + e,.(^-).

77. The results, which have been obtained for functions possessed of

an infinitude of singularities, are valid on the supposition, stated in § 72,

that the limit of a„ with indefinite increase of v is infinite ; the terms

in the sequence ai, a^, ... tend to one definite limiting point which is

2; =00 and, by the substitution z' (z — c) = l, can be made any point c in

the finite part of the plane.

Such a sequence, however, does not necessarily tend to one definite limiting

point : it may, for instance, tend to condensation on a curve, though the

condensation does not imply that all points of the continuous arc of the

curve must be included in the sequence. We shall not enter into the dis-

cussion of the most general case, but shall consider that case in which the

sequence of moduli |ai|, \a^\, ... tends to one definite limiting value so that,

with indefinite increase of v, the limit of \a^\ is finite and equal to R ;

the points a^, a^, ... tend to condense on the circle \z\ = R.

Such a sequence is given by
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for X-= 0, 1,..., n, and ?< = !, 2, ... ad inf. ; and another* by

a„={l+(-l)«c»}e"^'""'^-,

wliore ' is a positive proper fraction.

With each point a,n we associate the point on the circumference of the

circle, .say b,„, to which a,„ is nearest : h-t

I

am - bm
:

= p.n

,

so that p,„ approaches the limit zero with indefinite increase of ni. There

cannot be an infinitude of points itp, such that pp"^ (-), any assigned positive

(juantity ; for then either there would be an infinitude of points a within or

on the circle z = R — ^, or there would be an infinitude of points a within

or on the circle
\

z
\

= R + &, both of which are contrary to the hypothesis

tliat, with indefinite increase of i>, the limit of
|

a^
j
is R. Hence it follows

tliat a finite integer n exists for every assigned positive quantity ©, such that

!
cim - b„ < ©

when 7)1 ^ n.

Then the theorem, which corresponds to Mittag-Leffler's as stated in § 72

and which also is due to him, is as follows :

—

It is alwai/s possible to construct a uniform analytical function of z wliic/i is

definite over the whole plane, except ivithin infinitesimal circles round the points

a and b, and which, in the immediate vicinity of each one of the singularities a,

can be expressed in the form

e. 04^,) + ^ (-«.).

wliere the functions Gj are assigned functions, vanishing with , and finite

everywhere in the plane except at the single points «,• ivitli ivhich they are

respectively associated.

In establishing this theorem, we shall need a positive quantity e less than

unity and a converging series e^, eo, €s, ... of positive quantities, all less than

unity.

Let the expression of the function G„ be

an {Z — (^nf {Z — anf\z — aj

On - bn]

i

the function (?„ can be expressed f in the form

Then, since z - a,, = (z - ba) U _ ,

* The first of these examples is given by Mittag-Leffler. Acta Math., t. iv, p. U ; the second

was stated to me by Prof. Buruside.

t The justification of this statement is to be found in the proposition in § 82.
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for values of z such that

and the coefficients A are given by the equations

^«M= 2
,.=iK-M''(/^-0!(^-i)!'

Now, because G,i is finite everywhere in the plane except at a„, the series

\Cn,i\
,

|Cn,2| \Cn,-A

Zn 5« b»i

has a finite value, say g, for any non-zero value of the positive quantity ^n

then

\Cn,r\ <g^n-

%ti^ia„-6„r(/i-r)!(r— 1)!

|an-t'»!
1

\an-hn\)

Introducing a positive quantity a such that

(l + a)e<l,

we choose f„ so that ^n< o.\ «» — &w
I

;

and then \An,^,\<goL{\ + ay-\

Because (1 + a) e is less than unity, a quantity exists such that

(l+a)e<6'<l.

Then for values of z determined by the condition ——^ < e, we have^
\
Z-hn\

^ , ,

\an-h,> qa d'^^'^

fi = m„ + l z-hn\ l + a\-d
Let the integer lUn be chosen so that

ga ^«»«+i

it will be a finite integer, because ^ < 1. Then

,x = j«„+l .
Z —On

\

We now construct, as in § 73, a subsidiary function Fn {z), defining it by

the equation

^'W=««(A)-^"^"-('F^")'''\z — aj ^=0 \Z-OnJ
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SO that for points z determined by the condition \-^—, "I < e. we have
\
Z-hn\

\F,,{z)\<en.

A function with the required properties is

F{z)= i n,(4
m = l

To prove it, let c be any point in the plane distinct from any of the points

a and h ; we can always find a value of p such that the circle

\z-c\ = p

contains none of the points a and b. Let I be the shortest distance between
this circle and the circle of radius R, on which all the points b lie ; then for

all points 2 within or on the circle \z — c\ = p, -we have

'l2-bm\^ L

Now we have seen that, for any assigned positive quantity 0, there is a
finite integer n such that

!
«m - ^m

i

< @,

when m ^n. Taking = el, we have

z-bm I

when III ^ n, n being the finite integer associated with the positive quantity el

It therefore follows that, for points z within or on the circle z ~c\= p,

\Frn{z),<e,n,

when m is not less than the finite integer n ; hence

S
j
F,„ {z)

:
< e„ + e„+i + e„+, 4- . . .

.

Now the series of positive quantities e,, e., ... converges; and therefore

is a series, which converges uniformly and unconditionally. Each of the

functions F^ {z), F. (z), ... , Fn-i (z) is finite when \z — c\^p; and therefore

i Fm(z)
m = l

is a series which converges uniformly and unconditionally for all values of z

within the circle

\z-c\=p.
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Hence the function represented by the series can be expressed in the form

P (z — c) for all such values of z. The function therefore exists over the

whole plane except at the points a and b.

It may be proved, exactly as in § 74, that, for points z in the immediate

vicinity of a singularity «,„,

Fi2) = G,,^j^yF(z-a,n).

The theorem is thus completely established.

The function thus obtained is not unique, for a wide variation of choice of

the converging series ej + e., + . . . is possible. But, in the same way as in the

corresponding case in § 75, it is proved that, if F(z) be a function with the

required properties, every other fwnction with those properties is of the form,

F{z) + G{z),

where G {z) behaves regularly in the immediate vicinity of every point in the

plane except the points b.

A'./-. If the points a in Mittag-Leffler's theorem are given by

1 +
^J€

« , {k=0, 1, ...,n-\; n=l, 2, ..., oo
),

and if G^i \ J

=
,
sh

\z — a,„/ 2 — «„i
that

2

is a function of the character specified in the theorem.

Discuss the nature of the function defined by

(Math. Trip., Part II., 1899.)

78. The theorem just given regards the function in the light of an

infinite converging series of functions of the variable : it is natural to suppose

that a corresponding theorem holds when the function is expressed as an

infinite converging product. With the same series of singularities as in

§ 77, when the limit of
[
«„

j

with indefinite increase of v is finite and

equal to R, the theorem * is :

—

It is always possible to construct a uniform analytic function, luhich

behaves regularly everyivhere in the plane except tvithin infinitesimal circles

* Mittag-Lelfler, Acta Math., t. iv, p. 32; it may be compared with Weierstrass's theorem

in § 67.
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round the points a and b, and iv/ncli in the vicinity of ant/ one of' the y><u'n^^ (/,,

can be expressed in the form
{z-a^y^e^'^'-"^',

luhere the numbers »,, n.,, ... are any assigned integers.

The proof is similar in details to proofs of other propositions and it will

therefore be given only in outline. We have

«.. _ '^ ^K ^ UK- b^Y
z — a^ z — b^ z — b^ ^Zi \z — byj

'

provided -—y "!<€, the notation being the same as in § 77. Hencc, for

such values of z,

If we denote

by E^ (z), we have E^ (z) = e

Hence, if i^(^) denote the infinite product

n E,{z)

we have F (z) = e

and F(z) is a determinate function provided the double series in the inde.x <if

the exponential converges.

Because n^, is a finite integer, and because

5 1 /a. - bAi^

^=1 fjL\z — bt,

is a converging series, it is possible to choose an integer //<,, so that

1 /a, - 6,
n, S - - -

; I
< V.

where rj^ is any assigned positive quantity. We take a converging serii-s of

positive (juantities 7]„; and then the moduli of the terms in the doubli- series

form a uniformly converging series. The double series itself tlu-n-fon-

converges uniformly; and then the infinite product .F (2) converges uniformly

for points z such that

; a^ — b^\

P F. 1"
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As in § 77, let c be any point in the plane, distinct from any of the

points a and h. We take a finite value of p such that all the points a and h

lie outside the circle \z — c\= p\ and then, for all points within or on this

circle,

\<hn-Ki\ ^ ^
z— < ^' *

I
Z-Om I

when m ^ n, n being the finite integer associated with the positive quantity

el. The product

v=n

is therefore finite, for its modulus is less than

2 ,,,

the product n E^ {z)

is finite, because the circle \z — c\ = p contains none of the points a and b
;

and therefore the function F(z) is finite for all points within or on the circle.

Hence in the vicinity of c, the function can be expanded in the form P(z— c):

and therefore the function is definite everywhere in the plane except within

infinitesimal circles round the points a and b.

The infinite product converges uniformly and unconditionally. As in § 51,

it can be zero only at points which make one of the factors zero and, from the

form of the factors, this can take place only at the points a^ with positive

integers n^. In the vicinity of a^, all the factors of F (z) except E^{z) are

regular; hence F{z)/E^.(z) can be expressed as a function of z — a^ in the

vicinity. But the function has no zeros there, and therefore the form of the

function is

Hence, in the vicinity of a^,, we have

Fiz)=E.(z)eP'^=-"''^

= (z-a,y'.'eP^'-"'-\

on combining the exponential index in E^ (z) with Pi {z — a^). This is the

required property.

Other general theorems will be found in Mittag-Lefiier's memoir just

quoted.

79. The investigations in §§ 72— 75 have led to the construction of a

function with assigned properties. It is important to be able to change, into

the chosen form, the expression of a given function, having an infinite series

of singularities tending to a definite limiting point, say to 2 = 00. It is
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necessary for this purpose to determine (i) the functions Fr{z) so that the

series 2 Fr{z) may converge uniformly and unconditionally, and (ii) the

function G(z).

Let <P(z) be the given function, and let *Sf be a simple contour embracing
the origin and jj, of the singularities, viz., Oj, ...,a^: then, if t be any
j)oint. we have

r^(i)"'^-/'T^](j)"''^-/'""^^(fr-

where I implies an integral taken round a very small circle centre a.

If the origin be one of the points «i,ao, ..., then the first term will be

included in the summation.

Assuming that z is neither the origin nor any one of the points a^, ..., a

we have

/"'*^^(r— *(^).

^ 27ri.' t-z\tj liri] t-z\t

Now }.m^('A dt

Jtti „=iJ

^{t) (zY

27riJ .t-z\tj

~ (m -1) ! [rf«'"-i t - zjt^i,

z'" fd^i^it) t<P(t) n
{m-l)lldt>''-'\ z z- jj,_„

= - * (0. + j<l>'(0) + ... + -(„- _T)f- 1
= - «('-^.

unless z = be a singularity and then there will be no term G{z). Similarlv.

it can be shewn that

\z - aj -Itti t - :
where

\z

10—

i
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and the subtractive sum of m terms is the sum of the first m terms in the

development of G^ in ascending powers of z. Hence

If, for an infinitely large contour, ni can be chosen so that the integral

diminishes indefinitely with increasing contours enclosing successive singu-

larities, then

^{z) = G(z)+ i F,(z).
.'=1

The integer m may be called the critical integer.

If the origin be a singularity, we take

F,{z)=Go'^^

and there is then no term G {z) : hence, including the origin in the summa-

tion, we have

so that if, for this case also, there be some finite value of vi which makes

the integral vanish, then

<t>(z)=i F, {z).

Other expressions can be obtained by choosing for m a value greater than

the critical integer : but it is usually most advantageous to take m equal to

its lowest effective value.

Ex. 1. The .singularities of the function tt cot tts are given by 2= X, for all integer

values of X from — x to + x including zero, so that the origin is a singularity.

The integi'al to be considered is

2771 j t-Z \tj

We take the contour to be a circle of very large radius R chosen .so that the circumference

does not pass infinite.simally near any one of the singularities of Trcot nt at infinity; this

is, of course, possible because there is a finite distance between any two of them. Then,

round the circumference .so taken, n cot irt is never infinite : hence its modulus is never

greater than sonic finite quantity M.

Let t—lle ', so that =id6; then

'=,, TTCOtTT^ (-
27r _/ t-z\tj

de.

1
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and therefi>re \J\i^M pl^J- -

f(jr some point t on the circle. Now, as the circle is very large, we have
|
^-:

!
infinite:

hence \J\ can bo made zero merely by taking m unity.

Thus, for the function tt cot irz, the critical integer is unity.

Hence, by the general theorem", we have the equation

1 „ [it cot irt z ,
TT cot 7rc= — _, -. 2

I
— dt,

2ni J t-z t

the summation extending to all the points X for integer vtilues of X= - x to +x
, and

each integral being taken round a small circle centre X.

..y .» . 1 {W TT cot TTt z
JNow ir, m -—

;

27ri

fW IT cot nt z ,

w(> take ?= X + C, we have

nQOtnt= - + P{^\

where /*(f)= when ^=0; and therefore tlie value of the integral is

1 f^^tf) .

lirij X-z+ C X +

^j_ f {\ + (P(C)\z dc

2nij{\-z+c){x+o r
In the limit when

. ( , is infinitesimal, this integral
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1 A=<» / 1 1\
We thus have 7rcot7r^=-+ 2' (—^+^)>

the summatiou uot including the zero vahie of X.

Ex. >. Obtain, ab initio, the relation

1 _ A=» 1

Ex. 3. Shew that, if

,, 77 cot TTS 1 ^ » 1 1

(Gyldcn, Mittag-Leffler. >

fill'. 4. Obtain an expression, in the form of a sum, for

IT cot vz

^(^) '

where § (2) denotes {\-.) (\-^\ (\-^ (^~~)"-

Ex. 5. Construct a uniform analytical function F {x), which is finite at all finite

points except at the points 0, 1, 2, 3, ..., at which it is infinite in such a way that

F{x) — c^COtirX
is finite at each 'of the points.

(Math. Trip., Part II., 1897.)

80. The results obtained in the present chapter relating to functions

which have an unlimited number of singularities, whether distributed over

the whole plane or distributed over only a finite portion of it, shew that

analytical functions can be represented, not merely as infinite converging

series of powers of the variable, but also as infinite converging series of

functions of the variable. The properties of functions when represented by

series of powers of the variable depended in their proof on the condition that

the series proceeded in powers ; and it is therefore necessary at least to

revise those properties in the case of functions when represented as si?ries

of functions of the variable.

Let there be a series of uniform functions f\ {z), /» {z), ... : then the

aggregate of values of z, for which the series

has a finite value, is the region of continuity of the series. If a positive

(juantity p can be determined such that, for all points z within the circle

z-a\ = p,
X

the series X//(^) converges uniformly*, the series is said to converge
i=l

* In connection with most of the investigations in the remainder of this chapter, Weierstrass's

memoir " Zur FunctiouenJehre '' already quoted (p. 134, note) should be consulted.
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uiiifonnly in the vicinity <)t"(/. If A' be the gi'eatest value ni' p for which this

hi»hls, (hen the ai-ea within the circle

.--«, = n

is called the domain of a: and the series converges unitormly in the vicinitv

of any point in the domain of a.

It will be proved in § 82 that the function, represented by the si-ries of

functions, Ciin be represented by power-series, each such series being equiva-

lent to the function w^ithin the domain of some one point. In order to be

able to obtain all the power-series, it is necessary to distribute the region of

continuity of the function into domains of points where it has a uniform

finite value. We therefore form the domain of a point b in the domain of a

from a knowledge of the singularities of the function, then the domain of

a point c in the domain of b, and so on ; the aggregate of these domains is a

continuous part of the plane which has isolated points and which has one or

several lines for its boundaries. Let this part be denoted by A^.

For most of the functions, which have already been considered, the region

A J, thus obtained, is the complete region of continuity. But examples will

be adduced almost immediately to shew that A^ does not necessarily include

all the region of continuity of the series under consideration. Let a', be a

point not- in A^, within w^hose vicinity the function has a uniform finite

value ; then a second portion ^, can be separated from the whole plane, by

proceeding from a as before from a. The limits of A^ and A.2 may be wholly

<jr partially the same, or may be independent of one another : but no point

within either can belong to the other. If there be points in the region of

continuity which belong to neither A^ nor A.,, then there must be at least

another part of the plane A-^ with properties similar to .4i and A.^. And so

on. The series 2 fi{z) converges uniformly in the vicinity of every point
1=1

within each of the separate portions of its region of continuity.

It was proved that a function represented by a series of powers has a

definite finite derivative at every point lying actually within the circle

of convergence of the series, but that this result cannot be affirmed for a

point on the boundary of the circle of convergence even though the value of

the series itself shoidd be finite at the point, an illustration being provided

by the hypergeometric series at a point on the circumference of its circle of

convergence. It will appear that a function represented by a series of

functions has a definite finite derivative at every point lying actually within

its region of contiiniity, but that the result cannot be affirmed for a point

on the boundary: and an example will be given (§88) in which the derivative

is indefinite.

Again, it has been seen that a function, initially dt^tined by a given power-

series, is, in most cases, represented by difi'erent analytical expressions in
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different parts of the plane, each of the elements being a valid expression of

the function within a certain region. The questions arise whether a given

analytical expression, either a series of powers or a series of functions

:

(i) can represent different functions in the same continuous part of its region

of continuity, (ii) can represent different functions in distinct, that is, non-

continuous, parts of its region of continuity.

81. Consider first a function defined by a given series of powers.

Let there be a region A' in the plane and let the region of continuit}- of

the function, say g (z), have parts common with A'. Then if «o be any point

in one of these common parts, we can express g {2) in the form P(z — Oo) in

the domain of cIq.

As already explained, the function can be continued from the domain of

Uq by a series of elements, so that the whole region of continuity is gradually

covered by domains of successive points ; to find the value in the domain of

any point a, it is sufficient to know any one element, say, the element in the

domain of «o- The function is the same through its region of continuity.

Two distinct cases may occur in the continuations.

First, it may happen that the region of continuity of the function g (z)

extends beyond A'. Then we can obtain elements for points outside A',

their aggregate being a uniform analytical function. The aggregate of

elements then represents within A ' a single analytical function : but as that

function has elements for points without A', the aggregate within A' does not

completely represent the function. Hence :

—

If a function he defined within a continuous region of a plane by an

aggregate of elements in the form of power-series, which are continuations of

one another, the aggregate represents in that part of the plane one {and only

one) analytical function : but if the poiuer-series can be continued beyond the

boundary of the region, the aggregate of elements within the region is not the

complete representation of the analytical function.

This is the more common case, so that examples need not be given.

Secondly, it may happen that the region of continuity of the function does

not extend beyond A' in any direction. There are then no elements of the

function for points outside A' and the function cannot be continued beyond

the boundary of A'. The aggregate of elements is then the complete repre-

sentation of the function and therefore :

—

//' (/ function be defined within, a continuoas region of a plaiie by an

aggregate of elements in the form of power-series, which are continuations of

one another, and if the iwwer-sevies cannot be continued across the boundary

of that region, the aggregate of elements in the region is the complete repre-

sentation of a single uniform monogenic function which exists only for values

of the variable within the region.
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The boundary of the region of rontinuity of the function is, in the latter

case, called the natural liviit of the function*, as it is a line beyond which

the function cannot be continued. Such a line arises for the series

1 + 2^ + -Iz' + 2^" + . . .

.

ill the circle z =\, a remark due to Kroneckci- : other illustrations occui-

in connection with the modular functions, the axis of real variables being

the natural limit, and in connection with the automorphic functions (see

Chaptei- XXII,) when the fundamental circle is the natural limit. A few

examples will be given at the end of the present chapter.

It apiiears tliat Weierstra.ss was the first to announce the existence of natural limits

for analytic functions, Berlin. Monntsber. (1866), p. 617; see also Schwarz, Oes. Werlcc,

t. ii, pp. 240—242, who adduces other illustrations and gives some references; Klein and

Fricke, Vorl. iiher die Theorie der elliptischen Modulfunctionen, t. i, (1890), p. 110. Some

interesting exami)les and discussions of functions, which have the axis of real variables

for a natural limit, are given by Hankel, " Untersuchungen iiber die unendlich oft

o.scillircnden und unstetigen Functionen," }fat/t. Ann., t. xx, (1870), pp. 63—112.

82. Consi<ler next a series of functions f\(z), fn(z), /Kz). ... of the

variable z.

In the first place, let each of them occur in the form of power-series in z,

with (it may be) positive and negative indices, say in the form

Assume that the power-series for the separate functions, as well as the series

s=l

of functions, have a common region of continuity in the vicinity of the origfti

such that, for values of z given by

R<\z\=r<R\

the function-series and each of the power-series converge uniformly. Then

the SU7H
00

2 a,^
s= 1

ha.s a definite finite value, say A^; for tlie values of z considered, the serien

converges : and we have

lf(z) = '^A,z'^.

* Die iiatiirlirhe (heiize, accordinR t<> Oeriuan iiiatheinaticians.
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Let k (lenote any arbitrary positive quantity, taken as small as we please.

In consequence of the uniform convergence of the function-series, it is possible

to choose an integer in, such that

for all integers n ^ iti, and for all values of z such that R < 1\ < r < v., < R\
where i\ — R and R' — 1^ are non-vanishing quantities, no matter how small

they may be assigned ; and therefore for the same range of variables, it is

possible to choose an integer m so that, for all integers n ^ m and for all

finite positive integers p, we have

! 2 fs{zy= ^ fsiz)- s Mz)\
I s=n s=n n+p+1

<\ iMz)+ I fs{z)\
' s= n n +/)+! I

^ ^k -h ^k ^ k.

Owing to the finiteness of the integer jh we have

n+p ,n+p \

so that j2 2 a,Azi- <k,
1^ \.s= n /

for all integers n ^ 7n, and for all positive integers p. . Hence (Corollary, § 29)

:
n+p

I

I

2 a,,^
I

< ki'-'^,

where ' z\ = r; because k, being greater than the upper limit of the modulus
of the above series for all the values of z considered, is greater than the upper
limit of its modulus for values of z such that \z\=r. It therefore follows

that, because /c?-"'* is an arbitrary quantity assigned as small as we please,

and because an integer m can be chosen such that the above inequality holds

for all integers n ^m and for all positive integers p, the series 2 a,,^ converges
s = l

to a unique finite limit. Denote this by ^^.

II -I f.

Let 2 a,^=^/, 2 a,^ = ^/';
« = 1 s = n

then regarding ki\~^ and kr.r>^ as two assigned quantities, as small as we
please (because k can be assigned as small as we please, and ?•,, )\ are finite

non-vanishing magnitudes), the convergence of the series whose sum is ^^
enables us to choose an integer n such that A^' is smaller than each of the

<|uantities /;/,"'* and kr.r*^\ thus

A J' < ki\-'^, A'' < kr.r'^.
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Now consider the series 2^4^^^ for a value of z such that r, < z — v< r.,.

We have

2 ^/> < 2 k-i-'-X<k
--'

,

ami therefore 2 I
J/> < A: ' +A- '

.

Hence the series SA^"z'^ converges. Moreover, each of the power-series

fi(z), ...,/n-i{z) converges uniformly; therefore

"2/;a) = 2^/^^

and the latter series converges unifonnly. The two series 2vl/2'^, 'ZA^"2'^,

can therefore be combined into the series

tA,z^

which accordingly is a converging series.

Finally, we have

2 /; (z) -^A^z^ = 2 y; {z) - 2^1;^'^ - 2.i;>
S=l . 1^ .1=1

= 2y,(^)-2^A^

and therefore

I

if,{z)-%A^z>^[=\ X f,{z)-^A/2'^\

^1 2/«(^)! + 2 .4/^'*

As the assigned (juantity k is at our disposal, we can choo.se it so that the

quantity on the right-hand side is smaller than any assignable magnitude :

consequently, for the values of z under consideration, we have

2/;(^) = 2^^^^.
.y=l M

83. In the .second place, consider the .series of functions /',(->, ./jU),

fsiz), ... more generally. The region of continuity may be .supposed to

consist of one part or of more than one part : let such a ])art be denoted by



156 REGION OF CONTINUITY OF [83.

A, and let F{z) denote the function represented by the series within A, so

that

F{z)=if,{z),
s = l

and assume that within A (though not necessarily at points on its boundary)

the function-series converges uniformly. Let a denote any arbitraril}-

assumed position within A ; each of the functions /« (z) is regular in the

vicinity of a and is expressible in the form of a power-series P^ (z — a)

containing only positive powers of ^^ — a. By the preceding investigation, the

function-series can be represented as a power-series, and we have

F{z)^P(z-a).

In P(z— a), the coefficient of {z — of- is A^,, which is S Ug^, where a^,t is the
.v = l

coefficient of {z — aY in /]. {z)\ accordingly

d'^P{z-ap ^ r ^ c^fsiz)

for all values of fi. Since a is any arbitrarily chosen point in A, it follows

that, for all points within A, we have

d'^_(z)_
I

d^'s(z)

dz>^ ~«=i dzi^

As the function-series % fg {z) converges uniformly, and as f^ {z) is regular in

the vicinity of a, it is easy to see that the series

..=1 dz>^

also converges uniformly ; and therefore the derivatives of the function-series

within the region of continuity are the derivatives of the function the series

represents.

The expression P(z — a) is an Element of the function F {z) : and within

the domain of a, contained in the region A , it represents the function. It can

be used for the continuation of F {z) so long as the domains of successive

points lie within A ; but this restriction is necessary, and the full continuation

of P (z — a) as an element of a power-series is not necessarily limited by

the region A. It is solely in that part of its region of continuity which is

included within A that it represents the function F{z); the boundary of the

region A must not be crossed in forming the continuations of P(z — a).

It therefore appears that a converging series of functions of a variable

can be expressed in the form of series of powers of the variable, which

converge within the parts of the plane where the series of functions

converges uniformly ; but the equivalence of the two expressions is limited
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to such parts of the plant', and cannot be extended beyond the boundary <>t"

the region of continuity of the series of functions.

If the region of continuity of a series of functions consist of several parts

of the plane, then the series of functions can in each part be expressed in

the form of a set of converging series of powers : but the sets of series of

powers are not necessarily the same for the different parts, and they are not

necessarily continuations of one another, regarded as power-series.

Suppose, then, that the region of continuity of a series of functions

F{z)=ifAz)
s=\

consists of several parts A^, Ao, .... Within the part ^i let F(z) be

represented, as above, by a set of power-series. At every point within .^i,

the values of F{z) and of its derivatives are each definite and unique; so

that, at every point which lies in the regions of convergence of two of the

power-series, the values which the two power-series, as the equivalents of F(2)

in their respective regions, furnish for F (2) and for its derivatives must be

the same. Hence the various power-series, which are the equivalents ofF(z)
in the region A^, are continuations of one another: and they are sufficient to

determine a uniform monogenic analytic function, say F^ {2). The functions

F{2) and F^ (z) are equivalent in the region A^ ; and therefore, by § 81, the

series 0/functions represents one and the same function for all points zoithin

one continuous part of its region of continuity. It may (and frequently does)

happen that the region of continuity of the analytical function F^ {z) extends

beyond A^; and then F-^{z) can be continued beyond the boundary of ^j by
a succession of elements. Or it may happen that the region of continuity

of F^{2) is completely bounded by the boundary of A^ ; and then that function

cannot be continued across that boundary. In either case, the equivalence
X

of F^{2) and 2 fs{z) does not extend beyond the boundary of ^,, one

complete and distinct part of the region of continuity of S/«(^): and
.V = 1

therefore, by using the theorem proved in § 81, it follows that:

—

.4 series of functions of a vanable, which converges within a continuous

part of the plane of the variable 2, is either a partial or a complete

representation of a single uniform analytic function of the variable in that

part of the plane.

Further, it has just been proved that the converging series of functions

can, in any of the regions A, be changed into an e(piivalent uniform analytic

function, the equivalence being valid for all points in that region, say

if{2) = F,{z).
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We have seen that every derivative of F^ (z) at any point within A is the

sum of the corresponding derivatives of /« (z), this sum converging uniformly

within A. The equivalence of the analytic function and the series of

functions has not been proved for points on the boundary ; even if they are

equivalent there, the function F^ (z) cannot be proved to have a uniform

finite derivative at every point on the boundary of A, and therefore it cannot
00

be affirmed that X fg{z) has, of necessity, a uniform finite derivative at points

00

on the boundari/ of A, even though the value of S fs{z) he uniform and finite
s = l'

at evert/ point on the boundary*.

Ex. In iUustration of the last inference, regarding the derivative of a function at

a point on the boundary of its region of continuity, consider the series

where 6 is a positive quantity less than unity, and a is a positive quantity which will be

taken to be an odd integer.

For points within and on the circumference of the circle |s| = l, the series converges

uniformly and imconditionally ; and for all points without the circle the series diverges.

It thus defines a function for jjoints within the circle and on the circumference, but not

for points without the circle.

Moreover, for points actually within the circle, the function has a first derivative and

consequently has any number of derivatives. But it cannot be declared to have a

denvative for points on the circle : and it will in fact now be proved that, if a certain

condition be satisfied, the derivative for variations at any point on the circle is not merely

infinite but that the sign of the infinite value depends upon the direction of the variation,

so that the function is not monogenic for the circumference t.

Let 2=e**: then, as the function converges unconditionally for all points along the

circle, we take

f{6)= 2 6«e«"*',
7!.=

where 5 is a real variable. Hence

f{e+<i>)-f{e)_ ; h'\ n^,^^yi_ »eh

9 n=0 9

= 2 «»6'M „,
[

»i=o I « 9 J

+ 2 6'
,

»=o I 9 .'

* It should be remarked here, as at the end of § 21, that the result in itself does not

contravene Kiemann's definition of a function, according to which (§ 8) — must have the same

value whatever be the direction of the vanishing quantity (h ; at a point on the boundary of

the region there are outward directions for which dir is not defined.

t The following investigation is due to Weierstrass, who communicated it to Du Bois-

Keyraond: see Crelle, t. Ixxix, (1875), pp. 29—31; Weierstrass, (ies. Werke, t. ii, pp. 71—74.
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assuming m, in the first place, t<> be any positive integer. T(i trau.sfonn the first .smn on

the right-hand side, we take

and therefore 2 (a6)" ,,, i

I „=o
' a"0

I

<:!:<''*)"<s.

if ah > 1, Hence, on this hypothesis, we have

'"-'
, Ce''"(»+*)'_e»"»«) (aft)"'

2 (a6)'M —
^r
= yV^-i'

„=o ^
i a''^ j

' ah-V

where y is a c»)inplex quantity with raodulus < 1.

a
To transform the second sum on tlie right-hand side, let the integer nearest to a'"*

-

IT

l;)e a,„, so that

for any vahie of m : then taking

we have iw ^ .-p > -hr,

and COS.*; is not negative. We choose the quantity so that

e + cji _ a„,+ l

and therefore . </> = ,

whicli, l>y taking /// sufKciently large {a is >1), can be made as small as we please. We
now have

ga"'^'\e r<l,) i^ ^a"rrHl +aJ^ _ / _ |\a„,

if II be an odd integer, and

Hence ::
=-(-!)«„. ^/»',

(p TT — X

and therefore 2 6"'^ » f ,- I = -
(
- 1)<^ ^l-fl- 2 6"(1 +e« *')•

)!=.. I <p J 7r-.l-„=„

The real part of the series ov\ the right-hand side is

2 //'[l 4-cosrt".i-j ;

every term of this is positive and tiicrefore, as the first term is 1 -|-cos./-. the real part

> 1 -h CO.S .r

> 1,
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for coso^ is not negative. Also it is finite, for it is

< 2 2 i"
• «=o

Moreover hw < n-x < '.In,

so that is ijositive and > - . Hence
TT — X 'i

..V \ 4> /
= -^-^)"'^,r3'''

where rj is a finite complex quantity, the i-eal part of which is positive and greater than

unity. We thus have

where ' -y'
; < 1, and the real part of t) is positive and > 1.

Proceeding in the same way and taking

X
a"

so that X='^^

where
| y/ i

< 1 and the real part of ?;,, a finite complex quantity, is positive and greater

than unity.

If now we take ab — 1 > iirr,

the real parts of - ''+y'-7
, say of f,

and of
Vi^y^'Jr-r^^y^^c^^

are hoth positive and difterent from zero. Then, since

m being at present any positive integer, we liave the right-hand sides essentially diflferent

quantities, because the real part of the first is of sign opposite to the real part of the

.second.

Now let VI he indefinitely increased ; then
(f>

and x ^''^ infinitesimal quantities which

\iltimately vanisli
; and the hmit of - [/(^+ ^)-/(5)] for = is a complex infinite

<|uantity with its real part oi)p()site in sign to the real part of the complex infinite

<piantity which is the limit of— [/(^-;^)-/(^)] for ^= 0. If /(^) had a differential

coefficient, these two limits would be equal : hence f{6) has not, for any value of 0,

a determinate difercntial coefficient.
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From this result, a remarkable inference relating to retil functions may be at once

derived. The real part of /{d) is

2 b"cos{a''d),

which is a series converging uniformly and vuiconditionally. The real parts of

-(-ir»(«6)'"c

and of +(-l)''".(a6)'"f,

are the corresi)onding magnitudes for the series of real (quantities : and they are of opposite

signs. Hence for no value of has the series

2 ft»cos(rt"^)
11=0

a determinate diflerential coethcient, that is, we can choose an incretise
(f)
and a decre<ise x

of 0, both Ix^ing made as small as we please and ultimately zero, such that the limits of

the expressions

f(0+ cf>)-f(6)^ f\e-x) -.f{6)

are different from one another, provided a be an odd integer and ah>\-\-'in.

The chief interest of the aliovc investigation lies in its application to functions of real

variables, continuity in the value of which is thus shewn not necessarily to imply the

existence of a determinate differential coefficient defiTied in the ordinary way. The
application is due to Weierstniss, as has already been stated. Further discussions will

Ikj found in a paper h\ Wiener, Crelle, t. xc, (1881), pp. 221—252, in a remark by

Weierstr.iss, Ges. Werke, t. ii, p. 229, and in a paper by Lerch, Crelle, t. ciii, (1888),

l)p. 126— 138, who constructs other examples of continuous functions of real variables;

and an example of a continuous function without a derivative is given by Schwarz,

Ges. Werke, t. ii, pp. 269—274.

The simplest chusses of ordinary functions are characterised by the properties :

—

(i) Within some region of the plane of the variable they are uniform, finite, and

continuous

:

(ii) At all points within that region (but not necessarily on its boundary) they have

a differential coefficient:

(iii) When the variable is real, the numljer of maximum values and the number of

• minimum values within any given range is finite.

The function 2 i"cos(a"d), suggested by Weier.strass, po.ssesses the first but not the

second of these jjroperties. Kopcke {Math. Ann., t. xxix, pp. 123—140) gives an example

of a function which posse.s.ses the first and the second but not the third of these

l)ro{)erties.

84. In each of the distinct portions ^4,, A.^, ... of the complete region

of continuity of a series of functions, the series ctin be represented by a

monogenic analytic function, the elements ot which are converging power-

series. But the efjuivalence of the function-series anil the monogenic

analytic function for any portion .4, is limitetl to that region. When the

monogenic analytic function can be continued from A^ into A.,, the continua-

tion is not iM'ce.ssarily the same as lin- monogenic analytic function which is

^^ F. 11
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the equivalent of the series S fg{z) in A.. Hence, if the monogenic analytic

functions for the two portions A^ and Ao be different, the function-series

represents different functions in the distinct parts of its region of continuity.

A simple example will be an effective indication of the actual existence

of such variety of representation in particular cases ; that, which follows, is

due to Tannery*.

Let «, h, c be any three constants ; then the fraction

a + hcz'^

1 + 62"*
'

when m is infinite, is equal to a if
|

^
|

< 1, and is equal to c if
|

2;
,
> 1.

Let mo, wii, wia, ... be any set of positive integers arranged in ascending-

order and be such that the limit of iiin, when ?i = 00 , is infinite. Then,

since

a + 6c2"*» a + bcz'"" ^ {a -h hcz^i a + bcz

1 + bz"^" 1 + bz'^o i=i I
1 4- bz'^i 1 + bz'»i

a + bcz'''

+ b {c a)
2.^ 1^^ _^ ^^^^^ (1+1)^-^^)1

'

1 +bz'

the function j> {z), defined by the equation

converges uniformly to a value a if \z\^ p< 1, and converges uniformly to a

vahte c if \z\^ p' >1. But if
|

.^
|

= 1, the value to which the series tends

depends upon the argument of z : the series cannot be said to converge for

values of z such that
1

2:
|

= 1.

The simplest case occurs when 6= — 1 and 7/ij=2'; then, denoting the

function by ^{z), we have

a-
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When ,2, = 1, the function can have any \alue whatever. Hence a circle

<»f radius unity is a line of singularities, that is, it is a line of disconlinuity

for the series. The circle evidently has the property of dividing the plane

into two parts such that the analytical expression repi-esents different

functions in the two parts.

If we introduce a new variable f connected with z by the relation*

then, if ^=^+1}] and z=x-\-iy, we have

? (1 _.,.).+ ,/.'

i^o that ^ is positive when z <\, and ^ is negative when j^^j > 1. If then

the function x^O ^^ equal to a or to c according as the real part of ^ is

{)Ositive or negative.

And, generally, if we take ^ a rational function of z and denote the

modified form of </)(^), which will be a sum of rational functions of z, by

4>i{z), then <pi{z) will be equal to a in some parts of the plane and to c

in other parts of the plane. The boundaries between these parts are lines

of singular points : and they are constituted by the ^^-curves which correspond

to!fi = l.

85. Now let F {z) and G{z) be two functions of z with any number of

singularities in the plane : it is possible to construct a function which shall

be equal to F{z) within a circle centre the origin and to G{z) without the

circle, the circumference being a lino of singularities. For, when we make

(/ = 1 and c = in (^) of § 84, the function

^ , . I z z- z*

^ 1—Z Z^ — \ Z*— I 2^-1

is unity for all points within the circle and is zero for all points without it

:

and therefore

G(z)+{F(z)-G{z)]0{z)

is a function which has the required property.

Similarly
"

F, (z) + {/', (z) - F^ {z)\ 6 (z) + {F., (z) - F^ (z)) d
(y.)

is a function which lia.s the value F^ (z) within a circle of radiu.s unity, the value F.,(z)

between a circle of radius unity and a concentric circle of radius ;• gre^iter than unity, and

the value Fsiz) without the latter circle. All the singularities of the functions Fi, F-,, F^

are singularities of the function thus rei)re.sented : and it hci.s, in addition to the.se, the

two lines of singularities given by the circles.

* The significance of a relation of this form will be discussed in Chapter XIX.

11—2
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Again,

MONOGENIC FUNCTIONALITY

(j^z)+{F{z)-G{z)}e(^^^

[s:

is a function of z, which is equal to F{z) on the positive side'of the axis of y, and is eciual

to G (z) on the negative side of that axis.

1+2
Also, if we take C«-'»'-i^i =

where a, and pi are real constants, as an equationjdefining a new variable ^+iT], we have

^ cos ai + T] sin ai—pi=
1-; -r

so that the two regions of the j-plane determined by
|
2

|
< 1 and

|
2

|
> 1 correspond to the

two regions of the ^-plane into which the line ^ cos a^+ rj sin ai —pi = divides it. Let

(:):

iC),

so that on the positive side of the line ^ con ai + r} &in ai -pi=0 the function d^ is unity

and on the negative side of that line it is zero. Take any three lines defined by

«i> Pi; a2, p-y, a-i, p3 respectively; then

l{-F+F{e, + 6., + e^)]

is a function which has the value F within

the triangle, the value -F in three of the

spaces without it, and the value zero in the

remaining three spaces without it, as indi-

cated in the figure (fig. 13).

And for every division of the plane by

lines, into which a circle can be transformed

by rational equations, as will be explained

when conforraal representation is discussed -p- , ..,

hereafter, there is a possibility of represent-

ing discontinuous functions, by expressions similar to those just given.

These examples are sufficient to lead to the following result*, which is

complementary to the theorem of § 82 :

—

When the region of continuity of an infinite series of fmotions consists

of several distinct parts, the series I'epresents a, single function in each part

bat it does not necessarily represent the same function in different parts.

It thus appears that an analytical expression of given form, which con-

verges uniformly and unconditionally in different parts of the plane separated

from one another, can represent different functions of the variable in those

different parts ; and hence the idea of monogenic functiontdity of a complex

variable is not coextensive with the idea of functional dependence expressible

through aritJinietical operations, a distinction first established by Weierstrass.

86. We have seen that an analytic function has not a definite value at

an essential singularity and that, therefore, every essential singularity is

excluded from the region of definition of the function.

* Weierstrass, G<?.s. Werke, t. ii, p. 221.
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105

Again, it has appeared that not merely must single points be on occasion

excludetl from the region of definition but also that functions exist with

continuous lines of essential singularities which must therefore be excluded.

One method for the construction of such functions has just been indicated:

but it is possible to obtain other analytical expressions for functions which

possess what may be called a sinqukii- lute. Thus let a function have a

circle of radius c as a line of essential singularity*; let it have no other

singularities in the plane and let its zeros be «,, a,, a.^, ..., supposed aiTanged

in such order that, if p„e'^" = a„, then

Pn-Cl^ pn+i - C ,

so that the limit of p„, when n is infinite, is c.

Let Cn = ce'^", a point on the singular circle, con-esponding to a„ which is

assumed not to lie on it. Then, proceeding as in Weierstrass's theory in § 51,

if

„ = 1 (Z— Cn

where g„{z) = -^ '- + ^
(-? " +... + -

^ ^ Z — Cn 2\ Z — Cn' /»„ - 1 \ Z — Cn

G (z) is a uniform function, continuous everywhere in the plane except along

the circumference of the circle which may be a line of essential singularities.

Spatial simpler forms can be derived according to the character of the

series of quantities constituted by
\
an - Cn

|

. If there be a finite integer m,
x

such that S ia„ — Cnl"* is a converging series, then in gn{z) only the first
M = l

??? - 1 terms need be retained.

Kv. Construct the function when
2»^T^^

e » ,'«=('40

//< being a given positive integer and r a positive quantitj'.

Again, the point c„ was associated with a„ so that they have the same

argument : but this distribution of points on the circle is not necessary, and

it can be made in any manner which satisfies the condition that in the limited
00

case just quoted the series 2 jrtn — Cnj'" is a converging series.
rt=i

Singular lines of other classes, for example, sections^: in connection with functions

tiefined by integrals, arise in connection with analytical functions. They are discussed

by Painlcvo, Snr U» lupus singulieres des functions analytiques, (Th^e, Oauthier-Villai-s,

Paris, 1887).

Ex. 1. Shew that, if the zeros of a function be the points

^^b+ c^-{a-d)i

* This inveatigation is due to Picard, Comptes Retidus, t. xci, (1881), pp. G90—092.

t Called coupures by Hermite ; see § 103.



166 LACUNARY [86.

where a, b, c, d are integers satisfying the condition ad — hc=\, so that the function

has a circle of radius unity for an essential singular line, then if

TjJ' + di

d+ hV

[z-A ^1
the function ^ 1"—n* | '

where the product extends to all positive integers subject to the foregoing condition

ad-hc=\, is a uniform function finite for all points in the plane not lying on the

circle of radius unity. (Picard.)

Ex. 2. Examine the character of the distribution of points ^„ in the plane of ;

which are given by

z„= (l +
J^)

e^'-i>i^i, («= 1, 2, 3, ...).

Consider especially the neighbourhood of the circle whose centre is the origin and whose

radius is 1.

Shew that

„= 1 11^ {Zy - Z)

represents a monogenic function of z at all points within the circle ; and investigate the

possibility of an analytical continuation of this function Ijeyond the circle.

(Math. Trip., Part II., 1896.)

87. In the earlier examples, instances were given of functions which

have only isolated points for their essential singularities : and, in the latter

examples, instances have been given of functions which have lines of

essential singularities, that is, there are continuous lines for which the

functions do not exist. We now proceed to shew how functions can be

constructed which do not exist in assigned continuous spaces in the plane.

Weierstrass was the first to draw attention to lacwniry functions, as \h<?Y

may be called; the following investigation in illustration of Weierstrass's

theorem is due to Poincare*.

Take any convex curve in the plane, say C : and consider a function-

series of the form

ii=0 S — On

where the constants An and ha are subject to the conditions

(i) The series S ^h converges unconditionally :

11 =

(ii) Each of the points 6„ is either within or upon the curve C

:

(iii) When any arc whatever of C is taken, as small as we please, that

aic contains an unlimited number of the points bn.

* Arta Soc. Venn., t. xii, (1883), pp. 341—350; Amer. Journ. Math., t. xiv, (18'J2),

pp. 201—221.
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It will be seen that, for values of z outside C, <^(2) is represented by a

power-series, which cannot be continued across the curve C* into the interior,

and which therefore has the area of C for a lacunary space.

Let 8 denote the sum of the converging series S
,
^„ : then denoting by

«=o

K any assigned quantity, as small as we please, an integer p can always be

determined so that

11 = 1)

Consider the function-series in the vicinity of any point c outside C. Let

R denote the distance of c from the nearest point of the boundary* of C, so

that R is a finite non-vanishing quantity ; and draw a circle of radius R and

centre c, which thus touches G externally. Thus for all the points b except

at the point of contact, we have

bn-c^> R.

Let z be any point within the circle, so that

:z — c\< R

= dR,

say, where ^ is a positive quantity less than 1. Then

Z-bn\>\bn-C\- Z-C

^R{\-d);
and therefore

Consequently

^11(1-6)

n=0 1^ - 6n ; ^n=^ R{1-6)^R (1 - 0)
'

SO that the function-series converges unconditionally. Also

—
a" r

—

h—

i

I
n=m ^ ~ On] 7»=«t |

^ 0^
|

and therefore the function-series converges uniformly : that is.

5 A.

n=0 bn

* This will be either the shortest normal from c to the boundary, or the distance of r from

some point of abrupt change of direction, as for instance at the angular point of a polygon : for

brevity of description we shall assume the former to be the case.
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converges uniforml)- and unconditionally within any circle concentric with

the circle of radius R and lying within it. Accordingly, by Weierstrass's

investigation (|§ 82, 83), this is expressible in the form of a converging series

P {z — c) ; manifestly

We have

and therefore

P{z-c)^- S ^-^^^iz-cy

^ R '.

i, = (i « = K"m C; !
H 1,1=0 n=0

8
R(i-e)'

that is, the series P (2 — c) converges unconditionally. Let C„, denote

S An(bn-c)-"'-': then
n =

The point c is any arbitrarily chosen point outside the curve C ; and therefore

the function represented by </> (z) for points z outside the curve C is a uniform

analytic function.

Any power-series representing this function can be used as an element

for continuation outside G and away from C: we proceed to prove that it

cannot be continued across the boundary of 0. If this were possible, it would

arise through the construction of the domain of some point z^, where Zq is a

point outside G (say within such a circle as the above, centre c), and where

the circle bounding the domain of Zo would cut off some arc from the boundary

of G. The preceding analysis shews that, in the domain of z^, the function is

represented by a power-series

Q(2-Z,) = - i B,n{z-Z,)"\

where B,„ =1 An (bn - 2'o)~"'~'

:

it must be shewn that the series diverges for points 2 within G.

In the first place, consider the series P {z — c) ; in order that it may
converge, only such values of z are admissible as make the limit of

Gm {z — c)"* zero, when m is infinite. Let a point be taken on the circum-

ference of the circle G of radius R ; then the above limit can only be zero if

Lt a„72'"=0,
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a condition that is not satisfied, as will now be proved. This circle touches

C externally ; let the point of contact be a point b^ (such a circle can always

be constructed, by drawing the outward normal at a point h and choosing

some point c upon it). Let any arbitrary quantity e be assigned, as sinall

as we please; and let an integer jt> be chosen large enough to secure that

this being possible because »S'p,the remainder of the converging series !£|il„i,

can (by choice of p) be made less than any assigned quantity. Either the

chosen number p is greater than k: or if it is less than k, then some other

number (>/)) can be chosen so that it is greater than /.•
: we may therefore

assume p > L\

Draw a circle, centre c and radius R' greater than R, so as to include the

point bk, and exclude the points 60, ..., bj, with the exception of b^. This can

be done ; for if

bk - h^i \>'^R,
;

bk - bk+i
I

> \R,

where X is some positive quantity as small as we please ('but not absolutely

zero), we can take

R'' =R' + \-R"- :

and then

bn-c < R', for n =0,1, ...,k-l, k +1, ..., p.

Let q denote a number sufficiently large to secure that

S /Rxt

Then as

C„=iA,,(b„-c)-i-\

we have

and therefore

iu{t, A,ib, c)
. <^ro(6n-c)^^^'^„=ix.(6:-c)'^+>r,4'(6„-c)'v-

<'24^'f5J+ 's ^ir^v^ii^
=0 R' \R')

f k-l .. p-l

<i^ 2 \A„ +h^ S A
*-' n = n »^ n=k-r\

»l
+1 R \R I „=p R
p-\"A -u '_

R

<^|{,S'-U, ]+ie
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a quantity arbitrarily assigned as small as we please. Accordingly we have

that IS,

Limit G^R'i
,

= Limit
j

A^R'^ {h - c)-'v-> = ' ^* '

,

SO that C,jR'J does not tend to zero when q is infinitely large, as it should if

F{z — c) converges. Thus P (2 — c) does not converge for points given by

\z — c\ = R.

Consider now the domain of Zo, assumed to include points within G and

therefore some arc of C; the function is represented throughout that domain

by Qi^ — 'Zo)- On the included arc of C take any one (say bk) of the un-

limited number of points b; Sbt bk draw an outward normal to C and choose a

point Zi on it such that the circle

\z-z^\ = \bk- z^l

lies wholly within the domain of z„. The function is represented by a power-

series in z — Zi throughout this circle ; and as the circle lies wholly Avithin

the domain of Zq, the representation is included in Q{z — Zo). But, by the

preceding investigation, the power-series does not converge on the circum-

ference of the circle \z — z^] = \bk — Zi\: contradicting the supposition that

Q(z — Zq) converges in a domain of Zq enclosing this circle. Hence the power-

series P(z — c) cannot be continued across the boundary of C ; in other words,

the function represented by P (z — c) and its continuations has the area of C
for a lacunary space.

The discussion of the significance (if any) of (j) (z) for points z within

C depends on the distribution of the points 6„ within C, as to which no

hypothesis has been made.

As an example, take a convex polygon having «i, , «,, for its angular points;

then any point

?»iai + + mpap
mi + +mp '

where Wj, , «ip are positive integers or zero (simultaneous zeros being excluded), is

either within the polygon or on its boundary : and any rational point within the polygon

or on its boundary can be represented by

p
2 m^ar

by proper choice of »«,, , «<,,, a choice which can be made in an infinite number

of ways.

Let Ml, , Ui, be given quantities, the modulus of each of which is less than unity :

then the series
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converges unconditionally. Then all the a.ssigned condition.s are .sati.sfied for the fnnction

1)1. + + Win
;

and therefore it i.s a function which converges uniformly and unconditionally everywhere
outside the polygon and which has the polygonal space (including the boundary) for

a lacunary space.

If, in particular, p = '2, wv obtain a function which has the straight line

joining a, and a.^ as a line of essential singularity. When we take a, = 0,

«.j=l, and slightly modify the summation, we obtain the function

V V '" '-

71 = 1 m = _ "<

71

which, when x^ <1 and tu < 1, converges uniformly and unconditionally

everywhere in the plane except at points between and 1 on the axis of real

(juantities, this part of the axis being a line of essential singularity.

For the general case, the following remarks may be made :

—

(i) The quantities «i, u., ... need not be the same for every term; a

numerator, quite different in form, might be chosen, such as

(mi^+ ... + ?«p-)~'* where 2/m> p; all that is requisite is that the

series, made up of the numerators, should converge uncondition-

ally.

(ii) The preceding is only a particular illustration, and is not necessarily

the most general form of function having the assigned lacunaiy

space.

It is evident that one mode of constructing a function, which shall have

any assigned lacunary space, would begin by the formation of some expression

which, by the variation of the constants it contains, can be made to represent

indefinitely nearly any point within or on the contour of the space. Thus

for the space between two concentric circles, of radii a and c and centre the

origin, we could take

in^a + (n — nit) ^ '"-'"'

e"
II

which, by giving m, all values from to n, m. all values from to n— I, and

/* all values from 1 to infinity, will represent all rational points in the space :

and a function, having the space between the circles as lacunary, would be

given by
X M M - 1

V V 2
n = \ »n,=0 7».. =

ided >i < 1, M, < 1, ]
u.^ <l.

e
n



172 EXAMPLES [87.

In particular, if a = b, then the common circumference is a line of essential singularity

for the corresponding function. It is easy to see that the function

"' 2re-l ^ „ ^ „

2 2 "'•"

J-" ,

n=0 jn=0 — ni
z— ae^

00 2n-l HI K

provided the series 2 2 i« i>

converges unconditionally, is a function having the circle \z\ = a. as a line of essential

singularity. It can be expressed as an analytic function within the circle, and as another

analytic function without the circle.

Other examples will be found in memoirs by Goursat* Poincarct, and Homent.

Ex. 1. Shew that the function

2 2 ('m + n2)-2-'-,

where /• is a real positive quantity and the summation is for all integers m and n between

the positive and the negative infinities, is a uniform function in all parts of the plane

except the axis of real quantities which is a line of essential singularity.

Ex. 2. Discuss the region in which the fiuiction

is definite. (Homen.)

Ex. 3. Prove that the function

2 2-".'r'"

exi.sts only within a circle of radius imity and centre the origin. (Poincare.)

Ex. 4. Prove that the series
- A,,
2 —

„=i z-an

represents a uniform meromorphic function, if the quantities
|

a„
|
increase without limit

as n increases and if the series
| AJun \

converges.

Ex. 5. An infinite number of points a^, a^, a^, are taken on the circumference of

a given circle, centre the origin, so that they form the aggregate of rational point.s on the

circumference. Shew that the series

^ A—
can be expanded in a series of ascending powers of z which converges for points within the

circle, but that the function cannot be continued across the circumference of the circle.

(Stieltjes.)

* Contptes liendus, t. xciv, (1882), pp. 715—718; Bulletin dc Darboii.r, 2'"' Ser., t. xi, (1887),

pp. 109—114.

t In the memoirs, quoted p. 166, and Complex Rendux, t. xovi, (1883), pp. 1134—1136.

t Acta Soc. Fenn., t. xii, (1883), pp. 445—464.
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Ex. 6. Prove that the iiitinite continued fraction

_\ 1 1 1_

converges for all values of r, provided the series

2 «„

diverges, the quantities a being real. Discuss, in particular, the ca.ses, (1) when z has re«il

positive values, (ii) when z has reiil negative values.

(Stieltjes.)

Ex. 7. Denoting by «„ a positive quantity less than 1, prove that the infinite product

converges ; and that the series

„=i fnV-n-e„ z-n)
converges.

Shew that, if a new series be constructed by separating the two fractions in the single

term so as to provide two terms, this new series does not converge when f„ = 7i~3_ Does

the same consequence follow when e„ = 7i~-?

(Borel.)

Ex. 8. Prove that the series

2 _, 2 "^ °° ( z
\- (^+ ^ ') + -

}^ 2^ ((1—2^^ 2^-) (2»i+ 2«^)2j

.2
I I [ lli I

TT _1o - » I ( 1 - 2j?i - 2«0 - ii) (2»i+ 2n3 - Hf]
'

where the summation extends over all positive and negative integral values of m and of a

except simultiineous zeros, converges uniformly and unconditionally for all points in

the finite part of the plane which do not lie on the axis of y ; and that it has the

value +1 or —1, according as the real part of z is positive or negative.

(Weierstrass.)

Ex. 9. Prove that the region of continuity of the series

1

„=0 2" + 2 "

consists of two parts, separated by the circle
]
2

|

= 1 which is a line of infinities for

the series: and that, in the.se two parts of the plane, it represents two difiForent

t'lmctidiis.

co'jr

If two complex quantities « and eo' be taken, such that z= e "' and the real part <>1"

-. is positive, and if they be associated witli the elliptic function ^(tt) as its half-periods,

then for values of r, which lie witliin the circle
|

^
!

= 1,

2 _ 1 ^ o) o-3(m) .

„=o2"+ 2"" 27r a (a)
*'

in the usual notation of Weierstra-ss's theory of elliptic functions.

Find the function which the series represents for values of z without the circle
i

i
;

= 1.

(Weierstrass.)
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Ex. 10. Discuss the descriptive properties of the functions represented by the

expressions

:

for all values of the complex argument z. (Math. Trip., Part II., 1893.)

E.r. 11. Four circles tire drawn each of radius -j^ having their centres at the points

1^ i^ _ 1^ —i respectively ; the two parts of the plane, excluded by the four circumferences,

are denoted the interior and the exterior parts. Shew that the function

.sin ^nir (I 1 1 1"!

«i 2^"n i(r-.-)""''(H-/s)» (1+2)" (l-i^)",

is equal to ir in the interior part and is zero in the exterior part. (Appell.)

Ex. 12. Obtain the values of the function

in the two parts of the area within a circle centre the origin and radius 2 which lie

without two circles of radius unity, having their centres at the points 1 and - 1

respectively. (Appell.)

^.r. 13. If f(z)=L\+U2+ + U,„

and r,„ = F. (.)-^ + iz-a,„- 1)
{^A__ + ^__L_ ^.

| ,

where the regions of continuity of the functions F extend over the whole plane, then f{z)

is a function existing everywhere except within the circles of radius unity described round

the points oi, «2, » ««• ' (Teixeira.)

Ex. 14. Let there be n circles having the origin for a common centre, and let

(7j, (7^, , Cn, C„ + i be n+ l arbitrary constants ; also let «j, a2, , a„ be any n points

lying respectively on the circumferences of the first, the second, , the 7ith. circles.

Shew that the expression

1 i^" (^' 4.^Z^' + ^^f^
«! ziy — a„

has the value 6',„ for points z lying between the (wi-l)th and the ?nth circles, and the

value Cn + i
for points lying without the nth. circle.

Construct a function which shall have any assigned values in the various bands into

which the plane is divided by the circles. (Pincherle.)

Ex. 15. Examine the nature of the functions defined by the series

{z^-a^y
(i) 2

n= l

(ii) i

2 {z-a)^-5{z^-aY+2{z+ ay^'''

(22-a2)»

(2-a)''"'+ 2(2+a)2"'

where a is a real positive constant. (Math. Trip., Part II., 1897.)
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88. In § 32 it was remarked that the discrimination of th*- various

species of essential singularities could be effected by means of the properties

of the function in the immediate vicinity of the point.

Now it was proved, in § 63, that in the vicinity of an isolated essential

singularity /' the function could be represented by an expression of the form

z — hi

for all points in the space without a circle centre h of small radius and within

a concentric circle of radius not large enough to include singularities at

a finite distance from b. Because the essential singularity at b is isolated,

the radius of the inner circle can be diminished to be all but infinitesijnal

:

the series P {z - b) is then unimportant compared with GI ,), which

can be regarded as characteristic for the singularity of the function.

Another method of obtaining a function, which is characteristic of the

singularity, is provided by § 68. It was there proved that, in the vicinity of

an essential singularity a, the function could be represented by an expression

of the form

{z - ar H (^^-^-^y^ (z - a),

where, within a circle of centre a and radius not sutiiciently large to include

the nearest singularity at a finite distance from a, the function Q (z — a) is

finite and has no zeros : all the zeros of the given function within this circle

(except such as are absorbed into the essential singularity at a) are zeros of

the factor HI 1, and the integer-index n is affected l)y the number of

these zeros. When the circle is made small, the function

(z ^^'^^(j^)

can be regarded as characteristic of the immediate vicinity of a or, more

briefly, as characteristic of a.

It is easily seen that the two characteristic functions are distinct. For

ifJ^andi^i be two functions, which have essential singularities at a of the

same kind as determined by the first characteristic, then

F{z) - F, (z) = P(z-a)- P, (z - a)

= P,{z-a),

while if their singularities at a be of the .same kind as determined Ity the

second characteristic, then
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in the immediate vicinity of a, since Q^ has no zeros, Two such equations

cannot subsist simultaneously, except in one instance.

Without entering into detailed discussion, the results obtained in the

preceding chapters are sufficient to lead to an indication of the classification

of singularities*.

Singularities are said to be of the first class when they are accidental

;

and a function is said to be of the first class when all its singularities are of

the first class. It can, by § 48, have only a finite number of such singularities,

each singularity being isolated.

It is for this case alone that the two cliaracteristic functions are in

accord.

When a function, otherwise of the first class, fails to satisfy the last

condition, solely owing to failure of finiteness of multiplicity at some point,

say at 2; = 00 , then that point ceases to be an accidental singularity. It has

been called (§ 32) an essential singularity; it belongs to the simplest kind of

essential singularity ; and it is called a singularity of the second class.

A function is said to be of the second class when it has some singularities

of the second class ; it may possess singularities of the first class. By an

argument similar to that adopted in § 48, a function of the second class

can have only a limited number of singularities of the second class, each

singularity being isolated.

When a function, otherwise of the second class, fails to satisfy the last

condition solely owing to unlimited condensation at some point, say at 2^ = oo
,

of singularities of the second class, that point ceases to be a singularity

of the second class: it is called a singularity (necessarily essential) of the

third class.

A function is said to be of the third class when it has some singularities

of the third class ; it may possess singularities of the first and the second

classes. But it can have only a limited number of singularities of the third

class, each singularity being isolated.

Proceeding in this gradual sequence, we obtain an unlimited number of

classes of singularities : and functions of the various classes can be constructed

by means of the theorems which have been proved. A function of class n

has a limited number of singularities of class », each singularity being

isolated, and any number of singularities of lower classes which, except in so

far as they are absorbed in the singularities of class n, are isolated points.

* For a detailed discussion, reference should he made to (iuichard, Thvorie dcit poi)its

sinifuliem exsentiels (Th^se, Gauthier-Villars, Paris, 1883), who. gives adequate references to the

investigations of Mittag-Leffler in the introduction of the classification and to the researches of

Cantor. See also Mittag-LelHer, Acta Math., t. iv, (1884), pp. 1—79; Cantor, Crelle, t. Ixxxiv,

(1878), pp. 212—258, Acta Math., t. ii, (1H83), pp. 311—328.
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The efft'Ctivi- limit »>f this sequence of classes is attained when the

iiiunber of the class increases beyond any integer, however large. When
(.nee such a limit is attained, we have functions with essential singularities of

unlimited class, each singularity being isolated ; when we pass to functions

which have their essential singularities no longer isolated but, as in previous

elass-developments, of infinite condensation, it is necessary to add to the

arrangement in classes an arrangement in a wider group, say, in species*.

Calling, then, all the preceding classes of functions functions of the first

species, we may, after (Juichard (I.e.), construct, by the theorems already

proved, a function which has at the points a^, a.,, ... singularities of classes

1, 2, .. , both series being continued to infinity. Such a function is called

a function of the second species.

By a combination of classes in species, this arrangement can be continued

indefinitely ; each species will contain an infinitely increasing number <jf

classes; and when an unlimited number of species is ultimately obtained,

another wider gi'oup must be introduced.

This gradual construction, relative to essential singularities, can be carried

out without limit ; the singularities are the characteristics of the functions.

* Guichard (I.e.) uses the term genre.

12



CHAPTEE VIII.

Multiform Functions.

89. Having now discussed some of the more important general properties

of uniform functions, we proceed to discuss some of the properties of multiform

functions.

Deviations from uniformity in character may arise through various causes :

the most common is the existence of those points in the ^-plane, which have

already (§ 12) been defined as branch -points.

As an example, consider the two power-series

-u = l -i^'-i/-- ..., v = -(l -hz' -^z'-- ...),

which, for points in the plane such that \z'
\

is less than unity, are the two

values of (1 —z')^; they may be regarded as representing the two branches

of the function w, say Wj and w.,, defined by the equation

w- = \ — z = z.

Let / describe a small curve (say a circle of radius r) round the point

z'=\, beginning on the axis of x ; the point 1 is the origin for z. Then z

is r initially, and at the end of the first description of the circle z is ?-e-'^'.

The branch of the function, which initially is equal to u, changes continuously

during the description of the circle. The series for u, and the continuations

of that series, give rise to the complete variation of the branch of the function

which originally is u. Its initial value is r^, and its final value is r^e^, that

is, — /•
~

- ; so that the final value of the branch is v. Similarly for the branch

of the function, which initially is equal to v; it is continuously changed

during the description of the circle; the series for v, and the continuations

of that series, give rise to the complete variation of the branch of the function

which originally is v ; and the branch acquires u as its final value. Thus the

effect of the single circuit is to change w^ into Wg and m^ into w^, that is, the

effect of a circuit round the point, at which w^ and ic, coincide in value, is to

interchange the values of the two branches.

If, however, z describe a circuit which does not include the branch-point,

w^ and w.^ return each to its initial value.
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Instances have already occurred, e.g. integrals of uniform functions, in

which a variation in the path of the variable has made a difference in the

rt'sult ; but this interchange of value is distinct from any of the (effects

produced by points belonging to the families of critical points which have

been considered. The critical point is of a new nature ; it is, in fact, a

characteristic of multiform functions at certain associated points.

We now proceed to indicate more generally thv character of the relation

of such points to functions affected by them.

The method of constructing a monogenic analytic function, descril>ed in

-i o4. by forming all the continuations of a power-series, regarded as a given

initial element of the function, leads to the aggregate of the elements of the

function and determines its region of continuitv. When the process of C(jn-

tinuation has been completely carried out, two distinct cases may occur.

In the first case, the function is such that any and every path, leading

from one point a to another point z by the construction of a series of

successive domains of points along the path, gives a single value at z as the

continuation of one initial value at a. When, therefore, there is only a

single value of the function at a, the process of continuation leads to only a

single value of the function at any other point in the plane. The function is

uniform throughout its region of continuity. The detailed properties of such

functions have been considered in the preceding chapters.

In the second case, the function is such that different paths, leading from

(/. to z, do not give a single value at 2 as the continuation of one and the

same initial value at a. There are different sets of elements of the function,

associated with different sets of consecutive domains of points on paths from

a to z, which lead to different values of the function at z ; but any change

in a path from a to z does not necessarily cause a change in the value of the

function at 2. The function is multiform in its region of continuity. The

detailed' properties of such functions will now be considered.

90. In order that the process of continuation may be completely carried

out, continuations must be effected, beginning at the domain of any point a

and proceeding to the domain of any other point b by all possible paths in

the region of continuity, and they must be effected for all points a and b.

Continuations must be effected, beginning in the domain of every point a

and returning to that domain by all possible closed paths in the region of

continuity. When they are effected from the domain of one point a to that

of another point b, all the values at any point z in the domain of a (and not

merely a single value at such points) must be continued : and similarly when
they are effected, beginning in the domain of a and returning to that domain.

The complete region of the plane will then be obtained in which the function

can be represented by a series of positive integral powers : and the boundarv

of that region will be indicated.

12—2
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Viii. 14.

In the first instance, let the boundary of the region be constituted by a

number, either finite or infinite, of

isolated points, say L^, L.., L^, ....

Take any point ^4 in the region, so

that its distance from any of the

points L is not infinitesimal ; and

in the region draw a closed path

ABC...EFA so as to enclose one

point, say L^, but only one point, of

the boundary and to have no point

of the curve at a merely infinitesimal distance from L^. Let such curves be

drawn, beginning and ending at A, so that each of them encloses one and

only one of the points of the boundary : and let Kr be the curve which

encloses the point Z^.

Let Wi be one of the power-series defining the function in a domain with

its centre at A : let this series be continued along each of the curves if^ by

successive domains of points along the curve returning to A. The result

of the description of all the curves will be that the series lu^ cannot be

reproduced at A for all the curves, though it may be reproduced for some

of them ; otherwise, tu^ would be a uniform function. Suppose that w^, w.^, ...,

each in the form of a power-series, are the aggregate of new distinct values

thus obtained at A ; let the same process be effected on iU2, W;^, ... as has

been effected on r^,.. and let it further be effected on any new distinct values

obtained at A through iv.^, w,, ..., and so on. When the process has

been carried out so far that all values obtained at A, by continuing any

series round any of the curves K back to A, are included in values already

obtained, the aggregate of the values of the function at A is complete : they

are the values at A of the branches of the function.

We shall now assume that the number of values thus obtained is finite,

say n, so that the function has n branches at J. : if their values be denoted

by Wi, Wz, ..., 10,1, these n quantities are all the values of the function at A.

Moreover, n is the same for all points in the plane, as may be seen by con-

tinuing the series at A to any other point and taking account of the corollaries

at the^end of the present section.

The boundary-points L may be of two kinds. It may (and not infre-

quently does) happen that a point Lg is such that, whatever branch is taken

at A as the initial value for the description of the circuit Kg, that branch is

reproduced at the end of the circuit. Let the aggregate of such points be

/,, /a, .... Then each of the remaining points L is such that a description

of the circuit round it effects a change on at least one of the branches, taken

as an initial value for the description ; let the aggregate of these points be

jBi, Bz They are the branch-points; their association with the definition

in § 12 will be made later.
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Fig. 1.5.

When account is taken of the continuations of the function from a point

A to another point B, we have n values at B as the continuations of n values

at A. The selection of the individual branch at B, which is the continuation

of a particular branch at ..1, depends upon the path of z between A and B\

it is governed by the following fundamental proposition :

—

The final value of a branch of a function for Uvo paths of rariation of the

I nde])endent variable from one point to another will be the same, if one path

r.iii he deformed into the other without passing over a branch-point.

Let the initial and the final points be a and b, and let one path of

variation be acb. Let another path of variation be aeb, .

both paths lying in the region in which the function can

be expressed by series of positive integral powers : the two

paths are assumed to have no point within an infinitesimal

distance of any of the boundary-points L and to be taken

so close together, that the circles of convergence of pairs of

points (such as Cj and e^, c^ and e.^, and so on) along the two

paths have common areas. When we begin at a with a

branch of the function, values at c, and at e^ are obtained,

depending upon the values of the branch and its derivatives at a and upon

the positions of c, and e, ; hence, at any point in the area common to the

circles of convergence of these two points, only a single value arises as

derived through the initial value at a. Proceeding in this way, only a single

value is obtained at any point in an area common to the circles of con-

\ergence of points in the two paths. Hence ultimately one and the same

value will be obtained at b as the continuation of the value of the one branch

at a by the two different paths of variation which have been taken so that

no boundary-point L lies between them or infinitesimally near to them.

Now consider any two paths from a to b, say acb and adb, such

neither of them is near a boundar^'^-point and that the

contour they constitute does not enclose a boundary-point.

Then by a series of successive infinitesimal deformations we
can change the path acb to adb ; and as at b the same value

t»f w is obtained for variations of z from a to b along the

successive deformations, it follows that the same value of w
is obtainqd at /; for variations of z along acb as for varia-

tions along adh.

Next, let there be two paths acb, adb constituting

Fig. 16.

a closed contour,

inclosing one (but not more than one) of the points / and none of the points

/I When the original curve K which contains the point / is described, the

initial value is restored : and hence the branches of the function obtained at

anv point of K by the two paths from any point, taken as initial point, are

same. Bv what precedes, the parts of this curvi- K can be deformedhi prt
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into the parts of acbda without affecting the branches of the function : hence

the value obtained at b, by continuation along acb. is the same as the value

there obtained by continuation along adb. It therefore follows that a path

between two points a and b can be deformed over any point / without

afifecting the value of the function at 6 ; so that, when the preceding

results are combined, the proposition enunciated is proved.

By the continued application of the theorem, we are led to the following

results :

—

Corollary I. Whatever be the effect of the description of a circuit on the

initial value of a function, a reversal of the circuit restores the original value

of the function.

For the circuit, when described positively and negatively, may be re-

garded as the . contour of an area of infinitesimal breadth, which encloses no

branch-point within itself and the description of the contour of which

therefore restores the initial value of the function.

Corollary II. A circuit can be deformed into any other circuit without

affecting the final value of the function, provided that no branch -point be crossed

in the process of deformation.

It is thus justifiable, and it is often convenient, to deform a path enn-

taining a single branch-point into a loop round the

point. A loop* consists of a line nearly to the point, 0'======(^c
nearly the whole of a very small circle round the point,

pj j„

and a line back to the initial point ; see figure 17.

Corollary III. The value of a function is unchanged when the variable

describes a closed circuit containing no branch-point ; it is lil'ewise unclianged

ivhen the variable describes a closed circuit containing all the branch-points.

The first part is at once proved by remarking that, without altering thf

value of the function, the circuit can be deformed into a point.

For the second part, the simplest plan is to represent the variable on

Neumann's sphere. The circuit is then a curve on the sphere enclosing all

the branch-points : the effect on the value of the function is unaltered by

any deformation of this curve which does not make it cross a branch-point.

The curve can, without crossing a branch-point, be deformed into a point

in that other part of the area of the sphere which contains none of the

branch-points; and the point, which is the limit of the curve, is not a

branch-point. At such a point, the value of the function is unaltered ; and

therefore the description of a circuit, which encloses all the branch-points,

restores the initial value of the function.

Corollary IV. If the values of lu at b for variations along two paths

* French writers use the word lacet, German writers the word Schleif'e.
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acb, adh be not the sante, then a description of acbda will not restore the initial

ralue ofw at a.

In particular, let the path be the loop OeceO (tig. 17), and let it change w
at into w'. Since the values of lu at are different and because there is

no branch-point in Oe (or in the evanescent circuit OeO), the values (»f w at

e cannot be the same : that is, the value with which the infinitesimal circle

round (/ begins to be described is changed by the description of that circle.

Hence tlie part of the loop that is effective for the diange in the value of iv is

the small circl-e round the point; and it is because the description of a small

circle changes the value of w that the value of w is changed at after the

description of a loop.

If/(z) be the value of w which is changed into /j (z) by the description of

the loop, so that/(^) and /, (^) are the values at 0, then the foregoing-

explanation shews that /X^) and /j (e) are the values at e, the branch /'(e)

being changed by the description of the circle into the branch /', (e).

From this result the inference can be derived that the points B^, B.,, ...

are branch-points as defined in § 12. Let a be any one of the points, and

let/(^:) be the value of w which is changed into fi{z) by the description of

a very small circle round a. Then as the branch of w is monogenic, the

difference between f (z) and f (z) is an infinitesimal quantity of the same
order as the length of the circumference of the circle : so that, as the circle

is infinitesimal and ultimately evanescent, f{z)—f{z)^ can be made as small

as we please with decrease of \z — a\ or, in the limit, the values of /(a) and

f (a) at the branch-point are equal. Hence each of the points B is such

that two or more branches of the function have the same value at the point,

and there is interchange among these branches tvhen the variable describes a

small circuit round the point: which affords a definition of a branch-point,

more complete than that given in § 12.

Corollary V. //' a closed circuit contain several branch-points, tlie effect

which it produces can be obtained by a combination of the effects produced in

succession by a, set of loops each going round only one of the branch-points.

If the circuit contain several branch-points, say three as at a, h, r. tluii

a path such as AEFD, in fig. 18, can without

crossing any branch-point, be deformed into the

Xoo^sAaBr BbC, CcD ; and therefore the complete

circuit AEFDA can be deformed validly into

AaBbCcDA, and the same effect will be produced

by the two forms of circuit. When D is made
practically to coincide with A the whole of the

second circuit is composed of the three loops. Hence the corollary.

This corollary is of especial importance in the consideration of integrals

of multiform functions.
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Corollary \^I. In a continuous part of the plane where there are no

branch-points, each branch of a multiform function is uniform.

Each branch is monogenic and, except at isolated points, continuous

;

hence, in such regions of the plane, all the propositions which have been

proved for monogenic analytic functions can be applied to each of the

branches of a multiform function.

91. If there be a branch-point Avithin the circuit, then the value of the

function at b consequent on variations along acb may, but will not necessarily,

differ from its value at the same point consequent on variations along adb.

Should the values be different, then the description of the whole curve acbda

will lead at a not to the initial value of w, but to a different value.

The test as to whether such a change is effected by the description is

immediately derivable from the foregoing proposition ; and as in Corollary

IV., § 90, it is proved that the value is or is not changed by the loop,

according as the value of w for a point near the circle of the loop is or

is not changed by the description of that circle. Hence it follows that, if

there be a branch-point which affects the branch of the function, a path of

variation of the independent variable cannot be deformed across the branch-

point without a change in the value of w at the extremity of the path.

And it is evident that a point can be regarded as a, branch-point for a

function only if a circuit round the point interchange some {or all) of the

branches of the function which are equal at the point. It is not necessary that

all the branches of the function should be thus affected by the point : it is

sufficient that some should be interchanged*.

Further, the change in the value of w for a single description of a circuit

enclosing a branch-point is unique.

For, if a circuit could change w into w' or w", then, beginning with w"

and describing it in the negative sense we should return to w and afterwai'ds

describing it in the positive sense with w as the initial value we should

obtain w'. Hence the circuit, described and then reversed, does not restore

the original value w" but gives a diffcient branch w' ; and no point on

the circuit is a branch-point. This result is in opposition to Corollary I.,

of § 90 ; and therefore the hypothesis of alternative values at the end of

the circuit is not valid, that is, the change for a single description is

uni(jue.

But repetitions of the circuit may, of course, give different values at the

end of successive descriptions.

* In what precedes, cei-tiiin points were considered which were regular singularities {see

p. 192, note) and certain which were branch-points. Frequently points will occur which are

at once branch-points and infinities ; proper account must of course be taken of them.
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92. Let be any ordinary jM'int of tlif fiUR-tioii; join it to all tin-

branch-points (generally assnined finite in

number) in succession by lines "which do not
;j;

meet each other: then each branch is uniform
|

for each path of variation of the variable which
|;

meets none of these lines. The effects pro-
| -^-^B-.

dueed by the various branch-points and their | /Pb, ^^^^^
relations on the various branches can be indi- ;/; ,^'' ,^>ii^

cated by describing curves, each of which '^S'.jy^

begins at a point indefinitely near and J ^^:r:i":::::::::::^^"'""
""""

'^^ oj

returns to another point indctinitely near it

after passing round one of the branch-points,

and by noting the value of each branch of the function after each of these

curves has been described.

The law of interchange of branches of a function after description of a

circuit round a branch-point is as follows:

—

All the branches of a function, ivhich are affected by a branch-point as such,

can either be arranged so that the order of interchange {for description of a

path round the point) is cyclical, or be divided into sets in each of ivhich the

order of interchange is cyclical.

Let W], Wa, w,,... be the branches of a function for values of z near a

branch-point a which are affected by the description of a small closed curve

C round o : they are not necessarily all the branches of the function, but only

those affected by the branch-point.

The branch u', is changed after a description of C ; let w.^ be the branch

into which it is changed. Then iv., cannot be unchanged by C ; for a reversed

description of C, which ought to restore Wj, would otherwise leave tVo un-

changed. Hence w.. is changed after a description of C; it may be changed

either into tv^ <jr into a new branch, say W3. If into a\, then w, and W2 form

a cyclical set.

If the change he into 7/'.;, then 2v-_. cannot remain unchanged after a

description of C, for reasons similar to those that before applied to the

change of Wo', and it cannot be changed into w.,, for then a reversed de-

scription of C would change ?/•., into ui^, and it ought to change w.^ into w,.

HencC: after a description of C, W3 is changed either into ?y, or into a new

branch, say iv^. If into /r,, then w^, w.., rv^ form a cyclical set.

If the change be into w^, then v.\ cannot remain unchanged after a

description of C ; and it cannot be changed into v)^ or w.^ , for by a reversal

of the circuit that earlier branch would be changed into w^ whereas it ought

to be changed into the branch, which gave rise to it by the forward descrip-

tion—a branch which is not ^'4. Hence, after a description of C, w^ is

changed either into w, or into a new branch. If into w,, then w^, w.^, w^, w^

form a cyclical set.
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If u\ be changed into a new branch, we proceed as before with that new

branch and either complete a cyclical set or add one more to the set. By

repetition of the process, we complete a cyclical set sooner or later.

If all the branches be included, then evidently their complete system

taken in the order in which they come in the foregoing investigation is a

system in which the interchange is cyclical.

If only some of the branches be included, the remark applies to the set

constituted by them. We then begin with one of the branches not included

in that set and evidently not inclusible in it, and proceed as at first, until

we complete another set which may include all the remaining branches or

only some of them. In the latter case, we begin again with a new branch

and repeat the process ; and so on, until ultimately all the branches are

included. The whole system is then arranged in sets, in each of which thi-

order of interchange is cyclical.

93. The analytical test of a branch-point is easily obtained by con-

structing the general expression for the branches of a function which are

interchanged there.

Let = a be a branch-point where n branches w^ , lu,,, ..., Wn are cyclically

interchanged. Since by a first description of a small curve round a, the

branch w^ changes into iv,, the branch iu« into Wj, and so on, it follows that

by r descriptions Wj is changed into Wr+i and by n descriptions w^ reverts to

its initial value. Similarly for each of the branches. Hence each branch

returns to its initial value after n descriptions of a circuit round a branch-

point luhere n branches of the function are interchangeable.

Now let z — a = Z"-
;

then, when z describes circles round a, Z moves in a circular arc round its

origin. For each circumference described by z, the variable Z describes

- th part of its circumference ; and the complete circle is described bv Z
n ^

round its origin when n complete circles are described by z round a. Now
the substitution changes ?f,. as a function of z into a function of Z, say into

Wr\ and, after n complete descriptions of the ^r-circle round a, w,- returns

to its initial value. Hence, after the description of a Z-circle round its

origin, Wr returns to its initial value, that is, Z = ceases to be a branch-

point for W,.. Similarly for all the branches F".

But no other condition has been associated with a as a point for the

function w ; and therefore Z = may be any point for the function W, that

is, it may be an ordinary point, or a singularity. In every case, we have 11'

a uniform function of Z in the immediate vicinity of the origin ; and theivf<»re

in that vicinity it can be expressed in the form
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with the significations of P and G ah-eady adopted. When Z = is an

ordinary point, 6r is a constiint or zero; when it is an accidental singularity,

G is a polynomial function ; and, when it is an essential singularity, G is

a transcendental function.

The simpler ciises are, of course, those in which the form of G is poly-

nomial or constant or zero: and then W can be put into the form

Z-P(Z),

where P is an infinite series of positive powers and m is an integer. As this

is the form of W in the vicinity of Z = 0, it follows that the form of lo in the

vicinity of z = a is

m 1

(z-arP[(z-ar];

and the various it branches of the function are easily seen to be given by
j.

substituting in the above for {z — a)" the values

e^^(z-ay\

where .s- = 0, 1, . .
.

, ?? — 1. We therefore infer that the (general expression for

the n branches of a function, ivhich are interchanged by circuits round a

branch-point z = a, assumed not to be an essential singularity, is

{z-afP{(z-ar],
1

luliere m is an integer, and where to {z — aj^ its n values are in tui'n assigned

to obtain the different branches of the function.

There may be, however, more than one cyclical set of branches. If there

be another set of r branches, then it may similarly be proved that their

general expression is

)N, 1

{z-ayQ[{z-af],

where ?/<, is an integer, and Q is an integral function ; the various branches

are obtained by assigning to {z - ay its /- values in turn.

And so on, for each of the sets, the members of wliich are cyclically

interchangeable at the branch-point.

When the branch-point is at infinity, a different form is obtained. Thus

in the case of a set of n cyclically interchangeable branches we take

z = ?f-",

so that n negative descriptions of a closed 2-curve, excluding infinity and no

other branch-point, require a single positive description of a closed curve

round the {/-origin. These n descriptions restore the value of w as a function

of z to its initial value ; and therefore the single description of the u-curve

round the origin restores the value of U—the equivalent of w after the



188 BRAXCHES OF [93.

change of the independent variable—as a function of u. Thus u = ceases

to be a branch-point for the function U; and therefore the form of U is

where the s^^nibols have the same general signification as before.

If, in particular, z= x> be a branch-point but not an essential singularity,

then G is either a constant or a polynomial function ; and then U can be

expressed in the fjnn _
w-'" P (u),

where m is an integer. When the variable is changed from u to z, then the

general expression for the n branches of a function which are interchangeable

at 2 = CO , assumed not to be an essential singularity, is

m 1

z'^Piz «).

1

where m is an integer and ruhere to z'^ its n values are assigned to obtain the

different branches of the function.

If, however, the branch-point z = a in the former case or z= :c in the

latter be an essential singularity, the forms of the expressions in the vicinity

of the point are

G[{z-a)'^']+P[{z-af],

\ _\_

and G {z'^) + P {z~ ''),

respectively.

Note. When a multiform function is defined, either explicitly or im-

plicitly, it is practically always necessary to consider the relations of the

branches of the function for z ^ :c as well as their relations for points that

are infinities of the function. The former can be determined by either

of the processes suggested in § 4 for dealing with z—oo; the latter can be

determined as in the present section.

Moreover, the total number of branches of the function has been assumed

to be finite. The cases, in which the number of branches is unlimited, need

not be discussed in general : it will be sufficient to consider them when they

arise, as they do arise, e.g., when the function is of the form of an algebraical

irrational with an irrational index such .as z'^-—hardly a function in the

ordinary sense— , or when the function is the logarithrn of a function of z,

or is the inverse of a periodic function. In the nature of their multiplicity

of branching and of their sequence of interchange, they are for the most part

distinct from the multiform functions with only a finite number of branches.

E.v. The simplest illu-strations of multiform functions are furnished by functions

defined by algebraical equations, in particular, by algebraic irrationals.
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The general type of the algeVn-iiical irratioiuil i.s the jn-udiict of a imiiil)er of functions

of the form w={A (z — a-i) (z-a^) (z-aH)}"'. »' *^"d a being integers.

This particular function has ;» branches; the points «,, «o, , a„ are branch-points.

To find tiie law of interchange, we tike z-d^^pe^' ; then when a small circle of radius p
is described round a^, so that z i-eturus to its initial position, the value of 6 increases by

2n and the now value of w is aic, where n is the 7Hth root of unity defined by e»' "*. Taking
then the various branches as given by w, air, a'^w, , a"^~he, we have the law of inter-

change for description of a small curve round any one branch-point as given by this

succession in cyclical order. The law of succe.ssion for a circuit enclosing more than
one of the branch-points is derivable by means of Corollary V., § 90.

To find the relation of z=cc to w, we take zz'=l and consider the new function W in

the vicinity of the z'-origin. We have

W=\A (l-aj2')(l-a22') (l-a„£')}'«5'"'".

If the variable :' describe a very small circle round the origin in the negative .sense, then

;' is multiplied by e"^"'' and so W acquires a factor e'""'/«, that is, ]V is changed unle,ss

this acquired factor is unity. It can be unity only when n/m is an integer; and therefore

except when ?t,?;i is an integer, z = oo is a branch-point of the function. The law of

succession is the same as that for negative description of the i'-circle, viz., u\ a"ic ar'Ur

the >« values form a single cycle only if n be jirime to m, and a set of cycles if « be not
prime to m.

Thus ;=x is a branch-point for to= {A^-g^-g3)~^ ; it is not a branch-point for

"•= {(l-s-)(l-F22)}-i; and 2= 6 is a branch-point for the function defined by

{z- b)t(^= z-a,
but 2= 6 is not a branch-point for the function defined by {z-b)-w'= z-a.

Again, if p denote a particular value of z^, when z has a given value, and o similarly

denote a particular value of (-xt) ' *'^^" iv=p+ q is a six-valued function, the values

being

Wi= p + q, «'3= P + ag, «'.-,= p + a'^q,

W2= -p + q, iVi= -p+aq, Wo= -p+ a-q,

where a is a primitive cube root of unity. The branch-points are —1, 0, 1, oo ; and the
orders of change for small circuits round one (and only one) of these points are as
follows :

—

For a small circuit round
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Combinations can at once be eflfccted ; thus, for a positive circuit enclosing both 1 and gc

but* not -- 1 ur 0, the succession is

M'l, «4, tt'.-,, W.,, W3, U\;

in cyclical order.

94. It has already been remarked that algebraic irrationals are a special

class of functions defined by algebraical equations. Functions thus generally

defined by equations, which are polynomial so far as concerns the dependent

variable but need not be so in reference to the independent variable, are

often called algebraical. The term, in one sense, cannot be strictly applied

to the roots of an equation of every degree, seeing that the solution

of equations of the fifth and higher degrees can be effected only by

transcendental functions ; but what is implied is that a finite number of

determinations of the dependent variable is given by the equation f.

The equation is pol}Tiomial in relation to the dependent variable w, that

is, it will be taken to be of finite degree n in iv. The coefficients of the

different powers will be supposed to be uniform functions of z : were the}'

multiform (with a limited number of values for each value of z) in any given

equation, the equation could be transformed into another, the coefficients of

which are uniform functions. And the equation is supposed to be irreducible,

that is, if the equation be taken in the form

f{w,z) = 0,

the left-hand member f(w, z) cannot be resolved into factors of a form and

character as regards tv and z similar to / itself

The existence of equal roots of the equation for general values of z

i-equires that

f(iu, z) and - V

shall have a common factor, which will be uniform owing to the form of

f{w, z). This form of factor is excluded by the irreducibility of the equation
;

so that /= 0, as an equation in w, has not equal roots for general values

of z. But though the two equations are not both satisfied in virtue of a

simpler equation, they are two equations determining values of w and z
;

and their form is such that they will give equal values of w for special

values of z.

Since the equation is of degi'ee n, it may be taken to be

rifi + ^»-i F^ (^) + w''-~F^ (^) + . . . + luFn-i {z) + Fn (z) = 0,

where the functions F^, F^,... are uniform. If all their singularities be

accidental, they are rational meromorphic functions of z (unless ^ = oo is the

* Such a circuit, if drawn on the Neumann's sphere, may be regarded as excluding - 1 and 0,

or taking account of the other portion of the surface of the sphere, it may be regarded as a

negative circuit including -1 and 0, the cyclical interchange for which is easily proved to be

ii-x, w-4, !/-6, Wo, M'3, ioq as in the text.

t Such a function is called hien defini by Liouville.
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only singularity, in which case they are holoniorphic) ; and the uijiuition can

then be replaced by one which is equivalent and has all its coefficients

holomorphic, the coefficient of w" being the least common multiple of all the

denominators of the meromorphic functions in the first form. This form

cannot however be deduced, if any -of the singularities be essential.

The equation, as an equation in w, has 7i roots, all functions of z ; let

these be denoted by tVi,n<.,, ...,«'„, which are the n branches of the function w.

When the geometrical interpretation is associated with the analytical relation,

there are n points in the //'-plane, say ai,...,a„, which correspond with a point

in the ^-plane, say with a, ; and in general these n points are distinct.

Fuither, as will appear from the investigations in § 97 (p. 207), the ?? roots w
are continuous functions of z ; that is to say, any small change in the value

of z entails corresponding small changes in the value of each of the n roots w.

Hence, when z varies so as to move in its own plane, each of the w-points

moves in their common plane ; and thus there are n iv-paths corresponding

to a given .j-path. These // curves may or may not meet one anotht-r.

If they do not, there are n distinct w-paths, leading from a^, •,ctn to

/3,. ..., /3„, respectively corresponding to the single ^--path leading from a. to b.

If two or more of the ly-paths do meet one another, and if the describing

^y-points coincide at their point of intersection, then at such a point of

intersection in the w-plane, the associated branches w are equal ; and

therefore the point in the ^-plane is a point that gives equal values for w.

It is one of the roots of the equation obtained by the elimination of ?/•

between

-^ ^ ' dw

the analytical test as to whether the point is a branch- point will be

considered later. The march of the concurrent w-branches from such a

point of intersection of two w-paths depends upon their relations in its

immediate vicinity.

When no such point lies on a ^-path from a to b, no two of the /^-points

coincide during the description of their paths. By § 90, the z-path can be

deformed (provided that, in the deformation, it does not cross a branch-point)

without causing any two of the w-points to coincide. Further, if z describe

a closed curve which includes none of the branch-points, then each of the

/(^-branches describes a closed curve and no two of the tracing points ever

coincide.

Note. The limitation for a branch-point, that the tracing /f-points

coincide at the point of intersection of the w-curves, is of essential im-

jxirtance.

What is required to establish a point in the ^-plani' as a branch-point,

is not a mere geometrical intersection of a couple of completed <y-paths
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but the coincidence of the w-points as those paths are traced, together with

interchange of the branches for a small circuit round the point. Thus let there

be such a geometrical intersection of two ?t'-curves, without coincidence of the

tracing points. There are two points in the 2^-plane corresponding to the

geometrical intersection ; one belongs to the intersection as a point of the

/f'-path which first passed through it, and the other to the intersection as a

point of the w-path which was the second to pass through it. The two

branches of w for the respective values of z are undoubtedly equal ; but the

equality would not be for the same value of z. And unless the equality of

branches subsists for the same value of z, the pointis not a branch-point.

A simple example will serve to illustrate these remarks. Let ic be defined by the

equation

so that tlie branches w, and w.^ are given by

it is easy to prove that the equation resulting from the elimination of w between /=0 and

1.0 i,
010

and that only the two points z= ±ic are branch-points.

The values of z which make Wi equal to the value of u--^ for z = a (supposed not equal to

either 0, ri or - ci) are given by

ez+ z (s2+ c2)*= ca - a {a^+ c-)*

,

which evidently has not z=a for a root. Rationalising the equation so far as concerns z

and removing the factor z-a, as it has just been seen not to furnish a root, we find that z

is determined by

z^+ z^a + za--{-a^+ 2ac- - 2ac («"-+ c-)^' = 0,

the three roots of which are distinct from a, the assumed point, and from ±ci, the branch-

point. Each of these three values of z will make Wj equal to the value of Wj for z= a: we

have geometrical intersection without coincidence of the tracing points.

95. When the characteristics of a function are required, the most im-

portant class are its infinities : these must therefore now be investigated.

It is preferable to obtain the infinities of the function rather than the

singularities alone, in the vicinity of which ecich branch of the function

is uniform*: for the former will include these singularities as well as those

branch-points which, giving infinite values, lead to regular singularities when

the variables are transformed as in § 93. The theorem which determines

them is :

—

The infinities of a function determined by an aUjehraical equation are the

singularities of the coefficients of the equation.

Let the equation be

-10^ + iv^^-^F, (z) + w"-'F., {z) + ... + wFn-x {z) + Fn {z) = 0,

* These singularities will, for the sake of brevity, be called regular.
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and let w' be any branch of tin- function; then, if the e(iuation which

determines the remaining branches be

we have Fn (z) = — w'Gn-\ {z),

Fn-,{z)=-rv'Gn-.{z)+Gn-.{z),

Fn-.M=^-^'^'(^n-^{z)+G„.,{z\

F,{z) = -w' + G,{z\

Now suppose that a is an infinity of w'\ then, unless it be a zero of order

at least equal to that of Gn-\ {z), a is an infinity of Fn {z). If, however, it be

a zero of (t„_i {z) of sufficient order, then from the second equation it is an

infinity of Fn-i {z) unless it is a zero of order at least equal to that of

Gn-i{z); and so on. The infinity must be an infinity of some coefficient not

earlier than Fi {z) in the equation, or it must be a zero of all the functions

G which are later than Gi-^ {z). If it be a zero of all the functions Gr, so

that we may not, without knowing the order, assert that it is of rank at

least equal to its order as an infinity of lu, still from the last equation it

follows that a must be an infinity of F^ (z). Hence any infinity of iv is an

infinity of at least one of the coefiicients of the equation.

Conversely, from the same equations it follows that a singularity of one

of the coefficients is an infinity either of w' or of at least one of the co-

efficients G. Similarly the latter alternative leads to an inference that the

infinity is either an infinity of another branch w" or of the coefficients of the

(theoretical) equation w^hich survives when the two branches have been

removed. Proceeding in this w^ay, we ultimately find that the infinity either

is an infinity of one of the branches or is an infinity of the coefficient in the

last equation, that is, of the last of the branches. Hence any singularity

of a coefiicient is an infinity of at least one of the branches of the function.

It thus appears that all the infinities of the function are included among,

and include, all the singularities of the coefficients ; but the order of the

infinity for a branch does not necessarily make that point a regular

singularity nor, if it be a regular singularity, is the order necessarily the

same as for the coefficient.

The following method is eftective for the determination of the (jrder of

thi' infinity of the branch.

Let a be an accidental singularity of one or more of the F functions,

say of order m,- for the function Fj ; and assume that, in the vicinity of a,

we have

Fi (z) = (z - a)-"'i [a + di {z - a) + e,- (2 - a)- + ...
J

.

p. F. 13
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Then the equation which determines the first term of the expansion of w in

a series in the vicinity of a is

w" + c, (2 - a)-"*' ?t'"-i + c.2(z — a)-"*'w"-2 + ...

+ Cn-i (z — a)-^n-Hv + Cn (^ - a)"'"" = 0.

Mark in a plane, referred to two rectangular axes, points n, ; 7i— 1,

— 7^1 ; 7? — 2, — ??io ; . .
.

, 0, — ?/t„ ; let these

he Ao, Ai, ..., An respectivelj'-. Anj line

through Ai has its equation of the form

y + mi = \{x — {n — i)],

that is,

y — \x = — \{n — i) — mi.

If then w = {z — a)~^f{z), where /(2^) is ,.,|

finite when z = a, the intercept of the Fig- 20.

foregoing line on the negative side of the axis of y is equal to the order of

the infinity in the term
w'^-^Fi {z).

This being so, we take a line through An coinciding in direction with the

negative part of the axis of y, and we turn it about J.„ in a trigonometrically

positive direction until it first meets one of the other points, say A^-r', then

we turn it about An-r until it meets one of the other points, say Ans', and

so on until it passes through Aq. There will thus be a line from An to

Aq, generally consisting of a number of parts; and none of the points A
will be outside the figure bounded by this line and the axes.

The perpendicular from the origin on the line through An-r and J.„_g is

evidently greater than the perpendicular on any parallel line through a

point A, that is, on any line through a point A with the same value

of \; and, as this perpendicular is

{X(n-i) + mi}{l+X'y^,

it follows that the order of the infinite terms in the equation, when the par-

ticular substitution is made for w, is greater for terms corresponding to points

lying on the line than it is for any other terms.

If f{z) — 6 when z = a, then the terms of lowest order after the substitu-

tion of {z — a)~^f{z) for w are

{Z - a)-'""-'-^'- \Cn-rO'- +...-{- Cn-s6%

as many terms occurring in the bracket as there are points A on the line

joining An-r to Ans- Since the equation determining w must be satisfied,

terms of all orders must disappear, and therefore

Cn-sB'-'' + ... -l-c„_,. = 0,

an equation determining s — r values »jf 6, that is, the first terms in the

expansions of s — r branches lu.
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Similarly for each part of the line : for the first part, there are r branches

with an associated value of X ; for the second, s — r branches with another

associated value; for the third, t — s branches with a third associated value;

and so on.

The order of the infinity for the branches is measured by the tangent

of the angle which the corresponding part of the broken line makes with the

axis of x; thus for the line joining A^-r to Ans the order of the infinity

for the s — r branches is

where ;n„_r and vins are the orders of the accidental singularities of Fn-r{z)

and Fn-s {z)-

If any part of the broken line should have its inclination to the axis of

X greater than ^ir so that the tangent is negative and equal to — fju, then the

form of the corresponding set of branches w is {z — aYg{z) for all of them,

that is, the point is not an infinity for those branches. But when the

inclination of a part of the line to the axis is < ^tt, so that the tangent is

positive and equal to \, then the form of the corresponding set of branches

IV is {z — a)~^f{z) for all of them, that is, the point is an infinity of order \

for those branches.

In passing from An to A^, there may be parts of the broken line which

have the tangential coordinate negative, implying therefore that a is not an

infinity of the corresponding set or sets of branches lu. But as the revolving

line has to change its direction from Any to some direction through Aq,

there must evidently be some part or parts of the broken line which have

their tangential coordinate positive, implying therefore that a is an infinity

of the corresponding set or sets of branches.

Moreover, the point a is, by hypothesis, an accidental singularity of at

least one of the coefficients, and it has been supposed to be an essential

singularity of none of them; hence the points A,„ A^, ..., An are all in the

finite part of the plane. And as no two of their abscissa* are equal, no line

joining two of them can be parallel to the axis of y, that is, the inclination

of the broken line is never ^tt and therefore the tangential coordinate is

finite, that is, the order of the infinity for the branches is finite for any

accidental singularity of the coefficients.

If the singularity at a be essential for some of the coefficients, the

corresponding result can be inferred by passing to the limit which is

obtained by making the corresponding value or values of m infinite. In

that case the corresponding points A move to infinity and then parts of the

broken line pass through A^ (which is always on the axis of x) parallel to

the axis of y, that is, the tangential coordinate is infinite and the order of

13—2
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the infinity at a for the corresponding branches is also infinite. The point is

then an essential singularity (and it may be also a branch-point).

It has been assumed implicitly that the singularity is at a finite point in

the 2'-plane ; if, however, it be at oo , we can, by using the transformation

zz' = 1 and discussing as above the function in the vicinity of the origin,

obtain the relation of the singularity to the various branches. We thus

have the further proposition :

—

The order of the infinity of a branch of an algebraical function at a

singulaHty of a coefiicient of the equation, which determines the function, is

finite or infinite according as the singularity is accidental or essential.

If the coefficients Ft of the equation be holomorphic functions, then

2 = 00 is their only singularity and it is consequently the only infinity for

branches of the function. If some of or all the coefficients Fi be mero-

morphic functions, the singularities of the coefficients are the zeros of

the denominators and, possibly, 2= ao ; and, if the functions be rational,

all such singularities are accidental. In that case, the equation can be

modified to

ho (z) w" + h, (z) w"-' + ho (z) IV''-- + . . . = 0,

where ha(z) is the least common multiple of all the denominators of the

functions Fi. The preceding results therefore lead to the more limited

theorem :

—

When a function w is determined by an algebraical equation the coejficients

of which are holomorphic functions of z, then each of the zeros of the coefiicient

of the highest power of w is an infinity of some of {and it may be of all) the

branches of the function w, each such infinity being of finite order. The point

z= <xi may also be an infinity of the function w ; the order of that infinity is

finite or infinite according as z= <x> is an accidental or an essential singularity

of any of the coefficients.

It will be noticed that no precise determination of the forms of the

branches w at an infinity has been made. The determination has, however,

only been deferred : the infinities of the branches for a singularity of the

coefficients are usually associated with a branch-point of the function, and

therefore the relations of the branches at such a point will be of a general

character independent of the fact that the point is an infinity.

If, however, in any case a singularity of a coefficient should prove to be,

not a branch-point of w but only a regular singularity, then in the vicinity of

that point the branch of w is a. uniform function. A necessary (but not suffi-

cient) condition for uniformity is that (nin-r — wi«_s) h- (s — r) be an integer.

Note. The preceding method can be applied to determine the leading

terms of the branches in the vicinity of a point a which is an ordinary point

for each of the coefficients F.
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96. There remains therefore the consideration of the branch-points of a

function determined by an algebraical equation.

The characteristic property of a branch-point is the equality of branches

of the function for the associated value of the variable, coupled with the

interchange of some of (or all) the equal branches after description by the

variable of a small contour enclosing the point.

So far as concerns the first part, the general indication of the form of the

value has already (§ 93) been given. The points, for which values of iv

determined as a function of z by the equation

f{io,z) =

are equal, are determined by the solution of this equation treated simul-

taneously with

dw '

and when a point z is thus determined, the corresponding values of w, which

are equal there, are obtained by substituting that value of z and taking M,

the greatest common measure of / and --
. The factors of 31 then lead to

the value or the values of tu at the point ; the index m of a linear factor

gives at the point the multiplicity of the value which it determines, and

shews that m+l values of w have a common value there, though they are

distinct at infinitesimal distances from the point. Values of w, determined

by/= but not occurring in a factor of M, are isolated values ; each of them
determines a branch that is uniform at the point.

Let z = ay w = a be a value of z and a value of lo thus obtained ; and

suppose that m is the number of values of w that are equal to one another.

The point ^ = a is not a branch-point unless some interchange among the

m values of w is effected by a small circuit round a; and it is therefore

necessary to investigate the values of the branches* in the vicinity of z = a.

Let w = a + w', z = a + z' ; then we have

/ (a + lu, a + z') = 0,

that is, on the supposition that/(w, z) has been freed fi-om fractions,

/(a, a) -f- 2 S^^/V* = 0,
r,s

SO that, since o is a value of w correspcmding to the value a of z, we have

iv' and z' connected by the relation

SS Arsz'''^v''' = 0.
)• s

• The following investigations are founded on the researches of Puiseux on algebraic

functions; they are contained in two memoirs, Liouville, V Ser., t. xv, (1850), pp. 365—480,

ib. , t. xvi, (1851), pp. 228—240. See al.so the cliapters on algebraic functions, pp. 19—76,

in the second edition of Briot and Bouquet's Thiorie des fonctiont elliptiqius.
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When z is 0, the zero value of w' must occur m times, since a is a root

7)1 times repeated ; hence there are terms in the foregoing equation inde-

pendent of z! , and the term of loAvest index among them is w'"*. Also when

w' = 0, z =^ is a possible root ; hence there must be a term or terms

independent of w' in the equation.

First, suppose that the lowest power of / among the terms independent

of w is the first. The equation has the form

Az' + higher powers of z'

+ Bw'"^ + higher powers of w'

+ terms involving z' and w' = 0,

where A is the value of ~\
'

for w = a, z = a. Let / = ^"*, lu' = vt ; the
oz

last form changes to

(A + Bv'") ^"^ + terms with ^'»+i as a factor = ;

and therefore A + Bv^'^ + terms involving ^ = 0.

Hence in the immediate vicinity of z = a, that is, of ^ = 0, we have

A + Bv'"" = 0.

Neither A nor B is zero, so that all the m values of v are finite. Let them

be Vi,..., Vm, so arranged that their arguments increase by ^ir/ni through

the succession. The corresponding values of w' are

IVr = Vr t

= VrZ'"^,

for r=l, ..., m. Now a 2^-circuit round a, that is, a /-circuit round its

origin, increases the argument of z' by 27r ; hence after such a circuit, we
1 "^ A

have the new value of w,! as Vrz"^ e"^, that is, it is Vr+\z''"^ which is the value

of w'r+i- Hence the set of values w\, w'^,..., w\n form a complete set of

interchangeable values in their cyclical succession ; all the m values, which

are equal at a, form a single cycle and the point is a branch-point.

Next, suppose that the lowest power of z among the terms independent

The equation now has the form

w

= Az -\- higher powers of z

+ Bw' '" + higher powers of

+ S 2 ArsZ^-lU'+tlCr^z'^'w'',
r=\ s=l

where in the last summation r and s are not zero and in every term either

(i), r is equal to or greater than I or (ii), s is equal to or greater than m
or (iii), both (i) and (ii) are satisfied. As only terms of the lowest orders
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need be retained for the present purposr, which is the derivation (tf the first

term ofjf'in its expansion in powers of z', we may use the foregoing u(juation

in the form

Az'^ + '"w'" + 7iw'"' = 0.

Fig. 21.

To obtain this first term we proceed in a manner similar to that in § 95*.

Points Aq, ..., A,n are taken in a phxne

referred to rectangular axes having as co-

ordinates 0, /;...; s, 7-; ... ; m, respectively.

A line is taken through Ajn and is made to

turn round A^ from the position A,nO until

it first meets one of the other points ; then

round the last point which lies in this

direction, say round Aj, until it first meets

another ; and so on.

Any line through Aj (the point s,-, r,) is

of the form

.'/
—

'"i = — X. (.r — Si).

The intercept on the axis of ^'-indices is XSi + vi, that is, the order of the

term involving Ar.g. for a substitution w = vz'''. The perpendicular from the

origin for a line through Ai and Aj is less than for any parallel line through

other points with the same inclination ; and, as this perpendicular is

it follows that, for the particular substitution w' = vz'^, the terms correspond-

ing to the points lying on the line Avith coordinate X are the terms of lowest

order, and consequently they are the terms which give the initial terms for

the associated set of quantities w'.

Evidently, from the indices retained in the equation, the quantities X

for the various pieces of the broken line from A^ to Aq are positive and

finite.

Consider the first piece, from A,n to Aj say; then taking the value of X for

that piece as /ii, so that we write i',/'*' as the first term of w, we have as the

set of terms involving the lowest indices

J5w'"' + ^'^ArsZ^'w'^ + ArjSjZ'''jw''j

,

Sj being the smallest value of s retained ; and then

Vlfli = SfjLi + 7' = Sjtli + Vj,

80 that Ml

• Reference in this connection may bt- made to Clirystal's Algebra, ch. xxx., with great

advantafie, aa well as the authorities quoted on p. 197, note.
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Let piq be the equivalent value of yu-i as the fraction in its lowest terms ; and

write z' = ^9. Then w' = v^z''^ = ^^i^^ ; all the terms except the above group

are of order >m2), and therefore the equation leads after division by ^^Pv^Jio

an equation which determines 7?i — sj values for Vi, and therefore the initial

terms of m — Sj of the w-branches.

Consider now the second piece, fi-om Aj to Ai say ; then taking the value

of \ for that piece as fx^, so that we write v^z'^^-^ as the first term of w', we

have as the set of terms involving the lowest indices for this value of fio

Ar.s/'''W''I + l.tAnZ'^'w'' + A.-.s/'^'lv'"',

where s,- is the smallest value of s retained. Then

Sjfjbo + Vj = sfji2 + r = Si/jb. + Vi.

Proceeding exactly as before, we find

Ar.sVJj-'^ + t^A,,V^-': + A ,^s, =

as the equation determining Sj — s,- values for v,, and therefore the initial

terms of Sj — 5,- of the ^y-branches.

And so on, until all the pieces of the line are used ; the initial terms of

all the w-branches are thus far determined in gi-oups connected with the

various pieces of the line AmAjAi...Ao. By means of these initial terms,

the m branches can be arranged for their interchanges, by the description of

a small circuit round the branch-point, according to the following theorem :

—

Each group can he resolved into st/stems, the members of each of which are

cyclically interchangeahle.

It will be sufficient to prove this theorem for a single gi'oup, say the

group determined by the first piece of broken line : the argument is

general.

Since - is the equivalent of and of —^— and since s; < s, we have
q

^ .m —s m — Sj
'

m — s = kq, m — Sj = kjq, kj > k
;

and then the equation which determines Vj is

Bvfi'i + S^^.Vi^-*"' + Ar.s. = 0,

that is, an equation of degree /.) in v,^ as its variable. Let U be any root of

it ; then the corresponding values of i\ are the values of U'^. Suppose these

q values to be arranged so that the arguments increase by 27r - , which is

possible, because p is prime to q. Then the q values of ^u', being the values

of Vi^'**', are
p p p

VnZ''', ^12A Vy,z'l,...,
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where Via is that vahie of U^ which has
*'

- for its argument. A circuit

round the 2;' -origin evidently increases the argument of any one of these

w'-values by '"lirp/g, that is, it changes it into the value next in the succession
;

and so the set of q values is a system the members of which are cyclically

interchangeable.

This holds for each value of U derived from the above equation ; so that

the whole set of m — Sj branches are resolved into kj systems, each containing

q members with the assigned properties.

It is assumed that the above equation of order kj in Vi'^ has its roots unequal.

If, however, it should have equal roots, it must be discussed ctb initio by a

method similar to that for the general equation; as the order kj (being a

factor of m — Sj) is less than m, the discussion will be shorter and simpler,

and will ultimately depend on equations with unequal roots as in the case

above supposed.

It may happen that some of the quantities
fj,

are integers, so that the

corresponding integers q are unity : a number of the branches would then be

uniform at the point.

It thus appears that z = a is a branch-point and that, under the present

circumstances, the m branches of the function can be arranged in systems,

the members of each one of which are cyclically interchangeable.

Lastly it has been tacitly assumed in what precedes that the common

value of w for the branch-point is finite. If it be infinite, this infinite value

can, by § 95, arise only out of singularities of the coefficients of the equation :

and there is therefore a reversion to the discussion of §§ 95, 96. The dis-

tribution of the various branches into cyclical systems can be carried out

exactly as above.

Another method of proceeding for these infinities would be to take

7vw' =1, 2 = c + z' ; but this method has no substantial advantage over the

earlier one and, indeed, it is easy to see that there is no substantial

difference between them.

Note. In the first case considered, a single transformation of the variables

represented by / = ^'", '// = v^, was sufficient to discriminate among the m
branches.

In the second case, the number of different directions in the broken line

of fig. 21 is finite (^w); to each such direction there corresponds a trans-

formation of the variables which leads to a discrimination among one of the

groups out of the m branches, and therefore the whole number of trans-

formations needed to discriminate among the m branches is finite.

If the m branches are infinite at the point, the corresponding analysis

shews that the whole number of transformations needed to discriminate among

thi^si' 111 braneht'S is finite.
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Moreover m is finite, being ^ n ; hence the various branches of the

function w are discriminated, at a branch-point, by a finite number of trans-

formations.

Ex. 1. As an example, consider the function determined by the equation

8zw^+{l -z){^io+ 1) = 0.

The equation determining the vahies of z which give equal roots for w is

8z{z-iy-=4{z-iy,

so that the values are 2= 1 (repeated) and z= -I.

When 2= 1, then iv=0, occurring thrice; and if z=l+z', then

that is, y/= |2'i.

The three values are branches of one system in cyclical order for a circuit round 2=1.

When 2= - 1, the equation for w is

4w3-3w-l = 0,

that is, {tv-l){2w+lf= 0,

so that w=l, or w= -^, occurring twice.

For the former of these we easily find that, for 2 = — 1 + 2', the value of w is

1+^2'+ , an isolated branch as is to be expected, for the value 1 is not rei^eated.

For the latter we take vj= —^+ to\ and find

^''= 2^''+
,

so that the two branches are

'^=-^ + 276^'* + '

''--^-^Te'^"-
'

and they are cyclically interchangeable for a small circuit round 2= - 1.

These are the finite values of w at branch-points. For the infinities of w, which may
arise in connection with the singularities of the coefiicients, we take the zeros of the

coefiicient of the highest power of w in the integral equation, viz., 2=0, which is thus the

only infinity of w. To find its order we take w=z~"f{z)= yz~"- + , where y is a

constant and f(z) is finite for 2= 0; and then we have

82I-3''

—137^'+ = 3y-" + + 1.

Thus l-3/i=-n,

provided both of them be negative; the equality gives n= ^ and satisfies the condition.

And 8y3= -3y. Of these values one is zero, and gives a branch of the function without

an infinity; the other two are ±^^-^ and they give the initial term of the two

branches of w, which have an infinity of order -| at the origin and are cyclically

interchangeable for a small circuit round it. The three values of w for infinitesimal

values of 2 are

VS 6 18 V 8 «1 1944 V8 729'+"

/3 . -i 1 7 /3 . i 4 275 /3 . a 4

Vb^' +6 + 18 VS^^-- 81^+ 1944 Vs^^ "7-2
2_

729"

18 8 ,

"'^=-3 + 81^+ 729' +
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The first two of these form the system for the brauch-point at the origin, wliich is neither

an infinity nor a critical point for the tliird branch of the function.

Ex. 2. Obtain the branch-point.s of the functions which are defined by the following

equations, and determine the cyclical .systems at tlie branch-points :

—

(i) tfi-tv-{-z=^0\

(ii) ?<;3-3«;2+ 5«= 0:

(iii) Jt'3-3w+ 222(2-s2)= 0;

(iv) ^<^^-3^«•+ ^3 = 0;

(v) tifi-{\- ;-) t^--5 2^ (1 _ z^f=0. (Briot and Bouquet.)

Also discuss the branches, in the vicinity of 2=0 and of 2=x , of the functions defined

by the following equations :

—

(vi) au^ +buH+ cu^s^ + clw-2f> + eivz' +/2''

+

gu'^ + h u?*z^+ kz^^= ;

(vii) ?<,"»2''+it''' + 2"'= 0.

97. Having shewn how to discriminate at any point among the various

branches of the algebraic function defined by the equation

/(w, z) = ho (z) w« + h, (z) w»-' + L {z) w"-- + . . . = 0,

where the quantities ho(z), hi{z), }u{z), ... are holomorphic functions, we

proceed to indicate the character of the various branches near the point. After

the preceding discussions, it will be sufficient to consider only finite values

of z ; the consideration of infinite values can be obtained through the zero

values of /, where - is substituted for z. It is only for zeros of h^ {z) that
z

an infinite value (or several infinite values) of w can arise : they can be

discussed through the zero values of w', where —, is substituted for w.

Accordingly, let a denote a finite value of z, and let a denote a finite

value of w for z = a, where a may be a simple root or multiple root of

/(a, a) = 0. Take lu = a + y, z= a-\- x, so as to consider some vicinity of the

point a and the character of w in that vicinity ; and let

f{w, z) =/(a -^y,a-^x)^F{y, x),

where F is a pol3Tiomial in y of degree not greater than n, and the coefficients

are holomorphic functions of x which are polynomials when all the coefficients

Hq, hi, ... are polynomials. We have ^""(0, 0)=0, so that there is no term

free from x and y in F{y, x). Also F{y, 0) does not vanish for all values of

y ; for that would imply that some integral power of x is a factor oi F{y, x)

and therefore that some integi-al power of ^ - a is a factor of f{w, z), which

is not the case. Hence there is at least one term in the polynomial F{y, x),

which has a constant for its coefficient, and there may be more than one

such term ; let the term of lowest order in y be By^, and let the aggregate

of such terms be denoted by F^iy). Denoting the rest by F^iy, x), where

Fi is a polynomial in y that has holomorphic functions of x for its coefficients,

we have
F{y,x) = F,{y)-FAy,^);
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clearly F^iy, x) vanishes when a;=0 for all values of y, in any vicinity of

y = 0. Hence* we can choose a region in the vicinity of y = 0, x = 0,

such that

\Fo\>\F,\;

but as Fo vanishes when y = 0, there may be some limit o( \y\ other than

zero, at and below which the inequality does not hold. Accordingly, assume

as the range for the inequality

\Po\<iy\<P, I

'T I < r.

For such values we have, on taking logarithmic derivatives of the equation

the relation

}^^Z = 1^J^-1 i III
F dy Fo dy da;,=,\Fo'-

Since Fo is a polynomial in y that is divisible by y"", we have

1 ?Fo m ^, ,

where G^ is a converging series of integral powers. Similarly

where the quantities G^x./n are converging series of integral powers of x, each

* 1 F^
of them vanishing with x. As the series 5^ 7 w;;^ converges uniformly, we

A = l A- r

may gather together the various terms that involve the same power of y ;

and we then have

A.= lA,i'o p=-oo

where each of the coefficients G^ is a converging power-series in x which

vanishes with x. Thus

F-dy y '-^^ dy p=-^ ^^

where the 5nly term on the right-hand side in y~'^ is

Now let 7;i, ...,7]s denote the zeros of F{y, k), for values of y such that

\y\< p and for a parametric value k of x such that
|
«

|

< r : it might be that

there are no such zeros (though this will be seen not to be the case) : repeated

zeros are given by repetition in the quantities 17. Then

1 dF(y, k) _ 4 _1
F dy 1=1 y-vi

* What follows is a special case of an important theorem, due to Weierstrass, Ges. Werkt,

t. ii, p. 135.



loinparing the two expansions for ^ ~ , we have

97.] WEIER.STRAS8 205

is finite for all values of y within the range, and therefore it can be expanded

in a converging series of positive powers, so that

Now choose values of y, still such that y < p, and also such that they give

moduli greater than the greatest of the quantities \'rii\\ the fractions on the

right-hand side can be expanded in descending powers of y, and we have

J^ oy y ;x=i

where S^ = t}^'^ + 7;./ + . . . + rn^".

The parametric value k in this expansion can be replaced by x ; and thus

1 a^

s = m, S^ = (mG-^.

The first of these results shews that there are m roots of F within the

range. The second of them expresses the sums of the positive powers of

77, , ..., rji as converging series of positive powers of x which vanish with x
;

hence the symmetric integral functions of 771, ..., vi are regular functions of a;

in the vicinity of a; = and vanish with x. Let

9 (y, ^) = (y - vi) (y - V2) '• iy - vi)

= y^ + 9,y"'-' + ...+gi,

where ^i are regular functions of x and vanish with x.

A further comparison of the expansions shews that

P(y) = G(y)-i(q+\)G,^,y'i
7=0

= |r(y,.).

where F (y, x) is a regular function of y and x, given by

r(y,x)=\'''G{y)dy-iG,^,yi+\
.0 (1 =

Hence
1 dF 4 I 9 n. X

and therefore

F=Ur/(y,x)e'' '''•''>,

where U is a quantity independent of//. Now when x is zero, U is B ; hence

generally

U= B {I + positive powers of if)

= Be^,
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where f is a regular function of x vanishing with x. Writing G ( y, x) for

r {y, x) + f, where G (0, 0) = 0, we have

F=Bg{y, a;)e«'2'.^*,

with the defined significance of g (y, x) and G {y, x).

Our immediate purpose is with such values of y, being functions of x, as

make F vanish in the region considered. Clearly the exponential term does

not vanish ; and therefore we have the values of y given by

g (y, x) = y^^ g, ?/"^-^ + g.y'^-^- + . . . + ^,^ = 0,

where g^, g^, •, gm are regular functions of a; that vanish with x.

Case 1. The simplest case arises when in=\ ; the root a is then a simple

root of f{a, a) = 0, and we have

that is,

w-(X = y=-g,= Q(z-a),

or in the vicinity of the point a, the branch associated with the simple root

of /(a, a) = is a regular function of z — a.

The same result holds for each simple root a of the equation /(a, a) = 0.

Case 2. Let m > 1, so that the root a is a multiple root of /(a, a) = 0,

and z = a may be (and generally is) a branch-point. The equation

g (y, x) = 2/'« + g.f'^-' + g,y'"'-' + . . . + ^/^ =

determines m branches. By § 96 these branches can be arranged in gi-oups,

p

each group corresponding to a particular order
j y |

oc
|

a; |'' for sufficiently small

values of J3/I and \x\, and the order being determined by a portion of a broken

line in a Puiseux diagram.

Thus for the first portion of the line, take x = ^'^,y= v^p ; then the equation

becomes of the form

V'" + iKrV''-^ + KiV'"-' + ^P {V, = 0,

where F{v, ^) is a regular function of its arguments. 'A\nien ^=0, we have

W'* + lKrV'^~'' + Kg = 0,

rejecting the zero values of v. If v = Vi bo a simple root of this equation,

then in the earlier equation we write v = Vi + u; and it then follows, by

Case 1 above, that

where i^ is a regular function of ^ that vanishes when ^=0. Accordingly

for every simple root of the equation in v when ^ is zero, we have

z-a = ^^, w- a = ^J' {v, + R {^)],
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shewing that the corresponding branch of the algebraic function is a iiniforni

1

function of (z-a)^. When 9 is 1, the branch is a regular function of z — a.

When q>l, there is a system of roots of the same form.

It ma}' happen that v^ is a multiple root* of

V" + iKrV"'' + /f, = 0.

This equation is of degree s, being less than m, the degree of the original

equation. To it we apply, for the multiple root, the preceding process : and

so gi-adually reach the stage in which each of the branches is discriminated

and analytically expressed.

Similarly for the remaining portions of the broken line in the Puiseux

diagram of § 96.

It therefore follows that all the branches (if the branches be more than

one) of the function, defined by the equation /(w, z) = and acquiring the

value a when 2 = a, where /(a, a) = 0, can be represented in the analytical

form

where S{^) is a regular function of its argument which does not vanish when

^=0, and where p, q are positive integers not necessarily the same for all

the branches. (As already remarked, we have assumed a and a to be finite.

It is easy to see that for an infinite value of ^u when z = a, we have a branch

«if the form

where p is a finite integer; and similarly for infinite values of 2.) Conse-

quently the function defined by the equation /(w, z) = 0, which is pol^momial

in tv and uniform in z, has m branches at any point a, each of the branches

being expressible as a uniform analytic function of (^ — a)''. Iff(iu,z) is

polynomial in z as well as in iv, the non-regular points of the bnyiches are

poles and branch-points: no point in the plane is an essential singularity for

any branch.

Corollary. We have the theorem, originally due to Cauchy, as an

inference from the whole investigation:

—

The roots w of an equation f{w,z) = 0, which is polynomial in u< and

innform in z, are continuous functions of z.

It follows at once from the two relations

z-a = ^'i, //. _a= ^/'.S'(^).

* Such is the case for the equation

If" - \bw*z - 'Ixc^z + loir'z* + 6u?i- + z- - z^= 0.
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Note. If Vi be a multiple root of its equation, the form

is still valid : but p and q are then not necessarily prime to each other. (The

equation represented by
00

z — a = f ^*, w — a= i a,i ^",

= 2

is an example.) The condition is that, if the indices in the expression for

w — a have a common factor/, then /is not a factor of q.

98. There is one case of considerable importance which, though limited

in character, is made the basis of Clebsch and Gordan's investigations* in the

theory of Abelian functions—the results being, of course, restricted by the

initial limitations. It is assumed that all the branch-points are simple, that

is, are such that only one pair of branches of w are interchanged by a circuit

of the variable round the point; and it is assumed that the equation/=0 is

polynomial not merely in w but also in z. The equation/= can then be

regarded as the generalised form of the equation of a curve of the nth. order,

the generalisation consisting in replacing the usual coordinates by complex

variables ; and it is further assumed, in order to simplify the analysis, that all

the multiple points on the curve are (real or imaginary) double-points. But,

even with the limitations, the results are of great value in themselves ; and

the theory of birational transformation (§§ 245—252) brings them within the

range of unrestricted generality. It is therefore desirable to establish the

results that belong to the present section of the subject.

We assume, therefore, that the branch-points are such that only one

pair of branches of w are interchanged by a small closed circuit round any

one of the points. The branch-points are among the \':ilues of z determined

by the equations

/(,„,.) = o, ?^-) = o.

When /= has the most general foyn consistent with the assigned

limitations, f{iu, z) is of the ?ith degree in z ; the values of z are determined

by the eliminant of the two equations which is of degree n {n — 1), and there

are, therefore, n{n- 1) values oi z which must be examined.

First, suppose that \' ~ does not vanish for a value of z, thus

obtained, and the corresponding value of w\ then we have the jfirst case

in the preceding investigation. And, on the hypothesis adopted in the

present instance, w = 2; so that each such point z is a branch-point.

* Clebsch und Gordan, Theorie der AbeVschen Functionen, (Leipzig, Teubner, 1866). It will

be proved hereafter (§ 252) that any algebraical equation can be transformed birationally into an

equation of tlie kind indicated. The actual transformations, however, tend to become extremely

complicated ; and, in particular instances, detailed results would be obtained more simply by

proceeding directly from the original equation.
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Next, suppo.se that - --' vanishes for some of the /; {n —1) values of z
;

oz

the vahie of ni is still 2, owing to the hypothesis. The case will now be still

d'-f (w z)
further limited by assuming that •

^ ,^'— does not vanish for the value of z

and the corresponding value of w ; and thus in the vicinity of z = a, w = a we

have an equation

= Az'- + 2Bz'w' + Cw'- + terms of the third degree + ,

where A, B, C are the values of ^-i
, ^ { ,

-^ tor z = a,w = 'x.

oz^ dzow mv^

If B- $ AC, this equation leads to the solution

Cw + Bz' oc uniform function of/.

The point z = a, w = a is )wt a branch-point ; the values of w, equal at the point,

are functionally distinct. Moreover, such a point z occurs doubly in the

eliminant ; so that, if there be 8 such points, they account for 28 in the eliminant

of degree n{n — I); and therefore, on their score, the number n(n — l) must

be diminished by 28. The ease is, reverting to the generalisation of the

geometry, that of a double point where the tangents are not coincident.

If, however, B-= A C, the equation leads to the solution

Civ' + Bz' = Lz''^ + Mz'- -^ Nz'-- +

The point z = (i, w = a. is a point where the two values of z interchange.

Now such a point z occurs triply in the eliminant ; so that, if there be k

such points, they account for Sk of the degree of the equation. Each of

them provides only one branch-point, and the aggregate therefore provides k

branch-points ; hence, in counting the branch-points of this type as derived

through the degree of the eliminant, the degree must be diminished by 2k.

The case is, reverting to the generalisation of the geometry, that of a double

pi'iiit (real or imaginary) where the tangents are coincident.

It is assumed that all the n (n — 1) points z are accounted for under

the three classes considered. Hence the number of hrancJi-points of the

equation is

n = n{n -1)- 28-2/c,

where n is the degree of the equation, 8 is the number <»f double points

(in the generalised geometrical sense) at which tangents to the curve do not

coincide, and k is the number of double points at which tangents to the

curve do coincide.

And at each of these liranch-points, O in number, two branches of the

function are equal and, for a small circuit round it, interchange.

F. F. 14
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99. The following theorem is a combined converse of many of the

theorems which have been proved :

—

A function w, which has n {and only n) values for each value of z, and

which has a finite number of infinities and of branch-points in any part of the

plane, is a root of an equation in w of degree n, the coejficients of which are

uniform functions of z in that part of the plane.

We shall first prove that every integral symmetric function of the n

values is a uniform function in the part of the plane under consideration.

Let Sk denote S w,*, where k is a positive integer. At an ordinary point
i = \

of the plane, Sk is evidently a one-valued function and that value is finite

;

Sk is continuous ; and therefore the function S^ is uniform in the immediate

vicinity of an ordinary point of the plane.

For a point a, Avhich is a branch-jjoint of the function lo, we know that

the branches can be arranged in cyclical systems. Let w^, ..., w^ be such a

system. Then these branches interchange in cyclical order for a description

of a small circuit round a ; and, \i z — a = Z^, it is known (§ 93) that, in the

vicinity of -^ = 0, a branch w is a uniform function of Z, say

Therefore w^ = Gk (^) + Pk {Z),

in the vicinity of Z=0; say

W,'' = Ak+ S Bk,mZ~-^+ S Gk,mZ^-.
m = l m = l

Now the other branches of the function, which are equal at a, are derivable

from any one of them by taking the successive values which that one

acquires as the variable describes successive circuits round a. A circuit

of w round a changes the argument of z — a by 27r, and therefore gives Z

reproduced but multiplied by a factor which is a primitive /ith root of unity,

say by a factor .o ; a second circuit will reproduce Z with a factor or ; and so

on. Hence

:£ Ck,,„o^'''"Z''

1 m -

1
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and therefore

i wj' = fiAk + S Bk,n Z-'" (1 + a-'" + a--'" + . . . + a-""*+"*)
r=\ m=\

+ S (7jt,„-2r'» (1 + a'" + a-'» + . . . + a'"'*-'").

m = \

Xow, since a is a primitive /xth root of unity,

1 4-a''' + a'-^ + ... + a"''^-"

is zero for all integral values of s which are not integral multiples of /i, and it

is /x for those values of .<? which are integral values of yu- ; hence

- i wJ' = A, + B,^,Z-'^^Bk,,,Z-^ + B,,,^Z-^'^ + ...

+ C,,,Z'^ + Ck,,,Z^>^ + Gk,,,Z-^'^ + ...

= .4, + F,,i {z - «)-! + B,,, {z - a)-' + 5^3 (^ - a)-^ + • • •

+ C'V 1 (^ - a) + (7^2 (^ - of + C^a (2 - a)^ + . . .

.

Hence the point z = a may be a singularity of 2 wj' but it is not a branch-
r=l

point of the function ; and thei^Bfore in the immediate vicinity of 2^ = a the

quantit}' S ivj' is a uniform function.
r = \

The point a is an essential singularity of this uniform function, if the

order of the infinity of w at a be infinite : it is an accidental singularity, if

that order be finite.

This result is evidently valid for all the cyclical systems at a, as well as

for the individual branches which may happen to be one-valued at a. Hence

Sk, being the sum of sums of the form S ivj' each of which is a uniform

function of z in the vicinity of a, is itself a uniform function of z in that

vicinity. Also a is an essential singularity of Sk, if the order of the infinity

aX z = a for any one of the branches of lu be infinite ; and it is an accidental

singularity of Sk, if the order of the infinity aX z = a for all the branches of w
be finite. Lastly, it is an ordinary point of Sk, if there be no branch of w for

which it is an infinity. Similarly for each of the branch-points.

Again, let c be a regular singularity of any one (or more) of the branches

of w ; then c is a regular singularity of every power of each of those branches,

the singularities being simultaneously accidental or simultaneously essential.

Hence c is a singularity of Sk : and therefore in the vicinity of c, Sk is a

uniform function, having c for an accidental singularity if it be so for each of

the branches w affected by it, and having c for an essential singularity if it

be so for any one of the branches w.

It thus appears that in the part of the plane under consideration the

functicjn Sk is one-valued ; and it is continuous and finite, except at certain

U—

2
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isolated points each of which is a singularity. It is therefore a uniform

function in that part of the plane ; and the singularity of the function at any

point is essential, if the order of the infinity for any one of the branches w
at that point be infinite, but it is accidental, if the order of the infinity for

all the branches w there be finite. And the number of these singularities

is finite, being not greater than the combined number of the infinities of the

function w, whether regular singularities or branch-points.

Since the sums of the kth. powers for all positive values of the integer k

are uniform functions, and since any integral symmetric function of the

n values is a rational integral function of the sums of the powers, it follows

that any integral symmetric function of the n values is a uniform function

of z in the part of the plane under consideration ; and every infinity of a

branch w leads to a singularity of the symmetric function, which is essential

or accidental according as the orders of infinity of the various branches are

not all finite or are all finite.

Since IV has n (and only n) values Wj , . .
.

, w,i for each value oi z, the equation

which determines «; is

{W — Wj) {W — Wz) . . . (Wv- Wn) = 0.

The coefficients of the various powers of w are symmetric functions of the

branches ^i;l, ...,Wn; and therefore they are uniform functions of ^^ in the part

of the plane under consideration. They possess a finite number of singularities,

which are accidental or essential according to the character of the infinities of

the branches at the same points.

Corollary. If all the infinities of the branches in the finite part of the

whole plane be offinite order, then the finite singularities of all the coefiicients

of the poivers of lu in the equation satisfied by w are all accidental ; and the

coefiicients themselves then take the form of a quotient of an integral uniform

function {which may be either transcendental or merely polynomial, in the sense

o/§ 47) by another function of a similar character.

If 2r = 00 be an essential singularity for at least one of the coefficients,

through being an infinity of unlimited order for a branch of w, then one

or both of the functions in the quotient-form of one at least of the coefficients

must be transcendental.

If 2 = 00 be an accidental singularity or an ordinary point for all the

coefficients, through being either an infinity of finite order or an ordinary

point for the branches of w, then all the functions which occur in all the

coefficients are rational expressions. When the equation is multiplied

throughout by the least common multiple of the denominators of the

coefficients, it takes the form

W"/*«(^) + W"-'/?, (2) + ... + luhn-^ {z) + hn{z) = 0,

where the functions /«o {z), h^ {z), ..., /i„ {z) arc polynomials in z.



99.] A FINITE NUMBER OF BRANCHES 213

A knowledge of the number of infinities of w gives an upper limit of the

degree of the equation in z in the last form. Thus, let cii be a regular

singularity of the function; and let a,, yS,-,7,-, ... be the orders of the infinities

of the branches at «,- ; then

WHO..... Wn{z — tti) ',

where A.; denotes a,- + /3,- + 7,- + . .. , is finite (but not zero) for z = Ui.

Let c,- be a branch-point, which is an infinity; and let /m branches iv form a

Si

system for c,-, such that tv{z — Ci)f^ is finite (but not zero) at the point; then

WiiUn ... iUfj,{z — c)
'

is finite (but not zero) at the point, and therefore also

20,...IV,,{Z-Cd'^^'^^'-'^^^-

is finite, where 6i, <^i, \jri, ... are numbers belonging to the various systems;

or, if e,- denote ^^ + 0i + -"/^i + . . . , then

io^... Wn{z — CiY'

is finite for z = Ci. Similarly for other symmetric functions of w.

Hence, if Oj, o^, ... be the regular singularities with numbers Xj, Xo, ...

defined as above, and if Ci, Co, ... be the branch-points, that are also infinities,

with numbers e,, e^, ... defined as above, then the product

(w-ii\) (w-tVn) n {z-Qif* n (z-CiY'

is finite at all the points cii and at all the points Cj. The points a and the

points c are the only points in the finite part of the plane that can make the

product infinite : hence it is finite everywhere in the finite part of the plane,

and it is therefore polynomial in z.

Lastly, let p be the number for z= co corresponding to Xf for ai or to ej

for Ci, so that for the coefficient of any power of w in (lu — «;,) ...(w- Wn) the

greatest difference in degree between the numerator and the denominator is

p in favour of the excess of the former.

Then the preceding product is of order

p + l\, + lei,

which is therefore the degree of the e<juation in z when it is expressed in a

holomorphic form.



CHAPTER IX.

Periods of Definite Integrals, and Periodic Functions in general.

100. Instances have already occurred in which the value of a function

of z is not dependent solely upon the value of z but depends also on the

course of variation by which z obtains that value ; for example, integrals of

uniform functions, and multiform functions. And it may be expected that,

a fortiori, the value of an integral connected with a multiform function will

depend upon the course of variation of the variable z. Now as integrals

which arise in this way through multiform functions and, generally, integrals

connected with differential equations are a fruitful source of new functions,

it is desirable that the effects on the value of an integral caused by variations

of a 2;-path be assigned so that, within the limits of algebraic possibility, the

expression of the integral may be made completely determinate.

There are two methods which, more easily than others, secure this result

;

one of them is substantially due to Cauchy, the other to Riemann.

The consideration of Riemann's method, both for multiform functions and

for integrals of such functions, will be undertaken later, in Chapters XV.,

XVI. Cauchy's method has already been used in preceding sections relating

to uniform functions, and it can be extended to multiform functions. Its

characteristic feature is the isolation of critical points, whether regular

singularities or branch-points, by means of small curves each containing one

and only one critical point.

Over the rest of the plane the variable z ranges freely and, under certain

conditions, any path of variation of z from one point to another can, as will

be proved immediately, be deformed without causing any change in the

value of the integral, provided that the path does not meet any of the small

curves in the course of the deformation. Further, from a knowledge of the

relation of any point thus isolated to the function, it is possible to calculate

the change caused by a deformation of the ^^-path over such a point ; and

thus, for defined deformations, the value of the integral can be assigned

precisely.
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The properties proved in Chapter II. are useful in the consideration of

the integrals of uniform functions ; it is now necessary to establish the

propositions which give the effects of deformation of path on the integrals

of multiform functions. The most important of these propositions is the

following :

—

If w he a multiform function, the value oj I wdz, taken between two
J a

ordinary points, is unaltered for a deformation of the path, provided that the

initial branch of w be the same and that no branch-point or infinity be crossed

in the deformation.

Consider two paths acb, adb, (fig. 16, p. 181), satisfying the conditions

specified in the proposition. Then in the area between them the branch lu

has no infinity and no point of discontinuity ; and there is no branch-point

in that area. Hence, by § 90, Corollary VI., the branch w is a uniform

monogenic function for that area ; it is continuous and finite everywhere

within it and, by the same Corollary, we may treat lu as a uniform, mono-

genic, finite and continuous function. Hence, by § 17, we have

rb -a

(c) 'wdz-h(d)
I

wdz = 0,
J a h

the first integral being taken along acb and the second along hda ; and

therefore
'b fa rb

(c) I ludz = — {d) wdz = (d) I ludz,

shewing that the values of the integral along the two paths are the same

under the specified conditions.

It is evident that, if some critical point be crossed in the deformation,

the branch w cannot be declared uniform and finite in the area, and the

theorem of § 17 cannot then be applied.

Corollary I. The integral round a closed curve containing no critical

point is zero.

Corollary II. A curve round a branch-point, containing no other

critical point of the function, can be deformed into a loop

without altering the value of jwdz ; for the deformation

satisfies the condition of the proposition. Hence, when

the value of the integral for the loop is known, the

value of the integral is known for the curve.

Corollary III. From the proposition it is possible

to infer conditions, under which the integral jwdz round

the whole of any curve remains unchanged, when the whole

carve is deformed, without leaving an infinitesimal arc

common as in Corollary II.
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Let CDC , ABA' be the curves: join two consecutive points AA' to two

consecutive points CC. Then if the area CABA'CDC
enclose no critical point of the function lu, the value of

jwdz along CDC is by the proposition the same as its

value along CABA'C. The latter is made up of the

value along CA, the value along ABA', and the value

along A'C, say

I wdz + tudz + lu'dz,
J C J B J A'

where w' is the changed value of iv consequent on the description of a simple

curve reducible to B {% 90, Cor. II.).

Now since w is finite everywhere, the difference between the values of w
at A and at A' consequent on the description of ABA' is finite: hence as

A'A is infinitesimal the value of [wdz necessary to complete the value for

the whole curve B is infinitesimal and therefore the complete value can be

taken as the foregoing integral wdz. Similarly for the complete value
.' B

along the curve D : and therefore the difference of the integrals round B and

round D is

rA rc-

tudz +- w'dz,
J c J A'

say j^{w
J c

w')dz.

In general this integral is not zero, so that the values of the integral

round B and round D are not equal to one another : and therefore the curve

D cannot be deformed into the curve B without affecting the value of jwdz

round the whole curve, even when the deformation does not cause the curve

,to pass over a critical point of the function.

But in special cases it may vanish. The most important and, as a

matter of fact, the one of most frequent occurrence is that in which the

description of the curve B restores at A' the initial value of lu at A. It

easily follows, by the use of § 90, Cor. II., that the description of D (as-

suming that the area between B and D includes no critical point) restores

at C the initial value of w at C. In such a case, lu = w' for corresponding

points on AC and A'C, and the integi-al, which expresses the difference,

is zero : the value of the integral for the curve B is then the same as that

for Jk Hence we have the proposition :

—

// a curve be such that the descriptiun of it by the independent variable

restores the initial value of a multiform function w, then the value of Jwdz

taken round the curve is unaltered when the curve is deformed into any other

curve, provided that no branch-point or point of discontinuity of w is crossed

in the course of deformation.
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This is the generalisation of the proposition of v^ 19 which has thus far

been used only for unifonn functions.

Note. Two particular cases, which art- vltv siinple, may Ix- im-niiiined

here: special examples will be given immediately.

The first is that in which the curve B, and therefore also Z), encloses

no branch-point or infinity ; the initial value of lu is restored after a

description of either curve, and it is easy to see (by reducing ii to a

point, as may be done) that the value of the integral is zero.

The second is that in which the curve encloses more than one branch-

point, the enclosed branch-points being such that a circuit of all the loops,

into which (by Corollary V., § 90) the curve can be deformed, restores the

initial branch of w. This case is of especial importance when w is two-valued

:

the curves then enclose an even number of branch-points.

101. It is important to know the value of the integral of a multiform

function round a small curve enclosing a branch-point.

Let c be a point at which in branches of an algebraic function are equal

and interchange in a single cycle ; and let c, if an infinity, be of only finite

order, say kim. Then in the vicinity of c, any of the branches lo can be

expressed in the form
X .9

w= S gs{z — cy"-,

s=-k

where k is a finite integer.

The value of jiudz taken round a small curve enclosing c is the sum of

the integrals

g.Jiz-cY'dz,

the value of which, taken once round the curve and beginning at a point z^, is

m + A''-'^'^
['-.'-1],

where a is a primitive 7Hth root of unity, provided m -|- s is not zero.

If then 111 + s he positive, the value is zero in the limit when the curve

is infinitesimal: if iti + s be negative, the value is x in the limit.

But, if 7n -h .s be zero, the value is ^irigg.

Hence we have the proposition : //', in the vicinity of a hratich-point c,

ii'here m branches w are equal to one another and interchange cyclically, the

expression of one of the brandies be

__
k AjJ

gk{z-c)''''+gk-^{z-c)"»' -f-

then jwdz, taken once round a small curve enclosing c, is zero, if k < ni ; is

infinite, if k> ni ; and is "l-rrigk, if k= in.
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It is easy to see that, if the integi'al be taken m times round the small

curve enclosing c, then the value of the integral is ^mirigm when k is greater

than m, so that the integral vanishes unless there be a term involving {z — c)~^

in the expansion of a branch w in the vicinity of the point. The reason that

the integi'al, which can furnish an infinite value for a single circuit, ceases to
A.

do so for m circuits, is that the quantity {z^ — c) '", Avhich becomes indefi-

nitely great in the limit, is multiplied for a single circuit by a^— 1, for a

second circuit by a?^ — a.^, and so on, and for the with circuit by a""^ — a""~^'\

the sum of all of which coefficients is zero.

Ex. The integral l{{z-a){z— h)...{z -/)}'hdz taken round an indefinitely small curve

enclosing a is zero, provided no one of the quantities 6, ...,/ is equal to a.

102. Some illustrations have already been given in Chapter II., but

they relate solely to definite, not to indefinite, integrals of uniform

functions. The whole theory will not be considered at this stage ; we shall

merely give some additional illustrations, which will shew how the method
can be applied to indefinite integrals of uniform functions and to integrals

of multiform functions, and which will also form a simple and convenient

introduction to the theory of periodic functions of a single variable.

We shall first consider indefinite integrals of uniform functions.

Ex. 1. Consider the integral / — , and denote* it by f{z).

The function to be integrated is uniform, and it has an accidental singularity of the first

order at the origin, which is its only singularity. The value of \z~'^ dz taken positively

along a small curve round the origin, say round a circle with the origin as centre, is 27rt

;

but the value of the integral is zero when taken along any closed curve wllieh does not

include the origin.

Taking 2= 1 as the lower limit of the integral, and any point z as the upper limit, we
consider the possible paths from 1 to z. Any path from I to 2 can be deformed, without

crossing the origin, into a path which circumscribes the origin positively some number of

times, say mj, and negatively some number of times, say m^., all in any order, and then

leads in a straight line from 1 to z. For this path the value of the integral is equal to

(27r/) mi + ( -27r0»i2+ I ~,

that is, to 2miTi+ \ —

,

J 1
2

where m is an integer, and in the last integral the variation of z is along a straight

line from 1 to z. Let the last integral be denoted by u ; then

/ (2)= M+ 27mTi,

and therefore, inverting the function and denoting /"• by </>, we have

z=
(f>

{u + 2mTT i).

Hence the general integral is a function of z with an infinite number of values ; and 2 is a

periodic function of the integral, the period being 2ni.

* See Clirystal, ii, i)p. 288—297, for the elementary properties of the function and its inverse,

when the variable is complex.
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Ex. 2. Consider the function i —~^, ; and again denote it by f{z).

The one-valued function to be integrated has two accidental singularities +?', each of

the first oi-der. The value of the integral taken positively along a small curve round i is

fr, and along a small curve round - 1 is - tt.

We take the origin as the lower limit and any point z as the upper limit. Any path

from to z can be deformed, with<iut crossing either of the singularities and therefore

without changing the value of the integral, into

(i) any numbers of positive (?n.j, m-i) and of negative {my, m./) circuitiB round i and

round — i, in any order, and

(ii) a straight line from to z.

Then we have

/(z) = miw + nil' ( - tt)+ »i2 (-") + wio' { - ( - tt)} +
I J

_^^^2

f^ dz

Jo 1+2-

= n7r + U,

where n is an integer and the integral on the right-hand side is taken along a straight line

from to z.

Inverting the function and denoting /"' by
(f>,

we have

z=(f) (u+ nrr).

The integral, as before, is a function of z with an infinite number of values ; and 2 is a

periodic function of the integral, the period being tt.

/,''. 3. Denoting by / the value of the integral

27rijz,{z-a){z~b){z-cr'

taken along a straight line from Zq to z on which no one of the points a, b, c lies, find the

general value of the integral for a path from Zq that goes I times round a, m times round 6,

7i times round c.

What is the form of the result, when a and b coincide ?

103. Before passing to the integrals of multiform functions, it is con-

venient to consider the method in which Hermite* discusses the multiplicity

in value of a definite integral of a uniform function.

rn 1 • •
, , , / X r* dZ.

laking a simple case, lot ^{z)= \ „

and introduce a new variable t such that Z = zt\ then

When the path of t is assigned, the integral is definite, finite and unique in

value for all points of the plane except for those for which 1 +^i = 0; and,

according to the path of variation of t from to 1, there will be a 2-curve

which is a curve of discontinuity for the subject of integration. Suppose the

• Crelle, t. xci, (1881), pp. G2—77 ; Courg a la Facult€ des Sciences, 4»~ 6d. (1891),

pp. 70—79, 154—164, and elsewliere.
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path of t to be the straight line from to 1 ; then the curve of discontinuity

is the axis of x between — 1 and — x . In this curve let any point — f be

taken where ^ > 1 ; and consider a point Zi = —^ + ie and a point Zo = — ^ — ie,

respectively on the positive and the negative sides of the axis of x, both

being ultimately taken as infinitesimally near the point — ^. Then

^ \ Mi \ If -f + ^e
, ^ + ie \

i
2ie

dt

dt= , i— ::dt

tan"

Let e become infinitesimal ; then, when t is infinite, we have

tan ' = ivr,
e

for e is positive ; and, when t is unity, we have

tan~^ = — Itt,
e

for ^ is > 1. Hence (z,) - <^ {2.,) = Stti.

The part of the axis of x from — 1 to — X) is therefore a line of discon-

tinuity in value of ^ (s), such that there is a sudden change in passing from

one edge of it to the other. If the plane be cut along this line so that

it cannot be crossed by the variable which may not pass out of the plane,

then the integral is everywhere finite and uniform in the modified surface.

If the plane be not cut along the line, it is evident that a single passage

across the line from one edge to the other makes a difference of 27ri in the

value, and consequently any number of passages across will give rise to the

multiplicity in value of the integral.

Such a line is called a section* by Hermite, after Riemann who, in a

different manner, introduces these lines of singularity into his method oi

representing the variable on surfaces f.

When we take the general integral of a uniform function of Z and make

the substitution Z = zt, the integral that arises for consideration is of the form

^ ^^^ Jt,G(t,z)

We shall suppose that the path of variation of t is the axis of real quantities

:

and the subject of integration will be taken to be a general function of t and

z, without special regard to its derivation from a uniform function of Z.
j

* Goupure ; see Crelle, t. xci, p. 62. f See Chapter XV.

dt.
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It is easy, after the special example, to see that <I> is a continuous function

of z in any space that does not include a ^-point which, for values of t included

within the range of integration, would satisfy the equation

G (t, z) = 0.

But in the vicinity of a 2-point, say ^, corresponding to the value ^ = ^ in

the range of integration, there will be discontinuity in the subject of

integration and also, as will now be proved, in the value of the integral.

Let Z be the point ^, and draw the curve through Z corresponding to

t = real constant ; let N^ be a point on the positive side and i\^2

a jx'int on the negative side of this curve positively described,

both points being on the normal at Z; and let ZN^ = ZN.. = e,

supposed small. Then for iVj we have

.r, = ^ — fc' sin i//-,
//i
= 77 + e' cos -v/r,

so that 2i = ^+ ^e' (cos yjr + i sin yfr),

where yjr is the inclination of the tangent to the axis of real quantities. But,

if da be an arc of the curve at Z,

da-
, , , X

dP .dr) d^

for variations along the tangent at Z, that is.

Fig. 24.

d<T

dt

dO
G {0,

(cos yjr + I sm yjr) = —

—

G (6,
S?

Thus, since -7, may be taken as finite on the supposition that Z is an

ordinary point of the curve, we have

y P

whert
, dt

P=,,G(e.o. Q=l^G(e,i).

Similarly

Ik-ncr

^+26

^lM-^,)=f

/,

,,/((. r)-'>||.f(U)|f

'•(?(U)-«||Go.r)||
-^dt,
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with a similar expression for <I> (2.,) ; and therefore

_

F(t, ~{G(t, 0]^j-G(t, oLfH, 0]^
^(z,)-<P(z.^ = 2i e ^i ^— ^L ^dt.

The subject of integration is infinitesimal, except in the immediate vicinity

of t = 0; and there

G{t,O = {t-0)P, Fit,0 = F{d,0,

powers of small quantities other than those retained being negligible. Let

the limiting values of t, that need be retained, be denoted hy 6 + v and

6 — /jl; then, after reduction, we have

0(^0

F{d,
= 27^^

{G{d.t;)

in the limit when e is made infinitesimal.

Hence a line of discontinuity of the subject of integration is a section

for the integral ; and the preceding expression is the magnitude, by

numerical multiples of which the values of the integral differ*.

Ex. 1. Consider the integral

_fzdt

so that 77 is the period for the above integral.

Ex. 2. Shew that the sections for the integral

[•^ t"- sin z .

jo r+ 21 cos z ->rfi
'

where a is positive and less than 1, are tlie straight lines x= {-2k- + \)iv, where k assumes all

integral values; and that the period of the integral at any section ;it a distance r) from the

axis of real quantities is 27r cosh {arj). (Hermite.)

* The memoir and the Cours d'Analyse of Hermite should be consulted for further develop-

ments ; and, in reference to the integral treated above, Jordan, Cours d'Analyse, t. ii, pp. 293

—

296, may be consulted with advantage. See also, generally, for functions defined by definite

integrals, Goursat, Acta Math., t. ii, (1883), pp. 1—70, and ib., t. v, (1H84), pp. 97—120; and

Pochhammer, Math. Ann., t. xxxv, (1890), pp. 470—494, 495— 52(). Goursat also discusses

double integrals.

i
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Ex. 3. Prove that the function defined by

X- x^
^+•^•+ 2:' + 32

+

h;is a logarithmic singularity at .<=] and no other finite singularity. If the plane be

divided by a cut extending along the j)Ositive i)art of the real axis extending from 1 to ao,

shew that in the divided plane the function defined by the above series and its con-

tinuatious is one-valued, and that, at corresponding points on opposite sides of the cut, its

values differ by 27rnog.r. (Math. Trip., Part II., 1899.)

Ex. 4. Shew that the integral

where the real parts of /i< and y-^ are positive, has the part of the axis of real quantities

between 1 and + x for a section.

Shew also that the integral

'=/'""(t,{z)= u^-\\ - u)y-^-^ {I - zur^dtc,

where the real parts of /3 and 1 — a are positive, has the part of the axis of real quantities

between and 1 for a section : but that, in order to render ip (2) a uniform function of z,

it is necessary to prevent the variable from crossing, not merely the section, but also the

pait of. the axis of real quantities between 1 and +ao

.

(Goursat.)

(The latter line is called a section of the second kind.)

Ex. 5. Discuss generally the effect of changing the path of i on a section of the

integral ; and, in particular, obtain the section for I „ when, after the substitution
_/ i + ^

Z=zt, the path of t is made a semi-circle on the line joining and 1 as diameter.

Ex. 6. Shew that, for the function f{z) defined by the definite integral

where n is a positive integer and the integration is for real values of t, while z= x+ii/, the

sections are the lines

A-=0, ±1, ±2,...,

and that the increment of f{z) in crossing the section a:=0 in the positive direction is 2".

(Appell.)

Note. It is manifestly impossible to discuss all the important bearings of theorems

and principle.s, which arise from time to time in our subject; we can do no more than

mention the subject of those definite integrals involving complex variables, which first

occur as solutions of the better-known linear difterential equations of the second order.

Thus for the definite integral connected with the hypergeometric series, memoii-s hj

Jacobi* and Goursatt should be consulted; for the definite integral connected with

Bcs-sel's functions, memoirs by HankelJ and Weber § should be consulted; and Heine's

ffandbuch der Kugelfunctionen for the definite integrals connected with Legendre's

functions.

* Crt'lle, t. hi, (lHiJ9), pp. 149— UJo ; the memoir was not published until iifter his death,

t Sur Vequation dijffi'rentielle linraire qui admet pour inffgrnle la si'rie hijpirgroturtrique,

(Th^se, Gauthier-Villars, Paris, 1881).

t Math. Auu., t. i, (I86!t), pp. 467—501.

§ Math. Atui., t. xxxvii, (1890), pp. 404—41);.
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104. We shall now consider integrals of multiform functions.

Ex. 1. To find the integral of a multiform function round one loop; and round a

number of loops.

Let the function be w= {{z -ai){z- cto) ...{z- a„)}"S

where m may be a negative or a positive integer, and the quantities a are unequal to one

another; and let the loop be from the origin round the point a^. Then, if / be the value

of the integral with an asjsigned initial branch ?r, we have

/=
I

wdz+
I

iodz+
I

aivdz,
jo J c J cu

where a is e '» and the middle integral is taken round the circle at a^ of infinitesimal radius.

But, since the limit of {z-ai)tv when z^a^ is zero, the middle integral vanishes by § 101

;

and therefore
fa,

/a, = (l -a)
I

tvdz,

Jo

where the integral may, if convenient, be considered as taken along the straight line from

to ai.

O

(1) (2) (3)

Fig. 25.

Next, consider a circuit for an integral of w which (fig. 25) encloses two branch-points,

say ai and a^, but no others; the circuit in (1) can be deformed into that in (2) or into

that in (3) as well as into other forms. Hence the integral round all the three circuits

must be the same. Beginning with the same branch as in the first case, we have

(1-a)
I

' wdz,

as the integral after the first loop in (2). And the branch with which the second loop

begins is aiv, so that the integral described as in the second loop is

(1 —a)
I

' aivdz;

and therefore, for the circuit as in (2), the integral is

/= ( 1 - a) i"' irdz + a{l-a) j' wdz.

Proceeding similarly with the integral for the circuit in (3), we find that its expression is

/- (1-a) /
"' wdz + a (1 - a)

j
wdz,

and these two values must be equal.

But the integrals denoted by the same symbols are not the same in the two cases; the

function |

"'
ivdz is diftcrent in the second value of / from that in the first, for the deforma-

j"
tion of path necessary to change from the one to the other passes over the branch-point a.,.

In fact, the equality of the two values of / really determines the value of the integral for

the loop Oai in (3).
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Ami, in j^'ciieral, equations thus obtained by varied deformatioMs do not give relations

among loop-integrals ; they define the values of those loop-integrals for the deformed paths.

We therefore take that deformation of the circuit into loops which gives the simplest

path. Usually the path is changed into a group of loops round the branch-points <ta they

occur, taken in order in a trigonometrically positice direction.

The value of the integral round a circuit, equivalent to any number of loops, is obvious.

Ex. 2. To find the value of jivdz, taken round a simple curre which includes all the

branch-points of w and all the infinities.

If z = <x. be a branch-point or an infinity, then all the Jl)ranch-2)i>ints and all the

infinities of w lie on what is usually regarded as the exterior of the curve, or the curve

may in one sense he said to exclude all these points. The integral roinid the curve is then

the integral of a function round a curve, such that over the area included by it the

function is uniform, finite and continuous; hence the integral is zero.

If 2= 00 be neither a branch-point nor an infinity, the curve can be deformed until it is

a circle, centre the origin and of very great radius. If then the limit of zu\ when
|
2

|
is

infinitely great, be zero, the value of the integral again is zero, by II., § 24.

Another method of considering the integral, is to use Neumann's sphere for the

representation of the variable. Any simple closed curve divides the area of the sphere

into two parts ; when the curve is defined as above, one of those parts is such that the

function is unilorm, finite and continuous throughout, and therefore its integral round the

curve, regarded as the boundary of that part, is zero. (See Corollary III., § 90.)

Ex. 3. To find the general value of \{\-z-)~hdz. The function to be integrated is

two-valued : the two values interchange round each of the branch-points + 1, which are

the only brajich-jjoints of the function.

Let / be the value of the integral for a loop from the origin round -1-1, beginning with

the branch which has the value -1-1 at the origin ; and let /' be the corresponding value

for the loop from the origin round — 1, beginning with the same branch. Then, hy Ex. 1,

= 2 \\\-z^-rhdz. /' = 2 r\\-z'')-hdz

= -A
tlie last equality being easily obtainetl by changing variables.

Now consider the integral when taken round a circle, centre the origin and of indefinitely

great radius R ; then liy § 24, II., if the limit of zw for 2=oc be k\ the value of \u-dz round

tiiis circle is ^tt//-. In the present case w~{\ —z-)~2 so that the limit of zw is -f -; hence

\{\-z^)-hdz= 2iT,

tlic integral being taken round the circle. But since a description of the circle restores the

initial value, it can be deformed into the two loops from

to .1 and from to A'. The value round the fir-st is /; and

the branch with which the second begins to be described has

the value - 1 at the origin, .so that the consequent value

round the second is - /' ; hence
I-I' = -2n*,

and therefore 1= - I' = n,

verifying the ordinary result that

l\\-z')-}idz = U,

when the integral is taken along a straight line.

* It is intfrest inf.; to obtain tliis (-(ination when (/ is taken as the initial point, instead of (>.

F. F. ir,

/=
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. To find the general value of u for any path of variation between and z, we proceed as

follows. Let Q be any circuit which re.store.s the initial branch of {l-z-)~h. Then by

§ 100, Corollary II., £2 may be composed of

(i) a set of double circuits round + 1, .say vi' in number,

(ii) a set of double circuits round - 1, .say m" in number,

and (iii) a set of circuits round + 1 and - 1
;

and these may come in any order and each may be described in either direction. Now for

a double circuit positively described, the value of the integral for the first description is /

and for the second description, which begins with the branch —(1 — i-)~2, it is — /; hence

for the double circuit it is zero when positively described, and therefore it is zero also

when negatively described. Hence each of the m' doiible circuits yields zero as its

nett contribution to the integral.

Similarly, each of the m" double circuits round —1 yields zero as its nett contribution

to the integral.

For a circuit round +1 and —1 described positively, the value of the integral has just

been proved to be /-/', and therefore when described negatively it is /'-/. Hence, if

there be 7ii positive descriptions and 112 negative descriptions, the nett contribution of all

these circuits to the value of the integral is (jjj
—

112) (/— /'), that i.s, 2)i7r where n is an

integer.

Hence the complete value for tlie circuit O is 2/>tt.

Now any path from to z can be resolved into a circuit fi, which restores the initial

branch of (1 —z^)~'^, chosen to have the value

+ 1 at the origin, and either (i) a straight

line Oz
;

.

or (ii) the path OA Cz, viz., a loop round

+ 1 and the line Oz
;

or (iii) the path OA'Cz, viz., a loop round

— 1 and the line Oz.

Let u denote the value for the lino Oz, .so that

M=
j

{l-z^)-hdz.

Hence, for case (i), the general value of the integral is

Fig. 27,

A'o
-1

27.

For the path OA Cz, the value is / for the loop OA C, and is ( - u) for the line Cz, the

negative sign occurring because, aftei- the loo{), the branch of the function for integration

along the line is — (1— 2^)~i; this value is I— it, tliat i.s, it i.s n-u. Hence, for case (ii),

the value of the integral is

•Inn + 7T - V.

For the path OA'Cz, the value is similarly found to be - -n - u ; and therefore, for

case (iii), the value of tlic integral is

2mT — TT — u.

If /(«) denote the general value of the integral, we have either

f{z) = 2n7r + u,

or f{z) = {2m + l)n-u,

where n and m arc any integers, so that f(z) is a finictioii witli two inJinite .series of value.s.
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Liu>tly, it' z= (j) (6) be the inverse of /{z) = 6, then the relation netween u and ^ given \>\

can be represented in the form

(f)
{u) = z=

<f>
(2«7r+?<)

and ^ (?<)= 2 = <^ (2?«jr + 7r -?/)/'

lK)th equation^s being necessary for the full representation. Evidently a is a simply-iieriodic-

fiuK-tion of u, the period being 27r ; and from the definition it is easily seen to be an odd

function.

Let j/ = (l — 2")^ = x (")> so that i/ is an even function of ?< ; from the consideration of the

various paths from to z, it is easy to prove that

X{u) = x{-2njr+ ii)

= —X (2;Mjr+ 7r- m)J

E.v. 4. To find the general value of |{(1 -2-) (1 -l-h-)}-hdz. It will be convenient to

regard this integral as a special case of

Z=j{{z-a){z-b){z- c) {z -d)]-h dz= jwdz.

The two-valued function to be integrated has a, b, c, d (but not x ) as the complete

system of In-anch-points ; and the two values interchange at each of them. We proceed as

in the hust example, omitting mere re-statements of reasons there given that are ai)plicable

also to the present example.

Any circuit Q. which restores an initial branch of jr, can be made up of

(i) sets of double circuits round each of the branch-points,

and (ii) sets of circuits round any two of the branch-points.

The value of iuxh for a looj) from the origin to a branch-point /• (where X-= a, 6, c, or d) is

1 irdz-

J «

and this may be denoted by A', where K= A, B, C, or I).

The value of the integral for a double circuit round a branch-point is zero. Hence the

amount contributed to the value of the integral by all the sets in (i) as this part of Q
is zero.

The value of the integi-al for a circuit round a and b taken positively is A -B; for one

round b and c is /i- C; for one roinid c and d is C- D; for one round a and c is .-1 — (7,

which is the sum of A - B and B — C; and similarly for circuits round a and d, and round

l> and d. There are therefore three distinct value.s, say A — B, B—C, C - D, the values

for circuits round a and b, h and c, c and d respectively ; the values for circuits round any

other pair can l)c expressed linearly in terms of these values. Sujipose then that the part

of Q rei)resented by (ii), when thus resolved, is the nett equivalent of the descripti<in of

vi circuits round a and fc, of n circuits round b and c, and of /' circuits round r and </.

Then the value of the integral contributed by this part of Q is

«i' {A -B) + 7i'{B-C) + l'{C- />),

which is therefore the whole value of the integral for Q.

Uut the values of ^1, B, C, D are not independent*. Let a cii-cle with centre the origin

and very great radius be drawn; then since the limit of zw for
|
r i = « is zero and since

• For a purely analytical proof of the following relation, see Greeuhill's Elliptic Functions,

Chapter IL

15—2
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;= x is not a brauch-point, the value of jwdz round this circle is zero (Ex. 2). The circle

can be deformed into four loops round a, b, c, d respectively in order ; and therefore the

value of the integral is A —B+ C-D, that is,

A-B+ C-D=().

Hence the value of the integral for the circuit Q is

m{A-B) + n{B-C),

where m and n denote m' — I' and n respectively.

Now any path from the origin to z can be resolved into 12, together with either

(i) a straight line from to z,

or (ii) a loop round a and then a straight line to z.

It might appear that another resolution would be given by a combination of Q. with, say,

a loop round h and then a straight line to z ; but it is resoluble into the second of the above

combinations. For at C, after the description of the loop B, introduce a double description

of the loop A, which adds nothing to the value of the integral and does not in the end

affect the branch of v: at C; then the new path can be regarded as made up of (a) the

circuit constituted by the loop round h and the first loojj round «, O) the second loop

round a, which begins with the initial branch of iv, followed by a straight path to z. Of

these (a) can be absorbed into O, and (/3) is the same as (ii) ; hence the path is not

essentially new. Similarly for the other points.

Let u denote the value of the integral with a straight path from to z; then the

whole value of the integral for the combination of Q with (i) is of the form

m{A-B) + n{B-C) + ti.

For the combination of Q with (ii), the value of the integral for the part (ii) of

the path is A, for the loop round a, +(- »), for the straight path which, owing to the

description of the loop round a, begins with - tv ; hence the whole value of the integral

is of the form

m{A-B)-\-n{B-C) + A-u*.

Hence, i^ f{z) denote the general value of the integral, it has two systems of values, each

containing a doubly-infinite number of terms; and, if z= (fi{u) denote the inverse of

u=f{z), we have

(j) («) = (j) [m {A -B) + n{D- C) + u]

= (/) [m {A - B) + n (B-C) +A- u},

where m and n are any integers. Evidently ^ is a doubly-i)eriodic ftuiction of v, with

periods A-B and B-C.

Ex. 5. The case of the foregoing integral which most frequently occurs is the elliptic

integral in the form used by Legendre and Jacobi, viz.

:

?( = j{(l -22) (\-k^z^)]-hdz=jwdz,

where /• is real. The branch-points of the function to be integrated are 1, — 1, y,

* The value for a loop round li and then a straight line to z, just considered, is U - u,

= -(A-B) + A-u,

giving the value in tlie text with m changed to hi - 1.
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*i"iJ
~)C-'

''^"^^ ^'^'^ values of the integral for the currespoiKiiug loops from the origui are

•2
j

'

«•(/.',

2 I ~\rdz=-2 i
'

irch.

2 icdz.

aiul 2 / wdz= -2 j u-dz.

Jo .'

Xow the values for the loops are connected by the equation

A-B + C-D=0,
and so it will be convenient that, as all the points lie on the axis of real variables, we
arrange the order of the loops so that this relation is identically satisfied. Otherwi.se,

the relation will, after Ex. 1, be a definition of the paths of integration chosen for the

loo])s.

Among the methods of arrangement, which secure the identical satisfaction of the

F\<f. 28.

relation, the two in the figure are the simplest, the curved lines being taken straight in

the limit; for, by the first arrangement when /< 1, we have

i_ _ 1

^/^-./^-.^-^c'}
"*-"•

and, by the second when X- > 1, we have

1 1

{'/.!-- />'/r --//I
"*="

both of which are idejitically satisfied. We may therefore take either of them ; let the

former be adopted.

The periods are A - B, B-C, (and C - D, which is equal to B - A), and any linear

combination of these is a period: we shall take A - B, and B - D. The latter, B-D,
is equal to

2
I

' wdz-2 j
' n'dz,

Jo Jo

which, being denoted by 4/\, gives

- 4A-=W"' — *
J

as one period. The former, .1 - B, is equal to

which is

/ wdz-2 i \rdz,
J J

2 j ivdz:
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this, being denoted by 2t7i', gives

2.A- =2f
*

J.'i {(l - z^) {I - k-h'^)]h

^^.n di

;0{(l-2'2)(l_/f2/2)}i'

where /•'- + /-=: 1, and tlie relation between the variables of the integrals is k^z-+ k'^z"'= \.

Hence the periods of the integral are 4A' and 2iK'. ^vloreover, ^4 is 2 / tvdz, which is

J n

2
I

ivdz + 2
j

wdz= 2K+ 2{K'.

Hence the general value of I \(\-z-)(\-k-z-)\~-idz is either

u-\-AiinK+2iiiK\

or 2A'+ 2t7i" -u + A,nK+ 2niK\

that is, 2A'-« + 4?«A'+2?u7i",

where ?« is the integral taken from to 2 along an assigned path, often taken to be

a straight line ; so that there are two systems of values for the integral, each containing

a doubly-infinite number of terms.

If z be denoted by ^ (?6)— evidently, from the integral definition, an odd function

of u— , then

(f,{u) = (f)
{ii+ 4mK+2HiK')

= (/) (2A' -u + 4mK+ 2niK'),

so that 2 is a doubly-periodic function of », the periods being 4A' and 2iK'.

Now consider the function Zi = {l—z^)h. A 2-path round j does not affect Sj by way of

change, provided the curve does not include the point 1 ; hence, if
-^i
= x('0> ^^^ have

x('0 = x(^« + 2A''+2t7v').

But a 2-iMth round the point 1 does change Zi into -Sj ; so that

x{ic)=-x{n+ 2K).

Hence ^ ("X which is an even function, has two periods, viz., 4A'' and 2A''-f2iA'', whence

X (**) = X {i!^ + -iiiiK+2nK+ 2niK ').

Similarly, taking ;2 = (1 - k'h-)i = ^{u), it is easy to see that

f{u) = yl/{u + 2K),

-ylr {u) = yj^ (u + 2K+2iK')= yfA {ii + 2il{'),

so that !// (»), which is an even function, has two periods, viz., 2A' and 4j7r' ; whence

\lr {u) = yp- (u+ 2mI{+4niK').

The functions cb (u), x {i()i ^ (") ^^'^ of course sn u, en n, dn u respectively.

E.c. 6. If in a single infinite sheet, representing the values of z, three cuts be made

along the real axis joining respectively (-00, -j], (-1, 1); ( ;.> ^ )) shew that the

integral (in the notation of elliptic functions, 0<^<1, sjz^-i= +isjl-z^)

H K-E-PKx^
-

, dx
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Ami shew that : is a uniform function of u forbecomes a one- valued function of

the vahies of k wliicli arise.

If the cut joining (
- 1, I) do not lie along the real axis, descril>e the values of z as a

function of «. (Math. Trip., Part II., 1894.)

Ex. 7. To rind the general value of the integral*

j
1 4 {z - e, ) (z - e.>) (z - e^)] ' i dz= lo.

The function to be integrated has <?j, eo, e^, and x for its branch-points; and for

paths roiuid each of them the two branches interchange.

A circuit li, which restores the initial branch of the function to be integrated, can

be resolved into:—
(i) Sets of double circuits round each of the branch-points alone: as before, the

value of the integral for each of these double circuits is zero.

(ii) Sets of circuits, each enclosing two of the branch-points: it is convenient to

retain circuits including qo and e,, oc and eo, x and <?3, the other three

combinations being reducible to these.

The values of the integral for these three retained are respectively

E, =
2
^"^ {A{z-ey){z-e,){z-e,)}-hdz= 2<^„

£2= 2 I {4 (z- ei) (.- - €2) {z - e,)}
"
h dz= 2o>,,

J e-2

E,= 2
I

"
{4(z-e,){z-e,){z-e,yr^^dz= 2o>,,

and therefore the value of the integral for the circuit Q is of the form

tn'Ei + n'Eo+ l'Es.

But El, E->, £"3 are not linearly independent. The integral of the function i-ound any
curve in the finite part of the i)lane, which does not

include e^, e-i or e^ within its boundary, is zero, by Ex. 2
;

and this curve can be deformed to the shape in the figure,

until it becomes inrinitely large, without changing the

value of the integral.

Since the limit of zw for \z\ = :c is zero, the value of

the integral from x' to x is zero, by § 2 4, II.; and if the

description begin with a branch w, the branch at x is - iv.
^

The rest of the integral consists of the sum of the values ^^^- ^^^

round the loops, which is

-Ei + E.,-E-,,

l>ccause a i)ath round a loop changes the branch of »• and the last branch after describing

tlie loop round e-^ is +iv at x ', the proper value (§ 90, III.). Hence, as the whole integral

i-^ zero, we have
- Ei + E.,- Ei= 0,

"is-iy E^^Ei + E^.

* The choice of x for the upper limit is made on a ground wliicli will subsequently be

considered, viz., that, when the inte(,'ral is zero, c is iutiuite.
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Thus the value of the integral for any circuit fl, which restores the initial branch of w,

can be e.xpressed in any of the equivalent forms mEx + nE-i, m'Ei + n'E2, m'E-i + n'E^,

where the w's and «'s are integers.

Now any path from x to e can be resolved into a circuit Q, which restores at x the

initial branch of ?r, combined with either

(i) a straight path from x to z,

or (ii) a loop between x and Cj, together with a straight path from x to z.

(The apparently distinct alternatives, of a loop between x and e.,, together with a straight

path from x to z, and of a similar path round 63, are inchisil)le in the second alternative

above; the reasons are similar to those in Ex. 5.)

If u denote I {4 (2-ei) (2-63) (2-e3)l-~^c^2 when the integral is taken in a straight

line, then the value of the integral for part (i) of a path is u; and the value of the

integral for part (ii) of a path is Ei-u, the initial branch in each case for these parts

being the initial branch of ir for the whole path. Hence the most general value of the

integral for any path is either

2?ucoi + 2?«a)3+ u,

or 2ma)i + 291CB3+ 2<Bi — ?f

,

the two being evidently included in the form

2?»a)i + 2;!w3 ± u.

If, then, we denote by z=^{;u) the relation which is inverse to

u= jji{z-e,){z-e.^{z-e,)}-idz,

we have ^ (u) = ^ (2ma)i + 2710)3 ± «)•

In the same way as in the preceding example, it follows that

^' {u) = ^^' {2mcoi + 2na}:i+ u)= -
(f>' (2wwi + 2)ia)3- ?0,

where ^' («) is - {4 {z-e,) {z-e.^ (2-^3)!^.

Ex. 8. Prove that, when m is a positive integer ^2, and when q is a positive quantity

such that < <7 < w,

'» '+•'' »i„,'i
m

drawing the deformed figure of the Ioojjs.

From this relation, deduce the results

wliere .1 and B are constants.

Shew also how to deduce the value of

r'/'(//)f^(log.y) ,

where ^^(log^) is any polynomial in logy, and P{y) is a polynomial in 1/ of degree not

greater than m - 2.
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The foregoing simple examples are sutticicnt illustrations of the multi-

plicity of value of an integral of a uniform function or of a multiform

function, when branch-points or discontinuities occur in the part of the plane

in which the path of integration lies. They aLso shew one of the modes in

which singly-periodic and doubly-periodic functions arise, the periodicity

consisting in the addition of arithmetical multiples of constant quantities

to the argument.

To the properties of such periodic functions, especially of uniform periodic

functions, we shall return in Chapter X. It will there appear that each of

the special functions, which have been considered in the preceding examples

3, 4, 5, 7, expresses z as a uniform function of its argument.

Meanwhile, it is not ditHcult to prove directly that the functions of n in

Ex. 5 and of w in Ex. 7 are uniform functions of their arguments.

Consider the quantity z and the integral u connected by the relation,

or In' the differential e(|uation

alzK-
©=(i-^')(i-^-'^=)-

with the condition that u = when ^ = and the further property as to the

periods of u. Evidently the vicinities of the respective critical points

1, —1, 1/^, — \\k must be taken into account; likewise the vicinity of any

other finite value of z\ likewise very large values of z. We take them

in turn.

In the vicinity of ^^ = 1, let 2 = 1 -f ^. At ^ = 1, we can take u = K (subject

to periods) ; so

u - K = f ( - n + t') ' - {k'-' - 2A-Y - k'i?) " - dt

.'

when- Pit) is a regular function of t in the vicinity of i = such that

P{0) = \. Thus

;

whrre R
{
O is a regular function of ^ such that R (0) = 1. Conse(|uently,

2 - 1 = ^= - U-'M" - Kf S{H- K),

where S (u - K) is a regular function of (ii — K)", such that »S'(0) = 1.

Clearly 2 is a regular function of n in the vicinity of the place z=].
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Exactly similar analysis shews that ^^ is a regular function of u in the

vicinity of the place ^ = — 1, the substitution being z = — l + !^; we find

^ + 1 - - i k'' {a + Kf S{n + 70/

where S (u + K) \s a regular function of {n + K)-, such that 8 (0) = 1.

Again, for the vicinity of 2^= \jk, we take z - l/k= ^'
; we find

2-l = t' = ^^ (u - K - iK'Y 8 (u - K - iK'Y,
k ik

where 8 is a regular function of its argument such that 8 (0)= 1.

For the vicinity of z = — 1/k, we find

5 + 1 =
1^^

{i( + K + iK'f 8 ( a + K + iK'f,

where again 8 is a regular function of its argument such that *S* (0) = 1.

Next, for a value oVz\<l, we have

ii=i~ {{l-V'){l-k't')] 'Ult

where P {z) is a regular even function of z such that P (0) = 1. Consequently

2r is a regular function and an uneven function of if for values of
|

^
|

< 1.

For any ordinary place for z, given by z= a, let a value of u be a.

Taking z = a + Z, we have

w - a =
f

'^
'
{(1

- 1') ( 1 - k't")]
" ^ dt

J a

= i^{Z),

where R (Z) is a regular function of Z such that R (0) = 1. As before, Z is

a i-egular function of u — a in the vicinity ; that is, z is a regular function of

u in the vicinity of any ordinary place.

Finally, for large values of z, say z', we have

"=£ +j^^\ii-t^)(i-k^t^)} ^-dt

In the integral, write kt = -,

1

then
J {) J I

kz'

1 J^
rk ikz'

J \ .'0

= iK' + \^~ \{\-t'-'){l-kH"')\
J

*,/('



104] PERIODIC FUNXTIONS 285

Thus .--/ is a regular function of u in the vicinity <>f n = iK' and it vanishes
KZ

to the first order at that place. Therefore z is a unifunn timet inn of n in

the vicinity of n = iK' ; and it lias a sini[)l(' \nAc at that value.

Hence, in every case, z is a uniform function of (/
; and this uniform

function has simple poles at u = iK' and at all places reducible to this place

by nndtiples of 2 A' and 2iK'.

As already stated, we shall give full ret\'ri'nces at a later stage to the

cases when a differential equation

defines z as a iinifoi-m functictn of //.

E:c. 9. Shew that, for the relation just discussed, the functions (I - z-p and

(l-l--z-)^ are uniform functions of a.

Ex. 10. Shew that, when u and z are connected by the relation

u= j' {4 (2 - e,) {z - e.) {z - ^3)}
"^ dz

of Ex. 7, when we denote 2 as a function of ii by p (ti), each of the functions

^(w), {iP{u)-ei}K {P(«)-e2}4, {^{y')-eS

is a um'form function of u.

105. We proceed to the theory of uniform periodic functions, some

special examples of which have just been considered ; and limitation will

be made here to periodicity of the linear additive type, which is only a very

special form of periodicity.

A function f{z) is said to be periodic when there is a quantity co such

that the equation

f(z + co)=f{z)

is an identity for all values of z. Then f{z + nQ))=f{z), where 71 is any

integer positive or negative ; and it is assumed that <u is the smallest

quantity for which the equation holds, that is, that no submultiple of w will

satisfy the equation. The quantity (o is called a period of the function.

A function is said to be simph/-periodic when there is only a single

period : to be douhlij-periodic when there are two periods ; and so on, the

])eriodicity being for the present limitefl to additive modification of the

argument. Moreover, we exclude the possibility of periods that can be

made less than any finite quantity, however small. If such infinitesimal

periods were admissible for a uniform function, then within a finite regi«>n

(however small) round any point the function would ac(juire the same value

an unlimited number of times. Then the uniform function would either be

constant everywhere within that finite region and so would be constant
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everywhere : or it would possess an unlimited number of constant values

within that region : or an unlimited number of infinities within the region.

In the second case, its derivative would possess an unlimited number of zeros

in the region, which is any small region round any point : as at the end of

§ 37, the point would be an essential singularity. Similarly, in the third case,

the point would be an essential singularity. Each of the alternatives, conse-

quent upon the possession of an infinitesimal period, is to be excluded : hence

we also exclude the possibility of infinitesimal periods.

It is convenient to have a graphical representation of the periodicit}^ of a

function.

(i) For simply-periodic functions, we

take a series of points 0, A^, A.2,...,

A_i, A_.2,... representing 0, w, 2&), ...,

— &), — 2ft), . .
.

; and through these points

we draw a series of parallel lines, dividing

the plane into bands. Let P be any

point z in the band between the lines

through and through ^i; through P
draw a line parallel to OA^ and measure

o&PP, = PJ\_=... = PP_,=P..,P_,= ...,

each equal to OA^ ; then all the points

Pj, Pa,---, P-i, P-2,--- are represented

hy z + no} for positive and negative integral values of 7i. But f(z + \

and therefore the value of the function at a point Pn in any of the bands is

the same as the value at P. Moreover, to a point in any of the bands there

corresponds a point in any other of the bands ; and therefore, owing to the

periodic resumption of -the value at the points corresponding to each point P,

it is sufficient to consider the variation of the function for points luithin one

hand, say the band between the lines through and through A^. A point P
within the band is sometimes called irreducible, the corresponding points P
in the other bands reducible.

If it were convenient, the boundary lines of the bands could be taken

through points other than A•^, A., ... ; for example, through points {m -\- ]^) w

for positive and negative integral values of m. Moreover, they need not be

straight lines. The essential feature of the graphic rejn-esentation is the

division of the plane into bands.

(ii) For doubly-periodic functions a similar method is adopted. Let ft)

and ft)' be the two periods of such a function f{z), so that

f{z+w)=f{z)=f{z-\-co');

then f{z + nw + n'w')=f{z),

where n and n are any integers positive or negative.
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Fig. 31.

Q-

such that

For graphic purposes, we take points 0, A ,, ^4.,

0, ft), 2(1), ... ,
— a>, — 2(1), ... ; and we take

another series U, B^,B.„... , i^_, , B^.,, . .

.

representing 0, w', 2a)', . . ,
— (o',-2(o',...;

through the points ^4 we draw lines

parallel to the line of points B, and

through the points B we draw lines

parallel to the line of points ^4. The

intersection of the lines through .4,,

and B,i is evidently the point iio) + n'(o',

that is, the angular points of the

parallelograms into which the plane is

divided represent the points »a) + //&>'

for the values of n and n'.

Let P be any point z in the paral-

lelogram O^iC'iL'i; on lines through P,

parallel to the sides of the parallelogram, take points Qi, Q.,...

such that PQi = QiQ2= = 0), and points i?, , Ro,..., R-i, R-o

PRi = RiR.,= ... =(o' ; and through these new points draw lines parallel to

the sides of the parallelogram. Then the variables of the points in which

these lines intersect are all represented by z -f mco + ino)' for positive and nega-

tive integral values of m and ///'; and the point represented by z4 ituo + vt o)'

is situated in the parallelogram, the angular points of which are vico + 7n'(o',

(m -I- 1 ) ft) -I- niQ}', may + {iii +!)&>', and {vi -\-\) o)-¥ {in + 1 ) o)', exactly as P is

situated in 0^4,C,5i. But

f(z + mco + m'o)') = f{z),

and therefore the value of the function at such a point is the same as the

value at P. Since the parallelograms are all equal and similarly situated,

to any point in any of them there corresponds a point in OiljCifi,; and the

value of the function at the two points is the same. Hence it is sujficient to

consider the variation of the function fur points loithin one parallelogram, say,

that which has 0, &), (o + co', (o' for its angular points. A point P within

this parallelogram is sometimes called irredacible, the corresponding points

within the other parallelograms reducible to P \ the whole aggregate of the

points thus reducible to any one are called hojnolof/ou.^ points. And the

parallelogram to which the reduction is made is called the paiallektgram of

periods.

As in the case of simply-periodic functions, it may prove convenient to

choose the position of the fundaniental puralleUif/rain .so that the origin is

not on its boundary; thus it might be the parallelogram the middle points of

whose sides are + ^(o, ± ^(o'.

Ex. Shew how to reduce a given i)()iiit miniericilly ; for iii.sUmce, fiiul tht; inethicible

lM)iiit homologous to 730-1- 182/ for periods i +!)/, 3-1-1'/.
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106. In the preceding representation it has been assumed that the line

of points A is different in direction from the line of points B. If oj = w + iv

and Q)' = u' + iv', this assumption implies that v'/u is unequal to v/u, and

therefore that the real part of w'/iw does not vanish. The ju.stification of

this assumption is established by the proposition, due to Jacobi* :

—

The ratio of the periods of a uniform doubly-periodic function cannot be

real.

Let f{z) be a function, having co and co' as its periods. If the ratio (w'/w

be real, it must be either commensurable or incommensurable.

If it be commensurable, let it be equal to n'/n, where n and n are

integers, neither of which is unity owing to the definition of the periods o)

and cjj'.

Let n'/n be developed as a continued fraction, and let m'/m be the last

convergent before n'/n, where rn and m are integers. Then

n' in' _ 1

n m mn '

that is, mn~vin = l,

so that ?>* <» ~ "i<y = — (?H 7i ~ mn } = -

.

Therefore f{z) =f{z + m'w ~ mw),

since m and m are integers ; so that

contravening the definition of co as a period, viz., that no submultiple of w is a

period. Hence the ratio of the periods is not a commensurable real quantity.

If it be incommensurable, we express &//« as a continued fraction. Let

»/g and })'jq be two consecutive convergents : their values are separated by

the value of w'/w, so that we may write

"^ = ^1 + h
('^^' - ^^

ft) q \q q

where 1 > /' > ^)-

Now j)q ~ p'q= 1, so that

w q qq
'

where e is real and 'e < 1 ; hence

e
qw — 2^0) = -, to.

* Ges. Werke, t. ii, pp. 25, 26.



106.] A UNIFORM DOUISLV-PERIODIC FUNCTION 239

Therefore f{z) = t\z + yw' — pcy),

since p aiul q are integers ; so that

/(z)=/(. + ^,.).

Now since cu'/w is incommensurable, the continued traction is unending. We
therefore can take an advanced convergent, so that </' is very h\rge ; and we

choose it so that ,w is less than any assigned positive (juantity, however

small. But ,w is equal to qw' — pw, where (/ and p are integers, and it

therefore is a period of the function f{2). Hence, on the assumption that

6)'/a) is real and inconnnensurable, it follows that the function possesses an

infinitesimal period: the possibilit}' of which was initially excluded (§ 105).

The ratio of the periods is thus not an incommensurable real quantity.

We therefore infer Jacobi's theorem that the ratio of the periods cannot

be real. In general, the ratio is a complex quantity ; it may, however, be a

pure imaginary*.

Corollary. If a uniform function have two periods w, and w.,, such that

a relation

//?]&), + ni.M., =

exists for integral values of 7h, and m.,, the function is only simply-periodic.

And such a relation cannot exist between two periods of a simply-periodic

function, if m^ and iiie, be real and incommensurable ; for then the function

would have an infinitesimal period.

Similarly, if a uniform function have three periods coi, (u._,, w^, connected

by two relations

//i,&Jl -I- m.M-. + ?H:i&);, = 0,

»,&)j + n.,W., -\- »:jCi);. = 0,

where the coefficients m and n are integers, then the function is only simply-

periodic.

107. The two following propositions, also due to Jacobif, are important

in the theory of uniform jjcriodic functions of a single variable:

—

If a unifu7'm function have tJrree periods &),, w.., w^, suc/i that a relation

/n^co^ + in.xi}.. + ni-^fj),, =

is satisfied for integral values of //i,, ni.,, 111.^, then the function is only a doubbj-

penodic function.

* It was proved, in Ex. o and Ex. 7 of § 104, that certain uniform functions are doubly-periodic.

A direct proof, that the ratio of the distinct ])erioils of the functions there obtained is nut a real

quiintity, is given by Falk, Acta Math., t. vii, (IHSo), pp. 11)7—200, and by Pringsheim, Math,

.inn., t. xxvii, (\BM), pp. 151—157.

t Gex. n'erke, t. ii, pp. 27—32.
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What has to be proved, in order to establish this proposition, is that two

periods exist of which &>!, (o.., w^ are integral multiple combinations.

Evidently we may assume that m^, 7iu, m^ have no common factor: let /
be the common factor (if any) of m^ and m^, which is prime to m^. Then

since

vii mo
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CoKoLF.AHV. It a function havi' four periods a>,, o),,, oi,, 0)4 cuimectiul by
two relations

»«,&), -f ni.M., -f ni^iOi + ///jWj = 0,

n^(li^ + n..(o.. + /<.,«., + /jjWj = 0,

where the coefficients in. and /< are integers, the function is only <loubly-

j)eriodic.

108. If a unifunn /unction of one variable have three periods w,. lo.,, o).^

then a relation of the form

niifOi + lUoW.^ + tn-jfOf =

ntn.st be .satisfied for some integral values of nii, ///._,, ni;^.

Let &),. = a,. + 1/3,., for r — 1, 2, 3; in consequence of § 10(), we shall assume
that no one of the ratios of w,, oy.,, &>., in pairs is real, for, otherwise, either

the three periods reduce to two immediately, or the function has an infini-

tesimal period. Then, determining two quantities A, and fx, by the e(juations

so that X. and /x are real quantities and neither zero nor infinity, we have

w--, = Xwi + fico.,,

for real values of \ and fi.

Then, first, if either X or fi be commensurable, the other is also connnen-

surable. Let X = a/b, where a and 6 are integers; then

b/XUKj = 6&J:j — bXcoi

= bco:; — acoi,

so that bfio)., is a period. Now, if b/j, be not commensurable, change it into a

continued fraction, and let p/q, p'jq be two consecutive convergents, so that,

as in ^106,

where 1 > ./' > — 1. Then - &)., H y is a period, and .so is o).. ; hence
q - qq

"^

(p .r(i).\

\q qq J

is a ])erio(l, that is, - w., is a period. We may take q' indctiiiitely iar^.', and

then the function has an infinitesimal (piantity for a j)eriod, which has been

excluded by our initial argument. Hence bp, (and therefore fx) cammt be

incommensurable, if \ be commensurable; and thus \ and p. are simtd-

taneously commensural)le or simultaneously inconimensural)Ie.

F. F. 16
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If \ and fi be simultaneously commensurable, let \ = j ,
^i = -^ , so that

a c

b d '

and therefore hdco;t = adw^ + bcu).,,

a relation of the kind required.

If A. and /j, be simultaneously incommensurable, express X, as a continued

fraction ; then by taking any convergent r/s, we have

6- S'-

where 1 > .r > — 1 , so that .s-X, — r = '~:

s

by taking the convergent sufficiently advanced the right-hand side can be

made infinitesimal.

Let i\ be the nearest integer to the value of s/uu, so that, if

SfM — )\ = A,

we have A numerically not greater than ^. Then

SO);. — ?•&)! — J\(Oo — - (Oi + Ari>._>,

and the quantity - Wi can be made so small as to be negligible. Hence

integers r, i\, s can be chosen so as to give a new period w./ (= Aw.^), such

that
j

&)2
i
< i I

«j •

We now take Wi, oj./, co-i-. thej' will be connected by a relation of the form

and V and /*' must be incommensurable : for otherwise the substitution for

«./ of its value just obtained would lead to a relation among Wj, Wa, ws that

would imply commensurability of X and of /u,.

Proceeding just as before, we may similarly obtain a new period w.," such

that
!
rV \^^\co.f ' : and so on in succession. Hence we shall obtain, after n

such processes, a period fu.^"'' such that
\

w.^*"'
|
< ^J ^al, so that by making n

sufficiently large we shall ultimately obtain a period less than any assigned

quantity. Such a period is infinitesimal ; and infinitesimal periods were

initially excluded (§105) for reasons there given. Thus X and yu- cannot

be simultaneously incommensurable.

Hence the only constructive result is that X and /n are simultaneously

commensurable ; and then there is a period-equation of the form

?/i,a)i 4- vi.^Q).. + ?H:ia)y = 0,

where m,, m.>, vi^ are integers.
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The foregoing proof is substantially clue to Jaeohi (I.e.). The result can

be obtained from geonietrical considerations by shewing that the infinite

number of points, at which the function resumes its value, along a line

through z parallel to the co:,-liiie will, unless the condition be satisfied, reduce

to an infinite number of points in the cd,, w., parallelogram which will form

either a continuous line or a continuous area, in either of which cases tlu'

function would be a constant; or there will be an urdimited number
condensed in any region round z, however small, thus making the point

an essential singularity, which is impossible for every point z. But, if the

condition be satisfied, then the points along the line through z reduce to only

a finite number of points*.

Corollary I. Uniform functions of a single variable cannot have throe

independent periods ; in other words, triply-periodic uniform functions of a

single variable do not e,rist'\: and, a fortiori, uniform functions of a single

rariable with a number of independent periods greater than two do not exist.

But functions involving more than one variable can have more than two

periods, e.g., Abelian transcendents ; and a function of one variable, having

more than two periods, is not uniform.

Corollary II. All the periods of a uniform periodic function of a

single variable reduce either to integral multiples of one period or to linear

combinations of integral multiples of tiuo periods whose ratio is not a real

(juantitt/.

109. It is desirable to have the parallelogram, in which a doubly-

periodic function is considered, as small as possible. If in the parallelogram

(supposed, for convenience, to have the origin for an angular point) there be

a point o)", such that

f{z + (o")=f(z)

for all values of 2, then the parallelogram can be replaced by another.

It is evident that co" is a period of the function ; hence (§ 108) we must

have
0)

' = \o) + po)
;

and both \ and p, which are commensurable (piantities, are less than unity

since the point is within the parallelogram. Moreover, <u 4-
w' — &>", which

is e(pial to {I —X) 0) + {I — p) co' , is another point within thi' parallelogram;

and

f{z + w + O)' - O)") =/(- ).

since (X), 0}', co" art' periods. Thus there cannot be only one such point unless

• For another jnoof, see Goursat, Cours d'analyse natlit'ntatiqiw, t. ii, § :{'24.

t This theorem is also due to Jacobi, (i.e., p. '239, note).

IG— 2
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But the number of such points within the parallelogram must be finite.

If there were an infinite number, they would form a continuous line or a

continuous area where the uniform function had an unvarying value, and

the function would have a constant value everywhere ; or they would

condense within any region (however small) round any point, and so would

make the point an essential singularity, a result to be excluded as in § 37.

To construct a new parallelogram when all the points are known, we first

choose the series of points parallel to the w-line through the origin 0, and of

that series we choose the point nearest 0, say Ai. We similarly choose the

point, nearest the origin, of the series of points parallel to the w-line and

nearest to it after the series that includes A^, say i?i : we take OA^, OB^ as

adjacent sides of the parallelogram, and these liries as the vectorial repre-

sentations of the periods. No point lies within this parallelogram where the

function has the same value as at 0] hence the angular points of the original

parallelograms coincide with angular points of the new parallelograms.

When a parallelogram has thus been obtained, containing no internal

point n such that the function can satisfy the equation

f{z + n)=f{z)

for all values of z, it is called ix fundamental, or a, primitive, parallelogrcwi.

The parallelogram of reference in subsequent investigations will be assumed

to be of a fundamental character.

But a fundamental parallelogritni is not unique.

Let (o and &>' be the periods for a given fundamental parallelogram, so

that every other period &>" is of the form Xo) + fMco', where X and /u, are

integers. Take any four integers a, b, c, d such that ad — hc^± 1, as may
be done in an infinite variety of ways; and adopt two new periods co^ and co.,,

such that

(iii = aco + ho)', (W.J = CO) + dco'.

Then the parallelogram with o), and o).^ for adjacent sides is fundamental.

For we have

± o) = rfcoi — bcon, +&)' = — c<i)i + ao).,,

and therefore any period to"

= Xw + fXdi

= (Xd — fjLc) <Wi + {—Xb + fxa) a-.,, save as to signs of X and /i.

The coefficients of Wi and w., are integers, that is, the point <u ' lies outside

the new parallelogram of reference; there is therefore no point in it such that

f{z + o,")=f{z),

and hence the parallelogram is fuiKlameiital.
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CoROLi-ARY. The aggregate of the angular points in one division of the

plane into fundamental pavallelugrains coincides with their aggregate in

any other division into fundamental parallelograms; and all fundamental

parallelograms for a given function are of the same area.

The luetliod suggested jibove for the construction of ;i funiljiuicntal iiariillclognini is

geooietrical, and it assumes a knowledge of all the points w" within a givt-n ))aralleloj,Miini

for which the etjuation f{z + u>")= f{z) is satistied.

Such a point a),j within the w,, u>., parallelogram is given l.y

where »«,, nu, m^ are integers. We may assume that no two of these three integers

have a common factor; were it otherwi.se, say for ?«, and in.), then, as in § 107, a

subniultiple of W3 would be a period—a result which may be considered as excluded.

Evidently all the points in the parallelogram are the reduced points homologous with

co;t, 2a)3, , (««;,- 1) C03; when these are obtained, the geometrical construction is

po.ssible.

The following is a simple and practicable analytical method for the construction.

Change nii'm^ and m^'m-i into contiimed fractions; and let pjq and r « be the last

convergents before the respective proper values, so that

?Hi p _ e m.y r _ e'

where e and e' are each of them + 1. Let

»«3 m-i m-s ^ m-i

where A and ^ are taken to be less than ?«3, but they do not vanish becjiuse q and s are

less than m^. Then

qoi^—pcoi — do).)^ — (^wo+ fcoi), Sci);) — /'coj — 00)1 = (\a}i+ e'o)-))

;

;»3 '
' '

7li:i

the left-hand sides are periods, say fli and fi* resjiectively, and since /x + e is not > ms and

X + (' is not > 7«3, the points fij and Q.^ determine a parallelogram smaller than the initial

parallelograjn.

Thus €W| -|-/xa)2= "*:ii2i, XaJj + €'a)^= //i3Q._,,

are e<iuations defining new periods fii, 12^. Moreover

X )ll^ p ,

(S
/I , M '«•.' '

,
f'q

^ vij m-i q qm-t m.^ " WI3 •* s sm^

>o that, multiplying the right-hand sides together and likewise the left-hind sides, we

at once .see that X/x-f*' is divisil)le by ni.^ if it be not zero: let

Xfi- f<' = m3i.

Then, us X and /x are le.ss than m^, tiiey are greater than A; and they are prime to it,

because ««' is ± 1. Hence we have

Aco, =^i2^-«'i2,, Aw.. = Xfl,-fQ.j.
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Since X and fi arc both greater than A, let

X = XiA + X', (1 = fj.iA + fx',

where X' and /i' are < A. Then X'/x'-ee' is divisible by A if it be not zero, say

Xy — ((' = Aa'
;

then X' and fi' are > A' and are prime to it. And now

A (wj - fi^n.,) = fi'Q.j - f'fl, , A (o)^ - XiQj) =x'i2, - fQ2

;

thus, if coj -/iiQ2=^.!» wo-Xii2, = J24, which are periods, we have

AQ3 = /i'Q2-f'iii) AQ4 = X'i2i-«f22-

With fl-j and Sl^ we can construct a parallelogram smaller than that constructed

with fl] and Q..,. We now have

A'Q]=fi2:j + /x'Q4, A'i2._, = X'Q3+ 6'i24,

that is, equations of the same form as before. We proceed thus in successive stages

:

each quantity A thus obtained is distinctly less than the preceding A, and so finally we

shall reach a stage when the succeeding A would be unity, that is, the solution of the pair

of equations then leads to periods that determine a fundamental parallelogram. It is

not difficult to prove that co,, wo, W3 are combinations of integral nuiltii)les of these

jjeriods.

If one of the quantities, such as X'fi'-ee', be zero, then X' = /x' = l, e = e'=±l; and

then iig and Q^ are identical. If e = e'=+l, then Ai23=i2._,- i2i, and the fundamental

l^arallelogram is determined by

12-i'
= f2,+- (Q.,-«i\ ni=Q; (fl., -fli).

A " " A "

If ( = € = — \, then AQ3= J22 + ^]) so that, as A is not unity in this case, the fundamental

parallelogram is determined by Q.^ and ^3.

Ba\ If a function be 2>eriodic in <wi, 02, and also in co.j where

2iVi=17coi + lla)2,

periods for a fundamental parallelogram are

£2j =00)1 +3ci)2 — 80)3, Q^' ^Suii+'2(o->— ^^0)3,

and the values of w,, &)._,, (03 in terms of o,' and ilV are

Mi = n./ + :iQi', a)2 = yQ./-2i2,', co-j = 4Q2' + Qi'-

Further discussion relating to the transformation of periods and of fundamental

parallelograms will be foiuid in Briot and Bouquet's Theorie des fonctions eUiptiqnes,

pp. 234, 235, 268—272.

110. Tt has been proved that unifonn periodic functions of a single

variable cannot have more than two periods, independent in the sense that

their ratio is not a real quantity. If then a function exist, which has two

periods with a real incommensurable ratio or has more than two independent

periods, either it is not uniform or it is a function (whether uniform or

multiform) of more variables than one.
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When restriction is made to luiitiirin iiinctii)ns, the only alturnativo is

that the function shoiilil dcpi'nd on more than one variable.

In the case when three periods &>, , Wj, co^ (each of the form i + i/3) were

assigned, it was proved that the necessary condition for the exi.stence of a

uniform function of a sinok- variable is that finite integers /«,, m..., ^3 can

be found such that

»/,a, + //t.,a, + ni-^as = 0,

and that, if these conditions be not satisfied, then finite integers //<,, m.,, vis

can be found such that both S/z/a and -in^ become infinitesimally small.

This theorem is purely algebraical, and is only a special case of a more

general theorem as follows :

—

Let Oil, ttia, •••
, °u>-+i ; O'-'i- a-j. •••

, «2,c+i ;
••• ; «,i> «,-.', •,• .

c,-,,-^) ^>e r sets of

real quantities such that a relation of the form

n
, agi 4- n., a,., + ... -r n,.^^ a^^ ^+1 =

is not satisfied among any one set. Then finite integers m^, ..., m,.+i can be

determined such that each of the sums

7??iOf,.i + m.,a,^, + . . . + m,.+iCi^^r+i

(for s=l, 2, ..., /') can be made less than any assigned quantity, hoiuever

small. And, a fortiori, if fewer than r sets, each containing r + 1 quantities

be given, the r+1 integers can be determined so as to lead to the result

enunciated ; all that is necessary for the purpose being an arbitrary assign-

ment of sets of real quantities necessary to make the number of sets equal to

?'. But the result is not true if more than r sets be given.

We shall not give a proof of this general theorem*; it would follow the

lines of the proof in the limited case, as given in § 108. But the theorem

can be used to indicate how the value of an integral with more than two

[
periods is affected by the periodicity.

Let / be the value of the integral taken along some assigned path from

an initial point Zq to a final point 2; and let the periods be cn^, co.,, ..., co,-,

( where /• > 2), .so that the general value is

/ 4- J?Jift)i + m.^o). + ... + in,.u>,.,

where m,, m.,,..., )n,. are integers. Now if a)^ = a^ + i^S,^. for s=l, 2, ...,/•,

when it is divided into its real and its imaginary parts, then finite integers

«,, r».j, ..., nr can be determinerl such that

?<,«! + n..a., -f- . .. + n^o,.

/i,/9, -l-«.,/3,+ ... + »r/9;.

* A proof will be found in Clebsch and Gordan's I'lieurii- ihr Ahergclieii Functionen, § 38.

See also Baker's .Ibelian Fitnctioitii, chapters i.\, xix, where full references will be found.
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can bo made infinitesimal, that is, less than any assigned quantity, however

small: and then
|

In^Wgl is infinitesimal. But the addition of S ^jgco^ still

gives a value of the integral ; hence the value can be modified by infinitesimal

quantities, and the modification can be repeated indefinitely. The modifica-

tions of the value correspond to modifications of the path from z^, to z ; and

hence the integral, regarded as depending on a single variable, can be made,

by modifications of the path of the variable, to assume any value. The

integral, in fact, has not a definite value dependent solely upon the final

value of the variable ; to make the value definite, the path by which the

variable passes from the lower to the upper limit must be specified.

It will subsequently (§ 289) be shewn how this limitation is avoided by

making the integral, regarded as a function, depend upon a proper number

of independent variables—the number being greater than unity.

Ex. I. If V^, be the value of j
-—

, ,
{n integral), taken alont? an assigned path,

;o (1 -2»)5

and if

-/:
(1

then the general value of the integral is

(x real),

(-1)«1'
J)
= l

where q is any integer and »/^, any positive or negative integer such that 2 »/p= 0.

11=1

(Math. Trip., Part II., 1889.)

Ex. 2. If, in an integration in regard to the complex variable z, {aj.bg...) denote a

contour enclosing the "critical" points a,., b^, ...; and, for two points, (a,.; bg) denote the

triple contour (a,. 6,) («,.)"' {K)~\ prove that in the integrals

yr : / z»-^ (z- 1)"-' {z-.ry-^ dz, y.,= j z"-^ (2- l)?"! (^-.r)'-' dz,

J {.•.<)) JU;1)

where p, q, r are not rational integers, if x describe a closed curve round ^ = 0, the ^-loops

being deformed so as not to ])e intersected by this .r-closed curve, the new values of

1/1, 1/., are

and determine the similar changes in yj, y.j when .v moves round z= l.

Deduce Avithout direct calculation, that if p + 7' be a rational integer, y, is uniform in

the neighbourhood of x = 0, and, also in this neighbourhood,

y-i=<t> (•*•)+ —-^- yi log-i-,

(.r) being also uniform in this neighbourhood.

Calculate yi and (^ (.r) from the integrals, as ordinary |K)wer-series in x, when

p= q= r= \. (Math. Trij)., Part II., 1893.)
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Ex. 3. Prove that (•= / udz, where

is an ali^ebraic fuiictit)ii satisfvini; the equation

8 (,• + ; '- 12 (/• + ;?)-- 12^3 (i; + 3) + £«+ 162^= 0;

and obtain the conditions necessary and .sufficient to ensure that

v = \udz

shortld he an algebraic function, when u i.s an algebraic function satisfying an equation

f{z, u)= 0.

(Liouville, Briot and Bouciuet.)



CHAPTER X.

Uniform Simply-Periodic and Doubly-Periodic Functions.

111. Only a few of the properties of simply-periodic functions will be

given*, partly because some of them are connected with Fourier's series the

detailed discussion of which lies beyond our limits, and partly because, as

will shortly be explained, many of them can at once be changed into

properties of uniform non-periodic functions which have already been

considered.

When we use the graphical method of § 105, it is evident that we need

consider the variation of the function within only a single band. Within

that band any function must have at least one infinity, for, if it had not, it

would not have an infinity anywhere in the plane and so would be a constant

;

and it must have at least one zero, for, if it had not, its reciprocal, also a

simply-periodic function, would not have an infinity in the band. The
infinities may, of course, be accidental or essential : their character is repro-

duced at the homologous points in all the bands.

For purposes of analytical representation, it is convenient to use a

relation

so that, if the point Z in its plane have U and %
for polar coordinates,

If we take any point A in the >2'-plane and a

corresponding point a in the ^-plane, then, as Z
describes a complete circle through A with the

origin as centre, z moves along a line aoj, where

ff, is rt + o). A second description of the circle

makes z move from a^ to Uo, where a., = a, -}- o) ; and so on in succession.

Fig. .'jo.

For a fuller di.scussion, see Chessin, Amer. Journ. Math., t. xix, (1897), pp. '217 2.58.
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For various descriptions, pt)sitive and uegativt-, the puint a describes a line,

the inclination of which to the axis of real quantities is the argument of (o.

Instead of making Z describe a circle through A, let us make it

describe a part of the straight line from the origin through A, say from A,

where OA = R, to C, where OC=R'. Then z describes a line through a

perpendicular to aa^, and it moves to c; where

c-a = ---.(log7?'-]ng7?).

SimilarK', if any point A' on the former circumference move radially to a

point C at a distance R' from the Z-origin, the corresponding ^-point a

moves through a distance a'c, parallel and equal to ac: and all the points c

lie on a line parallel to aa^. Repeated description of a Z-ci reuinference with

the origin as centre makes z describe the whole line cc^c.^.

If then a function be simply-periodic in w, we may conveniently take

any point a, and another point a^ = a + (o, through a and o, draw straight

lines perpendicular to actj, and then consider the function within this band.

The aggregate of points within this band is obtained by taking

(i) all points along a straight line, perpendicular to a boundar}- of

the band, as affj

;

(ii) the points along all straight lines, which are drawn through the

points of (i) parallel to a boundary of the band.

In (i), the value of z varies from to to in an expression a + z, that is, in

the Z-plane for a given value of R, the angle varies from to 2it.

In (ii), the value of logi? varies from — x to +30 in an expression

^—. loffi? + V— <»>, that is, the radius R must vary from to x .

•liri
®

'liT

Hence the band in the 2-plane and the whole of the if-plane are made

equivalent to one another by the transformation

trn

Z = e-'

.

Now let ^0 he any special point in the finite part of the band for a given

simply-periodic function, and let Z^ be the corresponding i)oint in the Z-plane.

Then for points z in the immediate vicinity of z^ and for points Z which

are consequently in the immediate vicinity (jf Z^, we have

iiri 2ir/
_

Z — ^0 = e *" ' — e "
'"

•2iri 2ni

= ,^-|,. (---)_
||

= X— e - {z- Zo),
Oi

where X differs from unity only by an infinitt'sim.i! <|uantity.
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If then lu, a function of z, be changed into W a function of Z, the following

relations subsist :

—

When a point z^ is a zero of w, the corresponding point Zo is a zero

of W.

When a point ^o is an accidental singularity of w, the corresponding

point ^0 is a,n accidental singularity of W.

When a point z^ is an essential singularity of w, the corresponding-

point Z,, is an essential singularity of W.

W^hen a point Zq is a brauch-point of any order for a function w, the

corresponding point Zq is a branch-point of the same order for W.

And the converses of these relations also hold.

Since the character of any finite critical point for w is thus unchanged by the

transformation, it is often convenient to change the variable to Z so as to let

the variable range over the whole plane, in which case the theorems already

proved in the preceding chapters are applicable. But special account must

be taken of the point z= y:

.

112. We can now apply Laurent's theorem to deduce what is practically

Fourier's series, as follows.

Let f{z) he a simply-periodic fauction having w as its period, and suppose

that in a portion of tlie z-plane hounded hy any two parallel lines, the inclina-

tion of ivhich to the axis of real quantities is equal to the argument of o), the

function is uniform and has no singularities ; then, at points within that

portion of the plane, the function can he expressed in the form of a converging

series of positive and of negative integral poiuers of e "^
.

In figure 32, let aaya.... and cCiC,... be the two lines w-hich bound the

portion of the plane: the variations of the function will all take place within

that part of the portion of the plane which lies within one of the repre-

sentative bands, say within the band bounded by . . .ac. . . and . . .a^c^. .

.

: that is,

we may consider the function within the rectangle acc^a^a, where it has no

singularities and is uniform.

Now the rectangle accia^a in the 2-plane corresponds to a portion of the

iZ'-plane which, after the preceding explanation, is bounded by two circles

i-ni 2ji7'

with the origin for common centre and of radii
]
e " ""

|

and
|

e " '
\; and the

variations of the function within the rectangle are given by the variations of

a transformed function witliiii the circular ring. The characteristics of the

one function at points in the rectangle are the same as the characteristics of

the other at points in the circular ring : and therefore, from the character

of the assigned function, the transformed function has no singularities and it



112.] THKOKKM 253

is unifiirin within the circuhir riiii;-. Hence, by Laurent's Theoieni (§ 28),

the tianst'onned function is expivssihh' in thi' form

F(Z) = " i\i„Z'\
)l ~ —x>

a series which converges within the ring: and the vahie oi' the coefticient (^^

is given bv

taken along any circle in the ring concentric with tlie boini(h\ries.

Retransforniing to the variable z, the expression for the original function

f(z)= ^ One •*'
.

n= - y-

The series converges for points within the rectangle and therefore, as it

is periodic, it converges within the portion of the plane assigned. And the

value of (;,i is

rt„ = - \f{z)e "- dz,

taken along a path which is the equivalent of any circle in the ring concentric

with the boundaries, that is, along any line perpendicular to ac and (/jCj, and

therefore parallel to the lines which bound the assigned portion of the plane.

The expression of the function can evidently be changed into the form

<y
. « = -

»

where the integral is taken along the piece of a line, perpendicular to the

boundaries and intercepted between them.

If one of the boundaries of the portion of the plane be at infinity, (so that

the periodic function has no singularities within one part of the plane), then

the corresponding portion of the Z-plane is either the part within or the part

without a circle, centre the origin, according as the one or the other of the

boundaries is at oo . In the former case, the terms with negative indices

/( are absent; in the latter, the terms with positive indices are absent.

113. On account of the consequences of the relation subsisting between

the variables z and Z, many of the propositions relating to general uniform

functions, as well rvs of those relating to midtiform functions, can be chang»-d,

merely by the transformation of the variables, into propositions relating to

simply-periodic functions. One such proposition occurs in the preceding

section; the following are a few others, the full development being un-

necessary here, in ct)nsequence of the foregoing remark The band of

reference for the simi)ly-perio(lic functions considere<l will be supposed to
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include the origin : and, when any point is spoken of, it is that one of the

series of homologous points in the plane, which lies in the band.

We know- that, if a uniform function of Z have no essential singularity,

then it is a rational function, which is integral if Z=x bo the onh"

accidental singularity and is meromorphic if there be accidental singularities

in the finite part of the plane ; and every such function has as many zeros

as it has accidental singularities.

Hence a uniform simply-periodic function with z= oo as its sole essential

singularity has as many zeros as it has infinities in each hand of the plane

;

the number of points at which it assumes a given value is equal to the number

of its zeros; if this common number be finite, and if the period be co, the
2niz

function is a rational function of e '"
, which is integral if all the singularities

be at an infinite distance and is meromorpJiic if some (or all) of them be in

a finite part of the plane. (But any number of zeros and any number of

infinities may be absorbed in the essential singularity at z = oc .)

The simplest function of Z, thus restricted to have the same number

of zeros as of infinities, is one which has a single zero and a single infinity

in the finite part of the plane ; the possession of a single zero and a

single infinity will therefore characterise the mo.st elementary simply-periodic

function. Now, bearing in mind the relation

Z = e~^,

the simplest 2^-point to choose for a zero is the origin, so that Z = 1 ; and

then the simplest ^-point to choose for an infinity at a finite distance is h oo,

(being half the period), so that Z = — 1. The expression of the function in

the Z-plane with I for a zero and — 1 for an accidental singularity is

^ ZV\ '

and therefore assuming as the most elementary simply-periodic function that

which in the plane has a series of zeros and a series of accidental singularities

all of the first order, the points of the one being midway between those of the

other, its expression is

'Iniz

e^-1

e - +1

nrz — '-

which is a constant multiple of tan . Since e " is a rational fractional

function of tan , part of the foregoing theorem can be re-stated as follows:—

//' tlie period of the function be w, the function is a rational function

of tan - .
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Moreover, in the general theory of unitonu tuiR-tinns, it was found

convenient to have a simple element for the eonstiuction of pnulucts, thei-e

(§53) called a primary factor: it was of the type

Z-c

whore tho function G^
(
^ )

could be a constant: and it had only one

infinity and one zero.

Hence for simply-periodic functions we may regard tan ~ a.s a typical

primary factor when the number of irreducible zeros and the (equal) number

of irreducible accidental singularities are finite. If these numbers should

tend to an infinite limit, then an exponential factor might have to be

associated with tan -^
; and the function in that case might have essential

w
singularities elsewhere than at ^ = x .

Ex. Prove tliat a ratit)nal function of z cannot be simply-periodic.

114. We can now prove that every uniform function, which has no

essential singularities in the finite part of the plane and is such that all

its accidental singularities and its zeros are arranged in groups equal aud

finite in number at equal distances along directions parallel to a giren

direction, is a simjily-periodic function, save as to a possible factor of the

form e^*-', where g (z) is a uniform function of z regular evergichere in

the finite part of the plane.

Let CO be the connnon period of the gi-oups of zeros and of singularities

:

and let the plane be divided into bands by parallel lines, perpendicular to

any line representing w. Let a, b, ... be the zeros, a, ^, ... the singularities

in any one band.

Take a uniform function <f){z), simply-periodic in co, and having a single

zero and a single singularity in the band : we might take tan — as a value

of
<f>

(z). Then
(f>(z)-<f)(a)

(f){z)-(f){a)

is a simply-periodic function having only a single zero, viz., z = a and a single

singularity, viz., z = a: for as ^(z) has only a single zero, there is only a

single point for which (f>{:)
= cf){ii), and a single point for which (f){z) = <f){a).

Hence
{</>(^)-<^(a)}{</>U)-</>(6){...

\4>(z)-<t>{'^)\\<t>(z)-<t>{/:i)\...
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is a siinply-periodic function with all the zeros and with all the infinities of

the given function within the band. But on account of its periodicity it has

all the zeros and all the infinities of the given function over the wdiole plane;

hence its quotient by the given function has no zero and no singularity over

the whole plane. Hence, by Corollary I. in § 52, this quotient is of the form

e^'^', where g(z) is a uniform function of z, finite everywhere in the finite

part of the plane : and it may be a constant. Consequently, the expression

for the given function is known. It is thus a simply-periodic function, save

as to the factor specified ; and this factor may be a constant, in which case

the function is actually simply-periodic.

This method can evidently be used to construct .-^i inply-periodic functions, having

a.ssigned zeros and assigned singularities. Thus if a function have a + niw as its zeros and
c+ m'a> as its singularities, where m and m' have all integral values from -co to 4-oo,

-the simplest form is obtained by taking a constant multiple of

tan tan

Ex. Construct a function, simply-periodic in co, having zeros given by (»i + i)co and

(>« + !) CO and singularities by (m + j^o) and {m + '^)o).

Tlie irreducible zeros are iw and ^w ; the irreducible singularities are l^ and '^w. Now

( tan ~ — tan ^ttW tan -"- - tan |7r
)

A'
^

tan -~ — tan Jtt )
( tan "~~ — tan r,7r

('

is evidently a function, initially satisfying the required conditions. But, as tan ^n is

infinite, we divide out by it and absorb it into A' as a factor; the function then takes

the form

1-Ftan—
A ^.

3 - tan-

•

We shall not consider simply-periodic functions, which have essential

singularities elsewhere than at z = oc ; adequate investigation will be found

in the second part of Guichard's moiuoir, (I.e., p. 176). But before leaving

the consideration of the present class of functions, one remark may be made.

It was proved, in our earlier investigations, that uniform functions can be

expressed as infinite series of functions of the variable and also as infinite

products, of functions of the variable. This general result is true when the

functions in the series and in the products are simply-periodic in the same

period. But the function, so represented, though periodic in that common
period, may also have another period : and, in fact, many doubly-periodic

functions of different kinds (§ 136) are often conveniently expressed as infinite

converging series or infinite converging products of simply-periodic functions.
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Any detailed illustration of this n>mark belongs to the theory nf elliptic fniietions: one

simple example must suffice.

Let the real part of be negative, and let q denote «- "
; tiien the funrtinn

d{z)= "2'
(-!)"</"' e " ,

n=-ao

being an infinite converging series of powers of the simply-periodic function »• *"
. is

finite everywhere in the plane. Evidently 6 (z) is periodic in w, so that

d{z+<o)=e{z).

Again, B{z+ o>')= 2 {-l')"q"^e "

ininz

= 2 (-l)"5»'e *» q^"
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The geometrical representation of double-periodicity, explained in § 105,

will be used concurrently with the analysis ; and the parallelogram of

periods, to which the variable argument of the function is referred, is a

fundamental parallelogram (§ 109) with periods* 2a) and 2o)'. An angular

point ^0 for the parallelogram of reference can be chosen so that neither a

zero nor a pole of the function lies on the perimeter; for the number
of zeros and the number of poles in any finite area must be finite, as

otherwise they would foi-m a continuous line or a continuous area, or they

would be in the vicinity of an essential singularity. This choice will, in

general, be made ; but, in particular cases, it is convenient to have the origin

as an angular point of the parallelogram and then it not infrequently occurs

that a zero or a pole lies on a side or at a corner. If such a point lie on a side,

the homologous point on the opposite side is assigned to the parallelogram

which has that opposite side as homologous; and if it be at an angular point,

the remaining angular points are assigned to the parallelograms which have

them as homologous corners.

The parallelogram of reference will therefore, in general, have z^, 2^+ 2&),

Zo + 2(o', ^0 + 2&) + 2(1)' for its angular points ; but occasionally it is desirable

to take an equivalent parallelogram having 2^0 + <« + «»' as its angular points.

When the function is denoted by ^ (z), the equations indicating the

periodicity are

(f){z + 2a)) =
(f>

(z) = (/) (^ + 2ft)').

116. We now proceed to the fundamental propositions relating to

doubly-periodic functions.

I. Every doubly-periodic function must have zeros and infinities within

the fundamental parallelogram.

For the function, not being a constant, has zeros somewhere in the plane

and it lias infinities somewhere in the plane ; and, being doubly-periodic, it

experiences within the parallelogram all the variations that it can have over

the plane.

Corollary, The function cannot he a rational function of z.

A rational function of z possesses only a limited number of zeros in the

plane. Within the fundamental parallelogram, a doubly-periodic function

possesses zeros: and therefore the number of zeros which it possesses in the

plane is unlimited. The two functions therefore cannot be equivalent.

An analytical form for <^(^) can be obtained which will put its singu-

larities in evidence. Let a be such a pole, of multiplicity n; then we know

that, as the function is uniform, coefficients A can be determined so that the

function

. / \_ ^n _ -^n- i _ _ '^- _ ^»
^^ ^ (z- a)" (z - a)"-' {z- aY z - a

* The factor 2 is introduced merely for the sake of convenience.
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i.s finite in the vicinity oi' a; but the remaining poli's of <^( 2^) are singularities

of this moditiefl fuiiction. Proceeding similarly with the other singularities

b, c,..., which are finite in number antl each of which is finite in ilegrcc, wc

have coefficients ^4, B, C, ... determined so that

<f> '>-..;.. S,M
is finite in the vicinity of ever}- pole of (^(2) within the parallelogram and

therefore is finite everywhere within the parallelogram. Let its value be

y(^); then for points lying within the parallelogram, the function (f)(z) is

expressed in the form

A^ A.,
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and, the sum being n, the function is said to be of the ?ith order. All

these singularities are, as already assumed, accidental ; it is convenient

to speak of any particular singularity as simple, double, ... according to

its multiplicity.

If two doubly-periodic functions u and v be such that an equation

Au-\-Bv + C=0

is satisfied for constant values of A, B, C, the functions are said to be

equivalent to one another. Equivalent functions evidently have the same
accidental singularities in the same multiplicity.

II. The integral of a doubly-periodic function round the boundary of a

fundamental 'parallelogram is zero.

Let ABCD be a fundamental parallelogram, the boundary of it being

taken so as to pass through no pole of the

function. Let J. be ^-q, i^ be Zf, + 2a}, and* <:_

D he Zo+ 2(1)'
; then any point in AB is / /

/

where Ms a real quantity lying between / X
and 1; and therefore the integral along AB is ^ —

>

g

,1 Fig. 33.

<l){Zo+2o)t)2o)dt.
J

Any point in BC is z^ + 2co + 2(a't, where ^ is a real quantity lying between

and 1 ; therefore the integral along BC is

I <f)(zo+2(o + 2(o't) 2M'dt
J

=
I (f>

{zo + 2o)'t) 2co'dt,

.

since </> is periodic in 2&).

Any point in DC is Zq + 2a)' + 2o)t, where Ms a real quantity lying

between and 1 ; therefore the integral along CD is

(l){Zo + 2w + 2wt) 2wdt

.'
1

= - </) (~^o + 2w0 2wdt.

* The figure implies that the argument of w' is greater than the argument of w, a

hypothesis which, though unimportant for the present proposition,* must be talten account

of hereafter (e.g., § 129).
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Similarly, the integral along DA is

= -
I

(/) (-^0 + 2w'0 2(o'dt.

Hence the complete value of the integral, taken round the parallelogram, is

= </) (^0 -^ 2f,)n 2(odt +1 (f>(2,+ iw't) 20)' lit

.'
.

-
I (f>

{zo + 2(ot) 2wdt -
I

(f)(zo + 2&)7) 2(o'dt,

(1

which is manifestly zero, since each of the integrals is the integral of a

continuous function.

Corollary. Let \|^ (^) be any uniform function of z, not necessarily

doubly-periodic, but without singularities on the boundary. Then the

integral f\jr (z) dz taken round the parallelogram of periods is easily .seen

to be

,•1 r\

f {z, + 2a>t) 2o)dt +
I

^fr (z^ + 2« + 2co't) 2(o'dt
. . II

-
I

>|r (^0 + 2&)' + 2'.)^) 2Qidt -
I

yfr {z, + 2oi't) 'lay'dt
;

.0 .0

or, if we write "^1^+ 2&>) — yjr (^) = -v/r, (^),

f (^+ 2a,')- yjr a) = f,{0,

then
I
yfr (z) dz = I i/r, {z„ + 2o)'t) 2(o'dt -

|
a/t., {z, + 2oit) 2wdt,

. .

where on the left-hand side the integral is taken positively round the

boundary of the parallelogram and on the right-hand side the variabFe t

in the integrals is real.

The result may also be written in the form

jyfr (z) dz =
[ Vi (- ) (f^ -j f^ <-')

'

the integrals on the right-hand side being taken along the straight lines AD
and AB respectively.

Evidently the foregoing main proposition is establisht-d, when ^|r^ (f ) and

v/r._, (^) vanish for all values of if.

III. If a doubli/-periudic fuuctiun <f){z) have infinities a^,a^, ... ivithin

t}te parallelogram, and if A^, A», ... be the coefficients of (z — a^)~\ {z — a.,)~\ ...

respectively in the fractional part of <fi(z) when it is expanded in the paral-

lelogram, then

A, + A, + ...=().
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As the function (z) is uniform, the integral
J(f) (2) dz is, by § 19, II., the

sum of the integrals round a number of curves each including one and only

one of the infinities within that parallelogram.

Taking the expression for ^{z) on p. 259, the integral A,nl{z - a)-'" dz

round the curve enclosing a is 0, if m be not unity, and is ^iriA^, if m be

unity; the integral Kmj{z — K)-"Ulz round that curve is for all values of m
and for all points k other than a ; and the integral Jx (^) ^^ I'ound the curve

is zero, since xi^) ^^ uniform and finite everywhei'e in^the vicinity of a.

Hence the integral of ^ {z) round a curve enclosing a^ alone of all the

infinities is liriAy.

Similarly the integral round a curve enclosing a, alone is ^iriA^ ; and so

on, for each of the curves in succession.

Hence the value of the integral round the parallelogram is

"lirilA.

But by the preceding proposition, the value of f(f)(z)dz round the parallelo-

gram is zero ; and therefore

This result can be expressed in the form that the sudi of the residues* of a

doubly-periodic function relative to a fundamental parallelogram of periods

is zero.

Corollary 1. A doubly-periodic function of the first order does not

exist.

Let such a function have a for its single simple infinity. Then an

expression for the function within the parallelogi-am is

where %(2) is everywhere finite in the parallelogram. By the above propo-

sition, A vanishes ; and so the function has no infinity in the parallelogram.

It therefore has no infinity anywhere in the plane, and so is merely a

constant : that is, qua function of a variable, it does not exist.

Corollary 2. Doubly-periodic functions of the second order are of two

classes.

As the function is of the second order, the sum of the degrees of the

infinities is two. There may thus be either a single infinity of the second

degree or two simple infinities.

In the former case, the analytical expression of the function is

^^^ z-a {z- «)- ^ ^^ ^'

* See p. 48.
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where (/ is the iniinity of the second degree and x^^^ ^^ huloniurphie within

the parallelogram. Bnt, by the preceding proposition, ..4, = 0; hence the

analytical expression for a doubly-periodic function with a single irn-ducible

infinity a of the second degree is

within the parallelogram. Such functions of the second ordci-, which have

only a single irreducible infinity, may be called the first class.

In the latter case, the analytical expression of the function is

C C
<f>

{z) = — + -— - + Y {z),
Z — Ci z — c,

whore c, and c. are the two simple infinities and %(-) is finite within the

parallelogram, 'rhen

c, + a = ;

so that, if 0, = — C. = C, the analytical expression for a doubly-periodic

function with two simple irreducible infinities a^ and a. is

\z - a, z — aJ '^

within the parallelogram. Such functions of the second order, which have

two irreducible infinities, may be called the second class.

Corollary 3. If within any parallelogram of periods a function is

{inly of the second order, the parallelogram is fundamental.

Corollary 4. A similar division of doubly-penodic functions of any

order into classes can he effected according to the variety in the constitution of

the order, the number of classes being the number of partitions of the order.

The simplest class of functions of the nth. order is that in which the func-

tions have only a single irreducible infinity of the ?ith degree. Evidently

the analytical expression of the function within the ]);u-allelogram is

G2 G, Gn

(i- af
"^

(2 - af
"^ "^

{z -aY "^ ^ ^'

where x (z) is holomorphic within the parallelogram. Some of the coefficients

G may vanish ; but all may not vanish, for the function would then be finite

everywhere in the parallelogram.

It will however be seen, from the next succeeding propositions, that the

division into classes is of most importance for functions of the second order.

IV. Two functions, which are doubly-periodic in the same periods*, and

ichich hare the same zeros and the same infinities each in the s(ttne degrees

respectively, are in a constant ratio.

* Such functions will he cnlleil homitperioilii-.
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Let </> and yjr be the functions, having the same periods ; let a of degree v,

/9 of degree /x, . . . be all the irreducible zeros of
<f>

and o/r ; and let a of

degree n, h of degree wi, ... be all the irreducible infinities of </> and of yfr.

Then a function G(z), without zeros or infinities within the pai'allelograni,

exists such that

and another function H (z), without zeros or infinities within the parallelo-

gram, exists such that

^ ("> = (.- arn^ - 6)'"...
^^"^-

Hence <t> i^) JH^)

Now the function on the right-hand side has no zeros in the jjarallelogram,

for G has no zeros and H has no infinities ; and it has no infinities in the

parallelogram, for G has no infinities and H has no zeros: hence it has

neither zeros nor infinities in the parallelogram. Since it is equal to the

function on the left-hand side, which is a doubly-periodic function, it has no

zeros and no infinities in the whole plane ; it is therefore a constant, say

A. Thus*
<l>{z) = Air(zl

V. Two functions of the second order, douhly-peHodic in the same periods

and having the same infinities, are equivalent to one another.

If one of the functions be of the first class in the second order, it has one

irreducible double infinity, say at a ; so that we have

where x (^) i^ finite everywhere within the parallelogram. Then the other

fundtion also has z = a for its sole irreducible infinity and that infinity is of

the second degree ; therefore we have

JT

where Xi (^) ^^ finite everywhere within the parallelogram. Hence

^(^ {z) - G^lr (z) = Hx (^) - Gx. (^).

Now X and Xi ai't! finite everywhere within the parallelogram, and therefore

so is Hx — Gxi- But Hx — Gxu being equal to the doubly-periodic function

Hip-G-^, is therefore doubly-periodic; as it has no infinities within the

This proposition is the modified form of the proposition of § 52, when the generalising

exponential factor has been determined so as to admit of the periodicity.
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parallelogram, it conseqiK'utly can have none over the plane and therefore it

is a constant, say /. Thus

H(f>(z)-Gylr(z) = I,

proving that the functions (i> and yjr are equivalent.

If on the other hand one of the functions be of the second class in the

second order, it has two irreducible simple infinities, say at h and c, so that

we have

where 6 {z) is finite everywhere within the parallelogram. Then the other

function also has z = b and 2 = c for its irreducible infinities, each of them

being simple ; therefore we have

where ^j (^) is finite everywhere wathin the parallelogram. Hence

D<f> {z) - Of {z) = DO (z) - Ce, {z).

The right-hand side, being finite everywhere in the parallelogram, and equal

to the left-hand side which is a doubly-periodic function, is finite everywhere

in the plane ; it is therefore a constant, say B, so that

D<\>{z)-C^^{z)=B,

proving that ^ and i/r are equivalent to one another.

It thus appears that in considering doubly-periodic functions of the second

order, homoperiodic functions of the same class are equivalent to one another

if they have the same infinities ; so that, practically, it is by their infinities

that homoperiodic functions of the second order and the same class are

discriminated.

Corollary 1. If two equivalent functions of the second order have one

zero the same, all their zeros are the same.

For in the one class the constant /, and in the other class the constant li,

is seen to vanish on substituting for z the common z<'n> : and then the two

functions always vanish together.

Corollary 2. If two functions, donhly-peHodic in the same periods but

not necessarily of the second order, have the same infinities occurring in such a

way that the fractional parts of the two functions are the same except as to a

constant factor, the functions are equivalent to one another. And if in

addition, they have one zero common, then all their zeros are common, so

that the functions are then in a constant ratio.
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Corollary 3. //' two functions of the second order, doubly-periodic in

the same periods, have their zeros the same, and one infinity common, they are

in a constant ratio.

VI. Every doubly-periodic function has as many irreducible zeros as it

has irreducible infinities.

Lot ^ (z) be such a function. Then

<i>{z + h)-4>{z)

z + h — z

is a doubly-periodic function for any value of h, for the numerator is doubly-

periodic and the denominator does nojb involve z ; so that, in the limit when
h = 0, the function is doubly-periodic, that is,

(f)'
(z) is doubly-periodic.

Now suppose <f>(z) has irreducible zeros of degree m, at a,, in., at Wo, ...,

and has irreducible infinities of degree /x, at cti, //., at or.,,...; so that the

number of irreducible zeros js mi + 771^+ ..., and the number of irreducible

infinities is /x^ + /j,., + . .
.

, both of these numbers being finite. It has been

shewn that (f>(z) can be expressed in the form

(z-a,r'(^-a-r^... p..
{z - oO'^' (^ - 02)'^=

• • •

w^here F(z) has neither a zero nor an infinity within, or on the boundary of,

the parallelogram of reference.

Since F(z) has a value, which is finite, continuous and different from zero

everywhere within the parallelogram or on its boundary, the function -„

is not infinite within the same limits. Hence we have

f (^)
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For if the value be ^4, every intinity of (f)(z) is an infinity <»f the dniibly-

periodic function
<f)

(z) — A ; hence the number of the irreducible zeros of the

hitter is equal to the number of its irreducible infinities, which is the same

as the number for (f)(z) and therefore the same as the number of irreducible

zeros of ^{z). And every irreducible zero oi' (f){z) — A is an irreducible

point, for which (f>(z) assumes the value A.

Corollary 2. .1 douhlij-periodic function with only a single zero does

not exist; a doahly-periodic function of the second order has two zeros ; (ind,

generally, til e order of a function can be measured hy its number of irreducible

zeros.

Note. It may here be ivmarked that the (loubly-peri(jdic functions

(^ 115), that have only accidental singularities in the finite part of the

plane, have z= r^ for an essential singularity. It is evident that for infinite

values of z, the finite magnitude of the parallelogram of periods is not

recognisable; and thus for z=yo the function can have any value, shewing

that ^=x is an essential singularity.

VII. Let «!, a.,, ... be the irreducible zei'os of a function of degrees

m,, nu, ... respectively ; Oj, a,, ... its irreducible infinities of degrees fjb^, /ju,, ...

respectively ; and z^, Zn, ... the irreducible points where it assumes a value c,

which is neither zero nor infinity, their degrees being 31^, Mo, ... respectively.

Then, except possibly as to additive multiples of the penods, the quantities

^ m,.a,.. S fiyOL,. and - MrZ,. are equal to one another, so that
(• = 1 >•=! )• = !

^ mrar= S MrZr= - /i,.0(,. (lUod. 2a), 2(1)').

r = l r=l *• = !

Let <^(^) be the function. Then the quantities which occur are the sums
of the zeros, the assigned values, and the infinities, the degree of each being

taken account of when there is multiple occin-rence : and by the last

proposition these degrees satisfy the relations

lmr = 13f,. = lfx,.

The function (f>(z) — c is doubly-periodic in 2co and 2«u'; its zeros are

^,, ^2, ... of degrees 3/,, M.,, ... respectively; and its infinities are a,, a.,, ... of

degrees //.,, M2. •••! being the same a's those of <l){z). Hence there exists a

function G (z), without either a zero or an infinity lying in the parallelogram

or on its boundary, such that (f>{z) — c can be expressed in the form

(,-,.).V. (,_,.)..>,...
^

(2 — a,)**' (z - a.,y^ ... '

for all points not outside the parallelogram ; and therefore, for points in that

region

jTizf ^ ^ M. _^_ yz. ^^"(f)
^{Z) — C iZ^Z—Zr Z — Oir Oiz)'
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and therefore the integral
| ,

..~ f^- is equal to

dw
IV

taken in some direction round the correspoiiding closed path for w. This

integral vanishes, if no ?t^-zero or ^'-infinity be included within the area

bounded by the path ; it is + 'Im'tri, if m be the excess of the number of

included zeros over the number of included infinities, the + or - sign being

taken with a positive or a negative description ; hence we have

—r-r dz = 2m7ri,

where m is some positive or negative integer and may be zero. Similarly

-^/r dz = -2n-ni^

J a4>{z)-c

where n is some positive or negative integer and may be zero.

Thus 2iri{1M,.z,. — Sya,.a,.) = 2w . Imiri — 2&j'
. ^niri,

and therefore ^M,.z,. — -/XrO,- = 2in(o — "Inco'

= (mod. 2a>, 2&)').

Finally, since IMrZr = -i^r<^r whatever be the value of c, for the right-hand

side is independent of c, we may assign to c any value we please. Let the

value zero be assigned; then IMrZ,. becomes 1mr<-i,-, so that

^inrar = Sm,-»,- (mod. 2&), '2co').

The combination of these results leads to the recjuired theorem*, expressed

by the congruences

2 ?«,.«,.= 2 MrZr= S yU.,.Qf,. (mO(l. 2(W, 2&j').

(=1 r=\ /• = 1

Note. Any point within the parallelogram can be represented in the

form 2^0 + «2&) + 62&)', where a and h are real positive quantities less than

unity. Hence
"iiMrZ, = A,2co-¥ B/2ay' + z,lM,,

where -.4 and Ji are real positive quantities each less than -J/^, that is, less

than the order (jf the function.

In particular, for functions of the second order, we have

Zt + z., = Az2(o + B,2(o' + '2zo,

* The foregoing' proof i.s hugj;ested by Kunigsberger, Tlievrie der I'lliptigcheu Fiinctionen, t. i,

p. 31'2; other proofs are given by Briot and Bouquet and by Liouville, to wlioin the adopted

form of the theorem ia due. The theorem is substantially contained in one of Abel's general

theorems in the comparison of transcendents.
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where A^ and B, are positive quantities each less than 2. Similarly, if a and

h be the zeros,

a+b = A„2o} + B„2a}' + '2z„,

where Ag and Ba are each less than 2; hence, if

Zi + z., — a — b = ?/i2(u + )ii'2co',

then m nlay have any one of the three values — 1, 0, 1, and so may in, the

simultaneous values not being necessarily the same.

Let a. and /3 be the infinities of a function of the second class ; then

a + /3 — a — b= ii2w + 7i'2&)',

where n and n may each have any one of the three values — 1, 0, 1. By

changing the origin of the fundamental parallelogram, so as to obtain a

different set of irreducible points, we can secure that n and n' are zero,

and then
a + /3 = a + 6.

Thus, if n be 1 with an initial parallelogram, so that

a + /3 = a + ^ + 2&),

we should take either y3-2&) = y3', or a- 2co = <x', according to the position of

a and /3, and then have a new parallelogram such that

a + /S' = a + 6, or a' + /3 = « + b.

The case of exception is when the function is of the first class and has a

repeated zero.

VIII. Let 4>{z) be a doubly-periodic function of the second order. If 7

be the one double infinity when the function is of the first class, and if a and /3

be the two simple infinities tuhen tJie functioii is of the second class, tJten in the

former case

<f>(z) = <p{2y-z),

and in the latter case (2) = ^ (a 4- /3 — z).

Since the function is of the second order, so that it has two irreducible

infinities, there are two (and only two) irreducible points in a fundamental

parallelogram at which the function can assume any the same value : let

them be z and z'.

Then, for the first class of functions, we have

z + z' = 2y

= 2j + 2niw + 2noi',

where m and n are integers; and then, since
(f)

(z) = cf) (z') by definition of z

and z', we have

(l)(z) = (f)
(2j — z -\- 2mu) + 2no)')

= (t>{2y-z).

I
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Foi- the second chi.ss of fiinctiuiis, we have

z-\-z' = (x^ 13

= a + /3 + '2)110} + 2ua)'\

so that, as before,

{z) = <f){a + 13 - 2 + 'Inio + -liKo')

= (j>(a -^ l3- z).

117. Among the functions which have the same i)ei-i()(lieity as a given

function <j){z), the one which is most closely related to it is its derivative

(f)'
{z). We proceed to find the zeros and the infinities of the derivative of a

ftmction, in particular, of a function of the second order.

Since (f>{z) is uniform, an irreducible infinity of degree )i for (f)(z) is an
irreducible infinity of degree n + l for

<f)'
(z). Moreover

(f)'
(z), being uniform,

has no infinity which is not an infinity of 4>(z); thus the order of 4>' (z) is

^(?? + l), or its order is greater than that of (f>(z) by an integer which
represents the number of distinct irreducible infinities of (}){z), no account

being taken of their degree. If, then, a function be of order vi, the order of

its derivative is not less than nt + 1 and is not greater than 2//^

Functions of the second order either possess one double infinity, so that

within the parallelogram they take the form

- '2A
and then </>' (z) =

^^ _ ^^^
+ x' (^),

that is, the infinity of (f){z) is the single infinity of (fi' (z) and it is of the

third degree, so that <fi' (z) is of the third order; or they possess two simple

infinities, so that within the parallelogram they take the form

ami then ^'(., = - cj^^J^^^, -
^^

_1 _| + ^-,.»,

that is, each of the simple infinities of (f)(z) is an infinity for (p'(z) of the

second degree, so that
<f>'

(z) is of the fourth order.

It is of importance (as will be seen presently) to know the zeros of

the derivative of a function of the second order.

For a function of the first cla.ss, let y be the irreducible infinity of the

second degree ; then we have

(t>(z) = (t>{-2y-z),

and therefore
<l>'{2)

= —
(f) {2y — z).
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Now <^' (z) is of the third order, having 7 for its irreducible infinity in the

third degree : hence it has three irreducible zeros.

In the foregoing equation, take z = y: then

(f)'
(ry) = -<!>'

(y),

shewing that 7 is either a zero or an infinity. It is known to be the only

infinity of
<f>' (^).

Next, take 2 = 7 + &> ; then

<^' (7 + &)) = — </)' (7 — ft))

= — ^' (7 — ft) + '2oi)

= -
(f>'(j + 0)),

shewing that 7 + ft) is either a zero or an infinity. It is known not to be an

infinity ; hence it is a zero.

Similarly y + o' and 7 + ft) + ft)' are zeros. Thus three zeros are obtained,

distinct from one another ; and only three zeros are required ; if they be not

within the parallelogi-am, we take the irreducible points homologous with

them. Hence :

—

IX. The three zeros of the derivative of a function, doubly-periodic in

2ft) and 2&>' and having 7 for its dottble (and only) irreducible infinity, are

7 + ft), 7 + ft)', 7 + ft) + ft)'.

For a function of the second class, let a and /3 be the two simple

irreducible infinities ; then we have

4.{z) = <^{a + ^-z),

and therefore <^' (z) = -
(f>'

(a + /3 - z).

Now ^' (^r) is of the fourth order, having a and /3 as its irreducible

infinities each in the second degree; hence it must have four irreducible

zeros.

In the foregoing equation, take z = ^ (a + /3): then

f lH« + /3)} = -0'{H« + /3)}>

shewing that ^ (a + /3) is either a zero or aii. infinity. It is known not to be

an infinity; hence it is a zero.

Next, take z = ^ (a + /B) -{ co; then

cf>' {
i (ct + /3) + ft)} = - (/)' [h (« + /3) - ft)]

= -</)' {H« + /S) - ft) + 2a)|

= -(/)'{^(a + /3) + ft)j,

shewing that .l(a + /3).+ ft) is either a zero or an infinity. As before, it is

a zero.
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Siiiiilarly k {
a -\- f:i ) -\- ay' and .^(a + /3) + &> + w' arc zi-ros. Four zeros are

thus obtained, distinct from one another: and only four zeros are recjuired.

Hence :

—

X. The four zeros of the derivative of a fioiction, douhbj-periodir in 'Ico

and 2(o' and haviiuf a and ^ for its simple {and only) irreducible infinities, are

i(a + /3), ^{a + l3) + u}, ^(a + /3) + a)', ^ (a + y3) + a, + co'.

The verification in each of these two cases of Prop, VII., that the sum of

the zeros of the doubly-periodic function
(f>' (2) is congruent with the sum of

its infinities, is immediate.

Lastly, it may be noted that, if z, and z., be the two irreducible points for

which a doubly-periodic function of the second order assuines a f/iven value,

then the values of its derivative for 2^ and for z„ are equal and opposite. For

4>(z)=(f){a + l3-s)=4> {2, + ^o - 2),

since z^ + 2^ = a + ^: and therefore

(f)'(2)
= -(f>'{2, + Z.,-2),

that is,
(f)' (2i) = -<!>' {Z2),

which proves the statement.

118. We now come to a different class of theorems.

XI. Any doubly-periodic function of the second order can be expressed

rationally in terms of an assigned doubly-periodic function of the second order,

if the periods be the same.

The theorem will be sufficiently illustrated and the line of proof

sufficiently indicated, if we express a function <^ {z) of the second class, with

irreducible infinities a, ^ and irreducible zeros a, b such that a + y9 = a + 6, in

terms of a function <t> of the first class with 7 as its irreducible double

infinity.

r. . f ,
^P{2 + h)-^{h' )

C onsuler a function . tt . ,

,

'
.

(\->{z + h) -<^(^")

A zero of ^t>{2 + h) is neither a zero nor an infinity of this function ; nor

is an infinity of <t> {z -\- h) a zero or an infinity of the function. It will have

a and b for its irreducible zeros, if

a + h = h',

b + h -\- h '='2y:

and these will be the only zeros, for <I> is of the second order. It will have a

and ^ for its irreducible infinities, if

a + h= h",

(3-hh+ h" = 27

;

F. P. 18
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and these will be the only infinities, for <t> is of the second order. These

equations are satisfied by

r = i(27-^-+-ct),

// = ^{2y-h + a),

/* = i (27 - « - /3) = i (27 - « - 6).

Hence the assigned function, with these values of h, has the same zeros

and the same infinities as (f)(z); and it is doubly-periodic in the same periods.

The ratio of the two functions is therefore a constant, by Prop. IV., so that

^^^'>"^ci,(^+70-4>(r)-

If the expression be required in terms of <t> (z) alone and constants, then

<t>(2 + A) must be expressed in terms of <I> (z) and constants which are values

of ^ {z) for special values of z. This will be effected later.

The preceding proposition is a special case of a more general theorem

which will be considered later; the following is another special case of that

theorem : viz. :

—

XII. A doubly-periodic function with any numher of simple infinities can

be expressed either as a sain of as a product, of functions of the second order

and the second class which are doubly-periodic in the same periods.

Let a,, a.j, ..., a,i be the irreducible infinities of the function <t>, and

suppo.se that the fractional part of 4^ {z) is

z — a^ z — a., z — oin'

wdth the condition A^-i- A2+ + ^ „ = 0. Let ^y (z) be a function, doubly-

periodic in the same periods, with a,-, O; as its only irreducible infinities,

supposed simple; where i has the values 1, ...,n — 1, -And j = i + 1. Then

the fractional parts of the functions (p^., {z), ^.,3 (z), .

.

. are

\z — tti z — aj

\z — a., z - aJ

respectivel}'; and therefore the fractional part of

A, , . A, + A.,^.. Ai + A.,+ ...+An-i. ,.

(jTi Cr,^ Ur„_i

Aj
,

A^ An-i A, + A.,+ ...+An-i
IS H -f- ... -f-

—
z — Qi z — a.^ z— ttn-i z — a„

z — a, z — o«_, z — a„
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sinco ^LAi — 0. This is the same as the fractional part of ^'>(:): and therefore

.i>(.)--^.>,...u)-^4r'»^..(^)----' ''e;J;^"-
>..-....u)

has no fractional part. It thus has no infinity within the parallelogi-ani ; it

is a doubly-periodic function and therefore has no infinity anywhere in the

plane ; and it is therefore merely a constant, say B. Hence, changing the

constants, we have

^{z)- B,<f>,,{z)- B,(f>.^{z)- ... - B,_,6n-^,n{z)= B,

giving an expression for <P (z) as a linear combination of functions of the

second order and the second class. But as the assignment of the infinities is

arbitrary, the expression is not unique.

For the expression in the form of a product, we may denote the n

irreducible zeros, supposed simple, by rtj, ..., Oh. We determine n — 2 new

iireducible quantities c, such that

c, = ai4-a2 — «!,

C2 = a3 + Ci — Og,

C3 = a4 + C2-a3,

a„ = On + c„_o — a„-i

,

n n

this being possible because Sa,. = Xa^; and we denote by (f)(z; a, /3: e,/) a
r = \ r=l

function of z, which is doubly-periodic in the periods of the given function,

has a and yS for simple irreducible infinities, and has e and / for simple

iireducible zeros. Then the function

(f)(z\ oil, a./, (f,, Ci)(f)(z; a.j, d ; a.,, c.,) ... <}>(z\ a„, Cn-«', (in-\, «n)

has neither a zero nor an infinity at c,, at a,, ..., and at Cn—>', it has simple

infinities at a,, a.,, ..., a„, and simple zeros at a,, a.,, ..., a,,-!, a„. Hence it

has the same irreducible infinities and the same irreducible zeros in the same

degree as the given function <^ (z); and therefore, by Prop. IV., 4>(2) is

a mere constant multiple of the foregoing product.

The theorem is thus completely proved.

Other developments for functions, the infinities of which are not simple,

are possible ; but they are relatively unimportant in view of a theorem,

Prop. XV., about to be? proved, which expresses any periodic function in

terms of a single function of the second order and its derivative.

18—2
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XIII. //' two doubly-periodic functions have the same periods, tliey are

connected hy an algebraic equation.

Let u be one of the functions, having n irreducible infinities, and v be

the other, having m irreducible infinities.

By Prop. VI., Corollary 1, there are n irreducible values of z for a value

of a ; and to each irreducible value of z there is a doubly-infinite series of

values of z over the plane. The function v has the same value for all the

points in any one series, so that a single value of v can be associated uniquely

with each of the irreducible values of z, that is, there are n values df v for

each value of u. Hence (§ 99) « is a root of an algebraic equation of the nth

degree, the coefficients of which are functions of u.

Similarly w is a root of an algebraic equation of the wth degree, the

coefficients of which are functions of v.

Hence, combining these results, we have an algebraic equation between

u and V of the nth. degree in v and the mth in u, where m and n are the

respective orders of v and u.

Corollary 1. If both the functions be even functions of z, then n and m
are even integers ; and the algeh'aic relation between u and v is of degree ^n in

V and of degree ^ni in u.

Corollary 2. If a function u be doubly-periodic in o) and o)', and a

function v be doubly-periodic in fl and fl', luhere

n = met) + net)', n' = 7nu) + n'co',

ni,, n, ni.', n being integers, then there is an algebraic relation between u and v.

119. It has been proved that, if a doubly-periodic function u be of order

7n, then its derivative du/dz is doubly-periodic in the same periods and is of

an order n, which is not less than m-\-l and not greater than 2m. Hence, by

Prop. XIII., there subsists between u and u an algebraic equation of order m
in u' and of order n in u ; let it be arranged in powers of u, so that it takes

the form

U,u'''' -\- U, u»'-'
-f- . . . + U,n._2^^'' + U,,,_,'U + U,„ = 0,

where fJo, U^, ..., f/,„ are rational integral functions of u one at least of which

must be of degree n.

Because the only distinct infinities of u are infinities of u, it is impossible

that u should become infinite for finite values of u : hence Uo=0 can have no

finite roots for u, that is, it is a constant and so it may be taken as unity.

And because the on values of z, for which u assumes a given value, have

their sum constant save as to integral multiples of the periods, we have

Bz,-^ 6z.,-\- ...+ hz,n =

corresponding to a variation Bu ; or

dzi dzn dzm ^ .

du du du
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Now J- is one of the values of u correspond int; to the value of u, and so for

the othei-s ; hence
... 1

S , = 0,
r = l

",•

that is, by the foregoing equation,

and therefore 11,,^-^ vanishes. Hence :

—

XIV. There is a relation, hetiueen a uniform douhln-periodic function ii of

order m and its derivative, of the form

u'" + Uy»-' 4- ... + U,„_.,u' + U,„ = 0,

^vhere U^, ..., U,n-,, U„, are rational integral functions of u, at least one of

which must be of degree n, the order of the derivative, and n is not less than

m + 1 and not greater than '2ni.

Further, by taking v = -
, which is a function of order m because it has the

•' '^ u

m irreducible zeros of (/ for its infinities, and substituting, we have

y'm _ ,y2 f^r y'm-i ^ ^4 UoV''"-' - . . . + V-""-* Uui-^V- + V-'" U,„ =

The coefficients of this equation must be integral functions of v ; hence the

degree of Ur in n cannot be greater than 2r*.

Corollary. The foregoing equation becomes very simple in the case of

doubly-periodic functions of the second order.

Then m = 2.

If the function have one infinity of the second degree, its derivative has

that infinity in the third degree, and is of the third order, so that n = 3 ; and

the equation is

J- ] = A.?r + 2/j,n- + ^vu + p,

where \, /a, u, p are constants. If d be the infinity, so that

where x(^) is everywhere finite in the parallelogram, then -=^..4; and the

zeros of -r- are 6 + co, d -\- w' , 6 + w + to' : so that
az

\A i^ = [4> {z)-(f)(0 + (o)] 14) (z) - ( ^ + &)')
\(f> (c) - (6 + o) + fo')\.

'I'his is the general differential equation of Weierstrass's elliptic functions.

* For a converse proposition, see the Xote on differential equation* of the I'nxt order havimj

uniform integrals, at the end of tliis chapter.
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If the function have two simple infinities a and /3, its derivative has each

of them as an infinity of the second degree, and is of the fourth order, so that

n = 4 ; and the equation is

—
j
= CoU-^ + 4<CiU^ + 6C2U- + 4c3?t + Ci,

where Co, c,, c.,, c^, c'4 are constants. Moreover

where ;\;(^) is finite everywhere in the parallelogram. Then Co=G~-; and

the zeros of j^ are ^ (cc+/3), ^ (a +/3) + w, ^ (o +/3) + w', ^ (a +l3) +« + &>',

so that the equation is

X [</) (z) - <f> {^ (a + 0) + ay'}][(f> (z) - (}) {^ (a + /8) + ro + ro'
\ ].

This is ^/^e general differential equation of Jacobi's elliptic functions.

The canonical forms of both of these equations will be obtained in

Chapter XI., where some properties of the functions are investigated as

special illustrations of the general theorems.

Note. All the derivatives of a doubly-periodic function are doubly-

periodic in the same periods, and have the same infinities as the function

but in different degrees. In the case of a function of the second order, which

must satisfy one or other of the two foregoing equations, it is easy to see that

a derivative of even rank is a rational integral function of u, and that a

derivative of odd rank is the product of a rational integral function of ^l by

the first derivative of u.

It may be remarked that the form of these equations confirms the result

at the end of § 117, by giving two values of u' for one value of u, the two

values being equal and opposite.

E.v. 1. U u be a doubly-periodic function having a single irreducible infinity of the

third degree so as to be expressible in the form

2 6
"13 + ^2 + integral function of z

•within the parallelogram of periods, then the differential equation of the first t)rder whit'li

determines u is

u'^+ {a + 3du)u'^=L\,

where (7^ is a quartic function of u and where a is a constant which does not vanish with 0.

(Math. Trip., Part II., 1889.)

Ex. 2. A doubly-periodic function u has three irreducible poles a,, «2) "3, such that in

the immediate vicinity of each

u=—~ + v,{z — a,) + powers of 2 - a„
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f<)r«=l, 2, 3. IVove that
,,'3+ ru'^+ V=0,

where

\\iX.,^\J X,X, + X,A3 + X:,Xi '

and V is a sextic ])ulynoinial in i/ of which tlie highest terms arc

x-;ir3{''^-xik
"'•''•' ^''-''^^ ^''-'4-

(Math. Trip., ^^lrt II., 1895.)

XV. Every doubly-periodic function can be expressed rationally in terms

of a function of the second order, doubly-periodic in the same penods, and its

derivative.

same two periods as v, a function of the 77ith order; then, by Prop. XIII.,

there is an algebraic relation between u and v which, being of the second

degree in v and the »ith degree in u, may be taken in the form

Lv^ - 2il/y + P = 0,

where the quantities L, M, P are rational integral functi(ins of u and at lea.st

one of them is of degree m. Taking

Lv - M = w,

we have w- = M- — LP,

a rational integral function of u of degree not higher than 2?7i.

Thus io cannot be infinite for any finite value of u : an infinite value of u

makes w infinite, of finite multiplicity. To each value of u there correspond

two values of lu equal to one another but opposite in sign.

Moreover w, being equal to Lv — M, is a uniform function of z, say F{z),

while it is a two-valued function of u. A value of u gives two di.stinct

values of 2, say ^j and z.,; hence the values of w, which arise from an assigned

value of u, are values of iv arising as uniform functions of the two distinct

values of z. Hence as the two values of w are equal in magnitude and

opposite in sign, we have

F{z,) + F{z.;) = 0.

that is, since z^-'t- z^ = a. + ^ where a and /3 are the in('(hicil)le infinitie.s of h,

F(z,)-\-F{a + l3-z,) = 0,

so that ^(a+^), },(ci + 0) + co, \(a+^) + o)', and i(a -I- yS) + w 4- w' are either

zeros or infinities of w. They are known not to be infinities of u. and w is

infinite only for infinite values of u ; hence the four points are zeros of w.

But these are all the in-educible zeros of n' \ hence the zeros of u are

included among the zeros of u<.
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Now consider the function ivjii. The numerator has two values equal

and opposite for an assigned value of u ; so also has the denominator. Hence
wju' is a uniform function of ti.

This uniform function of u may become infinite for

(i) infinities of the numerator,

(ii) zeros of the denominator.

But, so far as concerns (ii), we know that the four irreducible zeros of the

denominator are all simple zeros of u and each of them is a zero of w ; hence

wju' does not become infinite for any of the points in (ii). And, so far as

concerns (i), we know that all of them are infinities of ii. Hence luju', a

uniform function of u, can become infinite only for an infinite value of u, and

its multiplicity for such a value is finite ; hence it is a rational integral

function of u, say N, so that

w = Nu'.

Moreover, because iv- is of degree in u not higher than 2??i, and v'-

is of the fourth degree in v, it follows that N is of degree not higher

than m — 2.

^e thus have
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where the degree of X in u is nut liigher tlian in - 2. If the degree of L he

less than m, the degree of M is not higher than m — 1 and the degree of P is

m. If the degree of L be m, the degree of M may also be iit provided that

the degree of P be in and that the highest terms be such that the coetticient

of a-'" in LP - M- vanishes.

Note 2. The theorem expresses a function r rationally in terms of k and

a : but u' is an iriational function of u, so that v is not expressed rationally

in terms of u alone.

But, in Propositions XI. and XII., it was indicated that a function such

as V could be rationally expressed in terms of a doubly-periodic function, such

as a. The apparent contradiction is explained by the fact that, in the earliei-

propositions, the arguments of the function ii in the rational expression and

of the function v are not the same ; whereas, in the later proposition whereby

V is expressed in general irrationally in terms of u, the arguments are the

same. The transition from the first (which is the less useful form) to the

second is made by expressing the functions of those different arguments in

terms of functions of the .same argument when (as will appear subsequently,

in § 121, in proving the so-called addition- theorem) the irrational function of

u, represented by the derivative u, is introduced.

Kate 3. The theorem of this section, usually called Liouville's theorem,

is valid only when there are no essential singularities in the finite part of the

plane. The limitation arises in that part of the proof, where the irreducible

zeros and the irreducible poles are considered : it is there assumed that their

number is finite, which cannot be the case when essential singularities exist

in the finite part of the plane and when therefore there are irreducible

essential singularities. Hence Liouville's theorem is true only for those

uniform doubly-periodic functions w^hich have their essential singularities at

infinity.

In illustration of this remark, it may be noted that e-"*"", though a uniform

doubly-periodic function of u, is not expressible rationally in terms of sn u

and sn' u.

Ex. If f{u) be a doubly-periodic function of the third order with pole.s at Cj, Cj, c,;

and if 0(?O ba a doubly-periodic function of the second order, with the tMinic periods, and

with poles at a, /3, its value in the neighliourhood of u = a being

prove

i,\- {
/•'

(a) - /"
(/3)} - X

J

/' (a) - /'
(^); 2

<t>
(c,) + { f{a) -f i^)\ !3XX, + 20 (f.) (Cg)} = 0.

I 1

C()ROLL.\RY 1. Let n den<jte the sum of the irreducible infinities or of

the irreducible zeros of the function u of the second order, so that n = 'ly for

functions of the first cla.ss, and fl = a -t- /? for functions of the second chiss.
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Let u be represented by ^ (2^) and v by i/r {z), when the argument must be

put in evidence. Then

<^{n-z) = 4>{z),

-cp'{n-z) = <i>'(z),

M 1

SO that

Hence

{n-z) =
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When functions of the second class are used to represent a function yjr^z),

which has two infinities a and each of degree ?i, then it is easy to see that

M is of degree n and N of degree n - 2 ; and so for other cases.

Corollary 2. Any douhlrj-periodic function can he ewpressed rationally

in terms of any other function u of any order n. doubly-periodic in the same
periods, and of its derivative; and this rational expression can always be taken

in the form

Uo+U,n + U. u' + . . . + Un-, '/"-',

where Uo, ..., f/„_i are rational meroniorphic functions of u.

Corollary 8. If (f>
be a doubly-periodic function, then (f>{u+v) can be

expressed in the form

A + Bylr
' {u) + Cyjr' {v) + D^' {u) ylr' {v)

- ^ - ,

where yfr is a doubly-periodic function in the same penods and of the second

order: each of the functions A, D, E is a symmetric function of'y^{u) and yfr (v),

and B is the same function ofyfr{v) and -^{u) as C is of yfr (u) and
yf/

(v).

The degrees of A and E are not greater than m in yfr{u) and than ni

in y}r(v), where m is the order of <^; the degree of D is not greater than

m -2 in yjriu) and than ??i— 2 in -^(v); the degree of B is not greater

than m — 2 in yfr(u) and than m in i|r(??), and the degree of C is not

greater than /u — 2 in ylr(v) and than m in \Jr{u).

Note on Differential Equations of the First Order
HAVING Uniform Integrals.

The relation given in Proposition XIV., § 119, immediately suggests a converse

que.stion as follows:—

Under what conditions does an equation

u''»-^u'"'-^f(u) + ...+/,„ {u) =

possess integrals expressing u as a uniform function of z ? Further, we should expect,

after the proposition which has just been mentioned, that under fitting conditions tlie

uniform function could bo doubly-periodic ; and we have alreaily .seen (in § 104) that the

integral of the equation
?{'2= (l-?f2)(l_X.2,(2)

i.s a uniform doubly-periodic function of z. But it might happen (and it doas happen)

that other cla.sses of uniform fuiiction.s arc integrals of differential eipiations of the .same

form.

The full investigation belongs to the theory of differential equations; an account
is given in Chajjter X., Part II. (vol. ii.) of my T/tenr>/ of Differential hJqiuitions. The
following statement of results, which are established there, may be useful for reference.

The differential equation is to lie regarded as irreducible. We shall need the equation

satished l>y !,'«; so we shall take *'=l/« and denote it.s derivative by c'.
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I. In order that the equation

F (u', u) = m'™+ m'"' -^ fi(u) + ...+/„ (u)=

may have a uniform function for its integral, the coefficients fi{u), ..., fm{u) must be

polynomials in u of degrees not higher than 2, ..., 2m respectively; and the condition is

then satisfied for the equation

G{v', v) = v"--v'>—^f, (v) + ... + (-iy\f,^{r) = 0.

II. If any finite value of u is a liranch-point of ti' determined as a function of u by

the equation F{u',u) = 0, all the aftected values of ri' must be zero for that value of u;

and likewise for the value «?= in connection with the equation G (;•', v) = 0. (The latter

condition covers an infinite value of u as a In-anch-point of u'.)

III. If there is a multiple root v' of F{vf, u) = 0, which is zero for n branches for the

branch-place u, then the term of lowest degree in the expansion of each of those n branches

in the vicinity of that branch-place u is of degree either 1 --, 1, or 1
-I- - ; and likewise

for the value v=0 for the equation G (v', r) = 0. The number 1— , 1, or 1-f -, is called

the index-degree.

IV. The genus of the equation F{u', m) = 0, regarded as an equation in u', is either

zero or unity—as is therefore also the genus of the associated Riemanu surface (see

Chapter XV., post).

V. When the index-degree of u\ for any finite value or for an infinite value of u as

a branch value for ?//, is less than unity, being then necessarily of the form 1 — - for each

branch value, though n need not be the same for all the different branch-places, u is

a uniform doubly-periodic function of z.

VI. If for some one value of u there is a single set of multiple zero roots m' of index-

degree equal to unity, and if for other values of u (finite or infinite) all the multiple zero

roots ^l' are of index-degree less than unity and therefore necessarily of the form 1 —

,

then « is a uniform singly-periodic function of z.

VII. If for some one value of u there is a single set of multiple zero roots n' of index-

degree greater than unity and therefore necessarily of the form 1 -h - , and foi* other values

of u (finite or infinite) all the multiple zero roots u' are of index-degree less than unity

and therefore necessarily of the form 1— , then \(, is a rational function of z.

VIII. When these conditions are applied to the binomial equation

^du\

(f)'=/(»)-

where f{u) is a polynomial in v. of degree not greater than 2s, so as to obtain integrals ii

which are uniform functions of 2, the results are as follows :

—

(A) Equations, having uniform integrals which are rational functions of 2,

^du\
,

2z)
=/*(«-«/

w=M(«-«)— («-i)«^',

where /x is a constant in each case
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(B) Etiuations, having (iniforiu integrals which are siniply. periodic functions of :,

^_=;z («-«),

^.-M(«-<0(«-fr),

\£) =M("-«)M«-ft).

where /u is a constant in each case

;

(C) Equations, having uniform integrals which are doubly-periodic functions of ;,

(^y=/^ («-«)* («-ft)^

(^£j = ^{u-af{u-bY{u-cf,

\£) =/*("-«)'' (" - ft)^ (*' - ^)"'

\£) = M ("-«)(«- ft) ("-0.



CHAPTER XL

Doubly-Periodic Functions of the Second Order.

The present chapter will be devoted, in illustration of the preceding

theorems, to the establishment of some of the fundamental formula? relating

to doubly-periodic functions of the second order which, as has already (in

§ 119, Cor. to Prop. XIV.) been indicated, are substantially elliptic functions :

but for any development of their properties, recourse must be had to treatises

V on elliptic functions.

It may be remarked that, in dealing with doubly-periodic functions, we

may restrict ourselves to a discussion of even functions and of odd functions.

For, if <f)(z) be any function, then ^ {<f>(2) + <p (— z)] is an even function, and

^ {<^ (z) — (f>(— z)] is an odd function, both of them being doubly-periodic in

the periods of (i>(z); and the new functions would, in general, be of order

double that of <j>(z). We shall practically limit the discussion to even

functions and odd functions of the second order.

120. Consider a function <f)(z), doubly-periodic in 2ro and 2&)'; and let

it be an odd function of the second class, with a and /3 as its irreducible

infinities, and a and b as its irreducible zeros*.

Then we have <}) (z) = <p ('u + /3 — z),

which always holds ; and (f)(— z)= -
(f) (2),

which hold.s because
(f>

(z) is an odd function. Hence

(f){a + + z) = (P(-z)

= -</>(4

so that a -I- /3 is not a period ; and

<^(a-f/3-f-a-f/3 + 2) = -</)(a-f-/8 + ^)

= 0(4

* To fix the ideas, it will be convenient to compare it with su z, for wliich 2a;=4A', 2w' = 2(A'',

a = iA", ^^iK' + 2K, a=0, and 6 = 2A'.
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whence 2 (a + /3) is a period. Since a + /9 is not a period, wv take a + /3 = a>,

or = Q)'
, or = (o -\- (I)' ; the first two alternatives merely interchange w and &>',

so that we have either

or a + /9 = &) + Q)'.

And we know that, in general,

a + b = a+l3.

First, for the zeros : we have

0(O) = -<^(-O) = -(/)(O),

so that
(f) (0) is either zero or infinite. The choice is at our disposal ; for

— satisfies all the equations which have been satisfied by <f)(2) and an

infinity of either is a zero of the other. We therefore take

0lO) = O,

so that we have a = 0,

b = 0) or 0) + 0)'.

Next, for the infinities : we have

cf,(2) = -<f,(-z)

and therefore ( — a) = — </> (a) = oo .

The only infinities of <^ are a and jS, so that either

— a = a,

or — a = /3.

The latter cannot hold, because it would give a + /3 = whereas a + jB = co

or z^ 0) + (o' ; hence
loi = 0,

which must be associated with u + /3 = a> or with a + /3 = &j -f w'.

Hence a, being a point inside the fundamental parallelogram, is either 0,

CO, (o , or (1) + (1)'.

It cannot be in any case, for that is a zero.

If o + /3 = &), then a cannot be w, because that value Wduld give /3 = 0,

which is a zero, not an infinity. Hence either' « = «', and then y3 = &j' + &>;

or a = co' + 0), and then ^ = &)'. These are effectively one .solution ; so that, if

a + 13 = CO, we have

a, /3 = &)', &)' + &)]

and a, b -= 0, co j

If ct + ^ = CO -\- Qi', then a cannot be co + co', because that value would give

f3 = 0, which is a zero, not an infinity. Hence either a = co and then d = (o',

or a = co' and then fi = co. These again are effectively one .solution ;
.so that,

if St 4- /9 s ft) + ft)', we have
a, /3 = &), co'

I

and a, b = (), co + co'
j
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This combination can, by a change of fundamental parallelogram, be made
the same as the former ; for, taking as new periods

2a)' = Iw, 2n = 2&> + 2&)',

which give a new fundamental parallelogram, we have a + yS = H, and

a, /9 = &)', n — o)', that is, o)', fi - w' + 2&)',

so that a, /3 = &)', n + w
\

and a, h = 0, f

2

j

'

being the same as the former with H instead of co. Hence it is sufficient to

retain the first solution alone : and therefore

a = ft)', /3 = ft)' + ft),

(/ = 0, b = CO.

Hence, by § 116, I., we have

where F {z) is finite everywhere within the parallelogram.

Again, ^{z + w') has z = and 2^=&) as its irreducible infinities, and

it has z = (o' and ^ = a> + &>' as its irreducible zeros, within the parallelogram

of (^ {z) ; hence

,
{Z - W'){Z- 0)- w) ., .

where Fi{z) is finite everywhere within the parallelogram. Thus

4>{z)(t){z + oy')^F{z)F,{z),

a function which- is finite everywhere within the parallelogram ; since it is

doubly-periodic, it is finite everywhere in the plane and it is therefore a

constant and equal to the value at any point. Taking — ^co' as the point

(which is neither a zero nor an infinity) and remembering that </> is an odd

function, we have

k being a constant used to represent the value of — i(f)(hw')]~'-.

Also (j)(z + (o) = (f){z + a-{-^- 2a)')

= (fi{z + a + /3) = -<f){z),

and therefore also (f)(<o —z) = (f)
(z).

The irreducible zeros of
(f)'

(z) were obtained in § 117, X. In the

present example, those points are co' + ^w, co' + '^w, ^co, fo); so that, as

there, we have

K{cf>\z)]-^^\ci>(z)-(t>aro)]{ct>(z)-cl>(lco)]{ct>{z)-cf>{co'+ ^co)\{^^^^

where /f is a constant. But

cp C^co) =
(f)

{2co - ^co) = cf) (- Ico) = - </)(|a));
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and ^ (^<y + &>') = (2&) -+- 2&)' — ^0) - &)')

= </>(— i&) — &)')

so that -If (.)}"-= .4 \l - 1-^ n [i _ i--^-, n
where ^ is a new constant, evidently equal to {0'(O)|-. Now, <is we know
the periods, the irreducible zeros and the irreducible infinities of the function

(^ (z), it is completely determinate save as to a constant factor. To determine
this factor we need only know the value of <f)(z) for any particul;ir finite

value of z. Let the factor be determined by the condition

(f>(h(o)=l;

then, since (^&))</)(| &> + &)') = y-

by a preceding equation, we have

4>(^0) + 0)') = jl

and thou
|0'(^);-^= {(/)' (0)j^[i - {cj>(z)\-^][i-k- {4>(zy-^]

= f.^[i-{<f>(z)Y][i-k^{cf>(z)Y].

Hence, since
(f> (^) is an odd function, we have

(-0 = sn ifiz).

Evidently 2fico, 'l^w =A:K, 2iK', where A" and K' have the ordinary signifi-

cations. The simplest case arises when /u. = 1.

121. Before proceeding to the deduction of the properties of even

functions of z which are doubly-periodic, it is desirable to obtain the

addition-theorem for ^, that is, the expression of <^ {y + z) in terms of

functions of y alone and z alone.

When (f>(y + z) is regarded as a function of z, which is necessarily of the

second order, it is (§ 119, XV.) of the form

M + N<f>' (z)

L

where.U;u:d Z are of degree in ^{z) not higher than 2 and .Vis independent

of z. Moreover y + z=a and y + z = /3 are the irreducible simple infinities

oi' (f>(y + z); so that L, as a function of ^, may be e.xpres.sed in the form

{cf>(z)-4>(a-y)\ 10(2) -(/)(/3 -//)!.

and therefnre

"P^J^"^
[^ (z) -^(a-y)\ {c^ (z) -^(^-y)]'

P. F. 19
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where P, Q, R, S are independent of z but they may be functions of y.

Now

and 4> (^ - y) = (f>
(o)' + CO - y) = j;-^

A\e exj

kcf>{y)'

1 1

k(f> ((o - y) k<t) (y)
'

so that the denominator of the expression for (}>(y + z) is

1

k^<f>{y)Y-

Since
(f)

(z) is an odd function,
<f)'

(z) is even ; hence

i^W-'-^

and therefore
(f) (y + z) — (f>(y

— z) =

k-^{cf>{y)Y

2Q<f>(z)

[4>i^y\'-i:.
^

Differentiating with regard to z and then making z — 0, we have

SO that, substituting for Q we have

Interchanging y and ^ and noting that cf) {y — z) = — <p{z — ;/), we have

and therefore .(...) f (0) = *^t;-|f^|5^*'^ >

which is the addition-theorem required.

Ex. If /(«) be a doubly-periodic function of the second order with infinities 6,, b^,

and
(f)

(m) a doubly-periodic function of the second order with infinities a,, a^ such that,

in the vicinity of a,- (for i= l, 2), we have

0(?O= +i»i + gi (?<-«,) + 4- /•,(«- «,)«-}-
,

then
ltS^n^2)

^ -\{^{h,) + <l>{b,)-p,-p,],

the periods being the same for Imth functions. A'orify the theorem when the functions

are sn « and sn(M+?;).

Prove also that ^•, = (-1)"^,,. (Math. Trip., Part II., 1891.)
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122. The pivceding discus.sion of uneven (loubly-i)t'ri(><lic functions

having two simple in-educible infinities is a sufficient iUustration of the

method of procedure. That, which now follows, relates to doubly-periodic

functions with one irreducible infinity of the second degree ; and it will be

used to deduce some of the leading properties of Weierstrass's o--functi()n

(of § 57) and of functions which arise from it.

The definition of the o--funetion is

<t{z)

where D = 'lino) + 'lin'co', the ratio of w' : m not being purely real ; and the

infinite product is extended over all terms that are given by assigning to

III and to m' all positive and negative integral values from + oc to — x
,

excepting only simultaneous zero values. It has been proved (and it is

easy to verify quite independently) that, when a (z) is regarded as the

product of the primary factors

the doubly-infinite product converges uniformly and unconditionally for all

values of z in the finite part of the plane ; therefoi-e the function which it

represents can, in the vicinity of any point c in the plane, be expanded in a

converging series of positive powers oi z — c, but the series will only express

the function in the domain of c. The series, however, can be continued over

the whole plane.

It is at once evident that (t{z) is not a doubly-periodic function, for it has

no infinity in any finite part of the plane.

It is also evident that <j (z) is an odd function. For a change of sign in z

in a primary factor only interchanges that factor with the one which has

equal and opposite values of 77i and of m\ so that the product of the two factors

is unaltered. Hence the product of all the primary factors, being independent

of the nature of the infinite limits, is an even function ; when z is associated

as a factor, the function becomes uneven and it is a {z).

The first derivative, a' (z), is therefore an even function ; and it is not

infinite for any point in the finite part of the plane.

It will appear that, though a (z) is not periodic, it is connected with

fimctions that have 2&) and 2to' for periods; and therefore the plane will be

divided up into parallelograms. When the whole plane is divided up, as in

§ 105, into parallelograms, the adjacent sides of which are vectorial repre-

sentations of 2a) and 2&)', the function a- {z) has one, and only one, zero in

each parallelogram ; each such zero is simple, and their aggregate is given

bv z = n. The parallelogram of reference can be chosen so that a zero of

19-2
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o- (z) does not lie upon its boundary ; and, except where explicit account is

taken of the alternative, we shall assume that the argument of &>' is greater

than the argument of co, so that the real part* of co' /io} is positive.

Before proceeding further, it is convenient to establish some propositions reUxting to

series which will be used almost immediately.

We have seen that the series 2Q~^^,, where Q„i, „' denotes 2m(o + 2tn'oo' for all positive

and negative integers m and wi' ranging independently from -co to +00 (only the

simultaneous zero values being excepted), converges absolutely. Now consider the series

for the same range of summation; and assume that z can have any value except a

quantity fim.m') when there is obviously an infinite term of order three. From the series,

we temporarily exclude all the terms for which

l^l^i|Qm,ml;

as
1 2

i

is finite, these terms are finite in number and their sum does not aflfect the

convergence of the series.

For all the remaining terms, we have

\z\<^\Q\.

Now |i2-2|> |Q|-|s|,

so that ^'> 1-/^1

consequently the series

1

(0-s)3

converges absolutely for all finite values of 2 except the isolated values given by 2= i2;

and, by Weierstrass's J/-testt, the same inequality shews that the series converges

uniformly.

It is a known property (p. 22) of uniformly converging series that they can be

integrated term by term within a finite range and the resulting series will also converge

uniformly. Now
p dz _ 1

f
1 _ n

choosing the path of integration merely to avoid a possible infinity of the subject of

integration—a choice that does not aft'ect the result in this case. Hence dropping the

factor ^, we see that the series

^{(Q^2-o4
is a series that converges uniformly for all finite values of 2, except the isolated values

given by z= Q.

* This quantity is often denoted hy ;)i ( . ) •

t Bromwich, Theory of Infinite Series, § 81.
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As this series converges uiiifornily, it also can Ik; integrated term by term witliin

a finite range and the resulting series will also converge uniformly. Now

jo\{Q-zy Q-l ' Q--' Q Q-'

hence 2 I- + A,-\ [

is a series which converges uniformly for all finite values of :, except the isolated values

given by i = Q.

Again integrating within the finite range from to z, we have

hence

is a series which converges uniformly for all finite values of z, except the isolated values

given by z= Q.

123. We now proceed to obtain other expressions for a- (z), and particu-

larly, in the knowledge that it can be represented by a converging series in

the vicinity of any point, to obtain a useful expression in the form of a series,

converging in the vicinity of the origin.

Since a- (z) is represented by an infinite product that converges uniformly

and unconditionally for all finite values of z, its logarithm is equal to the sum
of the logarithms of its factors, so that

log.(.) = log.+_!_i.j^+^^4 + log(l-^

where the series on the right-hand side extends to the same combinations of

m and m' as the infinite product for z. When it is regarded as a sum of

z 1 z^ I z\
functions ^ + s fr; + log f 1 — ^ ]

, the series converges uniformly and uncon-

ditionally, except for points 2 = fl. This expression is valid for log o-(^) over

the whole plane.

Now let these additive functions be expanded, as in § 82. In the imme-

diate vicinity of the origin, we have

z \ z- , /, z

_ _\ z^ _\ z" _\ z;_
3 IP "412* sn^"'"

a series which by itself converges uniformly and unconditinnallv in that

vicinity. When this expression is substituted in the right-hand side of the

foregoing expression for logo- (2), we have a triple series
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It is easy to see that this triple series converges uniformly for the values of z

considered. As in the lemma at the end of § 122, we omit temporarily all

the terms for which ^z\'^\\Q.\\ they are finite in number for finite values

of z, and their omission does not affect the convergence of the series. Now
the modulus of the remainder
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SO that g.^ and y^ aiv evidently independent of one anotlier ; then all the

remaining coefficients are functions* of (j., and r/3. \\\- thus have

log . (.) = log . - _^ i,.a' - ^^ <M--...- I .».Vvn-" -
. . .

.

and therefore <t{z) = ze
~^""' 84o^^- -^

where the series in the index, containing only even jjowers of z, converges

uniformly and unconditionally in the vicinity of the origin.

It is sufficiently evident that this expression for (t {z) is an effective

representation only in the vicinity of the origin ; for points in the vicinity of

any other zero of <t{z), say c, a similar expression in powers of 2 — c instead

of in powers of z would be obtained.

124. From the first form of the expression for log a {z), we have

(T {z) z^ r^ _ , Vfi ^ n- ^ ^ - n
where the quantity in the bracket on the right-hand side is to be regarded

as an element of summation, being derived from the primary factor in the

product-expression for o- (z). We have seen (p. 293) that this double series

converges uniformly for the values of z concerned, except of course the

isolated values 0.

We write tU) = '^\
(t{z)

so that ^{z) is, by § 122, an odd function, a result also easily derived from the

foregoing equation ; and .so

f(^->=i+2-(s + ^ + r--n)-

This expression for i^{z) is valid over the whole plane.

Evidently i^{z) has simple infinities given by

z = n,

for all values of m and of in' between -I- x and — x , including simultaneous

zeros. There is only one infinity in each parallelogram, and it is simple ; for

the function is the logarithmic derivative of a (z), which has no infinity and

only one zero (a simple zero) in the parallelogram. Hence ^(2) is not a

doubly-periodic function.

For points, which are in the immediate vicinity of the origin, we have

• See Quart. Journ., vol. xxii, pp. 4, .'>. The magiiituJes 11., and ;/.j are often called the

invariants.
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but, as in the case of cr (z), this is an effective representation of ^(z) only

in the vicinity of the origin ; and a different expression would be used for

points in the vicinity of any other pole.

We again introduce a new function ^Jiz) defined by the equation

Because ^ is an odd function, ^ (z) is an even function ; and

1X00,1 111=^^(1 1

^ ^
' z' ^ -r.

[n^ {z - iif) z' ^ _-; _-; \{z - ^y- n'

where the quantity in the bracket is to be regarded as an element of

summation. We have seen (p. 293) that this double series converges uni-

formly for the values of z concerned, except of course the isolated values i\.

Thus the expression for ip{z) is valid over the whole plane. Evidently ^{z)

has infinities, each of the second degree, given by 2' = n, for all values of m
and of ni between + oc and — oo , including simultaneous zeros ; and there

is one, and only one, of these infinities in each parallelogram. One of these

infinities is the origin ; using the expression which represents log a {z) in

the immediate vicinity of the origin, we have

for points z in the immediate vicinity of the origin.

A corresponding expression exists for i^ {z) in the vicinity of any other

pole.

125. The importance of this function ^J {z) lies in its periodic character

;

and the importance of the functions <j{z) and ^{z) partly lies in their

pseudo-periodic character. To establish the necessary properties, we use the

derivative of ^ {z) ; we differentiate term by term the series in the expression

1 "^ ^ ( 1 1 )

and we nave
9 X 00 1

1
•> T

where the double .summation no longer excludes the simultaneous zero

values of m and m in the expression of H. The series on the right-hand

side converges uniformly and absolutely (p. 292) for all values of z except the

isolated places given by ^ = O ; and so this expression for \^' {z) is valid over

the whole plane.
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Evidently ^'(2) has iiitinities, each of the third degree, given by 2 = D.

for all values of m and m' within the range from + x to — x , including the

simultaneous zero values; and there is one, and only one, of these infinities

within each parallelogram. Using the expression foi- ^J{:) in the vicinity

of 2 = 0, we have
•2 1 1 ,

^ = ^ {2) = - ^ + ^^g.z +
^

9-.2' + ....

Clearly ^ is an odd function of s.

The periodicity of ^y (z) can be deduced at once. We have

iy'(z)---'>^^ - =-2'^'^
;

>^j (2)- -—
^^ _ ^y -—

(^ _ 2ni(o - 2m'coy
'

and therefore

^y {z + 2co) = -2:i.^
{z-2(m-l)ay - 2mVp

'

Now the series SS (2- — O )~'' -converges absolutely; and so (p. 21) its sum

does not depend upon the order in which the terms are taken. The series

in ^' (z + 2&)) differs from the series in ^0 (z) merely in taking the terms in

the order of values of m — 1 from - x to + x instead of the terms in the

order of values of m from — x to + x ; this negative unit derangement in

the summation for m is permissible under the convergence; and so we have

^0' (z + 2a,) =
if^'

(z).

Similarly we have

^y (z + 2a)') = ip (z),

equations which shew the double periodicity of ^J (z). Further, we have

^' (z+2co+ 2co') = ^y {z + 2ai') = ^y (2);

or writing
6)" = &) + (o

,

we have
^' {z + 2(o") = ^' {z).

Integrating these equations respectively, we have

^{z + 2a)) = ^ (z) + A, ^J (z -f 2a)') = ip {z) + B,

where A and B are constants. To determine these constants, take z = — to

in the former ecjuation and z = — w' in the latter; we have

^o(o}) = ^{-o))+ A, p(oi') = ^J(-(o') + B.

Neither co nor w' is a pole of ^(z), for the isolated poles of p(z) are given by

z = 2nia) + 2rn'(o', for integer values of ni and m' : and ip(z) is an even

function. Thus A =0, B = 0; and so we have

^(z + 2a)) =
if) ( -

), if>
(z + 2a)') = p (z),

and therefore also

^(z+2o)") = ^(z),

equations which shew the double periodicity of p(z).
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The poles of ^j(^) are given by z = D., and each is of order 2. Thus in

any parallelogram whose adjacent sides are 2a) and 2a}', there is one (and

there is only one) pole, and it is of order 2. Hence by § 116, Prop. III.,

Cor. 3, 2co and 2co' determine a primitive parallelogram for ^j(z). Conse-

quently our function ^J (z) is of the first class and the second order.

We shall assume that the parallelogram of reference is so chosen as to

include the origin in its interior.

126. In the preceding chapter, we have seen (§119) that there exists an

algebraical relation between ^o (z) and ^o' (z). Owing to the order of ^o (z),

this must have the form

^'^(z) = A^^iz)+Bf-(z)+C\j(z) + D,

where A, B, C, D are constants.

The only irreducible infinity of i^' {z) is of the third order, being the

origin ; and the function ^' {z) is odd. As

^y {z + 2«) = ^y {z) = ^y {z + 2(o') = ^' (^ + 2«"),

we have

gy(o,) = -^'((«), p'(a)') = -^'(ft)'), ^'(ft)") = -^y(a)"),

so that the ii-reducible zeros of ^' {z) are tw, w, &>". We write

and then the foregoing relation becomes

where A is some constant. To determine the equation more exactly, we

substitute the expression of <^ in the vicinity of the origin. Then

2 1 1
so that ^•> =--3 + lo^•-'^^7^^'^'^••••

When substitution is made, it is necessary to retain in the expansion all

terms up to 2^" inclusive. We theji have, for i^j'^, the expression

4 2
(J..

4

and for A {i^ — ej {<p — e.^ {(^ — 63), the expression

ri 3 g. 3
^- [?"^'20^^'^28^^"^'--

11 \ .
,

^/l
- (e, + eo +O (^^

+ jQ i/'^ + •••
j + (61^^' + ^'3^3 + ^361)

(^^,
+ •••

j
- e,e,e.,

When we equate coefficients in these two expressions, we find

^=4,

6] + 62 + ^3 = 0, e,e.i + e.,e.i 4- 63^1 = - lo-i, ^,6,63 = \g:i\
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therefore the differential equation satistiid by \p is

|,'2 = 4((^j-e,)^j-e,)(^j-e,)

Evidently ^" = 6^J- — hh,

and so on; it is easy to verify that the 2«th derivative of ^ is a rational

integi-al function of p of degree n + 1, and that the (2« + l)th derivative

of |) is the product of ^.>' by a rational integral function of ^j of degree n.

The differential equation can be otherwise obtained, by dependence on

Cor. 2, Prop. V, of § 116. We have, by differentiation of
(f>',

,,6 1 3 „

10^- ' 7

for points in the vicinity of the origin: and also

^° = ? + il3»' + H'''^' +
--

Hence ^j" and ^o'- have the same irreducible infinities in the same degree and

their fractional parts are essentially the same: they are homoperiodic and

therefore they are equivalent to one another. It is easy to see that ^" — 6^-

is equal to a function which, being finite in the vicinity of the origin, is finite

in the parallelogram of reference and therefore, as it is doubly-periodic, is

finite over the whole plane. It therefore has a constant value, which can be

obtained by taking the value at any point; the value of the function for

^ = is — ^^j and therefore

so that ^" = 6p^ — ^(/o,

the integration of which, with determination of the constant of integration,

leads to the former equation.

This form, involving the second derivative, is a convenient one by which

to determine a few more terms of the expansion in the vicinity of the origin:

and it is easy to shew that

from which some theorems relating to the sums ^Sfl"-" can be deduced*.

Ex. If o„ be the coefficient of z-"-- in the expansion of |> (z) in the vicinity of the

origii), then
a r=n-2

2 CrCn-r- (Weierstfass.)
" (27t+l)(7l-3) r

* See a paper by the author, (^wtrt. Jourii., \o\. xxii, (1887), pp. 1—43, where other references

are given and other applicatioHH of the general theorems are made.
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We have ^J- = 4^^ -g.^^-g^;

the function ^' is odd, and in the vicinity of the origin we have

9

hence, representing b}- — (4^)^ — r/2^-^3)^ that branch of the function which

is negative for large real values, we have

r dp
and therefore z= l , , ., x 1 •

Jp {'i^' - g^j - g,y

The upper limit is determined by the fact that when z = 0, ip= oc ; so that

#

^r #

This is, as it should be, an integral with a doubly-infinite series of values.

Wehave, by Ex. 7 of §104,

r* dp
0)1= CO = 5

1 ,

Je, (4>p^-g.^p-g.;)i

(0.. = W =\ T,
'.. (4^^-5r,^J-^3)*

&);,= &) = T ,

. .3(4g>»-^2^-5'3r

with the relation w" - w -\- w .

127. We have seen (§ 125) that ^ {z) is doubly-periodic, so that

(p(^+ 2<w) = ^j(s'),

and therefore <^f (.+ 2.)^rf^)
dz dz

hence integrating ^ {z -\- 2w) = ^ {z) + A.

Now ^ is an odd function ; hence, taking z = — w which is not an infinity of ^,

we have

.4 = 2^(0,) = 2.;

say, where 7; denotes f (w); and therefore

which is a constant.

Similarly ^ ( ^ -I- 2&)') - ^ (2) - 2^',

where 97'= ^(w') and is constant.
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Siinilarlv

where ?;" = ^{(o") and is constant. MoreoNc'V,

^{s + 2a)") = ^(z + 2o) + 2a)')

= ^(^ + 2a,) + 2);'

and therefore

v" = V + v\

a relation which merely ex})resses ^(a) + (o) as the sum of ^(o)) and ^{co').

Combining the results, we have

^(2 4- 2in(o + 2m'(o') — i^{z) = 2mr} + 2m'r}',

where m and m' are any integers.

It is evident that rj and rj' cannot be absorbed into ^; so that f is not a
periodic function, a result confirmatory of the statement in § 124.

There is, however, a pseudo-penodicity of the function f : its characteristic

is the reproduction of the function with an added constant for an added
period. This form is only one of several simple forms of pseudo-periodicity

which will be considered in the ne.xt chapter.

128. But, though }^{z) is not periodic, functions which are periodic can

be constructed by its means.

Thus, if <l>{z) = A ^(z -a) + B ^(z - b) + C^(z - c) -^
. ..

,

then (t>{z+2(o)-(}>(z) = XA {^{z- a + 2co)- ^{z-a)]

= 2r){A+B + C +...),

and
(P

{z + 2a)') - (f>(2)
= 2ij\A + B + C + ...),

so that, subject to the condition

A +B + C+ ... = 0,

^(z) is a doubly-periodic function.

Again, we know that, within the fundamental parallelogram, ^ has a

single irreducible infinity and that the infinity is simple; hence the irre-

ducible infinities of the function
<f>

(z) are z = a, b, c, ..., and each is a simple

infinity. The condition A -\- B + C + ... = is merely the condition of

Prop. III., § 116, that the 'integral residue' of the function is zero.

Conversely, a doubly-periodic function with m assigned infinities can be

expressed in ternis of ^ and its derivatives. Let f/, be an irreducible infinity

of 4> of degree n, and suppose that thi- fractional part of <t> for expansion in

the immediate vicinity of a, is

^' + "' +...+ "'-
.
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Then

A,l;{z-a,)-B,^'(z-a,) + ^,r(^-^h)

is not infinite for 2 = Oi.

Proceeding similarly for each of the irreducible infinities, we have a

function

A,l; {z - a,) - B,^' {z - cw) +
^^ r (^ -«.)-•••] ,

which is not infinite for any of the points z = a^, a.,, But because ^ (z)

is doubly-periodic, we have

and therefore the function

is doubly-periodic. Moreover, all the derivatives of any order of each of the

functions ^ are doubly-periodic ; hence the foregoing function is doubly-

periodic.

The function has been shewn to be not infinite at the points r/i , a, , . .
.

,

and therefore it has no infinities in the fundamental parallelogram ; con-

sequently, being doubly-periodic, it has no infinities in the plane and it is

a constant, .say C. Hence we have

r = \ r=l ^^ " J*= 1 ^^

with the condition S Ar = 0, which is satisfied because 4> (2) is doubly-
r=l

periodic.

This is the required expression* for <I> (z) in terms of the function ^and

its derivatives ; it is evidently of especial importance when the indefinite

integral of a doubly-periodic function is required.

129. Constants n and rj', connected with &> and &>', have been introduced

by the pseudo-periodicity of ^ (z) ; the relation, contained in the following

proposition, is necessary and useful :

—

The constants t], r}', co, w' are connected hy the relation

rjoi' — rj'o) = + ^iri,

the -\- or — sign being taken according as the real part of w jwi is positive or

negative.

* See Hermite, Ann. de Toulouse, t. ii, (1888), C, pp. 1— 12.
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A fundamental paralleloorani havinor an angular point at ^o is either of

the form (i) in fig. 34, in which case 3{[—. I is

positive; or of the form (ii), in which case ?K (—
.]

is negative. Evidently a desci'iption of the pai-al-

lelogram ABCD in (i) will give for an integral the

same result (but with an opposite sign) as a de-

scription of the parallelogram in (ii) for the .same

integral in the direction .4 BCD in that figure.

We choose the fundamental parallelogram, so

that it may contain the origin in the included

area. The origin is the only infinity of ^ which

can lie within the area : along the boundary ^ is

always finite.

Now since

the integral of ^(z) round ABCD in (i), fig. 34, is (§ 116, Prop. II., Cor.)

i'iii. 34.

!
'

2vdz - I 2v'dz,
J A J A

the integrals being along the lines AD and AB respectively, that is, the

integral is

4 (7]co' - y'oi).

But as the origin is the only infinity within the parallelogram, the path of

integration ABCDA can be deformed so as to be merely a small curve round

the origin. In the vicinity of the origin, we have

^(^) = l-L9^^' ,5'3^'-

and therefore, as the integrals of all terms except the first vanish when taken

round this curve, we have

[dz

z
/f(^)d^=/-

= •1171.

4 (?;&)' — t) Oi) = 2771,

TjOt)' — 7;'<u = ^TTt,

Hence

and therefore

This is the result as derived from (ij, fig. 34, that is, when r)i ( . j i.s positive.

When (ii), fig. 34, is taken account of, the result is the same except

that, when the circuit passes from z^ to Zo+2(o, then to :^ + 2(o + 2(o',
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then to Zn + 2a)' and then to z,„ it passes in the negative direction round the

parallelogram. The value of the integral along the path ABCDA is the

same as before, viz., 4 (t^cd' — //'&)) ; when the path is deformed into a small

(dz
curve round the origin, the value of the integral is I — taken negatively, and

therefore it is — 27ri : hence
rjCo' — 7]' 03 = — ^TTl.

Combining the results, we have

7] ft)' — rj'co = ± 2 '''"'»

according as 9? [- .) is positive or negative.

Corollary. If there be a change to any other fundamental parallelo-

gram, determined by 20 and 2Q', where

il = pa) + qo)'

,

W = p' (o -\- q (o'

,

p, q, p , <( being integers such that p^' — p'^y = ± 1, ;^nd if H, H' denote ^(H),

^(0'), then
H=pr) + qrj', H' = p'r] + q'r}'

;

therefore H^' - H'n = ± ^tti'.,

n' . . .

according as the real part of ^ is positive or negative.

130. It has been seen that ^ (z) is pseudo-periodic; there is also a

pseudo-periodicity for a{z), but of a different kind. We have

^(z + 2o))=^(z)+ 2r},

that IS, —,—r^r\ =" ^~r^ + ^^'
cr{z + 2q)) a {z)

and therefore a (z + 2w) = Ae'-^^ a {z),

where J. is a constant. To determine A, we make z = -w, which is not a

zero or an infinity of cr (z) ; then, since a {z) is an odd function, we have

-Ae--""^ = 1,

so that (T (2 -h 2co) = - e-''
'^+"" a {z).

Hence o- (^ + 4«) = - e"^ '''+^"" a (^ -f 2&))

= e--^ i-^+'*"> o- {z)

;

and similarly a (z + 2m(o) = (- 1)'" e-"
''«^+"''^'-'

<t {z).

Proceeding in the same way from

i:{z+2<o') = ^{z)+2ri',

we find cr (2 + 2m'w) = (- 1)"^' e"^'
"»>+'«'-'' a {z).

Then (j {z + 2inw + 2ni'(o') = (- 1 )"* e-''
('«z+'"-"+2"""<-

) a {z -{ 2m w)

__ / -^yn+m! gsz (»it)+7n.'T)') +2i7m2u)+4>)?n.»«V+2T)'m'V (j-(;^\

= (_ \yn+m' g2imri+inri')iz+mo>+m'u>')-i-2Tmn'(riia'—ri'u}) q- (2).
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But
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Conversely, if a doubly-periodic function 6 (z) be required with m assigned

irreducible zeros a and in assigned irreducible infinities b, which are subject

to the congruence
Sa = S6(mod. 2co, 2ft,'),

we first find points a and homologous wdth a and with b resjjectively such

that
la = 1/3.

Then the function —~ —
) ^—

,

has the same zeros and the same infinities as (z), and is homoperiodic with

it: and therefore, by § 116, IV.,

^^'^=^^H^A) .(.-A.)'

where A is a, quantit}^ independent of z.

Ex. 1. Consider ^' (2). It has the origin for an infinity of the third degree and all the

remaining infinities are reducible to the origin ; and its throe irreducible zeros are w, w', w".

Moreover, since a" = (x) +(o, we have w + w'-t-o)" congruent with but not equal to zero.

We therefore choose other jioints so that the sum of the zeros may be actually the same

as the siun of the infinities, which is zero ; the simplest choice is to take w, &>', — w".

Hence
o- {z - (o) (T {z - a>') a- {

z+ w")
^^'^^'*

^H^)
'

whore A is a constant. To determine A, consider the expansions in the iumiediate

vicinity of the origin ; then

_2 _ o-(-(o)o-(-a)')o-(a>")

,, . ,n'{.\ .-,
(r{z-m)a- {z-J) <t (z+ a>")

so that w {z)= -z T-T—7—TT

—

j—^^—sv^—

•

^ ^ a- (o>) o- (o) ) o- (<u ) o"* (2)

Another method of arranging zeros, so that their sum is equal to that of the infinities,

is to take -co, — w', <»" ; and then we should find

^ (T {z-\-(i>) (T {Z+ J) (T {Z- w")

^ ^' o- (co) (T (co') rr (co") a^ {z) '

This result can, however, be deduced from the preceding form merely by clianging the

sign of z.

Ex. 2. Consider the function

a{7C + v)a{u-v)
"^

<rHu)
^

'

where v is any quantity and A is independent of u. It is, qu.\ function of u, doubly-

periodic ; and it has u=0 as an infinity of the second degree, all the infinities being

homologous with the origin. Hence the function is homoperiodic with ^{u) and it has

the same infinities as ^ (u) : thus the two are equivalent, so that

I
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where B and C are independent of u. The left-hand side vHiii-shen if u = r', hence

C=B^{c), and therefore

where A' is a new quantity independent of v. To determine .1' we consider the

expansions in the vicinity of ?/=0 ; we have

A'(T{v)cr{-v) _ 1

" '«2 ^
~w^

+ '

so that -.lV(r) = l,

and therefore <'C»+^).^(-»).p(„)-p(„),

a fonuula <>f very great importance.

Ex. '.\. Taking logarithmic derivatives with regard to u of the two sides of the last

equation, we have

and, similarly, taking them with regard to i\ we have

w-ip(«)'

whence c(«+ ^) -C0O-C0') = i |{g^.
giving the special value of the left-hand side as (§ 128) a doubly-periodic function. It is

also the addition-theorem, so far as there is an addition-theorem, for the ^-function.

Ex. 4. We can, by difterentiatiou, at once deduce the addition-theorem for ^{u + v).

i'^identlv

ipiu + v)

wliich is only one of many forms : one of the most useful is

P(„+..)=-p(»)-P(-)+i{^g|^|J,
which can be deduced from the preceding form.

The result can be u.sed to modify the expression for a general doubly-periodic function

* [Zj obtained in § 128. We have

Each derivative of f can be expressed either a.-* a polynomial function of <^{z- Or) or aa

the product of ^'(s-a^) by such a function; and by the use of the addition-theorem,

the.se can l^e expressed in the form

M+Nii>'(z)

L

20—2
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where Z, M, N are rational integral functions of ip {z). Hence the function $ {z) can be

expressed in tfie same form. The simplest case arises when all its infinities are simple,

and then
m

*(2) = C'+2 A,C{z-ar)
/•= !

-C-l J ((a) +h'iA ^'(^) + ^'("'-)

= 5 + i 2 A r(^)+^K)
''

iP(^)-«f>(«r)'

with the condition 2 ^^= 0.

r=l

Ex. 5. The function ^i^(s)-t^i is an even function, doubly-periodic in 2co and 2a)' and

having z= for an infinity of the second degree ; it has only a single infinity of the second

degree in a fundamental parallelogram.

Again, 2= 0) is a zero of the function; and, since i^' {a>)=0 but ^" (m) is not zero,

2= 0) is a double zero of ^{z)-e-i^. All the zeros are therefore reducible toz= u); and the

function has only a single zero of the second degree in a fundamental parallelogram.

Taking then the parallelogram of reference so as to include the points z=0 and z—a,

we have

ip{^)-e,J^'q{z),

where Q (z) has no zero and no infinity for points within the parallelogram.

Again, for ^(2+ a))-ei, the irreducible zero of the second degree within the parallelo-

gram is given by 2-|-co = w, that is, it is 2= ; and the irreducible infinity of the second

degree within the iJarallelogram is given by z + co = 0, that is, it is z = co. Hence we have

where Qi (2) has no zero and no infinity for points within the parallelogram.

Hence {&{^)-e,} {^{z+ ^)-e,} = Qiz) Q,iz) ;

that is, the function on the left-hand side has no zero and no infinity for points within the

parallelogram of reference. Being doubly-periodic, it therefore has no zero and no infinity

anywhere in the plane ; it consequently is a constant, which is the value for any point.

Taking the special value 2 = 0)', we have ^0{cc')=^e3, and ^ {<o' + m)= e^ ; and therefore

Similarly {jp (2) - e.,} {^ (2 + a,") - e.,} = {e^ - e^) {e^- e.^,

and {^ (2) - 63} {^ {z + co' ) - e,} = (e,- e,) (e, - e-,).

It is possible to derive at once from these equations the values of the ^J-function for

the quarter-periods.

Note. In the preceding chai)ter some theorems were given whicli indicated that

functions, which are doubly-periodic in the same periods, can be e.xpressed in terms of

one another : in pjirticular cases, care has occasionally to be exercised to be certain that

the periods of the functions are the same, especially when transformations of the variables

are effected. For instance, since p (2) has the origin for an infinity and sn u has it for a

zero, it is natural to ex2)rcss the one in terms of the other. Now ^(2) is an even function,

and sn u is an odd function ; hence the relation to be obtained will be expected to be

one between ip (2) and sn^ u. But one of the periods of sn^ u is only one-half of the
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corresponding period of sn « ; and so tho poriod-parallelogram is changed. The actual

relation* is

where n = {i>y — e3)iz and /•*=(e2— «3)/(ei — e.,).

Again, with the ordinary notation of Jacobiaii elliptic functions, the periods of sns

are 4fi and 2iK', those of dn2 arc 2 A' and 4«A'', and those of en z are 4 A' and 2K+2iK'.
The squares of these three functions are homoperiodic in 2K and 2iK' ; they are cjvch

of the .second order, and they have the same infinities. Hence sn- 2, cn^;, dn- z are

equivalent to one another (§ 116, V.).

But such cases belong to the detailed development of the theory of particular clas.ses

of functions, rather than to what are merely illustrations of the general propositions.

Kv. 6. Prove that

is a douMy-periodic function of u, such that, with the ordinary notation,

g{u)-irg{ii + u>)+g{u + J)Jrg{u-¥u>+ u)')
•

= -2.^ 2 j^' -2 jn. 2 ;•

Prove further that, if >S' denote the substitution

hi- 1 I 1 1 ),

1-1 1 1

I

1 1-1 1 '

1 1 1-1
and (Ui, U-i, L\, Ux)= S(ui, U2, «3, Ui) and G [u) denote what g {u) becomes when,

therein, Ui, f/j^ ^-i) ^4 ^^e written for v.^, u-i, M3, i^ respectively, then also

(-(?(?(), -G{7t+ <o\ -G(u+ w'\ -G{u + a + (o'))

=S{g{u), g{u+w), g(u+ a)'), g {2i + o>+<o')).

(Math. Trip., Part II., 1893.)

E.v. 7. All the zeros of a function, doubly-periodic in the periods of iP{z), are simple

and are given by pu> + qa>', where p and q are integers such that p+ q x^ odd; all its

infinities are simple and are given by pco + qa', where p and q are integers such that

p + q is even. Show that the functioti is a constant multiple of

- ^/-^ . (Trinity Fellow.ship, 1896.)

Ex. 8. Construct the differential equation of the first order, satisfied by

^(z-a)-C(z-b).
(Trinity Fellowship, 1899.)

132. As a last illustration giving properties of. the functions just con-

sidered, the derivatives of an elliptic function with regard to the periods

will be obtained.

Let <i>{z) be any function, doubly-perioilic in 2w and 'Ico' .so that

<t>{2 + 'liiio) + 'lin'w') = <^{z).

* Halphen, Functions KUipti'iitm, t. i, pp. 2.S— 2.5.
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The coefficients in
<f)

implicitly involve &> and oo'. Let (p^, ^2, and cf)'

respectively denote d(f)ld(o, dcfj/dco', d(f>/dz; then

<^i (z + 2)11(0 + liii'w') + 2m<^' {z -I- 2mw + 2nico') = <^i (^),

<^2 {2 + 2//<(u + 2iil'(o') + 2///</)' (2 + 2///&) + 211103') = <^2 (2')>

<^' (2: + 2/n&) + 2riia)') = <^' (^).

Miiltipl}'ing by w, w, z respectively and adding, we have

£0^1 {z -f 2m(ii -j- 2in'(o') 4- &)'<^2 (^ + 2/«(w + 2ni w)

-I- (^ + 2mw + 2/h'&)') 0' (3' + 2mw + 2m'w)

= &)(/)i (^) + (w'02 (•2^) + z^' {z)-

Hence, if f (z) = m^^ (z) + co'^. {z) + z^' {z),

then f{z) is a function doubly-periodic in the periods of (j).

Again, multiplying by 77, rj', ^{z), adding, and remembering that

^{z + 2ni(a -f 2ni'a)') = ^{z) + 2))tr] + 2inrj',

we have

77</>i {z + 2iiiw + 2m'w) + 7;'</)o {z + 2/M&) + 2m'w)

+ ^(2 + 2m(o + 2in'(o') (p' {z + 2m(o + 2m'co')

Hence, if g (z) = r)cf)j (z) + y'c})., (z) + ^ (^) <^' (2),

then g{z) is a function doubly-periodic in the periods of <j>.

In what precedes, the function ^ (z) is any function, doubly-periodic in

2a), 2ft)'; one simple and useful case occurs when (f){z) is taken to be the

function ^j(z). Now

^' ^'^ ^ \ + ^0
^-^"^ + 4 'J-^'^ + 12^ ^^"^ + • • •

'

and ^ (^) = i
-
6^

0.'' - no ^^'"^ - 8400 ^^^ " " "

"

'

hence, in the vicinity of the origin, we have

9p , 9|^ rJCJ 2 . ^ ,
„ ,

ft) „'^
-I- ft) ;r^, + „^ = -f even mtegral powers of z-

?fO 8ft) C*2 Z'
or

= - 2i^,

since both functions ar6 doubly-periodic and the terms independent of z

vanish for both functions. It is easy to see that this equation merely

expresses the fact that g>, which is equal to

z^
— [{z-ny n-j'

is homogeneous of degree — 2 in ^, (o, to'.
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Similarly

do ,do ^ .d^J 2 2
^7 ?^ + ^ ?«' "^ ^'''^

fz
" ~ H "^

15 ^'^ + '''''" "^^^'^^''^l
P^^^"^''-'^ "^ ^•

But, in the vicinity of the origin,

a*fi) 6 I .

,^ = ^ + ,
j^

^'/j + even nitegnil powers ot 2,

so that

SP . ' 9t> ^ , , afi) 1 a^ft) 1
»7^ + 77 ;f-, + ?^(^) -- + 5 T^ = ,. i/' + even nitegral ijowers of z.

d(o ' d(o ^^ 0z 3 dz- b "^ o
1

The function on the left-hand side is doubly-periodic : it has no infinity

at the origin and therefore none in the fundamental parallelogi'am ; it there-

fore has no infinities in the plane. It is thus constant and equal to its value

anywhere, say at the origin. This value is \go, and therefore

d&> dw ^ ^ dz 3 dz- G ^

This equation, lulten combined wit/t

«'^+"'S+^^=-v.d(o d(o' dz

gives the value of X^ and ^-^.^ •' d(o d(o

The equations are identically satisfied. Equating the coefticients of z-

in the expansions, which are valid in the vicinity of the origin, we have

dfo
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134. Let, then, </>(-) denote an even <l<'ul)ly-|)«iio(lic function i»f the

second order (it may be either of the first class or of the second chi.ss) and let

2(0, 2a)' be its periods ; and denote 20) + 2&)' by 2&)". Then

<f>{z) = <f>{-z),

since the function is even ; and since

<f>
{w + Z) =

(f)
(
— (O — 2)

=
(f>

('2(0 — (o — z)

=
(f)

{(O — z),

it follows that
<f>

{(o + z) is an even function. Similarly, (^(w' + r) and

(f)
(ft)" + z) are even functions.

Now (f){(o + z), an even function, has two irreducible infinities, and is

periodic in 2&), 2(o' ; also
(f>

(z), an even function, has two irreducible infinities

and is periodic in 2&), 2a)'. There is therefore a relation between
<f)

(z) and

(f)
((o + z), which, by § 118, Prop. XIII., Cor. 1, is of the first degree in

(f>
{z)

and of the first degree in
(f>

{(o + z); thus it must be included in

B(f> (z)
(f)

{(o + z)- Ccf) {z) - C'4> {(o + z) + A = 0.

But ^ {z) is periodic in 2a) ; hence, on writing z + (o for z in the equation, it

becomes

^</> (w + z) {z) - C<f> {(o + z)-G'<f>iz) + A=0;

thus G = C".

If B be zero, then C may not be zero, for the relation cannot become

evanescent : it is of the form

cf>{z) + <f>((o + z) = A' (1).

If B be not zero, then the relation is

^<--^>-%M '^'-

Treating (f){(o' + z) in the same way, we find that the relation between it

and
(f>

(z) is

F<f> (z)
(f>

((o' + z)-D(li (z) - D(t> (o)' + -^) + ^ = 0,

so that, if F be zero, the relation is of the form

(f>{z) + <f)i(o' + z) = E' (1)',

and, if F be not zero, the relation is of the form

D<b(z)-E

*('"+-''=4bb>.
<"

Four cases thus arise, viz., the coexistence of (1) with (1)', of (1) with (2)',

of (2) with (1)', and of (2) with (2)'. These will be taken in order.
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I. : the coexistence of (1) with (1)'. From (1) we have

(f>
{(o' + z) +

<f>
(&)" + z)= A',

so that (}) (z) + (j) (o) + z) + (f>
(o)' + z) +

<f>
{(o" + z) = '2A'.

Similarly, from (1)',

(j) {z) + cl) {(o' + z) +
(f)

(co + z) +
(f)

(ft)" +z) = IE'
;

so that A' = E', and then

(f){cO + Z)= (j){Q)' + Z),

whence &> ~ w' is a period, contrary to the initial hypothesis that 2&) and 2a)

determine a fundamental parallelogram. Hence equations (1) and (1)' cannot

coexist.

II. : the coexistence of (1) with (2)'. From (1) Ave have

^ (w" + z) = A'-<f>{co' + z)

^ {A'F- D) cf> (z) - (A'D - E )

F(f>{z)-B

on substitution from (2)'. From (2)' we have

^^-^'^ =fH+z)-D
_(A'D -E)-D(f>{z)

~~TF-I)-F(f){z) '

on substitution from (1 ). The two values of
(f)

(co" -f z) must be the same,

whence
A'F-D = D,

which relation establishes the periodicity of
(f>

(z) in 2co", when it is considered

as given by either of the two expressions which have been obtained. We
thus have

A'F=^2D;
and then, by (1), we have

and, by (2)', we have

If a new even function be introduced, doubly-periodic in the same periods

having the same infinities and defined by the equation

the equations satisfied by </>! {z) are

01 (ft) + 2) + </), {z) =

<^i {(o' -{ z) <j>^ {z) = constant)
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To the detailed properties of such functions we shall return later; meanwhile

it may be noticed that these equations are, in form, the same as those satisfied

by an odd function of the second order.

III. : the coexistence of (2) with (IV. This case is similar to II., with the

result that, if an even function be introduced, doubly-periodic in the same

periods having the Siime infinities and defined by the equation

the equations satisfied by <^.; (^) are

0o (ft)' + z) + (f>.
(z) =

[

<^2 (ft) + z) <f)n {z) = constant)
*

It is. in fact, merely the previous case with the periods interchanged.

IV. : the coexistence of (2) with (2)'. From (2) we have

,
„ . C6{a)' + z)-A

(b((0 + Z) = rT. Ti : ?7^ ^ B<f){fO + Z)-C

_ (CD -AF)6 (z) - (CE - A D)

~(BD- CF) 4> (z) - (BE - CD) '

on substitution from (2)'. Similarly from (2)', after substitution from (2), we

., „^ ^_{GD-BE) 4>{z) + {CE-AD )

<f>{CO +z)-
^^ ,^, _ ^^^ ^ ^^^ ^ ^^,^ _ ^^j

.

The two values must be the same ; hence

CD-AF = -iCD-BE),

which indeed is the condition that each of the expressions for </> (ft)" + z)

should give a function periodic in 2ft)". Thus

AF + BE^'2CD.

One sub-case may be at once considered and removed, viz. if C and D
vanish together. Then since, by the hypothesis of the existence of (2) and

of (2)', neither B nor F vanishes, we have

A__E
B~ F'

so that <l>((o + z) = - n. .,v = -Err7- =-0(«^' + ^),
B(p{z) i<(f>{z)

and then the relations, are
(f>

((o + z) +
(f>

((o' + z) = U,

or, what is the same thing, (f)(z) + <f)
(ft)" -I- ^) = 01

and
<f>

{z) <f)((o -\- z) = constant)
'

The sub-case is substantially the same as that of II. and III., arising merely

from a modification (§ 109) of the fundamental parallelogram, into one whose

sides are determined by 2ft) and 2a)".
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Hence we may have (2) coexistent with (2)', provided

AF+BE = 2CD;

G and D do not both vanish, and neither B nor F vanishes.

IV. (1). Let neither C nor B vanish ; and for brevity write

(f)
(a) + z) =

(f)^, (f)
{(I)" + z) = (}).,,

(f)
{oi' + z) =

(f).s, (f){z) = (f).

Then the equations in IV. are

B<j)<j), - C
{(f)

+ (f),) + A = 0,

F<P4>,-B(cf> + <!>,)+ E=0.

Now a doubly-periodic function, with given zeros and given infinities, is

determinate save as to an arbitrary constant factor. We therefore introduce

an arbitrary factor X, so that

and then taking
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As before, one particular sub-case niay be considered and removed. If A''

be zero, so that

C D

say, and

then we find

or taking a function

the equation becomes

The other e(juations then become

B'
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*S^ are constants) he regarded as the savie as
(f),

then either the function satisfies

the system of equations

(f>
(z) -^ (f>(oy + z) = \

cf>(z) cf>{(o' +z) = H y (I)*,

(j>(z) (f>(oi" + z) = -H\

where H is a constant; or it satisfies the system of equations

{<f>
(z) - Cil [0 (co + z) - Cj} = (Ci - c,,) (Ci - c,)

I

{<t>(z)-c,]\4>(co' +z)-c,]=ic,-c,)ic,-c.^ (II),

{<^ (Z) - Co] {0 {co" +2)- CoJ = (C, - C,) (C, - Cj) )

where of the three constants c^, Co, c-^ one can be arbitrarily assigned.

We shall now very briefly consider these in turn.

135. So far as concerns the former class of equations satisfied by an even

doubly-periodic function, viz.,

(f)
(z) + (j) {o) -f-^) =

I

(f>
{z)

(f)
(o)' + z) = H )

we proceed initially as in (§ 120) the case of an odd function. We have the

further equations

(f>(z) = (f)(-z),

(p (o) + z) =
(f)

{co - z),
(f)

{(i)' + z) = (j) {co' - z).

Taking z=-^co, the first gives

<^(ito) + (/)(i&))
= 0,

so that 1^0) is either a zero or an infinity.

If ^ ft) be a zero, then

(j) (^ (o) =
(f>

{(o + h co) = —
(f)

{^co) by the first equation

= 0,

so that ^co and '^co are zeros. And then, by the second equation,

co' + ^CO, 0)' + ^co

are infinities.

If ^co he an infinity, then in the same way i^co is also an infinity; and

then co' + ^co,co' + '^co are zeros. Since these amount merely to interchanging

zeros and infinities, which is the same functionally as taking the reciprocal of

the function, we may choose either arrangement. We shall take that which

gives ^0), f ft) as the zeros ; and co' + hco, co' + %<o as the infinities.

The function </> is evidently of the second class, in that it has two distinct

simple irreducible infinities.

* The systems obtained by the interchange of w, w', w" among one another in the equations

are not substantially distinct from the form adopted for the system I. ; the apparent ditference

can be removed by an appropriate corresponding interchange of the periods.
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Because co' + ^o), w + i^w arc the irreducible inHnitirs ef ^{z), the four

zeros of <^'(2) are, by § 117, the irreducible puints homologous with &>",

to" + ft), &)" + G)', on" + &)", that is, the irreducible zeros of </>' {z) are 0, tu, o)', &>".

Moreover

<^(0) + (/){a)) = 0,

0(a)') + 0(a)") = O,

by the first of the equations of the system ; hence the relation between (/> {z)

and '^ {z) is

fH^) = .4 ;</)(2)-(/)(0)};<^(^)-<^(a))}(</)(^)-<^(a,')|;<^(^)-(/)(a,")|

Since the origin is neither a zero nor an infinity of ^(2), let

(j>{z) = (l,{0)(f>,(z),

so that <^i(0) is unity and ^/(O) is zero; then

the differential equation determining 0i (z).

The character of the function depends upon the value of yu, and the

constant of integration. The function may be compared with en 11, by taking

26), '2(o' = 4K, 2K+2iK'; and with -, , bv taking 2&), 2co' = 2K, 4{K'
anil -^ & '

' '

which (§ 131, note) are the periods of these (even) Jacobian elliptic functions.

We may deal even mcjre briefly with the even function characterised by

the second class of equations in § 184. One of the quantities c,, c^, C3 being

at our disposal, we choose it so that

Ci + Co + C;, = ;

and then the analogy with the equations of Weierstrass's ^-function is

complete (see § 133).



CHAPTER XIL

Pseudo-Periodic Functions.

136. Most of the functions in the last two chapters are of the type

called doubly-periodic, that is, they are reproduced when their arguments are

increased by integral multiples of two distinct periods. But, in §§ 127, 130,

functions of only a pseudo-periodic type have arisen : thus the ^-function

satisfies the equation

^(^ -+- m2a) 4- m"2oi') = ^{z) -\- vi2r) -f mlt]

,

and the a-function the equation

(t{z + m2Q) + m'2o}') = ( - 1 )"""+»'+'«' e2,m,,+m'V) (-'+»«a,+m-a,) ^ (^-)_

These are instances of the most important classes : and the distinction

between the two can be made even less by considering the function

e ?<^' = I (z), when we have

I {z + m2(o + VI 2o)') = e-'"" e-'"'^' ^(z).

In the case of the ^-function, an increase of the argument by a period leads

to the reproduction of the function multiplied by an exponential factor

that is constant. In the case of the cr-function, a similar change of the

argument leads to the reproduction of the function multiplied by an

exponential factor having its index of the form az + b.

Hence, when an argument is subject to periodic increase, there are three

simple classes of functions of that argument.

First, if a function f{z) satisfy the equations

f{z + 2<o)=f{z), f{z + 2a.') =f{z),

it is strictly periodic: it is sometimes called a duubly-periodic function of the

first kind. The general properties of such functions have already been

considered.

Secondly, if a function F{z) satisfy the e(|uations

F{z + 2(o) = fiF{z), F{z + 2oi') = fM'F{z),
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where /^ and yu.' are constants, it is pseudo-periodic : it is called a doubly-

periodic function of the second kind. The first derivative of the logarithm

of such a function is a doubly-periodic function of the first kind.

Thirdly, if a function (f){z) satisfy the equations

</)(-- + 2(.)) = e''^+''</>(2), 4>(: + 'la)') = e''''^^ <^{z),

where a, b, a', b' are constants, it is pseudo-periodic : it is called a doubly-

periodic function of the third kind. The second derivative of the logarithm

of such a function is a doubly-periodic function of the first kind.

The equations of definition for functions of the third kind can be

modified. We have

(f>{z-\-2o)-\- 2a)') = e«i2+2<-'i+6+«>4-6' ^ ^^^

whence a'co — aa>' = — iniri, y

where in is an integer. Let a new function E {z) be introduced, defined by

the equation

E{z) = e^'"-^>''<\>{z)\

then \ and /x can be chosen so that E{z) satisfies the equations

E{z -f '2co) = E{z), E{z + 2ft)') = e-^'-^^Eiz).

From the last equations, Ave have

E(z -f 2ft) + 2ft)') = e^'^+^^-)+iJ E{z)

so that lAw is an integral multiple of 27ri.

Also we have E (z -I- 2g)) = eA«+2a,)-+^ (2+2.0)
<^ (^^ + 2ft))

— gi\Zai-i-iKui-+2iJ.(tl+aZ+b J^ /^\

so that 4Xft) -I- a = 0,

and 4Xft)- + 2fico -1-6 = (mod. 27ri). x

Similarly, E{z -\- 2co') = e^*''+'^'>-+i^<^+^-'"'> 4>(z + 2ft)')

_ gi\Zoi'+i\ui'-+inui'+a'z-rb' E (2)

so that
.

4\ft)' + a = A,

and 4\ft)'- -f- 2^&)' + 6' = i^ (mod. 2'Tri).

From the two equations, which involve \ and not fx, we have

A(o = a'ft) — aft)' V

= — nnri,

agreeing with the result that 2Aw is an integral multiple of 27r/.

And from the two equations, which involve' fi. wo have, on thf cliuiination

of /i, and on substitution for X,

b'o) — bw' — (Id)' ( ft)' — ft)) :^ JJo) (mod. 27r< )•

F. K. 21
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If A be zero, then E{z) is a doubly-periodic function of the first kind

when e^ is unity, and it is a doubly-periodic function of the second kind

when e^ is not unity. Hence A, and therefore m, may be assumed to be

different from zero for functions of the third kind. Take a new function

^(z), such that

then <I> (z) satisfies the equations
_intTi

<P(z + 2(o) = ^ (z), ^(z+ 2a)') = e ^^^ ^ {z),

which will be taken as the canonical equations defining a doubly-periodic

function of the tliird kind.

Ex. Obtain the values of X, /i, A, B for the Weierstrassian function o- {z).

We proceed to obtain some properties of these two classes of functions

which, for brevity, Avill be called secondary-periodic functions and tertiary-

pemodic functions respectively.

Doubly-Periodic Functions of the Second Kind.

For the secondary-periodic functions the chief sources of information are :

—

Hermits, Coviptes Rendus, t. liii, (1861), pp. 214—228, ib., t. Iv, (1862), pp. 11—18,

85—91 ; Sici' quelques applications des fonctions elliptiques, §§ i—in, separate

reprint (1885) from Comptes Rendus; "Note sur la theorie des fonctions ellip-

tiques" in Lacroix, vol. ii, (6th edition, 1885), pp. 484—491; Cours d'Analyse,

(4'^« ed.), pp. 227—234.

Mittag-Leffler, Comptes Rendiis, t. xc, (1880), pp. 177—180.

Frobenius, Crelle, t. xciii, (1882), pp. 53—68.

Brioschi, Comptes Rendus, t. xcii, (1881), pp. 325—328.

Halphen, Traite des fonctions elliptiques, t. i, pp. 225—238, 411—426, 438—442, 463.

137. In the case of the periodic functions of the fir-st kind it was proved

that they can be expressed by means of functions of the second order in the

same period—these being the simplest of such functions. It will now be

proved that a similar result holds for secondary-periodic functions, defined by

the equations

F{z + 2w)=iJiF{z), F(z + 2(o') = fi'F(z).

Take a function G (z)

then we have G(z-\- 2co) =

o- (z) a (a)

(t{z + a + 2(o)

(T{a) a{z -f 2(1))

= e^^+'^'^ G (z),

and G(z-^ 2w) = g^Va+'^w q ^2).

The quantities a and X being unrestricted, we choose them so that

and then G {z), a known function, satisfies the same equation as F{z).
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Let u dt-notL' a (|uantity independent oi' z, and consider the function

f{z) = F(2)G(u-z).

We have / (z + 2(o) = F {z + 2co) G {u - z - 'Ico)

= ^F{z)^-G{u-z)

=f{z)\

,111(1 similarly f{z + 2a)') =fiz),

so that f{z) is a doubly-periodic function of the first kind with 2&) and 2w'

for its periods.

The sum of the residues of /(z) is therefore zero. To express this sum,

wt' must obtain the fractional part of the function for expansion in the

vicinity of each of the (accidental) singularities oi f{z), that lie within the

parallelogram of periods. The singularities off(z) are those of G (u — z) and

those of i?' (2).

Choosing the parallelogram of reference so that it may contain w, we have

3 = II as the only singularity of G(u — z) and it is of the first order, so that,

since

G{^)= -r-\- positive integral powers of ^

in the vicinity of ^=0, we have, in the vicinity of u,

F{u)

f{ z) = {F (u) + positive integral powers of u — z\
\

1- positive powers I

4- positive integral powers of 2 — u
;

hence the residue oif{z) for u is — F {u).

Let z = c be a pole of F{z) in the parallelogram of order /? + 1; and, in

the vicinity of c, let

F{z) =^ + a ^ (^ _ J
+ . . . + 6'„+, j^ (^—-J

+ positive integi-al powers.

Then in that vicinity

G{u-z) = G{u-c)-{z-c)^^G{u-c) + ^^^^^G{u-c)-...,

and therefore the coefficient of in the expansion of /'(^) for points in the

vicinity of c is

C,G{ii-c) + C\j-G{u-c)+G,p:,G{u-c)+...-\-Cn^^$7,G{u-c\
^ ' du ^ du- ^ du'' ^

which is therefore the residue off(z) for c.

This being the form of the residue of f(z) for each uf the poles of F{z),

then, since the sum of the residues is zero, we have

F{u) + 1 lc,G(u -c) + C, ^^^Giii - c) + ... + C„+. ^,G(u c) = 0.

21—2
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or, changing the variable,

F{z) = ^\c,G{z-c) + C,^^G{z-c)-\-...+C,^,^^G{z-c)\,

where the summation extends over all the poles of F{z) within that parallelo-

gram of periods in which z lies. This result is due to Hermite.

138. It has been assumed that a and X, parameters in G, are determinate,

an assumption that requires ^ and fi to be general constants : their values

are given by
ria + w\ = ^ log fjL, rj'a + co'X = ^ log fi',

and, therefore, since 7?co' — »;'&) = ± ^iir, we have

+ iTTCl

± iirX

Now \ may vanish without rendering G (z) a null function. If a vanish (or,

what is the same thing, be an integral combination of the periods), then G (z)

is an exponential function multiplied by an infinite constant when X does not

vanish, and it ceases to be a function when X does vanish. These cases must

be taken separately.

First, let a and A, vanish*; then both /j, and fi' are unity, the function F
is doubly-periodic of the first kind; but the expression for ^is not determinate,

owing to the form of G. To render it determinate, consider \ as zero and a

as infinitesimal, to be made zero ultimately. Then

G (z) = -^ — (1 + powers of a higher than the first)

= - + ^(z) + positive powers of a.

Since a is infinitesimal, /j, and fx,' are very nearly unity. When the

function i^ is given, the coefficients Cj, C., ... may be affected by a, so that

for any one we have

Gk = l>k + ajic + higher powers of a,

where 7^ is finite ; and b^ is the actual value for the function which is strictly

of the first kind, so that

lb, = 0,

the summation being extended over the poles of the function. Then retaining

only a~^ and a", we have

G,G{u-c) + gJ-,_G{u-c) + + c,,^^^^G(u-c)'j
' du

a + S ^b,^{u -c)+...+ bn^, ^, ^(U -
C)J ,

* This case is discussed by Hermite, (I.e., p. 322).
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where Co, equal to -7j, is a constant and the term in - vanishes. This

expression, with the condition 26, = 0, is the value of F{u); changing the

variables, we have

F{z) = C, + ^^b,^{z-c) + b,^^^{z-c)+... + bn^,^J{z-c)]^

with the condition S6i = 0, a result agreeing with the one formerly (§ 128)

obtained.

When F is not given, but only its infinities are assigned arbitrarily, then

2C = because i^ is to be a doubly-periodic function of the first kind; the

term - 1C vanishes, and we have the same expression for F(z) as before.
a

Secondly, let a vanish* but not \, so that fi and /x' have the forms

We take a function g (z) = e''^ ^(z)
;

then g{z-2(o) = fi-^e'^^^iz -20))

= fji-^{g{z)-2ve^],

and g{z-2Q}') = /-^
{g (z) - 2r)'e'^].

Introducing a new function H(z) defined by the equation

H(z) = F(z)g(u-z),

we have H{z + 2(o) = H{z)- 2^e^<«-^' F{z),

and H{z + 2&)') = H(z) - 2r}'e^'"-'^ F{z).

Consider a parallelogram of periods which contains the point u ; then, if be

the sum of the residues of H{z) for poles in this parallelogram, we have

2'in@=jH{z)dz,

the integral being taken positively round the parallelogram. But, by § 110,

Prop. II. Cor., this integral is

4e^"
I

0)?;' f' e-^(i>+-^') Fij^ + 2(ot) dt - co'r)
\' e-^'i>+'^'"'t> F{p + 2oy't) dt >

,

where p is the corner of the parallelogram and each integral is taken for

real values of t from to 1 . Each of the integrals is a constant, so far as

concerns u ; and therefore we may take

= - Ae^\

the quantity inside the above bracket being denoted by —^iirA.

The residue of H {z) for z= u, arising from the simple pole oi g{u — z), is

-F(u)asin§137.

If 2 = c be an accidental .singularity of F{z) of order n + I, so that, in the

vicinity of 2 = c,

^(,) = c. J-^ + a^-(A_) + ... ^cui^(j^J + i'(.-c,,

* This is discussed by MittaR-Leffler, (I.e., p. 322).
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then the residue of H {z) for 2 = c is

d d"
G,g {u - c) + Co ^^ 5r (u - c) + . . . + (7„+i —^g{u-c);

and similarly for all the other accidental singularities oi F{z). Hence

or F{z) = Ae^^ + ^^^G, + C._^^-^...^G,,^,^^^g{z-c),

where the summation extends over all the accidental singularities of F(z) in a

parallelogram of periods which contains z, and g{z) is the function e^^(z).

This result is due to Mittag-Leffler.

Since
fj,
= e-^'" and

g (z -c+2(o)^ fig (z-c) + 27]/j,e'"^-''\

we have

fiF(z) = F(z + 2a})

and therefore S (Cj + CA + . . . + Cn+^V) e-^' = 0,

the summation extending over all the accidental singularities of F{z). The
same equation can be derived through fiF{z) = F{z + 2 a)').

Again SCi is the sum of the residues in a parallelogram of periods, and

therefore

27ri^C,=jF(z)dz,

the integi'al being taken positively round it. If jj be one corner, the integral is

2(o (1 - /x') rF(p + 2cot) dt -2(o'{l-fi)[F{p+ 2co't) dt,

Jo Jo

each integral being for real variables of t.

Hermite's special form can be derived from Mittag-Leffler's by making

\ vanish.

Note. Both Hermite and Mittag-Leffler, in their investigations, have

used the notation of the Jacobian theory of elliptic functions, instead of

dealing with general periodic functions. The forms of their results are as

follows, using as far as possible the notation of the preceding articles.

I. When the function is defined by the equations

F{z + 2K) = fMF(z), F{z + 2iK') = fi'F {z),

then ^(.) = s{6wa^f^ + ... + cu,$,}G(.-c),

where G(z)^
^'

^''^ ^^'"^ '"K^^-where i^Kz)-
^^^^^^^^

e
,
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(the symbol H denotinj,^ the Jacobiaii //'-function), and the constants w and X

are determined by the e<iuations

•>AA- ' -ni'^+2A(A''
^ = e-"'^, fi = e ^

II. If both X and a be zero, so that F(z) is a doubly-])cri..dic timet ion

of the first kind, then

with the condition Ihi = 0.

III. If (/ be zero, but not X, then

where g i^^) = j^^ e^^

,

the constants being subject to the condition

1{C, + Co\+...+ On+iX") e-^^ = 0,

and the summations extending to all the accidental singularities of F(z) in a

parallelogram of periods containing the variable z.

139. Reverting now to the function F (z), Ave have G (z), defined as

<t(z+ a) ^^

a-(z)<T(a)^
'

when a and X are properly determined, satisfying the equations

G(z+ 2ay) = fxG {z), G{z + 2&)') = fi'G {z).

Hence O {z)= F{z)IG {z) is a doubly-periodic function of the first kind ; and

therefore the number of its irreducible zeros is equal to the number of its

irreducible infinities, and their sums (proper account being taken of multi-

plicity) are congruent to one another with moduli 2w and 2&)'.

Let Ci, Ca, ..., Cm be the set of infinities of F {z) in the parallelogram of

periods containing the point z; and let 71, ..., 7^ be the set of zeros of F{z)

in the same parallelogram, an infinity of order n or a zero of order n occurring

n times in the respective sets. The only zero of G {z) in the parallelogram is

congruent with — a, and its only infinity is congruent with 0, each being

simple. Hence the m + 1 irreducible infinities of fl {z) are congruent with

— Oy Ci, Co, ... , c„,

,

and its /ti + 1 irreducible zeros are congruent with

0, 7i. 7.!. •••.7m;

and therefore m -f- 1 = /x -I- 1,
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From the first it follows* that the numher of infinities of a doubly-periodic

function of the second kind in a ixirallelogram of periods is equal to the

numher of its zeros, and that the excess of the sum of the former over the sum

of the latter is congruent luith

^,- log /^-^. log/

the sign being the same as that of ))l f-^) •

The result just obtained renders it possible to derive another expression

for F{z), substantially due to Herraite. Consider a function

a-{z — Ci)(r{z — c^)...(T{z — Cm)

where p is a constant. Evidently F^ (z) has the same zeros and the same

infinities, each in the same degree, as F (z). Moreover

F,{z + 2ay) = F, (z) e2r,(2.-vy)+2pc.^

F, (Z + 2a>') = F, (Z) e2V(2r-2v) + 2pu.'_

If, then, we choose points c and 7, such that

2c — S7 = a,

and we take p — \, where a and X are the constants of G (z), then

F,(z + 2(o) = fiF, (z), F, (z + 2« ) = p,'F, (z).

The function F^(z)IF{z) is a doubly-periodic function of the first kind, and

by the construction of Fi{z) it has no zeros and no infinities in the finite

parf) of the plane : it is therefore a constant. Hence

F(z) = A <^(^-7.)-^(^-7.)-<^(^-7..K>.-_

<t{z— Ci) (t{z -C.2) ... (t{Z- Cm)

where 2c — S7 = a, and a and X, are determined as for the function G {z).

140. One of the most important applications of secondary doubly-periodic

functions is that which leads to the solution of Lame's equation in the cases

when it can be integrated by means of uniform functions. This equation

is subsidiary to the solution of the general equation, which is characteristic

of the potential of an attracting mass at a point in free space ; and it can be

expressed! either in the form

d'W , . , , „ r.,

-J-;
= (Ak- sn-z + B) tv,

or in the form -j-^ = [A^ (z) + B] iv,

* Frobenius, Crelle, xciii, pp. 55— 68, a memoir which contains developments of the properties

of the function G.(z). The result appears to have been noticed first by Brioschi, {Cotnpten Rcudiis,

t. xcii, p. .325), in discussing a more limited form.

t The equation arises when the coordinates of any point in space are taken to be the

parameters of tlie three confocal quadrics through the point. For the actual derivation of

the equation in either of the fcrms stated, see my Tlieorij of Differential Equations, vol. iv, § 148.
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according to the class of elliptic functions used. In order that the integral

may be uniform, the constant A must be ?i(n + l), where n is a positive

integer; this value of .4, moreover, is the value that occurs most naturally in

the derivation of the equation. The constant B can be taken arbitrarily.

The foregoing equation is one of a class, the properties of which have

been established* by Picard, Floquet, and others. Without entering into

their discussion, the following will suffice to connect them with the .secondary

periodic function.

Let two independent special solutions be ^ (z) and h (z), uniform functions

of z ; every solution is of the form ag (z) + ^h (z), where a and /3 are constants.

The equation is unaltered when z + 2o) is substituted for z ; hence g{z + 2a))

and h (z + 2&)) are solutions, so that we must have

f/ (z + 2ft>) = Ag (z) + Bh {z), h {z + 2co) = Cg {z) + Dh {z),

where, as the functions are determinate, A, B, G, D are determinate constants,

such that AD — BG is different from zero.

Similarly, we obtain equations of the form

g{z + '2a)') = A'g (z) + B'h {z), h (z + 2a)')= G'g (z) + D'k (z).

Using both equations to obtain g(z + 2co + 2(o') in the same form, we have

BG' = B'G, AB'-\-BD' = A'B + B'D;

and similarly, for h (z + 2(o + 2(o'), we have

GA' + DC = G'A + D'C, BG' = B'G
;

. , G G' . A-D A'-D'
therefore B^W^ ' ~B~ ^ ^W~ " ^'

Let a solution F(z) = ag (z) + bh (z)

be chosen, so as to give

F(z + 2o}) = fiF(z), F(z + 2o}') =fi'F{z),

if possible. The conditions for the first are

aA +bG _ aB + bD
a b

so that a/b(=^) must satisfy the equation

= At.

A-D=^B-^^;

and the conditions for the second are

aA' + bG' aB'+bD'
- -7r-= -b-^=^'

* Picard, Compter Iiendu.f, t. xc, (1H80), pp. 128—131, 293—29.5; Crelle, t. xc, (1880).

pp. 281—302.

Floquet, Comptes liendus, t. xcviii, (1884), pp. 82—85; Ann. de I'Ec. Sorm. Sup., 3"' Ser.,

t. i, (1884), pp. 181—238.
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so that I must satisfy the equation

A'-D' = ^B'-j.

These two equations are the same, being

^2 _ e| - 8 = 0.

Let ^1 and ^o be the roots of this equation which, in general, are unequal; and

let /Z.1, fjLi' and fj,2,
//«' be the corresponding values of fi, fi. Then two functions,

say F^ (z) and F., (z), are determined : they are independent of one another, so

therefore are g{z) and h (z); and therefore every solution can be expressed in

terms of them. Hence a linear differential equation of the second order, having

coefficients that are doubly-periodic functions of the first kind, can generally he

integrated by means of doubly-periodic functions of the second kind.

It therefore follows that Lame's e(]uation, which will be taken in the form

w dz- / V /

can be integrated by means of secondary doubly-periodic functions.

141. Let z=c be an accidental singularity of w of order m; then, for

points z in the immediate vicinity of c, we have

'^ = (^Tr^« {1 +^ (^ - c) + fi (z-cr +

and therefore

1 d-w m + m? 2mp .. „— = 7
— + positive powers oi z — c.

w dz" {z — cf z-c ^
'

Since this is equal to n (w + 1 ) ^ {z) 4- B

it follows that c must be congruent to zero and that m, a positive integer,

must be n. Moreover, p = 0. Hence the accidental singularities of lu are

congruent to zero, and each is of order n.

The secondary periodic function, which has no accidental singularities

except those of order n congruent to z = 0, has n irreducible zeros. Let them

be — ai, - a.^, ..., — ««; then the form of the function is

^ a- (z -\- a,) (T (z + a„) ... (7 (z -\- «„) ^^,

1 rliit "

Hence --~ = p-ni; (z) + S ^(z + a,),
W CtZ

J* = 1

or, taking p — — S^(a,.), we have

1.1/. 1 dhu 1 id'w\- , .
'1

, , .

and therefore - -3—
:,

-, = n<^ {z) — 1 t> (2^ + a,.).

w dz^ w^\dzJ * ^ ^ ,.=1
*
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But, by Ex. 3, § 131, we have

"Adz) 4.1,-1 ^{ar)-^{z)]

* rti 1 fr)
(a.) -^{z}] ' ,-^1 s=i 1 fr>

(«.) -
(f>

(--) ^ ("*) - fr>
(^')

j

by Ex. 4, § 131. Thus

Now
^'{ar)-^'(z) ^'(as)-ip'(z)

^^(a,.)-i!>{z)' ^ias)-^(z)

^ 4/ (z) - g^ip (z) -g, + ^' (cir)
<i>' («,)

- \<^' jar) + |^' («.)} <^' {z)

[^ (^) - i^ («.•)} 1^ {z) - <^ (a,)}

where ^ ^ ^^'i^+W = _ 5.

Let the constants be such that

fr>' («i) + ^' («2) fe>' («i) + (f>'
(as)

^(ai)-^(a2) ^(a,)-fr)(a,)

fr>^(a,) + ^'(ai)
_^

^'(a2) + fe)'(a3) _^

fr>(«2)-&>(ai) fr>
(rt.) - ^ (as)

=

=

n equations of which only n — 1 are independent, because the sum of the «

left-hand sides vanishes. Then in the double summation the coefficient of

each of the fractions —-r^——,—I is zero ; and so
(p(^)-^(ar)

,.=i,,=i(^(a,)-^(^) ^(a,)-^(z)j ^'
'r=x^^

an( 1 therefore
w dz

Hence it folloios that

^
"^^'l

= n (n + 1) ^ iz) + (2/i - 1 ) i ^ («,.).

r = l

F{z) = w,=
<T {z-\-ai)a{z + a^ ...a{z + a,,)

a-{z)

nar)

satisfies Lames equation, provided the n constants a be determined by thi

preceding equations and by the relation

B = {2n-l) 1 ^(ar).
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Evidently the equation is unaltered when — ^ is substituted for z ; and

therefore

F(-z\ = w = °-(^-«i)q-(^-«2)---o-(^-«n) /,!, ^ ('''•)

is another solution. Every solution is of the form

MF{z) + NF{-z),

where M and N are arbitrary constants.

Corollary. The simplest cases are when n = l and n = 2.

When n =\, the equation is

1 dhu ^ , . n
w (^^- ^ ^ ^

there is only a single constant a determined by the single equation

B=i0{a),
and the general solution is

When ?i = 2, the equation is

1 d?w ^ . s „

5;a? =%« + «-

The general solution is

,, = ]f^o±±a)a{z^rh)
^_,^(,)_,^(,) ^ ^ a{z-a)a{z-h)

^,^,,,^,^^,,

a^{z) (t"-(z)

where a and b are determined by the conditions

p{a)-iJ{b) i V / s V / 3

Rejecting the solution a + 6 = 0, we have a and b determined by the equations

io (a) + ^0 (b) = 1 B, ^j (a) (p(b) = ^B'- Ig,.

For a full discussion of Lame's equation and for references to the original sources of

information, see Halphen, Traite des fonctions elliptiques, t. ii, chap, xii., in particular,

pp. 495 et seq.

Ex. When Lame's equation has the form

—^-^ = n(n-\-\)k^ sn2 z-h,

obtain the solution for ji=l, in terms of the Jacobian Theta-Functions,

e (z) e (s)

where w is determined by the equation dn-a) = /i-F; and discuss in particular the

solution when h has the values \+k'^, 1, k"^.

Obtain the solution for % = 2.in the form

dz L ew y dz\_ e(s) J
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_i^^r^ - 1 - ;{r-)(2F8U='a- 1 ) (2 sn^ « - 1

)

where X and a> are given by the equations

Si^ 'sn*a

2
sn*ai2k'^sn-a-l-lt:^)

^^ *"~3i{:2sn*«-2(H-F)sn2a + l'

and a is derived from k by the rehition

A = 4(l+/(--)-C/[-'-i.sn-a.

Deduce the three solutions that occur when X is zero, and the two solutions that occur

when X is infinite. (Hermite.)

Doubly-Periodic Functions of the Third Kind.

142. The equations characteristic of a doubly-periodic function <I> [z) of

the third kind are
imri

__

<J> {z + 2to) = 4) i^z), <^{z-{- 2&)') = e~^ <J) {z),

where ni is an integer different from zero.

Obviously the number of zeros in each parallelogram is invariable, as well

as the number of infinities. Let a parallelogram, chosen so that its sides

contain no zero and no infinity of <I> {z), have p, p+ 2a), p + 2co' for three

of its angular points; and let a^, a.,, ..., O; be the zeros and c,, ..., c^ be the

infinities, multiplicity of order being represented by repetitions. Then using

^ (z) to denote -^ {\og<P (z)], we have, as the equations characteristic of

^ {z + 26)) = ^' (z), ^(z + 2co') = ^V (z) - '^

;

CO

and for points in the parallelogram

'^{z)= k — i ^ + H{z),

where H {z) has no infinity within the parallelogram. Hence

2.'iri{l-n) = j'^{z)dz,

the integi-al being taken round the parallelogram : by using the Corollary to

Prop. II. in vj 1 U3, we have

27ri (/ - /^) = -
I

- ( 1 dz = 'Ini-m,

so that I = n + m:

or the algebraical excess of the number of irreducible zeros over the number of

irreducible infinities is equal to ni.

z jX

Again, since = 1 H ,z- ii z- fl

w have :i " - :S
'^ +l-n = z']f{z)-zH {z),

z — a z — c

and therefore 2v i {^a - Sc) = Jz^ (z) dz,
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the integral being taken round the parallelogram. As before, this gives

2'7Ti (^2 - 2c) = 2«^ (z) dz-\ 2ft)'^ {z) - - {z + 2&)') \ dz.
J p J p I

(^
J

The former integral is

P + 2U.'
(J)' (^)
, /- dz
(i>{z)

miri \
p\ = — zmTTip,

for the side of the parallelogram contains* no zero and no infinity of 4> (z).

The latter integral, with its own sign, is

rp+2'o^' (z) miri p+S""^
n /x 7- 2&)' ^ ; rf^ + (z + 2(w') dz

= o + '^{(p + -2co + 2coy - ip + 2coy}

= 2?/i7rt (jj + &j -f 2&)').

Hence Sa — 2c = ?m (« + 2&)'),

giving iA-e excess of the sum of the zeros over the sum of the infinities in any

parallelogram chosen so as to contain the variable z and to have no one of its

sides passing through a zero or an infinity of the function.

These will be taken as the irreducible zeros and the irreducible infinities :

all others are congruent with them.

All these results are obtained through the theorem II. of § 116, which

assumes that the argument of to' is greater than the argument of cd or, what

is the equivalent assumption (§ 129), that

rjOi' — 7]W = ^TTt.

143. Taking the function, naturally suggested for the present class by

the corresponding function for the former class, we introduce a function

^
<t{z — c^a{z— C^ ...(T {z — Crt)

where the a's and the c's are connected by the relations

2a — 2c = m (&) -I- 2(w'), I — n = m.

Then (f){z) satisfies the equations characteristic of doubly-periodic functions

of the third kind, if

= 4\ft) + 2mr],

[k . 27ri = 4>X(i}- -\- 2m7](o + 2/j.(o + miri — 2m7] {co + 2ft)')

;

imri ,^ , ^ ,= 4\fy + Inir)
,

k' . 2771 — 4Xft)'-' + 2iiii]'co' + 2yu,ft)' + m-ni — 2)nr]' (co + 2(d'),

* Both in this integral and in the next, which contain parts of the form I — , there is, as

in Prop. VII., § 116, properly an additive term of the form 2Kvi, where k is an integer. But,

as there, both terms can be removed by modification of the position of the parallelogram ; and

this modification is supposed, in the proof, to have been made.
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/• and k' being disposable integers. These are uniquely satisfied by taking

1 mi]

1 iHTri -. ,

f^= 7)
+ "' iv + -^ ),

with A- = 0, // = m.

Assuming the last two, the values of X and fi are thus obtained so as to make

(f)
(z) a doubly-periodic function of the third kind.

Now let tti, ..., a/ be chosen as the irreducible zeros of ^(z) and c,, ..., c,j

as the irreducible infinities 0(^(2), which is possible owing to the conditions

to which they were subjected. Then <t>{z)/(j)(2) is a doubly-periodic function

of the first kind ; it has no zeros and no infinities in the parallelogram of

periods and therefore none in the whole plane ; it is therefore a constant, so

that

^ (-) = Ae~'^
^'"'^^^ ^+('>+2,-)}«,z a(z-a,)<r(2-a,)...<r{z-ai )

(T(z — Ci)cr(z — c.2)...a-(z — Cn)'

a representation of O (z) in terms of known quantities.

Kr. Had the representation been effected by means of the Jacobian Theta-Fuuctions

which would replace a-{z) by JI{z), then the term in 2- in the exponential would be absent.

144. No limitation on the integral value of m, except that it must not

vanish, has been made: and the form just obtained holds for all values.

Equivalent expressions in the form of sums of functions can be constructed

:

but there is then a difference between the cases of m positive and m
negative.

If 111 be positive, being the excess of the number of irreducible zeros over

the number of irreducible infinities, the function is said to be of positive

class m ; it is evident that there are suitable functions without any

irreducible infinities—they are integral functions.

When m is negative (= — n), the function is said to be of negative class n
;

but there are no corresponding integi-al functions.

145. First, let m be positive.

i. If the function have no accidental singularities, it can be expressed in

the form
^gA5--i-Mi o-(^ _ (,j (T {z - a.,) . . . a {z — a,„),

with appropriate values of X and /x.

ii. If the function have 71 irreducible accidental singularities, then it has

in + n irreducible zeros. We proceed to shew that the function can be

expressed by means of similar functions of positive class ///. with a single

accidental singularity.
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Using \ and /i to denote

1 mr) , 1 )inri , ^ ,.

which are the constants in the exponential factor common to all functions of

the same class, consider a function, of positive class f\% with a single accidental

singularity, in the form

^ U ,A ^ ^(^-n^^^(z-u) ^ (^ - ^0 ^ (^ - &2) .• (T (^^ &m+l) 1

^ "
O- (Zf - 6i) O- (W — 62) . . . O- (U — 6„,+i) O- (2: — XL)

'

where 61, 62, •> ^m are arbitrary constants, of sum s, and

?>i (ft) + 2£y') = 6,rt+i + Z>i + io + . . . + Ki - u

= 6,^+1 + S-U.

The function -»/r,„ satisfies the equations

yjr.n (Z + 2co, U) = -^.n {z, u), -</r,„ {z + 2&)', m) = 6 " t//^,^ (^, u)
\

regarded as a function of z, it has u for its sole accidental singularity,

evidently simple.

The function -,— ,
, can be expressed in the form

,A(t(2-;2)+^(„-5) a (u — z) a {u — h^) . . . a- (u — 6„,) o- {s — m (tu + 2co')]

cr{z — 61) (r(z — b,„) cr {it — ^^ — s + m (« + 2(b')}
*

Regarded as a function of u, it has z,h^, ..., b,n for zeros and z + s — m{(o + 2a)')

for its sole accidental singularity, evidently simple : also

z + bi+ ... +h,n— {z + s — 111 {w + 2&>')} = m (eo 4- 2ft)').

Hence owine: to the values of X. and u, it follows that , ,
—

, , when*
ir,n {z, u)

regarded as a function of u, satisfies all the conditions that establish a

doubly-periodic function of the third kind of positive class m, so that

1 1

«/r,„ (Z, U + 2(o)
~

i/r,„, (z, u)
'

1 -'^ 1

ylr,^{z,u-^2co')~^
"

ylr,„{z,u)'

and therefore

y{f,n {z, u + 2&)) = yjr.n (z, u), i/r,^ {z, u + 2a}') = e " sfrm (z, u).

Evidently y\r.,r^ {z, u) regarded as a function of u is of negative class m : its

infiniti>es and its sole zero can at once be seen from the form

^ (. .,x^A(.^-.^Uu(.-.^<^(^-^i)---^(^-M^^t-^-g + m(ft> + 20)01
^'"^ '^ <T{u-z)a(u-b,)...a{u-bm)(r{s-m(co + 2co')}'

Each of the infinities is simple. In the vicinity of 11 = z, the expansion of

the function is

(-positive integral powers of u — z :
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and, in the vicinity of a = h,., it is

^^r{z) ....
, .

—V^ + i)(tsiti\f intcoral nowtTs ot // — />,.,

11 —Or

where (jr,-{2) denotes

.(-._,„.:)+^(^_6, (r(z-bi)...a(^-br-x)(r(z-br+,)...<T(2-b„,)a{z+s-br-vi((o+2(o')
]

(T{b,.-b,)... a-{br-br-,)a(b,-b,.^,) ... (T(b,.-bJ<r[s-m(co+ '2co')y

and is therefore an integral function.of z of positive class m.

Let '^\>(i() be a doubly-periodic function of the third kind, of positive

class tn ; and let its irreducible accidental singularities, that is, those which

occur in a parallelogram containing the point ii, be a^ of order 1 4-/Ui, a., of

order 1 + fx.,, and so on. In the immediate vicinity of a point a,., let

<P(u) = (a,. - B, j- 4- (7, f-, -...±Mrp-] -^ + P.. in - Of.).
^ V du (hi- alitor I u - a,.

Then proceeding as in the case of the secondary doubly-periodic functions

(§ 137\ we construct a function

F(u) = ^(u)ylr,„(z,u).

We at once have F{u + 2co) = F(u) = F(u + 2oi'),

so that F(u) is a doubly-periodic function of the first kind; hence the sum

of its residues for all the poles in a parallelogram of periods is zero.

For the infinities of F(u), which arise through the factor yjr„i(z,u), we

have as the residue for u = z

and as the residue for u = br, where ?• = 1, 2, ..., ?/j,

^{b,.)Gr(z).

In the vicinity of a^, we have

yjr„, (z, u) = yfr,„ (z, a,.) + {u - a,.) y{r,„' {z, a,) + —.^^- "^m" {z, Or) + • • .

,

where dashes imply differentiation of yp-,„ (z, u) with regard to u, after which

// is made equal to a,.: so that in fp {u)-\lr,„ (z, u) the residue for i<=a,.,

where ?• = 1, 2, .,., is

h\.(z) - Arir,,, (z, a,) + B,f„; (z, a,) + Crir,,," (z, c,) + ... + J/,^/^„/^)(.-, a,).

Hence we have
m

-Ctj(^)+ :i: <P(br)(rr(z)+ 1 E,{z) = 0,
r=l «-l

m
and therefore cf) (^) = V E,{z)+ 1 {/»,) (7,(-0,

.<j = l r=\

giving the expression of 4>(^) by means of doubly-periodic functions of the

third kind, which are of positive class m and either have no accidental

sinfjularity or have only one (Did that a simple siiir/ularity.

V. F. 22
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The m quantities bi, ..., 6,„ are arbitrary; the simplest case occurs when

the m zeros of ^{2) are different and are chosen as the values of 61, ..., 6,„,

The value of <l> (z) is then

s = l

where the summation extends to all the irreducible accidental singularities

;

while, if there be the further simplification that all the accidental singularities

are simple, then

^ (z) = A,y\r,„ (z, a,) +A,ylrrn{z,a^)+...,

the summation extending to all the irreducible simple singularities.

The quantity -\/r,„ (z, Or), which is equal to

A(,2 _ a,'2)+M(-' - a,)
o-(z-b,)...a(z- hyn) q- {^ + S6 - m(M 4- ^(o') - ofr}

cr(a,. - 6i)...o-(of,. - 6,,„,)cr|S6 — m(&) + 2a)')| (T{z — OLr)'

and is subsidiary to the construction of the function E{z), is called the

simple element of positive class m.

In the general case, the portion

2^(br)Gr{z)

gives an integral function of z, and the portion S E^i (z) gives a fractional

function of z.

146. Secondly, let m be negative avd equal to — n. The equations

satisfied by ^{z) are
llTTZi

^{z+'-lw)=<^{z), <P{z+2oi') = e •" (^{z),

and the number of irreducible singularities is greater by n than the number

of irreducible zeros.

One expression for <t> (z) is at once obtained by forming its reciprocal,

which satisfies the equations

1 1 1 ^ -*-^^^' l_

<^{z + 2co)
~

<i>{z) ' <t>{z+ 2w') 4> {z)
'

and is therefore of the class just considered: the value of ^ ,—
- is of the

'' ^(^)
form

lEs(z) + 1ArGr(2).

For purposes of expansion, however, this is not a convenient form as it gives

only the reciprocal of 4> (z).

To represent the function, Appell constructed the element

Hsm

%n(^,2/)=:r: ^ «
"

<^^t

{y+is-iwi 7r(z-y -2s(o')

9,
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which, since the real part of w' coi i.s positive, converges lor all values of z and

I/, except those for which

2 = y (mod. 2(1), 2&)').

For each of these values one term of the series, and therefore the series

itself, becomes infinite of the first order.

Evidently X» (^. .'/ + -") = X" (^' Z/)-

X„ (z, }l + 2&)') = e " X" <^' y^ »

therefore in the present case

n(i/) = ^(y)Xu(^, y),

regarded as a function of y, is a doubly-periodic function of the first kind.

Hence the sum of the residues of its irreducible accidental singularities

is zero.

Within the parallelogram, which includes z, these singularities are :

—

(i) y = z, arising through -y^n {z, y) ;

(ii) the singularities of 4>(?/), which are at least n in number, and are

11 + I in number when <t> has I irreducible zeros.

The expansion of ^n iz, y), in powers of y — z, in the vicinity of the point

z, is

1- positive integral powers of y — z
;

therefore the residue of Q. (y) is

-<^{z).

Let Qr be any irreducible singularity, and in the vicinity of a,, let ^^{y) denote

( A - n ''^ r ^'
+ P ^^''\ ^

\ *"
"^ dy '' dy- '" ~

^ dy^J y — a^

+ positive integral powers of y — a^,

where the series of negative powers is finite because the singularity is

accidental ; then the residue of H (y) is

ArXn {Z, a,.) + B,Xn (^> «.) + ^rXn" (^, «.) + • • + I^X'^"" (f> «'),

where Xn^' (z, a^) is the value of

d^Xn i^> y)

dy'

when /y= a^ after differentiation. Similarly for the residues of other singu-

larities : and so, as their sum is zero, we have

^\^z) = l{ArXn(Z, Cl,)+ BrXn{Z,Or)+ . . . + l\Xn '" {z, «r)i,

the sumtiiation extending over all the singularities.

2'j 2
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The simplest case occurs when all the iV(> n) singularities a are accidental

and of the first order ; the function <t> (z) can then be expressed in the form

The quantity %vi(2^, a), which is equal to

TT
S=X l(.s-i).o'+a; _,7r(^-a--2sft)')

is called the simple element fur the expression of a doxMy-periodic function of

the third kind of negative class n.

£.r. Deduce the result

= 2 (-1/ cot -^ ^^^^ ^

147. The function Xn (z, y) can be used also as follows. Since ;j^,„ {z, y),

qua function of y, satisfies the equations

Xm{z, y + 1(o) = Xm{z,y),

_nnTyi

Xm{z,y + 2w) = e "" Xn{z,y),

which are the same equations as are satisfied by a function of y of positive

class m, therefore %,„ (a, z), which is equal to

— X e
"

cot -^
,

being a function of z, satisfies the characteristic equations of § 142; and, in

the vicinity of z — a,

Xm (a> z) = h positive integral powers of z — a.

If then we take the function <J> {z) of § 14.5, in the case when it has simple

singularities at «!, a..,, ... and is of positive class m, then

^ (Z) + A,X,, (Ol, Z) + A,X>n («2, z)+...

is a function of positive class m without any singularities : it is therefore

equal to an integral function of positive class m, say to G(z), where

G{z)= A e^^^'+i^^ a{z- a,) ...<j{z- a,,,),

so that 4:» {z) = G{z)- A,Xm («i , z) - A.^Xm (a,, --)-...

.

Ex. As a single example, consider a function of negative class 2, and let it have

no zero within the parallelogram of reference. Then for the function, in the canonical

))r()duct-form of § 14.3, the two irreducible infinities are subject to the relation

ri+C2 = 2 (w + 2a)'),

;ind the functii)n is 4> {£)
cr (2-fi) a- {z — c.y)
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The .simple elements to expre.ss * (z) as a sum urc

X.i ('"' t^^i) = 5- 2 e «- cot - {z - r, - 2sco ),

, n Z
—'(("-D'-'+aw+W-r,! TT

,
_

. , , ,.

X2 (^» ^2) ~ 5~ 2 '^
"

^'*^*' .y ' V- "^ ^'i — -t^ - *<^ - -•'w )

after an axsy reduction,

jr — (c-,-<o')- -'- l(r-l)a.'-r,| jr. _ ,^

-.-e"' 2 6" cot — (.: -r ''1 - 2/-«
)

— (c,-<u) .

Tlio residue of <i> iz) for t'l, which is a simple singularity, is

<t(Ci- Co)

and f()r c-,, also a simple singularity, it is

^ -
0- (c._, - t'l)

'

SO that ~i=-e'^ =-e'"

Hence the expression for 4> (z) as a sum, which is

•2ni

becomes A
, [^2 {-, Oj) - e -

'"'

^2 (s, " Ci)} ;

that is, it is a constant multiple of

Agam, *(.)=A.'- ^ . (^-.,) cr (.-HcT^ 2c^ W)

) 1

(r(2-c,)o-(2+ c,)'

• 111 changing the constant factor. Hence it is possible to determine L so that

iri in

* (2) = e" " '"xa (2, c,) -e" "x2 i^, -'-i)-

Taking the residues of the two sides for s= c,, we have

AC" " = « " ,

and therefere finally we have

l^gi.c-i) ~ a (2c) - —

tho right-liand side of which admits of further modification if desired.
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Many examples of such developments in trigonometrical series are given by Hermite*,

Biehlert, Halphen+, Appell§, and Krause||.

148. We shall not further develop the theory of these uniform doubly-

periodic functions of the third kind. It will be found in the memoirs of

Appell§ to whom it is largely due; and in the treatises of Halphen**, and

of Rausenbergerff.

It need hardly be remarked that the classes of uniform functions of a

single variable which have been discussed form only a small proportion of

functions reproducing themselves save as to a factor when the variable

is subjected to homographic substitutions, of which a very special example

is furnished by linear additive periodicity. Thus there are the various

classes of pseudo-automorphic functions, (§ 305) called Thetafuchsian by

Poincare, their characteristic equation being

for all the substitutions of the group determining the function : and other

classes are investigated in the treatises which have just been quoted.

The following examples relate to particular classes of pseudo-periodic

functions.

Ex. 1. Shew that, if F{z) l:)e a uniform function satisfying the equations

where i is a primitive mth root of unity, then F{z) can be expressed in the form

(^•+-^'s+ +-^.£)/(-<').

where f{z) denotes the fvniction

c<'-'-^c(-!^)-"<-3- ^-'-'<(:-"":n^

and prove that \F{z)dz can be expressed in the form of a doubly-periodic function

together with a sum of logarithms of doubly-periodic functions with constant coefficients.

(Goursat.)

• Comptes llendus. t. Iv, (1862), pp. 11—18.

+ Sur lex developpements en serie::! des fonctious douhhniwnt prriodiques de troi^'eme espece,

(Th^se, Paris, Gauthier-Villars, 1879).

X Traite des foiictioim elliiytiques, t. i, chap. xiii.

§ Annales de I'Kc. Norm. Sup., S"" Ser., t. i, pp. 135—1G4, t. ii, pp. 9— H(), t. ill, pp. 9—42.

II
Math. Arm., t. xxx, (1887), pp. 425—436, 516—534.

** Traite des fonctioiis eUiptiques, t. i, chap. xiv.

ft Lehrhnc.h der Theorie der jteriodine hen Fiinctioiieii, (Leip/i^, Tcubncr, 1884), wliere further

references are given.
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Ex. 2. shew th.it, if a pseudo-periodic function lie defined liy the equations

/(2+ 2a.)=/(2)-|-X,

/(2 + 2o>')=/(z) + X',

and if, in the parallelo.>(ram of periods containing tlie point z, it liave inHniti«\s <\ ... suih

that in their immediate vicinity

then t\z) can be exi)re8seii in the form

the .summation extending over all the infinities of f{z) in the above parallelogram of

periods, and the constants Cj, ... being subject to the condition

+ I7r2( 1 = Xco' — X'ct).

Deciuce an expression for a doubly-periodic function (^ {z) of the third kind, by

assuming

/W=
f|-|.

(Halpben.)

K.v. 3. If S{z) be a given doubly-periodic function of the first kind, then a pseudo-

periodic function F {z), which satisfies the equations

F{z-ir'2u>)= F{z\

nniz

F(z + 2o>') =e~ S{z)F{z),

where » is an integer, can be expressed in the form

where .1 is a constant and n (z) denotes

n±+G+2(n,.+c\f+i),.f,+ )f(.--u

the summation extending over all points h^ and the constants B^ being subject to the

relatitin

2i5,= -~.

Explain how the constants 6, G and B can l)e determined. (Picard.)

Ex. 4. Shew that the function F{z) defined by the equation

F{Z)= "i" 22"+'(l-.-2")2,
n =-»

for values of Uj, which are < 1, satisfies the equation

F{z'^) = F{z);

n=oo A. (j^\ _ ^
and that the function F,(x)= 2 - .oi -^-,

where <^(j7) = x3—l, and (^„(.f), f'J>" positive and negative values of n, denotes 0[0{0..,0(.r)}],

(f)
being repeated n times, and a is the positive root of a"* -« — 1 =0 ; siitisfies the equation

F^U-^-l) = Fy(x)
for real values of the variable.

Discuss the convergence of the series which defines the function Fi (.v). (AppoU.)



CHAPTER XIII.

Functions possessing an Algebraical Addition-Theorem.

149. We may consider at this stage an interesting set* of important

theorems, due to Weierstrass, which are a justification, if any be necessary,

for the attention ordinarily (and naturally) paid to functions belonging to

the three simplest classes of algebraic, simply-periodic, and doubly-periodic,

functions.

A function
(f)

(u) is said to possess an algebraical addition-tlieorem, when

among the three values of the function for arguments u, v, and 21 + v, where u

and V are general and not merely special arguments, an algebraical equation

existsf having its coefficients independent of u and v.

150. It is easy to see, from one or two examples, that the function does

not need to be a uniform function of the argument. The possibility of

multiformity is established in the following proposition :

—

A function defined by an algebraical equation, the coefficients of which are

rational functions of the argument, or are imiform simply-periodic functions

of the argument, or are uniform doubly-periodic functions of the argument,

an algebraical addition-theorem.

* Thej' are placed in the forefront of Schwarz's account of Weierstrass's theory of elliptic

functions, as contained in the Fonneln uitd Lehrxiitze zuiii Gehrauche dcr eUiptischen Functionen ;

but they are there stated (§§ 1—3) without proof. The only proof that has appeared is in a

memoir by Phragmen, Acta Math., t. vii, (1885), pp. 33—42 ; and there are some statements

(pp. 390—393) in Biermann's Theorie der anahjtischen Functionen relative to the tlieorems.

The proof adopted in the text does not coincide with that given by Phragm^n.

t There are functions which possess a kind of algebraical addition-theorem ; thus, for

instance, the Jacobian Theta-functions are such that Oj^ (u + v)0 (u- v) can be rationally

expressed in terms of the Theta-functions having 11 and v for their arguments. Such functions

are, however, naturally excluded from the class of functions indicated in the definition.

Such functions, however, possess what may be called a nuiltiplication-theorem for multipli-

cation of the argument by an integer, that is, the set of functions H (mu) can be expressed

algebraically in terms of the set of functions 0(i<). This is an extremely special case of a set

of transcendental functions having a multiplication-theorem, which are investigated by Poincar^,

LiouvUU, 4-" Ser., t. iv, (1890), pp. 313—365.
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First, k't the coefficients be ratitnial functions ut' the argument u. If

thf function defined by the equation be U, we have

U'"go («) + U'"-'[^> ('/)+...+ (/,„ ( u) = 0,

where i/o('0. .7i ("),.-., i^m (») are rational integral functions uf a of degree,

say, not higher than ;;. The e»|uation can be transforiutMl into

?/"/o (T) +«"->/; (f/)+ ... +fn{U) = 0,

where /olT), /i(C), ..., /n{U) are rational integral functions of C of degree

not higher than )n.

Let V denote the function when the argument is v, an<l IT denote it

when the argument is u + v; then

and
( u + v)'\t\ ( ^) + ( w + vr-\t\ ( Tf ) + . . . + /, ( 11') = 0.

The algebraical elimination of the two quantities u and v between these

three equations leads to an algebraical equation between the quantities

f{U), f{V) and f{W), that is, to an algebraical e(juation between U, V, W,

say of the form

G{U, V, W) = 0,

where G denotes a polynomial function, wath coefficients independent of

u and V. It is easy to prove that G is synnnetrical in U and V, and that

its degree in each of the three quantities U, V, W is nm-. The equation

' G = implies that the function U possesses an algebraical addition-theorem.

Secondly, let the coefficients* be uniform simply-periodic functions of

the argument u. Let co denote the period: then, by § 113, each of these

functions is a rational function of tan — . Let u denote tan — ; then
Q) (O

\ the equation is of the form

[/»•(/„ (u') + U'"-'g, iit) + ...+g,„ (u') = 0,

where the coefficients g are rational (and can be taken as integral) functions

of n. If p be the highest degree of u in any of them, then the equation

can be transformed into

u'P/:, (U)+ u'P-\t\ {U) + ... +fp ( U) = 0,

where t\{U), /, {U\ ..., f,j{U) are rational integi-al functions of U of degree

not higher than in.

• The limitation to uniformity for the coefticieuts has been introiluceil merely to make the

illustration simpler ; if in any ease they were multiform, the equation would be replaced by

another which is equivalent to all possible forms of the first arising through the (tinite)

multiformity of the coetlicients : and the new equation would conform to the specified

conditions.
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Let v denote tan— , and w denote tan -^
; then the corresponding

values of the function are determined by the equations

v^f, (
V) + 1-^-7; ( F) + . . . +/,, ( V) = 0,

and w'^/o ( ir ) + iv'v-^f, ( W) +...+/;( F) = 0.

The relation between ?/', v , v/ is

u'v'w' + w' + v' — w' = 0.

The elimination of the three quantities u', v , w' among the four equations

leads as before to an algebraical equation

G{U, V, W) = 0,

where G denotes a polynomial function (now of degree mjf) with coefficients

independent of v and v. The function U therefore possesses an algebraical

addition-theorem.

Thirdly, let the coefficients be uniform doubly-periodic functions of tht-

argument u. Let <w and co' be the two periods ; and let ^ (u), the Weier-

strassian elliptic function in those periods, be denoted by |. Then every

coefficient can be expressed in the form

M+ Np'{u)

L '

where L. M, iV are rational integral functions of ^ of finite degree. Unless

each of the quantities iV is zero, the form of the equation when these values

are substituted for the coefficients is

A + B^y (u) = 0,

so that A- = B' (i^' - g,^ - g,y,

and this is of the form

U^9. (?) + U'-^-'g^ (I) + . .
. + 9:,. (I) = 0,

where the coefficients g are rational (and can be taken as integral) functions

of ?. If q be the highest degree of f in an}' of them, the equation can be

transformed into

where the coefficients / are rational integral functions of U of degree not

higher than 2m.

Let r) denote p{v) and ^ denote ^(n + v); then the corresponding values

of the function are determined by the equations

v'^fo{V)+v''-'fAV) + +./;(F) = o.

and ^'jf^i^W)+l;'J-\fAW)+ +/;(VF)=0.

By using Ex. 4, § 131, it is easy to shew that the relation between ?, r], ^ is

i(i(^ + v + O' (? - vT- -Si^ + v + O {4 (P + r) - 9. i^ + v)- 2^:.i

+ (4f- -f- 4^7; -I- 47;- - (/,Y- = 0.
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The eliiniiiatiun ot' ^, ;;, ^ tVoiii the throe e(jM;itii)iis h-.uls as Ix-tnre to

an algebraical e(|uation

Ct(u, V, ]r) = o,

of finite degree and with coefficients independent of // and v. Therefore in

this case also the function U possesses an algebraical addition-theorem.

If, however, all the quantities N be zero, the e<piatinn defining U is of

the form

6^'"//o(i:) + r"'-'A, (^ + ••- + /',„ (f) = ;

and a similar argument then leads to the inference that U pos.sesses an

algebraical addition-theorem.

The proposition is thus completely established.

151. The generalised converse of the preceding proposition now suggests

itself: what are the classes of functions of one variable that possess an

algebraical addition-theorem ''. The solution is contained in Weierstrass's

theorem :

—

An amihjtical function <f>(ii), wiiich possesses an alr/ehi-aical addition-

theorem, is either

(i) an algebraic function of u ; or

inn

(ii) an algebraic function of e ""
, where (o is a suitably chosen

constant ; or

(iii) an algebraic function of the elliptic function ^{u), the periods—or

the invariants g« and g.t
—being suitably chosen constants.

Let U denote
<f)

(n).

For a given general value of u, the function U may have m values where,

for functions in general, there is not a necessary limit to the value of m ; it

will be proved that, when the function possesses an algebraical addition-

theorem, the integer in must be finite.

For a given general value of U, that is, a value of U when its argument

is not in the immediate vicinity of a branch-point if there be branch-points,

the variable u may have p values, where p may be finite or may be infinite.

Similarly for given general values of v and of V, which will be used to

denote
(f>

(v).

First, let p be finite. Then liecausi- a has j) values for a given value

of U and V has p values for a given value of V, and since neither set is

atfected by the value of the other function, the sum u + v has /)'- values

because any member of the set u can be combined with any member of the

set v; and this number p- of values of u +v is derived for a given value

of U and a given value of V.

Xow in forming the function (f>(u + t'), which will be denoted by W, we

have /// values of W for each value of // -|- /• and therefore we have nip" values
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of W for the whole set, that is, for a given value of U and a given value of V.

Hence the equation between U, V, W is of degi-ee* nip- in W, necessarily-

finite when the equation is algebraical ; and therefore in is finite.

Because ni is finite, U has a finite number m of values for a given value

of u ; and, because p is finite, u has si finite number p of values for a given

value of U. Hence U is determined in terms of u by an algebraical equation

of degree m, the coefficients of which are rational integral functions of

degree p ; and therefore U is an algebraic function of u.

152. Next, let p be infinite ; then (see Note, p. 350) the system of values

may be composed of (i) a single simply-infinite series of values or (ii) a finite

number of simply-infinite series of values or (iii) a simply-infinite number of

simply-infinite series of values, say, a single doubly-infinite series of values

or (iv) a finite number of doubly-infinite series of values or (v) an infinite

number of doubly-infinite series of values : where, in (v), the infinite number

is not restricted to be simply-infinite.

Taking these alternatives in order, we first consider the case where the

p values of u for a given general value of U constitute a single simply-infinite

series. They may be denoted by f{n, n), where n has a simply-infinite series

of values and the form of / is such that f{u, 0) - u.

Similarly, the p values of v for a given general value of V may be denoted

by f{v, ??/), where n has a simply-infinite series of values. Then the different

values of the argument for the function W are the set of values given by

f{u,n)^f{v,n),

for the simply-infinite series of values for n and the similar series of values

for n.

The values thus obtained as arguments of IF must all be contained in

the series f{u+v, n"), where n' has a simply-infinite series of values ; and,

in the present case, f{u + v, n") cannot contain other values. Hence for

some values of n and some values of n, the total aggregate being not finite,

the equation

/(?<, n)-\- f{v, n) = f(u + V, n")

must hol(i, for continuously varying values of u and v.

In the first place, an interchange of u and v is e(|uivalent to an inter-

change of n and n' on the left-hand side ; hence n" is symmetrical in n

and n'. Again, we have

df{u, n) _ dfju + v, n")

du ~ d{u + v)

^df(v,n')
dv '

* The decree for special functions may be reduced, as in Cor. 1, Prop. XIII., § 118 ; but in uo

case is it increased. Similarly modifications, in the way of finite reductions, may occur in the

succeeding cases ; but they will not be noticed, as they do not give rise to essential modification

in the reasoning.
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SO that the form off{i(, ;/) is such that its first derivative with regard to u is

independent of u. Let 6 (n) be this vahie, where d(i)), independent of u, may
be dependent on n ; then, since

dt'(u,n) .. ^

we have /(«, n) = t(${n) + yjr (» ),

y{r()t) being independent of a. Substituting this expression in the former

equation, we have the equation

U0 (») + y{r(n) + vO {it') + y}r (/;') = {a + v) ^ (/<") + y{r(ii"),

which must be true for all values of a and v: hence

0{n) = 0{n") = e{n'),

so that ^(?i) is a constant and equal to its value when ?? =0. But when » is

zero, f(u. 0) is u; so that ^(0) = 1 and sjr (0) = 0, and therefore

f(u, )}) = n+yp-(n),

where yfr vanisjies with n.

The equation defining yjr is

ylr{ii) + ylr(u') = y{r(n");

for values of n from a singly-infinite series and for values of n' from the same
series, that series is reproduced for u". Since \lr(n) vanishes with «, we take

and therefore n-)^ (n) + n\ {)i') = n"^ (n").

Again, when 7i' vanishes, the required series of values of n" is given by taking

n" = n ; and, when n does not vanish, n" is symmetrical in n and n, so that

we have
)i" = II + II + nn\,

where \ is not infinite for zero or finite values of ?i or u'. Thus

>'X (") + "X ^'*') ~ ('^ + ^^' "•" ^*"'^) X (" + " + iiii'X).

Since the left-hand side is the sum of two functions of distinct and inde-

pendent magnitudes, the form of the equation shews that it can be satisfied

only if

\ ^ 0, so that n" = n + n'
;

and X (") = X ("")

so that each is a constant, say to ; then

t\u, ii) = u + no),

which is the form that the series must adopt when the series /{u -\- r, »") is

obtained by the addition of /'(//, i>) and f(v, n).
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It follows at once that the single series of arguments for W is obtained,

as one simply-infinite series, of the form n + v + n"o3. For each of these

arguments we have m values of W, and the set of vi values of W is

the same for all the different argumei^ts; that is, W has m values for a

given value of U and a given value of V. Moreover, U has m values for each

argument and likewise V\ hence, as the equation between U, V, W is of

a degree that is necessarily finite because the equation is algebraical, the

integer m is finite.

It thus appears that the function U has a finite number m of values for

each value of the argument u, and that for a given value of the function the

values of the argument form a simply-periodic series represented by u + no).

But the function tan — is such that, for a given value, the values of the
0)

argument are represented by the series u + noo ; hence for each value of

tan — there are m values of JJ, and for each value of U there is one value

It therefore follows, by §§ 113, 114, that between U and tan
ITa

there is an algebraical relation which is of the first degree in tan — and the

TTU
iHth degree in U, that is, U is an algebraic function of tan — . Hence U is

(Wtl

an algebraic function also of e "
.

Nute. This result is based upon the supposition that the series of argu-

ments, for which a branch of the function has the same value, can be arranged

in the form /(it, n), where n has a .simply-infinite series of integral values. If,

however, there were no possible law of this kind—the foregoing proof shews

that, if there be one such law, there is only one such law, with a properly

determined constant w—then the values would be represented by «i, Uq, .... Up

with p infinite in the limit. In that case, there would be an infinite number of

sets of values for a + v of the type u^ + v^, where X and fx, might be the same

or might be different ; each set would give a branch of the function W, and

then there would be an infinite number of values of W corresponding to one

branch of U and one branch of V. The equation between U, V and W would

be of infinite degree in W, that is, it would be transcendental and not alge-

braical. The case is excluded by the hypothesis that the addition-theorem is

algebraical, and therefore the equation between U, V and ^Y is algebraical.

153. Next, let there be a number of simply-infinite series of values of

the argument of the function, say q, where q is greater than unity and

may be either finite or infinite. Let a^, Uo, ..., ii^ denote typical members

of each series.

Then all the members of the series containing u, must be of the form

J\ (u,, /<), for an infinite series of values of the integer n. Otherwise, as in the
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pivcedini,' Note, the sum of the viilm-s in the s^erii-s of arguim-nts // ami of

those in the same series of arguments v would K-ad to an infinite number of

distinct series of values of the argument u + r. with a corresponding infinite

number of values W : and the relation between i\ V, W would cease to be
algebraical.

In the same way, the meud^ers of the corresponding series containing v,

must be of the form /, (?',, ;/') for an infinite series of values of the integer n'.

Among the combinations

the simply-infinite series /i (?^ + r,, ?/') nmst occur for an infinite series

of values of //'
: and therefore, as in the preceding case,

/', (>li, 7l)= », + H&),,

where w, is an appropriate constant. Further, there is only one series of

values for the combination of these two series ; it is represented by

"i + '"i + n"cOi.

In the same way, the members of the series containing Uo can be repre-

sented in the form Wg + "<y2> where (o^ is an appropriate constant, which may
be (but is not necessarily) the same as Wi; and the series containing ?/.,,

when combined with the set containing V2, leads to only a single series

represented in the form u^ + Vo + i/'co^. And so on, for all the series in order.

But now, since »o + nuco., where m., is an integer, is a value of u for a given

value of U, it follows that U (ii.,+ ui.m.^^U (u..) identically, each being equal

to U. Hence

U {u^ + m/oi + niocoo) = f (//, + 7ni&)j) = U ((/,) = U,

and therefore «, 4- mjWj + 7»2<»2 is also a value of u for the given value of U,

leading to a series of arguments which must be included among the original

series or be distributed through them. Similarly Wj + "S-virtOr, where the

coefficients m are integers and the constants co are properly determined,

represents a.series of values of the variable u, included among the original

series or distributed through them. And generally, when account is taken of

all the distinct series thus obtained, the aggregate of values of the variable u

can be represented in the form w^ + -»^&)o for \ = 1, '2,...,k, where k is

some finite or infinite integer.

Three cases arise, (a) when the ([uantities co are equal to one another or

can be expressed as integral multiples of only one quantity «u, (b) when the

quantities tu are equivalent to two quantities li, and fl. (the ratio of which is

not real), so that each (piantity (o can be expressed in the form

the coefficients pir, Jhr being finite integers: (c) when the quantities co are

not e(juivalent to only two (piantitii's, such as II, and 1}..
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For case (a), each of the k infinite series of values a can be expressed

in the form j^^+^Jw, for A, = 1, 2, ..., « and integral values of p.

First, let k be finite, so that the original integer q is finite. Then the

values of the argument for W are of the type

u^ + pay + 7V + i>'<»>

that is, Uk + v^-\- p"oi,

for all combinations of A. and /u, and for integral values of/)". There are thus

K^ series of values, each series containing a simply-infinite number of terms

of this type.

For each of the arguments in any one of these infinite series, W has dl

values ; and the set of m values is the same for all the arguments in one and

the same infinite series. Hence W has tyik^ values for all the arguments in

all the series taken together, that is, for a given value of U and a given

value of V. The relation between U, V, W is therefore of degree iuk-,

necessarily finite when the equation is algebraical ; hence m is finite.

It thus appears that the function U has a finite number 7n of values for

each value of the argument u, and that for a given value of the function there

are a finite number k of distinct series of values of the argument of the form

u + pco, CO being the same for all the series. But the function tan— has

on-e value for each value of n, and the series u + pw represents the series of

values of u for a oiven value of tan . It therefore follows that there are° w

in values of U for each value of tan and that there are k values of tan —
CO ft)

for each value of U ; and therefore there is an algebraical relation between

U and tan — , which is of degree « in the latter and of degree m in the
(O

former. Hence U is an algebraic function of tan — and therefore also of e "
.

Next, let K be infinite, so that the original integer q is infinite. Then,

as in the Note in § 152, the equation between U, V, W will cease to be

algebraical unless each aggregate of values ii;^ + pw, for each particular

value of p and for the infinite sequence X= 1, 2, ..., k, can be arranged in a

system or a set of systems, say a in number, each of the form fp{u + pw, p^)

for an infinite series of values of
Pf,.

Each of these implies a series of values

fp{v -\- p (o, Pp) of the argument of V for the same series of values of pp as of

]}p, and also a series of values fp{u -f- v + p"(o, pp") of the argument of W for

the same series of values of pj'. By proceeding as in § 152, it follows that

fp{u + pco, Pp) = n +pco+ ppWp ,

where Wp' is an appropriate constant, the ratio of which to co can be proved
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(as in § 10(1) to be not purely ival, and ji^ has a siniply-intinite succession of

values. The integer a may be finite or it may be infinite.

When (o and all the constants w' which thus arise are linearly equivalent

to two quantities flj and n.,, so that the terms additive to u can be expressed

in the form .v,n, + .s-.f}.^, then the aggregate <»f values // can be expro.ssed

in the form

</p + /j,n, + y>.il,.,

for a simply-infinite series for jOi and for p., ; and p has a series of values

1, 2, ...,o-. This case is, in effect, the same as case (6).

When w and all the constants to' are not linearly equivalent to only

two quantities, such as H, and Cl^, we have a case which, in effect, is the

same as case (c).

These tw-o cases must therefore now be considered.

For case (b), either as originally obtained or as derived through part

of case (d), each of the (doubly) infinite series of values of u can be expressed

in the form

for X. = 1, 2, ... , cr, and for integral values of ja, and p.. The integer a may be

finite or infinite ; the original integer q is infinite.

First, let o- be finite. Then the values of the argument for W are of the

type

that is, U), + IV + />i "n, + pJ'^2,

for all combinations of \ and fju, and for integral values of p^" and pj'. There

are thus cr series of values, each series containing a doubly-infinite number of

terras of this type.

For every argument there are m values of W ; and the set of m values is

the same for all the arguments in one and the same infinite series. Thus W
has nia^ values for all the arguments in all the series, that is, for a given value

of [/" and a given value of V ; and it follows, as before, from the consideration

of the algebraical relation, that m is finite.

The function U thus has m values for each value of the argument a ; and

for a given value of the function there are <t series of values of the argument,

each series being of the form U), +^in, -\- p.,Vl.,.

Take a doubly-periodic function having Hi and D..^ for its periods, such *

that for a given value of C-) the values of its arguments are of the foregoing

form. Whatever be the expression of the function, it is of the order cr.

* All that is necessary for this purpose is to construct, by the use of Prop. XIL, § 118, a

function havin<;, as its irreducible simple infinities, a series of points «,, a.j, ..., na— special

values of m,, u.,, ..., ua—in the parallelogram of periods, chosen so that no two of the <r

points a coincide.

K. K. 23
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Then U has m values for each vahie of B, and has one vahie for each

vahie of U ; hence there is an algebraical equation between U and %, of

the first degree in the latter and of the with degree in U : that is, U is an

algebraic function of 0. But, by Prop. XV. § 119, can be expressed in

the form

M + Ny (u)

77 '

where L, M, N are rational integral functions of ^j {u), if Oi and Vi.., be the

periods of '^){u)\ and ^' {u) is a two-valued algebraic function of ^j(t<),

so that B is an algebraic function of <^d{u). Hence also U is an algebraic

function of ^j(u), the pei^iods of ^j(u) being properly chosen.

This inference requires that a, the order of 0, be greater than 1.

Because U has m values for an argument u, the symmetric function %U
has one value for an argument u and it is therefore a uniform function.

But each term of the sum has the same value for u+jii^i+p^^o as for

ti ; and therefore this uniform function is doubly-periodic. The number of

independent doubly-infinite series of values of u for a uniform doublj"-

periodic function is at least two : and therefore there must be at least two

doubly-infinite series of values of zt, so that cr >1. Hence a function, that

possesses an addition-theorem, cannot have only one doubly-infinite series of

values for its argument.

If a be infinite, there is an infinite seiies of values of it of the form

Ux+Pi^i +P2^2', an argument, similar to that in case (a), shews that this is,

in effect, the same as case (c).

It is obvious that cases (ii), (iii) and (iv) of § 152 are now completely

covered : case (v) of § 152 is covered by case (c) now to be discussed.

154. For case (c), we have the series of values ti represented by a number
of series of the form

i/a + 2 m,.o),-,

(•=1

where the quantities co are not linearly equivalent to two quantities Hj and

Ho. The original integer q is infinite.

Then, by §§ 108, 110, it follows that integers vi can be chosen in an

unlimited variety of ways so that the modulus of

is infinitesimal, and therefore in the immecHate vicinity of any point U;^

there is an infinitude of points at which the functicm resumes its value.

Such a function would, as in previous instances, degenerate into a mere

constant, unless each point were an essential singularity (as is not the case)

;

hence the combination of values which gives rise to this case does not occur.
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All the pussibk- cases have been considered : and the truth of Weierstrass's

theorem* that a function, which has an algebraical addition-theorem, is either

an algebraical function of u, or of e " (where to is suitably chosen), or of ^(«/).

where the periods of |fJ('0 are suitably chosen, is established: and it has

incidentally been established— it is. indeed, essential to the derivation of the

theorem—that a function, ivhich has an algebraical addition -theorem, has only

a finite number of lvalues for a given argument.

It is easy to see that the first derivative has only a finite number of values

for a given argument; for the elimination of U between the algebraical

eijuations

G{l,u) = 0, ^j-^l -Hv-=0,^
dl on

leads to an equation in V of the same finite degree as G in U.

Further, it is now easy to see that if the analytical function <f>{u), lohich

possesses an algebraical addition-theorem, be uniform, then it is a rational
iwn

function either of w, or of e"^ , or of p(«) and <^' {u)\ and that any uniform

function, which is transcendental in the sense of § 46 and which possesses an

algebraical addition-theorem, is either a simply-periodic function or a doubly-

periodic function.

The following examples will illustrate some of the inferences in regard to the number
of values of <^ {u-\-v) arising from series of values for « and v.

Ex. 1. Let r=?(^ + ('2(/-|-l)i.

Evidently m, the number of values of U for a value of u, is 4 ; and, tis the rationalised

form of the equation is

the value of p, being the number of values of u for a given value of U, is 2. Thus the

equation in IF should be, by § 151, of degree (4.22= ) 16.

This equation is n {3( H'2- T-'- V''-)-\-\-'2k;]=0,
r=\

where k\ is any one of the eight values of

ir(2ir2-i)i-HC^(2t^2_i)i^.r(2r2-i)^;

when rationalised, the equation is of the 16th degree in \V.

E.r. 2. Let r=cos u.

Evidently m = l ; the values of u for a given value of C are cont^iined in tiie double

• lies u-\-2iTn, —u-\-2nn, for all values of n from — x to -l-ac. The values of u + v are

"-|-27r« +v-|-27rni, that is, u-\-i'-\--1ttp \ — h-\- -Inn -\-i--ir •linn, that is, - ?/ -I-
^'

-I- 27r^ ;

'I -\--lTTit- (•\-2irm, that i.s, u -v->r-lirp ; - u + 2n)) — r+ 'Inm, that is, —ii- r+ 27rp,

* The theorem has been used by Schwarz, Geg. U'erke, t. ii, pp. 2G0—268, iu deterniininis' all

the families of plane isotheMiiic curves which are algebraic curves, an ' i.sotbermic ' curve being

of the form ii = c, where u is a function satisfying the potential-equation

c-H d'-u

dx-i ' dy^~^'

23—2
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so that the number o{ series of values of u+c is four, each series being simply-inrinite.

It might thus 1)6 expected that the equation between U, V, \V would be of degiee

(1.4 = ) 4 in ir ; l)ut it happens that

cos(M4-y)= cos { — u — v\

and so the degree of the equation in W is reduced to half its degree. The equation is

\y2_2WUV+U^+V^-l=0.

Ex. 3. Let U= sn u.

Evidently m = l; and there are two doubly-infinite series of values of v- determined

by a given value of i\ having the form ti+ 2tn(o+ 27n'a)', w — ?< + 2»ia) + 2m'o)'. Hence the

values of i(-\-v are

= u+ v (mod. 2co, 2a)') ; =co — u+ v (mod. 2a), 2a)') ;

= a) + M — y (mod. 2a), 20)') ; = — «— v (mod. 2a), 2a)') ;

four in number. The equation may therefore be expected to be of the fourth degree

in W ; it is

4 (1 _ t'2) (1 _ r2) (1 _ If2)=(2 _ u-'- v-i- ir-i+/(-^r2 r-' w^.

155. But it must not be supposed that any algebraical equation between

U, V, W, which is symmetrical in U and V, is one necessarily implying the

representation of an algebraical addition-theorem. Without entering into a

detailed investigation of the formal characteristics of the equations that are

suitable, a latent test is given by implication in the following theorem, also

due to Weierstrass :

—

If an analytical function possess an algebraical addition-theorem, an

algebraical equation involving the function and its first derivative with regard

to its argument exists ; and the coefficients in this equation do not involve the

argument of the function.

The proposition might easily be derived by assuming the preceding-

proposition, and applying the known results relating to the algebraical

dependence between those functions, the types of which are suited to the

representation of the functions in question, and their derivatives ; we shall,

however, proceed more directly from the equation expressing the algebraical

addition-theorem in the form

G{U, V, W) = 0,

which may be regarded as a rationally irreducible equation.

Differentiating with regard to u, we have

and similarly, with regard to v, we have

from which it follows that

dV dW
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This equation* will, in p^oneral, involve W\ in order to obtain an equation

free from TF, we eliminate \V between

(? = Oan,l ^^,U=^V,

the elimination being possible because both equations are of finite degree :

and thus in any case we have an algebraical equation independent of W and

involving U, U', V, V.

Xot more than one equation can arise by assigning various values to v, a

quantity that is independent of u\ for we should have either inconsistent

e(|uations or simultaneous equations which, being consistent, determine a

limited number of values of IT and U' for all values of u, that is, only a

inimber of constants. Hence there can be only one equation, obtained by

assigning varying values to v ; and this single equation is the algebraical

ecjuation between the function and its first derivative, the coefficients being

independent of the argument of the function.

Xote. A test of suitability of an algebraical equation G = between

three variables U, V, W to represent an addition-theorem is given by the

condition that the elimination of W between

G = and ( - ,^=T' -^-rr
di o v

leads to only a single equation between U and U' for different values of

V and v.

Ex. Consider the equation

(2- U- V- ir)2-4 (1 - U) (1 - n (1 - W) = 0.

The deduced equation involving U' and T" is

(ivw- r- w+U)U'={2Uw- u- ir-h v) r,

The ehmination of W i.s simple. Wc have

(F+6[-l)_(

'{iV-'\)U'-{2U-\)V
l-W= (r+6'-l)(£;'-F')

and 2-r-r ^y_^{I±E:rmL-IlU'-i^-_U)n'"^ 2-(-l-M-2
J2V-\)U'-{W-\)V'

Neglecting 4 (
1'+ £/— 1) = 0, which is an irrelevant equation, and inultiiilying by

(2r-l)?7'-(2r-l) r, we have

i> v-\) jYi - V) u'-{\- U) i"}2=(i

-

u) (1 - y){U'- v) {(2 V- \)U'-{iU- 1) v],

an.l therefore V{U- V) (1 > V) U'2+ U{ V- U) (1 - U) V^ = Q.

• It is permissible to adopt any subsidiary irrational or non-algebraical form as the equivalent

of G = 0, provided no special limitation to the subsidiary form be implicitly adopted. Thus, if W
can be expressed explicitly in terms of V and V, this resoluble (but irrational) equivalent of the

eiiuation often leads rapidly to the equation between f ' and its derivative.
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When the irrelevant factor U- V is neglected, this equation gives

t7'2 _ F'2

Vo^rc)- vii -yy
the equation required : and this, indeed, is the necessary form in which the equation

involving U and U' arises in general, the variables being combined in associate pairs.

Each side is evidently a constant, say 4a^ ; and then we have

Then the value of U is sin^ {au + $), the arbitrary additive constant of integration

being ^3 ; by substitution in the original equation, j3 is easily proved to be zero.

156. Again, if the elimination between

be supposed to be performed by the ordinary algebraical process for finding

the greatest common measure of G and V ^jj— y KTr> regarded as functions

of Tf, the final remainder is the eliminant which, equated to zero, is the

differential equation involving U, V, V, V'\ and the greatest common measure,

equated to zero, gives the simplest equation in virtue of which the equations

G = and T^Yf U' = ^r^v V subsist. It will be of the form
oU o V

f{W, U, V, U', V') = 0.

If the function have only one value for each value of the argument, so that it

is a uniform function, this last equation can give only one value for W; for all

the other magnitudes that occur in the equation are uniform functions of

their respective arguments. Since it is linear in W, the equation can be

expressed in the form
W = E(U, V, U', V),

where J^ denotes a rational function. Hence*:

—

A uniform analytical function
(f)

(u), which possesses an algebraical

addition -theorem, is such that
(f)

{u + v) can he expressed rationally in terms

of (f)(u), (f>'
(u), (f>(v) and,

(f>'
(v).

It need hardly be p(jinted out that this result is not inconsistent with the

fact that the algebraical equation between
(f>

(?/ + v), (n) and cf) (v) does not,

in general, express
<f)

{u + v) as a rational function of
(f)

(u) and </> (v). And it

should be noticed that the rationality of the expression of (u + v) in terms

of ^(w), <^{v), 4>' (i')' <^'(^) is characteristic of functions with an algebraical

addition-theorem. Instances do occur of functions such that
<f>
(u + v) can be

expressed, not rationally, in terms of (u),
(f>

(v), <p' (ti),
(f)'

(v) ; they do not

possess an algebraical addition-theorem. Such an instance is furnished by

^(w); the expression of ^{u + v), given in Ex. 3 of § 131, can be modified so

as to have the form indicated.

* The theorem is due to Weierstrass ; see Schwarz, § 2, (I.e. in note to p. 344).



CHAPTER XIV.

CONNECTIOX OF SURFACES.

157. In proceeding to the discussion of multiform functions, it was

stated (§ 100) that there are two methods of special importance, one of

which is the development of Cauchy's general theory of functions of complex

variables and the other of which is due to Riemann. The former has been

explained in the immediately preceding chapters ; we now pass to the

consideration of Riemann's method. But, before actually entering upon it,

there are some preliminary propositions on the connection of surfaces which

must be established; as they do not find a place in treatises on geometry,

an outline will be given here, though only to that elementary extent which

is necessary for our present purpose.

In the integration of meromorphic functions, it proved to be convenient

to exclude the poles ft-om the range of variation of the variable by means of

infinitesimal closed simple curves, each of which was thereby constituted a

limit of the region : the full boundary of the region was composed of the

aggi'egate of these non-intersecting curves.

Similarly, in dealing with some special cases of multiform functions, it

proved convenient to exclude the branch-points by means of infinitesimal

curves or by loops. And, in the case of the fundamental lemma of § 16,

the region over which integration extended was considered as one which

possibly had several distinct curves as its complete boundary.

These are special examples of a general class of regions, at all points

within the area of which the functions considered are monogenic, finite, and

continuous and, as the case may be, uniform or multiform. But, important

as are the classes of functions which have been considered, it is necessary to

consider wider classes of multiform functions and to obtain the regions which

are appropriate for the representation of the variation of the variable in each

(•a.se. The most conspicuous examples of such new functions are the algebraic

functions, adverted to in §§ 94—99 ; and it is chiefiy in view of their value

and of the value of functitms dependent upon them, as well as of the kind of

surface on which their variable can be simply represented, that we now

proceed to establish some of the topological properties of surfiici's in general.

158. A surface is said to be connected when, from any puint of it to any

other point of it, a continuous line can be drawn without j)assing out of the
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surface. Thus the surface of a circle, that of a plane ring such as arises in

Lambert's Theorem, that of a sphere, that of an anchor-ring, are connected

surfaces. Two non-intersecting spheres, not joined or bound together in

any manner, are not a connected surface but are two different connected

surfaces. It is often necessary to consider surfaces, which are constituted

by an aggregate of several sheets ; in order that the surface may be regarded

as connected, there must be junctions between the sheets.

One of the simplest connected surfaces is such a plane area as is enclosed

and completely bounded by the circumference of a circle. All lines drawn

in it from one internal point to another can be deformed into one another

:

any simple closed line lying entirely within it can be deformed so as to be

evanescent, without in either case passing over the circumference ; and any

simple line from one point of the circumference to another, when regarded

as an impassable barrier, divides the surface into two portions. Such a

surface is called* simply connected.

The kind of connected surface next in point of simplicity is such a plane

area as is enclosed between and is completely bounded by the circumferences

of two concentric circles. All lines in the surface

from one point to another cannot necessarily be

deformed into one another, e.g., the lines z^az and

zjbz; a simple closed line cannot necessarily be

deformed so as to be evanescent without crossing

the boundary, e.g., the line azjbza ; and a simple

line from a point in one part of the boundary

to a point in another and different part of the

boundary, such as a line AB, does not divide the

surface into two portions but, set as an impassable barrier

surface simply connected.

Again, on the surface of an anchor-ring, a closed line can be drawn in

two essentially distinct ways, ahc, ab'c, such that

neither can be deformed so as to be evanescent

or so as to pass continuously into the other.

If ahc be made the only impassable barrier, a

line such as a/37 cannot be deformed so as to be

evanescent ; if ah'c be made the only impassable

barrier, the same holds of a line such as a/SV'.

In order to make the surface simply connected,

two impassable barriers, such as ahc and ah'c,

must be set.

Surfaces, like the flat ring or the anchor-ring,

¥vA. 35.

it makes the

* Sometimes th

Mngend.

term nioiutdelphic is used. The German equivalent is einfarh zusammen-
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are called* inultipli/ connected; the establishment tif l)arriers has made it

possible, in each case, to modify the surface into one which is simply coiiiifcted.

159. It proves to be convenient to arrange surfaces in clas.ses according

to the character of their connection ; and these few illustrations suggest that

the classification may be made to depend, either upon the resolution of the

surface, by the establishment of barriers, into one that is simply connected,

or upon the number of what may be called independent ineducible circuits.

The former mode—that of dependence upon the establishment of barriers

—

will be adopted, thus following Riemannf; but whichever of the two modes
be adopted (and they are not necessarily the only modes), subsequent demands
require that the two be brought into relation with one another.

The most effective way of securing the impassability of a barrier is to

suppose the surface actually cut along the line of the barrier. Such a section

of a surfjice is either a cross-cut or a loop-cut.

If the section be made through the interior of the surface from (»ne point

Fig. 37

of the boundary to another point of the boundary, without intersecting itself

or meeting the boundary save at its extremities, it is called a cross-cutl.

Every part of it, as it is made, is to be regarded as boundary during the

formation of the remainder ; and any cross-cut, once made, is to be regarded

as boundary during the formation of any cross-cut subsequently made.

Illustrations are given in fig. 37.

The definition and explanation imply that the surface has a boundary.

Some surfaces, such as a complete sphere and a complete anchor-ring, do

not po.s.sess a boundary; but, as will be seen later (§§163, 168) from the

discussion of the evanescence of circuits, it is desirable to assign some

boundary in order to avoid merely artificial difficulties as to the numerical

* Sometimes the term pohjiulelphic is used. The German equivalent is mehrfach zummmen-

hiingend.

+ '• GrundlaK'en fiir eine allnemeine Theorie di-r Funetionen einer veriinderlichcn complexen

Grosse." Kiemann's desammi'lte UVrAv, pp. 9—12; " Tlieorie der Abel'schen Funetionen." ib.,

pp. 84-89. When reference to either of tliese memoirs is made, it will be by a citation of the

page or pages in the volume of Riemann's Collected Works.

X This is the equivalent used for the German word Querschnilf, French writers use Sictiou,

and Italian writers use TraxierMile or Titqlio tiusn-ixule.
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expression of the connection. This assignment usualh' is made by taking for

the boundary of a surface, which otherwise has no boundary, an infinitesimal

closed curve, practically a point ; thus in the figure of the anchor-ring (fig. 36)

the point a is taken as a boundary, and each of the two cross-cuts begins and

ends in a.

If the section be made through the interior of the surface from a point

not on the boundary and, without meeting the boundary or crossing itself,

return to the initial point, (so that it has the form of a simple curve lying

Fi- 38.

entirely in the surface), it is called* a loop-cut. Thus a piece can be cut

out of a bounded spherical surface by a loop-cut (fig. 38); but it does

not necessarily give a separate piece when made in the surftxce of an

anchor-ring.

It is evident that both a cross-cut and a loop-cut furnish a double

boundary-edge to the whole aggregate of surface, whether consisting of

two pieces or of only one piece after the section.

Moreover, these sections represent the impassable barriers of the pre-

liminary explanations ; and no specified form was assigned to those barriers.

It is thus possible, within certain limits, to deform a cross-cut or a loop-cut

continuously into a closely contiguous and equivalent position. If, for

instance, two barriers initially coincide over any finite length, one or other

can be slightly deformed so that finally they intersect only in a point ; the

same modification can therefore be made in the sections.

The definitions of simple connection and of multiple connection will nowf
be as follows :

—

A surface is simply connected, if it be resolved into two distinct 'pieces by

every cross-cut; hut if there be any cross-cut, luhich does not resolve it into

distinct pieces, the surface is multiply connected.

160. Some fundamental propositions, relating to the connection of

surfaces, may now be derived.

* This is the equivalent used for the German word Eiickkehrsrhnitt ; French writers use the

word Retrosection.

t Other definitions will be required, if the classification of surfaces be made to depend on

methods other than resolution by sections.
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I. EacJi of the two distinct pieces, into which a sitnjdi/ connected surface S
is resolved by a cross-cut, is itself simply connected.

If either of the pieces, made by a cross-cut ah, be not simply connected,

then some cross-cut cd must be possible which will not resolve that piece

into distinct portions.

If neither c nor d lie on ah, thi-n the obliteration of the cut ah will restore

the original surface S, which now is not resolved by th«.' cut cd into distinct

pieces.

If one of the extremities of cd, say c, lie on ah, then the obliteration of

the portion ch will change the two pieces into a single piece which is the

original surfoce S; and *S' now has a cross-cut acd, which does not resolve

it into distinct pieces.

If both the extremities lie on ah, then the obliteration of that part of ah

which lies between c and d will change the two pieces into one ; this is the

original surface *S', now with a cross-cut acdh, which docs not resolve it into

distinct pieces.

These are all the possible cases should either of the distinct pieces of <S'

not be simply connected; each of them leads to a contradiction of the simple

connection of S ; therefore the hypothesis on which each is based is untenable,

that is, the distinct pieces of S in all the cases are simply connected.

Corollary 1. A simply connected surface is resolved by n cross-cuts into

n -I- 1 distinct pieces, each simply connected ; and an aggregate of m simply

connected surfaces is resolved by n cross-cuts into n -\- m distinct pieces each

simply connected.

Corollary 2. A surface that is resolved into two distinct simply con-

nected pieces by a cross-cut is simply connected before the resolution.

Corollary 3. If a multiply connected surface be resolved into two

different pieces by a cross-cut, both of these jneces cannot he simply connected.

We now come to a theorem* of great importance:

—

II. //' a resolution of a surface by m cross-cuts into n distinct simply

connected pieces he possible, and also a different resolution of the same surface

by fi cross-cuts into v distinct simply connected pieces, then m — n = p, — v.

Let the aggregate of the n pieces be denoted by S and the aggregate of

the V pieces by S : and consider the effect on the original surface of a united

system of )n-\-fi simultaneous cruss-cuts made up of the two systems of the

m and of the fx cross-cuts respectively. The operation of this system can be

carried out in two ways: (i) by effecting the system of fi cross-cuts on S and

* The following proof of this proposition is substantially due to Neumann, p. 157. Another

proof is given by Uiemaiin, pp. 10, 11, and is amplified by Dur^ge, Klemcnte der Theorie dev

I'liiictioneii, pp. 183— 190; and another by Lippich, see Durt-gc, pp. 190— 1'.»7.
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(ii) by effecting the system of m cross-cuts on % : with the same result on the

original surface.

After the explanation of § lo9, we may justifiably assume that the lines

of the two systems of cross-cuts meet only in points, if at all : let S be the

number of points of intersection of these lines. Whenever the direction of a

cross-cut meets a boundary line, the cross-cut terminates ;
and if the direction

continue beyond that boundary line, that produced part must be regarded as

a new cross-cut.

Hence the new system of /x cross-cuts applied to >S' is effectively

equivalent to /i 4- S new cross-cuts. Before these cuts w^ere made, S was

composed of n simply connected pieces ; hence, after they are applied, the

new arrangement of the original surface is made up of n + (p, + 8) simply

connected pieces.

Similarly, the new system of m cross-cuts applied to 2 will give an

arrangement of the original surface made up of v + (m + 8) simply connected

pieces. These two arrangements are the same : and therefore

n •{-
fjb + S = V + m + 8,

so that m — n = fx — v.

It thus appears that, if by any system of q cross-cuts a multiply

connected surface be resolved into a number p of pieces distinct from one

another and all simj)ly connected, the integer q — j^ is independent of the

particular system of the cross-cuts and of their configuration. The integer

q—p is therefore essentially associated with the character of the multiple

connection of the surface : and its invariance for a given surface enables us

to arrange surfaces according to the value of the integer.

No classification among the multiply connected surfaces has yet been

made : they have merely been defined as surfaces in which cross-cuts can

be made that do not resolve the surface into distinct pieces.

It is natural to arrange them in classes according to the number of cross-

cuts which are necessary to resolve the surface into one of simple connection

or a number of pieces each of simple connection.

For a simply connected surface, no such cross-cut is necessary : then

q = 0, p^\, and in general q — p = — \. We shall say that the connectivity*

is unity. Examples are furnished by the area of a plane circle, and by a

spherical surface with one holei".

A surface is called doubly-connected when, by one appropriate cross-cut,

the surface is changed into a single surfjice of simple connection : then q = \,

p=z\ for this particular resolution, and therefore in general, 7 — p = 0. We

* Sometimes order of connection, sometimes adelphic order; the German word, that is u.sed,

is Grundzahl.

t The hole is made to give the surface a boundary (§ 165).
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shall say that the conm-ctivity is 2. Examples are furnished hy a plane ring

and l)y a spherical surface with two holes.

A surface is called triply-connected when, by two a])propriate cross-cuts,

the surface is changed into a single surface of simple connection : then q = -,

p = 1 for this particular resolution and therefore, in general, (j — p = \. We
shall say that the connectivity is 3. Examples are furnished by the surface

of an anchor-ring with one hole in it*, and by the surfacesf in figure 39, the

surface in (2) not being in one plane but one part beneath another.

Fig. 39.

And, in general, a surface will be said to be iV-ply connected or its

connectivity will be denoted by iV, if, by N — 1 appropriate cross-cuts, it can

be changed into a single surface that is simply connected :|:. For this

particular resolution q = j)[—l, p = l: and therefore in general

q-p = X-2,
'"• X = q-p+2.

Let a cross-cut I be drawn in a surface of connectivity N. There are

two cases to be considered, according as it does not or does divide the surface

into .distinct pieces.

First, let the surface be only one piece after / is drawn : and let its

connectivity then be N'. If in the original surface q cross-cuts (one of

which can, after the preceding proposition, be taken to be /) be (Irawn

dividing the surface into p simply connected pieces, then

N = q-p + 2.

To obtain these p simply connected pieces from the surface after the cross-cut

/, it is evidently sufficient to make the q — I original cross-cuts other than /

;

that is, the modified surface is such that by </ — 1 cross-cuts it is resolved into

/) simply connected pieces,, and therefore

N'=(q-l)-p + '2.

Hence N' = JV— 1, or the connectivity of the surftice is dimini.shed by unity.

* The hole is nuide to Rive the surface a bouiulary (S ItJ^^I.

+ Riemann, p. S'.l.

X A few writers estimate the connectivity of sncli a surface as N -1, the Bame as the number
of crosa-cuts which can chan<j:e it into a single surface of the simplest rank of connectivity: the

estimate in the text seems preferable.



366 COXXECTIVITV AS AFFECTED BY [160.

Secondly, let the surface be two pieces after I is drawn, of connectivities

i\'i and xYo respectively. Let the appropriate N^ — 1 cross-cuts in the former,

and the appropriate N.2 - 1 in the latter, be drawn so as to make each

a simply connected piece. Then, together, there are two simply connected

pieces.

To obtain these two pieces from the original surface, it will suffice to

make in it the cross-cut I, the iVj — 1 cross-cuts, and the N^—^ cross-cuts,

that is, 1 -I- (JVi -l) + {No- I) or iVj -f- N.. — 1 cross-cuts in all. Since these,

when made in the surface of connectivity N, give two pieces, we have

and therefore

If one of the pieces be simply connected, the connectivity of the other is iV

;

so that, if a simply connected piece of surface be cut off a multiply connected

surface, the connectivity of the remainder is unchanged. Hence :

—

III. //' a cross-cut he made in a surface of connectivity N and if it do

not divide it into separate pieces, the connectivity of the modified surface is

N — 1 ; but if it divide the surface into two separate pieces of connectivities N^

and N^, then N^ + N. = N+l.

Fig. 40.

Illustrations are shewn, in fig. 40, of the effect of cross-cuts on the two

surfaces in fig. 39.

IV. In the same way it may be proved that, if s cross-cuts be made in a

surface of connectivity N and divide it into r + l separate pieces {where r^s)

of connectivities ^\, N.^, ... , iY^+i respectively, then

N, + N,+ ... + N,+, = N + 2r - s,

a more general result including both of the foregoing cases.

Thus far we have been considering only cross-cuts : it is now necessary

to consider loop-cuts, so far as they affect the connectivity of a surface in

which they are made.
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A loop-cut is changed into a cross-cut, if fioiii .4 any point of it a cross-cut

1)0 made to any point C in a boundary-curve of

the original surface, for CAbdA (fig. 41) is then

I'vidently a cross-cut of the original surface ; and

CA is a cross-cut of the surface, which is the modi-

fication of the original surface after the loop-cut

has been made. Since, by definition, a loop-cut

does not meet the boundary, the cross-cut CA does

not divide the modified surface into distinct pieces;

hence, according as the etfect of the loop-cut is,

or is not, that of making distinct pieces, so will

the et!ect of the whole cross-cut be, or not be, that of making distinct pieces.

161. Let a loop-cut be drawn in a surface of connectivity N; as before

for a cross-cut, there are two cases for consideration, according as the loop-cut

does or does not divide the surface into distinct pieces.

First, let it divide the surface into two distinct pieces, say of connectivities

N^ and N. respectively. Change the loop-cut into a cross-cut of the original

surface by drawing a cross-cut in either of the pieces, say the second, from

a point in the course of the loop-cut to some point of the original boundary.

This cross-cut, as a section of that piece, does not divide it into distinct

pieces: and therefore the connectivity is now iV.^' (= iV._> — 1). The effect of

the M'hole section, which is a single cross-cut, of the original surface is to

divide it into two pieces, the connectivities of which are iV, and iV/ : hence,

bv § 160, III.,

.V, + N.: = N + 1,

and therefore iV, + N., = N -H 2.

If the piece cut out be simply connected, say N^ = \, then the connectivity

of the remainder is iV -H 1. But such a removal of a simply connected piece

by a loop-cut is the same as making a hole in a continuous part of the

svn-ffice : and therefore the ejfect of making a simple hole in a contintious part

of a surface is to increase by unity the connectivity of the surface.

If the piece cut out be doubly-connected, say N^ = 2, then the connect-

ivity of the remainder is N, the same as the connectivity of the original

surface. Such a portion would be obtained by cutting out a piece with

a hole in it which, so far as concerns the original surface, would be the same

as merely enlarging the hole—an operation that naturally would not affect

the connectivity.

Secondly, let the lo(tp-cut not divide the surface into two distinct pieces:

and let iV be the connectivity of the modified surface. In this modified

surface make a cross-cut k from any point of the loop-cut to a point of the

boundary : this does not divide it into distinct pieces and therefore the

connectivity after this la.st modification is iV— 1. Hut the surface thus
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finally modified is derived from the original surface by the single cross-cut,

constituted by the combination of k with the loop-cut ; this single cross-cut

does not divide the surface into distinct pieces, and therefore the connectivity

after the modification is N — 1. Hence

N'-l = N-l,

that is, N' = N, or the connectivity of a surface is not affected hy a loop-cut

which does not divide the surface into distinct pieces.

Both of these results are included in the following theorem :

—

V. If after any number of loop-cuts made in a surface of connectivity N,

there be r-\- 1 distinct pieces of surface, of connectivities N^, JSf^, •, iV'^.+i, then

N,-\-N,-h... + N,+, = X-\-2r.

Let the number of loop-cuts be s. Each of them can be changed into a

cross-cut of the original surface, by drawing in some one of the pieces, as

may be convenient, a cross-cut from a point of the loop-cut to a point of

a boundary : this new cross-cut does not divide the piece in which it is drawn

into distinct pieces. If k such cross-cuts (where k may be zero) be drawn in

the piece of connectivity iV"„i, the connectivity becomes iV„,', where

NJ^N,,-k-
r+l

hence

We now have s cross-cuts dividing the surftice of connectivity N into r+l
distinct pieces, of connectivities N-y', NJ, ..., JV,.', iY,+/; and therefore, by

§ 160, IV.,

iV/ -I- . . . -f N; -f iV,+.' = .V + -Ir - s,

so that Ni -I- iV^o -I- . . . + Nr+, = ^^ 4- 2r.

This result could have been obtained also by combination and repetition

of the two results obtained for a single loop-cut.

Thus a spherical surface with one hole in it is simply connected : when

n—l other different holes* are made in it, the edges of the holes being

outside one another, the connectivity of the surface is increased by n — l,

that is, it becomes n. Hence a spherical surface with n holes in it is n-ply

connected.

E.V. Two equal anchor-rings, which are horizontal and have their centres in the same

vertical line, are connected together by three vertical right circular cylinders. Determine

tlic connectivity of the solid so formed. (Math. Trip., Part II., 1893.)

162. Occasionally, it is necessary to consider the effect of a slit made in

the surface.

* The.se are holes in the surface, not holes bored through the volume of the sphere ; one of

the latter would give two holes in the surface.

•+1 r+l
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It' the slit havo nt-ithor of its extremities oii a iM.undarv (and tlieret'ore no

])oint on a boundary), it can be regarded as the limiting form of a loop-cut

which makes a hole in the surface. Such a slit therffcn- (ij 101 ) increases the

connectivity by unity.

If the slit have one extremity (but no other point ) on a b-iMndaiy, it can

be regarded as the limiting form of across-cut, which returns

<»n itself as in the figure, and cuts otl' a single simply con- /
nected piece. Such a slit therefore (§ 160, III.) leaves the

[ ^..^^^

connectivity unaltered. ^
^^

—

'

If the slit have both extremities on boundaries, it ceases

to be merely a slit : it is a cross-cut the effect of which on
'^'

the connectivity has been obtained. We do not regard such sections as slits.

163. In the preceding investigations relative to cross-cuts and loop-cuts,

reference has continually been made to the boundary of the surface con-

sidered.

The honndarij of a surfjxce consists of a line returning to itself, or of a

system of lines each returning to itself. Each part of such a boundary-line

as it is drawn is considered a part of the boundary, and thus a botmdary-line

cannot cut itself and pass beyond i4,s earlier position, for a boundary cannot

be crossed : each boundary-line must therefore be a simple curve*.

Most surfaces have boundaries : an exception arises in the case of closed

surfaces whatever be their connectivity. It was stated (§ 159) that a

boundary is assigned to such a surface by drawing an infinitesimal simple

curve in it or, what is the same thing, by making a small hole. The

advantage of this can be seen from the simple example of a spherical

surface.

When a small hole is made in any surface the connectivity is increased

by unity: the connectivity of the spherical surface after the hole is made

is unity, and therefore the connectivity of the complete spherical surface

must be taken to be zero.

The mere fact that the connectivity is less than unity, being that of the

simplest connected surfaces with which we have to deal,

is not in itself of importance. But let us return for a /^CT^"^^^^^
moment to the suggested method of determining the / c \
connectivity by means of the evanescence of circuits /.. \

without crossing the boundary. When the surface is r -I
the complete spherical surface (fig. 48), there are two \ /

essentially distinct ways of making a circuit C evan- x^^ ^
y^

cscent, first, by makintf it collapse into the point a,

secondly, by making it expand over the ecjuatijr and

* Also a line not returning to itself may be a boundary; it can be regarded as the limit of a

simple curve when the area becomes infinitesimal.

F. F. 24
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then collapse into the point b. One of the two is superfluous : it introduces

an element of doubt as to the mode of evanescence unless that mode be

specified—a specification which in itself is tantamount to an assignment of

boundary. And in the case of multiply connected surfaces the absence of

boundary, as above, leads to an artificial reduction of the connectivity by

unity, arising not from the greater simplicity of the surface but from the

possibility of carrying out in two ways the operation of reducing any circuit

to given circuits, which is most effective when only one way is permissible.

We shall therefore assume a boundary assigned to such closed surfaces as in

the first instance are destitute of boundary.

164. The relations between the number of boundaries and the connect-

ivity of a surface are given by the following propositions.

I. The boundary of a simply connected surface consists of a single line.

When a boundary consists of separate lines, then a cross-cut can be made

fi'om a point of one to a point of another. By proceeding from

F, a point on one side of the cross-cut, along the boundary

ac.c'a' we can by a line lying wholly in the surface reach a

point Q on the other side of the cross-cut : hence the parts of

the surface on opposite sides of the cross-cut are connected.

The surface is therefore not resolved into distinct pieces by the

cross-cut.

A simply connected surface is resolved into distinct pieces pj„ ^^

by each cross-cut made in it : such a cross-cut as the foregoing

is therefore not possible, that is, there are not sepai-ate lines which make up

its boundary. It has a boundary : the boundary therefore consists of a single

line.

II. A cross-cut either increases by unity or diminishes by unity the number

of distinct boundary-lines of a multiply connected surface.

A cross-cut is made in one of three ways : either from a point (/ of one

boundary-line ^ to a point b of another boundary-line B ; or from a point a

of a boundary-line to another point a of the same boundary-line ; or from a

point of a boundary-line to a point in the cut itself

If made in the first way, a combination of one edge of the cut, the

remainder of the original boundary A, the other edge of the cut and the

remainder of the original boundary B taken in succession, form a single

piece of boundary ; this replaces the two boundary-lines A and B which

existed distinct from one another before the cross-cut was made. Hence the

number of lines is diminished by unity. An example is furnished by a plane

ring (ii., fig. 37, p. 361).

If made in the second way, the combination of one edge of the cut with

the piece of the boundary on one side of it makes one boundary-line, and the
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combination of tht- other edge of the cut with the other pircf of tlie boundary

makes another boundary-line. Two boundary-lines, after the cut is made,

replace a single boundary-line, which existed before it was made : hence the

number of lines is increased by unity. Examples are furnished by the cut

surfaces in fig. M), p. 366.

If made in the third way, the cross-cut may be considered as constituted

by a loop-cut and a cut joining the loop-cut to the boundary. The boundary-

lines may now be considered as constituted (fig. 41, p. 367) by the closed

curve AlW and the closed boundary abda'c'e ...eca; that is, there are now

two boundary-lines instead of the single boundary-line ce...e'c'c in the uncut

surface. Hence the number of distinct boundary-lines is increased by unity.

Corollary. A loop-cut increjues the number of distinct houndanj-lines

by two.

This result follows at once from the last discussion.

III. The number of distinct boundary-lines of a surface of connectivity N
is y — 2k, where k is a positive integer that may be zero.

Let ni be the number of distinct boundary-lines ; and let iY — 1 appro-

priate cross-cuts be drawn, changing the surface into a simply connected

surface. Each of these cross-cuts increases by unity or diminishes by unity

the number of boundary-lines; let these units of increase or of decrease be

denoted by ei, e.,, ... , f^v'-i- Each of the quantities e is ± 1 ; let k of them be

positive, and N - \ — k negative. The total number of boundary-lines is

therefore

rn + /c - (X - 1 - k).

The surface now is a single simply connected surface, and there is therefore

only one boundary-line; hence

m + k-(N - 1 - k)= I,

so that m = iV — 2^

;

and evidently k is an integer that may be zero.

Corollary 1. A closed surface with a single boundary-line* is of odd

' niinectirity.

For example, the surface of an anchor-ring, when bounded, is of con-

nectivity 3 ; the surface, obtained by boring two holes through the volume

of a solid sphere, is, when bounded, of connectivity 5.

If the connectivity of a closed surface with a single boundary be -/> + 1.

the surfjice is often saidf to be of genus p (§ 178, p. 895).

' See § 1.59.

t Sometimes class. The German word is OencliU'cht ; French writers use the word yenre, and

Italians genere.

24—2
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Corollary 2. If the number of distinct houndari/-li)ies of a surface of

connectivity X he N, any loop-cut divides the surface into tiuo distinct pieces.

After the loop-cut is made, the number of distinct boundary-lines is

iV+ 2; the connectivity of the whole of the cut surface is therefore not less

than iV + 2. It has been proved that a loop-cut, which does not divide the

surface into distinct pieces, does not affect the connectivity ; hence as the

connectivity has been increased, the loop-cut must divide the surface into

two distinct pieces. It is easy, by the result of § 161, to see that, after the

loop-cut is made, the sum of connectivities of the two pieces is N-\-1, so

that the connectivity of the whole of the cut surface is equal to iV -I- 2.

/ Note. Throughout these propositions, a tacit assumption has been made,

which is important for this particular proposition when the surface is the

means of representing the variable. The assumption is that the surface is

bifacial and not unifacial; it has existed implicitly throughout all the

geometrical representations of variability : it found explicit expression in

§ 4 when the plane was brought into relation with the sphere : and a cut

in a surface has been counted a single cut, occumng on one side, though it

would have to be counted as two cuts, one on each side, were the surface

unifacial.

The propositions are not necessarily valid, when applied to unifacial

surfaces. Consider a surface made out of a long rectangular slip of paper,

which is twisted once (or any odd number of times) and then has its ends

fastened together. This surface is of double connectivity, because one

section can be made across it which does not divide it into separate pieces

;

it has only a single boundary-line, so that Prop. III. just proved does not

apply. The surface is unifacial ; and it is possible, without meeting the

boundary, to pass continuously in the surface from a point P to another

point Q which could be reached merely by passing through the material

at P.

We therefore do not retain unifacial surfaces for consideration.

165. The following proposition, substantially due to Lhuilier*, may be

taken in illustration of the general theory.

If a closed surface of connectivity 2iV 4- 1 (or of genus N) be divided by

circuits into any number of simply connected portions, each in the form of a

curvilinear polygon, and if F be the number of polygons, E be the number of
edges and S the number vf angular points, then

2N = 2 + E - F - S.

Let the edges E be arranged in systems, a system being such that any

line in it can be reached by passage along some other line or lines of the

* Gergonne, Ann. de Math., t. iii, (1813), pp. 181— 18(); see also Mobius, Ges. Werke, t. ii,

p. 468. A circuit is defined in § 166.
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system ; let k be the luiiulH'r of such systems*. To resolve the surthee into a

number of" simply connected pieces composed of the /^polygons, the cross-cuts

will be made along the edges ; and therefore, unless a boundary be assigned

to the surface in each system of lines, the first cut for an\' system will be

a loop-cut. We therefore take k points, one in each system as a boundary :

the first will be taken as the natural boundary of the surface, and tin-

remaining ^— 1, being the limiting forms of ^ — 1 infinitesimal loop-cuts,

increase the connectivity of the surface by k— 1, that is, the connectivity now

is2.V-t-/.-.

The result of the cross-cuts is to leave i^ simply connected pieces : hence Q,

the luunber of cross-cuts, is given by

Q=2N+h+F-±
At every angular point on the uncut surface, three i)V more polygons are

contiguous. Let S,„ be the number of angular points, where in polygons are

contiguous : then

s=s, + s, + s, + ...

Again, the number of edges meeting at each of the S3 points is three, at

each of the S^ points is four, at each of the *% points is five, and so on ; hence,

in taking the sum oSs + 4iS^+ 08^ + ..., each edge has been counted twice,

once for each extremity. Therefore

'2E=-iS,4-4>S, + oS, + ...

Consider the composition of the exti-emities of the cross-cuts ; the number

of the extremities is 2Q, twice the number of cross-cuts.

Each of the k points furnishes two extremities ; for each such point is

a boundary on which the initial cross-cut for each of the systems must begin

and must end. These points therefore furnish 2k extremities.

The remaining extremities occur in connection with the angular points.

In making a cut, the direction passes from a boundary along an edge, past

the point along another edge and so on, until a boundary is reached ; so that

on the first occasion when a cross-cut passes through a point, it is made along

two of the edges meeting at the point. Every other cn)ss-cut passing through

that point must begin or end there, so that each of the S^ points will furnish

one extremity (corresponding to the remaining one cross-cut through the

point), each of the S^ points will furnish two extremities (corresponding to

the remaining two cross-cuts through the point), and so on. The total

number of extremities thus provided is

S, + '2S, + iiSr,+ ...

Hence 2Q = 2k -{ S, + 2S, + 3,S', + ...

= 2k-\-2li:-2S,

* The value of A- is 1 for tlie proposition and is greater than 1 for the Corollar>-.
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or Q = k + E~S,

which, combined with Q = 2N + k + F- 2,

leads to the relation 2N=2 + E-F-S.

The simplest case is that of a sphere, when Euler's relation F+ 8= E +2
is obtained. The case next in simplicity is that of an anchor-ring, for which

the relation is F+S=E.

Corollary. If the result of making the cross-cuts along the various edges

he to give the F polygons, not simply connected areas hut areas of connectivities

iVi+1, iVo+1, ..., iVf + 1 respectively, then the connectivity of the original

surface is given hy

2N=2 + E-F-S+ S iV,.

166. The method of determining the connectivity of a surface by means

of a system of cross-cuts, which resolve it into one or more simply connected

pieces, will now be brought into relation with the other method, suggested

in § 159, of determining the connectivity by means of irreducible circuits.

A closed line drawn on the surface is called a circuit.

A circuit, which can be reduced to a point by continuous deformation

without crossing the boundary, is called reducible ; a circuit, which cannot be

so reduced, is called irt^educible.

An irreducible circuit is either (i) simple, when it cannot without crossing

the boundary be deformed continuously into repetitions of one or more

circuits ; or (ii) multiple, when it can without crossing the boundary be

deformed continuously into repetitions of a single circuit ; or (iii) compound,

when it can without crossing the boundary be deformed continuously into

combinations of different circuits, that may be simple or multiple. The

distinction between simple circuits and compound circuits, that involve no

multiple circuits in their combination, depends upon conventions adopted for

each particular case.

A circuit is said to be reconcileable with the system of circuits into a

combination of which it can be continuously deformed.

If a system of circuits be reconcileable with a reducible circuit, the

system is said to be reducible.

Let a simple circuit be denoted by a single letter, say, A, B, C, .... A
multiple circuit, composed of n repetitions of a simple circuit A, can then be

denoted by A". A compound circuit, composed of a simple circuit A followed

by another simple circuit B, can be denoted by ^2^: the order of the symbols

being of importance. As circuits thus have their symbols associated in the

manner of (non-commutative algebraical) factors, the symbol 1 will represent
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a reducible circuit; for a circuit causing no change must be represented by

a factor causing no change.

There are two directions, one positive and the other negative, in which

a circuit can be described. Let it be described first in the positive direction

and afterwards in the negative direction : the circuit, compounded of the

two descriptions, is easily seen to be continuously deformable to a point,

and it therefore i^ reducible. Similarly, if the circuit is described first in

the negative direction and afterwards in the positive direction, the compound

circuit thus obtained is reducible. Accordingly, if a simple circuit described

positively be represented by A, the same circuit described negatively can be

represented by A~\ the symbols of the circuits obeying the associative law.

A compound circuit, reconcileable with a system of simple irreducible

circuits A, B, C, ..., would be represented by A^B^A^'B^' ... C'yA'^" .... where

o, /3, 'x, /3', ..., 7, a" are integers positive or negative.

In order to estimate circuits on a multiply connected surftxce, it is

sufficient to know a system of irreducible simple circuits. Such a system is

naturally to be considered complete when every other circuit on the surface

is reconcileable with the system. It also may be supposed to contain the

smallest possible number of simple circuits ; for any one, which is reconcile-

able with the rest, can be omitted without affecting the completeness of the

system.

167. Such a system is indicated by the following theorems :

—

I. No irreducible simple circuit can he drawn on a simply connected

surface *.

If possible, let an irreducible circuit C be drawn in a simply connected

surface with a boundary B. Make a loop-cut along C, and change it into

a cross-cut by making a cross-cut A from some point of C to a point of B
;

this cross-cut divides the surface into two simply connected pieces, one of

which is bounded by B, the tw^o edges of ^4, and one edge of the cut along C,

and the other of which is bounded entirely by the cut along C.

The latter surface is sinallei- than the original surface; it is simply

connected and has a single boundary. If an irreducible simple circuit can

be drawn on it, we proceed as before, and again obtain a still smaller simply

connected surface. In this way, we ultimately obtain an infinitesimal

element; for every cut divides the surface, in which it is made, into

distinct pieces. Irreducible circuits cannot be drawn in this element; and

therefore its boundary is reducible. This boundary is a circuit in a larger

portion of the surface: the circuit is reducible .so that, in that larger portion,

no irreducible circuit is p»jssible and therefore its boundary is reducible.

This boundary is a circuit in a still larger portion, and the circuit is

* All surfaces coiisidtred are supposed to be bounded.
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reducible : so that in this still larger portion no irreducible circuit is possible

and once more the boundary is reducible.

Proceeding in this way, we find that no irreducible simple circuit is

possible in the original surface.

Corollary. No irreducible circuit can be drawn on a simply connected

surface.

II. A complete system of irreducible simple circuits for a surface of

connectivity N contains N — \ simple circuits, so that every other circuit on

the surface is reconcileable with that system.

Let the surface be resolved by cross-cuts into a single simply connected

surface: iV^— 1 cross-cuts will be necessary. Let CD be

any one of them : and let a and b be two points on the

opposite edges of the cross-cut. Then since the surface is

simply connected, a line can be drawn in the surfiice from

a to 6 without passing out of the surface or without \

meeting a part of the boundary, that is, without meeting V
any other cross-cut. The cross-cut CD ends either in Fig. 45.

another cross-cut or in a boundary ; the line ae ...fb

surrounds that other cross-cut or that boundary as the case may be : hence,

if the cut CD be obliterated, the line ae . . .fba is irreducible on the surface in

which the other N' —2 cross-cuts are made. But it meets none of thos^ cross-

cuts ; hence, when they are all obliterated so as to restore the unresolved

surface of connectivity N, it is an irreducible circuit. It is evidently not

a repeated circuit ; hence it is an irreducible simple circuit. Hence the

line of an irreducible simple circuit on an unresolved surface is given by

a line passing from a point on one edge of a cross-cut in the resolved surface

to a point on the opposite edge.

Since there are N —1 cross-cuts, it follows that iV — 1 irreducible simple

circuits can thus be obtained : one being derived in the foregoing manner

from each of the cross-cuts, which are necessary to render the surface simply

connected. It is easy to see that each of the irreducible circuits on an

unresolved surface is, by the cross-cuts, rendered impossible as a circuit on

the resolved surface.

But every other irreducible circuit C is reconcileable with the A^ — 1

circuits, thus obtained. If there be one not reconcileable with these N — I

circuits, then, when all the cross-cuts are made, the circuit C is not rendered

impossible, if it be not reconcileable with those which are rendered impossible

by the cross-cuts : that is, there is on the resolved surface an irreducible

circuit. But the resolved surface is simply connected, and therefore no

irreducible circuit can be drawn on it: hence the hypothesis as to C, which

leads to this result, is not tenable.
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Thus every other circuit is reconcileable with the s^-steni of N — 1 ciicuits :

and therefore the system is complete*.

This method of derivation of the circuits at once indicates how iiu- a

system is arbitrary. Each system of cross-cuts leads to a complete system of

irreducible simple circuits, and vice rersa ; as the one system is not unique,

so the other s^'stem is not unique.

168. It follows that the number of simple irreducible circuits in uny

complete system must be the same for the same surface: this number is N — 1,

where N is the connectivity of the surface. Let ^i, A.,, ..., -i^ v-i '• ^\> ^K, •-,

Bs-i • be two distinct complete systems ; then we have

where Ilg means the symbolic product representing that circuit conipotiiidi d

of tht' system A^, ..., ^4 v_i wqth w^hich Bg is reconcileable; and

A, = U;{B,B._...B^r_,)

with a similar significance for IT/.

Further any circuit, that is reconcileable witli one complete system, is

reconcileable with any other complete system. For if X denote a circuit

reconcileable with ^i, Ao, ..., ^y_i, we have

X = Yl{A,A....A^_,):

whence, taking account of the reconcileability of each circuit A with the

complete system B^, Bo, ..., -Bjv'-i. we have

x = n(n/n/...nv-i)

= n"(jB,i?,...5v-i),

thus proving the statement.

For the general question, Jordan's memoir, " Des contours traces sur les surftice-s,"

Liouville, 2">« Ser., t. xi, (1866), pp. 110—130, may be consulted.

E.V. 1. On a doubly connected surface, one irreducible simple circuit can be drawn.

It is easily obt<iined by first re.solving the surface into one that is simply connected

—

Fig. 46, (i).

* If the number of indepciuleut irreducible simple circuits be adopted iis a basis for the

definition of the connectivity of a surface, the result of the proposition would be taken as

the definition : and the resolution of the surface into one, which is simply connected, would

then be obtained by developiuR tlie preceding theory in the reverse order.
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a single cross-cut CD is effective for this purpose—and then by drawing a curve aeh in the

surface from one edge of the cross-cut to the other. All other irreducible circuits on the

unresolved surface are reconcileable with the circuit aeha.

Ex. ± On a triply connected surface, two independent irreducible circuits can be

drawn. Thus in the figure Cj and C2 will form a complete system. The circuits C3

^//w/M

Fig. 46, (ii).

and Ci are also irreducible : they can evidently be deformed into Cj and 62 and reducible

circuits by continuous deformation : in the algebraical notation adopted, we have

C\=CC i'i^G^a

But C3 and C\ are not simple circuits : hence they are not suited for the construction

of a complete system.

Ex. 3. Another example of a triply connected surface is given in fig. 47. Two
irreducible simple circuits are Cj and Co. Another irreducible circuit is f'5 ; this

Fig. 47.

can be reconciled with Cj and C, by drawing the point a into coincidence with the

intersection of Cx and f'2, and the point <• into coincidence with the snme point.

Ex. 4. As a last example, consider the surface of a solid sphere with n holes bored

through it. The connectivity is 2n + \ : hence 2u independent irreducible simple circuits

can be drawn on the surface. The simplest complete system is obtained by taking 2n
curves : made up of a set of 11, each round one hole, and another .set of n, each through

one hole.
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A resolution of this surface is given by taking cross-cuts, one round eacli liole making
the circuits through the holes no longer possible) and one through eacli hole anaking the

ciivuits round the holes no longer possible).

Fig. 48.

The simplest case is that for which « = 1 : the surface is equivalent to the anchor-ring.

169. Surfaces are at present being considered in view of their use as a

means of representing the vahie of a complex variable. The foregoing inves-

tigations imply that surfaces can be classed according to their connectivity

;

and thus, having regard to their designed use, the question arises as to

whether all surfaces of the same connectivity are equivalent to one another,

so as to be transformable into one another.

Moreover, a surface can be physically deformed and still remain suitable fur

repre.sentation of the variable, provided certain conditions are satisfied. We
thus consider geometrical transformation as well as physical deformation ; but

we are dealing only with the general results and not with the mathematical

relations of deformed inextensible surfaces, which are discussed in treatises

on Differential Geometry*.

It is evident that continuity is necessary for both : discontinuity would

imply discontinuity in the representation of the variable. Points that are

contiguous (that is, separated only by small distances measured in the surface)

must remain contiguous f : and one point in the unchanged surface must

correspond to only one point in the changed surface. Hence in the continuous

deformation of a surface there may be stretching and there may he bending

;

but there must be no tearing and there must be no joining.

For instance, a single untwisted ribbon, if cut, conies to be simply connected. If a

twist through 180° be then given to one end and that end be then joined to the other,

we shall have a once-twisted ribbon, which is a surface with only one face and only one

edge ; it cannot be looked upon as an equivalent of the former surface.

* See Darboux's TU4orie generale des surfaces. Books vii and viii, for tlie fullest discussion.

Some account is given in Chapter x of my Lectures on the differential geometry of cunu-s and

sitrfdces.

\ Distances between points must be measured along the surface, not throiigli space; the

distance between two points is a length wliicb one point would traverse before reaching the

position of the other, the motion of the point being restricted to take place in the surface.

Exanipka will arise later, in Riemann's surfaces, in which points that are contiguous in space

are stpiirattd by finite distances on the surface.
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A spherical surface with a single hole can have the hole stretched and the surface

flattened, so as to be the same as a bounded portion of a plane : the two surfaces are

equivalent to one another. Again, in the spherical surface, let a large indentation be

made : let both the outer and the inner surfaces be made spherical ; and let the mouth of

the indentation be contracted into the form of a long, narrow hole along a part of a great

circle. When each point of the inner surface is geometrically moved so that it occupies

the position of its reflexion in the diametral plane of the hole, the final form* of the

whole surface is that of a two-.sheeted surface with a junction along a line : it is a

spherical winding- surfiice, and is equivalent to the simply connected spherical surface.

170. It is sufficient, for the purpose of representation, that the two

surfaces should have a point-to-point transformation : it is not necessary

that physical deformation, without tears or joins, should be actually possible.

Thus a ribbon with an even number of twists would be as effective as a

limited portion of a cylinder, or (what is the same thing) an untwisted

ribbon : but it is not possible to deform the one into the other physically f.

It is easy to see that either deformation or transformation of the kind

considered will change a bifacial surface into a bifacial surface ; that it ivill

not alter the connectivity, for it will not change irreducible circuits into

reducible circuits, and the number of independent irreducible circuits deter-

mines the connectivity : and that it will not alter tJie number of boundary

curves, for a boundary will be changed into a boundary. These are necessary

relations between the two forms of the surface : it is not difficult to see that

they are sufficient for correspondence. For if, on each of two bifacial surfaces

with the same number of boundaries and of the same connectivity, a complete

system of simple irreducible circuits be drawn, then, when the members of the

systems are made to correspond in pairs, the full transformation can be effected

by continuous deformation of those corresponding irreducible circuits. It

therefore follows that :

—

The necessary and sufficient conditions, that two bifacial surfaces may be

equivalent to one another for the representation of a variable, are that the two

surfaces should be of the same connectivity and should hare the same number

of boundaries.

As already indicated, this equivalence is a geometrical equivalence

:

deformation may be (but is not of necessity) physically possible.

Similarly, the presence of one or of several knots in a surface makes no

essential difference in the use of the surface for representing a variable.

Thus a long cylindrical surface is changed into an anchor-ring when its ends

are joined together; but the changed surface would be equally effective

for purposes of representation if a knot were tied in the cylindrical surface

before the ends are joined.

* Clifford, Coll. Math. I'upcrx, p. 250.

+ The difference between the two cases is that, in physical deformation, the surfaces are the

surfaces of continuous. matter and are impenetrable; while, in geometrical transformation, the

surfaces may be regarded as penetrable without interference with the continuity.

I
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But it need hanll}^ be pointed out that though surfaces, thus twisted oi-

knotted, are equivalent for the purpose indicated, they are not equivalent for

all topological enumerations.

Seeing that bifacial surfaces, with the same connectivity and the same

number of boundaries, are equivalent to one another, it is natural to adopt,

as the surface of reference, some simple surface with those characteristics
;

thus for a surface of connectivity 2p + 1 with a single boundary, the surface

of a solid sphere, bounded by a point and pierced through with p holes, could

be adopted.

Klein calls* such a surface of reference a Noi-mal Surface.

It has been «een that a bounded spherical surface and a bounded simply connected

part of a plane are equivalent—they are, moreover, physically deformable into one

another.

An untwisted closed ribbon is equivalent to a bounded piece of a plane with one hole

in it—they are deformable into one another : but if the ribbon, previous to being closed,

have undergone an even number of twists each through 180°, they are still equivalent

but are not ph^^sically deformable into one another. Each of the bifacial surfaces is

doubly connected (for a single cross-cut renders each simply connected) and each of them
has two boundaries. If however the ribbon, previous to being clcsed, have undergone

an odd number of twists each through 180°, the surface thus obtained is not equivalent

to the single-holed portion of the plane ; it is unifacial and has only one boundary.

A spherical surface pierced in n + \ holes is equivalent to a bounded portion of the

plane with n holes ; each is of connectivity 7i + \ and has n-\-\ boundaries. The spherical

surface can be deformed into the plane surface by stretching one of its holes into the form

of the outside boundary of the plane surface.

Ex. Prove that the surface of a bounded anchor-ring can be physically deformed into

the surface in fig. 47, p. 378.

For continuation and fuller development of the subjects of the present chapter, the

following references, in addition to those which have been given, will be found useful :

—

Klein, Math. Ann., t. vii, (1874), pp. 548—557 ; ib., t. ix, (1876), pp. 476-482.

Lippich, Math. Ann., t. vii, (1874), pp. 212—229; Wiener Sitzimgsb., t. Ixix, (ii),

(1874), pp. 91—99.

Durege, Wiener Sitzungxh., t. Ixix, (ii), (1874), pp. 115—120; and section 9 of his

treatise, quoted on p. 363, note.

Neumann, chapter vii of his treatise, quoted on p. 5, note.

Dyck, Math. Ann., t. xxxii, (1888), pp. 457—512, ib., t. xxxvii, (1890), pp. 273—316;
at the beginning of the first part of this investigation, a valuable .series of

references is given.

Dingeldey, Topologlsche Studien, (Leipzig, Teubner, 1890).

Mair, Quart. Jotirn. of Math., vol. xxvii, (1895), pp. 1—35.

* Ueber Riemann^s Tlieorie der algchraischen Functionen und ihrer Inteyrale, (Leipzig,

Teubner, 1882), p. 26. This tract has been translated into English by Miss Hardcastle,

(Cambridge, Macmillan and Bowes, 1893).



CHAPTER XV.

Riemann's Surfaces.

171. The method of representing a variable by assigning to it a position

in a plane or on a sphere is effective when properties of uniform functions

of that variable are discussed. But when multiform functions, or integrals

of uniform functions occur, the method is effective only when certain parts of

the plane are excluded, due account being subsequently taken of the effect

of such exclusions ; and this process, the extension of Cauchy's method, was

adopted in Chapter IX.

There is another method, referred to in § 100 as due to Riemann, of an

entirely different character. In Riemann's representation, the region, in

which the variable z exists, no longer consists of a single plane but of

a number of planes ; they are distinct from one another in geometrical

conception, yet, in order to preserve a representation in which the value of

the variable is obvious on inspection, the planes are infinitesimally close to

one another. The number of planes, often called sheets, is the same as the

number of distinct values (or branches) of the function w for a general

argument z and, unless otherwise stated, will be assumed finite ; each sheet

is associated with one branch of the function, and changes from one branch

of the function to another are effected by making the ^-variable change

from one sheet to another, so that, to secure the possibility of change of

sheet, it is necessary to have means of passage from one sheet to another.

The aggregate of all the sheets is a surface, often called a Riemanns

Surface.

For e.xaniple, consider the function

tV= Z^ + {2-l)~^,

the cube roots being independent of one another. It is evidently a nine-valued function
;

the number of sheets in the appropriate Riemann's surface is therefore nine.

The branch-points are 2= 0, z=l, 2 = x. Let a and a denote a cube-root of unit)',

independently of one another ; then the values of s* can be represented in the form
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z^, 0)2^, co-z-^ ; and the values of (s— 1) ^ can be represented in the form (s-1) •*,

a^{z-l)~^, a{z-l)~^. The nine vahies of tr can be symbolically expressed as follows :

—

Wi
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that, for variations of z in that surface, the multiformity of the function is

changed to uniformity. From the nature of the case, the character of the

surface will depend on the character of the function : and thus, though all

the functions are uniform with their appropriate surfaces, these surfaces are

widely various. Evidently for uniform functions of z the appropriate surface

(in the above method is the single plane already adopted.

172. The simplest classes of functions for which a Riemann's surface

is useful are (i) those called (§ 94) algebraic functions, that is, multiform

functions of the independent variable defined by an algebraical equation of

the form

f{tv,z) = 0,

which is of finite degree, say n, in iv ; and (ii) those usually called Ahelian

functions, which arise through integrals connected with algebraic functions.

Of such an algebraic function there are, in general, n distinct values

;

but for the special values of z, that are the branch-points, two or more of the

values coincide. The appropriate Riemann's surface is composed of n sheets

;

one branch, and only one branch, of w is associated with a sheet. The

variable z. in its relation to the function, is determined not merely by its

modulus and argument but also by its sheet ; that is, in the language of the

earlier method, we take account of the path by which z acquires a value.

The particular sheet in which z lies determines the particular branch of the

function. Variations of z, which occur within a sheet and do not coincide

with points lying in regions of passage between the sheets, lead to variations

in the value of the branch of w associated with the sheet; a return to an

initial value of z, by a path that nowhere lies within a region of passage,

leaves the ^^-point in the same sheet as at first and so leads to the initial

branch (and to the initial value of the branch) of w. But a return to an

initial value of ^^ by a path, which, in the former method of representation,

would enclose a branch-point, implies a change of the branch of the function

according to the definite order prescribed by the branch-point. Hence the

final value of the variable z on the Riemann's surface must lie in a sheet that

is different from that of the initial (and arithmetically equal) value ; and

therefore the sheets must be so connected that, in the immediate vicinity of

branch-points, there are means of passage from one sheet to another, securing

the proper interchanges of the branches of the function as defined by the

equation.

173. The first necessity is therefore the consideration of the mode in

which the sheets of a Riemann's surface are joined : the mode is indicated

by the theorem that sheets of a Riemamis surface are joined along lines.

The junction might be made either at a point, as with two spheres in

contact, or by a common portion of a surface, as with one prism lying on
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another, or along lines ; but whatever the character of the junction be, it

must be such that a single passage across it (thereby implying entrance to

the junction and exit from it) must change the sheet of the variable.

If the junction were at a point, then the ^--variable could change from one

sheet into another sheet, only if its path passed through that point : any

other closed path would leave the £•-variable in its original sheet. A small

closed curve, infinitesimally near the point and enclosing it and no other

branch-point, is one which ought to transfer the variable to another sheet

because it encloses a branch-point: and this is impossible with a point-junction

when the path does not pass through the point. Hence a junction at a point

only is insufficient to provide the proper means of passage from sheet to

sheet.

If the junction were effected by a common portion

of surface, then a passage through it (implying an '
.. .a

entrance into that portion and an exit from it) ought to "'T^-
~^^~~

change the sheet. But, in such a case, closed contours
. . Fig. 51.

can be constructed which make such a passage without

enclosing the branch-point a: thus the junction would cause a change of

sheet for certain circuits the description of which ought to leave the

2'-variable in the original sheet. Hence a junction by a continuous area of
surface does not provide the proper means of passage from sheet to sheet.

The only possible junction which remains is a line.

The objection in the last case does not apply to a closed —•-y-—
^i

contour which does not contain the branch-point ; for the /'--"'

line cuts the curve twice and there are therefore two ^^^- ^'^

crossings ; the second of them makes the variable return to the sheeLwhich
the first crossing compelled it to leave.

Hence the junction between any two sheets takes place along a line.

Such a line is called* a branch-line. The branch-points of a multiform

function lie on the branch-lines, after the foregoing explanations ; and a

branch-line can be crossed by the variable pnly if the variable change its

sheet at crossing, in the sequence prescribed by the branch-point of the

function which lies on the line. Also, the sequence is reversed when the

branch-line is crossed in the reversed direction.

Thus, if two sheets of a surface be connected along a branch-line, a point which

crosses the line from the first sheet must pass into the second and a point which crosses

the line from the second sheet must pass into the first.

Again, if, along a common direction of branch-line, the first sheet of a surface be

connected with the second, the second with the third, and the third with the first,

* Sometimes cross-line, sometimes hranch-sectioii. The German title is Verzweigmigschnitt-,

the French is ligne de passage; see also the note on the equivalents of branch-point, p. 17.

F. F. 25
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a point which crosses the line from the first sheet in one direction must pass into the

second sheet, but if it cross the hue in the other direction it must pass into the third

sheet.

A branch-point does not necessarily affect all the branches of a function

:

when it affects only some of them, the corresponding property of the Riemann's

surface is in evidence as follows. Let z = a determine a branch-point affecting,

say, only r branches. Take n points a, one in each of the sheets ; and through

them draw n lines cab, having the same geometrical position in the respective

sheets. Then in the vicinity of the point a in each of the r sheets, associated

with the r affected branches, there must be means of passage from each one

to all the rest of them ; and the lines cah can conceivably be the branch-lines

with a properly established sequence. The point a does not affect the other

n — r branches : there is therefore no necessity for means of passage in the

vicinity of a among the remaining n — r sheets. In each of these remaining

sheets, the point a and the line cah belong to their respective sheets alone

:

for them, the point a is not a branch-point and the line cah is not a branch-

line,

174. Several essential properties of the branch-lines are immediate

inferences from these conditions.

I. A free end of a hranch-line in a surface is a hranch-point.

Let a simple circuit be drawn round the free end so small as to enclose no

branch-point (except the free end, if it be a branch-point). The circuit meets

the branch-line once, and the sheet is changed because the branch-line is

crossed ; hence the circuit includes a branch-point which therefore can be

only the free end of the line.

Note. A branch-line may terminate in the boundary of the surftxce,

and then the extremity need not be a branch-point.

II. When a hranch-line extends beyond a hranch-point lying in its course,

the sequence of intercJiange is not the same on the tiuo sides of the jioint.

If the sequence of interchange be the same on the two sides of the branch-

point, a small circuit round the point would first cross one part of the branch-

line and therefore involve a change of sheet and then, in its course, would

cross the other part of the branch-line in the other direction which, on the

.supposition of unaltered sequence, would cause a return to the initial sheet.

In that case, a circuit round the branch-point would fail to secure the proper

change of sheet. Hence the sequence of interchange caused by the branch-

line cannot be the same on the two sides of the point.

III. If tivo branch-lines with different sequences of interchange have a

common extremity, that point is eitJier a branch-point or an extremity of at

least one other branch-line.
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In the ^-plane of Cauchy's method, let lines be draAvn from any point /, not

a branch-point in the first instance, to each of the branch- points, as in fig. 19,

p. 185, so that the joining lines do not meet except at /: and suppose the

?2-sheeted Riemann's surface to have branch-lines coinciding geometrically

Avith these lines, as in § 173, and having the sequence of interchange for

passage across each the same as the order in the cycle of functional values

for a small circuit round the branch-point at its free end. No line (or part

of a line) can be a closed curve ; the lines need not be straight, but they

will be supposed drawn as direct as possible to the points in angular

succession.

The first of the above requisite conditions is satisfied by the establish-

ment of the sequence of interchange.

To consider the second of the conditions, it is convenient to divide

circuits into two kinds, (a) those which exclude /, (/3) those which include /,

no one of either kind (for our present purpose) including a branch-point.

A closed circuit, excluding / and all the branch-points, must intersect a

branch-line an even number of times, if

it intersect the line in real points. Let

the figure (fig. 54) represent such a case:

then the crossings at A and B counter-

act one another and so the part be-

tween A and B may without effect be

transferred across IB^ so as not to cut

the branch-line at all. Similarly for

the points C and B : and a similar

transference of the part now between

C and D may be made across the

branch-line without effect : that is, the

circuit can, without effect, be changed

so as not to cut the branch-line IB3 at all. A similar change can be made
for each of the branch-lines : and so the circuit can, without effect, be changed

into one which meets no branch-line and therefore, on its completion, leaves

the sheet unchanged.

A closed circuit, including / but no branch-point, must meet each branch-

line an odd number of times. A change similar in character to that in

the previous case may be made for each branch-line : and without affecting

the result, the circuit can be changed so that it meets each branch-line only

once. Now the effect produced by a branch-line on the function is the same
as the description of a simple loop round the branch-point which with /

determines the branch-line : and therefore the effect of the circuit at present

contemplated is, after the transformation which does not affect the result, thr

same as that of a circuit, in the previously adopted mode of representation.
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enclosing all the branch-points. But, by Cor. III. of § 90, the effect of a

circuit which encloses all the branch-points (including 2^ = oo , if it be a

branch-point) is to restore the value of the function which it had at the

beginning of the circuit : and therefore in the present case the effect is to

make the point return to the sheet in which it lay initially.

It follows therefore that, for both kinds of a closed circuit containing no

branch-point, the effect is to make the ^r-variable return to its initial sheet

on resuming its initial value at the close of the circuit.

Next, let the point / be a branch-point ; and let it be joined by lines,

as direct* as possible, to each of the other branch-points in angular suc-

cession. These lines will be regarded as the branch-lines ; and the sequence

of interchange for passage across any one is made that of the interchange

prescribed by the branch-point at its free extremity.

The proper sequence of change is secured for a description of a simple

closed circuit round each of the branch-points other than /. Let a small

circuit be described round /; it meets each of the branch-lines once and

therefore its effect is the same as, in the language of the earlier method of

representing variation of z, that of a circuit enclosing all the branch-points

except I. Such a circuit, Avhen taken on the Neumann's sphere, as in Cor. III.,

§ 90 and Ex. 2, § 104, may be regarded in two ways, according as one or

other of the portions, into which it divides the area of the sphere, is regarded

as the included area ; in one way, it is a circuit enclosing all the branch-

points except /, in the other it is a circuit enclosing / alone and no other

branch-point. Without making any modification in the final value of w, it

can (by § 90) be deformed, either into a succession of loops round all the

branch-points save one, or into a loop round that one ; the effect of these two

deformations is therefore the same. Hence the effect of the small closed

circuit round / meeting all the branch-lines is the same as, in the other

mode of representation, that of a small curve round / enclosing no other

branch-point ; and therefore the adopted set of branch-lines secures the

proper sequence of change of value for description of a circuit round 1.

The first of the two necessary conditions is therefore satisfied by the

present arrangement of branch-lines.

The proof, that the second of the two necessary conditions is also satisfied

by the present arrangement of branch-lines, is similar to that in the preceding

case, save that only the first kind of circuit of the earlier proof is possible.

It thus appears that a system of branch-lines can be obtained which

secures the proper changes of sheet for a multiform function : and therefore

Riemann's surfaces can be constructed for such a function, the essential

property being that over its appropriate surface an otherwise multiform

function of the variable is a uniform function.

* The reason for this will appear in §§ 183, 184.
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The multipartite character of the function has its influence preserved by

the character of the surface to which the function is referred : the surface,

consisting of a number of sheets joined to one another, may be a multiply

connected surface.

In thus proving the general existence of appropriate surfaces, there has

remained a large arbitrary element in their actual construction : moreover,

in particular cases, there are methods of obtaining varied configurations of

branch-lines. Thus the assignment of the n branches to the n sheets has

been left unspecified, and is therefore so far arbitrary: the point /, if not a

branch-point, is arbitrarily chosen and so there is a certain arbitrariness of

position in the branch-lines. Naturally, what is desired is the simplest

appropriate surface : the particularisation of the preceding arbitrary qualities

is used to derive a canonical form of the surface.

176. The discussion of one or two simple cases will help to illustrate the

mode of junction between the sheets, made by branch-lines.

The simplest case of all is that in which the surface has only a single

sheet: it does not require discussion.

The case next in simplicity is that in which the surface is two-sheeted

:

the function is therefore two-valued and is consequently defined by a

quadratic equation of the form

Lu- + 2Ma +N = 0,

where L, M, and N are uniform functions of z. When a new variable w is

introduced, defined by Lu + M=^w, so that values of lu and of u correspond

uniquely, the equation is

w^^ = M'-LN=P{z).

It is evident that every branch-point of u is a branch-point of w, and

vice versa ; hence the Riemann's surface is the same for the two equations.

Now any root of P {z) of odd degree is a branch-point of w. If then

P{z)=^Q^{z)R{z),

where R {z) is a product of only simple factors, every factor of R (z) leads to

a branch-point. If the degree of R (z) be even, the number of branch-points

for finite values of the variable is even, and 2^ = oo is not a branch-point; if the

degree of R (z) be odd, the number of branch-points for finite values of the

variable is odd, and z= cc is a branch-point : in either case, the number of

branch-points is even.

There are only two values of w, and the Riemann's surface is two-sheeted:

crossing a branch-line therefore merely causes a change of sheet. The fixe

ends of branch-lines are branch-points; a small circuit round any branch-

point causes an interchange of the branches w, and a circuit round any tw( >

branch-points restores the initial value of w at the end and therefore leaves

the variable in the same sheet as at the beginning. These are the essential

requirements in the present case ; all of them are satisfied by taking each
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branch-line as a line connecting two {and only two) of the branch-points. The

ends of all the branch-lines are free : and their number, in this method, is

one-half that of the (even) number of branch-points. A small circuit round

a branch-point meets a branch-line once and causes a change of sheet; a

circuit round two (and not more than two) branch-points causes either no

crossing of branch-line or an even number of crossings and therefore restores

the variable to the initial sheet.

A branch-line is, in this case, usually drawn in the form of a straight line

when the surface is plane : but this form is not essential and all that is

desirable is to prevent intersections of the branch-lines.

Xote. Junction between the sheets along a branch-line is easily secured.

The two sheets to be joined are cut along the branch-line. One edge of the

cut in the upper sheet, say its right edge looking along the section, is joined

to the left edge of the cut in the lower sheet; and the left edge in the upper

sheet is joined to the right edge in the lower.

A few simple examples will illustrate these remarks as to the sheets : illustrations of

closed circuits will arise later, iu the consideration of integrals of multiform functions.

F.V. 1 . Let ui^=A{z- «.) (z-b),

so that a and b are the only branch-points. The surface is two-sheeted : the line ab may
be made the branch-line. In fig. 55 only part of the upper sheet is shewn* as likewise

only part of the lower sheet. Continuous lines imply what is visible ; and dotted lines

what is invisible, on the supposition that the sheets are o^jaque.

The circuit, closed in the surface and passing round a, is made up of the continuous

line in the upper sheet from II to K : the point crosses the branch-line at K and then

passes into the lower sheet, where it describes the dotted line from Kto H: it then meets

and crosses the branch-line at H, passes into the upper sheet and in that sheet returns to

its initial point. Similarly of the line J BC\ the part AB lies in the lower sheet, the part

BC in the upper : of the line DG the part DE lies in the upper sheet, the part EFG in the

lower, the piece FG of this part being there visible beyond the boundary of the retained

portion of the upper surface.

Ex. 2. Let X2<;2= 23_a3_

The branch-points (fig. 56) are A{ = a)., B{= aa), 0{ = aa.^), where a is a primitive cube

root of unity, and z=cc . The branch-lines can be made by BC, Aa:> ; and the two-sheeted

surface is a surface over which tv is uniform. Only a part of each sheet is shewn in the

figure ; a section also is made at M across the surface, cutting the branch-line ^cc .

E.T. 3. Let tif"-= z>\

where n and 7ii are prime to each other. The branch-points are z= and s=x ; and the

branch-line extends from to ex; . There are m sheets ; if we associate them in order with

the branches tVg, where
ij_ (>ie+2S7r)i

Wg= r"i e »»

for s= l, 2, ..., m, then the first sheet is connected with the second forwards, the second

with the third forwards, and so on ; the with being connected with the first forwards.

The form of the three figures in the plate opposite p. 392 is suggested by Holzmiiller,

Kinfiihning in die Theorie der isogonalen Verwandsehaften und der conformen Abbildungeu,

(Leipzig, Teubner, 1882), in which several illustrations are given.
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The surface is sometimes also called a loinding-surface ; and a branch-point such as

2=0 on the surface, where a number m of sheets pass into one another in succession, is

also called a winding-point of order m - 1 (!<ee p. 17, note). An illustration of the surface

for y« = 3 is given in fig. 57, the l)ranch-line being cut so as to shew the branching : what

is visible is indicated by continuous lines ; what is in the second sheet, but is invisible,

is indicated by the thickly dotted line ; what is in the third sheet, but is invisible, is

indicated by the thinly dotted line.

Ex. 4. Consider a three-sheeted surface having four branch- point.s at a, h,c,d; and

let each point interchange two branches, say, «'2, w^ at a; w^, wz at b; Wi., W3 at c;

'(^1, w., at d\ the points being as in fig. 58. It is easy to verify that these branch-points

satisfy the condition that a circuit, enclosing them all, restores the initial value of w.

The branching of the sheets may be made as in the figure, the integers on the two sides

of the line indicating the sheets that are to be joined along the line.

A canonical form for such a surface can he derived from the inoie general case given

later (in §§ 186—189).

Ex. 5. Shew that, if the equation

be of degree n in w and be in'educii)le, all the n sheets of the surface ai-e connected, that

is, it is possible by an appropriate path to pass from any sheet to any other sheet.

For if not, let a denote any arbitrary value of z, and let ?fi, ?^2, ..., ?i„ denote the

n values of w when z= a. Let z vary, beginning with a value a ; let the variation be

restricted solely by the condition that z does not acquire a value giving rise to a branch-

point, and otherwise be perfectly general \ and let z return to the value a. If it is not

possible to pass from any sheet of the Riemann's surface to any other, suppose that the

first, second, ..., with sheets are connected with one another, and that no one of them

is connected with any one of the rest. Then whatever be the variation of 2, and whichever

of the values Mj, w^, ..., «,„ be chosen as an initial value of n\ the final value of w (when z

resiunes its value a) will be one of the set ?/i, t<2, ..., «,»• Hence any rational symmetric

function of Mi, «.,, ..., ?^„ remains unchanged when 2, after varying quite arbitrarily,

resumes an initial value; in other words, that symmetric function of Mj, M2, ..., «,„ is

a uniform function of z, which (as in § 193) is a rational function of z. Consequently,

the values «i, «2) •••) w„, of w are the roots of an algebraical equation f\ {w, z) = 0, which

is polynomial in ?f and z, and is of degree m in w. But these values of w are roots

of /(w, 2)=0; hence /{w, z) is divisible by /, («, 2), contrary to the given condition that

f{w,z)= is irreducible.

Corollary I. When /=0 is irreducible, it is possible to make 2 vary from an initial

value, and return to a, in such a way that any assigned initial value of w shall lead to

any assigned final value of w, among the n values which it has for 2= 0.

Corollary II. If 2 = 0, m'= /1, and 2= ^, w= B are any two positions on the Riemann's

sui-face corresponding to an equation f{w, 2) = 0, and if a path exists in the surface
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joining the one position to the other, then / is either an irreducihle polynomial or is

some power of an irreducible polynomial.

For if /can be resolved into the product of two different polynomials, each of them
equated to zero would give rise to a Riemann's surface ; and the two surfaces would not

be connected, so that it would be impossible to pass from any position on one of them
to any position on the other. If therefore /is resoluble, its component polynomials mu.st

be one and the same : that is, on the given hypothesis, when / is reducible, it is a power
of an irreducible polynomial.

177. It is not necessary to limit the surface representing the variable to

a set of planes ; and, indeed, as with uniform functions, there is a convenience

in using the sphere for the purpose.

We take w spheres, each of diameter unity, touching the Riemann's plane

surface at a point A; each sphere is regarded as the stereographic projection

of a plane sheet, with regard to the other extremity A' of the spherical

diameter through A. Then, the sequence of these spherical sheets being

the same as the sequence of the plane sheets, branch-points in the plane

surface project into branch-points on the spherical surface : branch-lines

between the plane sheets project into branch-lines between the spherical

sheets and are terminated by corresponding points ; and if a branch-line

extend in the plane surface to 2^=00, the corresponding branch-line in the

spherical surface is terminated at A'.

A surface will thus be obtained consisting of n spherical sheets ; like

the plane Riemann's surface, it is one over which the ?i-valued function is a

uniform function of the position of the variable point.

But also the connectivity of the n-sheeted spherical surface is the same as

{hat of the n-sheeted plane surface with luhich it is associated.

In fact, the plane surface can be mechanically changed into the spherical

surface without tearing, or repairing, or any change except bending and

compression : all that needs to be done is that the n plane sheets shall be

bent, without making any change in their sequence, each into a spherical

form, and that the boundaries at infinity (if any) in the plane sheet shall

be compressed into an infinitesimal point, being the South pole of the

corresponding spherical sheet or sheets. Any junctions between the plane

sheets extending to infinity are junctions terminated at the South pole. As

the plane surface has a boundary, which, if at infinity on one of the sheets, is

therefore not a branch-line for that sheet, so the spherical surface has a

boundary which, if at the South pole, cannot be the extremity of a branch-

line.

178. We proceed to obtain the connectivity of a Riemann's surface

:

it is determined by the following theorem :

—

Let the total number of hranch-p)oints in a Riemann's n-sheeted surface

he r ; and let the number of branches of the function interchanging at the first



394 CONNECTIVITY OF A [178.

point he m^, the number intercliunging at the second be m.^, and so on. Then

the connectivity of the surface is

n-2n + 3,

where H denotes m^ + m. + . . . + m^ — r.

Take * the surface in the bounded spherical form, the connectivity N of

which is the same as that of the plane surface : and let the boundary be a

small hole A in the outer sheet. By means of cross-cuts and loop-cuts, the

surface can be resolved into a number of distinct simply connected pieces.

First, make a slice bodily through the sphere, the edge in the

outside sheet meeting A and the direction of the

slice through A being chosen so that none of the

branch-points lie in any of the pieces cut off. Then n

parts, one from each sheet and each simply connected,

are taken away. The remainder of the surface has a

cup-like form ; let the connectivity of this remainder

be M.

This slice has implied a number of cuts.

The cut made in the outside sheet is a cross-cut,

because it begins and ends in the boundary A. It ^^^' '^

divides the surface into two distinct pieces, one being

the portion of the outside sheet cut off, and this piece is simply connected

;

hence, by Prop. III. of § 160, the remainder has its connectivity still repre-

sented by N.

The cuts in all the other sheets, caused by the slice, are all loop-cuts,

because they do not anywhere meet the boundary. There are n — 1 loop-

cuts, and each cuts off a simply connected piece ; let the remaining surface

be of connectivity M. Hence, by Prop. V. of § 161,

J/ + n-l = J\r+2(n-l),

and therefore M = N -\- n — 1.

In this remainder, of connectivity M, make r — 1 cuts, each of which

begins in the rim and returns to the rim, and is to be made through the n

sheets together; and choose the directions of these cuts so that each of the

r resulting portions of the surface contains one (and only one) of the branch-

points.

Consider the portion of the surface which contains the branch-point

where my sheets of the surface are connected. The m, connected sheets

constitute a piece of a winding-surface round the winding-point of order

mi - 1 ; the remaining sheets are unaffected by the winding-point, and

* Tlje proof is founded on Neumann's, Vorlesungen iiber Riemann's Theorie dcr AbeVschen

Integrale, pp. 168—172.
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therefore the parts of them are n — iih distinct simply connected pieces.

The piece of winding-surface is simply connected ; because a circuit, that

does not contain the winding-point, is reducible without passing over the

winding-point, and a circuit, that does contain the winding-point, is reducible

to the winding-point, so that no irreducible circuit can be drawn. Hence

the portion of the surface under consideration consists of n — m^ -\- 1 distinct

simply connected pieces.

Similarly for the other portions. Hence the total number of distinct

simply connected pieces is

<? = !

= nr — S tiiq -f- r

q = l

But in the portion of connectivity if each of the r— 1 cuts causes, in

each of the sheets, a cut passing from the boundary and returning to the

boundary, that is, a cross-cut. Hence there are n cross-cuts from each of the

r — I cuts, and therefore 7i(r — l) cross-cuts altogether, made in the portion of

surface of connectivity M.

The effect of these n(r— 1) cross-cuts is to resolve the portion of con-

nectivity M into nr — n distinct simply connected pieces; hence, by § 160,

M=u{r-l)-{nr-n)+2,

and therefore N=M - (71- 1) = n - 'In + 3,

the connectivity of the Riemann's surface.

The quantity O, having the value 2 (m,j - 1), may be called the rami-
q = l

fication of the surface, as indicating the aggregate sum of the orders of

the different branch-points.

Note. The surface just considered is a closed surface to which a point

has been assigned for boundary; hence, by Cor. 1, Prop. III., § 164, its

connectivity is an odd integer. Let it be denoted by 2jt} -f 1 ; then

2p = n - 2n + 2,

and 2p is the number of cross-cuts which change the Riemann's surface into

one that is simply connected.

The integer p is often called (Cor. 1, Prop. III., § 164) the genus of the

Riemann's surface ; and tlie equation

f{w,z) =

is said to be of genus p, when p is tJie genus of the associated Riemann's

surface.
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The genus of an equation is discussed, partly in association with Abel's

Theorem on transcendental integrals, in an interesting paper* by Baker, who

gives a simple graphical rule to determine the integer when the coefficients

are general. This rule is given in the example at the end of § 182.

Ex. 1. When the equation is

w"= \ {z — a) (z-b),

we have a two-sheeted surface, n= 2. There are two branch-points, z=a and 2= 6; but

2= CO is not a branch-point ; so that >•= 2. At each of the branch-points the two values are

interchanged, so that mj = 2, jn2= 2; thus 12 = 2. Hence the connectivity =2- 4-1-3= 1,

that is, the surface is simply connected.

The surface can be deformed, as in the example in § 169, into a sphere.

Ex. 2. When the equation is

= i{z-ei){z-e^){z-e3),

we have n= 2. There are four branch-points, viz., c,, e^, 63, oc , so that r= 4 ; and at each

of them the two values of w are interchanged, so that ?«.^= 2 (fors= l, 2, 3, 4), and therefore

12 = 8 — 4= 4. Hence the connectivity is 4-4-1-3, that is, 3 ; and the value of jo is unity.

Similarly, the surface associated with the equation

where U (z) is a rational integral function of degree 2m - 1 or of degree 2«i, is of con-

nectivity iiti
I
1-; so that p = »i.- / . The equation

^^'^
«'2= (l-s2)(l_F.-2)

is of genus p=l. The case next in importance is that of the algebraical equation leading

to the hyperelliptic functions, when U is either a quintic or a sextic ; and then p= 2.

Ex. 3. Obtain the cotmectivity of the Kiemanu's surface associated with the ecjuatiou

|()3 _|_ ^3 _ ^awz= 1

,

where a is a constant, (i) when a is zero, (ii) when a is different from zero.

E.v. 4. Shew that, if the surface associated with the equation

f(w,z) = 0,

have
fj.
boundary-lines instead of one, and if the equation have the same branch-points

as in the foregoing proposition, the connectivity is Q - 2/i +fj. + 2.

Ex. 5. Shew that the genus of the equation

w*-z^{z^+ z+l) =

is 1, and that the genus of the equation

v'^+ z^=5v>z-

is 2. (Ratty.)

Discuss the genus of the equation

iifi-5tv^z'^+z+ '[) + ou'{z'^ + z+lf-2z{z^ + z + \y^=0.

(Raffy: Baker.)

* " Examples of the application of Newton's polygon to the theory of singular points of

algebraic functions," Camh. Phil. Tnina., vol. xv, (1894), pp. 403—405.
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Ex. 6. In the equation

„,.«= (S-C,)«1...(3-C,)».,

the sum of the positive integers Hj, ..., n^ is divisible by n. Shew that the genus p of the

associated Riemann's surftice is given by

'1=1

where X.^ is the greatest common measure of ii,i and n.

Shew also that, for surfaces of a given genus p, associated with equations of the

assigned form, s cannot be greater than 2p-2. (Trinity Fellowship, 1897.)

Ex: 7. Shew that the values ofp for the equations

(i) tv^~z* + 2ivz{wh^-l)= 0:

(ii) (m;2 -^ 22)2 _ 4^^222 («;. _ 1 )2= :

are 7 and 3 respectively. (Cayley.)

Ex. 8. Shew that the genus of the equation

where n is a positive integer or zero, is unity.

Ex, 9. Shew that the genus p of the equation

w''=z{l-z)%

where a is a positive integer, is given as follows :

—

when 7i= 6k-ii, then p=Sk~a, for a = l, 2, .3;

... n= 6k + a, ... p= 3k , ... a = l,2;

... 71= 61: , ... p= 3k-l.

Ex. 10. Find the genus of the equation

w-= {\-z'^){\-k^z^),

where n is a positive integer > 2.

179. The consideration of irreducible circuits on the surface at once

reveals the multiple connection of the surface, the numerical measure of

which has been obtained. In a Riemann's surface, a simple

closed circuit cannot he deformed over a branch-point. Let Cy /q,

A be a branch-point, and let AE... be the branch-line ^a(^'
having a free end at A. Take a curve ...CED... ci'ossing !iA q<

the branch-line at E and passing into a sheet different p-j„ gQ

from that which contains the portion GE ; and, if possible,

let a slight deformation of the curve be made so as to transfer the portion

CE across the branch-point ^4. In the deformed position, the curve

...C'E'D' ... does not meet the branch-line; there is, consequently, no

change of sheet in its course near A and therefore E'D'..., which is the

continuation of ...CE', cannot be regarded as the deformed position of ED.
The two paths are essentially distinct ; and thus the original path cannot be

deformed over the branch-point.

It therefore follows that continuous deformation of a circuit over a

branch-point on a Riemann's surface is a geometrical impossibility.

Ex. Trace the variation of the curve CED, as the point E moves up to A and then

returns along the other side of the branch-line.
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Hence a circuit containing two or more (but not all) of the branch-points

is irreducible ; a circuit containing all the branch-points is equivalent to a

circuit that contains none of them, and it is therefore reducible.

If a circuit contain only one branch-point, it can be continuously deformed

so as to coincide with the point on each sheet and therefore, being deformable

into a point, it is a reducible circuit. An illustration has already occurred in

the case of a portion of winding-surface containing a single winding-point

(Ex. 3, p. 391); all circuits drawn on it are reducible.

It follows from the preceding results that the Riemann's surface associated

with a multiform function is generally one of multiple connection; we shall

find it convenient to know how it can be resolved, by means of cross-cuts, into

a simply connected surface. The representative surface will be supposed, a

closed surface with a single boundary; its connectivity, necessarily odd, being

2p + 1, the number of cross-cuts necessary to resolve the surface into one

that is simply coimected is 2p; when these cuts have been made, the simply

connected surface then obtained will have its boundary composed of a single

closed curve.

One or two simple examples of resolution of special Riemann's surfaces will be useful

in leading up to the general explanation ; in the examples it will be shewn how, in

conformity with § 168, the resolving cross-cuts render irreducible circuits impossible.

E:c. 1. Let the equation be

io^'=A {z -a){z- h) {z -c){z- d),

where a, b, c, d are four distinct points, all of finite modulus. The surface is two-sheeted
;

each of the points a, 6, f, d is a branch-point where the two values of w interchange ; and

so the surface, assumed to have a single boundary, is triply connected, the value of p
being unity. The branch-lines are two, each connecting a })air of branch-points ; let them

be ab and cd.

Two cross-cuts are necessary and sufficient to resolve the surface into one that is

simply connected. We first make a cross-cut,

beginning at the boundary B, (say it is in the

upper sheet), continuing in that sheet and re-

turning to D^ so that its course encloses the

branch-line ah (but not cd) and meets no branch-

line. It is a cross-cut, and not a loop-cut, for it

begins and ends in the boundary ; it is evidently

a cut in the upper sheet alone, and does not

divide the surface into distinct portions ; and,

once made, it is to be regarded as boundary for

the partially cut surface.

The surface in its present condition is con-

nected : and therefore it is possible to pass from one edge to the other of the cut just

made. Let P be a 2ioint on it ; a curve that passes from one edge to the other is indicated

by the line PQR in the upper sheet, ItS in the lower, and SP in the upper. Along this

line make a cut, beginning at P and returning to P; it is a cross-cut, partly in the

upper sheet and partly in tlie lower, and it does not divide tlie surface into distinct

portions.

Fig. 61.
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Two cross-cuts iu the triply connected surface have now been made ; neither of them,

as made, divides the surftxce into distinct portions, and each of them when made reduces

the connectivity by one unit ; hence the surface is now simply connected. It is easy to

see that the boundary consists of a single line not intersecting itself; for beginning

at P, we have the outer edge of PBT, then tliQ inner edge of PQ/ISP, then the inner

edge of PTB, and then the outer edge of PSRQP, returning to P.

The required resolution has been effected.

Before the surface was resolved, a number of irreducible circuits could be drawn ; a

complete system of irreducible circuits is composed of two, by § 168. Such a system may
be taken in various ways ; let it be composed of a simple curve C lying in the U2>per sheet

and containing the points a and 6, and a simple curve D, lying partly in the upper

and partly in the lower sheet and containing the points a and c ; each of these curves

is irreducible, because it encloses two branch-points. Every other irreducible circiiit

is reconcileable with these two ; the actual reconciliation in particular cases is effected

most simply when the surface is taken in a spherical form.

The irreducible circuit (7 on the unresolved surface is impossible on the resolved

surface owing to the cross-cut SPQRS ; and the irreducible circuit I) on the unresolved

surface is impossible on the resolved surface owing to the cross-cut PTB. It is easy

to verify that no irreducible circuit can be drawn on the resolved surface.

In practice, it is conveniently efifective to select a complete system of irreducible

simple circuits and then to make the cross-cuts so that each of them renders one circuit

of the system impossible on the resolved surface.

Ex. 2. If the equation be

= 4 (2 -ei) (2 -62) (2-63),

the bi'anch-points are e^, e.,, 63 and qc . When the two-sheeted surface is spherical, and the

branch-lines are taken to be (i) a line joining Ci, 6-2; and (ii) a line joining e^ to the South

pole, the discussion of the surface is similar in detail to that in the preceding example.

Ex. 3. Let the equation be

n^= Az{l-z)(K-z)(\-z)(f,-z),

and for simplicity suppose that k, X, /x are real quantities subject to the inequalities

1<K<A<M<00.
The associated surface is two-sheeted and has a boundary assigned to it ; assuming

that its sheets are planes, we shall take some point in the finite part of the upper sheet,

not being a branch-point, as the boundary. There are six branch -points, viz., 0, 1, k,
'

X, fi, 00 at each of which the two values of w interchange; and so the connectivity of

the surface is 5, and its genus is 2. The branch-lines can be taken as three, this being

the simplest arrangement ; let them he the lines joining 0, 1 ; k, X
;

|x, x .

Fig. 62.

Four cross-cuts are necessary to resolve the surface into one that is simply connected

and has a single boundary. They may be obtained as follows.
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Beginning at the boundary X, let a cut LHA be made entirely in the upper sheet

along a line which, when complete, encloses the points and 1 but no other branch-points
;

let the cut return to L. This is a cross-cut and it does not divide the surface into

distinct pieces ; hence, after it is made, the connectivity of the moditied surface is 4, and

there are two boundary-lines, being the two edges of the cut LHA.

Beginning at a point A in LHA, make a cut along ABC in the upper sheet until

it meets the l^ranch-line /xx , then in the lower sheet along CSD until it meets the

branch-line 01, and then in the upper sheet from D returning to the initial point A.

This is a cross-cut and it does not divide the surface into distinct pieces ; hence, after it

is made, the connectivity of the modified siirftice is 3, and it is easy to sec that there

is only one boundary-edge, similar to the single boundary in Ex. 1 when the surface

in that example has been completely resolved.

Make a loop-cut EFG along a line, enclosing the points k and X but no other branch-

points ; and change it into a cross-cut by making a cut from E to some point B of the

boundary. This cross-cut can be regarded as BEFGE, ending at a point in its own

earlier course. As it does not divide the surface into distinct pieces, the coimectivity

is reduced to 2 ; and there are two boundary-lines.

Beginning at a point G make another cross-cut GQPRG, as in the figure, enclosing

the two branch-points X and jlc and lying partly in the upper sheet and partly in the

lower. It does not divide the surface into distinct pieces : the connectivity is reduced

to unity, and there is a single boundary-line.

Four cross-cuts have been made : and the surface has been resolved into one that

is simply connected.

It is easy to verify :

—

(i) that neither in the upper sheet, nor in the knver sheet, nor partly in the

upper sheet and partly in the lower, can an irreducible circuit be drawn

in the resolved surface ; and v

(ii) that, owing to the cross-cuts, the simplest irreducible circuits in the unresolved

surface—viz. those which enclose 0, 1 ; 1, k ; k, X ; X, /x ;
respectively— arc

rendered impossible in the resolved surface.

The equation in the present example, and the Riemann's surface associated with it,

lead to the theory of hyperelliptic functions*.

180. The last example suggests a method of resolving any two-sheeted

surface into a surface that is simply connected.

The number of its branch-points is necessarily even, say 'Ip + 2. The

branch-lines can be made to join these points in pairs, so that there will be

jt)-t-l of them. To determine the connectivity (§ 178), we have n = 2 and,

since two values are interchanged at every branch-point, H = 2p -i- 2 ; so

that the connectivity is 2p -I- 1. Then 'Ip cross-cuts are necessary for the

required resolution of the surface.

We make cuts round p of the branch-lines, that is, round all of them but

one ; each cut is made to enclose two branch-points, and each lies entirely in

the upper sheet. These are cuts corresponding to the cuts LHA anci EFG
in fig. 62 ; and, as there, the cut round the first branch-line begins and ends

* One of the most direct discussions of the theory from this point of view is given by Prym,

Neue Theorie der ullradliptisdten Functiouen, (Berlin, Mayer and Miiller, 2nd ed., 1885).
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in the boundary, so that it is a cross-cut. All the remaining cuts are loop-

.

cuts at present. This system of p cuts we denote by a^, a,, ..., cip.

We make other p cuts, one passing from the inner edge of each of the p
cuts a already made to the branch-line which it surrounds, then in the lower

sheet to the (p + l)th branch-line, and then in the upper sheet returning to

the point of the outer edge of the cut a at which it began. This system of

cuts corresponds to the cuts AD8GBA and GQPRG in fig. 62. Each of them

can be taken so as to meet no one of the cuts a except the one in which it

begins and ends ; and they can be taken so as not to meet one another.

This system of p cuts we denote by hi, h.^, ••,bp, where b,- is the cut which

begins and ends in a,.. All these cuts are cross-cuts, because they begin and

end in boundary-lines.

Lastly, we make other p - 1 cuts from Uy to 6,._, , for r = 2, 3, . .
. , p, all in

the upper sheet ; no one of them, except at its initial and its final points,

meets any of the cuts already made. This system of p—1 cuts we denote

by Ca, c-i, ...,Cp.

Because hr-i is a cross-cut, the cross-cut c,- changes (ir (hitherto a loop-cut)

into a cross-cut when c,- and a^ are combined into a single cut.

It is evident that no one of these cuts divides the surface into distinct

pieces ; and thus we have a system of 2p cross-cuts resolving the two-sheeted

surface of connectivity 2jj 4- 1 into a surface that is simply connected. The
cross-cuts in order* are

«!, 6i, c, and a,, ho, c^ and a-^, h^

181. This resolution of a general two-sheeted surface suggests f Riemann's

general resolution of a surface with any (finite) number of sheets.

As before, we assume that the surface is closed and has a single boundary

and that its genus is p, so that 2/? cross-cuts are necessary for its resolution

into one that is simply connected.

Make a cut in the surface such as not to divide it into distinct pieces

;

and let it begin and end in the boundary. It is a cross-cut, say a-^; it

changes the number of boundary-lines to 2, and it reduces the connectivity

of the cut surface to '2p.

Since the surface is connected, we can pass in the surface along a

continuous line from one edge of the cut a^ to the opposite edge. Along

this line make a cut 6i : it is a cross-cut, because it begins and ends in

the boundary. It passes from one edge of a^ to the other, that is, from one

boundary-line to another. Hence, as in Prop. II. of § 164, it does not divide

* See Neumann, pp. 178—182 ; Prym, Zur Theoric der Functiune)i in einer zweihUittrigen

Fliiche, (1866).

t Rieniaun, Ges. Werke, pp. 122, 123 ; Neumann, pp. 182—185.

F. F. 26
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the surface into distinct pieces; it changes the number of boundaries to 1,

and it reduces the connectivity to 2p — 1.

The problem is now the same as at first, except that now only

2p — 2 cross-cuts are necessary for the required resolution. We make a

loop-cut Ug, not resolving the surface into distinct pieces, and a cross-cut

Ci from a point of a.> to a point on the boundary at bi] then Ci and a.^, taken

together, constitute a cross-cut that does not resolve the surface into distinct

pieces. It therefore reduces the connectivity to '2p - 2, and leaves two pieces

of boundary.

The surface being connected, we can pass in the surface along a continuous

line from one edge of a^ to the opposite edge. Along this line we make a

cut bo, evidently a cross-cut, passing, like bi in the earlier case, from one

boundary-line to the other. Hence it does not divide the surface into

distinct pieces; it changes the number of boundaries to 1, and it reduces

the connectivity to 2p ~ S.

Proceeding in p stages, each of two cross-cuts, we ultimately obtain a

simply connected surface with a single boundary; and the general effect on

the original unresolved surface is to have a system of cross-cuts somewhat of

the form

Fig. 63.

The foregoing resolution is called the canonical resolution of a Riemann's

surface.

Ex. 1. Construct the Riemann's surface for the equation

both for a = and for a different from zero; and resolve it by cross-cuts into a simply

connected surface with a single boundary, shewing a complete system of irreducible

simple circuits on the unresolved surface.

Ex. 2. Shew that the Riemann's surface for the equation

(^«) {z-h)

{z-c)lz-d)

is of genus jo= 2; indicate the possible systems of branch-lines, and, for each system,

resolve the surface by cross-cuts into a simi)ly connected surface with a single boundary.

(Burnside.)

Ex. 3. Find the connectivity of the surface associated with the equation

tv^z= {z-\f{z+ \f;

draw a possible system of branch-lines, and dissect the .surface so as to reduce it to

a simply connected one. (Math. Trip., Part XL, 1897.)

itfi =
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182. Among algebraical equations with their associated Riemann's

surfaces, two general cases of great importance and comparative simplicity

distinguish themselves. The first is that in which the surface is two-

sheeted ; round each branch-point the two branches interchange. The
second is that in which, while the surface has a finite number of sheets

greater than two, all the branch-points are of the first order, that is, are

such that round each of them only two branches of the function interchange.

The former has already been considered, in so far as concerns the surface

;

we now proceed to the consideration of the latter.

The equation is f{w, z) = 0,

of degree n in w ; and, for our present purpose, it is convenient to regard

/=0 as an equation corresponding to a generalised plane curve of degree n,

so that no term in / is of dimensions higher than n.

The total number of branch-points has been proved, in § 98, to be

n{n- 1)- 28-2/c,

where h is the number of points which are the generalisation of double

points on the curve with non-coincident tangents, and « is the number

of double points on the curve with coincident tangents. Round each of

these branch-points, two branches of iv interchange and only two, so that

each of the numbers niq of § 178 is equal to 2 ; hence the ramification

n is

2 [n {n - 1) - 2S - 2/c} - [n (n - 1) - 2S - 2/c},

that is, n = ?z (?i - 1 ) - 2S - 2k.

The connectivity of the surface is therefore

72(ri-l)-28-2«-2/i + 3;

and therefore the genus p of the surface is

\{n-l){n-2)-h-K.

Now this integer is known* as the deficiency of the curve; and therefore

it appears that the deficiency of the curve is the same as the genus of the

Riemanns surface associated with its equation, and also is the 'same as the

genus of its equation.

Moreover, the number of branch-points of the original equation is H, that

is,

= 2p + 2n-2
= 2{p + {n-l)].

Note. The equality of these numbers, represeuting the deficiency and the genus, is

one among many reasons that lead to the close association of algebraic functions (and

* Salmon's Higher Plane Curves, §§ 44, 83 ; Clebsch's Vorlesiinyen i'lher Geovietrie, (edited

by Lindemann), t. i, pp. 351—429, the German word used instead of deficiency being Geschlecht.

The name 'deficiency' was introduced by Cayley in 1865: see iVoc. Lond. Math. Sue, vol. i,

"On the transformation of plane curves."

26—2
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of functions dejjendent on them) with the theory of plane algebraic curves, in the

investigations of Nother, Brill, Clebsch and others, referred to in §§ 191, 242; and in the

paper by Baker, quoted in § 178. Baker's rule for determining the number is embodied

in the following question ; and a number of simple examples are given in his paper.

Ex. A plane (J) of rectangular Cartesian coordinates is ruled with lines pamllel to

the axes, at unit distances apart, and the angular points of the squares obtained are called

unit points. Corresponding to every term A^^iX^y" in the equation of an irreducible

plane curve (which is referred to rectangular Cartesian axes, the origin being a multiple

point of the curve), the point (r, s) is marked ou the plane (J) and called a curve point.

The outermost of the curve points are joined by finite straight lines so as to form a

convex polygon, enclosing the other curve points and having a curve point at each vertex.

Considering first the sides of this polygon which are nearest to the origin and limited by

the axes of coordinates, and assuming that all the unit points upon these sides are also

curve points and that all these sides are inclined to one of the axes at an angle greater

than ^TT, prove that the sum of the number of double points and cusps to which the

singularity is equivalent is equal to the number of unit points between these sides and

the axes of coordinates together with the number of unit points upon these sides less

two. Considering next the complete polygon and assuming the curve to have only three

singularities, namely at the origin and at infinity on the two axes of coordinates, and

excluding exceptional relations between the coefficients of the terms entering in the

equation of the curve, prove that its deficiency is equal to the whole number of unit

points actually within the polygon. (Math. Trip., Part II., 1893.)

183. With a view to the construction of a canonical form of Riemann's

surface of genus f for the equation under consideration, it is necessarj^ to

consider in some detail the relations between the branches of the functions

as they are affected by the branch-points.

The effect produced on any value of the function by the description of a

small circuit, enclosing one branch-point (and only one), is known. But

when the small circuit is part of a loop, the effect on the value of the

function with which the loop begins to be described depends upon the form

of the loop; and various results (e.g. Ex. 1, § 104) are obtained by taking

different loops. In the first form (§ 175) in which the branch-lines were

established as junctions between sheets, what was done was the equivalent

of drawing a number of straight loops, which had one extremity common to

all and the other free, and of assigning the law of junction according to the

law of interchange determined by the description of the loop. As, however,

there is no necessary limitation to the forms of branch-lines, we may draw

them in other forms, always, of course, having branch -points at their free

extremities; and according to the variation in the form of the branch-line,

(that is, according to the variation in the form of the corresponding loop

or, in other words, according to the deformation of the loop over other

branch-points from some form of reference), there will be variation in the law

of junction along the branch-lines.

There is thus a large amount of arbitrary character in the forms of the

branch-lines, and consequently in the laws of junction along the branch-lines.
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of the sheets of a Riemanu's surtace. Moreover, the assignment of the n

branches of the function to the n sheets is arbitrary. Hence a consider-

able amount of arbitrary variation in the configuration of a Riemann's

surface is possible within the limits imposed by the invariance of its

connectivity. The canonical form will be established by making these

arbitrary elements definite.

184. After the preceding explanation and always under the hypothesis

that the branch-points are simple, we shall revert temporarily to the use of

loops and shall ultimately combine them into branch-lines.

When, with an ordinary point as origin, we construct a loop round a

branch-point, two and only two of the values of the function are affected

by that particular loop ; they are interchanged by it ; but a different form of

loop, from the same origin round the same branch-point, might affect some

other pair of values of the function.

To indicate the law of interchange, a symbol will be convenient. If the

two values interchanged by a given loop be Wi and w^,, the loop will be

denoted by im ; and i and m will be called the numbers of the symbol of that

loop.

For the initial configuration of the loops, we shall (as in § 175) take an

ordinary point : we shall make loops beginning at 0, forming them in the

sequence of angular succession of the branch-points round and drawing the

double linear part of the loop as direct as possible from to its branch-point:

and, in this configuration, we shall take the law of interchange by a loop to

be the law of interchange by the branch-point in the loop.

In any other configuration, the symbol of a loop round any branch-point

depends upon its form, that is, depends upon the deformation over other

branch-points which the loop has suffered in passing from its initial form.

The effect of such deformation must first be obtained : it is determined by

the following lemma :

—

When one loop is deformed over- another, the symbol of the deformed loop

is unaltered, if neither of its numbers or if both of its numbers occur in the

symbol of the unmoved loop; but if, before deformation, the symbols have one

number common, the neiu symbol of the deformed loop is obtained frorn the old

symbol by substituting, for the common number, the other number in the symbol

of the unmoved loop.

The sufficient test, to which all such changes must be subject, is that

the effect on the values of the function at any point of a contour enclosing

both branch-points is the same at that point for all deformations into two

loops. Moreover, a complete circuit of all the loops is the same as a contour

enclosing all the branch-points; it therefore (Cor. III. § 90) restores the initial

value with which the circuit began to be described.
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Obviously there are three cases.

First, when the symbols have no number common : let them be mn, rs.

The branch-point in the loop rs does not affect w^ or w„ : it is thus effectively

not a branch-point for either of the values u'm and tUn ',
and therefore (§ 91

)

the loop 11171 can be. deformed across the point, that is, it can be deformed

across the loop mn. '

Secondly, when the symbols are the same : the symbol of the deformed

loop must be unaltered, in order that the contour embracing only the two

branch-points may, as it should, restore after its complete description each of

the values affected.

Thirdly, when the symbols have one number common : let be any

point and let the loops be OA, OB in any given position such as (i), fig. 64,

with symbols mr, nr respectively. Then OB may be deformed over OA as

in (ii), or OA over OB as in (iii).

^A.
Fig. G4.

The effect at of a closed circuit, including the points A and B and

described positively beginning at 0, is, in (i) which is the initial configura-

tion, to change Wm into Wr, Wr into Wn, Wn into w^; this effect on the

values at 0, unaltered, must govern the deformation of the loops.

The two alternative deformations (ii) and (iii) will be considered separately.

When, as in (ii), OB is deformed over OA, then OA is unmoved and

therefore unaltered : it is still mr. Now, beginning at with w.,n, the loop

OA changes w^ into w,. : the whole circuit changes w„i into w,., so that OB
must now leave w,. unaltered. Again, beginning with w„, it is unaltered by

OA, and the whole circuit changes w,i into Wm hence OB must change Wn

into Wrn, that is, the symbol of OB must be mn. And, this being so, an

initial Wr at is changed by the whole circuit into Wn, as it should be.

Hence the new symbol mn of the deformed loop OB in (ii) is obtained from

the old symbol by substituting, for the common number r, the other number

m in the symbol of the unmoved loop OA.

We may proceed similarly for the deformation in (iii) ; or the new symbol

may be obtained as follows. The loop OA in (iii) may be deformed to the

form in (iv) without crossing any branch-point and therefore without

changing its symbol. When this form of the loop is described in the
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positive direction, w„ initially at is changed into lo,. after the first loop

OB, for this loop has the position of OB in (i), then it is changed into iu,n.

after the loop OA, for this loop has the position of OA in (i), and then iv,n is

unchanged after the second (and inner) loop OB. Thus lOn is changed into

xo.,n, so that the symbol is mn, a symbol which is easily proved to give the

proper results with an initial value Wm or w,- for the whole contour. This

change is as stated in the theorem, which is therefore proved.

Ex. If the deformation from (i) to (ii) be called superfor, and that from (i) to (iii)

inferior, then .v successive superior deformations give the same loop-configurati(jn,

in symbols and relative order for positive description, as 6 — .v successive inferior

deformations.

Corollary. A loop can be passed unchanged over two loops that have the

same symbol.

Let the common symbol of the unmoved loops be mn. If neither number

of the deformed loop be ni or n, passage over each of the loops mn makes no

difference, after the lemma ; likewise, if its symbol be mn. If only one of its

numbers, say n, be in mn, its symbol is nr, where r is different from m. When
the loop nr is deformed over the first loop mn, its new symbol is mr ; when

this loop mr is deformed over the second loop mn, its new symbol is nr, that

is, the final symbol is the same as the initial symbol, or the loop is unchanged.

185. The initial configuration of the loops is used by Clebsch and

Gordan to establish their simple cycles and thence to deduce the periodi-

city of the Abelian integrals connected with the equation /(w, z) = 0,

without reference to the Riemann's surface ; and this method of treating

the functions that arise through the equation, always supposed to have

merely simple branch-points, has been used by Casorati* and Lilrothf.

We can pass from any value of w at the initial point to any other

value by a suitable series of loops; because, were it possible to inter-

change the values of only some of the branches, an equation could be

constructed which had those branches for its roots. The fundamental

equation could then be resolved into this equation and an equation having

the rest of the branches for its roots : that is, the fundamental equation

would cease to be irreducible.

We begin then with any loop, say one connecting Wj with w.,. There

will be a loop, connecting the value W3 with either Wj or w^] there will be

a loop, connecting the value lu^ with either Wj, w.>, or Wj; and so on, until

we select a loop, connecting the last value lu^ with one of the other values.

Such a set of loops, n— 1 in number, is csdled fundamental.

A passage round the set will not at the end restore the branch with

which the description began. When we begin with any value, any other

value can be obtained after the description of properly chosen loops of the set.

* Aiinali di Matematica, 2'"' Ser., t. iii, (1870), pp. 1—27.

t Abh. d. K. hay. Akad., t. xvi, i Abtb., (1887), pp. 199—2il.



•408 • CYCLES OF LOOPS [185.

An)' other loop, when combined with a set of fundamental loops, gives

a system the description of suitably chosen loops of which restores some

initial value; only two values can be restored by the description of loops

of the combined system. Thus if the loops in order be 12, 13, 14, ..., Iv

and a loop qr be combined with them, the value tv,j is changed into Wj by

Iq, into Wr by Ir, into Wq by qr; and similarly for w,-. Such a combination

of n loops is called a simple cycle.

The total number of branch-points, and therefore of loops, is (§ 182)

2b + (n-l)};

and therefore the total number of simple cycles is 2;) + /; — 1. But these

simple cycles are not independent of one another.

In the description of any cycle, the loops vary in their operation

according to the initial value of w. and, for two different initial values of

w, no loop is operative in the same Avay. For otherwise all the preceding

and all the succeeding loops would operate in the same way and would

lead, on reversal, to the same initial value of w. Hence a loop of a given

cycle can be operative in only two descriptions, once when it changes, say, w,-

into Wj, and the other when it changes Wj into wi.

Now consider the circuit made up of all the loops. When w^ is taken as

the initial value, it is restored at the end : and in the description only a

certain number of loops have been operative : the cycle made up of these loops

can be resolved into the operative parts of simple cycles, that is, into simple

cycles : hence one relation among the simple cycles is given by the considera-

tion of the operative loops when the whole system of the loops is described

with an initial value.

Similarly when any other initial value is taken; so that apparently there

are n relations, one arising from each initial value. These n relations are not

independent : for a simultaneous combination of the operations of all the

loops in all the circuits leads to an identically null effect (but no smaller

combination would be effective), for each loop is operative twice (and only

twice) with opposite effects, shewing that one and onl}' one of the relations is

derivable from the remainder. Hence there are n — 1 independent relations

and therefore* the number of independent simple cycles is 2p.

186. We now proceed to obtain a typical form of the Riemann's surface

by deforming the initial configuration of the loops into a typical configura-

tion t. The final arrangement of the loops is indicated by the two theorems :

—

* Clebsch und Gordan, Theorie der AheVschen Funcli(ynen, p. 8.^.

t The investigation is based upon the following memoirs :

—

Liiroth, "Note uber Verzweigungsschnitte und Querschnitte in einer Riemanu'schen Fliiche,"

Math. Ann., t. iv, (1871), pp. 181—184 ;
" Ueber die kunonischen Perioden der Abel'schen

Integrale," ALh. d. K. hay. Akad., t. xv, ii Abth., (1885), pp. 329—3GG.

Clebsch, " Zur Theorie der Riemann'schen Flachen,"' Blath. Aim., t. vi, (1873), pp. 216—230.

Clifford, " On the canonical form and dissection of a Kiemaun's Surface," Lond. Math. Soc.

Proc, vol. viii, (1877). pp. 2'.I2—304.
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I. The loops can be made in j^airs iti which all loop-symbols are of the

form (m, m + l),for m= 1, 2,..., n — 1. (With this configuration, w^ can be

changed by a loop only into iVo, tVo by a loop only into Ws, and so on in

succession, each change being effected by an even number of loops.) This

theorem is due to Liiroth.

II. The loops can be made so that there is only one pair 12, only one

pair 23,..., only one pair (?i — 2, n — 1), and the remaining ^j + 1 pairs are

(n — 1, m)- This theorem is due to Clebsch.

187. We proceed to prove Luroth's theorem, assuming that the loops

have the initial configuration of § 184.

Take any loop 12, say OA : beginning it with w^, describe loops positively

and in succession ; then as the value Wj is restored sooner or later, for it

must be restored by the circuit of all the loops, let it be restored first by a

loop OB, the symbol of OB necessarily containing the number 1. Between OA
and OB there may be loops whose symbols contain 1 but which have been

inoperative. Let each of these in turn be deformed so as to pass back over

all the loops between its initial position and OA ; and then finally over OA.

Before passing over OA its symbol must contaia 1, for there is no loop over

which it has passed that, having 1 in its symbol, could make it drop 1 in the

passage ; but it cannot contain 2, for, if it did, the effect of OA and the

deformed loop would be to restore 1, an effect that would have been

caused in the original position, contrary to the hypothesis that OB is the

first loop that restores 1. Hence after it has passed over OA its symbol

no longer contains 1.

Next, pass OB over the loops between its initial position and OA but not

over OA : its symbol must be 12 in the deformed position since w^ is restored

by the loop OB. Then OA and the deformed loop OB are each 12; hence each

of the loops, between the new position and the old position of OB, can be passed

over OA and the new loop OB without an}' change in its symbol. There are

therefore, behind OA, a series of loops that do not affect Wy. Thus the loops

are

(a) loops behind OA not affecting w^, (6) OA, OB each 12,

(c) other loops beyond the initial position of OB.

Begin now with iv., at the loop OB and again describe loops positively

and in succession : then w.^ must be restored sooner or later. It may be

only after OA is described, so that there has been a complete circuit of

all the loops ; or it may first be by an intermediate loop, say OC.

For the former case, when OA is the first loop by which w.^ is restored,

we deform as follows. Deform all loops affecting w^, which lie between

OB and OA, in the positive direction from OB back over other loops and

over OB. The symbol of each just before its defoi-mation contains 1 but



410 LUROTHS THEOREM [187.

not 2, and therefore after its deformation it does not contain 1. Moreover

just after OB is described, w^ is the value, and just before OA is described,

w^^ is the value ; hence the intermediate loops, which have affected Wj,

must be even in number. Let OG be the first after OB which affects w-^,

and let the symbol of OG be Ir. Then beginning OG with w^, the value

Wi must be restored by a complete circuit of all the loops, that is, it

must be restored by OB; and therefore the value must be Wi when
beginning OA, or w, must be restored before OA. Let OH be the first

loop after OG to restore Wj ; then, by proceeding as above, we can deform

all the loops between OG and OH over OG, with the result that no such

deformed loop affects Wj and that OG and OH are both \r. Hence all the

loops affecting w^ can be arranged in pairs having the same symbol.

Since OG and OH are a pair with the same symbol, every loop between

OB and OG can be passed unchanged over OG and OH together. When
this is done, pass OG over OB so that it becomes 2r, and then OH over

OB so that it also is 2r. Thus these deformed loops OG, OH are a pair

2r ; and therefore OA can, without change, be deformed over both so as

to be next to OB. Let this be done with all the pairs ; then, finally, we
have

(a) loops not affecting ^u^, {b) a pair with the symbol 12,

(c) 25f^ii's affecting w., and not tu^, (d) loops not affecting Wj.

We thus have a pair 12 and loops not affecting iv^, so that such a change

has been effected as to make all the loops affecting tu^ possess the symbol 12.

For the second case, when OG is the first loop to restore lu.,, the

value with which the loop OB whose symbol is 12 began to be described, we
treat the loops between OB and OG in a manner similar to that adopted in

the former case for loops between OA and OB; so that, remembering that

now W2 instead of the former Wi is the value dealt with in the recurrence, we
can deform these loops into

(a) loops behind OB which change w^ but not W2,

(h) OB and OG, the symbol of each of which is 12.

Now OB was next to OA ; hence the set (a) are now next to 0^4. Each of

them when passed over OA drops the number 1 from its symbol, and so the

whole system now consists of

(a) loops behind OA not affecting u\, (b) OA, OB, OG each of which

is 12, (c) other loops.

Begin again with the value w^ before OA. Before OG the value is Wj

;

and the whole circuit of the loops must restore w^, which must therefore

occur before OA. Let OD be the first loop by which il\ is restored. Then
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treating the loops between 00 and OD, as formerly those between the initial

positions of OA and OB were treated, we shall have

(a) loops behind OA not affecting w^, (6) OA, OB each being 12,

(c) loops between OB and 00 not affecting Wj, {d) 00, OD each

being 12, (e) other loops.

Except that fewer loops affecting lv^ have to be reckoned with, the con-

figuration is now in the same condition as at the end of the first stage.

Pr(jceeding therefore as before, we can arrange that all the loops affecting w^

occur in pairs with the symbol 12. Moreover, each of the loops in the set

(c) can be passed unchanged over OA and OB ; so that, finally, we have

(a) pairs of loops with the symbol 12, (6') loops not affecting ii\.

We keep (a) in pairs, so that any desired deformation of loops in (b') over

them can be made without causing any change ; and we treat the set (b') in

the same manner as before, with the result that the set {h') is replaced by

(6) pairs of loops with the symbol 23, (c') loops not affecting w^ or w^.

And so on, with the ultimate result that the loops can he made in pairs in

which each symbol is of the form (ni, m + 1) for ^1 = 1, ..., n — \.

188. We now come to Clebsch's Theorem that the loops thus made can

be so deformed that there is only one pair 12, only one pair 23, and so on,

until the last symbol {n — 1, n), which is the common symbol of jj + 1 pairs.

This can be easily proved after the establishment of the lemma that, if

there be two pairs 12 and one pair 23, the loops can be deformed into one pair

1 2 and two pairs 23.

The actual deformation leading to the lemma is shew^n in the accom-

panying scheme : the deformations implied by

the continuous lines are those of a loop from the

left to the right of the respective lines, and those

implied by the dotted lines are those of a loop

from the right to the left of the respective lines.

It is interesting to draw figures, representing

the loops in the various configurations.

By the continued use of this lemma we can

change all but one of the pairs 12 into pairs 23,

all but one of the pairs 23 into pairs 34, and so

on, the final configuration being that there are one pair 12, one pair 23, ...

and p + 1 pairs (n— 1, n). Thus Clebsch's theorem is proved.

189. We now proceed to the construction of the Riemann's surface.

Each loop is associated with a branch-point, and the order of interchange

for passage round the branch-point, by means of the loop, is given by the

numbers in the symbol of the loop.

12
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Hence, in the configuration which has been obtained, there are two branch-

points 12 : we therefore connect them (as in § 176) by a line, not necessarily

along the direction of the two loops 12 but necessarily such that it can,

without passing over any branch-point, be deformed into the lines of the

two loops ; and we make this the branch-line between the first and the

second sheets. There are two branch-points 23 : we connect them by a line

not meeting the former branch-line, and we make it the branch-line between

the second and the third sheets. And so on, until we come to the last two

sheets. There are 2p-|-2 branch-points n — 1, n: we connect these in pairs

(as in § 176) by ^-1-1 lines, not meeting one another or any of the former

lines, and we make them the p + 1 branch-lines between the last two sheets.

It thus appears that, when the winding-points of a Riemanns surface with

n sheets of connectivity 2p -\-l are all simple, the surface can he taken in such

a form that tJiere is a single branch-line hetiueen consecutive sheets except for the

last two sheets : and hetiueen the last two sheets there are p-\-l branch-lines.

This form of Riemann's surface may be regarded as the canonical form for a

surface, all the branch-points of which are simple.

Further, let AB be a branch-line such as 12. Let two points P and Q
be taken in the first sheet on opposite sides of AB, so that PQ in space is

infinitesimal ; and let P' be the point in the second sheet determined by the

same value of z as P, so that P'Q in the sheet is infinitesimal. Then the

value iVi at P is changed by a loop round A (or round B) into a value at Q
differing only infinitesimally from tv.2, which is the value at P' : that is, the

change in the function from Q to P' is infinitesimal. Hence the value of the

function is continuous across a line of 'passage from one sheet to another.

190. The genus of the foregoing surface is p ; and it was remarked, in

§ 170, that a convenient surface of reference of the same genus is that of a

solid sphere with p holes bored through it. It is, therefore, proper to in-

dicate the geometrical deformation of a Riemann's surface of this canonical

form into a p-holed sphere.

The Riemann's surface consists of n sheets connected chainwise each with

a single branch-line to the sheet on either side of it, except that the first is

connected only with the second and that the last two have ^ + 1 branch-

lines. We may also consider the whole surftice as spherical and the sequence

of the sheets from the inside outwards : and the outmost sheet can be con-

sidered as bounded.

Let the branch-line between the first and the second sheets be made to

lie along part of a great circle. Let the first sheet of. the Riemann's surface

be reflected in the plane of this great circle : the line becomes a long

narrow hole along the great circle, and the reflected sheet becomes a large

indentation in the second sheet. Reversing the process of § 169, we can
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change the new form of the second sheet, so that it is spherical again : it is

now the inmost of the 71 — 1 sheets of the surface, the connectivity and the

ramification of which are unaltered by the operation.

Let this process be applied to each surviving inner sheet in succession.

Then, after n — 2 operations, there will be left a two-sheeted surface ; the

outer sheet is bounded and the two sheets are joined by jt? + 1 branch-

lines; so that the connectivity is still 2p + l. Let these branch-lines be

made to lie along a great circle : and let the inner surface be reflected

in the plane of this circle. Then, after the reflexion, each of the branch-lines

becomes a long narrow hole along the great circle ; and there are two

spherical surfaces which pass continuously into one another at these holes,

the outer of the surfaces being bounded. By stretching one of the holes

and flattening the two surfaces, the new. form is that of a bifacial flat

surface : each of the p holes then becomes a hole through the body

bounded by that surface ; the stretched hole gives the extreme geo-

metrical limits of the extension of the surface, and the original boundary of

the outer surface becomes a boundary hole existing in only one face. The

body can now be distended until it takes the form of a sphere, and the final

form is that of the surface of a solid sphere with p holes bored through it

and having a single boundary.

This is the normal surface of reference (§ 170) of connectivity 2p + l.

As a last ground of comparison between the Riemann's surface in its

canonical form and the surface of the bored sphere, we may consider the

system of cross-cuts necessary to transform each of them into a simply

connected surface.

We begin with the spherical surface. The simplest irreducible circuits

are of two classes, (i) those which go round a hole, (ii) those which go through

a hole ; the cross-cuts, 2p in number, which make the surface simply con-

nected, must be such as to prevent these irreducible circuits.

Round each of the holes we make a cut a, the first of them beginning

and ending in the boundary : these cuts prevent circuits through the holes.

Through each hole we make a cut b, beginning and ending at a point in the

corresponding cut a : we then make from the first 6 a cut Cj to the second a,

from the second b a cut Co to the third a, and so on. The surface is then

simply connected : cii is a cross-cut, b^ is a cross-cut, Cj + ag is a cross-cut,

62 is a cro.ss-cut, c.2 + a^ is a cross-cut, and so on. The total number is

evidently 2p, the number proper for the reduction ; and it is easy to verify

that there is a single boundary.

To compare this dissection with the resolution of a Riemann's surface by

cross-cuts, say of a two-sheeted surface (the n-sheeted surface was trans-

formed into a two-sheeted surface), it must be borne in mind that only p of

the p + I branch-lines were changed into holes and the remaining one, which.
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after the partial deformation, was a hole of the Riemann's surface, was

stretched out so as to give the boundary.

It thus appears that the direction of a cut a round a hole in the normal

surface of reference is a cut round a branch-line in one sheet, that is, it is a

cut a as in the resolution (§ 180) of the Riemann's surface into one that is

simply connected.

Again, a cut t is a cut from a point in the boundary across a cut a and

through the hole back to the initial point; hence, in the Riemann's surface,

it is a cut from some one assigned branch-line across a cut Uy, meeting the

branch-line surrounded by a^, passing into the second sheet and, without

meeting any other cut or branch-line in that surface, returning to the initial

point on the assigned branch-line. It is a cut b as in the resolution of the

Riemann's surface.

Lastly, a cut c is made from a cut 6 to a cut a. It is the same as in the

resolution of the Riemann's surface, and the purpose of each of these cuts is

to change each of the loop-cuts a (after the first) into cross-cuts.

A simple illustration arises in the case of a two-sheeted Riemann's surface, of genus jo= 2.

The various forms are :

—

(i) the surface of a two-holed sjjhere, with the directions of cross-cuts that resolve it

into a simply connected surface ; as in (i), fig. 65, B, K being at opposite edges

of the cut fj where it meets a.^ : H, C at opposite edges where it meets h^ : and

so on
;

(ii) the spherical surface, resolved into a simply connected surface, bent, stretched,

and flattened out ; as in (ii), fig. 65
;

(iii) the plane Riemann's surface, resolved by the cross-cuts ; as in fig. 63, p. 40:^.

I'iL'. 65.

NumercMis illustrations of transformations of Riemann's surfaces arc given by

Hofmann, Methodik der stetigen Deformation von zweihlattrigen Riemannschen Fl'dchen^

(Halle a. S., Nebert, 1888).
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191. We have seen that a biftxcial surface with a single boundary can be

deformed, at least geometrically, into any other bifacial surface with a single

boundary, provided the two surfaces have the same connectivity; and the

result is otherwise independent of the constitution of the surface, in regard

to sheets and to form or position of branch-lines. Further, in all the geo-

metrical deformations adopted, the characteristic property is the uniform

correspondence of points on the surfaces.

Now with ever}'- Riemann's surface, in its initial form, an algebraical

equation f{w, z) = is associated ; but when deformations of the surface

are made, the relations that establish uniform correspondence between

different forms, practically by means of conformal representation, are often

of a transcendental character (Chap. XX.). Hence, when two surfaces are

thus equivalent to one another, and when points on the surfaces are

determined solely by the variables in the respective algebraical equations,

no relations other than algebraical being taken into consideration, the

uniform correspondence of points can only be secured by assigning a new

condition that there be uniform transformation between the variables w and

z of one surface and the variables lu' and z of the other surface. And, when

this condition is satisfied, the equations are such that the deficiencies of the

two (generalised) curves represented by the equations are the same, because

they are equal to the common connectivity. It may therefore be expected

that, when the variables in an equation are subjected to uniform transfor-

mation, the genus of the equation is unaltered ; or in other words, that the

deficiency of a curve is an invariant for uniform transformation.

This inference is correct : the actual proof is directly connected with

geometry and the theory of Abelian functions, and is given in treatises

on those subjects*. We shall return to the theorem in connection with

birational transformation, which will be discussed later: merely remarking

now that the result is of importance here, because it justifies the adoption

of a simple normal surface of the same genus as the surface of reference.

* Clebsch's Vorlesungen iiber Geovietrie, t. i, p. 459, where other referenceo are given ; Salmon's

Higher Plane Curves, pp. 93, 319; Clebsch und Gordan, Tlieorie cler AbePiyclien Finictioneii,

Section 3 ; Brill, 3Iath. Ann. , t. vi, pp. 33—65.



CHAPTER XVI.

Algebraic Functions and their Integrals.

192. In the preceding chapter sufficient indications have been given as

to the character of the Riemann's surface on which the ??-branched function

w, determined by the equation

f{tu,z) = 0,

can be represented as a uniform function of the position of the variable.

It is unnecessary to consider algebraically multiform functions of position

on the surface, for such multiformity would merely lead to another surface

of the same kind, on which the algebraically multiform functions would

be uniform functions of position ; transcendentally multiform functions of

position will arise later, through the integrals of algebraic functions. It

therefore remains, at the present stage, only to consider the most general

uniform function of position on the Riemann's surface.

On the other hand, it is evident that a Riemarm's surface of any number

of sheets can be constructed, with arbitrary branch-points and assigned

sequence of junction ; the elements of the surface being subject merely to

general laws, which give a necessary relation between the number of sheets,

the ramification and the connectivity, and which require the restoration of

any value of the function after the description of some properly chosen

irreducible circuit. The essential elements of the arbitrary surface, and the

merely general laws indicated, are independent of any previous knowledge

of an algebraical equation associated with the surface ; and a question arises

whether, when a Riemann's surface is given, an associated algebraical equa-

tion necessarily exists.

Two distinct subjects of investigation, therefore, arise. The first is the

most general uniform function of position on a surface associated with a given

algebraical equation, and its integral ; the second is the discussion of the

existence of functions of position on a surface that is given independently
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of an algebraical equation. Both of them lead, as a matter of fact, to the

theory of transcendental (that is, non-algebraical) functions of the most

general type, commonly called Abelian transcendents. But the first is,

naturally, the more direct, in that the algebraical equation is initially

given : whereas, in the second, the prime necessity is the establishment

of the so-called Existence-Theorem—that such functions, algebraical and

transcendental, exist.

193. Taking the subjects of investigation in the assigned order, we

suppose the fundamental equation to be irreducible, and rational as

regards both the dependent and the independent variable ; the general form

is therefore

ty'» Go (z) + w"-i G,(2)+...+ ivGn-, (2) + Gn {z) = 0,

the coefficients Ga{z), Gi(z), ..., Gn(z) being rational integral functions of

the variable z.

The infinities of w are, by § 95, the zeros of Go (z) and, possibly, z = ao

.

But, for our present purpose, no special interest attaches to the infinity of a

function, as such ; w-e therefore take wGq (z) as a new dependent variable,

and the equation then is

f(lV, Z) = W" -I-
W"-i

(/i (^) + . . . -h lUgn-i {z) + (Jn {z) = 0,

in which the functions g (z) are rational integral functions of z.

The distribution of the branches for a value of z which is an ordinary

point, and the determination of the branch-points together with the cyclical

grouping of the branches round a branch-point, may be supposed known.

When the corresponding ?i-sheeted Riemann's surface (say of connectivity

2p + 1) is constructed, then w is a uniform function of position on the

surface.

Now not merely iv, but every rational function of lu and z, is a uniform

function of position on the surface ; and its branch-points (though not

necessarily its infinities) are the same as that of the function w.

Conversely, every uniform function of position on the Riemann's surface,

having accidental singularities and infinities only of finite order, is a rational

function of w and z. The proof* of this proposition, to which we now
proceed, leads to the canonical expression for the most general uniform

function of position on the surface, an expression which is used in Abel's

Theorem in transcendental integrals.

Let w' denote the general uniform function, and let lu^, Wo, ..., w,/ denote

the branches of this function for the points on the n sheets determined by

* The proof adopted follows Prym, Crelle, t. Ixxxiii, (1877), pp. 251—261 ; see also Klein,

Veber Riemuniis Thevrie der algehraixclien Functionen und .Direr Integrule, p. 57.

F. F. 27
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the arithmetical magnitude z\ and let Wj, w.^, ..., Wn be the corresponding

branches of w for the magnitude z. Then the quantity

W/W/ + W^'Wo + . . . + Wn'tVn,

where s is any positive integer, is a symmetric function of the possible values

of w^w' ; it has the same value in whatever sheet 2 may lie and by whatever

path z may have attained its position in that sheet ; the said quantity is

therefore a uniform function of z. Moreover, all its singularities are accidental

in character, by the initial hypothesis as to iv' and the known properties of

w ; they are finite in number ; and therefore the uniform function of z is

rational. Let it be denoted by lig{z), which is an integral function only

when all the singularities are for infinite values of z ; then

WiHv/ + IU./W2 + . . . + Wn^Wn = hg (z),

an equation which is valid for any positive integer s, there being of course

the suitable changes among the rational integral functions h (z) for changes

in s. It is unnecessary to take s ^ n, when the equations for the values

0, 1, ..., n— 1 of s are retained: for the equations corresponding to values

of s ^ w can be derived, from the ji equations that are retained, by using

the fundamental equation determining w.

Solving the equations

w/ + iv./ + ...+Wn=ho (z),

Wi"~' W'l' + . . . + tt^n""' Wn = hn-1 {z),

to determine w/, we have

K{z), 1, ..., 1

h^{z), W2, ..., Wn

]U{Z), W.^, ..., IVn-

1,
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But f{lU, z) = (w — «^i) (W — Wo) ...{W — IVn),

SO that h = Wi + gi (z),

k,= W'' + Wig,{z) + g.(z),

kn = w,''-^ + Wi"-'g, {z)+...+ gn-i (z).

When these expressions for k are substituted in the numerator of the

expression for w/, it takes the form of a rational integral function of lu

of degree 71 — 1 and of z, say

ho (z) W,"-' + H, {Z) tU,""-^ + . . . + Hn-2 (Z) Uh + Hn-i (z).

The denominator is evidently df/dw^, when w is replaced by Wj after

differentiation, so that we now have

, ho(z)ii\^^-' + ... + Hn-Az)
""'

"
df/div.

The corresponding form holds for each of the branches of w' : and therefore

we have

, _ hp (z) w''-' + H, {z) w"-- + . + Hn-i (z)

^^
~

dfjdw

^ ho (z) w""-' 4- H, (z) w-"-' + . . + Hn-, jz)

~
nw""-^ + ( n - 1

)

w^'-^-gi {z) + ...+ gn-i {z)
'

so that w' is a rational function of lu and z. The proposition is therefore

proved.

By eliminating w between f{w, z) = and the equation which expresses

w' in terms of w and z, or by the use of § 99, it follows that w' satisfies an

algebraical equation

Miu\z) = 0,

where /i is of order n in w'. As will be seen later (§ 245), fi {w , z) either is

irreducible, or is an exact power of an irreducible polynomial. When /i {w, z)

is irreducible, the equations /(w, z) = and /i {w', z) = () have the same

Rieraann's surface associated with them*.

194. It thus appears that there are uniform functions of position on

the Riemann's surface just as there are uniform functions of position in

a plane. The preceding proposition is limited to the case in which the

infinities, whether at branch-points or not, are merely accidental ; had the

function possessed essential singularities, the general argument would still

be valid, but the forms of the uniform functions h {z) would no longer be

polynomial. In fact, taking account of the difference in the form of the

surface on which the independent variable is represented, we can extend

to multiform functions, which are uniform on a Riemann's surface, those

propositions for uniform functions which relate to expansion near an ordinary

* Functions related to one another, as 10 and w' then are, are called gleichverzweigt,

Eiemann, p. 93.

27—2
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point or a singularity or, by using the substitution of § 93, a branch

singularity, those which relate to continuation of functions, and so on
;

and their validity is not limited, as in Cor. VI., § 90, to a portion of the

surface in which there are no branch-points.

Thus we have the theorem that a uniform rational function ofposition on

the Riemanns surface has as many zeros as it has infinities.

The number is called * the degree of the function.

This theorem may be proved as follows.

The function is a rational function of lo and z. If it be also integral, let it be

w'= U {w, z), where U is integral.

Then the number of the zeros of w' on the surface is the number of simultaneous roots

common to the two equations U{w,z)= 0, f{w, z)= 0. If w^^ and / denote the aggregates

of the terms of highest dimensions in these equations—say of dimensions X and /ix respec-

tively—then X/x is the number of common roots, that is, the number of zeros of w.

The number of points, where w' assumes a value A, is the number of simultaneous

roots common to the equations U{w, z) = A, f{w, z)= 0, that is, it is X/x as before. Hence

there are as many points where w' assumes a given value as there are zeros of w' ; and

therefore the number of the infinities is the same as the number of zeros. The number

of infinities can also be obtained by considering them as simultaneous roots common to

U (w z)
If the function be not integral, it can (^ 193) be expressed in the form w'= >^ , ' , ,o

'
\i / 1 V{w,z)^

where U and V are rational integral functions. The zeros of w' axe the zeros of U and

the infinities of F, the numbers of which, by what precedes, are respectively the same as

the infinities of U and the zeros of V. The latter are the infinities of w ; and therefore w'

has as many zeros as it has infinities.

Note 1. When the numerator and the denominator of a uniform fractional

function of z have a common zero, we divide both of them by their greatest

common measure ; and the point is no longer a common zero of their new
forms. But when the numerator U {w, z) and the denominator V{w, z) of a

uniform function of position on a Riemann's surface have a common zero, so

that there are simultaneous values of w and z for which both vanish, U and V
do not necessarily possess a rational common factor ; and then the common
zero cannot be removed.

It is not difficult to shew that this possibility does not aftect the preceding theorem.

Note 2. In estimating the degree of a function through (say) its zeros, it

is necessary to have a clear mode of estimating the multiplicity of a zero

;

likewise of course for its infinities, and for its level points.

Let w = a, z = a, be a zero of a uniform rational function U (w, z) of

position on a Riemann's surface : the multiplicity of the zero is estimated by

the expression of U in the immediate vicinity of the position. For this

purpose, let

w = a ^ I/, z = a + x.

* Sometimes it is called the order of the function.
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(If a be infinite, we take w = -
; if s be infinite, we take z = -\ if both be

y X

infinite, we use both these substitutions.)

First, let a, a be an ordinary point on the Riemann's surface, that is, not a

branch-point; then the equation

/(a + 2/, a + A-) = =/(«, a)

determines y as a uniform function of x in the immediate vicinity of a, a, so

that we have

y = \iX + \.2X- + —
Now U{iv, z)= U(a + y, a + x)

du du

substitute for y on the right-hand side the above value, and suppose that

then

U (w, z) = kox^ + k^x^+' + ...,

in the immediate vicinity of the point on the surface. We then say that the

zero a, a of U{w, z) is of multiplicity I.

Next, let the point a, a be a branch-point on the Riemann's surface, so

that a number of sheets wind into one another at the point. Then, by § 97,

there exists a variable ^ such that

in the immediate vicinity of a, a : the positive integers j) and q having no

common factor. If ^ = oo give rise to a branch-point, the new variable would

be given by z = t~^; if a were infinite, the expression for w would be of the

form tv = ^~P {vi + V2^+ ...); and similarly if both a and a were infinite. As

c(. a is a zero of U, we have

U{^o,z) = (vj-a)- + {z-c)^+....

Substitute for both w-a and z — c on the right-hand side : and suppose that

then

valid in the immediate vicinity of the point. We then say* that ^ is

an infinitesimal of the first order, and therefore that the zero a, a is of

multiplicity X.

* Riemann, Ges. Werke, p. 96. The justification for regarding f as a small quantity of the

first order, that is, the same as x when the point is not a branch-point, is that the value of

2iri
J
z-a

taken round a simple closed curve enclosing a is q, because the curve passes round a in each of

the q sheets. Thus f'' counts as having q zeros, and therefore f is of the first order.
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195. In the case of uniform functions it was seen that, as soon as

their integrals were considered, deviations from uniformity occurred. Special

investigations indicated the character of the deviations and the limitations

to their extent. Incidentally, special classes of functions were introduced,

such as many-valued functions, the values differing by multiples of a constant;

and thence, by inversion, simply-periodic functions were deduced.

So, too, when multiform functions defined by an algebraical equation are

considered, it is necessary to take into special account the deviations from

uniformity of value on the Riemann's surface which may be introduced by

processes of integration. It is, of course, in connection with the branch-

points that difficulties arise ; but, as the present method of representing the

variation of the variable is distinct from that adopted in the case of uniform

functions, it is desirable to indicate how we deal, not merely with branch-

points, but also with singularities of functions when the integrals of such

functions are under consideration. In order to render the ideas familiar

and to avoid prolixity in the explanations relating to general integrals, we

shall, after one or two propositions, discuss again some of the instances

given in Chapter IX., taking the opportunity of stating general results as

occasion may arise.

One or two propositions already proved must be restated: the difference

from the earlier forms is solely in the mode of statement, and therefore the

reasoning which led to their establishment need not be repeated.

I. The path of integration hetiueen any two points on a Riemann's surface

can, without affecting the value of the integral, he deformed in any possible

continuous manner that does not make the path pass over any discontinuity of

the subject of integration.

This proposition is established in § 100.

II. A simple closed curve on a Riemanns surface, luhich is a path of

integration, can, without affecting the value of the integral, he deformed in

any possible continuous manner that does not make the curve pass over any

discontinuity of the subject of integration.

Since the curve on the surface is closed, the initial and the final points

are the same ; the initial branch of the function is therefore restored after

the description of the curve. This proposition is established in Corollary II.,

§ 100.

III. If the path of integration be a curve between two points on different

sheets, determined by the same algebraical value of z, the curve is not a closed

curve; it must be r^egarded as a path betiveen the two points; its deformation

is subject to Proposition I.

No restatement, from Chapter IX., of the value of an integral, along

a path which encloses a branch -point, is necessary. The method of dealing
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with the point when that vahie is infinite will be the same as the method of

dealing with other infinities of the function.

196. We have already obtained some instances of multiple-valued

functions, in the few particular integrals in Chapter IX.; the differences in

the values of the functions, arising as integrals, consist solely of multiples of

constants. The way in which these constants enter in Riemann's method is

as follows.

When the surface is simply connected, there is no substantial difference

from the previous theory for uniform functions; we therefore proceed to the

consideration of multiply connected surfaces.

On a general surface, of any connectivity, take any two points Zq and z.

As the surface is one of multiple connection, there will be at least two

essentially distinct paths between z^ and z, that is, paths which cannot be

reduced to one another; one of these paths can be deformed so as to be

made equivalent to a combination of the other with some irreducible circuit.

Let ^'i denote the extremity of the first path, and let Zo denote the same point

when regarded as the extremity of the second ; then the difference of the

two paths is an irreducible circuit passing from z^ to z... When this circuit

is made impossible by a cross-cut C passing through the point z, then z^

and ^2 may be regarded as points on the opposite edges of the cross-cut: and

the irreducible circuit on the unresolved surface becomes a path on the

partially resolved surface passing fi-om one edge of the cross-cut to the other.

When the surface is resolved by means of the proper number of cross-cuts

into a simply connected surface, there is still a path in the surface from

2-1 to z^^ on opposite edges of the cross-cut G: and all paths between z^ and z.^

in the resolved surface are reconcileable with one another. One such path

will be taken as the canonical path from z-^ to z^ ; it evidently does not meet

any of the cross-cuts, so that we consider only those paths which do not

intersect any cross-cut.

If then Z be the function of position on the surface to be integrated, the

value of the integral for the first path from z^ to z^ is

\'' Zdz;

and for the second path it is I Zdz,

or, by the assigned deformation of the second path, it is

rZclz+Tzdz,
J z„ .' z,

the second integral being taken along the canonical path from z^ to ^2 in the

surface, that is, along the irreducible circuit of canonical form, which would be

possible in the otherwise resolved surface were the cross-cut G obliterated.
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The difference of the values of the integral is evidently

r zdz.
2l

which is therefore the change made in the value of the integral I Zdz,

when the upper limit passes from one edge of the cross-cut to the other ; let

it be denoted by /. As the curve is, in general, an irreducible circuit, this

integral / may not, in general, be supposed zero.

We can arbitrarily assign the positive and the negative edges of some one

cross-cut, say A. The edges of a cross-cut B that meets A are defined to be

positive and negative as follows: when a point moves from one edge of B to

the other, by describing the positive edge of Jl in a direction that is to the

right of the negative edge of A, the edge of B on which the point initially

lies is called its positive edge, and the edge of B on which the point finally

lies is called its negative edge. And so on with the cross-cuts in succession.

The lower limit of the integral determining the modulus for a cross-cut

is taken to lie on the negative edge, and the upper on the positive edge.

Regarding a point ^ on the cross-cut as defining two points z^ and z^ on

opposite edges which geometrically are coincident, we now prove that/o?' all

'points on the cross-cut which can be reached from f without passing over any

other cross-cut, when the surface is resolved into one that is simply connected,

the integral I is a constant. For, if ^' be such a point, defining z^' and z^' on

opposite edges, then z^z.^z^'ziZi is a circuit on the simply connected surface,

which can be made evanescent ; and it will be assumed that no infinities of Z
lie in the surface within the circuit, an assumption which will be taken into

account in §§ 197, 199. Therefore the integral of .^, taken round the circuit,

is zero. Hence
rz. rz-i' rz/ fz,

Zdz+\ Zdz +\ Zd2+ Zdz^O,
J Z, J Z-i J z/ J Z,'

that is, r Zdz - T' Zdz =
\

" Zdz - T' Zdz.
J Z, J Zi z, •' z..

Along the direction of the cross-cut, the function Z is uniform : and

therefore Zdz is the same for each element of the two edges, so long as the

cross-cut is not met by any other. Hence the sums of the elements on the

two edges are the same for all points on the cross-cut that can be reached

from ^ without meeting a new cross-cut. The two integrals on the right-

hand side of the foregoing equation are equal to one another, and therefore

also those on the left-hand side, that is,

rzdz=r''
J z. J z,'

Zdz,

which shews that the integral I is constant for different points on a portion of

cross-cut that is 7iot met by any other cross-cut.
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If however the cross-cut be met by another cross-cut C , two cases arise

according as C has only one extremity on G, or has both extremities on G.

First, let G' have only one extremity on G. By what precedes, the

integral is constant along OP, and it is constant

along OQ ; but we cannot infer that it is the same

constant for the two parts. The preceding proof

fails in this case ; the distance Z.2Z2 in the resolved

surface is not infinitesimal, and therefore there is %_
no element Zdz for z.^^ to be the same as the ®

element for z^z-^'. Let I^ be the constant for OP,

/i that for QO ; and let QP be the negative edge. Then

z\ O z

Fig. 66.

=/: Zdz, I,= r Zdz.

the cross-cut OR, and let OR be theLet /' be the constant value for

negative edge ; then

In the completely resolved surface, a possible path from Z2 to Zn is Z2 to z^,

Zi to 5/, Zi to Zo ; it therefore is the canonical path, so that

Zdz.

r*! c^i r^i
/'= Zdz+ Zdz+ Zdz

•J Zi J Zi J Zi'

/. + /x +
/:

Zdz.

But Zdz is an integral of a uniform finite function along an infinitesimal

arc z^Ozi, and it is zero in the limit when we take z^ and Zi as coincident.

Thus

or the constant for the cross-cut OR is the excess of the constant for the jyart of

PQ at the positive edge of OR over the constant for the part of PQ at the

negative edge.

Secondly, let G' have both extremities on G, close to one another so that

they may be brought together as in the figure : it

is effectively the case of the directions of two cross-

cuts intersecting one another, say at 0. Let /i, /o,

/3,/4be the constants for the portions QO, OP, OR,

SO of the cross-cuts respectively, and let ZsZ2 be ^
the positive edge of QOP ; then z^z^ is the positive

edge of SOR. Then if (z) denote the value of

the integral I Zdz at 0, which is definite because Fig. 67.
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the surface is simply connected and no discontinuities of Z lie within the

paths of integration, we have

I,= l''Zdz = (!^{z,)-®{z,);

and /s = r Zdz = © (^3) - © (^,), I, = i'* Zdz = {z,} - © (^1)

;

so that /] — /o = /a — /4

,

or the excess of the constant for the portion of a cross-cut on the positive

over the constant for the portion on the negative edge, of another cross-cut is

equal to the excess, similarly estimated, for that otJier cross-cut.

Ex. Consider the constants for the various portions of the cross-cuts in the canonical

resolution (§§ 180, 181) of a Riemann's surface. Let the constants for the two portions

of aj. be Ar, A^ ; and the constants for the two portions of h,. be By, B^ ;
and let the

constant for c^ be (7,..

Then, at the junction of c^ and a^ + i, we have

at the junction of c^ and h,., we have

Cr=Br~B;,

and, at the crossing of a^ and 6^5 ^^ have

a,~a;=b^~.b;.

Now, because 61 is the only cross-cut which meets «]

,

we have Ai = Ai'; hence Bi = By, and therefore C\= 0.

Hence ^2= -4 2'; therefore B.i= B2, and therefore also

(72= 0. And so on.

Hence the constant for each of the portions of a cross-cut a is the sajne; the constant for

each of the portions of a cross-cut b is the same ; and the constant for each cross-cut c is zero.

A single constant may thus be associated with each cross-cut a, and a single constant with

each cross-cut b, in connection with the integral of a given uniform function of position on

the Eiemann's surface. It has not been proved—and it is not necessarily the fact- that

any one of these constants is different from zero ; but it is sufficiently evident that, if all

the constants be zero, the integral is a uniform function of position on the surface, that is,

a uniform function of tv and z.

197. Hence the values of the integral at points on opposite edges of a

cross-cut differ by a constant.

Suppose now that the cross-cut is obliterated : the two paths to the point

z will be the same as in the case just considered and will furnish the same

values respectively, say U and U-\-I. But the irreducible circuit which

contributes the value / can be described any number of times ; and

therefore, taking account solely of this irreducible circuit and of the cross-cuts

Fig. 68.
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which render other circuits impossible on the resolved surface, the general

value of the integral at the point z is

where k is an integer and JJ is the value for some prescribed path.

The constant I is called* a modulus ofperiodicity.

It is important that every modulus of periodicity should be finite; the path

which determines the modulus can therefore pass through a point c where

Z = 00 , or be deformed across it without change in the modulus, only if the

limit of {z — c)Z he a uniform zero at the point. If, however, the limit of

{z — c) Z at the point be a constant, implying a logarithmic infinity for the

integral, or if it be an infinity of finite order (the order not being necessarily

an integer), implying an algebraic infinity for the integral, we surround

the point c by a simple small curve and exclude the internal area from the

range of variation of the independent variable f. This exclusion is secured

by making a small loop-cut in the surface round the point ; it increases

by unity the connectivity of the surface on which the variable is represented.

When the limit of {z — c) Z is a uniform zero at c, no such exclusion

is necessary: the order of the infinity for Z is easily seen to be a proper

fraction and the point to be a branch-point.

Similarly, if the limit of zZ for 2^ = oo be not zero and the path which

determines a modulus can be deformed so as to become infinitely large, it is

convenient to exclude the part of the surface at infinity from the range of

variation of the variable, proper account being taken of the exclusion. The
reason is that the value of the integral for a path entirely at infinity (or

for a point-path on Neumann's sphere) is not zero ; ^ = qo is either a

logarithmic or an algebraic infinity of the function. But, if the limit of zZ
be zero for z= oc , the exclusion of the part of the surface at infinity is

unnecessary.

198. When, then, the region of variation of the variable is properly

bounded, and the resolution of the surface into one that is simply connected

has been made, each cross-cut or each portion of cross-cut, that is marked off

either by the natural boundary or by termination in another cross-cut,

determines a modulus of periodicity. The various moduli, for a given

resolution, are therefore equal, in number, to the various portions of the

cross-cuts. Again, a system of cross-cuts is susceptible of great variation,

not merely as to the form of individual members of the system (which does

not affect the value of the modulus), but in their relations to one another.

The total number of cross-cuts, by which the surface can be resolved into one

that is simply connected, is a constant for the surface and is independent of

* Sometimes the modulus for the cross-cut.

t This is the reason for the assumption made on p. 424.
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their configuration : but the number of distinct pieces, defined as above, is

not independent of the configuration. Now each piece of cross-cut furnishes

a modulus of periodicity ; a question therefore arises as to the number of

independent moduli of periodicity.

Let the connectivity of the surface be iV^+ 1, due regard being had to the

exclusions, if any, of individual points in the surface : in order that account

may be taken of infinite values of the variable, the surface will be assumed

spherical. The number of cross-cuts necessary to resolve it into a surface

that is simply connected is JV; whatever be the number of portions of the

cross-cuts, the number of these portions is not less than iY.

When a cross-cut terminates in another, the modulus for the former and

the moduli for the two portions of the latter are connected by a relation

(O = COl~ CO.,,

so that the modulus for any portion can be expressed linearly in terms of

the modulus for the earlier portion and of the modulus for the dividing

cross-cut.

Similarly, when the directions of two cross-cuts intersect, the moduli of

the four portions are connected by a relation

(i)i
~ &)/ = coo ~ eoo

;

and by passing along one or other of the cross-cuts, some relation is obtainable

between co^ and &)/ or between &>., and &>./, so that, again, the modulus of any

portion can be expressed linearly in terms of the modulus for the earlier

portion and of moduli independent of the intersection.

Hence it appears that a single constant must be associated with each

cross-cut as an independent modular constant ; and then the constants

for the various portions can be linearly expressed in terms of these inde-

pendent constants. There are therefore N linearly independent moduli of

'periodicity: but no system of moduli is unique, and any system can be

modified partially or wholly, if any number of the moduli of the system be

replaced by the same number of independent linear combinations of members

of the system. These results are the analytical equivalent of geometrical

results, which have already been proved, viz., that the number of independent

simple irreducible circuits in a complete system is N, that no complete

system of circuits is unique, and that the circuits can be replaced by

independent combinations reconcileable with them.

199. If, then, the moduli of periodicity of a function U at the cross-cuts

in a resolved surface be /j, /o, ..., /y, all the values of the function at

any point on the unresolved surface are included in the form

U + niili + nuL. + ... + iuxIn,

where mj, m^, ..., m,v are integers.
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Some special examples, treated by the present method, will be useful in leading up to

the consideration of integrals of the most general functions of position on a Riemaun's
surface.

Ex. 1. Consider the integral
[dz

The subject of integration is uniform, so that the surface is one-sheeted. The origin

is an accidental singularity and gives a logarithmic infinity for the integral ; it is therefore

excluded by a small circle round it. Moreover, the value of the integral round a circle

of infinitely large radius is not zero: and therefore 2=c30 is excluded from the range of

variation. The boundary of the single spherical sheet can be taken to be the point 2=x
;

and the bounded sheet is of connectivity 2, owing to the small circle at the origin. The
surface can be resolved into one that is simply connected by a single cross-cut drawn
from the boundary at z=cc to the circumference of the small circle.

If a plane surface be used, this cross-cut is, in efl:ect, a section (§ 103) of the plane
made from the origin to the point 2=x.

There is only one modulus of periodicity : its value is evidently /— , taken round the

origin, that is, the modulus is ^iri. Hence whenever the B

jmth of variation from a given point to a point z passes "^ viv*

from A to B, the value of the integral increases by 'itri ; but „
if the path pass from B to A, the value of the integral

°'

decreases by Stti. Thus A is the negative edge, and B the positive edge of the cross-cut.

If, then, any one value of I — be denoted by w, all values at the point in the
J Zo ^

unresolved surface are of the form w + 'im-n-i, where m is an integer; when z is regarded

as a function of w, it is a simply-periodic function, having Stti for its period.

Consider /
-,

r, . The subject of integration is uniform, so that the surface
J z^-a- •' °

consists of a single sheet. There are two infinities ±a, each of the first order, because

{z + a)Z is finite at these two points : they must be excluded by small circles. The limit,

when 2=Qc, of z/{z^ — a-) is zero, so that the point z—aa does not need to be excluded.

We can thus regard one of the small circles as the boundary of the surface, which is then

doubly connected : a single cross-cut from the other circle to the boundary, that is, in

effect, a cross-cut joining the two points a and —a, resolves the surface into one that is

simply connected.

It is easy to see that the modulus of periodicity is — : that A is the negative edge and

B the positive edge of the cross-cut : and that, if w be

a value of the integral in the unresolved surface at any _ ^ ^ B ^
point, all the values at that point are included in the A
form

_

Fig. 70.

w+ n —

,

a

where « is an integer.

Ex: 3. Consider
J
(a^ — z^^-h dz. The subject of integration is two-valued, so that the

surface is two-sheeted. The branch-points are ± a, and oo is not a branch-point, so that

the single branch-line between the sheets may be taken as the straight line joining a

and - a. The infinities are ±a ; but as {z + a) (a^-^^)"^ vanishes at the points, they do

not need to be excluded. As the limit of z{d^-z^)~^, for .'= cc, is not zero, we exclude

2 = X by small curves in each of the sheets.

Ex. 2.
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Taking the surface in the spherical form, we assign as the boundary the small curve

round the point 2=00 in one of the sheets. The connectivity of the surface, through its

dependence on branch-lines and branch-points, is unity : owing to the exclusion of the

point 2= 00 by the small curve in the other sheet, the connectivity is increased by one

unit : the surface is therefore doubly connected. A single cross-cut will resolve the surface

into one that is simply connected : and this cross-cut must pass from the boundary at

; = x which is in one sheet to the excluded point £=x.

Since the (single) modulus of periodicity is the value of the integral along a circuit

in the resolved surface from one edge of the cross-cut

to the other, this circuit can be taken so that in the

unresolved surface it includes the two branch-points;

and then, by II. of § 195, the circuit can be deformed

until it is practically a double straight line in the upper

sheet on either side of the branch-line, together with two

small circles round a and - a respectively. Let F be the

origin, practically the middle point of these straight lines.

Consider the branch (a^ -z^)~h belonging to the upper

sheet. Its integral from P to a is

R/"'

r?

o

Fig

J

71-

J

From a to —a the branch is — {a^ - z-)~ "s ; the point E is contiguous in the surface,

not to P, but (as in § 189) to the point in the second sheet beneath P at which the branch

ig _ (^a'^-z^yh, the other branch having been adopted for the upper sheet. Hence, from a

to -a by R, the integral is

r —a ,

rhdz.
I

''_(a2_22)-i,

From -atoQ, the branch is +{a--z^)~-^, the same branch as at P: hence from -aioQ,

the integral is

r {a^-z^-)-hdz.
J -a

The integral, along the small arcs round a and round a' respectively, vanishes for each.

Hence the modulus of periodicity is

f
"
{a' -z'^yhdz+f"'- (a2 -z^yhdz+T [a' -z'-yh dz,

Jo J a J -a

that is, it is 2ir.

This value can be obtained otherwise thus. The modulus is the same for all points

on the cross-cut ; hence its value, taken at 0' where 2= oo , is

j{a^-z^)-hdz,

passing from one edge of the cross-cut at 0' to the other, that is, round a curve in the

plane everywhere at infinity. This gives

27rlLtz{a'-z')-^ ='^=2n,

the same value as before.

The latter curve round 0', from edge to edge, can easily be deformed into the former

curve round a and — a from edge to edge of the cross-cut.
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Again, let Wi be a value of the integral for a point z^ in one sheet and iv^ be a value

for a point % in the other sheet with the same algebraical value as Sj : take zero as the

common lower limit of the integral, being the same zero

for the two integrals. As this zero may be taken in

either sheet, let it be in that in which z^ lies: and then y O'-^

.=f;'(«-.^)
hdz.

Fig. 72

To pass from to Zo for ir.^, any path can be justifiably deformed into the following:

(i) a path round either branch-point, say a, so as to return to the point under in the

second sheet, say to O2, (ii) any number m of irreducible circuits round a and —a, always

returning to 0-2 in the second sheet, (iii) a path from O2 to Z2 lying exactly under the path

from to zi for u'l . The parts contributed by these i)aths respectively to the integral iv^

are seen to be

(i) a quantity -I- TT, arising from I {a^ — z'^)~ ^^ dz+ \ -{a^ — z^)'

Jo J a
idz, for reasons

similar to those above

;

(ii) a quantity ?«27r, where m is an integer positive or negative

;

(iii) a quantity
I

' - {a^ - z^)~ ^ dz.

In the last quantity the minus sign is prefixed, because the subject of integration is

everywhere in the second sheet. Now 22= 21, and therefore the quantity in (iii) is

[^\a:^-z^)-hdz,
'

that is, it is —rvi; hence

If then we take w fy-.

, = (2?«-fl)7r-Wi.

the integral extending along some defined curve from

an assigned origin, say along a straight line, the values of iv belonging to the same
algebraical value of z are 2H7r + w or [27n + l)Tr — w, and the inversion of the functional

relation gives

(ji{w) = z= (f){2n7r+ 2o)

where m and n are any integers.

dz
Ex. 4. Considerh(s-c)(a2_22)i'

{(2m+l)7r-w},

assuming
|
c

|
> |

a
| . The surface is two-sheeted,

with branch-points at ±a but not at oo : hence the line joining a and -a is the sole

branch-line. The infinities of the subject of integration are a.

and -a need not be excluded, for the same reason that

their exclusion was not required in the last example.

But c must be excluded ; and it must be excluded in both

sheets, because 2= c makes the subject of integration

infinite in both sheets. There are thus two points of

accidental singularity of the subject of integration ; in

the vicinity of these points, the two branches of the

subject of integration are

and Of these a

(a2-c2ri- — (a2-c2)-i-, Fig. 73.
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the relation between the coefficients of (s-c)"' in them being a special case of a more

general proposition (§ 210). And since s/[(s-c) (a- — 2^)-} when z=x is zero, x does not

need to be excluded.

The surface taken plane is doubly connected, as in the last example, one of the curves

surrounding c, say that in the upper sheet, being taken as the boundary of the surface.

A single cross-cut will suffice to make it simply connected : the direction of the cross-cut

must pass from the c-curve in the lower sheet to the branch-line and thence to the

boundary in the upper sheet.

There is only a single modulus of periodicity, being the constant for the single cross-cut.

This modulus can be obtained by means of the curve AB in the first sheet; and, on

contraction of the curve (by II. § 195) so as to be infinitesimally near c, it is easily seen to

be 2iTi{ar-c^)~^, or say 2Tr ic^-a^)~^. But the modulus can be obtained also by means

of the curve CD ; and when the curve is contracted, as in the previous example, so as

practically to be a loop round a and a loop round -a, the value of the integral is

„ /« dz

which is easily proved to be 27r (c^ - a^) 2.

As in Ex. 3, a curve in the upper sheet, which encloses the branch-points and the

branch-lines, can be deformed into the curve AB.

Ex. 5. Consider \{4.z^-g.z-g,rhdz = \udz.

The subject of integration is two-valued, and therefore the Riemann's surface is

two-sheeted. The branch-points are s=x, ej, e-^, e^, where ej, $2, e^ are the roots of

4z3-g.;^z-g3= 0;

and no one of them needs to be excluded from the range of variation of the variable.

The connectivity of the surface is 3, so that two cross-cuts are necessary to resolve

the surface into one that is simply connected. The configurations of the branch-lines and

Fig. 74.

of the cross-cuts admit of some variety; two illustrations of branch-lines are given in

fig. 74, and a point on Qi in each diagram is taken as boundary.

The modulus for the cross-cut ^j—say from the inside to the outside—can be obtained

in two different ways. First, from P, a point on Qi, draw a line to eo in the first sheet,

then across the branch-line, then in the second sheet to t'3 and across the branch-line.
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then in the first sheet round 63 and back to P: the circuit is represented by the double

line between 62 and 63. The value of the integral is

f^3 f^2 f^3
I ndz+ I {-ii)dz, that is, 2 I

J ('2 J fa J fi

lidz.

Again, it can be obtained by a line from P\ another point on ^j, to « , round the branch-

point there and across the branch-line, then in the second sheet to e^ and round ej, then

across the branch-line and back to P' : the value of the

integral is

^^1 = 2 I ^idz.

But the modulus is the same for P as for P' : hence

E,-
J fi J f

udz.

This relation can be expressed in a diffierent form. The

path from e^ to 63 can be stretched into another foi-m

towards z=cc in the first sheet, and similarly for the

path in the second sheet, without aflecting the value of

the integral. Moreover as the integral is zero for z=cc,

we can, without affecting the value, add the small part

necessary to complete the circuits from 62 to oc and from 63 to

these circuits being given by the arrows, we have

Fig. 75.

The directions of

! r ridz= 2 I udz+ 2 j' udz,
J e^ J e^ 7 00

or, if -/:udz,

for X = l, 2, 3, we have*
J e.

:2| ''t(dz= E2-E3,

say ^2= ^1 + ^3;

and El is the modulus of periodicity for the cross-cut Q-^.

In the same way, the modulus of periodicity for Q2 is found to be

E.= 2 j udz and to be 2 1 udz,
J e, J €i

the equivalence of which can be established as before.

Hence it appears that, if w be the value of the integral at any point in the surface,

the general value is of the form w-^-mEi-^-nE^, where m and n are integers. As the

integral is zero at infinity (and for other reasons which have already appeared), it is

convenient to take the fixed limit Zq so as to define w by the relation

-/: xidz.

Now corresponding to a given arithmetical value of z, there are two points in the

surface and two values of iv : it is important to know the relation to one another of these

two values. Let z denote the value in the lower sheet : then the path from z' to x can

be made up of

(i) a path from 2' to 00
' ;

(ii) any number of irreducible circuits from x ' to x
'

;

and (iii) across the branch-line and round its extremity to x

.

See Ex. 7, § 104.

28
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These parts respectively contribute to the integral

(i) a quantity I ^{-u)dz, that is, - I udz, or, -w; (ii) a quantity mEi + nE^,

where in and n are integers
;

(iii) a quantity zero, since the integral vanishes

at infinity : so that

w =m fi*! + nEi- v).

If now we regard z as a function of w, siiy 2= ^ (?'-'), we have

g> ixv) = z= f {mEi + nEz+ ii'\ ^ {w') = z'.

But z' = z arithmetically, so that we have

z= ^ {iv) = ^ {niEi + nE:i ± iv)

as the function expressing z in terms of tv.

Similarly it can be proved that

^'
(
iv) = ± f (viEi+ nEs ± w),

the upper and the lower signs being taken together. Now ^{to), by itself, determines a

value of z, that is, it determines two points on the sm-face : and ^o' (vj) has difiereut values

for these two points. Hence a poinP on the surface is uniquely/ determined by ^ (w) and

Ex. 6. Consider w= I
[(1-Z-) {I -i-h'^)}~idz= \udz. The sul)ject of integration is

io ]
^

two-valued, so that the surface is two-sheeted. The branch-points are ±1, ±j, but

not oc ; no one of the 1>ranch-points need be excluded, nor need infinity.

The connectivity is 3, so that two cross-cuts will render the surface simply connected

:

let the branch-lines and the cross-cuts be taken as in the figure (fig. 76).

The details of the argument follow the same course as in the previous case.

The modulus of peri(jdieity for Q.^ is 2 1 udz = 4 / xodz = 4A', in the ordinary

The modulus of periodicity for (?i is 2/ udz^iiK', as before.

Hence, if w be a value of the integral for a point z in the first sheet, a moi'e general

value for that point is

»'-f m4A' -t-n2i7r'.

Let w' 1)6 a value of the integral for a point

arithmetically equal to z—the point in the

first sheet at which the value of the integral

is IV ; then
_ i_

w'= 2/i -f Mi4A'-|-«2(7r' — M', k

so that, if we invert the functional relation

and take 2= sn w, we have

sn w=2= sn {w-\-\inE+ 2n>K')

= sn {(4?/i -f 2) K-V^lniK' - %v\.

the second sheet, where z is

€3
Fi-'. 70.
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Ex. Consider the integral w= \ J , where u = {{l-z^-) {l-kh^-)}h.

As in the last case, the surface is two-sheeted : the branch-points are ±1, ±y ; no one

of them need be excluded, nor need 2= 00 . But the point z=c must be excluded in both

sheets; for expanding the subject of integration for points in the first sheet in the vicinity

of z= c, we have

^{(l-c^)(l-/(-V)}-U...,

.and for points in the second sheet in the vicinity of 2= c, we have

in each case giving rise to a logarithmic infinity for z= c.

We take the small curves excluding z=c in both sheets as the boundaries of the

surface. Then, by Ex. 4, § 178, (or because one of these curves may be regarded as a

Fig. 77.

boundary of the surface in the last example, and the curve excluding the infinity in the

other sheet is the equivalent of a loop-cut which (§ 161) increases the connectivity by

unity), the connectivity is 4. The cross-cuts necessary to make the surface simply

connected are three. They may be taken as in the figure
; Qi is drawn from the boundary

in one sheet to a branch-line and thence round y to the boundary in the other sheet

:

Q2 beginning and ending at a point in Qi, and Q3 beginning and ending at a point in §2-

The moduli of periodicity are :

—

for Qi, the quantity (Cl^ = )27vi{{l -c2)(l -Fc^)}-^, obtained by taking a small curve

round c in the upper sheet

:

Q2, the quantity (i22= )2 I .- -y , obtained by taking a circuit round 1

and T, passing from one edge of Q., to the other at F:

Q-i, the quantity (fl3= )2 I
-

, obtained by taking a circuit round -1

and —J, passing from one edge of ^3 to the other at G

:

so that, if any value of the integral at a point be w, the general value at the point is

where nii, m.^, m^ are integers.

Conversely, z is a triply-periodic function of iv ; but the function of w is not uniform

(§ 108).

28—2
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e present, i

;ivity is3,

1

z= « . No one of the branch-points need be excluded, for the integral is tinite round each

nfinity, w(

X-2 - 2'2\i

Ex. 8. As a last illustration for the present, consider

?)
"^'•

The surface is twc-sheeted ; its connectivity is 3, the branch-points being +1, +y , but not

begral is tinite

of them. To consider the integral at infinity, we substitute 2 = 7,, and then

giving for the function at infinity an accidental singularity of the first order in each

sheet.

The point s=x must therefore be excluded from each sheet: but the form of u\ for

infinitely large values of z, shews that the modulus for the cross-cut, which passes from

one of the points (regarded as a boundary) to the other, is zero.

The figure in Ex. 6 can be used to determine the remaining moduli. The modulus.

for Qi is
' n /l-X--.r2\i

,

= 4 J dx
Jo <(l_^2)(l_,{{l-x2){l-k^x^)}h'

AE,

1

ax
X- J

^y
ay,

with the notation of Jacobian elliptic functions. The modulus for ^j is

=2^r ^ ,
7 o{(l -/)(!- ^fzy^)}*

on transforming by the relation k^x^+ k"^y'^= 1 : the last expression can at once be changed

into the form 1i{K' -E'\ with the same notation as before.

If then w be any value of the integral at a point on the surface, the general value

there is

w-f- 4w£'+ 2?u" (A" - ^'),

where m and n are integers.

200. After these illustrations in connection with simple cases, we may

proceed with the consideration of the integral of the most general uniform

rational function w of position on a Riemann's surface, constructed in connec-

tion with the algebraical equation

t\w, z) = tio'"' + w'^~^g^ (^r) + . . . + wf/„_i {z) -f g„ {z) = 0,
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where the functions g {z) are rational and integral. Subsidiary explanations,

which are merely generalised from those inserted in the preceding particular

discussions, will now be taken for gi-anted.

Taking w in the form of § 193, we have

, 1 , , , ,

h^{z)w''--^ ...+hn-,{z) 1
;, ,,^ ,

U{W, Z)
^v=-Kiz) + ^ = -h,(z) +—^,

dw dw

so that in taking the integral of w we shall have a term -
( /*o (z) dz, where

ho (z) is a rational function. This kind of integral has been discussed in

Chapter II, ; as it has no essential importance for the present investigation,

it will be omitted, so that, without loss of generality merely for the present

purpose *, we may assume ^o (^) to vanish ; and then the numerator of w'

is of degree not higher than n — 2 in iv.

The value of z is insufficient to specify a point on the surface : the values

of w and z must be given for this purpose, a requisite that was unnecessary

in the preceding examples because the point z was spoken of as being in the

upper or the lower of the two sheets of the various surfaces. Corresponding

to a value a of z, there will be n points : they may be taken in the form

(«!> oil), (a.2, 0(2)7 •••' i'^n, OLn), where a-^, ..., an are each arithmetically equal to

a, and a.^, ..., a„ are the appropriately an-anged roots of the equation

f(w,a) = 0.

U (w z)
The function w to be integi-ated is of the form —^— , where U is

dw

polynomial of degree n — 2 in lu, but though rational in z it is not necessarily-

integral in z.

An ordinary point of w', which is neither an infinity nor a branch-point,

is evidently an ordinary point of the integral.

The infinities of the subject of integration are of prime importance.

They are :

—

(i) the infinities of the numerator,

(ii) the zeros of the denominator.

The former are constituted by (a), the poles of the coefficients of powers of w
.in U{w, z), and (/3), z = cc: this value is included, because the only infinities

of w, as determined by the fundamental equation, arise for infinite values of

z, and infinite values of w and of z may make the numerator U {w, z)

infinite.

* See §207, where /io(2) is retained.
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So far as concerns the infinities of xu which arise when 2 = ex; (and

therefore m; = 00 ), it is not proposed to investigate the general conditions

that the integral should vanish there. The test is of course that the limit,

for ^^ = X , of r-r— should vanish for each of the n values of lo.

dw

But the establishment of the general conditions is hardly worth the

labour involved ; it can easily be made in special cases, and it will be

rendered unnecessary for the general case by subsequent investigations.

201. The simplest of the instances, less special than the examples

already discussed, are two.

The first, which is really that of most frequent occurrence and is of very

great functional importance, is that in which f{w, 2) = has the form

where S (z) is of order 2?>i — 1 or 2m and all its roots are simple: then

^ = 2w = 2\^S(z). In order that the limit of r-r— may be zero when
dw ^

^
dw

^ = 00 , we see (bearing in mind that U, in the present case, is independent of

w) that the excess of the degree of the numerator of U over its denominator

may not be greater than m — 2. In particular, if U be an integral function

of z, a form of U which would leave Jw'dz zero at 2; = 00 is

U = CoZ'"-- + Ci0"*-^ + . . . + Cni-sZ + Cni-o.

As regards the other infinities of U/\^S{z), they are merely the roots of

S (z) = or they are the branch-points, each of the first order, of the

equation
w'-S (z) = 0.

By the results of § 101, the integral vanishes round each of these points ; and

each of the points is a branch-point of the integral function. The integral is

finite everywhere on the surface : and the total number of such integrals,

essentially different from one another, is the number of arbitrary coefficients

in U, that is, it is m — 1, the same as the genus of the Riemann's surface

associated luitli the equation.

202. The other important instance is that in which the fundamental

equation is, so to speak, a generalised equation of a plane curve, so that

g^ {z) is a polynomial function of z of degree s : then it is easy to see that,'

at 2 = 00 , each branch w oz z, so that j.- oc 2"-' : hence U{w, z) can vary only

as 2**"^ in order that the condition may be satisfied. If then U {w, z) be an

integral function of z, it is evident that it can at most take a form which
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makes 17=0 the generalised equation of a curve of degree n — 3 ; while, if it be

V(w z)
, then V(iu,z), supposed integral in z, can at most take a form which

makes V=0 the generalised equation of a curve of degree n — 2.

Other forms are easily obtainable for accidental singularities of coefficients

of w in U {w, z) that are of other orders.

As regards the other possible infinities of the integral, let c be an acci-

dental singularity of a coefficient of some power of w in U(iu,z); it may be

assumed not to be a zero of ^ . Denote the n points on the surfece by

(Ci, h), (c-z, ^-2), •••, (C)i, ^'n), where c,, Co, ..., Cn are arithmetically equal to c.

In the vicinity of each of these points let lu' be expanded : then, near (Cr, K),

we have a set of terras of the type

7 ^ + } ;;;^, + ... + .
r;; H + T {Z — Cr),

where P (z — c,) is a converging series of positive integi-al powers of z — Cy.

A corresponding expansion exists for every one of the n points.

The integral of w' will therefore have a logarithmic infinity at (c^., k,.),

unless A^^r is zero; and it will have an algebraic infinity, unless all the

coefficients -4 2,,-, , ^m,r ^r^ zero.

The simplest cases are

(i) that in which the integral has a logarithmic infinity but no

algebraic infinity ; and

(ii) that in which the integral has no logarithmic infinity.

For the former, lu' is of the form ^ , and therefore in the vicinity of c,-

(z-c)^

we have w' = —^^ -\- P (z — cX
z - Cr

W (kr, Cr)
the value of A-^^r being ^' , and W is an integral function of Av, of

dkr

degree not higher than n — 2. Hence

^ . _ ^ W{kr,Cr)

r = l >•=!

d̂kr

_ - W{kr,c)

dkr
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since c is the common arithmetical value of the quantities Ci, Cj, ..., c„. Now
k\, ^2, ..., kfi are the roots of

f(w, c) = 0,

an equation of degi-ee n, while W is of degree not higher than n — 2; hence,

by a known theorem*,

;^ W(k,.,c)

dk,

n

SO that S ^1,^=0.
r=l

The validity of the result is not affected if some of the coefficients A vanish.

But it is evident that a single coefficient A cannot be the only non-vanishing

coefficient ; and that, if all but two vanish, those two are equal and opposite.

This result applies to all those accidental singularities of coefficients of

powers of w in the numerator of iv' which, being of the first order, give rise

solely to logarithmic infinities in the integral of w'. It is of great importance

in regard to moduli of periodicity of the integral.

(ii) The other simple case is that in which each of the coefficients

A-i^r vanishes, so that the integral of w' has only an algebraic infinity at

the point Cr, which is then an accidental singularity of order less by unity

than its order for w'.

In particular, if in the vicinity of c^., the form of w' be

the integral has an accidental singularity of the first order.

It is easy to prove that

so that a single coefficient A cannot be the only non-vanishing coefficient

;

but the result is of less importance than in the preceding case, for all the

moduli of periodicity of the integral at the cross-cuts for these points vanish.

And it must be remembered that, in order to obtain the subject of integration

in this form, some terms have been removed in § 200, the integi-al of which

would give rise to infinities for either finite or infinite values of z.

It may happen that all the coefficients of powers of w in the numerator

of w' are integral functions of z. Then ^ = x is their only accidental

singularity; this value has already been taken into account.

* Burnside and Panton, Theory of EqiKitions, (7th ed ) vol. i, p. 172.



203.] OF AN ALGEBRAIC FUNCTION 441

203. The remaining source of infinities of w' , as giving rise to possible

infinities of the integral, is constituted by the aggregate of the zeros of

~- = 0. Such points are the simultaneous roots of the equations

1^ = 0, f(lV,2) = 0.
dw ' ^ V

' ^

In addition to the assumption already made that /= is the equation of a

generalised curve of the nth order, we shall make the further assumptions

that all the singular points on it are simple, that is, such that there are only

two tangents at the point, either distinct or coincident, and that all the

branch-points are simple.

The results of § 98 may now be used. The total number of the points

given as simultaneous roots is n (?i — 1) : the form of the integral in the

immediate vicinity of each of the points must be investigated.

Let (c, 7) be one of these points on the Riemann's surface, and let

(c + C 7 + ^) be any point in its immediate vicinity.

I. If -—
zr^— do not vanish at the point, then (c, 7) is a branch-point

for the function w. We then have

/(w, z) = A'^+ B'v^ + quantities of higher dimensions,

for points in the vicinity of (c, 7), so that foc ^- when
]
^| is sufficiently small.

Then

'•-- = 2B'v + quantities of higher dimensions

when l^j is sufficiently small. Hence, for such values, the subject of integi-a-

tion is a constant multiple of

U (7, c) + positive integral powers of v and ^

^^ + powers of ^ with index > h

that is, of ^~-, when
: ^ is sufficiently small. The integral is therefore a

constant multiple of ^-, when
j ^j is sufficiently small; and its value is

therefore zero round the point, which is a branch-point for the function

represented by the integral.

II. If "^—
p)

' ' vanish at the point, we have (with the assumptions

of § 98),

f (iv, z) = A^'- + 2B^u + Gv- -h terms of the third and higher degrees
;

and there are two cases.

(i) If B- %,,AC, the point is not a branch-point, and we have

Cv + B^=^{B'-AG)^+ integral powers ^\ ^\...
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as the relation between v and ^ deduced froni/'= 0. Then

J- = 2 ( /i^ + Cv) + terms of second and higher degrees

= \^+ higher powers of ^.

In the vicinity of (c, 7), the subject of integration is

^ (7> c) + Dv + E'C, + positive integral -powers

\^ + higher powers of ^

Hence when it is integi-ated, the first term is ^— log ^, and the remain-
A,

ing terms are positive integral powers of ^: that is, such a point is a

logarithmic infinity for the integral, unless U (7, c) vanish.

If, then, we seek integrals which have not the point for a logarithmic

infinity and we begin with JJ as the most general function possible, we can

prevent the point from being a logarithmic infinity by choosing among the

arbitrary constants in JJ a relation such that

Z7(7,c) = 0.

There are 6 such points (§ 98) ; and therefore h relations among the

constants in the coefficients of U must be chosen, in order to prevent the

integral

from having a logarithmic infinity at these points. When these are chosen,

the points become ordinary points of the integral.

(ii) If B^ = AC, the point is a branch-point ; we have

B^+Cv = hL^KM^' + N^^ + ...

as the relation between ^ and v deduced from/= 0. In that case,

^ = 2 (B^+ Cv) -t- terms of the second and higher degrees

= Lt^- -\- powers of ^ having indices > |.

In the vicinity of (c, 7), the subject of integration is

U (7, 6) + Dv -\- EC+ higher powers

L^- + higher powers of ^

Hence when it is integrated, the first term is — 2 3^— ^~
-, and it can be

proved that there is no logarithmic term ; the point is in infinity for the

integral, unless f/" (7; c) vanish.
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If, however, among the arbitrary constants in U Ave choose a relation such

that

U (7, c) = 0,

then the numerator of the subject of integration

= Dv + E^+ higher positive powers

= X'^ + /jl'^- + higher powers of f,

on substituting from the relation between v and ^ derived from the funda-

mental equation. The subject of integi^ation then is

that is,

the integral of which is

2y^-+ positive powers.

The integral therefore vanishes at the point : and the point is a branch-point

for the integral. It therefore follows that we can prevent the point from

being an infinit}^ for the function by choosing among the arbitrar}^ constants

in U a. relation such that

There are k such points (§ 98) : and therefore k relations among the

constants in the coefficients of U are chosen in order to prevent the integral

from becoming infinite at these points. Each of the points is a branch-point

of the integral.

204. All the possible sources of infinite values of the subject of integra-

tion w', =—!-T— , have now been considered. A summary of the preceding

dw
results leads to the following conclusions relative to jw'dz:—

(i) an ordinary point of w' is an ordinary point of the integi'al

:

(ii) for infinite values of z, the integral vanishes if we assign proper

limitations to the form of U{iu,z):

(iii) accidental singularities of the coefficients of powers of iv in

U{iu,z) are infinities, either algebraic or logarithmic or both

algebraic and logarithmic, of the integral

:

(iv) if the coefficients of powers of lo in U(tv,z) have no accidental

singularities except for z= oc , then the integral is finite for

infinite values of z (and of w) when U{w,z) is the most general
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rational integi'al function of lu and z of degree n — 3 ; but, if

the coefficients of powers of w in U{w,z) have an accidental

singularity of order n, then the integral will be finite for

infinite values of z (and of w) when U{w,z) is the most

general rational integral function of iv and z, the degree in w
being not greater than n-2 and the dimensions in w and z

combined being not greater than )i + /j, — 3:

(v) those points, at which df/dw vanishes and which are not branch-

points of the function, can be made ordinary points of the

integral, if we assign proper relations among the constant^

occurring in U(w,z)

:

(vi) those points, at which df/dw vanishes and which are branch-

points of the function, can, if necessary, be made to furnish

zero values of the integral by assigning limitations to the

form of U{w,z)\ each such point is a branch-point of the

integral in any case.

These conclusions enable us to select the simplest and most important

classes of integrals of uniform functions of position on a Riemann's surface.

205. The first class consists of those integrals which do not acquire*

an infinite value at any point ; they are called integrals of the first kindf.

The integrals, considered in the preceding investigations, can give rise to

integrals of the first kind, if the numerator 11(10, z) of the subject of integra-

tion satisfy various conditions. The function U{iu,z) must be a polynomial

function of dimensions not higher than n — ^ in w and z, in order that the

integral may be finite for infinite values of z and for all finite values of z

not specially connected with the equation f{iv,z) = 0\ for certain points

specially connected with the fundamental equation, being S -f- /c in number,

the value of U(w,z) must vanish, so that there must be 8 -f- « relations

among its coefficients. But when these conditions are satisfied, then the

integral function • is everywhere finite, it being remembered that certain

limitations on the nature of/(w, z) = have been made.

. Usually these conditions do not determine U{w,z) uniquely save as to a

constant factor; and therefore in the most general integi'al of the first kind a

number of independent arbitrary constants will occur, left undetermined by

the conditions to which U is subjected. Each of these constants multiplies

an integral which, everywhere finite, is different from the other integrals so

multiplied; and therefore the number of different integrals of the first kind

* They will be seen to be multiform functions even on the multiply connected Riemann's

surface, and they do not therefore give rise to any violation of the theorem of § 40.

t The German title is enter Gattung; and similarly for the integrals of the second kind

and the third kind.
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is equal to the number of arbitrary independent constants, left undetermined

in U. It is evident that any linear combination of these integrals, with

constant coefficients, is also an integral of the first kind ; and therefore a

certain amount of modification of form among the integrals, after they have

been obtained, is possible.

The number of these integrals, linearly independent of one another, is

easily found. Because t/" is a polynomial function of w and z of dimen-

sions n— 3, it contains ^ {n — 1) {n — '2) terms in its most general form; but

its coefficients satisfy S -f « relations, and these are all the relations that

they need satisfy. Hence the number of undetermined and independent

constants which it contains is

l(n_l)(»_2)-S-/c,

which, by §182, is the genus ji? of the Riemann's surface; and therefore, for

the present case, the number of integrals, which are finite everyiuhere on the

surface and are linearly independent of one another, is equal to the genus of
the Riemann's surface.

Moreover, the integral of the first kind has the same branch-points as the

function w. Though the integral is finite everywhere on the surface, yet its

derivative w' is not so : the infinities of w' are the branch-points

The result has been obtained on the original suppositions of § 98, which

w^ere, that all the singular points of the generalised curve f{w,2) = are

simple, that is, only two tangents (ilistinct or coincident) to the curve can

be drawn at each such point, and that all the branch-points are simple.

Other special cases could be similarly investigated. But it is superfluous to

carry out the investigation for a succession of cases, because the result just

obtained, and the result of § 201, are merely particular instances of a general

theorem which will be proved in Chapter XVIIL, viz., that, associated with

a Riemann's surface of connectivity 2p-|- 1, there are p linearly independent

integrals of the first kind tvhich are finite everywhere on the surface.

The function U{w,z), which occurs in the subject of integration in an

integral of the first kind, is often called an adjoint polynomial of order n — 3
;

and the generalised curve

U(w,z) =

IS called an adjoint curve of order n — 3.

206. The functions, which thus arise out of the integral of an algebraic

function and are finite everywhere, are not uniform functions of position on

the unresolved surface. If the surface be resolved by ^p cross-cuts into one

that is simply connected, then the function is finite, continuous and uniform

everywhere in that resolved surface, which is limited by the cross-cuts as a

single boundary. But at any point on a cross-cut, the integral, at the twa



446 INTEGRALS [206

points on opposite edges, has values that differ by any integer multiple of

the modulus of the function for that cross-cut (and possibly also by integer

multiples of the moduli of the function for the other cross-cuts).

Let the cross-cuts be taken as in § 181 ; and for an integral of the first

kind, say W, let the moduli of periodicity for the cross-cuts be

(Ou (i)o, ..., (Op, for rti, Uo, ..., ttp,

and (Op+i, &)jj+2, •••, (o>p, for 6,, K, ..., hp,

respectively; the moduli for the portions of cross-cuts c.,, Cj, ..., Cp have been

proved to be zero.

Some of these moduli may vanish
; but it will be proved later (§ 231) tliat

all the moduli for the cross-cuts a, or all the moduli for the cross-cuts h, cannot

vanish unless the integral is a mere constant. In the general case, with which

we are concerned, we may assume that they do not vanish ; and so it follows

that, if W he a value of an integral of the first kind at any point on the

Riemanns surface, all its values at that point are of the form

2p

W + 1 m,.03r,
?• = !

ivhere the coefiicients m are integers.

The foregoing functions, arising through integi-als that are finite every-

where on the surface, will be found the most important from the point of

view of Abelian transcendents : but other classes arise, having infinities on

the surface, and it is important to indicate their general nature before passing

to the proof of the Existence-Theorem.

207. First, consider an integral which has algebraic, but not logarithmic,

infinities. Taking the subject of integration, as in the preceding case, to be

the most general possible so that arbitrary coefficients enter, we can, by
assigning suitable relations among these coefficients, prevent any of the

points, given as zeros of ^ = 0, from being infinities of the integral. It

follows that then the only infinities of the integral will be the points that are

accidental singularities of coefficients of powers of w in the numerator of the

general expression for ?//. These singularities must each be of the second

order at least: and, in the expansion of w' in the vicinity of each of them,

there must be no term of index — 1, for it is the index that leads, on integration,

to a logarithm.

Such integrals are called integrals of the second kind.

The simplest integral of the second kind has an infinity for only a single

point on the surface, and the infinity is of the first order only : the integral

is then called an elementary integral of the second kind. After what has
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been proved in § 202 (ii), it is evident that an elementary integral of the

second kind cannot occur in connection with the equation f{w, z) = 0, unless

the term /?o (^) of § -00 be retained in the expression for lu'.

Ex. 1. Adopting the subject of integration obtained in § 200, we have

cw

where Tis of the character considered in the preceding sections, viz., it is of degree n — 2

in w ; various forms of ir lead to various forms of h^ {z) and of 6'(w, z).

If - ^0 (2) = —-—J and if c be not a singularity of the coethcient of any power of w
a (z - c)-

in U, it is then evident that

wdz= h I \J dz;

1 dtv

and the integral on the right-hand side can by choice among the constants be made an

integral of the first kind. The integral is not, however, an elementary integral of the

second kind, because z= cis an infinity in each sheet.

Ex. 2. A special integral of the second kind occurs, when we take an accidental

singularity, say z= c, of the coefficient of some power of iv in U (w, z) and we neglect /iq {z)
;

so that, in effect, the subject of integration w' is limited to the form

V {u', z)

U being of degree not higher than n - 2 in w. To the value z= c, there correspond n points

in the various sheets ; if, in the immediate vicinity of any one of the points, w' be of the

form

in that vicinity the integral is of the form

For such an integral the sum of the coefficients A,, is zero: the simplest case arises

when all but two, say Ax and A^,o^ these vanish. The integral is then of the form

in the vicinity of Ci, and of the form

in the vicinity of Cj. But the integral is not an elementary integral of the second kind.

208. To find the general value of an integral of the second kind,

all the arithmetically infinite points would be excluded from the Riemann's

surface by small curves : and the surface would be resolved into one that is

simply connected. The cross-cuts necessary for this purpose would consist of

the set of 1p cross-cuts, necessary to resolve the surface as for an integral of
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the first kind, and of the k additional cross-cuts in relation with the curves

excluding the algebraically infinite points.

Let the moduli for the former cross-cuts be

€,, e.,, ..., €p, for the cuts a^, ciz, ..., ap,

€p+i, €p+.,, ..., e.jp for the cuts bj, h.,, ..., bp, respectively:

the moduli for the cuts c are zero. It is evident from the form of the

integral in the vicinity of any infinite point that, as the integral has only

an algebraic infinity, the modulus for each of the k cross-cuts, obtained by a

curve from one edge to the other round the point, is zero. Hence if one

value of the integral of the second kind at a point on the surface be E{z),

all its values at that point are included in the form

2p

E(Z)+ V
urer,

r=l
where n^, ?io, ..., n.yp are integers.

The importance of the elementary integral of the second kind, inde-

pendently of its simplicity, is that it is determined by its infinity, save as to an

additive integral of the first kind.

Let E-i{z) and E^{z) be two elementary integrals of the second kind,

having their single infinity common, and let a be the value of z at this point

;

then in its vicinity we have

E, {z) = ^- +PA2- a), E. {z) = -^ + A {z - a),^ ^ z — a -^ ' z-a
and therefore AiE^{z)— A2E-^{z) is finite at z = a. This new function is

therefore finite over the whole Riemann's surface : hence it is an integral of

the first kind, the moduli of periodicity of which depend upon those of E.^ {z)

and E^iz).

Ex. It may similarly be proved that for the special case in Ex. 2, § 207, when the

integral of the second kind has two simple infinities for the same arithmetical value of z in

different sheets, the integral is determinate save as to an additive integral of the first kind.

Let «! and «2 be the two points for the arithmetical value a of ^ ; and let F{z) and G {z)

be two integrals of the second kind above indicated having simple infinities at «j and a-y,

and nowhere else.

Then in the vicinity of Wj we have

F{z)= ::^ + P,{z-iH), G{z) = ~^- + Q,(z-a,),
z—a

so that BF{z) - AG (z) is finite in the vicinity of aj.

Again, in the vicinity of a.^, we have, by § 202,

^ (^) = ~7 + ^2 (^ - «2), (J (^) =^+ ^h {z - a,),
z— U2 ^ ~ ''2

so that BF{z) — AG (z) is finite in the vicinity of 02 also. Hence BF (z) - AG (z) is finite

over the whole surface, and it is therefore an integral of the first kind ; which proves the

statement.
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It therefoift appears that, if F {z) be any such integral, every other integral of the same
nature at those points is of the form F{z)+ W, where W is an integral of the first kind.

Now there are p linearly independent integrals of the first kind : it therefore follows that

there are p+ \ linearly independent integrals of the second kind, which have simple

infinities with equal and opposite residues at two points, (and at only two points), deter-

mined by one algebraical value of z.

From the property that an elementary integral of the second kind is

determined by its infinity save as to an additive integral of the first kind, we
infer that there are jt) + 1 linearly independent elementary integrals of the

second kind with the same single infinity on the Riemann's surface.

This result can be established in connection with /(«>, s) = as follows. The subject

of integration is

{z-aft'

where for simplicity it is assumed that a is neither a branch-point of the function

nor a singular point of the curve f{w,z) = 0, and in the present case (7 is of degree

n-1 in w. To ensure that the integral vanishes for 2=00, the dimensions of U{u',z)

may not be greater than n- 1. Hence U {iv, 2), in its most general form, is a polynomial

function of w and 2 of degree Ji— 1 ; the total number of terms is therefore ^n{n+ l),

which is also the total number of arbitrary constants.

In order that the integral may not be infinite at each of the 8+ k singularities of the

curve f{w, z)= 0, a relation (/{y, c) = must be satisfied at each of them ; hence, on this

score, there are d + K relations among the arbitrary constants.

Let the points on the surface given by the arithmetical value a of 2 be (aj, aj), {a^, 02),

..., (o„, a„). The integral is to be infinite at only one of them ; so that we must have

for r= 2, 3, ..., /i ; and n — 1 is the greatest number of such points for which t^can vanish,

unless it vanish for all, and then there would be no algebraic infinity. Hence, on this

score, there are n — l relations among the arbitrary constants in U.

In the vicinity of 2= a, iv=a, let

s= « + C) w=a+ v;

then we have = v :^ +C^ + •,
da da '

where -- is the value of J- , and 7^ that of ^ , for z=a and tv= a. For sufficiently small
Ca cw oa cz' -^

values of
I

u
I

and
| f ]

, we may take

For such points we have
da ^ 9a

I4M

da

dw da (if d (a, a)

ta

29
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rr, 1
1 3(/, ^ 1

^ V' da)
Then unless -j^ ^7' / =« '^, ~

U{a, a) (a, a) of (a, a)

for (ai , ai), and

da

3 (a, a)

for (cf2, 02)? (<^3) "3)'> i^n, "kX there will be terms in - in the expansion of the subject of

integration in the vicinity of the respective points, and consequently there will be

logarithmic fnfinities in the integral. Such infinities arc to be excluded ; and therefore

their coefficients, being the residues, must vanish, so that, on this score, there appear to

be n relations among the arbitrary constants in U. But, as in § 210, the sum of the

residues for any point is zero : and therefore, when n — l of them vanish, the remaining

residue also vanishes. Hence, from this cause, there are only n — l relations among the

arbitrary constants in U.

The tale of independent arbitrary constants in U'{to,z), remaining after all the

conditions are satisfied, is

^n{n + l)-{8 + K)-(n-l)~{n-l)

=p+l.

As each constant determines an integral, the inference is that there are p+1 linearly

independent elementary integrals of the second kind with a common infinity.

209. Next, consider integrals which have logarithmic infinities, inde-

pendently of or as well as algebraic infinities. They are called integi'als of

the third kind. As in the case of integrals of the first kind and the second

kind, we take the subject of integration to be as general as possible so that it

contains arbitrary coefficients ; and we assign suitable relations iamong the

coefficients to prevent any of the points, given as zeros of df/diu, from becoming

infinities of the integral. It follows that the only infinities of the integral

are accidental singularities of coefficients of powers of w in the numerator

of the general expression for w' ; and that, when lu' is expanded for points in

the immediate vicinity of such an expression, the term with index — 1 nmst

occur.

To find the general value of an integral of the third kind, we should

first exclude from the Riemann's surface all the infinite points, say

by small curves ; the surface would then have to be resolved into one that

is simply connected. The cross-cuts for this purpose would consist of the

set of 2p cross-cuts, necessary to resolve the surface for an integral of the

first kind, and of the additional cross-cuts, /j, in number and drawn from the

boundary (taken at some ordinary point of the integral) to the small curves

that surround the infinities of the function.

The moduli for the former .set may be denoted by

Op,

and '^i>+i> '^p+i, ••) ^2p f'^i' the cuts bi.L, ..., l>j, respectively;
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they are zero for the cuts c. Taking the integral from one edge to the other

of any one of the remaining cross-cuts li, I2, ..., Iq, (where Iq is the cross-cut

drawn from the curve surrounding Iq to the boundary), its value is given by

the value of the integral round the small curve and therefore it is 2'rriXq,

where the expansion of the subject of integration in the immediate vicinity

of z = Iq is

Then, if IT be any value of the integral of the third kind at a point on the

unresolved Riemann's surface, all its values at the point are included in the

form
2p ^

n + S nirT^r + 27rt S UqXq,
r=l 5=1

where the coefficients 7^1, ..., 'in2p, ni, ..., n^ are integers.

210. It can be proved that the quantities Xq are subject to the relation

Let the surface be resolved by the complete system of 2p + yu, cross-cuts : the

resolved surface is simply connected and has only a single boundary. The
subject of integration, w, is uniform and continuous over this resolved surface :

it has no infinities in the surface, for its infinities have been excluded ; hence

jw'dz = 0,

when the integral is taken round the complete boundary of the resolved

surface.

This boundary consists of the double edges of the cross-cuts a, b, c, L,

and the small curves round the yu, points I ; the two edges of the same cross-*

cut being desci'ibed in opposite directions in every instance.

Since the integral is zero and the function is finite everywhere along the

boundary, the parts contributed by the portions of the boundary may be con-

sidered separately.

First, for any cross-cut, say a^ : let" be the point where it is crossed by b,j

,

and let the positive direction of description of the whole boundary be indicated

by the arrows (fig. 82, § 230). Then, for the portion Ca...E, the part of the

integral is I tv'dz, or, if Ca...E be the negative edge (as in § 196), the part
J c

of the integi-al may be denoted by

rJ'J

I w'dz.
J c

The part of the integral for the portion F...aD, being the positive

edge of the cross-cut, is w'dz, which may be denoted by — / w'dz. The

29—2
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course and the range for the latter part are the same as those for the

former, and w' is the same on the two edges of the cross-cut ; hence the

sum of the two is

= 1 {w' — w) dz,
J c

which evidently vanishes*. Hence the part contributed to Jw'dz by the two

edges of the cross-cut iig is zero.

Similarly for each of the other cross-cuts a, and for each of the cross-cuts

b, c, L.

The part contributed to the integral taken along the small curve enclosing

Iq is 2'7ri\g, for 5" = 1, 2, ...,//,: hence the sum of the parts contributed to the

integi-al by all these small curves is

27ri 1 \g.
7 = 1

All the other parts vanish, and the integral itself vanishes ; hence

2'Tri i X5 = 0,

7 = 1

establishing the result enunciated.

Corollary. An integral of the third kind, that is, having logarithmic

infinities on a Riemanns surface, must have at least tivo logarithmic infinities.

If it had only one logarithmic infinity, the result just proved would

require that Xj should vanish, and the infinity would then be purely

algebraic.

211. The simplest instance is that in which there are only two

Jogarithmic infinities ; their constants are connected by the equation

Xj + X, = 0.

If, in addition, the infinities be purely logarithmic, so that there are no

algebraically infinite terms in the expansion of the integral in the vicinity

of either of the points, the integral is then called an elementary integral

of the third kind. If two points C'l and C^. on the surface be the two infini-

ties, and if they be denoted by assigning the values Ci and Ca to 2 ; and if

Xi = 1 = — Xo (as may be assumed, for the assumption only implies division

of the integral by a constant factor), the expansion of the subject of inte-

gration for points in the vicinity of Cj is

_l^_ + P. (,_,,),

* It vanishes from two independent causes, first through the factor xc' - w', and secondly

because z^=z^, the breadth of any cross-cut being infinitesimal.

The same result holds for each of the cross-cuts a and h.

For each of the cross-cuts c and L, the sum of the parts contributed by opposite edges

vanishes only on account of the factor w' - w' ; in these cases the variable z is not the same

for the upper and the lower limit of the integral.
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and for points in the vicinity of Co the expansion is

Such an integral may be denoted by 111., : its modulus, consequent on

the logarithmic infinity, is ^iri.

Ex. 1. Prove that, if ni2, 11.23, ^31 ^^ three elementary integrals of the third kind

having Cj, c-i; c^, c^; C3, Cj for their respective pairs of points of logarithmic discontinuity,

,then 1112+ 1123+ 1131 is either an integral of the first kind or a constant.

Clebsch and Gordan pass from this result to a limit in which the points c^ and c^

coincide and obtain an expression for an elementary integral of the second kind in the

form of the derivative of 1113 with regard to Cx . Klein, following Riemann, passes from an

elementary integral of the second kind to an elementary integral of the third kind by

integrating the former with regard to its parametric point*.

Ex. 2. Reverting again to the integrals connected with the algebraical equation

f{w, s)= 0, when it can be interpreted as the equation of a generalised curve, an integral

of the third kind arises when the subject of integration is

cw

where T"(w, z) is of degree ?i — 2 in w. If F(w, z) be of degree in z not higher than n- 2,

the integral of to' is not infinite for infinite values of 2 ; so that F(w, z) is a general integral

function of w of degree n-2.

Corresponding to the arithmetical value c of z, there are n points on the surface, say

(<^i) ^'i)) (^2j ^2)1 •••) {<^nt ^'n) '> 3'iid the expansion of vJ in the vicinity of (c^, k^) is

^^{K, Cr) 1 ,

d'kr

the coefficients of the infinite terms being subject to the relation

dk,.

because V(w, z) is only of degree ?i - 2 in w. The integral of ?// will have a logarithmic

infinity at each point, unless the corresponding coefficient vanish.

Not more than % — 2 of these coefficients can be made to vanish, unless they all vanish
;

and then the- integral has no logarithmic infinity. Let ?i-2 relations, say

V{kr,Cr) = 0,

for r= 3, 4, ..., 11, be chosen; and let the S+ k relations be satisfied which secure that the

integral is finite at the singularities of the curve /(w, 2)-=0. Then the integral is an

elementary integral of the third kind, having (ci, ^1) and {c^., ko) for its points of

logarithmic discontinuity.

Ex. 3. Prove that there are p+ 1 linearly independent elementary integrals of the

third kind, having the same logarithmic infinities on the surface.

* Clebsch und Gordan, (I.e., p. 408, note), pp. 28—33 ; Klein-Fricke, Vorlesungen ilher die

Theorie der elliptischen Modulfunctionen, t. i, pp. 518—522 ; Riemann, p. 100.
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Ex. 4. Shew that, in connection with the fundamental equation

any integral of the first kind is a constant multii:)le of

J
10^'

that an integral of the second kind, of the class considered in Ex. 2, § 207, is given by

and that an elementary integral of the third kind is given by

J zvP'

Ex. 5. An elementary (Jacobian) elliptic integral of the third kind occurs in Ex. 7,

p. 435 ; and a (Jacobian) elliptic integral of the second kind occurs in Ex. 8, p. 436.

Shew that an elementary (elliptic) integral of the second kind, associated with the

equation
10^= ^%^ -g^z — gzt

and having its infinity at (ci, yi), is

[ yi(^<>+yi) + (6ci^-ig^2)(^-gi) ^^

.

] (z-c-ifiv

and that an elementary (elliptic) integral of the third kind, associated with the same

equation and having its two infinities at (cj, yi), (c2, y2)5 is

_^ J

dz1 r/w+ yi _ w + y.A

2J\z-Ci 2-C2/

Ex. 6. Construct an elementary integral of the second kind, which is infinite of the

first order at 2=0, iv=l, the equation between w and z being

W5+ (S-1) (22+1)2= 0.

(Math. Trip., Part II., 1897.)

A sufficient number of particular examples, and also of examples with

a limited generality, have been adduced to indicate some of the properties

of functions arising, in the first instance, as integrals of multiform functions

of a variable z (or as integrals of uniform functions of position on a

Riemann's surface). The succeeding investigation establishes, from the most

general point of view, the existence of such functions on a Riemann's

surface : they will no longer be regarded as defined solely by integi^als of

multiform functions.



CHAPTER XVII.

ScHWARz's Proof of the Existence-Theorem.

212. The investigations in the preceding chapter were based on

the supposition that a fundamental equation was given, the appropriate

Riemann's surface being associated with it. The general expression of

uniform functions of position on the surface was constructed, and the

integrals of such functions were considered. These integrals in general

were multiform on the surface, the deviation from uniformity consisting

in the property that the difference between any two of the infinite number of

values could be expressed as a linear combination of integral multiples of

certain constants associated with the function. Infinities of the functions

defined by the integrals, and the classification of the functions according to

their infinities, were also considered.

But all ' these investigations were made either in connection with

very particular forms of the fundamental equation, or with a form of not

unlimited generality : and, for the latter case, assumptions were made,

justified by the analysis so far as it was carried, but not established

generally.

In order to render the consideration of the propositions complete, it must

be made without any limitations upon the general form of fundamental

equation.

Moreover, the second question of § 192, viz., the existence of functions

(both uniform and multiform) of position on a surface given independently of

any algebraical equation, is as yet unconsidered.

The two questions, in their generality, can be treated together. In the

former case, with the fundamental equation there is associated a Riemann's

surface, the branching of which is determined by that fundamental equation

;

in the latter case, the Riemann's surface with assigned branching is supposed
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given*. We shall take the surface as having one boundary and being other-

wise closed ; the connectivity is therefore an uneven integer, and it will be

denoted by 22) + I.

213. The problem can be limited initially, so as to prevent unnecessary

complications. All the functions to be discussed, whether they be algebraic

functions or integi-als of algebraic functions, can be expressed in the form

u + iv, where ii and v are two real functions of two independent real variables

a; and y. It has already (§ 10) been proved that both u and v satisfy the

equation

and that, if either u or v be known, the other can be derived by a quadra-

ture at most, and is determinate save as to an additive arbitrary constant.

Since therefore w is determined by u, save as to an additive constant, we

shall, in the' first place, consider the properties of the real function u only.

The result is valid so long as v can be determined, that is, so long as the

function u has differential coefficients. It will appear, in the course of the

present chapter, that no conditions are attached to the derivatives of u along

the boundary of an area, so that the determination of v along such a boundary

seems open to question.

It has been (§ 36) proved, in a theorem due to Schwarz, that, if w a

function of z be defined for a half-plane and if it have real finite continuous

values along any portion of the axis of x, it can be symmetrically continued

across that portion of the axis. The continuation is therefore possible for the

real part ti of the function w; and the values of ti, are the real finite continuous

values of w along that portion of the axis.

It will be seen, in Chapters XIX., XX. that, by changing the independent

variables, the axis of a; can be changed into a circle or other analytical line

(§ 221); so that a function u, defined for an interior and having real finite

continuous values along any portion of the boundary, can be continued across

that portion of the boundary, which is therefore not the limit of existence

f

* The surface is supposed given ; we are not concerned with the quite distinct (luestion as

to how far a Riemann's surface is determinate by the assignment of its number of sheets, its

branch-points (and consequently of its connectivity), and of its branch-hnes. This question is

discussed by Hurwitz, Mat)i. Ann., t.'xxxix, (1891), pp. 1— (51. He shews that, if Q denote tlie

ramification (§ 178) of the surface wJiich, necessarily an even integer, is defined as the sum of

the orders of its branch-points, a two-sheeted surface is made uniquely determinate by assigned

branch-points ; the number of essentially distinct three-sheeted surfaces, made determinate by

assigned branch-points, is h (3^"^- 1) ; and so on, the number being finite for finite values of ii.

It is easy to verify tliat the number of distinct three-sheeted surfaces, with 4 assigned points

as simple branch-points, is 4 : an example suggested to me by Prof. W. Burnside.

t The continuation indicated will be carried out for the present case by means of the

combination of areas (g 222), and without further reference to the transformation indicated

or to Schwarz's theorem on symmetrical continuation.
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of u. The derivatives of u can then be obtained in the extended space and

so V can be determined for the boundary*.

And, what is more important, it will be found that, under conditions to be

assigned, the number of functions u that are determined is double the number

of functions w that are determined ; the complete set of functions u lead to

all the parts u and v of the functions w (§ 234, note).

214. The infinities of u at any point are given by the real parts of the

terms which indicate the infinities of lu. Conversely, when the infinities of a

are assigned in functional form, those of iv can be deduced, the form of the

associated infinities of v first being constructed by quadratures.

The periods of lu, being the moduli at the cross-cuts, lead to real constants

as differences of u at opposite edges of cross-cuts, or, if we choose, as constant

differences of values of u at points on definite curves, conveniently taken for

reference as lines of possible cross-cuts. Conversely, a real constant modulus

for u is the real partf of the corresponding modulus of w.

Hence a function, w, of position on a Riemann's surface is, except as to an

additive constant, determined by a real function u of x and y (where x -l- iy is

the independent variable for the surface), if u be subject to the conditions :

—

(i) it satisfies the equation Vhi = at all points on the surface where

its derivatives are not infinite :

(ii) if it be multiform, its values at any point on the surface differ by

linear combinations of integral multiples of real constants

:

otherwise, it is uniform :

(iii) it may have specified infinities, of given form in the vicinity of

assigned points on the surface.

In addition to these general conditions imposed upon the function u, it is

convenient to admit as a further possible condition, for portions of the surface,

that the function u shall assume, along a closed curve, values which are

always finite. But it must be understood that this condition is used only for

subsidiary purposes : it will be seen that it causes no limitation on the final

result, all that is essential in its limitations being merged in the three

principal conditions.

The questions for discussion are therefore (i), the existence of functions^

satisfying the above conditions in connection with a given Riemann's

* See Phragmen, Acta Math., t. xiv, (1890), pp. 225—227, for some remarks upon this

question.

t The imaginary parts of the moduli of iv are determinate with the imaginary part of w :

see remark at end of § 213, and the further reference there given.

X The functions u (and also v) are of great importance in mathematical physics for two-

dimensional phenomena in branches such as gravitational attraction, electricity, hydrodynamics,

and lieat. In all of them, the function represents a potential; and, consequently, in the general

theory of functions, it is often called a, potential function.
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surface, the connectivity of which is 2j9 + 1 as dependent upon its branching

and the number of its sheets ; and (ii), assuming that the functions exist,

their determination by the assigned conditions.

215. There are many methods for the discussion of these questions. The

potential function, both for two and for three dimensions in space, first arose

in investigations connected with mathematical physics : and, so far as concerns

such subjects, its theory was developed by Green, Gauss, Poisson, Stokes, Lord

Kelvin, Maxwell and others. Their investigations have reference to appli-

cations to mathematical physics ; and they do not tend towards the solution of

the questions just propounded in relation to the general theory of functions.

Klein uses considerations drawn from mathematical and experimental

physics to establish the existence of potential functions under the assigned

conditions. The proof that will be adopted brings the stages of the investi-

gation into closer relations with the preceding and the succeeding parts of

the subject than is possible if Klein's method be followed*.

To establish the existence of the functions under the assigned conditions,

Riemannt uses the so-called Dirichlet's Principle;]:; but as Riemann's proof

of the principle is inadequate, his proof of the existence-theorem cannot be

considered complete.

There are two other principal, and independent, methods of importance,

each of which effectively establishes the existence of the functions, due to

Neumann and to Schwarz respectively; each of them avowedly dispenses§

with the use of Dirichlet's Principle.

The courses of the methods have considerable similarly. Both begin

Avith the construction of the function for a circular area. Neumann uses

what is commonly called the method of the arithmetic mean, for gradual

approximation to the value of the potential function for a region bounded

by a convex curve : Schwarz uses the method of conformal representation,

to deduce from results previously obtained, the potential function for regions

bounded by analytical curves; and both authors use certain methods for

combination of areas, for each of which the potential function has been

constructed
II

.

* Klein's proof occurs in his tract, already quoted, Uebcr Jiicmaini's Theorie dcr algebraischen

Functionen unci ihrer Integrale, (Leipzig, Teubner, 1882), and it is modified in bis memoir
" Neue Beitriige zur Kiemann'schen Functionentheorie,'" Math. Ann., t. xxi, (1883), pp. 141—218,

particularly pp. 160—lfi2.

t Ges. Werke, pp. 35—39, pp. 96—98.

X Riemann enunciates it, (I.e.), pp. 34, 92.

§ Neumann, Vorlesungen Uber Riemann's Theorie der AbePsehen Integrale, (2nd ed., 1884),

p. 238 ; Schwarz, Ges. Werke, ii, p. 171.

II
Neumann's investigations are contained in various memoirs, Hldth. Ann., t. iii, (1871),

pp. 325—349; ib., t. xi, (1877), pp. 558—566; ib., t. xiii, (1878), pp. 255—300; ib., t. xvi,

(1880), pp. 409—431 ; and the methods are developed in detail and amplified in his treatise
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What follows in the present chapter is based upon Schwarz's investi-

gations : the next chapter is based upon the investigations of both Schwarz

and Neumann, and, of course, upon Rieinann's memoirs.

The following summary of the general argument will serve to indicate the main line of

the proof of the establishment of potential functions satisfying assigned conditions.

I. A potential function u is uniquely determined by the conditions : that u, as well

as its derivatives ^, ^, ^-^, ^-^ (which satisfy the equation V%= 0), shall be uniform,

finite and continuous, for all points within the area of a circle ; and that, along the

circumference of the circle, the function shall assume assigned values that are always

finite, uniform and, except at a limited number of isolated points where there is a sudden

(finite) change of value, continuous. (§§ 216—220.)

II. By using the principle of conformal representation, areas bounded by curves other

than circles—say by analytical curves—are obtained, over which the potential function is

uniquely determined by general conditions within the area and assigned values along its

boundary. (§221.)

III. The method of combination of areas, dependent upon an alternating process,

leads to the result that a function exists for a given region, satisfying the general

conditions in that region and acquiring assigned finite values along the boundary when

the region can be obtained by combinations of areas that can be conformally represented

upon the area of a circle. (§ 222.)

IV. The theorem is still valid when the region (supposed simply connected) contains

a branch-point ; the winding-surface is transformed by a relation

into a single-sheeted surface, for which the theorem has already been established.

When the surface is multiply connected, we resolve it by cross-cuts into one that is

simply connected, before discussing the function. (§ 223.)

Ueber das logarithmische und Newtoii'sche Potential (Leipzig, Teubner, 1877) and in bis treatise

quoted in the preceding note. In this connection, as well as in relation to Schwarz's investi-

gations, and also in view of some independence of treatment, Harnack's treatise. Die Grundlagen

der Theorie des logarithmischen Potentiales und der eindeutigen Potentialfnnction in der Ebene

(Leipzig, Teubner, 1887), and a memoir by Harnack, Math. Ann., t. xxxv, (1890), pp. 19—40,

may be consulted.

A modification of Neumann's proof, due to Klein, is given in the first volume (pp. 508—522)

of the treatise cited on p. 453, note.

Schwarz's investigations are contained in various memoirs occurring in the second volume

of his Gesammdte Werke, pp. 108—132, 133—143, 144—171, 175—210, 303—306: their various

dates and places of publication are there stated. A simple and interesting general statement

of the gist of his results will be found in a critical notice of the two volumes of his collected

works, written by Henrici in Nature (Feb. 5, 12, 1891, pp. 321—323, 349—352). There is a

comprehensive memoir by Ascoli, based upon Schwarz's method, "Integration der Differential-

gleichung V^^— o in einer beliebigen Riemann'schen Flache," (Bih. t. kongl. Svenska Vet. Akad.

Handl., bd. xiii, 1887, Afd. 1, n. 2 ; 83 pp.) ; a thesis by Jules Riemann, Sur le prohlhne de

Dirichlet, (Th6se, Gauthier-Villars, Paris, 1888), discusses a number of Schwarz's theorems

(see, however, Schwarz, Ges. Werke, t. ii, pp. 356—358) ; and an independent memoir by Prym,

Crelle, t. Ixxiii, (1871), pp. 340—364, may be consulted.

The literature of this part of the subject is very wide in extent : many other references are

given by the authors already quoted.
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V. Real functions exist on a Riemann's surface, which are everywhere finite and

uniquely determinate by arbitrarily assigned real moduli of periodicity at the cross-cuts.

(§§ 224-227.)

VI. Functions exist, satisfying the conditions in (V.) except that they may have at

isolated points on the surface, infinities of an assigned form. (§ 229.)

216. We shall, in the first place, discuss potential functions that have

no infinities, either algebraic or logarithmic, over some continuous area on

the surface limited by a simple closed boundary, or by a number of non-inter-

secting simple closed curves constituting the boundary ; for the present, the

area thus enclosed will be supposed to lie in one and the same sheet, so that

we may regard the area as lying in a simple plane.

At all points within the area and on its boundary, the functicm n is finite

and will be supposed uniform and continuous ; for all points within the area

(but not necessarily for points on the boundary), the derivatives

du du d-u dhi

dx ' dy' dx- '
dy'^

are uniform, finite and continuous and they satisfy the equation V-u = 0.

These may be called the general conditions.

Two cases occur according as the character of the derivatives at points in

the area is or is not assigned for points on the boundary ; if the character be

assigned, there will then be what may be called boundary conditions. The

two cases therefore are
\
—

(A) When a function u is required to satisfy the general conditions,

and its derivatives are required to satisfy the boundary con-

ditions :

{B) When the only requirement is that the function shall satisfy the

general conditions.

Before proceeding to the establishment of what is the fundamental

proposition in Schwarz's method, it is convenient to prove three lemmas

and to deduce some inferences that will be useful.

Lemma I, If two functions u^ and u^ satisfy the general conditions for tiuo

regions T^ and T^ respectively, which have a common portion T that is more

than a point or a line, and if u^ and u.^ he the same for the common portion T,

or if they be the saine for any part of T that is more than a point or a line,

then they define a single function for the luhole region composed of Ti and T.,.

This proposition can be made to depend upon the continuation of

analytic functions*, whether in a plane (§ 34) or, in view of a subsequent

transformation (§ 223), on a Riemann's surface.

The real function u^ defines a function Wi of the complex variable z, for

any point in the region '1\
; and for points within this region, the function w^

* For other proofs, see Scbwarz, Ges. Werke, t. ii, pp. 201, 202, and references there given.



216.] FOR SCHWARZ'S PROOF 461

is uniquely determined by means of its own value and the values of its

derivatives at any point within T^, obtained, if necessary, by a succession of

elements in continuation. Hence the value of w^ and its derivatives at any

point within T defines a function existing over the whole of T^.

Similarly the real function m., defines a function Wg within Tj, and this

function is uniquely determined over the whole of To by its value and the

values of its derivatives at any point within T.

Now the values of u-^ and a., are the same at all points in T, and therefore

the values of w-^ and w^ are the same at all points in T, except possibly for an

additive (imaginary) constant, say ia, so that

ti\ = lUo + ioc.

Hence for all points in T, (supposed not to be a point, so that we may have

derivatives in every direction (§ 8): and not to be a line, so that we may
have derivatives in all directions from a point on the line), the derivatives

of ?fi agree with those of Wg; and therefore the quantities necessary to define

the continuation of Wi from T over T^ agree with the quantities necessary to

define the continuation of w., from T over T.,, except only that w^ and Wg

differ by an imaginary constant. Hence, having regard to the form of the

elements, Wj and Wg can be continued over the region composed of T^ and Tg,

and their values differ (possibly) by the imaginary constant. When we take

the real parts of the functions, we have u^ and u^ defining a single function

existing over the whole region occupied by the combination of Tj and To.

The other two lemmas relate to integrals connected with potential

functions.

Lemma II. Let u he a function required to satisfy the general conditionSy

and let its derivatives be required to satisfy the boundary conditions, for an

area S bounded by simple non-intersecting curves: then

J an

where the integral is extended round the ivhole boundary in the direction that is

positive ivith regard to the bounded area S; and dn is an element of the normal

to a boundary-line drawn towards the interior of the space enclosed by that

boundary-line regarded merely as a simple closed curve*.

Let P and Q be any two functions, which, as well as their first and second

derivatives with regard to x and to y, are uniform, finite and continuous for

* The element dn of the normal is, by this definition, measured inwards to, or outwards

from, the area S according as the particular boundary-line is described in the positive, or in the

negative, trigonometrical sense. Thus, if S be the space between two concentric circles, the

element dn at each circumference is drawn towards its centre ; the directions of integration are

as in § 2.
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all points within S and on its boundary. Then, proceeding as in § 16 and

taking account of the conditions to which P and Q are subject, we have

where V"^ denotes h ;r— , the double integrals extend over the area of S, and
dx'^ oy-

the single integral is taken round the whole boundary of S in the direction

that is positive for the bounded area aS'.

Let ds be an element PT of arc of the boundary at a point {x, y), and dn

be an element TQ of the normal at T drawn to the

interior of the space included by the boundary- j
line regarded as a simple closed curve ; and let y^r

be the inclination of the tangent at T. Then in

(i), as TQ is drawn to the interior of the area in-

cluded by the curve, the direction of integration

being indicated by the arrow (so that S lies within the curve), we have

dx = ds cos y^ — dn sin -v/r, dy = ds sin yjr + dn cos yjr
;

and therefore it follows that, for any function R,

dR dR . , dR
^— = — -:^ sm ylr + ^- cos ilr.

on ox dy

Now for variations along the boundary we have dn = 0, so that

dR , dR, dR ,— ^^ ds = -;:- dy — ^z— dx.
dn dx " dy

And in (ii), as TQ is drawn to the interior of the area included by the curve,

the direction of integration being indicated by the arrow (so that *S lies

without the curve), we have

dx = (— ds) cos -^ + dn sin -v/r, dy = (— ds) sin y\r — dn cos i/r,

. . „ dR dR . , dR ,

and therefore ^ = -^ sm i/r — ^ cos i/r,

so that, as before, for variations along the boundary,

dR , dR , dR ,— -^r- ds = ^^ dy — -T^ dx.
dn dx dy

p'Sds.

Hence, with the conventions as to the measurement of dn and ds, we have

both integrals being taken round the whole boundary of S in a direction that

is positive as regards S. Therefore
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In the same way, we obtain the equation

and therefore | f
(PV^Q - QV^P) dxdy=j(^Q^£-P

|^)
ds,

where the double integral extends over the whole of S, and the single

integral is taken round the whole boundary of S in the direction that is

positive for the bounded area S.

Now let It be a potential function defined as in the lemma; then u

satisfies all the conditions imposed on P, as well as the condition V'^u =

throughout the area and on the boundary. Let Q = l; so that V-Q = 0,

^ = 0. Each element of the left-hand side is zero, and there is no dis-
dn

continuity in the values of P and Q; the double integral therefore vanishes,

and we have
'du
^ ds = 0,

J on

the result which was to be proved.

Ex. 1. Let w be a potential function as in the lemma : and let the area S be the

interior of a circle of radius B. Let two concentric circles of radii
/'i

and ?-2 be drawn

such that R'^ri>r2^0: then

I u{?\,(f))d<p=j ii{r2,(f))d(f),

a result due to Schwai'z.

Take any concentric circle of radius r such that R>r>0; and consider the space

between this circle and S. The function u satisfies the general conditions over this space,

and its derivatives satisfy the boundary conditions for the whole contoiu- ; hence

/.j-:*+/s^-«-

where the first integral is taken in the counterclockwise direction round S, and the second

clockwise round the circle of radius r. On account of the character of u over the whole

of S, and the character of its derivatives along the circumference of S, we have

and therefore

son

l^ds= 0.

taken round the circle of radius r. But 5- = 5- along this circumference, and ds= rd(j)
dn dr

°

hence, dropping the factor ;•, we have

[du

}¥ray-

Integration with respect to r between r^ and r, leads to the result stated.
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Ex. 2. Let u be a potential function as in the lemma : and let the area S be the space

lying without the circumference of the circle of radius R. Let two concentric circles

of radii r, and r^ be drawn, such that r2>ri'^R: a precisely similar proof leads to the

result
firr [2.TT

I u (ri , d)) (/0 = I u (r^,
(f)) d(f).

jo Jo

Bvit if the derivatives of u are not required to satisfy the boundary

conditions, the equation in Lemma II may not be inferred; we then have

the following proposition.

Lemma III. Let u be a function, ivhich is only required to satisfy the

general conditions for an area S; and let ?/' he any other function, which

is required to satisfy the general conditions for that area and may or may

not he required to satisfy the boundary conditions. Let A he an area entirely

enclosed in S and such that no point of its ivhole boundary lies on any jyart of

the whole boundary of 8 ; then

/(
U ;r U'^] ds = 0,

dn on;

where the integral is taken round the whole boundary of A in a direction

which is positive with regard to the hounded area A, and the element dn of

the normal to a boundary-line is drawn towards the interior of the space

enclosed by tluit boundary-line, regarded merely as a simple closed curve.

The area A is one over which the functions u and u' satisfy the general

conditions. The derivatives of these functions satisfy the boundary conditions

for A, because they are uniform, finite and continuous for all points inside >S^,

and the boundary of A is limited to lie entirely within S. Hence

1
1
^u^^u' - u'VHt)dxdy = -

I

[it ^'^ - tt

^)
ds.

the integrals respectively referring to the area of A and its boundary in a

direction positive as regards A. But, for every point of the area, V-u = 0,

^2 u =
; and u and n' are finite. Hence the double integral vanishes, and

therefore

/(

du ,8w\ , ^
u ^ u =- rf5 = 0,

on en/

taken round the whole boundary oi A in the positive direction.

One of the most effective modes of choosing a region A of the above

character is as follows. Let a simple curve Oj be drawn lying entirely within

the area 8, so that it does not meet the boundary of S\ and let another

simple curve C^ be drawn lying entirely within Cj, so that it does not meet

Ci, and that the space between C^ and C, lies in S. This space is an area of

the character of ^4, and it is such that for all internal jjpints, as well as for

all points on the whole of its boundary (which is constituted by G^ and C^),
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the conditions of the preceding lemma apply. The curve Co in the above

integration is described positively relative to the area which it includes : the

curve C\ is described, as in § 2, negatively relative to the area which it

includes. Hence, for such a space, the above equation is

/( on on J j\ on on J

if the integrals be now extended round the two curves in a direction that is

positive relative to the area enclosed by each, and if in each case the normal

element dn be drawn from the curve towards the interior.

217. We now proceed to prove that a function a, required to satisfy the

general conditions for an area included within a circle, is uniquely determined

by the series of values assigned to. u along the circumference of tlie circle.

Let the circle aS' be of radius R and centre the origin. Take an internal

point Za= re"^' (so that r< R), and its inverse z^' = r'e'^' (such that rr' = R-),

so that Zq is external to the circle. Then the curves determined by

z-z^ r

z — Zq
\
K

for real values of X, are circles which do not meet one another. The boundary

of S is determined by A, = 1, and X,= gives the point z^ as a limiting circle :

and the whole area of 8 is obtained by making the real parameter X,

change continuously from to 1.

Lemma III. may be applied. We choose, as the ring-space, the area

included between the two circles determined by \^ and X^, vvhere

1 > \i > ^2 > 0,

and the positive quantities 1— Xi, X2 can be made as small as we please.

Then we have

[f du , du\ , if du , du\ ,

where the integrals are taken round the two circumferences in the trigono-

metrically positive direction (dn being in each case a normal element drawn
towards the centre of its own circle), and the function u satisfies the general

and the boundary conditions for the ring-area considered. Moreover, the

area between the circles, determined by Xj and Xo, is one for which u satisfies

the general conditions, and its derivatives certainly satisfy the boundary

conditions : hence

/l->.=«,
j]i:..=o.

Now the function u is at our disposal, subject to the general conditions

for the area between the two X-circles and the boundary conditions for each

F. F. 30
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of those circles. All these conditions are satisfied by taking u' as the real

part of log I -,
j

, that is, in the present case,

For all points on the outer circle, u' is equal to the constant log( pX, ), so

that

,du

and similarly for all points on the inner circle, u' is equal to the constant

log
( p ^2 1

, so that

ju^£ds, = 0.

the value of ^^— for an inward drawn normal is (§ 11)

Again, for a point 2 on the outer circle, whose angular coordinate is t/t,

wn normal i

(R' - rWy
.

\,R (R' - 7'-') {R^ - 2Rr\ cos {^fr-<fi) + r'X,'}
'

and because the radius of that outer circle is X^R (R- — r-)/(R- — r-\-), we

have

Denoting by /(Xj, yjr) the value of u at this point ^}r on the circle- determined

by Xi, we have

I

'' a^ ^'^ = "
Jo

^^""^ ^^ R^-2RrX,cos{ir-ct>) + r'K
^-

Similarly for the inner circle, the normal element again being drawn towards

its centre, we have

J^^^n^^^
= -Jo'^^^'^^i^^-2i^.•Xcos(^|.-0)+^^.^^^^•

Combining these results, we have

J,
f^^- ^> R^ - 2-/e7xrcos (V^ ^-<f)^^^^

^^

/"-"
. R- — r'-X.,- , .

=
J

/ (X.,, f) j^, _ 2RrX,cos (^ -
</)) + r-'X,/

'^•

In the analysis which has established this equation, Xj and X^ can have all

values between 1 and : the limiting value is excluded because then u'

is not finite, and the limiting value 1 is excluded because no supposition has



217.] A POTENTIAL FUNCTION 467

been made as to the character of the derivatives of u at the circumference

ofS.

But the equation which has been obtained involves only the values of u

and not the values of its derivatives. On account of the general conditions

satisfied by u, the values of u, represented by /(X, -yfr), are finite and continuous

within and on the circumference of the circle : they therefore are finite and
continuous for all values of \ from to 1, including both X = and X=l.
Hence the integral

Jo
^^^' ^^ R^ - 2RrX cos Or -<!>) + r^X^

^^'

{since ?• < R), is also finite and continuous for all these values of X, both X =
and X = 1 inclusive. The preceding equation has been proved true, however

small the positive quantities 1 — \i and X.3 may be taken ; we now infer that

it is valid when we take Xj = 1 , Xo = 0.

When X., = 0, the corresponding circle collapses to the point Zq : the value

of /(Xo, -\/r) is then the value of u at Zq, say u{r, ^) ; and the integi-al

connected with the second circle is ^ttu (v, 0).

When Xi = 1, the corresponding circle is the circle of radius R ; the value

of /(Xj, yjr) is then the assigned value of u at the point i/r on the circum-

ference, say the -function /(>/^). Substituting these values, we have

the integral being taken positively round the circumference of the circle S.

It therefore appears that the function u, subjected to the general

conditions for the area of the circle, is uniquely determined by the values

assigned to it along the circumference of the circle.

The general conditions for u imply certain restrictions on the boundaiy

values. These values must be finite, continuous and uniform : and therefore

/(>//), as a function of i/r, must be finite, continuous, uniform and periodic in

yfr of period 27r.

218. It is easy to verify that, when the boundary values f{-^) are not

otherwise restricted, all the conditions attaching to u are satisfied by the

function which the integral represents.

Since the real part of (Re'''' + z)/(Re'''' — z) is the fraction

{R' - r-)l[R- - 2Rr cos (i/r - </,) + r-\,

it follows that u is the real part of the function F {z), defined by the equation

^«=^/l^::^/^t).t.
30—2
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For all values of z such that \z\<R, the fraction can be expanded in a series

of positive integral powers of z, which converges unconditionally and uni-

formly; and therefore F {z) is a uniform, continuous, analytical function,

everywhere finite for such values of z. Hence all its derivatives are uniform,

continuous, analytical functions, finite for those values of z\ and these

properties are possessed by the real and the imaginary parts of such

derivatives. Now ,- ^ ^ is the real part of {" -—;—-^^ ; and therefore,

for all integers 7/i and n positive or zero, it is a uniform, finite and continuous

function for points such that iz\<R, that is, for points within the circle.

Moreover, since u is the real part of a function of z, and has its differential

coefficients uniform, finite and continuous, it satisfies the differential equation

^hi = 0.

To infer the continuity of approach of ii {r, ^) to /(^) as r is made equal

to R, we change the integral expression for u (r, <^) into

ues of r <R (but not for r = R), we ha\

r- Wo—?rD a A^ = - tan-M „ tan^^M
',17]-^ R^ - 2Rr COS + r^ tt [ .

[R-r ' jj-*

2

Moreover for all values of r < R (but not for r = R), we have

27r

and therefore ,

R^-r
^/'""*{/(^ + <^)-/Wi
27rj_*

iyv--r/
./

^r/i ^2_2i2rcos^ + r
de.

Let B denote the subject of integration in the last integral. Then, as r

is made to approach indefinitely near to R in value, becomes infinitesimal

for all values of d except those which are extremely small, say for values of 6

between — 8 and + 8. Dividing the integral into the corresponding parts,

we have
-1 r-&

I
r±n-4, I fS

7 = _L me + ^ md + ~- (f^de.

27rJ_^ 27rJs ^ttJ-s

Let M be the greatest value of /(^l^) for points along the circle. Then the

first integral and the second integral are less than

<^-^2.1/
^"^-^ 27r-g-0 ^-7-

2^ ^''\R-rf + 2Rr {I -cos 8) 27r (R - rf + 2Rr (1 - cos 8)

respectively ; by taking r indefinitely near to R in value, these quantities

can be made as small as we please. For the third integral, let k be the

greatest value of/(<^ + 6) —f{(f>) for values of between 8 and — 8 : then the

^,hird integral is less than

27rj.s R' -2Rr COS + r''
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[^if;^ 8j; so that, when r is made nearly

equal to R, the third integi-al is less than k.

If then k be infinitesimal, as is the case when f((f>) is everywhere finite

and continuous, the quantity / can be diminished indefinitely; hence u{r,(f3)

continuously changes into the function /(^) as r is made equal to R. The

verification that the function, defined by the integral, does satisfy the general

conditions for the area of the circle and assumes the assigned values along

the circumference is thus complete.

Ex. 1. It will be convenient to possess an upper limit for \u{r, 0)-m(O)| for the

circumference of a circle of radius r, concentric with the given circle, r being less than It

:

say R-r'^p, where p is a quantity that may not be made as small as we please.

We have

u{r, (j))-.

1 /"27r

2, /. /W ir- 2Rr cos (\^ - <^) + r-

and clearly

so that

^(0) =^/^'VW^^^i

27r{?t(;-, 0)-M(O)} = 2r /(x|.)
/ 'in R cos (yjr - (fi)

i?2.
,d^|r.

2^r cos (x//- — 0) + r"

To indicate one upper limit for the modulus of the right-hand side, we can proceed as

follows. Let be the common centre of the two circles ; P the point (R, cj)) on the outer

circle, Q the point (r, ^) on the inner circle ; and let x denote

the angle between QP and OQ produced. Then

R cos (>//- ^) — r=PQ cos x,

so that

27r {u(r, (^)-m(O)}:
fin

PQ dy^.

Let M be the maximum value of |/(\//-) |

along the circum-

ference of the outer circle : then an upper limit for the modulus

of the right-hand side will be given by taking /"(>//')= il/^ w'hen cos^;^

is positive and f{;^)= —M when cos x is negative. Writing >// - = ^, we divide the range

R'
of integration into two parts; viz. 6= -a to -f-a, where cos a

Over the former, we take f{y\r)= M; over the latter /(»/')= --^•

Returning now to the initial expressions, with these values, we have

and a to 2t

I

277 {u (r, 4)) - u (0)}
I

<
2Rrcosd-

Wdd

R?-r^

<2M
2Rrcose + r'

2Rrcos6+ r^

R^-r' \

R^-2Rr COB d+ r^

+ 1

do.
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Now

^

—

-„ (16= 1 tan 1 { -TT— tan

so that

j R^- 2Rr cos ^+ r2
'"" ^ ""'

]/];-?•
"""

2/

I

27r {m (r, <^) - .( (0)}
I

< 2.1/ [ 2 tan "
' (|-^ yi ) - a]

+..,/[,-»- .[.-.ta„-.(|±r)|}]

<4J/[2ta„-.(|±ry.)-a],

where
?/i
= tania, and for the inverse function we take the smallest positive angle with

the indicated tangent. Now

tan M-o tan la 1 -ia= tan ^

(/^-r) + (i?+ r)tan2^

^ - r cos a

:tan" 1-1

l(/i;2-r2)2J R
and therefore

|ti(r, </,)-«(0)j<^sin-i-^.

The form* obtained is valid for values of r such that O^r^R-p, where p is a finite

quantity that may be not large but cannot be made as small as we please.

Ex. 2. Shew that, if M denote the maximum value (supposed positive) of f{y\r) for

points along the circumference of the circle and if « (0) vanish, then

It, (;•, (t>)<~ M tan ~^ -3. (Schwarz.)

219. But in view of subsequent investigations, it is important to consider

the function represented by the integral when the periodic function y"(^)

which occurs therein is not continuous, though still finite, for all points on

the circumference. The contemplated modification in the continuity is that

which is caused by a sudden change in value of f ((f))
as <^ passes through a

value a : we shall have

f{a-\-e)-f(a-e) = A,

when e is ultimately zero. Then the following proposition holds :

—

Let a function f(4>) be periodic in 27r, finite everywhere along the circle,

and continuous save at an assigned point a where it undergoes a sudden

increase in value : a function u can be obtained, which satisfies the general

conditions for the circle except at such a point of discontinuity in the value of

f(4>), and acquires the values off {(f))
along the circumference.

* It is due to Schwarz, Gcs. Werke, t. ii, p. 190.
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Let p be a quantity < R : then along the circumference of a circle of radius

p, the general conditions are everywhere satisfied for the function u, so that, if

a {p, i/r) be the value at any point of its circumference, the value of u at any

internal point is given by

1 j"
-"^ p^ — r-

^ ^ ^TT.'o ^ ^ p^ - '2pr COS (yfr — (f))
+ )'- ^

Now p can be gradually increased towards R, because the general conditions

are satisfied ; but, when p is actually equal to R, the continuity of ii (p, yjr) is

affected at the point a. We choose a finite arbitrary quantity e, which can

be made as small as we please ; and we divide the integral into three parts,

viz., to a — e, a — e to a + e, and a + e to 'Itt, when p is very nearly equal to

R. For the first and the third of these parts, p can, as in the preceding

investigation, be changed continuously into R without affecting the value of

the integral. If we denote by p the integral

^r "' ^^' ^^
itJ^ - 2i^r cos"(^ =r^)Tr^ ^^'

where the range of integration does not include the part from a — e to a + e,

and w^here the values /(a — e), /(a + e) are assigned to u' (R, a — e), u' (R, a + 1),

respectively ; the sum of the integrals for the first and the third intervals is

p + A, where A is a quantity that vanishes with R — p, because the subject of

integration is everywhere finite. For the second interval, the integral is

equal to q+ A', where

27rj,_e
'^^^

^ R^ - 2 Hr cos (^-<i>)+r-
^^'

and A' is a quantity vanishing with R — p because the subject of integration

is everywhere finite. So far as concerns q, let M be the greatest value of

|/(-\/r)
\, so that M is finite . then

M R + r^
^27rR- r

a quantity which, because of the mode of occurrence of the arbitrary quantity

e, can be made less than any finite quantity, however small, provided r is

never actually equal to R. If then, an infinitesimal arc from a — e to a + e

be drawn so as, except at its assigned extr^-mities, to lie within the area of

the circle, the last proviso is satisfied : and the effect is practically to exclude

the point a from the region of variation of u as a point for which the function

not precisely defined. With this convention, we therefore haveis

u (r, <b)- ^ I

''
u {R, i/r) ^~

, »
^

, 7 .X ,
., dylr = A + X + q,

^ '^^
27r.'o ^ R' - 2Rr cos {f' — (f>)

+ r-

so that, by making p ultimately equal to R and e as small as we please, the

difference between u (?-, <^) and the integral defined as above can be made less
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than any assigned quantity, however small. Hence the integral is, as before,

equal to the function u (r, <j)), provided that the point a be excluded from the

range of integration, the value /(a — e) just before -\/r = a and the value

/(a + e) just after i/r=a being assigned to u'(R,-\lr).

It therefore appears that discontinuities may occur in the boundary

values when the change is a finite change at a point, provided that all

the values assigned to the boundary function be finite.

Corollary. ' The boundary value may have any limited number of poinds

of discontinuity, provided that no value of the function be infinite and that at

all points other than those of discontinuity the periodic function be uniform,

finite and continuous : and the integr-al will then represent a potential function

satisfying the general conditions.

The above analysis indicates why discontinuities, in the form of infinite

values at the boundary, must be excluded : for, in the vicinity of such a

point, the quantity M can have an infinite value and the corresponding

integral does not then necessarily vanish. Hence, for example, the real

part of

eRe"^' - Re"-'

is not a function that, under the assigned conditions, can be made a boundary

value for the function u.

There is however a different method of taking account of the discon-

tinuities ; it consists in associating other particular functions, each, having

one (and only one) discontinuity, taken in turn to be the assigned discontinuities

of the required functions, and thus modifying the boundary conditions. The

method might not prove the simplest way of proceeding in any special case,

because of the substantial modification of those conditions ; but this is of

relatively less importance in the establishment of an existence-theorem, which

is the present quest.

Two cases arise, according as the assigned discontinuity in value takes

place at a point of continuity in the curvature of the boundary, or at a

point of discontinuity in the curvature.

In the former, when the discontinuity is required to occur at a point of

continuous curvature, we know (§ 3) that the argu-

ment of a point experiences a sudden change by tt

when the path of the point passes through the

origin. Let a point P on a circle (fig. 79, i) be

considered relative to A : the inclination of AP to

the normal, drawn inwards at A, is ^ — |^ (a — 4>),



219.] ALONG THE CIRCUMFERENCE 473

and o( AQ to the same line is - ^ - i (a - 0') , so that there is a sudden

change by tt in that inclination. Now, taking a function

^(<^)=-_tan-
TT

tan||-H«-^]

and limiting the angle, defined by the inverse function, so that it lies

between - ^tt and +^7r, as may be done in the above case and as is

justifiable with an argument determined inversely by its tangent, the

function g{(f>) undergoes a sudden change A as ^ increases through the

value a. Moreover, all the values of g (</>) are finite : hence g ((f>) is a

function which can be made a boundary value for the function u. Let the

function thence determined be denoted by u^.

By means of the functions Ua, we can express the value of a function u

whose boundary value /((/>) has a limited number of permissible discontinuities.

Let the increases in value be A^, ..., A„, at the points Oi, ct,, .... a,n respect-

ively : then, if gn {(f))
denote

An, .
tan

TT
tan

1^
- i (an - </5)j

I

we have gn («« + f) — gn («« — e) = A^, when e is infinitesimal. Hence

/(an + e) -/ (o„ - e) - [gn («„ + e) - ^„ (a„ - e)}

has no discontinuity at a.^, that is, f((l)) — gn(4>) has no discontinuity at a„.

Hence also /(^)— S gn{<^) has no discontinuity at Oj, ..., a,,,, and

therefore it is uniform, finite, and continuous everywhere along the circle

;

and it is periodic in 27r. By § 218, it determines a function U which satisfies

the general conditions.

Each of the functions gn{4>) determines a function u„ satisfying the

general conditions: hence, as u is determined by /(0), we have

m.

U- Z Un = U,
rt = l

which gives an expression for ti in terms of the simpler functions Un and of a

function C determined by simpler conditions as in § 218.

Ex. Shew that, if /(>//) = 1 from --^tt to -|-^7r and =0 from +^7r to fir, then u is the

real part of the function

1 ,
I +12

T- log -1
;

*

and obtain a corresponding expression for a function, which is equal to 1 from —a to +a,

and is equal to from a to 2ir- a.
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In the second case, when a discontinuity (say K in magnitude) is required

to occur at a point of sudden change in

curvature, we proceed similarly. Let A
be such a point, and suppose the curve

(fig. 79, ii) referred tp as pole : as in the

first case, we consider the point P relative

to A. Let 6 denote the internal angle

QAP, so that e is not equal to tt; let

TPO = (fi,,AQ0=<ji,, POO'=d„ AOO'=a,
QOO' = do. Then the inclination of ^P to p. ^^

^

AO is
<f>i
— {a — 6i), and the inclination of

AQ to A is - {it - (jjo- {00 — a)], so that, in passing from the direction AP
to the direction AQ, there is a sudden change of (p^- (pQ + 'rr, which is e in

the limit when P and Q move up to A. Accordingly, if we take a function

— tan-i [tan (<^ - a + 6)],

where 6 is the polar angle and
(f)

is the inclination of the (backwards-drawn)

tangent to the radius vector, this function suddenly increases in value by K
as the point P passes through A towards Q.

The result is used in exactly the same way as in the preceding case : and

we obtain a new function, assigned as the succession of boundar}' values, the

new {boundary) function being free from all discontinuities.

Ex. Obtain the expression of such a function in the case of two equal circles, when

the boundary curve consists of the two arcs each external to the other.

220. The general inference from the investigation therefore is, that a

function of two real variables x and y is uniquely determined for all points

within a circle by the following conditions :

—

(i) at all points within the circle, the function u and its derivatives

:r- ,
;r-

,
;r— ,

_^ must bc uulform, finite and continuous, and
ox oy ox' oy^

must satisfy the equation V-m = :

(ii) if f{(f>) denote a function, which is periodic in <p of period 'Itt, is

finite everywhere as the point <ji moves along the circumference,

is continuous and uniform at all except a limited number of

isolated points on the circle, and at those excepted points

undergoes a sudden prescribed (finite) change of value, then

to u is assigned the value /(<^) at all points on the circumference

except at the limited number of points of discontinuity of that

boundary function.

And an analytical expression has been obtained, the function represented by

which has been verified to satisfy the above conditions.
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We now proceed to obtain some important results relating to a function

u, defined by the preceding conditions.

I. The value of u at the centre of the circle is the arithmetic mean of its

values along the circumference.

For, by taking r = 0, we have

LIT J

the right-hand side being the arithmetic mean along the circumference.

II. If the function he a uniform constant along the cirxumference, it is

equal to that constant everywhere in the interior.

For, let C denote the uniform constant ; then

'' ^'' ^^ = 27r /o i^^ - 2Er co^ir - c^) + r^
^^

= C,

for all values of r less than R, that is, everywhere in the interior.

But if the function, though not varying continuously along the circum-

ference, should have different constant values in different finite parts, as, for

instance, in the example in § 219, then the inference can no longer be drawn.

III. If the function pe unifoi^m, finite and continuoits everywhere in the

2)lane, it is a constant.

Since the function is everywhere uniform, finite and continuous, the

radius R of the circle of definition can be made infinitely large : then, as

the limit of the fraction (R-- r-)/{R'- 2Rr cos {y}r-
(f>)

+ r-} is unity, we

have
1 r^''

Ztt J

the integral being taken round a circle of infinite radius whose centre is the

origin. But, by (I.) above, the right-hand integral is u (0), the value at the

centre of the circle ; so that

u (r, </)) = u (0),

and therefore u has the same value everywhere.

This is practically a verification of the proposition in § 40, that a uniform,

finite and continuous function w, which has no infinity anywhere, is a constant.

IV. A uniform, finite and continuous function u cannot have a maximum
value or a minimum value at any point in the interior of a region over which,

subject to the general conditions as to the differential coefficients, it satisfies the

differential equation V-u = 0.
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If there be any such point not on the boundary, it can be surrounded by

an infinitesimal circle for the interior of which, as well as for the circum-

ference of which, 2t satisfies both the general and the boundary conditions

;

hence

' an

the integral being taken round the circumference. But in the immediate

vicinity of such a point, ^ has everywhere the same sign, so that the

integral cannot vanish : hence there is no such point in the interior.

In the same way, it may be proved that there cannot be a line of

maximum value or a line of minimum value within the surface : and that

there cannot be an area of maximum value or an area of minimum value

within the surface.

V. It therefore follows that the maximum values for any region are to be

found on its boundary : and so also are the minimum values.

If M be the maximum value, and if m be the minimum value, of the

function for points along the boundary, then the value of the function for an

interior point is <M and is > m and can therefore be represented in the form

Mp-\- m{\ — p), where J9 is a real positive proper fraction, varying from point

to point. Also 2) never vanishes, except for the minimum on the boundary

;

and it is never so great as unity, except for the maximum on the boundary.

In particular, let a function have the value zero for a part of the

boundary and have the value unity for the rest, the points (if any) where the

"sudden change from to 1 takes place being cut off as in § 219. Let a line

be drawn from any point of the boundary, through the interior, to any other

point of the boundary ; and at each extremity let it cut the boundary at a

finite angle. The value, which the function has for points along the line, in

the interior is always positive and has an upper limit q, a proper fraction.

But q will vary from one line to another. If the region be a circle and q be

the proper fraction for a line in the circle, then the value along that line of a

function u, which is still zero over the former part of the boundary but has a

varying positive value < fx along the remainder, is evidently ^ qfi. This

fraction q may be called the fractional factor for the line in the supposed

distribution of boundary values.

Again, let a function have a value zero over part of the boundary, and

have positive values over the rest of it, the greatest of them being unity: and

suppose that there is no sudden discontinuity in value. When a line is drawn

(as above) through the area, both of its extremities being at zero values

on the boundary, let the value of the function along the line be q , where q

varies from point to point ; it is zero at the extremities of the line, and it is
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never so great as 1, because a maximum value cannot occur in the interior;

hence O^q'^Q, where Q is a real positive quantity, greater than and less

than 1.

The fraction Q is the fractional factor for the line.

Lastly, let a function have a value zero over part of the boundary, and

have values over the rest of it, some positive, others negative ; let - C be the

minimum, and +D the maximum, where C* > 0, D>0; and suppose that

there is no sudden discontinuity in value. Let a line be drawn (as above)

through the area, beginning at one point of zero value and ending at another ;

the value of the function along this line is - C + q" (D + C), where q" varies

from point to point along the line. Now q" cannot be as small as 0, for the

minimum — C is not to be found on the line ; nor can it be as large as 1, for

the maximum D is not to be found on the line. Hence

0<R^q"<Q<l,
where 2? is a real positive quantity greater than and less than Q, and Q is

a real positive quantity less than 1.

The fractions Q and R may be called the major and the minor fractional

factors for the supposed distribution of boundary values ; they are not

necessarily independent of C and D.

VI. It may be noted that the second of these propositions can now

be deduced for any simply connected surface. For when a function is

constant along the boundary, its maximum value and its minimum value

are the same, say X : then its value at any point in the interior is

X/9 + A, (1 — jo), that is, X, the same as at the boundary. Consequently if

two functions ih and u^, satisfy the general conditions over any region, and

if they have the same value at all points along the boundary, then they

are the same for all points of the region. For their difference satisfies

the general conditions : it is zero everywhere along the boundary : hence

it is zero over the whole of the bounded region.

If, then, a function u satisfy the general conditions for any region, it is

unique for assigned boundary values that are everyivhere finite, uniform, and.

continuous except at isolated points.

221. The explicit expression of u with boundary values, that are

arbitrary within the assigned limits, has been determined for the area

enclosed by a circle : the determination being partially dependent upon the

form assumed in § 217 for the subsidiary function u. The assumption of

other forms for u', leading to other curves dependent upon a parametric

constant, would lead by a similar process to the determination of u for the

area limited by such families of curves.

But without entering into the details of such alternative forms for ii , we

can determine the value of u, under corresponding conditions, for curves
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derivable from the circle by the principle of conformal representation*.

Suppose that, by means of a relation

or, say x ^ iy = p {^, ?;) + iq (f , ?;),

where p and q are real functions of ^ and t), the area contained within the

circle is transformed, point by point, into the area contained within another

curve which is the transformation of the circle : then the function u {x, y)

becomes, after substitution for x and y in terms of ^ and ?;, a function, say U,

of ^ and 7].

Owing to the character of the geometrical transformation, p and q (and

their derivatives with regard to ^ and r)) are uniform, finite and continuous

within corresponding areas. Hence

U{^, 'n)
= u{x,y);

dU _ du dp du dq dU _du dp du dq

d^ dx 5| dy d^ ' drj dx drj dy drj
'

so that the function U satisfies the general conditions for the new area

bounded by the new curve.

Moreover, u has assigned values along the circular boundary which is

transformed, point by point, into the new boundary ; hence U has those

assigned values at the corresponding points along the new boundary. Thus

the function U is uniquely determined for the new area by conditions which

are exactly similar to those that determine ti for a circle : and therefore the

potential function is uniquely determined for any area, which can be con-

formally represented on the area of a circle, by the general conditions of

§ 216 and the assignment of values that are finite and, except at a limited

number of isolated points where they may sufi:er sudden (finite) changes of

value, uniform and continuous at all points along the boundary of the area.

One or two examples of very special cases are given, merely by way of

illustration. The general theory of the transformation of a circle or an

infinite straight line into an analytical curve will be considered in Chapter

XX. But, meanwhile, it is sufficient to indicate that, by the principle of

conformal representation, we can pass from the circle to more general curves

as the boundary of an area within which the potential function is defined by

conditions similar to those for a circle : in particular that, by assuming the

result of §§ 265, 266, we can pass fi'om the circle to an analytical curve as the

boundary of such an area.

* The general idea of the principle, and some illustrations of it, as expounded in

Chapters XIX. and XX., will be assumed known in the argument which follows : see especially

§§ 265, 266.
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Ex. 1. A function u satisfying the general conditions for a circle of radius unity and

centre the origin, and having assigned values f{^) along the circumference, is deteruiined

at any internal point by the equation

Now the circle and its interior are transformed by the equation

into a parabola and the excluded area (§ 257) : so that, if /»', 6 be ]wlar coordinates of

any point in that excluded area, we have

rcos0= 2^-^cos|<9-l, rsin<^= -2R-^iiiuh6.

Corresponding to the circle r=\, we have the parabola

iecos'H<9= l;

if e determine the point on the parabola, which corresponds to >//• on the circle, we have

cos \//-= 2 cos^ 1 — 1

,

or \//-= e.

Hence the function U {R, 6) assumes the values /"(e) along the boundary of the

parabola.

Also
_

l-r^= ^{Rhcoshe-l\

1 - 2r cos (i/.- (^) + r^= ^ [i? cos2 |e -2/^4 cos |e cos |(e + ^) + 1]

;

and therefore we have the following result :

—

A function ivhich satisfies the general conditions for the area bounded by and lying on the

convex side of the parabola Rcos^\Q=\ and is required to assume the value f{Q) at points

along the parabola, is defined uniquely for a point {r, 6) external to the parabola by the

1 pTT^^^^ r^cos|^-l
^Q

277 j l-2ricos|ecos|(e + (9) + /-cos2|e

The function /'(e) may suffer finite discontinuities in value at isolated points: elsewhere

it must be finite, continuous and uniform.

Ex. 2. Obtain an expression for u at points within the area of the same paraVnjla,

by using

as the equation of transformation of areas (§ 257).

E.v. 3. When the equation

i+C

is used, then, li z=x+ iy and (=X+iV^ we have

• l-X^-Y'^+ i2X

If the point ^ describe the whole length of the axis of .V from -co to +x, so that

we may take ^=X=iwc\^ with increasing from —W to +i7r, we have .?.'= cos20,
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i/ = am icf) ; and z describes the whole circuujference of a circle, centre the origin and

radius unity, in a trigonometrically positive direction beginning at the point ( - 1, 0).

We easily find

r cos 6 _ r sin 6 _ r- _ 1

l-R^~2Rcose~l-2Rsme + Ji:^~l + 2Rsme + R^'

where A'=/?cose, T=R sin O. Moreover, for variations along the circumference, we
have \//- = 2(/) ; whence, substituting and denoting by F{jc), —/(2 tan~i .r), the value of

the potential at a point on the axis of real quantities whose abscissa is x, we ultimately

tind

It {R, ®^ = . j_. S^^^^c-os¥+;r-^^(^)^'^'

as the value of the potential-function w at a point (R, 6) in the upper half of the plane,

when it has assigned values F{x) at points along the axis of real variables.

222. The function u has now been determined, by means of the general

conditions within an area and the assigned boundary values, for each space

obtained by the method indicated in § 221. But the determination is

unique and distinct for each space thus derived ; and, if two such spaces

have a common part, there are distinct functions u. We now proceed to

shew that when two spaces, for each of which alone a function u can be

determined, have a common part which is not merely a point or a line,

then the function u is uniquely determined for the combined area by the

assignment offinite, uniform and continuous values {or partially discontinuous

values, as in § 219) along the boundary of the combined area.

Let the spaces be 7\ and T2 having a common part T, so that the whole

space can be taken in the form Tj + T2— T;

and suppose that the boundaries of T^ and

T2 cut at finite angles at A and B, that is,

that they do not touch one another there.

Let the part of the boundary of Tj without

T2 be Lq, and the part within To be Lo : and

similarly, for the boundary of T.^, let Zj de-

note the part within T^ and X3 the part pig. go.

without it. Then the boundary of

1\ + 1\-T

is made up of L„ and L^ : the boundary of T is made up of Zj and L.,.

Let any series of values be assigned along Lq and X3 subject to the

conditions of being uniform, finite everywhere, and discontinuous, if at all,

only at a limited number of isolated points. The method of § 218 can be

used to remove these discpntinuities, whether they occur at points of

continuous curvature, or at points (such as A and B, fig. 80) of discontinuous

curvature ; fur this purpose we take a new function of the form

u — Xur, = U,
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where each of the functions u,. has one and only one discontinuity, taken to

be the same as u. The values of U are uniform, finite everywhere, and

continuous everywhere ; they give the boundary values of the function U to

be determined for the whole area, and will be called the assigned values. In

particular, let wij be the assigned value at A , mg the assigned value at B

:

these being continuous in passing through the respective points of discon-

tinuous curvature regarded as belonging to the contour made up of L^ and L^,

only.

The process consists in the determination of functions for the regions T^

and To alternately, using in each case, for boundary values along L^ and L^

respectively, the values of the preceding function as determined.

Assume for a boundary value along ia from A to B, a, succession of values

passing continuously from m^ to m,—say m{k + (1 — X) m.^, with X, decreasing

from 1 to : the actual form is not material, and we shall merely suppose

(though even this is not necessary) that no value falls below the minimum or

rises above the maximum of the assigned values along L^ and L^. Let U-^^

denote the function, which is uniquely determined for the region Tj by the

general conditions for the area and by values along the boundary, constituted

by the assigned values along Xq and the assumed values along L^. The

values acquired by U-^ along the line Xj in this region are uniform, finite, and

continuous ; the value at A is Wj and the value at B is m, ; at any inter-

mediate point, the value is less than the maximum and greater than the

minimum of the boundary values.

Let f/a denote the function, which is uniquely determined for the region

To, by the general conditions for the area and by values along the boundary,

constituted by the assigned values along X3 and by the values of 11^, acquired

along Xj. The values acquired by U^ along the line X, in this region are

uniform, finite, and continuous ; the value at A is m^ and the value at B is

iiio; at any intermediate point, the value is less than the maximum and

greater than the minimum of the boundary values.

Generally, let Uon-i denote the function*, which is uniquely determined for

the region Tj by means of boundary values, consisting of the assigned values

along Xo and of the values acquired by U^i-o along Xj, beginning at A with

»i, and ending at B with vu. Similarly, let Uon denote the function, which

is uniquely determined for the region To by means of boundary values,

consisting of the assigned values along X3 and of the values acquired by U^_^

along Xi, beginning at A Avith m^ and ending at B with iiu. By taking

n = 2, 3, 4, ..., we have a succession of functions, U3, U^, U^, U^, ...

Now consider the function U^-U„ for T^. It satisfies the general

conditions. It is zero along Xq; it is zero at A, and at B; along Xj it is

* AH the functions are to be determined subject to the general conditions for the respective

areas ; the specific mention of the general conditions will be omitted.

F. F. 31
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uniform, finite, and continuous, so that it takes a continuous series of values

from at j4 to at B. Along L^, there may be negative values and positive

values ; let — G denote the minimum, and + D the maximum, among these.

(Here G may be 0, if D is not zero : or D may be 0, if G is not zero : the case

when D = 0, C = together has already been discussed, § 220, II.) Then

along Xi, the value of U, - U, is (§ 220, V.)

-G + q{D + G),

where 0<R^^q^Q^<\\ here R^ is zero if C is zero, and otherwise iJi > :

it is always less than Q^, and Qi is less than 1. Let — Cj denote the smallest

value of Ui — U^ along L^ , and 4- D^ its greatest value ; Dj cannot be less than

zero, nor Cj greater than zero, the terminal values* at A and £. Then

-C^ = -C + R,(D + C), D,=^-C + Q,(D + C);

where, in general, Ci and D^ are both greater than : if be zero, then R^ is

zero. Also, let

P^ = Q^-R.,

SO that < pi < 1 : we have

D, + C, = p, (D + C).

Similarly as regards the function U^— U., for To. It satisfies the general

conditions. It is zero along L^; it is zero at A, and at B; along Xj, it takes

the values of Us— U^, (for C/4 takes the values of U^, and Uo the values of U-^),

so that along L^ it is uniform, finite, and changes continuously from at -.4,

through a minimum — Cj and a maximum i)i, to at B. Then along Zo, a

line in the area of T^, the value of U, - U, is (§ 220, V.)

-6^ + 5 (A + 00,

where () < Rn^ q^ Q.><1 ] here R.^ is zero if G^ is zero, and otherwise J?., >
;

it is always less than Q., and Q. is less than 1. Let - Co denote the smallest

value of Ui — U^ along Lo, and + Do its greatest value along the line. Then

-C, = -C,-\-R,(D, + G,), Do_^-G, + Qo_{D, + C,);

where, in general, Og and Do are both greater than : if C'l be zero, then Ro

is zero. Also, let

p, = Qo_- Ro_,

so that < |0^ < 1 : we have

D, + G, = p, (A + G,).

* It is at this step in each of the stages that advantage accrues from (i) having modified

initially the assigned values, so that no discontinuity occurs at A or at B, and (ii) having

secured continuity in value through the points A and B, both along Lj and Lo, for the

successive functions. By these conditions, we secure that A and B do not need to be excluded

by small arcs, as in the earlier part of § 219 (the points A and B would otherwise remain

excluded throughout, and would not be part of the boundary at the end) ; and we secure that Qi

is certainly less than unity at each step.
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And so on, alternately, for the functions connected with the two regions.

The functions U^, U-m+i (for successive values of n) satisfy the general

conditions. In T^, the function U^n+i — Vsn-i is greater than — C^^, and less

than B.^n_„, while along Li it ranges continuously between — C^n-i and Ds„_i

(with Sit A and at B), where

A«-i = - a.n-2 + a«-i (A.-2 + a„_,)j

'

where Q^n-i, -R>n-i are the major and the minor factorial fractions for the

distribution ranging between — C2n-2 and -Z).>„_2 ( with at J. and at B)

along Xj. In To,, the function Uon+o—Uon is greater than —Czn-i, and less

than D.yn+i, while along Zg it ranges continuously between — Cgn and D^n

(with at J. and at B), where

^2» — ~ ^2n-l + Bon \J^2il—\ + ^27l-l))

where Q.,,^, i^a,^ are the major and the minor factorial fractions for the

distribution ranging between — C^n-i and D^^-i (with at J. and at B)

along Zj.

Now let pm = Qm-Rm,

for all values of m, odd and even : we have

< p,n < 1.

Then D,n-i + C.,n-i = p,n-i {B,n-2 + Con_o),

D.yji + Con = Pin {D-2n-i + C.^n-i) \

hence, taking account of the value of D^ + C'l, we have

Rr,t + Gm = p,p,...p,n{D + G).

Since each of the quantities /a is a positive quantity, known to be less than 1,

we have

Lim(pi/9., ...p„,) = 0,
7)1 = CO

and therefore Lim (Z),„ + C,„) = 0.

In T^, the range of value of the function U.>n+i — Uzn-i is equal to Da,,-.^ + Con—i

along Xo, and is equal to D.>,i^i + Con-i along Zii and in T.^, the range of

value of the function U..nJri — Uon is equal to Z)..>;,_i + C^n-i along L^, and is

equal to Don + C'2,1 along X.2. Hence, as the number of operative constructions

is made to increase indefinitely, there are limits to which the functions with

an odd suffix and functions with an even suffix approach along Xj and Z,.

Let C denote the limit of functions with an odd suffix along L^, and U" that

of functions with an even suffix along L.,.

31—2
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Both of these limits are finite. To prove this, let M denote the maximum
and m the minimum of the assigned values ; so that the range in value of U^

is not greater than M—m. We have, along L^,

U' = U,^{U,-U,) + {U,-U,) + ... ad inf.,

^ il/ + (D + G){p^ + p.p.p., + p,p2P3P4P5 +•••)•

Among the (juantities p^, p^, ps, ..., all of which are less than 1, let cr be the

greatest ; then

pl + P1P2P3 + •• ^O- + O" + 0-' + '"

that U' ^ M + ~-^-~,aD + C).
1 — a"

Thus the upper limit of U' is finite. Also, denoting by U' the range in

value of U', we have

1 — 0-

which is finite. Hence the upper limit and the lower limit for U' are both

finite ; and therefore U' is finite.

Similarly, we have, along L.,,

U"= U, + {U,- L\) + (U,-L\)+... ad inf.,

t M + {D,+ a) ^ (D, + C,) + ...

^ M+(D + C)(p, p, + p, p,p,p, + ...)

I — O'

and, as before U" < M- m +
-""' ^B + C).
1 — O""

Both of these are finite ; hence U" is finite.

Now in determining U' for T^ and regarding it as the limit of U^n+i, we

have its values along X, as the values of U-m, that is, of U" in the limit ; and

in determining U" for T., and regarding it as the limit of U.n+2, we have its

values along L, as the values of Unn+i, that is, of U' in the limit. Hence over

the whole boundary of T, the region common to T, and To, we have U'= U";
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and therefore (by §220, VI.) we have U'=U" over the whole area of the

common region T.

Lastly, let a function U be determined for the region T^, having the

assigned values along L^ and the values of U' along Ln. Then the function

U-U' satisfies the general conditions; it has zero values round the whole

boundary of T^, and therefore (by § 220, VI.) it is zero over the whole region

Ti. Hence U' is the function for T^^.

Similarly, determining a function f/" for To, which has the assigned values

along X3 and the values of U" along L^, we have U=U" everywhere in T.,

so that U" is the function for To.

The functions U' and U" satisfy the general conditions for T^ and T.

respectively; and these two regions have a common portion T over which
U' and U" have been proved to be the same. Hence, by Lemma I. of § 216,

they determine one and the same function for the whole region made up of

Ti and T,. This function U satisfies the general conditions and, along the

boundary of the whole region, assumes values that are assigned arbitrarily,

subject only to the general limitations of being everywhere finite and,

except for finite discontinuities at isolated points, uniform and continuous.

The proposition is therefore established.

This method of combination, dependent upon the alternating process

whereby a function determined separately for two given regions having a

common part is determined for the combination of the regions, is capable of

repeated application. Hence it follows that a function exists, subject to the

general conditions ivithin a given region and acquiring assigned finite values

along the boundary of the region, when the region can be obtained by

combinations of areas that can be conformally represented upon the area

of a circle.

Note. Let A, B, G he three non-intersecting simple closed curves, such

that C lies within B and B within A. The area bounded by the curves A and

G can, by a similar method, be combined with the whole area enclosed by B
;

and w^e can make the same inference as above, as to the existence of a potential

function for the Avhole area enclosed by A, when it exists for the areas that

are combined.

223. At the beginning of the discussion it was assumed that the areas,

in which the existence of the function is to be proved, lie in a single sheet

(| 216) or, in other Avords, that no branch-point occurs within the area.

It is now necessary to take the alternative possibility into consideration

:

a simple example will shew that the theorem just proved is valid for an area

containing a branch-point, except in one unessential particular.

Let the area be a winding-surface consisting of ni sheets : the region in

each sheet will be taken circular in form, and the centre c of the circles will
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be the winding-point, of order m — 1. Such a surface is simply connected

(§ 178); and its boundary consists of the m successive circumferences which,

owing to the connection, form a single simple closed curve. Using the

substitution

z-c = nz^,

we have a new -2^-surface which consists of a circle, centre the .^'-origin and

radius unity : it lies in one sheet in the Z-region and has no branch-points

;

its circumference is described once for a single description of the complete

boundary of the winding-surface. The correspondence between the two

regions is point-to-point : and therefore the assigned values along the bound-

ary of the winding-surface lead to assigned values along the .^-circumference.

Any function w of z changes into a function W oi Z: hence u changes

into a real function U satisfying the general conditions in the .^-region

;

and conversely.

But a function U, satisfying the general conditions over the area of a

plane circle and acquiring assigned finite values along the circumference, is

uniquely determinate ; hence the function u is uniquely determined on the

circular winding-surface by satisfying the general conditions over the area

and by assuming assigned values along its boundary.

It is thus obvious that the multiplicity of sheets, connected through

branch-lines terminated at branch-points and (where necessary) at the single

boundary of the surface consisting of the sheets, does not affect the validity

of the result obtained earlier for the simpler one-sheeted area ; and therefore

the function u, acquiring assigned values along the boundary of the simply

connected surface, and satisfying the general conditions throughout the area

of the surface which may consist of more than a single sheet, is uniquely deter-

minate.

There is, as already remarked, one unessential particular in which

deviation from the theorem occurs when the region contains a branch-point.

At a branch-point a function may be finite*, but all its derivatives are not

necessarily finite ; and therefore at such a point a possible exception to the

general conditions arises as to the finiteness of value of the derivatives

and the consequent satisfying of the equation V-ti = : no exception, of

course, arises as regards the uniformity of the derivatives on the Riemann's

surface. The exception does not necessarily occur ; but, when it does occur,

it is only at isolated points, and its nature does not interfere with the validity

of the proposition. We shall therefore assume that, in speaking of the

general conditions through the area, the exception (if necessary) from the

general conditions, of finiteness of value of the derivatives at a branch-point,

is tacitly implied.

* Infinities of the function itself at a -branch-point will fall under the general head of

infinities of the function, discussed afterwards (in § 2'2!»).
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Hence we infer, by taking combinations of circles in a manner some-

what similar to the process adopted for successive circles of convergence

in the continuation of a function in §34, that a function u exists, subject to the

general conditions ivithin any simply connected surface and acquiring assigned

finite values along the boundary of the surface.

224. The functions, which have been discussed so far in the present

connection, are functions having no infinities and, except possibly at points

on the boundaries of the regions considered, no discontinuities: they are

uniform functions. And the regions have, hitherto, been supposed simply

connected parts of a Riemann's surface, or simply connected surfaces. When
the surface is multiply connected, we resolve it by a canonical system

(§ 181) of cross-cuts as follows.

We also proceed to introduce the cross-cut constants, and so to consider

the existence of functions which have the multiform character of the integrals

of uniform functions of position on the Riemann's surface. The functions

will still be considered to be uniform, finite and continuous except at the

cross-cuts : their derivatives will be supposed uniform, finite and continuous

everywhere in the region, and subject to the equation V-it = 0: and boundary

values will be assigned of the same character as in the previous cases. As

moduli of periodicity are to be introduced, the unresolved surface is no longer

one of simple connection : w^e shall begin with a doubly connected surface.

Let such a surface T be resolved, in two different ways, into a simply

connected surface: say into T^ by a cross-cut Qi, and into To by a cross-

cut Q... Mark on T^ and on Tg the directions of Q^ and of Q-^ respectively: the

Fig. 81.

notations of the boundaries are indicated in the figures, and T' \^ the

region between the lines of Q^ and Q..

It will be shewn that a function u exists, determined uniquely by the

following conditions

:

(i) The first and the second derivatives are throughout T to be

uniform, finite and continuous, and to satisfy V-u = 0: but no conditions

for them are assigned at points on the boundary

:

(ii) The (single) modulus of periodicity is to be K, which will be

taken as an arbitrary, real, positive constant : the value of any branch of u at
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a point on the positive edge is therefore. to be greater by K than its value at

the opposite point on the negative edge

:

(iii) Some selected branch of u is to assume assigned values along

a and h', typically represented by H, and assigned values along a and h,

typically represented by G. These boundary values are to be finite every-

where, though they may be discontinuous at a finite number of isolated points

on the boundary ; such discontinuity will arise through the modulus.

In Ti, for zero values along a, b, a', h' and for unit values along (^i~

and Q{^, let the fractional factor for the line Q., be (/i : and similarly in T^,

for zero values along a, b, a', h and fur unit values along Qa" and Qo"*",

let the fractional factor for the line Q^ be qo, where (/, and q^ are positive

proper fractions.

For the simply connected region* T^ determine a function u-^, .satisfying

the general conditions and having as its boundary values, H along a and b'

,

G along a and b, arbitrarily assumed values represented by 6 (the maximum
value being M^ and the minimum value . ])eing m^) along Qr and values

6 + K along Q{^: the function so obtained is unique. Let the values

alQng the line Qo in T^ be denoted by »/.

For the region T. determine a function lu, satisfying the general con-

ditions and having as its boundary values, H along a' and b', G — K along

a and b, u^' — K along Q.~ and u^' along Q.^+r the function so obtained is

unique. Let its values along the line Qi in T. be denoted by vJ, the

maximum value being ifo and the minimum value being vu.

For the region T^ determine a ftinction u^, satisfying the general conditions

and having as its boundary values, H along a' and b', G along a and 6, u.,'

along Qi~ and t(o+K along Qj^: the function so obtained is unique. Let its

values along the line Q., in 2\ be denoted by a-/. Then the function M3 — v^

satisfies the general conditions in T^ ; it is zero along a' and b', a and 6 : it is

W2'— along Qi~ and also along Qj"*", and «./— 6 ^ M..— m^ and ^m.>— il/,.

A difference of limits for (^3'— «/ arises according to the relative values of

il/a and mi, of tUo and Mi ; evidently J/2 — m^ > vi., — M^.

(i) If?«., — i/j be positive, then il/o - 7/(1 is positive and equal, say, to

\ ; the boundary values for a.,^ — u^ may range from to X, and we ha\e

Ug — »,' > < q^X along Q.,.

(ii) If nu — My be negative and equal to — e, then M.,— m^ is either

positive or negative.

(a) If il/o — »ii be negative, then the boundary values for u^— u^

may range from to — e, that is, boundary values for «, — u^ may range from

* In the special case, when Ti is bounded by concentric circles and the cross-cut is made
along a diameter, the region can be represented con formally on the area of a circle : see a paper

by the author, Quart. Journ. Math., vol. xxvi, (1892), pp. 145—-148.
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to e, and we have m/- t(3'>0 < (/le along Q., which may be expressed in the

form
\u.J-u,'\<qi€,

where e is the greatest modulus of values along the boundary.

(b) If Mo — ?>ii be positive, let its value be denoted by rj : then the

boundary values for Mj — u^ may range from ?; to - e. The boundary values

for 1*3 - Uj + e may range from to ?; + e, and it is a function satisfying all the

internal conditions : hence u^ - «i + e ^ 5i (77 + e), and therefore

"3 - "1 < qiV - (1 - ?i) e < q^v-

Again, the boundary values of ?<i— Ui+'V may range from 7; + e to 0, and it is

a function satisfying all the internal conditions : hence ;/i
- k.^ + v'^qi{V + e).

and therefore

i(i- U.J ^q^e- (1—2^)1] ^qi€.

Hence at points where Us > »i , so that ^(3 — u^ is positive, we have Wg — Ui ^qiV;

and at points where «:.< u^, so that u^ - Us is positive, we have u^ = u-i^q^e.

Every case can be included in the following result*: If /i be the greatest

modulus of the values of lu — along the two edges of Qi in T^, then

1

11./ — Ill
\
<qii^,

along Qo, so that q^/ji is certainly the greatest modulus of ^^3' — u/ along Q^.

225. For the region T2 determine a function u^, satisfying the general

conditions and having as its boundary values, H along a' and h', G - K along

a and h, Us - K along Q.r and u.^ along Q.,^ : the function so obtained is

unique. Let its values along the line Q^ be denoted by w/. Then the

function u^ — 11.2 satisfies the general conditions in T, : it is zero along a and

h' , a and 6 : it is u-^ — k/ along Q.r and also along Qo^, and along Q.. we have

I

ih - w/ \<qifji.

Hence, after the jjreceding exi)lanations, we have along Q^ in Tg

ti/ - Uo
I

^ qoqifi.

Proceeding in this way for the regions alternately, Ave have for Ti a function

Maji+i, the boundary values of which are, H along a and b', G along a and b,

u'^n, along Qi~ and u\n + K along Q{^ : and along Q.,

'

u.2n+i - u'm-i < qi'qo'~^H \

and for T., a function tUn+2, the boundary values of which are, H along a and

b', G — K along a and b, w'o„+i — K along Q~ and u'^n+x along Q.^^ : and

along Qi

\u'.2n+;- U'.n ^5,"^,"/X.

* Anotlier method of proceeding, different from the method in the text, depends upon the

introduction of the minor fractional factor (§ 2"22) for the cross-cut, having the same relation

to minimmn values as gi to maximum values ; but it is more cumbersome, as it requires the

continuous consideration of successive cases, and the method is adequately indicated by the

process of § 222.
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Thus both the function Un^+i along Q., and the function Uon along Qi

approach limiting values; let them be u' and ii" respectively.

These limiting values are finite. For

Uon+i = Ui + (M3 - «i) + (Us - II,:) + . . .
4- {l(on+i " U-in-i) ',

in the limit, when n is infinitely large, the sum of the moduli of the terms of

the series at points along Q,

< .1/, + K + qiH'

so that the series converges and the limit of 'i^H+j, viz. u, is finite. Similarly

for ;/".

Now consider the functions in the portions T — T' and T' of the

region T.

For T — T' we have u.,n, (that is, u" in the limit), with values H
along a and h', u along Q2+ : and also u.>n+i, (that is, u' in the limit),

with values M along a' and 6' and k" along Qi": thus u and w" have

the same values over the wdiole boundary of T — T' and, therefore, throughout

that portion we have u = 11".

For T' we have n^n, (that is, u" in the limit), with values (r — .ff' along

a and 6, and u' — K along Q.~ : and also ?(2n+i ,
(that is, u in the limit), with

values G along a and 6 and ?/' + K along Qi+. Thus over the whole boundary

of T' we have u' — u" = K : and therefore within the portion T' we have

u = 11" + K.

Lastly, for the whole region T we take u = u'. In the portion 7'- T' we
have u = u' = u", and in the portion T' we have (t = 11 = u" +K ; that is, the

function is such that in the region T^ the value changes from u" at Q~ to u" + K
at Q,+, or the modulus of periodicity is K.

Hence the function is uniquely determined for a doubly connected surface

by the general conditions, by the assigned boundary values, and by the

arbitrarily assumed real modulus of periodicity.

226. We now consider the determination of the function, when the

surface S is triply connected and has a single boundary.

Let S be resolved, in two different ways, into a doubly connected surface.

Let Qi be a cross-cut, which changes the surface into one of double

connectivity and gives two pieces of boundary: and let Q. be another

cross-cut, not meeting the direction of Q^ anywhere but continuously

deformable into Qi, so that it also changes the surface into one of double

connectivity with two pieces of boundary. Then, in each of these doubly
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connected surfaces, any number of functions can be uniquely determined

which satisfy the general conditions, each of which assumes assigned

boundary values, that is, along the boundary of S and the new boundary,

and possesses an arbitrarily assigned modulus of periodicity.

The combination of these functions, by an alternate process similar to

that for the preceding case, leads to a unique function which has an

assigned modulus of periodicity for the cross-cut Q^. The conditions

which determine it are : (i), the general conditions : (ii), the values along

the boundary of the given surface, (iii) the value of the modulus of

periodicity for the cross-cut, which resolves the surface into one of double

connectivity, and the modulus of periodicity for the cross-cut, which

resolves the latter into a simply connected surface, that is, by assigned

moduli of periodicity for the two cross-cuts necessary to resolve the

original surface S into one that is simply connected.

Proceeding in this synthetic fashion, we ultimately obtain the result

that a real function u exists for a surface of connectivity 2p + 1 wdth a single

boundary, uniquely determined by the following conditions

:

(i) its derivatives within the surface are everywhere uniform, finite

and continuous,, and they satisfy the equation ^'ho = ;

(ii) it assumes, along the boundary of the surface, assigned values

which are always finite but may be discontinuous at a limited

number of isolated points on the boundary;

(iii) the function within the surface is everywhere finite and, except at

the positions of cross-cuts, is everywhere uniform and continuous:

the discontinuities in value in passing from one edge to another

of the cross-cuts are arbitrarily assigned real quantities.

227. The question next arises as to the existence of a function u upon a

Riemann's surface of connectivity 2p + 1 that has no boundary, the function

satisfying (i) and (iii) of the foregoing conditions. The existence can be

established as follows*.

On some sheet of the surface, take two concentric circles of radii r and r'

(where r > r'), choosing them so that the outer circle (and therefore also the

inner circle) encloses no singularity and meets no cross-cut; clearly the

magnitude of r' will be at our disposal, and it will be supposed finite (not

zero). Let the circumferences of the circles be denoted by G and C ; denote

the part of the Riemann's surface outside C" by S', and the circular area

within C on the Riemann's surface by S. Thus S' and S are Riemann's

surfaces, each with a single boundary ; and they have a common annulus.

Assume any set of finite and continuous values along C. Determine for

the bounded Riemann's surface S' a function m/, which acquires these values

* Schwarz, Ges. Werke, t. ii, p. 306; Picard, Cours (VAnalyse, t. ii, p. 470.
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along C, satisfies the general conditions everywhere in >S", and at the various

cross-cuts possesses arbitrarily assigned real moduli of periodicity. This

fun^jtion ttj' is unique ; and it acquires finite and continuous values along C,

which lies within the region of its existence.

Determine for the bounded Riemann's surface S a function u^, which

acquires along C the values that are acquired along that circle by w/ , and

which satisfies the general conditions everywhere in *S'. (As no cross-cut

occurs within 8, all the moduli of periodicity may be regarded as zero.) This

function u^ is unique : and it acquires finite and continuous values along C

,

which lies within the region of its existence.

Determine for >S" a function Uo, which acquires al(5ng C the values

acquired by Wj, satisfies the general conditions everywhere in S', and at the

various cross-cuts possesses the same arbitrarily assigned moduli of periodicit}^

as 2(i'. This function uJ is unique ; and it acquires finite and continuous

values along C, Avhich lies within the region of its existence.

Determine for S a function lu, which acquires along G the values that are

acquired along that circle by lU, and which satisfies the general conditions

everywhere in >S; as there are no cross-cuts within >Si, there are no moduli of

periodicity. This function lu is unique : and it acquires finite and continuous

values along C", which lies within the region of its existence.

And so on, in alternate succession for the spaces 8' and 6'. We thus

obtain a sequence of functions u^, %ui, ..., Un, •-, which satisfy the general

conditions within S' and possess the arbitrarily assigned moduli of periodicity

at the various cross-cuts : and a sequence of functions «i, Wo, •••, Un, ... , which

satisfy the general conditions within aS', an area that contains no cross-cuts.

Moreover, we have

Un = Un-i along C"

K„ = Un along G

as values along the boundaries of S' and 8 respectively, assigned to the

functions in the respective sequences.

Now (by Ex. 1, Lemma II. § 216) we have

riiT r 271-

I u,„ (r,
(f)) d(f) = j v,n (?', (fi) dcf).

Jo -0

But u,n (?•',
(f>)
= u'ln+i {'>'',

<i>),
"1^ account of boundary values : thus

r2n r2rr

u,n{r, 4))d4>^ u',„+,{)'', (f))d(f)

Jo .'

= u,n+i{r, (f))d(f>,
J

by Ex. 2, Lemma II. §216. Also w' ,„+,(?•, 0) = u,„.l, (r, (^), on account of

boundary values : and therefore

n,„ {r,
<f>)

d4> = u,n+i {r,
(f)) dcf).

In J i\
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The functions u^, lu, ... exist over the whole of the interior of the circle of

radius r ; hence (by I. § 220) we have

U^ (0) = Um+i (0),

or all the functions Uj, u.,, ... have the same value at the centre of this circle.

We proceed to shew that these functions u and u' converge to the same
limit in the infinite sequence. Let

Urn = Um + i
- >lm , Um = U m+i - uJ ]

SO that UJir, 4>) = IT,^ (r, cjy)]

along the circles C and C" respectively. At the common centre, we have

U,„{0) = u,„{0)-u,n-,(0) = 0;

and therefore, if M,„ be the maximum value of
j
Um (^', <^)I along the circle C,

we have (by Ex. 1, § 218)

4 r'

\ Urn (r, cf>)
I

^ M,„ - sin-1 -
TT r

along the circle C". Now in the initial assumption of the circles C and C,
we have merely made r < r, provided r' does not become an indefinitely small

quantity. Suppose now that the inner circle is chosen so that

4 .

7^'

- sm-i - < 0-,

TT r

where cr is a finite positive quantity less than unity. Then

\Um(r',(f>)\<aM,„.

Consequently, we have

I

U\n+i (r,
<f>)\

=
\
U,n (r, <^)

I

< (7Mm.

Now the function U',„+i, which exists in the Riemann surface S' outside C,
is such that it satisfies the general conditions within S'; moreover, it has no

moduli of periodicity, for the functions m',,,+2 and u'^i+i have the same

arbitrarily assigned moduli of periodicity ; hence (§ 220) the maximum values

of U'l,i+i and the minimum values of U',a+i lie on its boundary which is the

circle C, and therefore
| U',n+i \

within S' is less than the maximum value of

I

U'm+i
I

along C". Accordingly

that is, Uyi+i {r, <f))\< aMra
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Hence, if the maximum value of J «.> — u^
\
along the circle C be N, we have

I

U'i(^\ </>) < -^^^; and therefore

\U,„ {r,<f>)\<(T'^-'N,

\
U,n (r, </,)

I

< 0-- iY,

, UJ (r ,<t>)\< o-"^-^K
Moreover, we have

"« = Ui + (Uo - «i) + ("3 - «o) + . .. + (lln - tln-i)

= U, + U,+ U.2 + ...+ Un-:,

and therefore 1 1/„
|
^ j

Wj
|

+
| ?7i I

+ . . . +
| ?7„_i

|

;

so that
j
Un

I

<
I

Wi
I

+ iV ^j along C,

<
i

Ml
j

+ i\^ —— along C
;

and similarly for w,/. Hence, in the infinite sequence, the functions u and u'

converge to a finite limit ; and since

Un = Un-i along C, u„' = Un along C,

this finite limit is the same along both circles G and C

.

Because u -u' = along C and along C, it follows (§ 220) that u - u' =
throughout the annulus. But u' exists in S' without C, and ii exists over

the whole of *S' within C ; hence (Lemma I. § 216) u and ii define a single

function for *S' and 8' combined, that is, for the Riemann's surface without

any boundary.

It thus is proved that a function exists satisfying all the assigned

conditions; but as the values initially assumed along C" for the function w/

were arbitrary to some extent, it is possible that the function which satisfies

all the assigned conditions may be far from unique. To determine this

issue, let u and v denote two functions on the Riemann's surface, which

everywhere satisfy the general conditions and which possess the arbitrarily

assigned moduli of periodicity at the cross-cuts. Consider the function u — v.

Its moduli of periodicity are zero : that is, owing to the other characteristics

of u and v, the function u —v is uniform, finite, and continuous over the

whole of the unbounded Riemann's surface, and it therefore (§§ 220, 231)

is a constant. We thus infer the theorem

:

Real functions exist on a Riemann's surface, finite everywhere on the surface,

and {except as to an additive constant) uniquely determined by their moduli of

periodicity at the cross-cuts, which moduli are arbitrarily assigned real

constants.

It will be proved that the moduli cannot all be zero (§ 231)—a result so

far anticipated in the discussion of the uniqueness save as to the additive

constant.
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228. The following important proposition may now be deduced :

—

Of the real functions, luhich satisfy the general conditions and are finite

everywhere on the Riemann's surface, and are determined by arbitrarily

assigned moduli of periodicity, there are 2p and no more that are linearly

independent of one another; and every other such function can be expressed,

except as to an additive constant, as a linear combination of multiples of these

finctions ivith constant coefficients.

Taking into account only real functions, which satisfy the general

conditions and are everywhere finite, we can obtain an infinite number of

functions by assigning arbitrary moduli of periodicity.

When one function u^ has been obtained, with taj j, toio, ... (y,,op as its

arbitrarily assigned moduli, another function u., can be obtained with

as its arbitrarily assigned moduli of periodicity, which are not the moduli of

l\u-^, where k-^ is a constant. A third function u^, can then be obtained, with

<^i,\, f*^i,2> •••) &>3,.2p as its arbitrarily assigned moduli of periodicity, which are

not the moduli of k^u^ + koU-z, where k^ and k<, are constants; and so on,

provided that the number of functions obtained, say q, is less than 2p.

When q < 2p, another function can be obtained whose moduli of periodicity

q

are different from those of 2 k/ii,.. But when q = 2p, so that 2p definite

functions, linearly independent of one another, have been obtained, it is

possible to determine constants k^, ko, ..., k.^^p, so that

(for m = 1, 2, ..., 2p), where Hj, Ho, ..., Ctop are arbitrary constants.

Let U be the potential function, which satisfies the general conditions

and is finite everywhere on the surface and is determined by the arbitrarily

assigned constants D.^, H., ,.., riop] then the function

•2p

U- X krllr
r=i

has all its' moduli of periodicity zero, it is everywhere finite and, because its

moduli are zero, it is uniform and continuous everywhere on the surface. It

is therefore, by § 220, a constant; and therefore

2p

U= XkrUr + A,
r = l

proving the proposition.

229. The only remaining condition of § 214 to be considered is the

possible possession, by the function u, of infinities of assigned forms, at

assigned positions on the surface.



496 FUNCTIONS ON A RIEMANNS SURFACE [229.

Let the infinity at a place on the surface, where z is equal to c^, be

represented by the real part of ^{z, c,.), where

and let this real part be denoted* by ''^^{z, c^.); then ii-'^^{z, Cj) has no

infinity at ^ = Cr- Proceeding in the same manner with the other assigned

infinities at all the assigned points, we have a function

;• = !

which has no infinities on the surface. Its derivatives everywhere (save at

branch-points) are finite, uniform and continuous, and satisfy the equation

V^^f = 0. If T be a typical representation of the assigned boundary values

of «, and if O be the corresponding ty])ical representation of the assigned

boundary values of S ?)i0 {z, c,.), then T — <I> is a typical representation of
r=l

the boundary values of U.

The moduli of periodicity of JJ may arise through two sources: (1)

arbitrarily assigned real moduli of periodicity at the 2/? cross-cuts of the

canonical system^(§ 181), that are necessary to resolve the original surface into

one that is simply connected: (2) the various moduli 9i {liriB^, arising from

the infinities Cr in the surface, the occurrence of which infinities renders these

additional moduli necessary for the various additional cross-cuts that must be

made in resolving the surface. Then JJ has all these moduli as its moduli of

periodicity: it is finite everywhere on the surface and, except for its moduli of

periodicity, it is uniform and continuous on the surface; hence it is a function

uniquely determinate, which is a constant if all the moduli be zero.

It therefore follows that the determination of u is unique, that is, that a

real function u on the Riemanns surface is detennined hy tJie general conditions

at all points on the surface except infinities, hy the assignment of specified forms

of infinities at isolated points, and by the possession of arbitrarily assigned

modnli of periodicity at the cross-cids ivhich would have to he made in order

to resolve the surface into one that is simply connected. And, when all the

moduli are zero, the real function u is uniform.

Now tv, = u -H iv, is determined by u save as to an arbitrary additive

constant. Hence, summarising the preceding results, we infer the existence

of the following classes of functions on the surface:

—

{A) Functions which are finite everywhere on the surface and, except

at the lines of the cross-cuts which suffice to resolve the surface

* The form of ip {z, c^) implies that the series giving the infinite terms has negative integral

exponents ; the case, in which the exponents are proper fractions so that the point is a branch-

point, is covered by the transformation of § 223 when the modified form of explicitly satisfies

the tacit implication as to form.
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into one that is simply connected, uniform and continuous;

the functions have, at these cross-cuts, moduli of periodicity,

the real parts of which are arbitrarily assigned constants

:

(B) Functions which have a limited number of assigned singularities

(either algebraical, or logarithmic, or both) at assigned isolated

points, and which otherwise have the characteristics of the

functions defined in (^4).

The existence of the various kinds of functions, considered in this chapter in

connection with a special form of Riemann's surface, will be established for

any given Riemann's surface in the next chapter.

Ex. Shew that a function of the complex argument z is determined, save for a

constant, within a rectangle drawn upon a plane representing the values of z, by the

conditions (i) of being infinite like ; ,
(ii) of having values at opposite points of a pair

of opposite sides whose difference is a real quantity constant for that pair of sides.

If ffiz), K{z) be two such functions, the former being infinite like and having
z — a

6i, 6-1 for its real differences at the two pairs of sides, the latter being infinite like

and having (^i, 09 foi* its real differences, prove that

is a function whose values at opposite boundary points are the same.

(Math. Trip., Part II., 1894.)

32



CHAPTER XVIII.

Applications of the Existence-Theorem.

230. We proceed to make some applications of the existence-theorem

as established in the preceding chapter in connection with any Riemann's

surface, which is supposed given geometrically in an arbitrary way. We
shall first consider it in relation with the functions usually known as Abelian

transcendents.

The existence of various classes of functions of position has been established.

Let functions which, satisfying the general conditions, are finite everywhere

on the Riemann's surface and have assigned moduli of periodicity at the "Ip

cross-cuts, be called functions, of the first kind, in analogy with the nomen-

clature of §§205—211 ; let functions which, satisfying the general conditions,

have assigned algebraic infinities on the Riemann's surface and have

assigned moduli of periodicity at the 2j9 cross-cuts, be called functions of

the second kind; and let functions which, satisfying the general conditions,

have assigned logarithmic and algebraic infinities* and have assigned moduli

of periodicity at the 2jt) cross-cuts as well as the proper moduli in connection

with the logarithmic infinities, be called functions of the third kind. These

classes of functions evidently contain the integrals of the three respective

kinds which arise through algebraic functions. The three classes of functions

U, thus proved to exist on a Riemann's surface and characterised by the

property that, at the same position on opposite edges of a cross-cut, the

values differ by a quantity which is constant along the cross-cut, are such

that dll/dz is a uniform function f of position on the surface. Thus, by

U93, we have

-T— = R(w, z),
as

where E is a rational function of its arguments ; and therefore

U=\R(w,z) dz,

* The loRarithraic infinities must be at least two in number, by § 210.

t It should be noted that this property does not belong; to all functions on the Riemann's

surface; for instance, it does not belong to a function, which is the product of functions of the

second kind and third kind, or to a function which is not linear in functions of the three kinds

specified.
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a result that indicates the importance of integrals, of rational functions

associated with a Rieraann's surfcice.

First, let P and Q be two functions of x and y, the deriv^atives of which
are finite, uniform and continuous at all points (except possibly branch-points)

on the given Riemann's surface and satisfy the equation V-m = 0. Let the

functions themselves be finite and, .except at cross-cuts, uniform and
continuous on the surface: and let their moduli of periodicity be A^, ...,

Ajj, Bi, ..., Bp-, J./, . .
.

, Ap, Bi, ..., Bp , for the cross-cuts a^, ..., Up, h^, ...,hp

respectively, the moduli for the cross-cuts c being zero. (If P and Q should

have infinities on the surface, as will be the case in later applications, so that

in their vicinity portions of the surface are excluded, thereby requiring other

cross-cuts for the resolution of the surface into one that is simply connected,

other moduli will be required ; but, in the first instance, P and Q have

merely the 2jj assigned moduli.)

When the surface is resolved by the 2p cross-cuts into one that is simply

connected, the functions P and Q are uniform, finite and continuous over

the resolved surface. Proceeding as in § 16 and § 216, we have

where the double integrals extend over the whole area of the resolved

surface, and the single integrals extend positively round

the whole boundary. This boundary is composed of a

single curve, composed of both edges of each of the

cross-cuts; and the positive directions of the description

:are indicated in the figure, at a point of intersection of

two cross-cuts.

As explained in § 196, the negative edge of the cross-
pj^ g^

-cut Ur is GE and the positive edge is DF; the negative

edge of the cross-cut b,. is EF. and the positive edge is CD. Then we have

Pn -Pf=Pc-Pe = 5,, Pp-PE=PD-Pc=Ar;

and similarly for the function Q.

Consider the integral JPdQ, taken along the two edges of the cross-cut

ar : let P_ and P+ denote the functions along the negative and the positive

32—2
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edges respectively, so that P+ — P_ = yl,.. The value of the integral for the

two edges is

P+clQ, taken in the direction F...D

+ P-dQ, taken in the direction G...E
J c

rD
= (P+ - P_) dQ, taken in the direction F...D

J F

= ArrdQ=^Ar (Qd - Qf) = ArB/.
J F

Similarly, when the value of the integral for the two edges of the cross-cut 6,-

is taken, we have

P+dQ, taken in the direction D...C
.' D

cF
+ P-dQ, taken in the direction E...F

' E

= (P+ — P_) dQ, taken in the direction D...C
. D

= BrrdQ = B, (Qc - Qd) = - B,A;.
J D

And the value of the integral for the combination of the two edges of any

cross-cut c is zero.

Hence summing for the whole boundary of the resolved surface, we have

and therefore

^PdQ= i (ArBr'-BrA/),

ir|-i|)"^=i<-^-.' -'-').

subject to the assigned conditions.

This theorem is of considerable importance : and the conditions, subject

to which it is valid, permit P and Q (or either of them) to be real or complex

potential functions of x and t/ or to be a function of z.

231. As a first application, let P and Q be real potential functions such

that P -I- iQ is a function of z, say w, evidently a function of the first kind.

Let its nKxluli for the cross-cuts be

ft)g + ivg at ttg, for s = 1, 2, ..., p',

and (Os + ivg at h^, for s — 1, 2, ..., p.

Since P -f iQ is a function of a; + iy, we have, by §§ 7, 8,

dP^dQ _dP_dQ
dx dy ' dy dx'

i
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The double integral then becomes

which cannot be negative, because P is real ;» it is a quantity that is positive

except only when P (and therefore w) is a constant everywhere. In the

present case

p
so that S ((OrVr — (o/v,-) is always positive. Hence :

If a function w, everywhere finite on a Riemanns surface, have cog + ivg at

ttg (for s = l, 2, ...,p) and m,^' + iv/ at bg (fors = l, 2, ...,p) as its moduli,

the cross-cuts a and b being the 2p cross-cuts necessary to resolve the surface

into one that is simply connected, the quantity

S ((OrVr — (o/Vr)
r=l

is always positive, unless w is a constant : and then it is zero.

This proposition has the following corollaries.

Corollary I. A function of z of the first kind cannot have its moduli of

periodicity for ai, ..., Up all zei'o.

For if all these moduli were to vanish, then each of the quantities &>,. and

each of the quantities Vr would be zero : the sum % {wrVr — (o/v,) would

then vanish, which cannot occur unless ^u be a constant.

Corollary II. A function of z of the first kind cannot have its moduli of

periodicity for bi, ..., bp all zero ; it cannot have its moduli of periodicity all

purely real, or all purely imaginary, or some zero and all the rest either

purely real or purely imaginary.

The different cases can be proved as in the preceding Corollary.

Note. One important inference can at once be derived, relative to

functions of the first kind that have only two moduli of periodicity,

Hi and H.,.

Neither of the moduli may vanish; for if one, say fij, were to vanish

then w/Ho would be a function having one modulus zero and the other unity.

The ratio of the moduli may not be real. If it were real, then ivIVly would

be a function having one modulus unity and the other real. Both of these

inferences are contrary to Corollary II. ; and therefore the ratio of the two

moduli is a complex constant, the real part of which may vanish but not the

imaginary part.
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The association of this result with the doubly-periodic functions is

immediate.

Ex. Shew that, if two functions of the first kind have the same moduli of periodicity,

their difference is a constant : and that, if IF be a value, at any point of the surface, of a

function of the first kind with moduli coi, oa^, ..., &>2/), all the functions of the first kind,

which have those moduli, are included in the form

W+ 2 m^Wr+ J,

where the coefficients m are integers and J is a constant.

232. As a second application, let P be a function of z and Q also a

function of z ; evidently, with the restriction of the proposition, P and Q
must be functions of the first kind, when no part of the surface is excluded

from the range of variation of z. Then

.dP^dP .dQ^dQ
dx dy ' dx dy

'

so that at every point on the surface we have

apaQ_8Qap^^
dx dy dx dy

Consequently the double integral

and therefore, if a function of the first kind have moduli A^, ..., Ap, B^, ..., Bj^,

and if any other fmction of the first kind have moduli A-[, ..., Ap, B^, ..., Bp'

at the cross-cuts a and h respectively , then

i {A,B;-BrA;) = 0.

233. Next, let Q be a function of z of the first kind, as in the preceding

case ; but now let P be a function of z of the second kind; so that all its

infinities are algebraical. The points where the function is infinite must be

excluded from the surface : a corresponding number of cross-cuts will be

necessary for the resolution of the surface into one that is simply connected.

The modulus of periodicity of P for each of these cross-cuts is zero, (as in

Ex. 8 of § 199, which is an instance of a function of this kind), no additional

modulus being necessary with an algebraical infinity.

Then over the resolved surface, thus modified, the functions P {z) and

Q {z) are everywhere uniform, finite and continuous : and therefore, as

befinre

//' l^|-gS)--/-«.
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the double integral extending over the whole of the resolved surface and the

single integral extending round its whole boundary. But, at all points in

the resolved surface, we have

dx dy dx dy

and therefore, as before, the double integral vanishes. Hence jPdQ, taken

round the whole boundary, vanishes.

The boundary is made up of the double edges of all the cross-cuts a, b,

and those, say I, which are introduced through the infinities, and of the small

curves round the infinities.

As in §230, the value of the integral for the two edges of a,, is ArB/;

and its value for the two edges of b,. is -B.A/. The value of the integral

for the two edges of any cross-cut I is zero, because the subject of integration

is the same along the edges which are described in opposite directions.

To find the value round one of the small curves, say that Avhich encloses

an infinity represented analytically by a value Cg of z, we take, in the imme-

diate vicinity of Cj,

P{z)=^^ + p{2-cs),
Z Og

where p{z — Cg) is a converging series of positive integral powers of ^ — Cg. In

that vicinity, let

Q = Q, -f- (^ — Cg) Qg '{ higher powers o{ z — c«,

so that Qg is dQ/dz for z = Cg: thus

dQ = (Qg + positive powers of z — Cg) dz.

Hence along the small curve

PdQ = HgQg' ^-^ + q(z-Cg) dz,
Z — Cg

where q{z-Cg) is a converging series of positive integral powers of z — c,.

The value of the integral round the curve is ^iriHgQg.

Summing these various parts of the integral and remembering that the

whole integral is zero, we have z

S {A^B;- Br a,!) + 'I-TrilHgQg' = 0,

r = l

there being as many terms in the last summation as there are simple

infinities of P.

The equation

I {ArB;-BrA;)+ 27ri^Hg(^) =0
r=l s \a^ J z = Cf
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is the relation luhich subsists between the moduli A', B' of a function Q(2) of

the first kind and the moduli A, B of a function P (z) of the second kind,

all the infinities of which are simple.

The simplest illustration is furnished by the integrals that were considered in Ex. 6

and Ex. 8 of § 199.

Let P be the function of Ex. 8, usually denoted by E {z), being the elliptic integral

of the second kind ; it is infinite for z= 'Xj in each sheet. In the upper sheet we have,

for large values of
1 2 1

,

P=£'(2)=^" ( 1+positive integral powers of -j ;

and for the same in the lower, we have

P= E(z)= - kz ( 1 + positive integral powers of -
)

.

Let Q be the function of Ex. 6, usually denoted by F (z), being the elliptic integral

of the first kind, finite everywhere. We easily find, for large values oi \z\ in the upper

sheet, that

dQ= dF{z) = -r^^(l-\-\^osM\\(i integral powers of -j rfs,

and, for large values of
1
2

|

in the lower, that

dQ=dF {z)= - 73 (l + positive integral powers of -
j dz.

Then for large values of
|

s
|

in the upper sheet, we have

PdQ= — (
1 + positive integral powers of -

)

= r (l+positive integral powers of /),

where zz'= \\ and we may consider the Riemann's surface spherical. Hence the value

round the excluding curve in the upper sheet is — 27ri.

Similarly the value round the excluding curve in the lower sheet is -2ni.

Now J, and 5j, the moduli of P, are 4^ and 2i(K' - E') respectively ; A{ and B^, the

moduli of Q, are 4A'' and 2iK' respectively. Hence

4£' . 2iK' - AK . 2i' (A" - E') - Ani=0,

leading to the Legendrian equation

EK' + E'K-KK' = \',r.

234. Before proceeding to the relations affecting the moduli of periodicity

of functions of the third kind, we shall make some inferences from the

preceding propositions.

It has been proved that functions of the first kind, special examples of

which arose as integrals of algebraic functions, exist on a Riemann's surface.

They are everywhere finite and, except for additive multiples of the moduli,

they are uniform and continuous; and when, in addition to these properties,

the real parts of their moduli of periodicity are arbitrarily assigned, the
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functions are uniquely determinate. Hence the number of such functions is

unlimited : they are, however, subject to the following proposition :

—

The number of linearly independent functions of the first kind, that exist on

a given Riemanns surface, is equal to p ; where 2/) + 1 is the connectivity of

the surface. And every function of the first kind on that surface is of the

)>

form C+ 2 CqWcj, where C is a constant, the coefiicients Cj, ..., c^ are constants,
q = \

and lu^, ..., Wp are p linearly independent functions.

Let q sets of linearly independent real quantities, each set containing

1p non-vanishing constants, be arbitrarily assigned as the real parts of the

moduli of periodicity of functions of the first kind, which are thence uniquely

determined. Let the functions be Wj , w.,, ..., iVq ; and let the real parts of

their moduli be («i)],i, 0)1,2, •••. <Wi,2^). {<^2,i, <»2,2, •••; f^2,2p), •••> (^9,1, <*>9,2, ,c^q,2p)-

The modulus of Wr at the cross-cut C,„ has its real part denoted by oj^.w :

when the modulus is divided into real and imaginary parts, let. it be

fOr,m ^i(o'r,m.

If any set of g arbitrary complex constants be denoted by Cj, ..., c^, where

Cs is of the form Og + i^g, then, at the cross-cut C,n, the real part of the

modulus of 1 c,.u\. is the real part of 2 c,.(&),. ,„
-1- i(o\. „,), that is, it is equal to

r=l /•=!

«l«l,m + ••• + "q(^q,m - f^l<^\,m— ••• —0q(^'q,m,

holding for m = l, 2, ..., 2p, and therefore giving 2p expressions in all.

Now let a set of real arbitrary quantities A^, Ao, ..., A^p be assigned as

the real parts of the moduli of periodicity of a function of the first kind,

which is uniquely determined by them ; and consider the equations

^1 = ai&)j,i + a2&)2,i-|- ... +0(qO}g^^ — /3i&j'i,i — ^20i'-2,\ — — ^qO}'q,i

A ..p = Oi wi, op -f- Oo 6)2, 2P+ •..+aq (Oq, .p - /3i &)'i, op - j3. &)'o, .^- ...-I3,j w',,^ .,J

First, let q<p: the 2q constants a and /3 can be determined so as to make
the right-hand sides respectively equal to ^q arbitrarily assigned constants A

.

The right-hand sides of the remaining equations are then determinate con-

stants; and therefore the remaining equations will not be satisfied when the

remaining constants A are arbitrarily assigned.

The function determined by the moduli A has some of its moduli different

from those of the function 2cm;, when q < p', hence, when q functions

Wi, ..., w,, where (/<;;, have been obtained, we can obtain another function,

and so on ; until q = p.

But, when q=p, then the foregoing 'Ip equations determine the quantities

a and ^, whatever be the quantities A. Let W be the function of the first
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kind, determined by the constants A as the arbitrarily assigned real parts of

its moduli of periodicity : then
r>

W— ^ CgiUg,

where the coefficients c are constants, has the real parts of all its moduli of

periodicity zero : it is therefore, by Cor. II. § 231, a constant, so that

where C is a constant. Therefore the number of linearly independent

functions of the first kind is p ; and every function of the first kind is of

the form
p

0+ ^ CgWa.
s=\

It has been assumed, in what precedes, that the determinant of the quanti-

ties (o and ft)' does not vanish. This possibility is not excluded merely by the

arbitrary choice of the quantities to ; because the quantities w' are determined

for IV, and w is dependent on v. If, however, the determinant should vanish,

then, by taking the quantities a and y9 proportional to the minors of w and (o

respectively in the determinant, all the quantities

p
S («.&),,„ -/3, &>'„„)

s = \

could be made to vanish. These quantities are the real parts of the moduli

. .
P^

.

of periodicity of S CgWg which, because they all vanish, is a constant, that is,

s = l

the quantities Wg are not linearly independent of one another—an inference

contrary to their construction. Hence the determinant of the quantities w does

not vanish.

Note. It may be remarked, in passing, that each function w, being of the

first kind, gives rise to two real potential functions, which are everywhere

finite and have moduli of periodicity at the cross-cuts : one of the functions

being the real part of w, the other arising from its imaginary part.

Hence from the p linearly independent functions of the first kind, there are

altogether 1p linearly independent real potential functions. This number is

the same as the total number of real potential functions considered in § 228 :

hence each of them can be expressed as a linear function of the members of

that former system, save possibly as to an additive constant. Conversely, it

follows that linear combinations of the members of that former system can be

taken in pairs, so as to furnish p (and not more than p) linearly independent

functions of z of the first kind.

235. The functions so far obtained are very general : it is convenient to

have a set of functions of the first kind in normal forms. The foregoing

analysis indicates that linear combinations of constant multiples of the
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functions, being themselves functions of the first kind, are conveniently

considered from the point of view of their moduli of pei'iodicity : and the

simpler the aggregate of these moduli is, the simpler will be the expressions

for the functions determined by them. Some conditions have been shewn

(§ 231) to attach to the aggregate of the moduli for any one function of the

first kind, and a condition (§ 232) for the moduli of different functions; these

are the conditions that limit the choice of linear combinations.

Let c-iiu-^ + . . . + CpWp be a linear combination of the functions Wj, .... Wp

which have (o^, ..., tOrp (r = 1, ...,p) as the moduli of periodicity for the

cross-cuts «!, ..., a^. Then A, where A is the determinant

A =
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The functions W, thus obtained, have the moduli :

—

[235.
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P
Hence the sum ^ — Or'Jr{c^pi,r + C2p-2^r+ • + CpPp^r)

P P
is positive and therefore the sum S ^ PrsCrC>, is negative. This (with the

r=ls=l

property p^n = p/mi) is the required result.

These properties of the periods, all due to Riemann, are useful in the

construction of the Theta-Functions.

For the ordinary Jacobian elliptic functions in which p = l, there is only

one integral which is everywhere finite : its periods are 4<K, 2iK'. To express

it in the normal form, we take cF (z), choosing c so that the period at a^ is

purely imaginary and = -rri ; hence c = y^, and the normal integral is

TriFjz)

irK'
The other period of this function is - -^-^, which, when k is real and less than

unity, is a negative quantity; it is the value of pn and satisfies the condition

that /o„Oi"- is negative for all real quantities c.

236. It has been proved th.ft functions exist on a Riemann's surface,

having assigned algebraic infinities and assigned real parts of its moduli

of periodicity, but otherwise uniform, finite and continuous. The simplest

instance of these functions of the second kind occurs when the infinity is an

accidental singularity of the first order.

Let the single infinity on the surface be represented by ^^ = c : let Ec (z)

be the function having 2r = c as its algebraical infinity, and having -the real

parts of its moduli of periodicity assigned. If EJ (z) be any other function

with that single infinity and the real parts of its moduli the same, then

Ec{z) — Ec (z) is a function all the real parts of whose moduli are zero: it

does not have c for an infinity and therefore it is everywhere finite: by § 231, it

is a constant. Hence an elementary function of the second kind is determined^

save as to an additive constant, by its infinity and the real parts of its moduli.

Again, it can be proved, as for the special case in § 208, that an elementarj-

function of the second kind is determined, save as to an additive function of

the first kind, by its infinity alone : hence, if ^(^) be any elementary function,

having its infinity &t z = c, we have

E (z) = E, (z) + Xi \\\ + ... + \pWp + A,

where \^, ...,\p,A are constants, the values of which depend on the special

function chosen. Let Eg (2) have TnCj, ..., TriCp for its moduli at the cross-

cuts «!, ..., Up i-espectively : and let the function E (z) be chosen so as to
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.have all its moduli at a,,...,ap equal to zero: then X^ = — 6',. and E {z) is

given by

The special function of the second kind, which has all its moduli at the cross-

cuts «!, ...,ap equal to zero, is called the normal function of the second kind.

It is customary to take unity as the coefficient of the infinite term, that is,

the residue of the normal function.

This normal function is determined, save as to an additive constant, by its

infinity alone. For i^E (z) and E'{z) be two such normal functions, the function

E{z)-E\z)

is finite everywhere; its moduli are zero at Oj, ..,, a^; hence (§231) it is a

constant.

Normal functions of the second kind will be used later (§ 240) in the

construction of functions with any number of simple infinities on the surface.

Let the moduli of this normal function E (z) of the second kind be

B^, ..., Bp for the cross-cuts b^, ..., bp. Then applying the proposition of

§233 and considering the integral JEdW,-, we have Ai= ... =Ap = ; also

J./ = ... = A' r-i = A' ,.+-1 = ... z=Ap=0,

and Ar' = iri. The relation therefore is

-Br'JTi+2'Ki('^\ =0,
V dz J,^c

where, in the immediate vicinity of ^^ = c,

p being a converging series of positive powers. Thus

^dWr\

V dz A- .

dW
or, as —r^ is an algebraic function (§241) on the surface, the periods of a

normal function of the second kind at the cross-cuts b are algebraic functions

of its single infinity.

In the case of the Jacobian elliptic integrals, the integral of the second kind has at

2= 00 an infinity of the first order in each sheet (Ex. 8, § 199). The moduli of this integral,

denoted by E {£), are AE and ii{K'-E') for «, and b^ respectively; hence the normal

integral of the second kind is

E{z)~^F{z\

F{z) being the (one) integral of the first kind. This is the function Z{z). Its modulus is

zero for «! ; for by , it is

2i{K'-E')-^'2iK',

which is j,{KK' - E'K-EK), that is, the modulus is --^

Br=2C-^\
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237. The other simple class of function, which exists on a Riemann's

surface with assigned infinities and assigned real parts of its moduli, is that

which is represented by the elementary integral of the third kind. It has

two points of logarithmic infinity on the surface*, say Pj and P^; let these

be represented by the values Cj and c^ of z. On division by a proper constant,

the function, which may be denoted by 11 jo, takes the forms

- log {z - c) + i>i (^ - Ci), • + log {z - c,) +P2{z- Ca),

in the immediate vicinities of Pj and of Po respectively, where pi and p2 are

converging series of positive integral powers.

The points Pj and P, can be taken as boundaries of the surface, as in

Ex. 7 in § 199. A cross-cut fi-om Pg to Pi is then necessary for the resolution

of the surface : and the period for the cross-cut is ^iri, being the increase of the

function in passing from the negative to the positive edge of the cross-cut.

Then with this assignment of infinities and with the real parts of the

moduli at the cross-cuts Oj, ...,ap, h^, ...,hp arbitrarily assigned, functions W^^

exist on the Riemann's surface.

As in the case of the function of the second kind, it is easy to prove that a

function li^^ of the third kind is determined, save as to an additive constant, by

its two infinities and the assignment of its moduli : and that it is determined,

save as to an additive function of the first kind, by its infinities alone.

Among the infinitude of elementary functions of the third kind, having

the same logarithmic infinities, a normal form can be chosen in the same

manner as for the functions of the second kind. Let IIi., be an elementary

function of the third kind, having Pi and P., for its logarithmic infinities :

let its moduli of periodicity be iiri for the cross-cut Pj Po ; iriC-^ , ..., iriCp for

fti, ..., cip respectively; and other quantities for h^, ..., hp respectively. Then

^,,= U,,-C,W,-...-GpWp

is an elementary function of the third kind, having zero as its modulus of

periodicity at each of the cross-cuts a-^, ..., cip. This function is the normal

form of the elementary function of the third kind.

If OTio' and TO-j., be two normal elementary functions of the third kind with

the same logarithmic infinities and the same period 27ri at the cross-cut

P,P,, then

CTi-., — tZTia

is a function without infinities on the surface ; its modulus for Pi P^ is zero,

and its modulus for each of the cross-cuts aj,. ..., a^ is zero; and therefore

* The representation of a single point on the Riemann's surface by means solely of the value

of z at the point will henceforward be adopted, without further explanation, in instances when it

cannot give rise to ambiguity. Otherwise, the representation with full detail of statement will

be adopted.
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it is a constant. Hence a normal elementary fimction of the third kind is

determined, save as to an additive constant, hy its infinities alone.

Ex. The sum of three normal elementary functions of the third kind, having as

their logarithmic infinities the respective pairs that can be selected from three points,

is a constant.

238. A relation among the moduli of an elementary function of the third

kind can be constructed in the same way as, in § 233, for the function of the

second kind.

Let the surface be resolved by the '2p cross-cuts a-^, ..., ap, b^, ..., hp and by

the cross-cut P1P2, joining the excluded infinities of an elementary function

riia of the third kind. Let w be any function of the first kind ; then over the

resolved surface, we have

dx dy dy dx

everyAvhere zero; and therefore jYl^uliu round the whole boundary of the

resolved surface is zero, as in § 233.

Let the moduli of Hjo be Ai, ..., Ap, B^, ..., Bp, and those of to be

A-^, ...,Ap, B/, ...,Bp for the 2p cross-cuts a and b respectively.

The whole boundary is made up of the two edges of the cross-cuts a, the

two edges of the cross-cuts b, the two edges of the cross-cut PiP-^ and the

small curves round Pj and P.,.

The sum of the parts contributed to JU^odiv by the edges of all the cross-

cuts a and b is, as in preceding instances,

i(A,B;-A:B,).

The direction of integration along PjP^ that is positive relative to the area

in the resolved surface is indicated by the arrows ; the

portion of JUy.dw along the two edges of the cut is ' ^
Uy,'^diu + U^o~ diu

Fig. 83.

= ['''(nio+ - Hio-) dw = 27n' r^dw = 2^ [w (c.) - v>{c,)}.

J Ct J Ci

Lastly, the portion of the integi'al for the infinitesimal curve round Pj is zero,

by L of § 24, because the limit of {z — c^) IIio -7- for ^ = Cj vanishes, P, being

assumed not to be a branch-point ; and similarly for the portion of the

integral contributed by the infinitesimal curve round P.,.
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As the integral jlliorfw vanishes, we therefore haye

S (AgB/ - A;B,) + 2iri [w (Co) - lu (Ci)} = 0,

which is the relation required.

The most important instance occurs when I!,, is the normal elementary

function of the third kind (and then ^i, Ao, ..., Ap all vanish), and w is a

normal function of the first kind, say Wr ; then

A,' = iri, A-^ = .4.; = ... = A'r-^ = A',+^ = ...=Ap = 0.

Hence, if ^^ be the modulus at b^ of the normal elementary integral tn-jj, we
have

Br=2[Wr{c,)-Wr{C,)],

SO that the moduli of the normal elementary function of the third kind can he

expressed in terms of normal functions, of the first kind, of its logarithmic

discontinuities.

The important property of functions of the third kind, known as the

interchange of argument and parameter, can be deduced by a similar process.

Let IIio be an elementary function with logarithmic discontinuities at

Ci and C.2, with liri as its modulus for the cross-cut c^Co^, and with

^1, ..., Ap, i?i, ..., Bp

as its moduli for the cross-cuts a^, ..., Op, h^, ..., bp\ and let 1134 be another

elementary function with logarithmic discontinuities at c^ and C4, with 27^^ as

its modulus for the cross-cut C3C4, and with J./, ..., Ap, B^, ..., Bp as its

moduli for the cross-cuts a^, ...,ap, b^, ...,bp.

Then when the infinities are excluded and the ^^K^
^^'-^n

surface is resolved so that both IIjo and II 34
^ ^^

form finite and continuous throughout p ^B^ ^ C^are uni

the whole surface, we have -^"E + ^1 g^

5^12 91134 _ 91134 dTly. ^ ^ pjg_ Q4_

dx dy dx dy

everywhere in the resolved surface ; and therefore, as in the preceding

instances, / 11120^1134 round the whole boundary vanishes.

The whole boundary is made up of the double edges of the cross-cuts a

and the cross-cuts b, and of the configuration of cross-cuts and small curves

round the points. The modulus of both II 12 and II 34 for the cut AG is

zero ; the modulus of IIjo for the cut C3C4 is zero, and that of 1134 for the cut

CiC, is zero.

The part contributed to /IIiorfn34 by the aggregate of the edges of the

p

cross-cuts a and 6 is S {AgB^ — Ag'Bg), as in preceding cases.
s = l

F. F. 33
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The part contributed by the small curve round Ci is zero, because the

limit, for 2 = Ci, of {z - Ci) Uy. —~ is zero. Similarly the part contributed by

the small curve round c, is zero.

The part contributed by the two edges of the cross-cut CiCo is

= 27rz-£' 0^113, = 2-7ri [U,, (c) - U,, (c,)}.

The part contributed by the two edges of the cross-cut ^0 is

the subject of integration does not change in crossing from one edge to the

other, and therefore this part is zero.

For points on the small curve round c^, we have

dz
dnsi = - b2i{2 - C3) dz,

z — c^

where jd is a converging series of integral powers of z—Cs: and therefore for

points on that curve

U,,dU.^ = - Hi^^ dz + q(z- c,) dz,
z — C3

where q{z — G^ is a converging series of positive integral powers of z — c^.

Hence the part contributed to \X\^,AU..^ by the small curve round c^ in the

direction of the arrow, which is the negative direction for integration relative

to Ci, is 27rin,o(C;i).

Again, for points on the small curve round C4, we have

dW,,^ = V j)^ {z — C4) dz.

Proceeding as for C3, we find the part contributed to j\ly.dY\.i by the small

curve round c^, which is negatively described, to be — ^iriWy.iCi).

Lastly, the sum of the parts contributed by the two edges of the cross-cut

C3C4 is
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But though n;,4 has a modulus for the cross-cut C3C4, its derivative has not a

modulus for that cross-cut : we have dU-j^-^/dz = dn;ii~/dz, and therefore the

last part contributed to jn^odUsi vanishes.

The integral along the whole boundary vanishes ; and therefore

i (AsBJ - A;Bs) + 27ri { U,, (c,) - U,, (c,)] + 27riU,, (c,) - 27rtn,, (cj = 0,
s = l

a relation between the moduli of two elementary functions of the third kind.

The most important case occurs when both of the functions are normal

elementary functions. We have Aj^, ,.., Ap zero for OTjo, and A^', ..., A^ zero

for -5734 ; and the relation then is

OT34 (Co) - -SJ-34 (Ci) = -STio (C4) - -STio (Cs),

Avhich is often expressed in the form

re. rci

dvf.^i = d'OTi^,

the paths of integration in the unresolved surface being the directions of

cross-cuts necessary to complete the resolution for the respective cases.

Hence the normal elementary integral of the third kind is unaltered in value

by the interchange of its limits and its logarithmic infinities.

Ex. 1. Denoting by Ei and Eo, the normal elementary integrals of the second kind

which have their single simple infinities at Ci and Co respectively, shew that the value

of -~ at Co is equal to the value of -~ at Cj.

Ex. 2. Denoting by E^ the normal elementary integral which has its single infinity

at C3, prove that the value of —7^^ at C3 is £ij (C2) - ^3 (cj).

239. From the simple examples, discussed in § 199 and elsewhere, it has

appeared that when a function lu is deiined as the integi-al of some function

of z, the integral being uniform except in regard to moduli of periodicity, a

process of inversion is sometimes possible whereby z becomes a function of w,

either uniform or multiform. But in all the cases, in which z thus proves to

be a uniform function, the number of periods possessed by lu is not greater

than two; and it follows, from § 110, that, when iv possesses more than two

periods, z can no longer be regarded as a uniform function of w.

A question therefore arises as to the form, if any, of functional inversion,

when lu has more than two independent j^eriods and when there are more

functions iv than one.

Taking the most general case of a Riemann's surface of class 2^, let

Wi, iv^, ..., lUp denote the j9 functions of the first kind. Let there be q inde-

pendent variables z^, ...,Zq, where q is not, of initial necessity, equal to p\

33—2
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and, by means of any q of the functions of the first kind, say w^, ..., w,, form

q new functions, also of the first kind, and defined by the equations

IV = Wr (^l) + Wr (2-0) + . . . + Wr {Zq),

where ?'=1, 2, ..., q. We make the evident limitation that q is not greater

than p, which is justifiable from the point of view of functional inversion.

Then the functions v^ are multiform on the surface with constant moduli of

periodicity ; they have the same periods as ?(v, say eo^. 1, a>r^2, •••> <*>r,-2p-

The various values of Wr{z^n) differ by multiples of the periods : so that, if

Wr{zm) be the value for an exactly specified ir,„-path (as in § 110), the value

for any other 2^,,,-path is

WV('^m) + »?»«, i«r,i + >«m,2ft>r,o+ ... + ">,i,2i)<«>r,2/)-

This being true for each of the integers m = 1, 2, ..., 9, it follows that, if

m,= i n„^„ {s = l,2,...,2p),
»M = 1

9

and if v,. be the value of S wv(2,„) for the exactly specified paths for z^, ...,Zg,
m = l

then the general value of v,- for any other set of paths for the variables is

holding for r = 1, 2, ..., 5. The integers «,„,«, and therefore the integers mg,.

are evidently the same for all the functions v.

The reason which, in the earlier case (§ 110), prevented the function iv from

being determinate as a function of z alone was, that integers could be determ-

ined so as to make the additive part of w, dependent upon the periods, less

than any assigned quantity however small : say less than an infinitesimal

quantity. It is necessary to secure that this possibility be excluded.

Let ft)A,^ = Oa.k + ^^A,^L, where the quantities a and /3 are real: then we

have to prevent the possibility of the additive portions for all the functions v

being infinitesimal. In order to reduce the additive part to an infinitesimal

value for each of the functions v, it would be necessary to determine integers

7/(1, in.^, ..., iti^p so that the 2q quantities

Wj o^,, + mo or,._o + . . . + in.p a,.,„^'

for ?•= 1, ..., q, all become infinitesimal.

If q be less than p, the 2p integers can be so determined. In that case,

the general possibility of functional inversion between the q functions v and

the q variables 2 would require that the quantities z are so dependent upon

the quantities v that infinitesimal changes in the latter, carried out in an
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infinite variety of ways and capable of indefinite repetition, would leave the

quantities z unchanged. The position, save that we have q variables instead

of only one, is similar to that in § 110 : we do not regard the functions v as

having determinate values for assigned values of ^i, ..., z,^, but the values of

Vy, ...,Vq are determinate, only when the paths by which the independent

variables acquire their values are specified. And, as before, the inversion is

not possible.

If g be not less than p, so that it must in the present circumstances be

equal to y, then the 2/j integers cannot be determined so that the 2j9 quanti-

ties all become infinitesimal. They can be determined so as to make any

2jL> — 1 of the quantities become infinitesimal ; but the remaining quantity

is finite as, indeed, should be expected, because the determinant of the

constants a and /3 is different from zero*.

If then there be p variables z^, ..., z^, and p functions v-^, ..., v^, defined

by the equations

Vr = IVr (^i) + W,. {Zo) + . . . + 10y (Zp),

for r=l, 2, ...,p, then the values of the functions v for assigned values of

the variables z, whatever be the paths by which the variables attain these

values, are of the form

Vr + nhO),., 1 + m^dir^ 2 + • • • + nlzpO),., 2p .

for r = 1, 2, ..., p; and it has been proved that the 2p integers m cannot be

determined so that all the additive parts, dependent upon the periods, become

infinitesimal. Hence the functions v^, ..., Vp are, except as to additive

multiples of the periods (the numerical coefficients in these multiples being

the same for all the functions), uniform functions of the variables z^, ..., Zp\

and they are finite for all values of the variables. Conversely, we may regard

the quantities z as functions of the quantities V], ..., Vp, which have 2p sets

of simultaneous periods coi,.,, <i>.2,.v, •••, f^p,s foi' ^=1, 2, ..., 1p: that is, the

variables z are 2j9-ply periodic functions oi p variables Vj, ...,Vp. This result

is commonly called the inversion-prohlem for the Abelian transcendents.

In effecting the inversion of the equations

dvy = Wi (zy) dzi + Wi' (2.2) dz..+ ...+ ii\' (zp) dzp]

dvp = lUp (zi) dzy + U'p (z-i) dz. -I- . . . + tVp (Zp) dzp,

the actual form, which is adopted, expresses all symmetric functions of

the quantities z^, ...,Zp as uniform functions of the variables, so that, if

Zi, Z.2, ..., Zp he the roots of the equation

</> (Z) = ZP + P, ZP-' + P,ZP-' + . . . + Py = 0,

* The 2p potential-functions, arising from the p functions w, would otherwise not be linearly

independent.
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then* Pi, ..., Pp are imifonn multiply-periodic functions of the variables

Vi, ..., Vp. Consequently, all rational symmetric functions of ^i, ..., 2^^ are

uniform multiply-periodic functions of i\, ...,Vp.

Frequent reference has been made to the functions determined by the equation

it'2 - R (z)= iv^ - (z - rt,) {z-a,)...(z- a2p) = 0.

It has been proved that an integral of the form I
—--- dz is an integral of the first kind,

provided U (z) be any polynomial function of degree not higher than jo-1, and that

the otherwise arbitrary character of Viz) makes it possible to secure the necessary

p integrals by allowing the suitable choice of the coefficients. "Weierstrass takes the

equations, which lead to the inversion, in the following formt :

—

The constants a are diflFerent from one another and can have any values : and it is

convenient to take
P {x)= {x- ai) (.¥ -as)... {.V - «2p-i),

Q (x)= (x - cio) (.r -a..)... (x - a.p_ 2) (^

-

a^p),

so that P (x) Q (x) = R (x). If the coefficients a be real, it is assumed that

«0 > «! > «2 > ... > «2p.

The equations which give the new variables are

P{z,)dz,
^ P{z,)dz,

. ,

P(zr,)dz„
dill

{z,-a,)s/R{z,) {z2-a,)^/Riz.^ (--p-«i) v^/2 (^p)

^^^^ P{z,)dz,
^

P{z,)dz,
^

P{z,)dz,

' (zi-a3)jR{z,) (z2-as)sfRiz.2) [z,,- a^) s.!R{zp) ">
;

and when integration takes place, the arbitrary constants are defined by the equations

?<i, v.o, ..., Wp= (with i^eriods for moduli),

when 5,, Sjj --M 'p= «i) "3; •••) '^hi>-\ respectively-.

The p variables z are the roots of an algebraical equation of degree p, the coefficients in

which are (multiply-periodic) uniform functions of the variables u. The functions, arising

out of the equations in this form, are discussed J in "\Vcierstras.s's two memoirs, just

quoted.

Note 1. The results thus far established in this chajjter lie at the basis of the theory

of Abelian functions. The fuller establishment of that theory and its development

are beyond the range of the present treatise.

So far as concerns the general theory, recourse must be had to the fundamental

memoirs of Abel, Jacobi, Hermite, Riemann and Klein, and to treatises, in addition to

* For further considerations see Clebsch unci Goidan, Theorie der Abel'schen Functionen,

Section vi. .

t Equivalent to that given in Crelle, t. Hi, (1856), pp. 285 et seq. ; it is slightly different from

the form adopted by him in Crelle, t. xlvii, (1854), p. 289.

* Some of the results are obtained, somewhat differently, in a memoir by the author, Phil.

Tram., (188.^), pp. 323—368.
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those by Neumann and by Olebsch and Gordan already cited, by Pryni, Krazer, Konigs-

berger, Briot, and Stahl. The most comprehensive of all is Baker's treatise Abel's theorem

and the allied theory^ including the theory of the theta fnnctions, (Cambridge, 1897).

Moreover, as our propositions have for the most part dealt with functions of only a

single variable, it is important in connection with the Abelian functions to take account

of Weierstrass's memoir* on functions of several variables.

Xote 2. We have discussed only very limited forms of integrals on the Riemann's

surface : and any professedly complete discussion would include the theorem that \%o'dz,

where to' is a general function of position on the surface, can be expressed as the sum of

some or all of the following [)arts :

—

(i) algebi'aical and logarithmic functions
;

(ii) Abelian transcendents of the three kinds
;

(iii) derivatives of these transcendents with regard to parameters
;

but such a discussion is omitted as appertaining to the investigations relative to Abelian

transcendents. Supplementary Notes will be found at the end of this Chapter XVIII.,

giving an account of Abel's theorem, and indicating a mere beginning of the theory of

Abelian transcendents.

For the particular case in which the integral \w'dz is an algebraical function of 2, see

Briot et Bouquet, Theorie des fonctious elli/itiques, (2'"'^ e'd.), pp. 218—221 ; Stickelberger,

Crelle, t. Ixxxii, (1877), pp. 45, 46 ; and Humbert, Acta Math., t. x, (1887), pp. 281—298,

by whom further references are given.

240. There are functions belonging to class (B) in § 229, other than

those already considered. In particular, there are functions with assigned

infinities on the surface and with the real parts of all their moduli of

periodicity for the canonical system of cross-cuts equal to zero. But it

does not therefore follow that all the moduli of periodicity vanish ; in order

that their imaginary parts may vanish, so as to make the moduli of

periodicity zero, certain conditions would require to be satisfied.

We shall limit the ensuing discussion to some sets of these functions

with zero moduli, and shall assign the conditions necessary to secure that

the moduli shall be zero. We shall assume that all their infinities are

algebraic ; the functions are then uniform everywhere on the surface, and,

except at a limited number of isolated points where they have only

algebraic infinities, are finite and continuous. They are, in fact, algebraic

functions of z.

Two classes of these functions are evidently simpler than any others.

The first class consists of those which have a limited number, say m, of

isolated accidental singularities and which are not infinite at any of the

branch-points; the other class consists of those which have no infinities

except at the branch-points. These two classes will be briefly discussed

in succession.

* First published in 1886 ; Ahhandlungen aus der Functionenlehre, pp. 105—164 ; Ges. Werke,

t. ii, pp. 135—188. See also the author's Lectures introductory to the theory of functions of two

complex variables (Camb. Univ. Press, 1914).
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Let w he a uniform function having accidental singularities at the

points Ci, ...,c,„ and no other infinities; and for simplicity, assume* that

each of them is of the first order. Also let the normal function of the

second kind, having Cr for its sole infinity, be Zr. Then

^,Z, + 0,Z,+ ... + ^„Z„„

where 0i, ..., /3m are constants at our disposal, is a function, having infinities

of the same class and at the same points as w has ; the function is otherwise

finite everywhere on the surface and therefore, by properly choosing the

constants /9, we have the function

w-{l3,Z,+ ...+^„,Z,n)

finite everywhere on the surface, so that it is a function of the first kind.

Now because its modulus vanishes at each of the cross-cuts a in the

resolved surface, it is a constant, so that

«'=/3iZi+...+An^m+/9o.

The modulus of lu is to vanish at each of the cross-cuts b,.. Let <^,.{z) — —^,

so that ^r{z) is an algebraic function on the surface : assigning the condition

that the modulus of iv at the cross-cut h,. shall vanish, we have

/3i</),(c,) + /3,<^, (c,) -^ ... + /9,,<^, (c,,) = 0,

an equation which must hold for all the values r = l, ...,}).

When the quantities c represent quite arbitrary points, there must be

at least p+ I of them ; otherwise, as the equations are independent of one

another, they can be satisfied only by zero values of the constants /3, a result

which renders the uniform function evanescent. If m > p, the equations

determine p of the coefficients /S linearly in terms of the remaining m - p :

when these values are substituted, the resulting expression for w contains

„i _ p 4- ] constants, viz., the remaining m — p constants /3, and the constant

/So- The coefiicient of each of the m — p constants yS is a function of z, which

has p+l accidental singularities of the first order, p of which are common

to all the functions, so that w then is an arbitrary linear combination

of constant multiples of vi — p functions, each of which possesses p + 1

accidental singularities and can be expressed in the form

A,{z)= Z„ Z,, , Z„ Z,^,

4>iiCi), <^i(Co), , <f>i(Cp), <l>i{Cp+r)

4>2{ci), </>->(c,), , (f>ACpl 4>ACp+,)

(ppiCi), <pp(C2), ,
<j>p{Cp), <t>p{Cp+r)

* If a pole, say at Cj, is of order s, then /3i/^i would be replaced by

the expression for iv ; and so for other cases.
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When the quantities c are not completely arbitrary, but are such that

relations among them can be satisfied so as no longer to permit the preceding

forms to be definite, we proceed as follows.

The most general way in which the preceding forms cease to be definite

is by the dependence of some of the equations

/3, <l>,. (C) + l3.Ar (C.) + . . . + ^m4>r (C'«) =

on the remainder. Let q of them, say those given by r = 1, ..., q, be

dependent on the remaining p — q, so that < 5 < _p : then the conditions

of dependence can be expressed by equations of the form

</), (C„) = xl,, ,0,+i (C„) + A,^,4q^o {Cn) + . . . + Aj,_^,r4>,, {Cn),

for ?• = 1, 2, . .
. , 5 and /; = 1, 2, . .

.
, m.

The functions of the first kind W, through which the functions </> are

derived, are a complete set of normal functions : when any number of them

is replaced by the same number of independent linear combinations of some

or all, the first derivatives are still algebraic functions. We therefore replace

the functions TFj, W., ..., IF, by iv^, iv., ..., tVq, where

Wr=Wr-A,,rWq^, - A,,,Wq^.,- . . . - A.^.^^rW„,

for r= 1, 2, ..., q, so that, for all values of z,

^, {Z) = 0, {Z) - A,, r4>q+l (2)- A,, ,(/),+, (Z)-...- A,,^,,r<f>p (^).

Hence the functions $1, <I>o, ..., $,; vanish at each of the points Ci, Cg, ..., c,„.

The original system of jj equations in ^1, ..., <pq, <pq+i, •••, (f>p,
when made

a system of equations in <!>,, ..., 't>q, (f>q+i, ..., 4>pis equivalent to

ySx <f>s (cO + 13, (fis (c.) + . .
. + /3,n <t>sM = Oj

for r = 1, ...,q and s = q + l, ..., p. The first q of these are evanescent ;
and

therefore their form is the same as if we had initially assumed that each of

the functions ^j, ..., <^5 vanished for each of the points z = Ci, ..., c,„, the two

assumptions being in essence equivalent to one another on account of the

property of linear combination characteristic of functions of the first kind.

Suppose, then, that q of the functions
<f),

derived through functions of the

first kind, vanish at each of the points Cj, ...,g,„ ; the number of surviving

equations of the form

/9i <j>r (Ci) + /3,<^,. (C,) + . . . + /8,„ (Pr {Cm) =

is p - q, and they involve m arbitrary constants /3. Hence they determine

p-q of these constants, linearly and homogeneously, in terms of the other

m-p + q. When account is taken of the additive constant ^0, then* the

* This is usually known as Riemanu-Roch's Theorem. It is due partly to Riemann and

partly to Roch ; see references in § 242.
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function w contains m —/) + </ + ! arbitrary constants ; and it is a linear com-

bination of arbitrary multiples of m—p + q functions, each having p — q+1
accidental singidarities of the first order, p — q of which are common to all

the functions in the combination.

The functions under consideration, being linear combinations of normal

functions Z of the second kind, have no infinities except at the accidental

singularities; the branch-points of the surface are not infinities. And it

appears, from the theorem just proved, that there are functions having only

/) — 7 + 1 accidental singularities, each of the first order, so that the total

number is less than p-\-\. A question therefore arises as to what is the

inferior limit to the number of accidental singularities that can be possessed

by a function which is uniform on the Riemann's surface and which, except

at these accidental singularities, is everywhere finite and continuous on the

surface.

Let this limit be denoted by fx ; then the p equations

/^,</>r(Ci)+...+/i^<^,.(C^) = 0,

for r = 1, 2, ..., j3, must determine yu. — 1 of the constants ^ in terms of the

remaining constant /S, say, B. The function thence determined contains two

constants, viz., the surviving constant ^ and the atlditive constant, its form

being

A+B Z„

</>! (Cm)

<^/i-l(Cl), <^M_i(C2), ....... 0m-i(Cm)

Among the points c^,c., , c^, the relations

>M+r(Ci), <^M+r(Co), , <^m+<'(Cm) =0
</>l(ClX </>l(Co), , (^^{Cy.)

(f)^-,{c,), (fy^-Aco), , (i>^-i{c^)

for ?' = 0, 1, ...,p — fj-,
must be satisfied, that is,p — /jL + l relations must be

satisfied *.

Since there are fx points c among which p — fj,+ \ relations are satisfied,

it follows that the number of surviving arbitrary constants c is, in general,

equal to /j, -{p — fi+1), that is, to 2/jb —p— 1. These occur as arbitrary con-

stants in the inferred function, independently of the two constants A and B

:

so that the number of arbitrary constants, in the function with /m accidental

singularities, is 2fi — p—l + 2, that is, 2^ — p + 1.

* This result implies that the relations are indepenrlent of one another, which is the case in

general : but it is conceivable that special relations might exist among the branch-points, which

would afiect all these numbers.
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Again, the number of infinities of a uniform function of position on a

Riemann's surface is equal to the number of its zeros (§ 194), and also to

the number of points where it assumes an assigned value ; and all these

properties are possessed by any function, with which w is connected by

any lineo-linear relation. If u be one such function, then another is

an + h

u — d

where a, b, d are arbitrary constants ; and therefore lo contains at least

three arbitrary constants, when it is taken in the most general form that

possesses the assigned properties.

But it has been shewn that the number of independent arbitrary con-

stants in the general form of iv is 2//, — p+1. This number has just been

proved to be at least three, and therefore

2;i-_/j + 1^3,

or yti ^ 1 + ^/).

Thus the integer equal to, or next greater than, 1 + ^_p is the smallest

number of isolated accidental singularities that an algebraical function can

have on a Riemanns surface, on the supposition that it has no infinities at

the branch-points*.

Note. A method of decomposing rational functions on a Riemann's

surface, so that the elements are normal functions of the second kind, is

given above ; another method of constructing a rational function is as

follows.

It was seen that the number of simple poles of a rational function, when

all of them are arbitrarily assigned, cannot be less than p + 1 ; to consider

the simplest case, we accordingly assign p -\-\ arbitrary points, which shall

be infinities (and the only infinities) of a rational function. Take the most

general • polynomial P{w, z) of order n — 2 in w and z combined, and make it

vanish at the j9 + 1 assigned points. Also make P vanish at each of the

multiple points of the curve /= in such a way that, when the point is of

multiplicity \ for /"= 0, it is of multiplicity \-\ for P = 0; consequently

such a point counts for \(\— 1) intersections among the points common to

/= 0, P = 0. Hence the number of intersections common to /= 0, P = 0,

other than the multiple points of /= 0, and the p+\ arbitrary points, is

= n{n - 2) - (p + 1) - SX(\ - 1).

* This result applies only to a completely general surface of class;). And, for special forms

of surface of class p, a lower limit for fi can be obtained; thus, in the case of a two-sheeted

surface, the limit is 2. (See Klein-Fricke, i, p. 556.)
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But, as in § 182, we have*

p = i^(n-l)(n-2)-lh\(\-l);

and therefore the number of remaining intersections is

= w (n - 2) - (^; + 1 ) - (n - 1) (n - 2) + 2p

= n + p — S.

Now a polynomial in w and z of order n-2 contains ^n(«-l) terms.

The number of relations among the constants, necessary to secure that

a point on a curve is of order k; is ^k(k + l); so that the number of

relations among the constants, necessary to make each of the multiple points

of /= a multiple point of the proper order for P = 0, is S^X(X — 1).

Since
^n(n-l)- lh\(X-l)-(n + p- S)

= ^n (n -l)-^{n-l){n-2) + p- (n +p- 3)

= 2,

it follows that there are two independent polynomials, which can be drawn

through the multiple points of /= 0, vanishing to the proper order at each

of them, and through the n + p — S points common to /= 0, P = 0, which

are other than the ^; + 1 arbitrary zeros of P. Clearly P itself can be

taken as one of these polynomials ; let Pj denote another independent

of P. In general. Pi does not pass through any other zero of P : in

order to make it do so, one other relation among the constants would

be necessary, and then there would be only a single polynomial passing

through the multiple points to the proper order, through the n+p — S

points, and through the other zero of P : the single polynomial being

P itself.

Thus

^' P(w,z)'

is a function, which has the jj + 1 assigned points for poles, because they

are zeros of P and not of Pj ; all the other zeros of P on the surftice

are zeros of Pi to the same order, and they therefore are not poles of g.

Thus a rational function has been constructed, which has p {- I assigned

points as poles, and it has no other poles.

241. The other simple class of uniform functions on a Riemann's

surface consists of those which have no infinities except at the branch-

points of the surftice.

They will not be considered in any detail : we shall only briefly advert

* A multiple point of order X on a curve is equivalent to ^/\(\-l) double points (Salmon's

Highi'r Plane Curi'i's, § 40) : hence the aggregate of equivalent double points is ISiX (\ - 1).
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to those which consist of the first derivatives of functions of the first kind.

This set is characterised by the theorem :

—

These functions 4>{z) are infinite only at hnnich-points of the surface, and

the tot<d number of infinities is 2p — 2 + 2n. For, let w (z) be the most

general integral of the first kind, and let

Near an ordinary point a on the surface we have

w{z) = w («) \-{z — a) P{z — a),

where P is a converging series that may, in general, be assumed not to

vanish for z = a; hence

4>{z) = P{z-a) + {z- a) P' {z - a)
;

that is, (i) is finite at an ordinary point.

Near 2-=x (supposed not to be a branch-point) we have, if k be the

value of w there,

where -P (-) may, in general, be assumed not to vanish for 2- = go ; so that

and therefore ^{z) has a zero of the second order at ^ = oo .

Near a branch-point 7, where m sheets of the surface are connected, we

have

XV {z) - w (7) = {z- 7)- P [{z - 7)'«],

where P may, in general, be assumed not to vanish for 2- = 7 : hence

4>{z) = {z-^)
1.. .Lh\p J(^

_ ^) '"1 m 4. _ (^ _ ,y)'» P' {{z - 7)
m\

SO that ^ {z) is infinite at ^ =7, and the infinity is of order m — 1.

Hence the total number of infinities is 51 {m - 1), where m is the number

of sheets connected at a branch-point, and the summation extends over all

the r branch-points. But 2jt) -I- 1 = S {m - 1) - 2n -I- 3, and therefore the

number of infinities is 2p — 2-1- 2n.

We can now prove that the number of zeros of <f>(z) in the finite part

of the surface is 2p - 2, of which p-l can be arbitrarily assigned.

The total number of zeros is 2;)- 2 +2?/, being ecpial to the number

of infinities because
(f)

(z) is an algebraic function. But
<f)

{z) has been
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proved to have a zero of the second order when z = <xi\ and this occurs in

each of the n sheets, so that 2?i (and no more) of the infinities of <^ {£)

are given by 2=00. There thus remain 2j9 — 2 zeros, distributed in the

finite part of the surface.

Moreover, the most general function (^ {z) of the present kind is of the

form

<^(^) = c,</>,(^) + a(/),(^)+ ... + c^<^^(^),

where ^1 (^), ...,(f)p{z) are derived through the normal functions of the first

kind. The j) — I ratios of the constants C can be chosen so as to make

(f)
(z) vanish for ;; — 1 arbitrarily assigned points. Hence an algebraic

function arising us the derivative of an integral of the first kind is determined,

save as to a constant factor, by the assignment of p— 1 of its zeros in the

finite part of the plane.

Note*. It may happen that the assumptions as to the forms of the series

in the vicinity of a particular point a, of 00 , and of 7, are not justified.

If (a) vanish, we may regard a as one of the 2p — 2 zeros.

If ^^ = CO on one sheet be a zero of {z) of order higher than two, say

2 + s, we may consider that s of the 2p - 2 zeros are removed from the

finite part of the surface to coincide with 2 = go .

i_

If P [{z — yY"-], vanish for z = y, the order of the infinity for
<f>

{z) is

reduced from m — 1 to, say, m — s—1 ; we may then consider that s of the

2p — 2 zeros coincide with the branch-point.

242. When the integer q of § 240 is greater than zero, so that a

rational function having m assigned simple poles can be expressed as a

linear combination of 7n — p + q functions each possessing only p + \—q
poles, then the rational function is called f a special function, to distinguish

it from the most general case, when q = and the points c are quite

arbitrary. In the case of a special function, having Ci, ..., c,„ for its (simple)

poles, these points are such that q of the functions ^, say

4>U (t>2, ••, (f>q,

vanish at each of them. Now in § 241 it was proved that the number of

zeros of any function
(f>

for finite values of z is 'Ij) — 2 ; consequently, in

the case of a special function,

m ^ 2^ — 2,

or the degree of a special function is not greater than 2p — 2. Moreover,

q denotes the number of distinct adjoint curves of order n — 3, which jjass

through the poles of the special function.

* See Klein-Fiicke, vol. i, p. 545.

t Klein-Fiicke, Vorl. U. d. Th. d. ell. Modiilfujictioiieii, t. i, p. 552.
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Denoting the special function by g, and selecting any one of the q
adjoint polynomials of order n — 3, which occur in the q functions

<f),
say

Ui{w, z), consider the product gU^. This product is finite at each of the

points Ci, ..., c,„, because those points are zeros of U^ ; and g is not elsewhere

infinite on the surface. Consequently the integral

dtu

is finite everywhere on t^he surface, and it is therefore an integi'al of the

first kind, say

V,dz

div

where Fj is the appropriate adjoint polynomial of order n — 3. Thus

or a special function is expressible as the quotient of one adjoint polynomial

of order n — Z by another*.

Consider, in particular, the function

_ ai<^i + a.^o + . . . + ciq<j)q

where a^,...,aq are arbitrary constants. Each of the quantities ^i,...,<^^

vanishes at the points Ci, ...,c,„. The only infinities of g^ are the zeros

of ^i, which are only 2p — 2 for finite values of z; and m of these 2p—2
zeros are not infinities of g^ , so that g^ has only 2p — 2 — m infinities, say

fCi, Ko, ... , A.'„i'

,

where m' = 2p—2- m. Now, by the Rieraann-Roch theorem of § 240, the

most general rational function, which has m' simple poles (and no others)

on the surface, contains m -p + q'+l arbitrary constants, where q' is the

number of the functions

</,,(^), (/>,(^), ...,cf>p{z)

(or the number of linear combinations of them), which vanish at all the

points Ji\, ko, ..., Av- The arbitrary constants in ^i are a^, ..., a,j, being

q in number ; hence

q^ni —p + q' + 1.

Now treat the m' points k^, ...,km- in the same way as the m points

Ci, ...,c„i have been treated; and let the analogous function be constructed.

Let
(f)^'

(z), . . . , <p\j' (z) be the q' quantities (being linear combinations of the

* Practically giveu by Eiemann, Ges. Werke, p. 111.
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functions c^j, <^,,), which vanish at each of the points ^'^,...,^v; the

analogous function is

/3,<^/(^)+...+/3,</)V(^)

which has only C],...,c„i (and not ki,...,k„,') for poles. It has in poles;

at each of these, q functions
(f)

(or linear combinations of them) vanish ; and

it contains q constants, so that, by another application of the Riemann-Roch

theorem, we have

q < m — p + q + 1 •

But m + 111 = 2p - 2, so that m — ;j + 1 + m' - p^\^0; that is, the preceding

relations between q and q are equalities, so that

q = in' —p-\-q +\,

q' = m-p + q+l,
and therefore*

2{q— q) = m' — m,

which is called the Brill-Nother Imv of reciprocUy. It is a complement of

the Riemann-Roch theorem.

Since q is actually equal to m —p + q-\-\, and does not merely possess

it for an upper limit, it follows that

aj<^i + ... +a,^</).^

is a special function, which contains the largest admissible number of

arbitrary constants.

Note. The preceding investigations deal solely with those rational functions on a

Riemann's surface which have their poles of the first order. When we have to deal with

functions which have poles of order higher than unity, the investigations are much more

complicated and really belong to the general theory of Abelian functions. They will be

found, together with references, in Baker's Abelian Functions, ch. in.

The simplest result is contained in the following example.

Ex. If a rational function is infinite at only a single point c on a Riemann surface

the order of its infinity being m, and if the point c is perfectly arbitrary, then m must be

greater than p. (Weierstrass.)

243. The existence of functions that are uniform on the surface and,

except at points where they have assigned algebraical infinities, are finite

and continuous, has now been proved ; we proceed, as in § 99, to shew how.

algebraical functions imply the existence of a fundamental equation, now to

be associated with the given surface.

The assigned algebraical infinities may be either at the branch-points,

or at ordinary points which are singularities only of the branch associated

with the sheet in which the ordinary points lie, or both at branch-points and

at ordinary points.

* Brill u. Nother, Math. Ann., t. vii, (1874), p. 283.
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Let the surface have n sheets; on the surface let the points d, c,, ..., c^

be ordinary infinities of orders q^, q.,, ..., qm respectively—we shall restrict

ourselves to the more special case in which q^, q^, ..., qm a-re finite integers,

thus excluding (merely for the present purpose) the case of isolated essential

singularities; and let the branch-points a^, Oa, ... be of orders p^, p^_, ... as

infinities* and of orders ?-i
— 1, ro — 1, ... as winding-points.

Let Wi, Wg, ..., Wn be the n values of the function for one and the same

arithmetical value of 2 ; and consider the function (lu — Wi) {w — w.^ ...{iv — Wn).

The coefficients of w are symmetric functions of the values Wj, ..., Wn of the

assigned function.

An ordinary point for all the branches iv is an ordinary point for each of

the coefficients.

An ordinary singularity of order q for any branch, which can occur only

for one branch, is an ordinary singularity of the same order for each of the

symmetric functions ; and therefore, merely on the score of all the ordinary

singularities, each of these symmetric functions can be expressed as a mero-

morphic function the denominator of which is the same polynomial function
m

of degree S qs in z.

s=l

In the vicinity of the branch-point a^, there are r^ branches obtained from

1

where P is finite when z = a^ by assigning to (z — a^Y' its r^ various values.

Then, as in § 99, the point a^ is no longer a branch-point of any of the

symmetric functions ; for some of the symmetric functions the point Ui

is an accidental singularity of order p^, but for no one of them is it a

singularity of higher order. Hence, merely on the score of the infinities at

branch -points, each of the symmetric functions can be expressed as a mero-

morphic function the denominator of which is the same polynomial function

of degi-ee 2pi in z.

No other points on the surface need be taken into account. If, then, P(z)

be the denominator of the coefficients arising through the isolated algebraical

m.

singularities, so that P(z) is of degree S qg in z, and if Q(z) be the de-
.9=1

nominator of the coefficients arising through the infinities at the branch-

points, then

P (z) Q (z) (W — Wj) {W — Wo) ... (to — W,,i)

* A branch-point a is said to be an infinity of order p and a winding-point of order r-1,

when the affected branches in its vicinity can be expressed in the form (z-a) ^P{(z-ay},
where P is finite when z = a.

F. F. 34
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is a rational integral function of w and z, say f(w, z), which is evidently

m
of degree n in w and of degree 2 g, + Sj) in z.

s=\

Its onl}' roots are tv = u\, ..., w„; that is, the function lu on the Riemann's

surface is determined as the root of the equation f{w, 2') = ; and therefore

the equation /(w, 2) = is a fundamental equation, to be associated with

the surface.

Ex. 1. Shew that a fundamental equation for a three-sheeted .surface, having e*""^' (for

«i = 0, 1, ..., 5) for branch-points each of the first order, is

v-i--iwz--ir-2 = Q;

and that a fundamental equation for a four-sheeted surface liaving the same branch-points

each of the same order is

w*-{<a + 3^/2 z^) vfl - 4^v'T2 ^^ wz= 3 + \/2z'^- i9\/4z\ (Thomaj.)

Every algebraic function on the surface requires its own fundamental

equation ; but, as the branch-points are the same for any surface, no

fundamental equation can be regarded as unique. Having now obtained

one fundamental equation for algebraic functions on the surface, all the

investigations in Chap. XVI, may be applied.

The preceding sketch, in §§ 240—243, of algebraic functions is intended only as an

introduction ; the developments are closely connected with the theory of Abelian functions

and of curves. The propositions actually given are based upon

Riemann, Theorie der Abel'schen Functionen, Ges. Werke, pp. 100— 102;

Roch, Creile, t. Ixiv, (1865), pp. 372—376;

Klein's Vorlesungen iiber die Theorie der elliptischen Modulfunctionen, (Fricke), vol. i,

pp. 540—549;

for fui-ther information reference should be made to the following sources:

—

Brill und Noether, Math. Ann., t. vii, (1874), pp. 269—310;

Lindemann, Untersuchungen iiber den Riemann-Roch'schen Satz, (Leipzig, Teubner,

1879), 40 pp.

;

Brill, Math. Ann., t. xxxi, (1888), pp. 374—409; ib., t. xxxvi, (1890), pp. 321—360;

Baker's treatise, quoted § 239 and at the end of § 242

;

• Appell and Goursat, Theorie des fonctions algehriques et de leurs integrates, (Paris,

Gauthier-Villars, 1895).

Ex. 2. Prove that the algebraic equation which subsists (§ 118) between two

functions m and v of a variable z, doubly- periodic in the same periods, is of class either

zero or unity ; that it is of class unity, if only one incongruent value of z correspond to

given values of u and v ; and that it is of class zero, if more than one incongruent value

of z correspond to given values of ?< and v. (Humbert, Giinther.)

Ex. 3. If between two uniform analytical functions P and (^, which have an isolated

point for their essential singularity, there exist an algebraic relation, then, when either

is regarded as the indei)endent variable, the connectivity of the Riemann's surface for

the representation of the other is not greater than three. (Picard.)
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244. We now pass to the consideration of another class of functions

associated with a Riemann's surface.

The classes of pseudo-periodic functions, which have been discussed,

originally occurred in connection with the functions that are doubly-periodic

functions of the first kind ; and it may, therefore, be expected that, in a

discussion of functions which are multiply-periodic, similar pseudo-periodic

functions will occur.

These functions, in particular such as are the generalisation of doubly-

periodic functions of the second kind, have been considered in great detail by

Appell*; they may be caWed factorial functions f.

But the essential difference between the former classes of functions and

the present class is that now the argument of the function is a variable of

position on the Riemann's surface and not, as before, an integral of the first

kind. It is only in subsequent developments of the theory of these functions

that the corresponding modification of argument takes place ; and a factorial

function then becomes a pseudo-periodic function of those integrals of the

first kind.

We consider a Riemann's surface of connectivity 2p + 1, reduced to simple

connectivity by 2p cross-cuts taken, as in § 181, to be a^, bi, C2 + a2, b^,...,

Cp + Op, bp. The functions already considered are such that their values

at points on opposite edges of a cross-cut differ by additive constants,

which are integral linear combinations of the cross-cut constants, necessarily

zero for the portions c in the case of all the functions. The values of the

constants for the cuts a and the cuts b depend upon the character of the

functions ; they are simultaneously zero only when the function is a uniform

function of position on the Riemann's surface, that is, is a rational function of

w and z when the surface is associated with the fundamental equation

F{w,z) = 0.

A factorial function is defined as a uniform function of position on the

resolved Riemann's surface, finite at the branch-points no one of which is

at infinity ; all its infinities are accidental singularities, so that it has no

logarithmic infinities : and at two (practically coincident) points on opposite

edges of a cross-cut the quotient of its values is independent of the point,

being a factor (or multiplier) that is the same along the cut for all parts

which can be reached without crossing another cut.

* " Snr les integrales des fonctions <^ multiplicateurs..." (Mem. Cour.), Acta. 3Iath., t. xiii,

(1890), 174 pp. This volume is prefaced by an interesting report, due to Hermite, on Appell's

memoir.

They are also discussed in Neumann's AbeVnchen Functionen, pp. 273—278; in Briot's Theorie

(It's fonctions Aheliennes; in a memoir by Appell, LioiivUle, 3'"" Ser., t. ix, (1883), pp. 5—24; and

they occur in a memoir by Prym, Crelle, t. Ixx, (1809), pp. 354—362.

t Fonctions a multiplicateurs, by Appell.

34—2
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Then /or any portion c the factor is unity, for any cut a it is the same along

its whole length, and for any cut b it is the same along its whole length.

In order to consider the effect of passage over another cross-cut on the con-

stant factor, we take the figures of §§ 196,

230. Where a^- and hr intersect we have

F{z,) = mrF {z^), Fiz,) = m/ F(z,)

;

F(z,) = nr'F(z,), F(z,) = 7irF{z,);

where m^, m/ ; w,., ??/ ; are the constants

for the portions of the cuts a^ and br.

From these equations it follows that

F{z,) = nrmr' F(Z2), Fig. 85.

and also =n,!mrF{z^,

so that «^?n/ = n/mr.

Again, where Cr+^ cuts br, we have

F (^/) = n/F (z,), F(O = nrF (z,),

so that, as F{z^) = F{z^) when the points are infinitely close together, we

have

F{z;) = '^F{z,),
nr

or the multiplier (say l,.^^) for Cr+i is Ir+i

whence

Hr

nir

Now tti is met only by b^ and by no cut c : so that »i, = m/. Hence Wj = n^,

and therefore L=l. Hence nu^m^; no = n/, and ^therefore ^3=1; and so

on, so that

lr+i = 1, my = nir, n/ = nr,

the results necessary to establish the proposition.

We shall therefore take the factor along a^ to be nir, and the factor along

br to be n^, for r=l,...,p: and, by reference to § 196, the function at the

positive edge is equal to the function at the negative edge multiplied by the

factor of the cut.

Before passing on to obtain expressions for factorial functions in terms

of functions already known, we may shew that all factorial functions with

assigned factors are of the form

<I> (z) R (w, z),

where <t> {z) is a factorial function with the assigned ftictors, and R {lu, z) is a

function of w and z, uniform on the Riemann's surface. For if ^ {z) and
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<t> (z) be factorial functions with the same factors, then "^ {z)-^<i> (z) has its

factors unity at all the cross-cuts, so that it is a uniform function of position

on the surface and is therefore* of the form R(w,z). Consequently, it is

sufficient at present to obtain some one factorial function Avith assigned factors

mj, ..., nip, ??i, ..., np.

Let Wi (z), W2 {z), ..., iVp {z) be the p normal functions of the first kind

connected with a Riemann's surface, with their periods as given in § 235.

Let TTi {z), instead of -arig of § 237, denote an elementary normal function

of the third kind, having logarithmic infinities at orj and ^^ such that, in the

vicinities of these points, the respective expressions for ttj {z) are

- log {z -a,) +F(z- Qti),

and +log(z-/3,)+ Q{z-/3,);

then the period of ttj (z) for the cross-cut a,, is zero, and the period for. the

cross-cut br is

2{iv,.(^,)-w,(a,)],

for r= 1, 2, ..., p. It therefore follows that ^i(z), where

is uniform on the resolved Riemann's surface : it has a single zero (of the first

order) at ^1 and a single accidental singularity (of the first order) at oti ; its

factor for the cross-cut a^ is unity, and its factor for the cross-cut br is

The function <f>i (z) may therefore be regarded as an element for the repre-

sentation of a factorial function.

Let 4> (z) be a factorial function on the Riemann's surface with given

multipliers m and n; and let it have a number q of zeros /Sj, /So, •••, ^q, each

of the first order, and the same number q of simple accidental singularities

«!, Oo, .-., oiq, each of the first order, and no others. Then <!>' (^)/0 (^r) has 2q

accidental singularities ; in the vicinity of the q points /3, it is of the form

and in the vicinity of the q points a, it is of the form

hence ^^^-tj.i.)

* It may be pointed out that this result is an illustration of the remark, at the beginning of

§ 244, that the factorial functions have a uniform function of position on the surface for their

argument and not the integrals of the first kind, of which that variable of position is a multiply-

periodic function.
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is finite in the vicinity of all the singularities of -^ . Thus

s = l

has no logarithmic infinities on the surface : neither log <J> (z) nor any one

of the functions tt (z) has infinities of any other kind ; and therefore the

foregoing function is finite everywhere on the surface. It is thus an integral

of the first kind ; so it is expressible in the form

2\i Wi (z) + 2A,oW2 {z)+ ...+ 2\pWp (z) + constant.

^ ,r«(5)+2 2 Afrtfjt(z)

Hence (i>(z) = Ae'=' *=^

where J. is a constant.

The function represented by the right-hand side evidently has the q

points /3 as simple zeros and the q points a as simple accidental infinities,

and no others. Higher order of a zero or an infinity is permitted by repeti-

Isions in the respective assigned series.

In order that it may acquire the factor lUr on passing from the negative

edge to the positive edge of the cross-cut a,., we have

rrir = e^ArT'
;

and that it may acquire the factor n,. in passing from the negative edge to

the positive edge of the cross-cut br, we have

2 2 !(tvO«)-«V(a8)!+ 2 2 \kBkr

The former equations determine the constants \r in the form

for r = 1, 2, ..., p ;
the latter equations then give

i [wr (13,) - Wr (a.)} = I log n,. - ^—• - (Bk, log Vlk),

s=l 'ZTTlk^l

for r = l, 2, ...,p.

Apparently, \r is determinate save as to an additive integer, say ili, ; and

the value of ^ log iir is determinate save as to an additive quantity, say Nriri,.

where Nr is an integer. The left-hand side of the derived set of equations

being definite, these integers iV,. and Mr must be subject to the equations

7riNr= S M.Bkr,
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for /• = !, 2, ..., p; and therefore, equating the real parts (§ 235), we have

i Mupkr = 0,

so that :£ 2 MkMrPkr = 0,
k=\ r=\

which, by § 235, can be satisfied only if all the integers Mr vanish and there-

fore also the integers Ny.

Hence when the foregoing equations connecting the quantities a, /3, log n,

log m are satisfied, as they must be, for one set of values of log n and log m,

that set may be taken as the definite set of values ; and the only way in

which variation can enter is through the multiplicity in value of the functions

Wi, ..., Wp, which may be supposed definitely assigned.

The expression for the function ^{z) is therefore

the q zeros ^ and the q simple poles a. being subject to the equations

a 1 P

2 [w, (yS,) - w, (a,)} = ^ log n,. - ,,—. S {Bkr log nik).

Corollary I. The function <l> (z) is a rational function of position on

the surface, that is, of w and z, if all the factors n and m be unity. Such a

function has been proved (§ 194) to have as many infinities as zeros; and

therefore integers Ni, ..., NJ, M^', ..., Mp exist such that, between the zeros and

the infinities of a rational function of lu and z, the p equations

S {lUr(^s)-lVr(as)}='7riNr'- I Mk'Bkr,
s= l A- = l

for r = l, 2, ..., p, subsist*.

The function <!> (z) then corresponds to a rational function, when regarded

as a product of simple factors, in the same way as the expression (§ 241)

in terms of normal elementary functions of the second kind corresponds

to the function, when regarded as a sum of simple fractions.

Corollary II. Every factorial function has as many zeros as it has

infinities.

For if a special function <J> {z), with the given factors and possessing q zeros

and q infinities, be formed, every other function with those factors is included

in the form
F{z) = <i>{z)R{w, z),

where R {w, z) is a rational function of w and z. But R {w, z) has as many

zeros as it has infinities ; and therefore the property holds of F {z).

* Neumann, p. 275.
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Further, it is easy to see that the equations of relation between the zeros,

the infinities and the multipliers are satisfied for F(2). For among the zeros

and the infinities of <1> (z), the relations

I [Wr (/3s) - Wr (««)} = Mog 71, - ^. ^{^kr log 7?!,)

are satisfied ; and among the zeros and the infinities of R (lu, z), the relations

S Wr (/S/) - Wr (a/) = TTiNr' - I {BurM^:)

are satisfied, where i\V and the coefficients M' are integers. Hence, among

the zeros and the infinities of F {z), the relations

S \iUr (zero) - w, (x )} = ^ (log n, + N; liri)- ^—. 2 [B^r (log m^ + ^Mk-rri)]

are satisfied, giving the same multipliers n,. and iiir as for the special function

^(4

Corollary III. It is possible to have factorial functions ivithout zeros

and therefore without infinities: hut the multipliers cannot he arhitrarily

assigned.

Such a function is evidently given by

derived from ^ {z) by dropping from the exponential the terms dependent

upon the functions ir {z). The relations between the factors are easily

obtained.

Note. The effect of the p> relations

S [Wr (^.,) - Wr {a,)] = h log Ur - ^-~. S (74r log mi),

subsisting between the factors, the zeros and the infinities of the factorial

function, varies according to the magnitude of q.

If q be equal to or be greater than p, it is evident that all the infinities a

and q—p of the zeros yS can be assumed at will and that the above relations

determine the p remaining zeros. The function therefore involves 2q —p
arbitrary elements, in addition to the unessential constant A.

In particular, when q is equal to p, the infinities a can be chosen at will

and the zeros /9 are then determined by the relations. It therefore appears

that a factorial function, ivhich has only p infinities, is determined hy its

infinities and its cross-cut factors.

When q is greater than p, say = p + r, then the q infinities and r zeros

may be chosen at will. By assigning various sets of r zeros with a given set

of infinities, various functions ^i{z), ^-iiz), ... will be obtained all having the
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same infinities and the same cross-cut factors. Let s such functions have

been obtained ; consider the function

^ (z) = /x,^, (z) + /x./^, (z)+ ... + fi.^s (z) •

it will evidently have the assigned infinities and the assigned cross-cut

factors. Then s — 1 ratios of the quantities fi can be chosen so as to cause

<J> (z) to acquire s — 1 arbitrary zeros. The greatest number of arbitrary

zeros that can be assigned to a function is r, which is therefore the greatest

value of s — 1. Hence it follows that r + 1 linearly independent factorial

functions ^i{z), ..., <$>;.+, (2) exist, having assigned cross-cut factors and j) + r

assigned infinities ; and every other factorial function with those infinities and

cross-cut factors can he expressed in the fo7^m

^X,<P, (Z) + fJifiy. (z)+...+ fXr+i^r+l (z),

u'here /x^, ..., yu^+i are constants whose ratios can he used to assign r arbitrary

zeros to the function.

These factorial functions are used by Appell to construct new classes of functions in a

manner similar to that in which Riemann constructs the Abelian transcendents. Their

properties are developed on the basis of algebraic functions ; but as only the introduction

to the theory can be given here, recourse must be had to Appell's interesting memoir,

already cited. See also Baker's Abelian Functions, ch. xiv.

BiRATioNAL Transformation.

245. It has already been pointed out (§ 193) that, if w' denote any

arbitrary rational function on a Riemann's surface (say ;S^) associated with the

relation f{to, z) = 0, then iv' satisfies an equation /i (lu', z) = 0. Similarly;

if / denote another rational function on >S', the elimination of w and z

between the three algebraical equations

w' = Ri i'w, z), z = R2 (w, z), f(w, z) = 0,

leads to another equation F {w ,
^') = 0.

Relations such as these, which express new variables w' and z as rational

functions of old variables w and z, are called transformations: sometimes

rational transformations. Transformations exist between two sets of variables,

each set being regarded as a pair of independent variables: with such

transformations (which include the well-known Cremona transformations) we

are not specially concerned, seeing that our variables w and z are connected

by a permanent equation /(w, ^) = 0. We have to deal* with rational

transformations between two equations such as

f{w,z) = 0, F(w',z') = 0.

* The difference is the same as the difference between the rational transformations of a plane

and the rational transformations of a curve in the plane; the former give rise to the latter,

though not to the whole of the latter.
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The degree of F in w' and z\ when the orders of w' and z' are known, can

be inferred. Suppose that /= is of degree m in w and of degree n in ^;

and let the orders of w' and z', defined by the equations

w' = Ri (w, z), z = Ro (w, z),

be m' and n' respectively. There are m positions on S which correspond to

any given value of w' ; each such position gives one value of z' ; and therefore

there are m values of z' for any given value of w'. Similarly, there are n'

values of w' for any given value of /. Accordingly, the equation

F(w', z') =

is of degi-ce n' in lu', and of degree in' in z'.

As the two rational functions of position on S, represented by iv' and z',

are quite unrestricted, it follows that we can obtain an unlimited number of

transformations of the equation /=0. We assume that /' is an irreducible

polynomial, that is, /cannot be resolved into factors rational in iv and z, so that

/= is an irreducible equation ; and we find that the equation F = 0, arising

out of any rational transformation of /'=0, is such that the polynomial F
either is irreducible or is some poiver of an irreducible poli/nomial. For let

Wo and Zq denote any values of w' and z', which satisfy F = 0; they arise

through some position iVq, Zq on S: and let W^ and Z, denote any other

values of w' and /, which satisfy F = 0; they arise through some position Wj,

Zi on S. (In each case, there may be more than one position.) We can pass

from Wo, z„ to w^, z^ on >Sf by a continuous path, which avoids all the branch-

points, and which does not pass through any infinity of zo' or z' ; during the

passage the values Wo and Zo change continuously into Wi and Zj. Hence

when we have constructed the Riemann's surface (say S') associated with

F =0, and take account of the dependence of iv' and / upon w and z that

leads to F= 0, it follows that, on this new surface *S", a continuous path exists

which joins the position Wo, Zq to the position TTj, Z^. Also these positions

are any positions on *S*', because the values Wo, Zo', TF,, Z, ; are any values

that satisfy F = 0; hence (§ 176, Ex. 5, Cor. II.) F either is an irreducible

polynomial or, if reducible, is some power of an irreducible polynomial.

Consider any position iv, z' on aS'. To the value of w , there correspond

m positions on *S', say

a,, a, ; a.„ a.r, ...; «,„-, fw/i

and to the value of /, there correspond n' positions on S, say

Then as w', z constitute a position on S>' , it follows that one (or more than

one) position on H must be common to the .two sets. First, let only one

position be common to the two sets. In that case, the simultaneous values

of w and z (which determine a position on >S") determine a single position on
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S, that is, give w and z uniquely. Now w and z, as function.s of position

on S', are manifestly not transcendental ; it has just been proved that they

are uniquely determined by w' and /; and they consequently are rational

functions of position on S', that is, we have

w = Si (w', z'), z = S., (w', z'), F(w', z) = 0,

where ^i and S., are rational functions. Moreover in this case, to a general

value of z', there correspond ii different positions on 8; each of these

determines a value of iv', so that there are n' values of w' ; these values are

all different, for taking the single value of / and the various values of w'

in turn, the n' positions in the second set must be exhausted, and no first

set has more than one point common with the second set. Hence to a

value of /, there correspond n different values of w'. Also F is either an

irreducible polynomial of degree n' in w', or it is a power of some irreducible

polynomial ; in the present case, therefore, F is irreducible. Accordingly,

the surfaces S and 8' associated with the two equations

f{w,z) = (d, F(w',2') =

are such that each position on one determines one (and only one) position

on the other ; and the variables of each position are expressible rationally in

terms of the other, in forms

lu' = Ri {lu, z)\ vj = 8i {w\ z')\

z' = i?2 (w, z))' 2 = 8-2 (w', z')\

where R^, R.,, 8^, 82 are rational functions. Such a transformation is called

birational.

Next, let I of the positions on 8 be common to the two sets, which give

the values of w' and z' respectively. To the position a^, a^ in the w'-set,

there corresponds a definite value of z' ; as I positions on 8 arise through

given values of w' and z', it follows that other ^ — 1 positions in the w'-set

give the same value of /. Let these be a,, cin; ... ; ai, ai; so that no other

position in the w'-BQt gives that value of /. Take now some other position

«;+!, rt;+i ; it gives a definite value to /, and there are other ^ — 1 positions,

say a;+2, ai^.2; ...; a.^, a<2,i\ which give that value. Proceeding in this way,

we see that m must be a multiple of I, say ni' = ia"l ; and that the one value

of lu , which gives m positions on 8, gives rise to m" values of z , each

of them repeated I times. Dealing similarly with the ^'-set, we see that n

is a multiple of I, say n = n"l ; and that the one value of /, which gives

n' positions on 8, gives rise to n" values of w', each of them repeated I times.

In this case, F is the ^th power of an irreducible polynomial F^ (w', z'), of

degree n" in iv' and degree m" in z' ; and the surfaces 8 and 8' associated

with the two equations

f(w, z) = 0, F, {w, z') =

are such that to one position on 8, there corresponds only a single position

on 8'
: while to one position on 8', there correspond I positions on 8. The
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transformation from f to F^ is rational ; it is not rational from F^ to /; that

is, the transformation is not birational.

Sometimes the results are expressed in geometrical language by saying

that, in the former case, there is a (1, 1) correspondence between the curves

f=^, F=0: and in the latter case a (1, I) correspondence between the

curves/= 0, Fi = 0. The whole subject of rational transformation is involved

in the theory of correspondence between curves.

Note 1. It has been proved that, in the equation F(w', z) = obtained

by eliminating w and 2 between

w' = i?i (w, 2), 2' = i^2 (w, 2)^ S\w, 2) = 0,

the polynomial F either is irreducible or it is some power of an irreducible

polynomial. Now when the values w' = R^, 2 = R2, are substituted in F=0,
the result is to give an equation in w, z only; so that, F{Ri, R.,) must have

f(tv, 2) as a factor. It is not possible to prove that i^ is a power of f(iv, 2),

because this is not always the case. As one example of this remark, let

tv = T,{W,Z), 2=T,(W,Z),

be substitutions, which leave w' and 2' unchanged in form, that is, give

w' = R, ( W, Z), 2' = R, ( W, Z)
;

the equation F {w, 2) = will be obtained in association with the relation

f{2\, To) = 0; and therefore F will contain / 1 Tj (w, 2), T.(w, 2)} as a factor.

Thus when we substitute for w' and 2' in F, the resulting expression may be

divisible by factors other than f{w, 2).

Note 2. When F is a power of a polynomial, some special process of the

elimination indicated on p. 537 may lead, not to F, but immediately to the

polynomial. The explanation is that the eliminant then obtained is not of

the proper degree in w and z' as required on p. 538. As a trivial example,

we see that the equations

lV^-\- 2^=\, tv' = lU^, 2 = Z\

lead at once to w' 4- / = 1, whereas F{w\ 2) is {iv' + 2 — !)•'.

Ex. ]. Consider the transformation of the equation %t}^+ z^= \ by the relations

kvf—wz, 2z'= aw-\-cz.

As regards the degrees of w' and z', each of these variables is infinite only when \z\,

and .so \u-\, is infinite. There are three such positions on the surface; at each of them,
7/'' is infinite of the second order, and z of the first order ; so that ni, the degree of w',

is 6 ; and n', the degree of z', is 3. Accordingly, the equation between iv' and z' must be

of degree 3 in w' and degree fi in z'.

We have
(aw- czf = 4 {z"- - kacw) = 4A2,

say ; so that

aiv=z'+ /\, cz= z' — A.
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Substituting in w^+ z^=l, we have

a3c3= c3 (/+ A)3+ a^ (z' - Af

= (<^+a^) (4z'-^ - Skaciv') z' + (c^ - a^) A (4/2 _ i-acw'),

and therefore

(c3 _ „3)2 (4/2 _ l-acivy (/-' - /-aci^;') - {ti^c^ - (c^+ «») (4s'2 - .3y{-«c?('') 2'}2= 0,

which is the equation F{iv',z') = 0. Manifestly F in irreducible, so that the transformation

is birational ; in fact,

_ , a3 c3 _ ((^! a3) (4g'3 _ skacw') z
'

aic-- + - (^ _ ^3) (42'2 _ ji-acw')

_ , a^c^ - (c3+ a^) (4/3 _ 3^«cm,'') a'

(c3 — a3) (4/2— kacw')

Further, the original relations, which express tv' and / in terms of the variables

w and z, are imchanged in form when the latter are subjected to the substitution

aa:= cZ, cz=aW;

and therefore, when the values of iv' and / are substituted in F{w', /)= 0, it is to

be expected that the resulting equation will give rise, not merely to vP+i^—l=0, but

also to its transformation by the foregoing substitution. We have

4 (2'2

_

kacw')= {aw — cz)-,

4/2 _ Jcacio' = a'^tv'^+ acivz+ c'^z'^,

4z'^ — 3kacw' = a^ lo^— acwz + c^z^,

2z' =aw + cz,

so that F=0, on multiplication by 4, becomes

(C3- a3)2 (a3^_C3 23)2 _/2a3c3_(c3+ a3) (0.3 ?03+ c323)}2= 0,

that is,

- 4C3 a3 (w3+ 23 _ 1 )
(a6 VjS+ C« ^3_ fl3 ^3) = Q.

The equation
?jr5+ s3_i=o

is the original equation; when subjected to the substitution aw= cZ, cz=aW, the other

factor in F is obtained, thus verifying the inference.

Fx. 2. Discuss in a similar manner the transformation of (i) the equation 'Xw+ fiz— 1=0
by the relations kw'= wz, 2z'= aw+ cz; (ii) the equation «-3^ ^3 _ 3^^^^-_ 1 by the relations

w'= w'^, z'=z^.

Ex. 3. Consider the transformation of the equation

av/i+ bwh+ z{z^+ 1)^= 0,

by the relations

,^2+1 y;
w = —— , / = - .

w z

The degrees of to' and / are equal to the respective numbers of their infinities. In the

vicinity of z=Q, take z=t^ ; then w<x.t, and w' x f~\ / qc ^-2
. t^^t is, the point counts 1

for lo' and 2 for /. In the vicinity of z=i, take z= i-\-( ; then wx f, so that w' is finite

and / is zero: the point counts for w' and for /. Likewise z——i (where iv=0)

counts for w' and for /. In the vicinity of 2 = x , take z=T^ ; then w x T", and ?// x y,

z' ^ T^ ; that is, the point counts 1 for w' and 2 for z'. Thus the degree of w is 2

and that of / is 4 ; the equation between lo' and z' must be of degree 4 in w' and degree 2

in/.
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Now we have
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where the quantities c are constant. Simihxrly, we have

Ur = CriVi + C,.oV., + . . . + CrpVp + C,', (v = 2, ..., p),

where also these quantities c are constant.

Now Wi, ..., Up are linearly independent, so that no relation

Kill I + KM., -f . . . + KpUp = K

Avith constant coefficients can exist ; hence P must be at least as large as p,
for otherwise determinantal elimination of the quantities v would lead to the

forbidden relation. Hence we have

p^P.

Beginning with the functions v^, ...,vp, and treating them in the same
way as «ti, ..., xi^ have been treated, we similarly obtain the result

P<V-

Combining the two relations, we have

p = P,

that is, the two surfaces are of the same genus.

Moreover, the argument shews that a function of the first kind for one

surface is transformed into a function of the first kind for the other surface •

and that the p normal functions of the first kind for two surfaces, which are

birationally transformable into one another, are connected by equations of the

form

Uy = Cr{l\ + Cy^Vo + . . . + C,.^;i)p + Cr ,

for ?' = 1, 2, ...,p, the determinant of the coefficients Cy being different from

zero.

Ex. Prove that a function of the second kind upon one of the surfaces is tran.sformed

into a function, also of the second kind, upon the other; and likewise for functions of the

third kind ; the surfaces being birationally transformable into one another.

Further, let f/^,, ..., Up denote the p adjoint polynomials of order n-3
(where/ is of degree n in w), which belong to the jo normal integrals of/ of

the first kind; and let Fj, ..., Vp denote the p adjoint polynomials of order

n - 3 (where F is of degree n in iv'), which belong to the p normal integrals

of F of the first kind. We have

8P^"'
div'

so that the above p relations between u and v give p differential relations of

the form

J7d2 -^ (c.^V, + c,.,K + ... + c^pVp),

dw dw
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satisfied in virtue of the birational transformation. Hence, when ji>>l, we
have

U. c.F, + .
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dependent variable is equal to ^ ; hence the new Riemann's surface is

/i-sheeted. As its genus is equal to p, its ramification is given by

Now when the branch-points and the branchings of a surface, of given genus

and given number of sheets, are assigned, the surface is definitely known as

(at the utmost) one of a limited number (§ 212 : footnote). The corresponding

equation is then known (§ 193) so that, as z is known, the dependent variable

can be regarded as determined by the assignment of the ramification : it

contains no independent arbitrary element.

We have 2/u. — _p + 1 disposable constants by which to meet the demands

of the ramification, which amount to 2/a + 2^ — 2 constants : hence there are

= 2//, + 2p — 2 — (2/x — 7> -t- 1), constants surviving, as undetermined by the

arbitrary elements in z . The transformation is, of course, definite ; and

therefore these 3/) — 3 quantities are determined by the first surface.

It therefore follows* that the class of equations, which are birationally

transformable into one another, are determined by 3jd — 3 quantities ; they

are called the class-moduli of the equations.

In this result, which is due to Riemann, one modification must be made,

as pointed out by Klein f. In the course of the proof, it was assumed that

all the 2fjL—p + l disposable constants could be used to determine 2fj, —]) + l

quantities connected with the ramification. As will be seen, a surface may

be transformable into itself by a birational transformation ; and it might

happen, in such a case, that the transformation contained arbitrary constants.

If p be the number of these arbitrary con.stants, then it follows that, in the

transformation under our earlier consideration, we cannot use more than

2fjL — jj + 1 — p of the arbitrary constants in / for the ramification of the

surface ; and therefore the number of class-moduli is

n-{2p,-p+i-p)

= Sp - 3 4- p.

As a matter of fact, p^O when 7? > 1 (§ 250); p = l when /)=1 (§ 248);

p = S when p = (§ 24-7) ; all of which results will be established later.

E-i: 1. Consider the equations

IV^= Zo (2, 1 ) = Zo

,

W'^ ((., = Ui ,

where Z^ is a sextic function of z, u^ is a quartic and u.^ is a quadratic in z'. Each of tlie

equations is of genus 2; and therefore it may he expected that, if they are birationally

* Eiemann, Ges. Werke, p. 118. It is assumed thiou^'bout tliat each equation is completely

general : it may happen that, for equations which are special in form, the number of class-moduli

is less than 'ip - 3.

t Veher Riemann's Theorie tier uhjchniische.n Functiomni, (Leipzi;,', Teubner, 1882), p. 6.5.

F. F. 35
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transf()rmal)le into one another, three ( = 3.2-3) relations among their constants will

be satisfied.

Integrals of the tir.st kind lielonging to the first equation are

and integrals of the first kind belonging to the second are

I

(«2«4)~- dz\ z' (;^2W4)~- f(^'-

As the equations are to be rationally transformable into one another, we have (§ 246)

Ze"- dz-=y{ii2Ui)~-dz' + 8z' (uoUi)'- dz,

zZf^dz= a {U2 «4)~^dz+ /3/ (
u., H4) " ^ dz',

and therefore

*
y + ^z''

Take w = vfu2K,

where A' is some function of z ; then

In other words, the effect of substituting {a + ^z')l{yvbz') for z in the sextic Zo must be to

give a multiple of the sextic u^Ui ; so that, taking

A'=e(y + S.')-^

where e is a constant, we have

Z^{a+ (iz\ y + &') = e-^H.,?^4.

In order that one sextic may be transformable into another by a substitution

z' -.l^a+jiz -.y + bz',

they must have their invariants the same .save a.s to a factor. The invariants of a sextic

are of degree 2, 4, 6, 10 (as well as one of degree 1.5, the square of which is expressible as

an integral function of the others); denoting them for Z^ by I^, li, /«, Iw, and for

u^Ui by J-i, Ji, Ja, 'Ao respectively, three relations as required are

In order to find the actual transformations, we compare the coefficients in

Z^ia+idz', y+8z') = e-ic.,th.

There are seven equations, each expressing some homogeneous combination of dimensions

six in a, i3, y, S iu terras of e^ and constants. The equations are equivalent to four

in virtue of the preceding three relations ; they therefore suffice for the determination

of a, /a, y, 8. The transformation thus is

_a + ^z' _ ev-i

which happens to Vje a Cremona transformation.

I'J.r. 2. Consider the birational transformations of the equation

where C is a quartic function of z.
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Let H, * denote the Hessian and the cubicovarijint of U respectively : /, J its quadrin-

varitint and its cubinvariant. Then

4.2= -im+ium-jm.
Take a new variable z such that

z'U+H=0;
then

dz _ 2*

dz U' '

and therefore

^ dz d^

r* (42'3_7s'_J)i"

Accordingly, the integral of the first kind, belonging to the equation

becomes an integral of the first kind, belonging to the equation

the equations of (birational) transformation being

U ,
4.

The integral of the first kind can be transformed slightly by writing

it becomes

J^ dC

where

A denoting the discriminant of the original quartic, viz. ^=P — ^~J'-. Thus

so that the integral of the first kind associated with the original equation becomes

a constant nudtiple of the integral of the first kind belonging to the equation

with which it is Vjirationally related.

In order to determine all the equations of the same class as vo^— U=0, it is clear that,

in each case, their integral of the first kind must be a constant multiple of

[
d-C

:

that is, the constant p is the (sole) classrmodulus. It manifestly is the single aUsolule

invariant possessed by the quartic ; and so we infer the result that the equations

w'=U{z,l), w'^'=Viz',l),

where U and V are quartic functions of z and /, are hirationally transformable into

one another, if the quartics have equal absolute invariants*.

* Heimite, Crclle, t. Hi, (1850), p. 8.

35—2
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lu imrticular, consider the equation

if it is to belong to the same class as 10^= U {z^ 1), its absolute invariant must be the same.

Now
7=^2 (1 + 14c+ c2), J=^t^(i + c)(l-34c+ c2), A= Jgc(l-c")*;

accordingly, the condition is that c satisfies the equation

(l + 14c+ c2)3 _P
108c (l-c)-*

~ A

As a very special case, we infer that the equations

W2= (l -^2) (1 _ (^j2)^
„n^ (1 - 2'2) {\-c^\

are birationally transformable into one another if

(1 + 14a+ d^f _ ( 1 + 1 4c 4- c'-y

a(l-a)* T(l - c)-*

The actual construction of the transformations is left as an exercise.

Ex. 3. Obtain Riemann's theorem as to the number of class-moduli of a class of

algebraic equations from a relation of the type

i;= aiMi + + a,,?<,, + /3,

which (§ 246) connects integrals of the first kind associated with equations that are

birationally transformable into one another. (Riemann.)

247. We proceed to the consideration of some properties of equations,

which are of genus or 1 ; these having been reserved for separate treat-

ment.

As regards equations /(w, 2^) = of genus zero*, the fundamental property

is that each of the variables can he expressed as a rational function of a single

jmrameter: when /= is interpreted as a curve^ it is said to be unicursal.

To prove this, take a polynomial U{iu, z), of degree m in w and z ; and make

it vanish at each of the multiple points of/=0, in such a way that the

point is of multiplicity X—l for f/ = 0, where \ is the multiplicity of the

point for/=0. Accordingly, in the intersections of /= 0, U=0, these

multiple points count for

S\ (\ - 1), = (n - 1) (n - 2) - 2jt)t,

intersections : that is, in the present case, they count for

n{n -3) + 2

injiersections ; and therefore the remaining number of points common to the

two curves is

nm - [n (n - 8) + 2}

= n{ni-v + 'A)-2.

* For a full (liscussion, see Clebsch, Crellc, t. Ixiv, (18(J5), pp. 43—65.

t See p. 524.
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Hence m must be greater* than n — 3 ; we take it equal to n — 2, so that the

number of other points is n — 2. We therefore assign n — S arbitrary points

on /= 0, and make our polynomial vanish at each of them, so that one point

is still left, and therefore one arbitrary element (it can only be a constant) is

still undetermined in U. Take two particular polynomials of degree ?i —

2

satisfying all these conditions, and let them be l\, Uo] any other polynomial

satisfying the conditions is of the form

and the value of /j, will be determined by making the curve pass through one

other point on /= 0. Between /= and ?7i + yu.t/2 = 0, eliminate z; the

eliminant is rational in iv and /x. The roots of the eliminant are the values

of w that belong to the multiple points of / in their proper multiplicity, the

n — 3 values of lu that belong to the assigned points, and one other. Removing
all the factors that belong to the multiple points and the assigned points, we
then have a linear equation which is rational in yu, : that is, 7V is expressible

as a rational function of /n. Similarly, z is expressible as a rational function

of the same quantity /j, ; and the proposition therefore is established.

Moreover, we have

that is, the argument /j, of these rational functions is expressible as a rational

function of w and z.

The degrees of the rational functions, which express iv and z in terms of /x,

are not greater than n. Let the expressions be

and denote by </)(/x) the greatest common measure of -^lifi) and 4>>(l^)- ^o\v

any straight line, say

Atv + Bz + C = 0,

cuts the curve /'= in n points; and therefore the equation

must give n values of fx, one for each point, that is, it must be of degree n.

Hence the degrees of

cannot be greater than n.

* This result is in accordance with § 205. For U is an adjoint polynomial ; the number of

adjoint polynomials, which are of degree n - 3, is ;;, viz., zero in the present case.
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Conversely, if the variables w and z of an equation /=0 are rationally

expressible in terms of an arbitrary parameter, the equation is of genus zero.

For if the genus were gi-eater than zero, an integral of the first kind, say

[Uiw,z)

diu

dz,

would exist which would be finite everywhere on the associated Riemann's

surface. Substituting for w and z their values in terms of fi, we should have

the integral

j
R (fi) dfi

(where R is a rational function) finite for all values of /j,—an impossible

result. Hence the genus of the equation must be zero.

Further, any curve {or equation) of genus zero can be birationally trans-

formed into any other curve {or equation) of genus zero by relations which

involve three arbitrary parameters. Let one of the equations be represented

by
lu = R^ {fx), z = Ro {p), fjL = R{w, z);

and the other by

^v' = S, {\), z = S, {\), \ = S («-', /) ;

where Ri, R.^, *S*i, *S^o, R, S are rational functions. In a birational transforma-

tion, one set of values of w and z determines one set of values of w' and z',

and vice versa ; therefore one value of //. determines one of \, and vice versa,

so that the relation between \ and fx is of the form

aX + b

f^ c\ + d

where a, b, c, d are arbitrary. This relation, containing the three arbitrary

parameters a : b : c : d, gives the birational transformation

„ faS+b\ p faS+b\
IV = Ri —

J , z = RJ --r
. ^ ;

\cS + dJ -\clS + d/'

, ., (b - dR\ , ^, (b- dR\

''='^^[7R^J' '=HcR-a)''

establishing the proposition.

It is an immediate corollary that any curve of genus zero can be biration-

ally transformed into itself by equations that contain three arbitrary parameters

;

thus the quantity p of p. 545 is 3 when p) = 0. If desired, the three parameters

can be determined so that any three assigned points correspond to three other

assigned points.
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Note. It may happen, in a particular instance, that the actual expressions

for w and z in terms of the parameter are obtained in a different manner, so

that

iu = R,{X), z = B.,(X),

but that X is not a rational function of w and z. Thus the possibilit}- could

arise from the preceding result by taking

where S is a rational function of X not of the form -•. we then should
cX + d

only have S{X) eqiial to a rational function of z. Such a representation,

which may be called sub-rational, is easily detected in fact, because the

equation

Aiv + Bz+ 0=0

then gives more than n values of X ; and it can be corrected in form by the

suitable inverse substitution, which can be obtained as follows*.

Suppose that, in the expressions

^ e,(X) ^ e,J^}

where the quantities 6^, 6.2, X\, Xi ai'e polynomials, s values of X, say Xj, X,, . . ., Xg,

correspond to given values of w and z : then the equations

E, (X) = e, (X) xiM - e, (xo xi (^) = 0,

E, (X) = e, (X) X.M - 0. (xo X. (^) = 0,

have the s roots X = Xi, Xo, ..., X,^ common. Also each of these roots is simple

for each of these equations ; because if any one were multiple, say, X-, for

E^ (X) = 0, then it would satisfy

so that

^/(X) ^ y/(X)

OAX) x^{X)'

when X = X]. The quantity \ would then satisfy an algebraic equation

the coefficients of which are non-parametric constants—a result obviously

excluded when \ (and so the other values of X„, ..., X«) are parametric. We
therefore can obtain the greatest common measure of ^i (X) and £'o(X) in the

form
(X-X,)(X-X,)...(X-X,)

= X' - /i,
X*-i

-f /i, x"-- - ....

Now not all the quantities /x can be absolute constants: some at any rate

must be a function of X,, say /Hy is such a function. But fXr is a symmetric

* Liiroth, Math. Ann., t. ix, (187C), pp. 163-105.
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function o( \, ..., \g, so that it does not change its value when X.., ...,Xs

are substituted for Xj ; hence it acquires only a single value for given values

of w and z. Moreover, to a given value of /x,. correspond s values of \ ; if one

of these be Xj, the others are X.,, ..., X«, because fx. is a symmetric function of

Xi, ..., Xg. Hence to a given value of fir, there correspond a single value

of lu and a single value of 2 : that is, when the equations

are transformed by the relation

/x = /ir(X),

the result is of the form

''^^XT^' ^=^777^' H-^KiiL^z).

Ex. 1. The equation*

{if- + (Sxij+ x'-f = 16a'3/ {Ayx - Zx - Zy+ 4)2

is of genus ; so that x aud y are rationally expressible in terms of a variable parameter.

To obtain their expressions, we notice that xy must be a perfect square ; so that, writing

xy= e'^, x+y=fi,
we have

and therefore

(
fj,+ 66f= l6d (1+0)-.

Hence 6 is a perfect square, say ^= X-; then

xy= \\ x+y = n= 4\-6\- + 4X^

Accordingly

= (4X - 8X2+ 4X^
j
(4X - 4X2 + 4X3)

= 16X2(1-X)2(1-X + X2),

• p
so that 1 — X + X2 must be a perfect square. Take X= --, so that P^— PQ+Q^ is a perfect

square. Tliis form will bo secured for P--PQ+ Q'\ ={P+wQ) (P+co^Q), where w is

a cube root of unity, by writing

P + (^(o = {a- co^f, P+ CM-= (« - w)-,

so that P=2a + a-, (^=\+2a, P- - P(J -^ Q^-= {\ +a + a-f : which gives

2H+a2 l-a2 l+a+ a2
y-x= ^

Also

hence

* It is one form of the modular equation in the cubic transformation in elliptic functions

;

Cayley, ColL Math. Papers, t. ix, p. 170.

•'=^T+2a
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It is clear that the line

gives rise to six vahies of a ; it cuts the original unicursal sextic in six points ; and
therefore the expressions are rational, not merely sub-rational. To express a in terms

of :i' and _y, let

U = 2/^+ ^^.¥ +^^
.

i.V7/ - 3^ - 3y+ 4
'

then

so that

/a(2 + a)V^

as may be verified directly by substituting the values of .v and ?/. Also

X ta(l-l-2a)J '

so that

Ux
,

= x-\-2ax-2a^,

from the value of x ; and therefore

Also

so that

accordingly

and therefore

\\x=%a{x-l) + 2a{\-a^).

U _ a{\+2a) '

4y~ 2+ a '

4?/ 2+ a''

(|-l)..= 2„(,.-l) + a(24-a)(l-|),

U

a2+ 2a ^+ .r=0.

'-¥

From the expression for -—
-, we have

4y

Subtract this equation from twice the preceding quadratic ; and we have

f-('-|)h--.V".
(-1 ^ *^

which, on substituting IGxi/ for U- when it occurs, leads to

_ 4x1/ -4x+ [/{l-i/)
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Ex. 2. Shew that the coordinates of the curve in the preceding example can be

rationally expressed in terms of an arbitrary parameter ^, by taking

^4 _ 6^2+ 43

as a value for X in the investigation. Obtain the relation between a and j3 : and thence

(or otherwise) shew that this representation is sub-rational.

Ex. 3. Discuss the curve represented by the equations

(X^+ lf XfX2+ l) ._. ^, ,

^=x*+3X^Ti ' "=xm::3X^Ti
• ^^"^"''-^

E.v. 4. Obtain relations of birational transformation which transform the unicursal

quartic

x-j/- - 2x1/ igx -f hy) + ax"^ + 2bxy + cy-=

into the circle .v-+y-= \.

248. Some of the simpler properties possessed by equations (or curves)

of genus unity* can be obtained similarly. In the first place, we have

Clebsch's theorem that the variables can he expressed as rational functions

of a parameter 6, and of ©- where is a polynomial of either the third or

the fourth degree in 6. To establish this result, we take an adjoint polynomial

U of order ?? — 2 in to and z, where /is oforder n ; we make it vanish at each

of the multiple points of/ to the multiplicity X — 1, when \ is the multiplicity

of the multiple point of /; and we make it pass through ?i — 2 arbitrarily

assigned points on /= 0. Then the number of remaining intersections of

U=0 and f=0 is

n(n-2)-(n-2)-S\(\-l).
But (§ 240) we have

XX{\-l) = (n-l){n-2)-2p
= n {n - 3),

in this case; and therefore the remaining number of points of intersection is

n (n - 2) - (n - 2) - n {n - 3), = 2.

Let Ui = 0,. U» = 0, be, any two curves satisfying all the conditions of U, as

regards its order, and its relations to the multiple points of / and the n — 2

arbitrarily selected points on/; then

where is arbitrary, is anotlier such curve. It cuts/= in two points, other

than the multiple jjoints and the assigned n — 2 points; hence, eliminating z

between
u, + eu, = o, /=o,

and removing from the eliminant the factors that correspond to the multiple

points and the assigned points, the remaining fiictor must give the values of w
f(M- the two points, that is, it is a quadratic in w. Hence we have

w = A+ B(^K

• Fur a full discussion, see Clebsch, CrcUe, t. Ixiv, (18(1')), jip. 210—270.
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where A and B are rational functions of" 6, anj;! contains no repeated factor.

Similarly, by eliminating w, we should have z= C + 2)0,2, where G and D are

rational functions of 6, and 0, contains no repeated factor. Substituting

these values of w and z in Ci+^p2=0, /=0, the equations are to be

satisfied; and therefore the radicals 0-, 0i- are the same. Thus we have

w = A+ B®i z=C+ Dek
Moreover

B •

the first represents ^ as a one-valued function of w and z ; the second, on

substitution of this value for 6, represents 0- as a one-valued function of w
and z. Hence, writing

e = z\ 0* = iv',

we have

results which shew that the equations

/=0, iu- = %{z),

are birationally related by the equations

w = A {z') + w'B (z'), z=C {z') + iv'D (z').

Now when two equations are birationally related, we know (§ 246) that their

genus is the same ; hence the genus of w'^ = © (/) must be unity. This can

be the case only if (z') is a cubic or a quartic polynomial in z' ; and there-

fore is a polynomial of either the third or the fourth degree in 6. The

proposition is established.

Such curves (or equations) are called hicursal by Cayley* ; they also are

sometimes called elliptic, because the equation tu'- = (/) is associated with

elliptic functions, an association that leads to another mode of expression,

as follows. If be of the third degree in 6, a linear transformation of the

form ^ = a + b6 changes into

4.^-' - g.^ - g,.

If be of the fourth degree in 6 and k be one of its roots, a transformation

1 1 <E>^

leads to an expression of the same kind, where 4> is of the third degree and

so can be taken (after the above) as 4<6^ — g.cfy — g^. Moreover, both of these

transformations are biratioi^al ; and neither of them affects the general

* Coll. Math. Paper.'', t. viii, p. IS].
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character of the expressions for w and z, which accordingly can be taken in

the form

w = A+ B^^K z=G+ L^K
where

ct> = 40'' - r/,<^ - g..;

A, B, C, D are rational functions <>f ^ ; and 0, O- are rational functions of w

and z. Now take 4> = i^ («), where a is a new parametric quantity ; then

<1>2 = ^y (a)_ and so

iv = A + B^y, z=C + 1)1^',

where A, B, G, and D are rational functions of ^{a). In other words, the

coordinates are expressible as uniform doubly-periodic functions of a single

parameter a; also ^J((x) and if>'(a) are rational functions of the coordinates.

This form leads to interesting applications of elliptic functions to curves

of genus unity, in particular, to plane nodeless cubics; these applications

must be sought in treatises on elliptic functions and treatises on geometry.

Ex. Shew that if the coordinates of a point on a curve are expressible as uniform

doubly-periodic functions of a single parameter, the genus of the curve cannot be greater

than unity. Is it necessarily equal to luiity, or can it be zero ?

As regards the degrees (in the parameter) of the various functions that

represent the coordinates, there is a difference of form, according as the

equation is of even or of odd degree. Let R denote the least common
multiple of the denominators (if any) of the rational functions A, B, C, D;
and let

P + Q<I)* S + T<D^

where P, Q, R, S, T are now rational polynomials in the parameter <^.

If the curve represented be of odd order 2//i + 1, the line

au^ + /S^ + 7 =

must cut it in 2ni+ 1 points; .so that the eipiation

(«P + ^S + yRy = (aQ + /3Ty (4c/)^ - g.,<}, - g,)

must give 2m + 1 values of
<f).

Hence, in the most general case, the degrees

of P, S, R are ni, and the degrees of Q, T are m— 1. Thus a curve, of order

2m 4- 1 and genus 1, is represented by

_ (<^, 1 )'" + (</), l)^»-^(t>^ _ ((^, l)'" + ( , l)'»-^4)^
""-

{<f>,iy»
'

'-
(</>,! )-

where ^ = '^4^' — g.<f>
—

g-i', of course, in i)articular instances, considerable

simplifications may occur.

If the curve represented be of even order 2//*, the line

aw + ^z -\->y =
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must cut it in 2m points; hence the equation

» (aP + ^S + yRf = (aQ + /STY (40^' - g,4> - g,)

must give 2m vahies of <^. Hence, in the most general case, the degrees of

P, S, R are m, and the degrees of Q, T are m — 2. Thus a curve, of order

2m and genus 1, is represented by

where <t> = 40'* — (/oc/) — ^^fs ; of course, in particular instances, considerable

simplifications may occur.

Ex. 1. The sextic equation

is of genus 1 ; express the variables x and y rationally in terms of a parameter and

tlio appropriate $^_ (Cayley.)

Ex. 2. Likewise express in that form the variables of the equations

,f^{x-a)^{x-hf,

y^={x-af{x-bf,

. y^={x—af{x— by,

y*= {x— a)3 (.t- - hy,

yi= {x-af{x-hf,
y^^{x— ay^{x-by,

y^={x— ay(.v-by{x- c)'^,

y*= {x- a)2 {x -bf {x - c)3,

y^= (.r - a)'^ {x — by(x— c)-,

respectively : all being of genus unity.

Ex. 3. Shew that the quartic equation

a {x^ +y^y+ bxy+ cx {\+y'^) + dy {\ + .r^) =

is of genus unity ; and express its variables algebraically in terms of a single parameter.

Note. It may happen (as for unicursal equations) that expressions of the variables

in a bicursal equation have been obtained, which are of the proper type but are of too

high degree : so that, in particular, <^ and <I>- are no longer one-valued rational functions

of w and z.

The representation of the variables can be modified, so that the new form shall satisfy

the conditions as to degree. A method of modification is given in the memoirs by Clebsch

and by Cayley, which have already been quoted.

As regards birational transformation of equations of genus unity into

one another, we infer, from Ex. 1, § 246, and from the fact that such an

equation is birationally transformable into lu'^ = (/), that such equations

are characterised by the possession of one invariant modulus. Considering

then the class of equations of genus unity that is determined by a modulus,

we investigate' the number of birational transformations of one curve into

another and, in particular, of one curve into itself
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We have already seen that birational transformations exist between any

curve of genus unity and the curve

lo'- = 'iz'-' - g.J - g.„

where gigf^ is a measure of the invariant modulus. In the first place,

there is an infinitude of birational transformations of this curve into itself

or, otherwise stated, there is a birational transformation of this curve into

itself containing an arbitrary parameter. The result can be seen intuitively

from the properties of the plane nodeless cubic. We take any point on it,

say A, depending upon an arbitrary parameter a, and through A draw any

straight line which will cut the cubic in two other points, say P and Q.

Then P and Q uniquely determine each other, that is, they are birationally

related ; the analytical expression of the relation contains a, which is an

arbitrary parameter.

The analytical expressions can be obtained simply as follows. Any iKant on the cubic

curve is given by s=p(a), iv = ^' {a), where a is arbitrary, say by ^, ^0' ; and any line

through it is given by

Where it cuts the cubic, we have

i/J -g2Z-g^=W + m{Z-ii))^

One root is, of course, Z— p ;
let the other two be z, z\ so that these are roots of the

quadratic

Hence

and therefore

which leads to

Also

which leads to

^Z^ +Z {\p - ??i2) + »i^p - 2mp' + -ip-i - (/2 = 0.

z+ z' = Ini- - p, 4zz' = ni^p -2mp' + 4^-' -
g.^

Azz'= 4p^z+z' + p)-2p''^^ + Ap-^-g,,

^4z^p+z (4p^-g.,) - 2wp' -g^p-^g^
A{z-pY

•

' ^ ^- ^ ^ 4(2-^^)3

The expressions for z' and //' constitute a birational transfonnation of the given equation

into itself, the transformation involving an ai'bitrary quantitv a through the functions

P{a),P'{a).

Simple forms can be obtained by assigning particular values to a. Thus writing

a= a>", SO that p= e2, P'= 0, the transformation is easily reduced to

z-e.2
'

(2-^2)'^ '

and .so for other cases.

Ex. 1. Indicate the relation of these results to the formula; of the addition-theorem

for Weierstrass's elliptic functions.
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Ex. 2. Obtain biratioiial transformations of the equations

(i) ifi+ z^= \,

(ii) ./;2=(l-,2)(l_,,2)^

such as to contain an arbitrary quantity and to transform the equations, each into itself.

Ex. .3. Prove that birational transformations of a plane cubic into itself exist

depending algebraically upon an arbitrary parameter 6 in the form

w'= y?i {^o, z, 6), z' = Ro, (w, z, 6\

such that, for a particular value of 6, the transformation becomes w'= w, z'= z.

(Appell.)

Returning now to the consideration of two equations of genus unity

with a common invariant raocluhas, let them have the form

The former can be birationally transformed into the curve

W' = 4'Z^ — g^z — r/.,,

with the common invariant modulus, by relations of the form

Wi = A{z) + wB {z), z, = C (z) + vjD (z)]

z = Ri{w^, z-^), w = E.2{wi, Zi)

The latter can be birationally transformed into the curve

also with the common invariant modulus, by relations

w., = E(Z)+ WF {Z\ z,= G(Z)+ WH (Z)
\

Z= Si {1U2, Z.2), W = S.2 {w2, Z2)

Now the curves

IV' = 4>z^ - g^z - gs, W^' = 4>Z^-g.,Z- g,,

(being one and the same), can be birationally transformed into one another

by relations that involve an arbitrary parameter, say in the form

w = P,(W, Z, a), z = F,{W, Z, a)]

W=Q,(w,z,a), Z=Q.,{iv,z,

Then the relations

w, = A {z) + wB {&), z, = C (z) + wD (z)]

w = P,(W,Z,a), z = PJW,Z,a)
Z=S,(w.„z.^, W^^.,{w.„z.^

express w, and z^ uniquely in terms of Wo, z^, and a. Also the relations

w, = E(Z)+ WF(Z), z, = G(Z)+ WH{Z)]

W=Q, (w, z, a), Z=Q, (w, z, a)

w = Ro (wi , z^), z = Ri (w, , z^)
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express w.^ and Zo uniquely in terms of Wj, z^, and a. The relations therefore

express a birational transformation, and they contain an arbitrary constant

;

hence we have the theorem: An equation, of genus unity, is hiratiunally

related to any other equation, of genus unity and the same invariant modulus,

by equations which involve an arbitrary constant.

Also we infer, as an immediate corollary, that any equation of genus

unity admits an infinitude of birational transformations into itself] the

equations of transformation involve" an arbitrary parameter algebraically.

Hence, when p = l, the number p of p. 545 is unity.

We have seen that, in a birational transformation, an integral of the first

kind belonging to one equation is transformed into an integral of the

first kind belonging to the other. When the genus is unity, each equation

possesses only a single integral of the first kind ; and denoting it by v

for the equation f{u}, z) = 0, and by u for the transformed equation

w'-i = 4ir'=* - gj -
g-i, we have (§ 240)

V = a u + b,

where a and b are constants. But u is the argument of the doubly-periodic

functions in terms of which w' and z' are expressed. Hence v is effectively

that argument ; in other words, the integral of the first kind associated with

an equation of genus unity is effectively the argument of the doubly-periodic

functions in terms of which the variables are expressible.

In connection with the preceding discussion, reference may be made to Picard* who

uses the results to prove, among other theorems, that when a differential equation

f{w, w') = has integrals w which are uniform functions of z, these integrals are either

(i) doubly-periodic functions of' z ; or (ii) rational functions of e'^'^, where k is a constant,

that is, are simply-periodic functions of 2 ; or (iii) rational functions of z. (See also, on

this matter, the Note appended supra at the end of the foregoing chapter x.)

Consider also, in this connection, the birational transformations of the

equation /(w, z) = into itself, say into f{tv', z) = 0. After the preceding

result, we must have some relation

V {w', z) = av {%u, z) + b,

where a and b are constants. The integral of the first kind connected

with an equation of genus unity possesses two distinct periods ; let them

be denoted by Wj, w.^. It is clear that when v{w, z) increases by a period,

then v{w', z') also changes by some period: and likewise for v{w, z),

when V (iv', z') increases by a period. Hence we have

Xo)i -I- /itWy = «&>I , ^'<Wl + '^'<^2 = f'^2)

from the first of these results, \, /x, \', pi being integers: and

Q), = a (pwi -h cr<w..), «o = a {pcOy + cr'w.j),

* Traitr d'Auali/itc, t. iii, (190.S), ch. iv.
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from the second, p, a, p, a being integers. Denoting Xpf — X'/x by A and

pa' — pa by A' the first two equations give*

Awj = a {jjifo^ — /LiWo), Aft). = a (— X'wy + X-fw.j)-

When these are compared with the second two equations, we have

Ub 11 — \ \ , ,

^ ftji
— ^ ftjo = p(o^ + au>.>, -^ &)i + -^ &)o = p &)i + o- 0)2.

Now the ratio toi : <0o is not entirely real (§ 231) ; hence

11 — /A — A- , \ ,

^ = P' -A- = ^' -A- = ^' A^'"'

and therefore

AA'= ].

Now A and A' are integers : hence each of them is 1 or is — 1, that is,

A = ± 1.

Also, let n denote the ratio (Oo : co^, so that we have

p^a + x'^^
p,D. + X

that is, '

p,n'+(x-p.')n-x' =^0,

a relation which either is an identity or is an equation satisfied by 12.

If the relation is an identity, then

^ = 0, X' = 0, \ = p.

Since \p,' — X'p = ± 1, we have \ = p' = ±1 (or ± i, but these values are to be

excluded because X and pf are integers); also a=\, a = p,', that is,

a = ± 1.

Hence we have
V {w', z')= ± V (tu, z) + h.

If the relation is an equation, then the value of O may not be entirely

real ; consequently

(X - p'f + 4\> < 0,

that is,

(X + pff < 4A,

so that A, which is either +1 or — 1, must now be 4- 1 ; and the possible

values of \ + p are 0, 1, — 1. Also

/x'-X+{(X + /x')^-4Ai^

^p '

* It is assumed that A is not zero. If A were zero, so that \'—k\, /u.'=A>, where k is real,

we should have (on dividing one equation by the other)

^_VwH-/w2_tJ2

which would make the ratio of the periods real ; this (§ 231) is impossible.

F. F. 36
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which is a non-parametric constant ; so that this case cannot occur if the

invariant moduhis of the equation (which is a transcendental function of O)

is parametric. Even in those cases where the invariant moduhis has an

appropriate constant value, we have, on eliminating co^ and w., between

Xcoi + fxu).2 = ucoi, \'u>i + /j.'w.2 = a(i).2,

an equation

{\ - a) (fjb'
- a) - X'fjL = 0,

that is,

a'-a(X + /j,')+l=0.

The possible values of X + Z being 0, \, -1, the corresponding values of

a are given by

a^ +1 = 0, a--a+l= 0, a- + a+l = 0,

respectivel3\

In every instance, the constant a is determinate : and all the conditions

are satisfied when the constant b is left arbitrary. Moreover the relations

have arisen in connection with the birational transformation of the curve

into itself; and we therefore infer the theorem that the birational trans-

formations of a curve of genus unity into itself can be represented by

V (w', z') = ± V (w, z) + h,

where h is an arbitrary constant: they obviously constitute the simple

infinitude (p. 560) of birational transformations. The cases, which corre-

spond to a- + 1 = 0, a- - a + 1 = 0, a- + a + 1 = 0, are each of them extremely

special.

249. As regards equations (or curves) of genus two, the method adopted

for equations of genus zero or unity can be applied, if we begin with adjoint

polynomials of order ?i - 8 instead of with those of order n — 2.

It is known that, for equations of genus two, there are two distinct

integrals of the first kind : and each of them determines an adjoint polynomial

of order n - 3. Let these be denoted by IT, {w, z) and Uo {w, z)
;
then as each

of them vanishes to multiplicity A. - 1 at a multiple point of/ which is of

iiiultii)licity \, the polynomial

also vanishes to that multiplicity, so that, among the intersections of/=0

and Ui + 6U.> = 0, such a multiple point counts for \(\-l) intersections.

Hence the number of intersections of/= and U, +6U., = 0, other than the

multiple points of/, is

= n(»-8)-S\(X-l)
= nin--A)-{(n-l)(v-2)-4>}

in tlu; jjresent case, that is, the number is 2. Eliminate z between the two

equations, and remove from the resulting equation in iv the factors which
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correspond to the multiple points of/= 0; the result is a quadratic in w, the

coefficients of which are rational functions of 6, and the roots of which are

the values of w for the remaining two points of intersection. They are

where A, B, S are rational functions, © having no repeated foctor. Proceed-

ing similarly, we find

2 = C + DW^-,

w^here C, D, 0' are rational functions; and substituting in the equation /=0,

we have ©"^ = ©'-
, or the variables can be represented in the form

w = A+B&K z=G+D%^-,

where A, B, G, D,% are rational functions of the parameter 6. Moreover

a U,{w,z)

U-2 {w, z)

©* w — A
B '

the first of these expresses 6 as a rational function of w and z ; the second, on

the substitution of this expression for 6, expresses also ©2 as a rational

function of lu and z. There is therefore a birational transformation between

the curves

f{iu,z)=0, w'2 = ©(/);

and the curves are therefore of the same genus, viz. 2, the genus of/. Hence

©(2') is of degree either five or six (Ex. 2, § 178); and therefore ©, as a

polynomial in 6, is of degree either five or six. It therefore appears that

the variables in an equation of genus 2 are expressible as rational functions

of 6 and of the radical ©-, luhere © is a polynomial in 6 of the fifth or

the sixth degree.

When © is a sextic which (as has been seen) has no repeated factor, it is

of the form

{e-a)(e -b){e -c)(d -d)(e -e)(e -f).
Take

(a-b){a-c)
tf — a = r-j r-j ,

a — c + (b — c)(f)

which determines a birational transformation ; then <l> is a constant multiple

of
(f)

{1 - 4)) {I - K(f>) (l - X(j)) {I - ficf)) and, in the circumstances, can be

taken as equal to this quantity.

36—2
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When (^ is a quintic which (as has been seen) has no repeated factor,

it is of the form
(0_a)(O-h)(e- c) (6 -d)(d- e).

Take
6 — a=^ — (a — h)<f>,

which determines a birational transformation : then, as in the preceding- case,

<I> can be taken as ecjiial to

The representation of the coordinates in either case becomes

w = E+F^K z=G + H^\

where E, F, G, H are rational functions of
(f),

and

To deterjnine the degrees of these rational functions, let T be the least

common multiple of their denominators (if any), so that, say,

P + Q^^ R + *SfO^

The line

aiv + /92^ + 7 =

must cut the curve in a number of points ecpial to its order, and therefore

the equation
(aP + ^R + ryTf = {aQ + ^Sf 4>

must determine the same number of values of (j).

If the equation (or curve) /= be of odd order 2m + 1, then P, R, T may

be of degree m, and Q, S may be of degree m — 2; so that the representation

w =

If the equation (or curve) be of even order 27n, then P, R, T may be of

degree m, and Q, S may be of degree m - 3 ; so that the representation is

_ ((f), l)"^ + ((^, l)^^-^4)^ _ (<^, !)'» + ((^,
1')'"-^ <I>^

(c^, ])"' ' ^~ (^ViV"

Note 1. The three constants k, X, /x in

W" = <J> (z)

determine the three class-moduli, which (p. 545) every ecjuation of genus 2

conserves as invariants under birational transformation.

Note 2. It was proved (Ex. 1, § 246) that the equations
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where Uo, u^ are a quadratic and a quartic, are birationally transformable into

one another, when they have their class-moduli the same. Similarly, the

equations

are birationally transformable into one another with similar limitations

:

where, in each case, neither u.^ nor u^ has a repeated factor. Now

is geometrically interpretable as a quartic curve : owing to the forms of v^

and Ui, the curve has only one double point*, as ought to be the case,

because its genus is 2. Hence any plane curve of genus 2 is birationally

transformable into a plane quartic having only one double point.

Note 3. It might be imagined that a similar result would hold for p = 8

and for ^j > 3 : but this is not the case.

In the first place, the argument would not apply. It is true that there

are p adjoint polynomials of order ?i — 3, so that

would be the general equation of a curve of order n — 3, vanishing to the

proper order at the multiple points of /. But the remaining number of

points of intersection is 2p -2; and we should then (if the earlier process

be adopted) have an equation of degree 2j9 - 2 to solve, its coefficients being

rational functions of ^ - 1 parameters.

In the second place, if a curve of genus 3 be birationally related to

yj'- = / (1 - z') (1 - K,Z') (1 - K^Z') (1 - K:,Z') (1 - K,z') (1 - /Cg/),

it manifestly can have only 5 invariant moduli, to determine the five

quantities k. As a curve of genus 3 in general has 6 (=3.3-3) such

moduli, it follows that the preceding curve is not general. This argument

applies, a fortiori, when the genus of a curve is greater than 3.

There are curves of genus p, which are birationally related to

W'-=Z'(1 -Z'){1 - KiZ') ...(1 - K.p^i2');

but they are not general, for they have only 2jd — 1 moduli instead of

3;) — 3. Such curves are often called hyperelliptic.

It thus appears that, so far as concerns the representation of the variables

of an equation in a form that is birational, there is a fundamental distinction

between the cases p < 3, p ^ 3. It is also found (though this is beyond the

range of these present investigations) that there is a fundamental distinction

between the properties of functions associated with an equation of genus less

than three and those associated with an equation of genus equal to, or greater

than, three.

* The double point is at infinity.
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250. We have seen that, in the case of an equation of genus zero, there

is a triple infinitude of birational transformations of the equation into itself

(§ 247); and that, in the case of an equation of genus unity, there is a single

infinitude of similar transformations (§ 248) : the infinitude, in each case,

arising through the existence of arbitrary constants in the relations of

transformation. For equations of genus greater than unity, we have the

theorem that the number of birational transformations of an equation of genus

greater than unity into itself is limited. Schwarz* first proved that such a

birational transformation cannot exist involving an arbitrary parameter, so

that there cannot be a continuous infinitude of such'transformations ; Kleinf

first stated that there could not be a discrete infinitude of such transforma-

tions, that is, not an infinitude of particular transformations ; and Hurwitz:|:

obtained 84 {p - 1) as the upper limit of the number. The first two of these

results can be established by the following argument, due to Picard§: for the

third, reference can be made to Hurwitz's memoir.

It was proved that, when a birational transformation is efiected iipon an

equation of genus p, so that it gives another equation also of genus p, the

integrals of the first order associated with one equation are linearly express-

ible in terms of those associated with the other. Let u^, ..., Up denote the

normal elementary integrals of the first order associated with f{w, z) = f);

and let u^', ...,Up denote those associated with f(w',z') = 0, a birational

transformation of / into itself. Then we have p equations of the form

II r = /I'n'^'i + l^n'^k + . . . + k,.pUj, + hy,

where the quantities k and h are constants (§ 246).

The constants k depend only upon the periods. For let the point w, z

move on the Riemann surface from one edge of the cross-cut a^ to the same

point on the opposite edge : then the point w' , z' describes a closed irreducible

cycle on its surface. Let flV.s denote the period for m/, which is a combina-

tion of the periods of the normal integrals with integers for coefficients : we

therefore (§ 235) have
i^'/-,« = k,.^fi7ri,

for all values r, s = 1, 2, ..., p.

Let U^(w,z), U.^itu, z), ..., U'p(w, z) denote the adjoint polynomials of

order n — 8 arising through the normal integrals : then differentiating the

above relation, we have

dv,.' = kridui + /iVof/i/o + . . . + krpdup,
,

* Crelle, t. Ixxxvii, (1879), pp. 139—145.

t In a letter (dated 1882) to Poincar^, quoted Acta Math., t. vii, (1885), p. 10.

+ Math. Ann., t. xli, (1893), p. 424; see also a memoir by him, Math. Ami., t. xxxii, (1888),

pp. 290—308.

§ Cours d^Anab/se, t. ii, p. 480.
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that IS,

Ur (lu', z) -^. = {A-Vi ^x (w, z) + kr., U. (lu, z)+ ... + k,p Up {w, z)] ^.

.

dw' dw

This holds for all the values 1, 2, ..., p, and (by hypothesis) ja > 1. Taking

the relation for r= 1, 2, and dividing, we find

U^ (w', z) _ h^ Ui (w, z) + k^2 U.2(w, z)+ ... + k^p Up (w, z)

Ui {lU, Z)
~"

^^l^ CTi {W, z) + Z^ia f/o {W, z) + . . . + k^p Up {W, Z)
'

which, in connection with

f{tu\z) = 0, t\w,z) = 0,

serves to define the birational transformation of f into itself

As the constants k depend only upon the moduli at the cross-cuts of the

Riemanns surface, so that they are pure constants and are not parametric, it

follows that no arbitrary constant can occur in the equations of the birational

transformation. This is Schwarz's result.

Any birational transformation of /'= into itself leads to a relation (or to

several relations) between the adjoint polynomials of the foregoing type ; and

such a relation may be regarded as the initial form of the birational trans-

formation. In order that the relations may exist, the constants k must

satisfy equations which clearly are algebraical in form. If these equations

do not determine the constants k, then one or more of them would be

arbitrary ; and then the birational transformation would involve an arbitrary

constant, contrary to Schwarz's result. The constants k must then be

determinate, manifestly by a finite number of algebraical equations. Hence

there is a limited number of solutions ; accordingly, as each solution deter-

mines a birational transformation, there is only a limited number of birational

transformations, distinct from one another. This is Klein's result.

The preceding argument is valid, only if p ^ 2. The results are known

not to hold when ^j < 2.

For various properties (such as the periodicity for repeated application) of the birational

transformations of an equation of genus greater than unity into itself, see Hurwitz's

memoirs quoted on p. 566; also Baker's Abelian Functions, ch. xxi.

251. The assignment by Riemann (§ 247) of a class of equations, as

constituted by those of the same genus birationally transformable into

one another, suggests the desirability of reserving some form of equation

of that genus as a normal form (or normal curve). When p = 0, a, normal

form is superfluous; when p = l, the normal form can clearly be taken to be

the nodeless cubic (§ 249) ; when p = 2, the normal form can clearly be taken

to be the uninodal quartic (§ 250) ; and we therefore are concerned with the

cases, where p is equal to 3 or is greater than 3.
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Denoting the jj functions, which arise as the derivatives of the p normal

elementary integrals of the first kind, by <^i, ..., c^p, and the respective

adjoint polynomials of order n-3 by U^, ..., Up, consider any linear

combination
p
:£ CrUr,

where the coefficients c are arbitrary. Choose p — S arbitrary places on

the surface, independent of one another, and make the preceding combined

polynomial vanish at each of them : then there are ^9 — 3 relations established

among the coefficients c, and the curve

i CrUr=0

becomes effectively

where a and /3 are arbitrar}^ and Q^, Q.^, Q^ are definite adjoint polynomials

of order n — 3, each of which vanishes at the p — 3 arbitrarily assigned

positions on the surftice. Now let

, ^ Q2 (w, z) , _ Qs {w, z)

Qi (w, z)

'

Qi (w, z)

'

These equations determine a rational transformation of the surface

;

to every point on the old surface corresponds only a single point of the new

surface. In order that the transformation may be birational, then to any

point on the new surface must correspond only a single point on the old.

If this is not the case, choose an arbitrary point on the new surface ; and

let at least two points on the old, say iVq, Zq\ w^, z^; correspond to it. Then

Qo(wo, ^0) ^ Q^wi , z^ )

^

Qi(Wo,Z,) Qj(Wi,Z,)\

lOw among: the

Qx{W,„Z^) Q,(Wi, Z,)j

choose those which pass through the point w^, z^: so that a single relation

is established between .a and ^ : and there is a single infinitude of such

curves. But on account of the preceding relations, each such curve passes

through the point Wj, z^ ; and therefore on the original surface, the arbitrarj^

point Wo, Zo determines (on the present hypothesis) at least one other point

tUi, z^.

In general, this is not the case : that is to say, an arbitrary point

on a quite general Riemann's surface determines no other position on

that surface. Accordingly, m general, only a single point on the old

surface corresponds to an arbitrarily^ assigned point on the new surface

;

and the transformation is tlicn bii-ational.
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Let f{w, z) = 0, F {iv', z') = 0, be the old and the new equations (or

curves) respectively ; as / is of genus ]), so F also is of genus p. The

degree of F is given by the number of zeros possessed by the linear

function

Xz' + [xic + V,

that is, b}- the function

\ Qg (w, z)->rixQ.i (w, 2) + vQi (w, z)

Qy (W, Z)

This is a rational function on the original Riemann's surface : and it

consequently has as many poles as it has zeros. Its poles are the zeros

of Qi{vj,z\ which are 2j3 - 2 in number (§ 241); but of these, p-3 are^

common to Qi, Qa, Qz, corresponding to the jo - 3 arbitrary assigned places

where Qn Q2, Qz vanish, so that these p — 3 zeros of Qj are not poles of

the function. There remain 2jj - 2 - (p - 3), =^j -t- 1, poles; and therefore

the degree of i^ is p+\.

Accordingly, we may take as the normal equivalent of a quite general

equation, which is of genus p^S, an equation of degree p + 1.

Ex. Prove that, if all the multiple points of the normal equation are merely double

points, their number is ^jo(^-3).

Manifestly, these arise as solutions of the equations

for special (and not arbitrary) positions.

One obvious exception to the general argument arises in the case of

the hyperelliptic equations, of the form

tu- = Zop+-i , w- = Z.p+.2,

which are of genus j)- Each of the quantities Q is then a polynomial in z of

degree < ^; — 1 ; and if

Q, + «a. + ^Q,

vanishes for z = z,, z.,, ..., Zp^^, it vanishes at 2 (p - 3) places on the surface,

instead of onl^- at p - 3. If the relation between a and /3 is chosen so

as to make the polynomial vanish at one other, say at w = 7), z = ^, then it

vanishes also at the (distinct) place w = - ij, z = ^. The preceding theorem

therefore does not apply to hyperelliptic equations*.

252. One of the most important instances of birational transformation

arises when an algebraical equation f{w, z) = is made to correspond

birationally with another algebraical equation having multiple points of only

the simplest character or, in geometrical language, when any plane

* The theorem was first enunciated by Clebsch u. Gordan, Theorie d. AbeVschen Functionev,

p. 65. Picard (Course d'Aiiabjsc, t. ii, p. 488) shews that the hyperelliptic curves are the only

exception to the theorem.
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algebraical curve is transformed birationally into another plane algebraical

curve the only multiple points of which are double points with distinct

tangents*.

Let a denote any value of z, and let a denote one of the roots of the

equation /(a, a) = 0. If a is a simple root of the equation, then we know

(Chap. VIII.) that a branch of the algebraical function exists given by

II' — a = a^ (z — a) + a.^ {z — aY 4- . .
.

,

where the function on the right-hand side is a uniform function of ^ — a, and

only a finite number of the initial coefficients a,, a^, ... can be zero. If a be

a root of any multiplicity, then the corresponding roots can be arranged

m systems ; and each system can be expressed in the form

z-a = ^i, w-a = ^PP (^),

where P is a regular function of t, that does not vanish when ^=0, and

is such that the common factor (if there be any common factor otherthan

unity) of the indices in ^^ P (f ) is not a factor of q. Also p and q are finite

positive integers, the point being multiple when neither of them is unity.

We have at once
V 1

IV -a={z-a)'i p [i^z - ay],

z-a = {w - a)P P, {{w -ay\;

and even if q and j) have a common factor, still the restriction on the form of

P makes p the least common multiple of the denominators in the indices

which occur in the expansion oi z — a. Thus there are q circulating values

of w — a in the vicinity of ^ - a ; there are p circulating values of z — a in

the vicinity of w - a.

Such a system is called a ct/de ; the smaller of the integers p and q

is called its degree ; the combination a, a. is called its origin. When both

p and q are unity, the cycle is called linear. The object of the trans-

formations is to replace cycles of any degree by linear cycles.

1
If a be infinite, we replace w — ol by — ; likewise,
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and we assume expansions of the form

where p, a, r are integers ; R, S, T denote regular functions of ^ which

do not vanish when ^=0, and are such that a factor (if any, other than 1)

common to all the indices in any one of the expansions for X, Y, Z is not

common to all the indices in any other of those expansions.

The axes of the homogeneous variables can be transformed without

affecting the degree of the cycle : or, in other words, the variables z and w
can be subjected to a homographic substitution without atfecting that

y degree. For suppose such a substitution changes the origin from a', a'

to a, a : then

, , a, (z — a) + hi (w — a)
, , cu iz — a) 4- b., (w - a)

Z - a = — ^ ;
^^

r =-
, W — a = -^^-^

,
" r v ,

a.^{z — a) + bs{tu — a) + l a.i{z — a) + b.i{w — a) + 1

so that writing z — a= ^'^, w — a= ^p P (0^ either z' — a or lu' — a begins

with a power of f equal to the degree of the cycle and neither of them

begins with a lower power. Accordingly, we can take linear combinations

of X, Y, Z above, so as to secure that p, a, t are unequal, without affecting

the degree of the cycle.

X Y
When the cycle has a finite origin as above, viz. z - a= -y , lu — ci. = -y ,

then p>T, cr > T ; the degree of the cycle is the smaller of the two integers

p — T, cr — T. The reason for the introduction of homogeneous coordinates is

to treat cycles by one and the same method, whether their origin be in the

finite part of the plane or at infinity. Accordingly, we assume that the three

integers p, cr, r are different from one another and are in decreasing order

:

then cr — T is the degree of the cycle. The number p — a is the class of

the cycle.

When the origin of a cycle is at infinity, the expression of the branches in the cycle is

of the form

y=a(yX(l+aiX <1 +
,

when .T has infinite values : there are three cases, according as 3/ is infinite, finite, or zero,

at the origin.

For the first case, when og is not zero, if

X Y

we take

If q >/», the three indices in decreasing order are q^ q-p, 0: so that q-p is the degree of

the cycle. If q=p, the degree depends upon the lowest index in Y—a^X, being equal

to that index if less than q. If 5-< />, the decreasing order of the indices is q, 0, q —p :

so that p — q is the degree of the cycle.
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I

For the second case, we ha^-e

where / ^ 1 ; as before, we take

ana therefore

The indices, in decreasing order, are '/ + /, q, 0: the degree of the cycle is q.

For the third case, we have
k _ I^ + l^

where /• ^ 1 ; we take

^-1, z=c\ r=cM^(iC*'+.")=/%C'^^+-"-

The degree of the cycle is q.

Lastly, y may have infinite values for finite values of x : the expression of the cycle

then is ^

_? _s-l

y=Kx l + b^x "r + ...,

where s > 0. We take

the degree of the cycle is s.

For purposes of transformation, we use the birational transformation

which arises out of a geometrical relation used for this purpose by Halphen*.

Given a plane curve C ; let an arbitrary conic % be taken in its plane :

draw the tangent to G at any point p of the curve, and let this tangent

be intersected at P by the polar of p with regard to X ; then F is regarded

as the geometrical transformation of p. Manifestly, a point p leads to

a single point P; to infer the converse, let PP' be the polar of p with

regard to the conic, P' denoting the point where the line touches the

reciprocal of C. Thus jjPP' is a self-conjugate triangle; and therefore jaP'

is the polar of P. Hence given the locus of P, we find 2^ by drawing

the polar of P with regard to the conic : this will cut (7 in a number of

points: we select as p that one of the points such that Pp is a tangent

to C at the point f- Thus each point of the locus of p determines a

single point P, and conversely ; the analytical expressions of the geometrical

relation constitute a birational transformation, which may be called Halphe)is

transformation.

Two forms arise, according as the conic does not or does cut in real points

the curve to be transformed. The conic is at our disposal and it could be

Liouville, S™" Ser., t. ii, (1870), pp. 87—144.

t A limited number of pairs of points can exist, for any conic Z, such that the construction

wonld not discriminate between them. We do not regard this as interfering with the general

character of the transformation : its significance in the result appears towards the close of the

investigation. For the analytical relations, expressing j; in terms of P, see a note by the author,

Messenger of Mathematics, vol. xxx, (May, 1900), pp. 1—7; they are not actually required for the

succeeding investigation.
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chosen so that it does not cut the curve to be transformed ; but the

transformation has to be repeated a number of times, and some of the

transformed curves might be cut by the conic. On the other hand, there is

a finite limit to the number of times the transformation is applied ; and we

may therefore assume that, if the conic cut in real points the curve or a

transformed curve, the tangents to the conic and the curve are different from

one another.

When the conic and the curve do not cut, take any point M on the curve

and the tangent MM" to G ; let M"M' be the polar of AI with regard to %,

cutting MM" in M"; and let MM' be the polar of M" with regard to 2,

cutting M'M" in M' . The triangle MM'M" is self-conjugate with regard

to 2 ; when this is chosen as the triangle of reference, the equation of

the conic can be taken to be

When the conic and the curve cut, say in a point M, then let the

tangent at M to the curve cut the conic in M and M' ; and draw M"M',

M"M the tangents to the conic at these points. We choose MM'M" as

the triangle of reference ; the equation of the conic can be taken to be

r^ + 2ZX = 0.

In the former case, let cc, y, z denote the position p, and X, Y, Z that of

P. Then we have
Xx +Yi/ + Zz = 0,

because P lies on the polar of ^ with regard to the conic ; and

\X, Y, Z =0,

oc, y,

x', y',

(where x = dx/d^ and so for y' and z'), because P lies on the tangent at p to

the original curve. Hence

X = y (a-y' - yx) — z {zx — xz') = x {xx + yy + zz') — x' (x^ + 2/^ + 2;-)\

Y=z {yz - zy') - x {xy' -yx) = y {xx + yy' + zz) - y' {x" + y- + z-)[
,

Z = X {zx — xz) — y {yz — zy) = z {xx + yy' + zz') — z {a? + y"- + z-)]

which express X, F, Z in terms of x, y, z.

In the latter case, we find similarly the relations

X = y {xy — yx) — x {zx — xz')\

Y = x {yz' - zy') - z {xy - ^jx)

\

Z = z {zx - xz' ) - y {yz - zy')]

which express X, F, Z in terms of x, y, z. These respective relations

constitute part of the analytical form of Halphen's transformation, which is

birational for the curve but not birational for the plane.
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Let any point on the curve to be transformed be denoted by

where R, S, T denote regular functions of ^ in the vicinity of ^ = : and we

assume that the integers p, a, r are distinct from one another.

When the second transformation is the one to be effected, we remember

that the tangent to the curve is the axis of y for the triangle of reference

;

accordingly, we assume (r> p> t, so that p — r is the degree of the cycle, and

a- — p is the class of the cycle ; also p — 2a + t < 0. The result of the

transformation is

X = - po'r, {p - t) ^2*^+^-1 + . . . = p,"^"" + .

,

Y = p,a,TAp-^a-+r) ^p+-+--i + . . . = o-,/'C"" + • •

Z = T,'p„ (p - t) ^"+^^-1 + . . . = rj't'" + ...]

say. We have a" > p" > t" ; also p" — t" = p — r, <t" — p" = a — p ; so that the

degree and the class of the cycle (if any) are unaltered.

When the transformation with regard to an assumed conic is applied

a number of times, the conic being assumed so as not to cut the initial curve,

then it may happen that, after a number of transformations, the latest curve

cuts the conic. The further application of the transformation will then, by

the foregoing analysis, have no effect upon either the degree or the class of a

cycle : it therefore is ineffective for our purpose of further reduction. To

secure such further reduction, we should proceed to effect transformation

with regard to another arbitrarily assumed conic, chosen so as not to cut the

curve.

When the first transformation is the one to be effected, assume that

p > cr > T, so that o- — T is the degree of the cycle (if any) at the point, and

p — cr is its class. The result of the transformation is

X = ^''^''^-^p,r^{r-p)+...] = l:^'{p:+...)^

y=r+^-M.roTo^(T-o-) + ...;=r(cr;+...) ,

Z= ^-ia+r-l {^^2^^(^ _ r) +...} = r (To' + ...))

say. We have p' > a' ; also because t' — a' = a — t, we have r' > a' ; there

are therefore three cases.

(i) Let p' >t' > a'. The degree of the cycle (if any) is t' - a', that is,

cr — T : it is unaltered by the transformation. The class of the cycle is p' — r',

which is p — 2a + T, =p — <r — (cr — r), so that p' — r'<p — a\ it is decreased

by the transformation. In this case p — 2c7 + r > ; also

p' — 2T' + cr', = p — '-la -\- T — {a — t), < p — 'Ia + r.
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(ii) Let T > p' > a' .

' The degree of the cycle (if any) is p — a , that is,

p — a. But t' > p, so that p — a < cr — r : hence p' — a' < a — t, or the degree

is decreased. The class of the cycle is r' — p', that is, a — t — (p — cr) ; there

is no useful rule of increase or decrease compared with the old cycle in

general, though we note that the new class is less than the old degree. In

this case p — 2a + t < 0.

(iii) Let t' = p, so that p — 2cr j- r = 0, or the degree and the class of

the cycle (if any) are equal. Effect a (birational) transformation

X'=X, Y'=Y, Z'=a,'{a-r)X-p,T,{T-p)Z

= r' (To'" +...),

where r'" > p + 2t — 1, that is, t" > p. Accordingly, for the tralnsformed cycle,

we have r"' > p > cr'. The degree of the cycle (if any) is p — o' , that is, p — cr,

which is equal to cr — r : it is unaltered by the double transformation. Also

r" - 2p' + 0-' > p + 2t - 1 - 2 (/3 + 2t - 1) + o- + 2t - 1 > o- - p,

where cr— p is a negative quantity. If t'" — 2p' + cr' > 0, another application

of the transformation by the conic leads to the first case above : and the

class is decreased, while the degree is unaltered. If r" — 2p' + cr' < 0, another

application of the transformation by the conic leads to the second case above :

the degree is decreased. If t'" — 2p' + a' = 0, the new class is equal to the

new degree, each of them equal to the common value of the old class and the

old degree : the cycle must be considered further.

For this last case, let p — cr = cr — r = ?i ; then

^ = ^-(^^0 + ...), ^ = ^«Y^« +
^ Vto J Z ^ Vto

or, remembering the source of the homogeneous coordinates, and taking

^ : 1] : 1 = y : X : z,

we have

^=r^(A

where (r is a regular function of |", that does not vanish with |: and this

corresponds to the original cycle by a birational transformation. It may

happen that the initial powers of f" in G give integral powers of ^ ; let

where P(^) contains powers of ^ not higher than the ^th and not lower than

the second, where n >a>0, and where G, does not vanish with |. To this

form, apply the Halphen transformation with respect to the conic

C(x,y,z) = 0,
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taken arbitrarily in the first instance. The point X, Y which corresponds to

^, 7} is given by

OX oy oz

where we write x, y, z = tj, f, 1 in the latter : thus

where a and yS are rational functions in t]' of the first degree. Hence

dX a^ + a,V + «.V'
^^^'"^'"^'"^

^'

dy d<y

d'Y d~^ ,^ , ,. W
d^

and generally

fimy

^'"''=dx^n=y«^^(^^^'^''-

Choose the conic C, so that
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or transforming so as to have A' + 2a.,Z, Y, Z, as the new coordinates, we

have
X'" = - {2u + a) a.X'''^'^''

-

F" = -nt"-^-...

Z'" = n^-"-' + ..:

The three indices in decreasing order are '2n + a— 1, 2n — l, n— 1; the

degree of the cycle is n, its class is a, which is less than n ; and therefore the

birational transformations have reduced the class below the degree.

Hence given a cycle of any degree m, greater than unity, and of any class

m', we can by Halphen's birational transformation change it into another

cycle. If ni be greater than m, the new class is less than m' while the new

degree is m : and repetition of the transformation can, by the first case, be

made, so long as the class is greater than the degree : and, by the third case,

until the class is less than the degree ; without altering the degree. When
another repetition of the transformation is made, the degree will (by the

second case) be decreased.

Proceeding in this way, we can make the cycle of the first degree : then

by the first case, of the first class also : that is, we can make the cycle linear.

When this process is applied to each cycle, the final equation has only linear

cycles : and it is connected luith the initial equation by birational transformation.

Further, it was proved that a Halphen transformation of a linear cycle of

the form
^t» — a = k\ {z — a) + /.-., (z - «)- + . . . + A-„i (z — a)'" + . .

.

leads to a relation

W -o! = k; {Z -a') + ko (Z - a' )'+...+ k',„_, (Z- aj"-' + . . .

,

where k'^-i depends upon k^ linearly and upon k^, ..., k,n-i. If therefore

two linear cycles agree up to (but not beyond) the ??^th order of small

quantities, the transformation replaces them by two linear cycles agreeing up

to only the {m—\)ih. order of small quantities: and so on, by successive

repetitions of the transformation, until they agree only in their origin, so that

the tangents differ. Now the origin of a new cycle, engendered by trans-

formation, lies on the tangent to the cycle which is to be transformed : hence,

applying a Halphen transformation once more, the origins of the two cycles

are different. It therefore follows that the cycles of any degree and class

having a common origin can be birationally transformed into linear cycles,

each of them with its own origin distinct from that of all the remainder.

The resolution thus eifected transforms every multiple point of any

character into an aggregate of simple points, and would therefore transform

an equation with multiple characteristics into an equation having only simple

points, if new singularities were not introduced in the" process of birational

transformation. Reverting to the initial geometrical exposition of the

birational transformation, we see that such singularities may arise through

F. F. 37



578 BIRATIONAL TRANSFORMATION [252.

exceptional points on the locus, as follows. From P, which is uniquely

obtained from the point p on the given curve, a number of other tangents

can be drawn to that curve ; let q denote the point of contact of any one of

them. In order that pq ma}^ be the polar of P with regard to the conic, one

relation must be satisfied by x and y, the coordinates of P, in addition to

the equation of the curve on which p lies : that is, there are two algebraic

equations satisfied by (./, y), and therefore there is a finite number of

simultaneous values satisfying these conditions. Each such point is a double

point on the locus of P, with distinct tangents for the branches : so that the

transformed curve thus possesses simple nodes unrepresented by any multi-

plicity on the original curve. But, in general, there cannot be two points

such as q, sa}^ q and q\ the tangents at which are concurrent with the tangent

at p ; for this purpose, some relation between the coefficients of the curve and

the constants of the conic would need to be satisfied—which is not the case,

when the conic is arbitrarily assumed and the curve is not extremely special.

We therefore have the theorem, expressed geometrically

:

Any algebraic curve can he hiratiumdly transformed into some algebraic

curve the singularities of luliich are double points luith distinct tangents.

The two curves must be of the same genus, and they must have the same

moduli : the complexity of the transformation manifestly depends upon the

original equation.

Ex. Consider the resolution* of the singularity of

aX y= 0, x= 0.

Proceeding ais in Chap. YIII., we find the six branches of the curve given by

where w" - 1, &- = \: thus for our homogeneous coordinates, we may take

Thus p = 8, (r= 6, T = 0. The class of the cycle is 2, the degree is G.

Since ;> — 2(r + T<0, Halphen's transformation, when applied, falls under the second

case. The indices after transformation are

r' =2(7+ r-- 1 = 11 = pi]

p = p + 2r - ] = 7 = (r, V
;

0-' = (r + 2r - 1 = 5 = tx)

the class of the cycle is 4, the degree is 2.

Since p,-2(r, +t, >0, Halphen's transformation, when applied, falls under the first

.case. The indices after transformation are

p"= pi + 2ri-l = 20j

r"=2fri+ r, -1 = 18

cr"= o-i + 2ri - 1 = 16j

* C. A. Scott, Amcr. Jouni. Math., t. xiv, (18'.>2), p. 318.
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the degree of the cycle is -1, the class is 2. For the cycle, we have

Y"= ^——'^O _ ^4 p, (-(>•) V"= (^lA^O = (1-2 ^5' (•/-)

and therefore

Y" = A.X"-'+ ....

This is an instance of the second case, when the class and the degree are equal : the

actual form is

4 „„ 81 „„2 47 243 ., , y

Three applications of the H;ilphen transformation will reduce the class to unity and will

give a cycle of the form

y= a2^"2 + (:f3.r"^+... ;

and one more application will give a linear cycle.

Note. The preceding sketch (§§ 245—252) is intended only as an intro-

duction to the theory of birational transformation, the development of which

really belongs to the detailed theory of Abelian functions.

3Ioreover, transformations which are rational but not birational are

practically omitted from consideration. If further information be desired,

the various works and memoirs quoted in the preceding sections, and in

§ 243, may be consulted : an ample account of the general theory of corre-

spondence will be found in Baker's Abelian Functions.

The normal curve in § 251, adopted by Clebsch and Gordan, must not be

supposed the only normal curve that can be adopted ; others are discussed in

the places to which references have just been given.

Ex. Prove that any Riemann's surface of genus j:> can be birationally transformed

into a surface of 2p-2 sheets, given by an equation /(«', z')= of degree 2/) — 2 in iv : such

that on this surface lo is an integral function of z whose only zeros are at the branch-points

of the surface (Klein's canonical form). Shew that on this surface I -^ and I
-—

" are integrals

of the first kind.

Verify that, in general, if u and v are raticnial integral functions of z of degrees four

and two, with no common or repeated factors, then

h being a constant, is such a canonical surface for p = Z; and determine for it three

independent integrals of the first kind.
,

(Math. Trip., Part II., 1899.)

Supplementary Notes: Abel's Thlorem.

The results, which have been outlined in the preceding chapters relating to an

algebraical equation
f{w,z)=

and to the functions of position on the associated Riemann's surface, are due to the

development by successive mathematicians of those researches of Abel upon transcendental

37—2
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functions, which completely revolutionised both the content and the method of analysis.

It may therefore be deemed not out of place to give a brief exposition of Abel's principal

result, commonly called Abel's theorem, and a few of its applications. The analysis,

by which that theorem was originally established, was really only a wonderful exercise

in the integral calculus; it will be shortened and simplified by using the results obtained

in connection with Riemanu's surfaces.

Abel's great memoir is Memoire sur une proprUte gemrale dhme dassc tres-e'tendue

de fonctions transcendantes, written in 1826, published in 1841, and included in his

CEiivres Complkes, t. i, pp. 145—211. The proof of the main theorems is rearranged

and much simplified by Rowe, " Memoir on Abel's Theorem," Phil. Trans., (1881),

pp. 713—750, whose exposition is adopted in what follows.

Other references are to be found in the works quoted in § 239, Note 1.

I. We take the equation /(w, z) = in the form (| 193)

f(w, Z) = tV" + W''-' g,(z)+ ...+ WJn-l (Z) + [In {z) = 0,

where the functions g are polynomials in z : and we are concerned with

rational functions of position on the Niemann's surface, which (§ 193) can

be taken in the form

„ V(w,z)

hw
where

V (w, z) = w''-^ h {z) + W'-"- k, (^) + . . . + ^'„_i {z),

and the functions k^, k^, ..., k^^^ are rational functions of z only. By

taking

w' = lu"— A'o {z),

we have

, U {w, z)—^-
dw

where
U {w, z) = IV"-- ho (z) + w"-' /t,{z)-\- ... + }in_2 (z),

and the functions Jio, h^, ..., }}„_.. are rational functions oi z only.

In the preceding investigations, we have considered the special properties

of the simpler and most typical forms of the integral

jw'dz,

taking account, in particular, of the effect upon its expression of modifying

the path of variation from the lower to the upper limit; the integral being

a transcendental function. Now it is known that, for quite simple equations

/'= 0, the sum of a number of such integrals may be expressible in simple

terms, no single integral itself being so expressible, when certain algebraic

relations connect the upper limits. Thus for the equation

w- = 4z^ - g.,z - g.^,
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we have

(or equal to a period of the integral), if

;i, ^1, 1 =0

'2, 22, 1

I Ws, z-i, 1

effectively giving the addition-theorem in elliptic functions. Similarly, the

sum of three elliptic integrals (Jacobian) of the second kind is expressible

as an algebraic function, and the sum of three elliptic integrals (Jacobian)

of the third kind is expressible as a logarithmic function. We proceed to

that part of Abel's theorem which establishes the corresponding results for

the equation

/(w,^) = 0,

called the permanent equation.

To consider a sum of integrals of the same form, we need to have a

number of upper limits, and the same number of lower limits. The upper

limits will be regarded as given by those positions on the associated

Riemann's surface at which

e{tu,z) = 0,

called the conditional equation. Manifestly, 6 can be made of degree

n — 1 in w at most, by means of the permanent equation : the coefficients

of the various powers of tv in are polynomials in z, and the constant

coefficients in these pol}Tiomials are completely arbitrary. The actual

positions, which give the upper limits of the integrals, are determined as

the simultaneous roots of the two equations

f(w, z) = 0, e {lu, z) = 0.

Similarly for the lower limits of the integrals, which are associated with

another conditional equation. The arbitrary constants will be regarded as

parametric : when parametric variation of these constants takes place, the

positions of the upper limits vary. If we choose, Ave can associate variation

from the lower limit to the upper limit 'with the variation; but this is

unnecessary, and all that we require is the variable dependence of the limits

upon the parametric constants.

To obtain the algebraical expression of these upper limits, we proceed

as follows. Let Wi, w^, ..., iVn denote the n values of w for any value of z;

then the eliminant in z, say E (z), is given by

Z=£:(z)=ll e{w,.,z),
r=l
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the values of z being given by the roots of E{z) = ^. To obtain the value

of w to be associated with a root of E{z) — ^, say z = c, it is sufficient to

obtain the greatest common measure of

/(w, c) = 0, ^(»;, c) = 0.

The roots of Z=0 may be of two kinds: (i), depending upon the para-

meters in 6, and consequently varying with them
;

(ii), independent of

these parameters. If c denote one of the latter class, then the corre-

sponding value of w, say 7, satisfying f{w, c) = cannot involve the

arbitrary parameters, so that the position 7, c is independent of the

parameters. Now since E vanishes for z = c, one of the n quantities

0{Wr, z) vanishes for u\. = y, z = c: that is, a relation then exists among

the parametric constants in 6 which is linear if the parameters occur

linearly in 6. (We can, of course, secure that the case does not arise,

by taking all the parameters in initially independent of one another

:

but it sometimes is desirable that the case should arise, and ive therefore

admit its possibility.) Let F {z) represent the product of all the factors

in Z, which give roots depending upon the parameters in 6, and let C {z)

represent the product of those which give roots independent of the para-

meters, so that

Z=C(^z)F{z).

It will be assumed that all the roots of P (2^) = are simple, so that P' {£)

and P {£) do not vanish together : and that they are yu, in number, say

iTi, cco, ..., .r^. Let the corresponding values of iv bo 1/1, y.,, ..., 1/^; so that

the upper limits for the integrals are (jji, a,-,), (y.,, .r.,), ..., {1/^, cc^).

The integral to be considered is |w' dz, that is,

div

where w is one of the n branches of the function defined hy f{tv, z) = 0: to fix

the ideas, let w^ denote this branch, so that we also have d{n'i, z) = 0. The

integral is a function of its upper limit, and therefore varies when the limit

varies, that is, when the parameters vary. Let 8 denote small variations for

the parameters ; then the variations of the roots of F{z) = are given by

P' (z) dz + 8P (z) = 0,

and therefore

'^'
P'(z)

8E(z)_
- c{z)P'{zy
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because E (z) = C (z) P (z), and G (z) does not involve the parameters.

Now

E(z)=U d(iu,,z),
)• = !

so that
" E (z)

SE(z)=^ .^^^-\Se(w,.,z).

In our subject of integration, we are dealing with the branch w^ of iv; and

for this branch d{iVi, z) = 0. Hence all the terms in the summation vanish

except that for r = 1, and we have

Thus
,, r(w„z) 1 E(z) ,., .

""'-' =—y C(.)P-(J) fll^.)''^^"-
^>-

The right-hand side vanishes if w^ be replaced by any other of the brandies

\(.)o, ...,Wn, because E {z) -r- 6 {Wr, z) is zero unless ?• = 1 ; it therefore is

unaffected when we add to it all these vanishing terms, that is, we have

,-, 14 U('Wr,z) E(z) ^., .

C(z)P{z),.= i _^ 0{lVr,z)

dlUr

E (7\
The quantity >i-

—

^-^ is an integral symmetric function of u\, ..., w,—i, ^,.+1,^ "^ 6{w,., z)
o

^

..., w„, (and it is an integral function of z) : by rneaiiis of /=0 it can be

made a function of z and tv,,. only, which is polynomial in lUr and is rational

in z. Also U(iVr, z), which is a polynomial in lu,., has rational functions

of z for its coefficients: let M (z) be the least common multiple of all the

denominators in this rational function, so that, when we take

U(Wr, Z) = ^-—^
,

W is polynomial in iv,. and z, of degree not higher than 11 — 2 in (/,',-• Hence

is a polynomial in ?<;,., the coefficients being polynomials in z; by

of /= 0, it can be expressed in the form

means
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where the coefficients K are polynomials in z. But Wj, ..., iVn are the n
roots lu of f{w, z) = 0, and therefore *

n-\

S Ktw/

SO that

Hence

dwr

''''^'~
3f(z)C{z)F{z)^''-

M{z,)C{z„)F{zS

on taking the summation over the
fj.

roots of P {z) = 0.

To obtain an equivalent for the riglu-hand side, we consider the expres-

sion of

M{z)C{z)P{z)

in partial fractions. Let 'x^, ..., or, denote all the roots of .1A=0, any (or all)

of which may be repeated, and assume that no one of these is a root of

P{z) = 0; and let c^, ..., c„, denote all the roots of G{z), any (or all) of

which also may be repeated. Then

I(z)+ S ^^+ S
M{z)C{z)P(z) ^^""^

r=i^-^. Ciz-c^

^,':,M(z,)C{z,)P'(z„)z-z,

+
,

where the unexpressed terms involve higher powers of (z — ap)-\ (z — Ck)~\

respectively for each repeated root, and I (z) is a polynomial in z, if the

order of Kn-i is not less than that of M (z) C (z) P (z). Thus

Ap= cooff. of in tlie expansion of T in ascending powers of 2^ — Up,
Z — Kp

Gk = of 2^ - Cj.
;Z-Ck

and the coefficient of - in the expansion of T in descending powers of z is

.« m M K (Z \

.-.^M{z,)C{z;)P\z,y

so that if, from the sum of the coefficients of and (for all the
Z — (Xp Z — Ck

* Burnside and Panton, Theory of Equations, (7th ed.), vol. i, p. 172.
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values of p and k), the coefficient of 1/z be subtracted, the result is the

n

expression required for S (iv'dz)^. We express this in the symbolic form
cr = l

r 1

lM{z)C{z)_

where denotes* the result of the following operations: Take each factor

2^ — a of M {z) C (z) in turn, obtain the coefficient of (z — a)~^ in the

expansion of
*

M{z)G{z)P{z)

in ascending powers of z — a, and form the sum of all of these coefficients

;

from this sum subtract the coefficient of z'^ in the expansion of the same

expression in descending powers of z.

Hence
"

1 ] Kn-Az)
M{z)G(z)\ P{2y

_M{z)G{z)\P{z),:^, df_ e(wr,z) ^
'' ^

dWr

» W{Wr,z)Se(Wr,z)

S (lu'dz),
r= l

31(z)G(z)
G(z)

6{tVr, Z)

The symbol is clearly distributive, from its definition: and upon the

subject to which it applies, integration can be effected with regard to

parameters in such a way that the symbol applies to the integrated form.

The inverse of the operation S with regard to the parameters on the right-

hand side implies integration with regard to the variables on the left ;
hence

'••V) W{w, z)

M{z)
dw

dz - A

= «U«c'(d^^^>..tf^''"^^^"->|
dWr

where A is a constant of integration, and where we now write w for Wj

in the subject of integration, Wj having been any branch of the quantity w

defined by f{w, z) = 0. To evaluate the right-hand side, only algebraic

expansions are necessary ; and the result will be some function of the

parameters. These parameters are connected by the equation P {x) =

* The symbol, in this significance, is due to Boole, Phil. Trans. (1857), p. 751 ; the various

coefficients are manifestly the Cauchy residues (§ 25, Ex. 9) of the expression for its poles, which

arise through the zeros of M (z) C (z) and through an infinite value of z.
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with the upper limit of the integrals : when expressed in terms of them, the

right-hand side is clearly a logarithmic and an algebraic function of those

limits, which in special cases may degenerate to a more simple form. The
constant A can, if desired, be determined by taking another conditional

equation, similar to d {w, z) = 0, in order to assign lower limits to the

integral.

This result is Abel's Theorem in its most general form. We proceed

to some applications, first recapitulating the significance of the various

symbols. The fundamental equation is f{w, z) = 0, of degree n in w,

having the coefficient of ?<;'* equal to unity, and polynomials in z for the

coefficients of the remaining powers of w. The conditional equation is

6{ii\ z) = 0, which (by means of /=0) is taken of degree not higher than

^/ — 1 in II' ; the coefficients of the various powers of w are polynomials

in 2, having arbitrary parameters for coefficients of powers of z. The

result of eliminating w between /'=0, ^ = 0, is obtained; G {z) represents

the aggregate of factors, corresponding to i-oots that are independent of the

parameters ; the roots, that depend upon the parameters, are taken, in

conjunction with the appropriate values of w, to be the upper limits of

the integral. The quantity W (w, z) is a polynomial in w and in z, of degree

not higher than ?i — 2 in vj. The quantity M (z) is a polynomial in z;

it may be a constant ; if it is variable, no one of its roots may be one of the

quantities x^, ..., x^ belonging to the upper limits of the integrals. And
lastly, the symbol requires the various algebraic operations specified

in its definition, connected with the roots of M (z) = and of C (z) =
as well as with an expansion in descending powers of z.

Usually we have C (z) = 1 ; but even when it is different from unity,

its roots frequently contribute only zero terms to the final sum on the right-

hand side.

JVote. The preceding proof dispenses with many of the properties of functions of

position on a Rieinann's surface that have already been estabhshed ; the main reason

•why such a proof is given is, that some notion of Abel's theorem may be obtained on the

lines solely of Abel's analysis. We shall, however, in the proof of other results, use more

freely the properties of functions of position to which reference has just been made.

Another method* of obtaining the result is to consider the integral

taken over the Riemann's surface, where / denotes

It is left as an e.vcrcise : it follows the lines of §§ 230— 2.38.

* This is Neumann's method, ]'orlesungen iiber liiemann's Theorie iler AheVschen Integrale,

pp. 285—303.
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and take

Ex. 1. Let the permanent equation be

as the conditional equation. There are three quantities Xi, Xo, x^ given as the roots of

d^Az'-goz~g.i)-{hz+cf= 0.

Xow take the integral of the first kind associated with the equation ; it is

[dz

J w

'

We have 21{z) = \, C(z) = l, W{w, z)= l; and the roots of the permanent equation can be

taken as w', —w'. Hence in the operation we have -only to obtain the coefficient of

- in a descending ex})ansion, so that

2 /

"^ — -A=-Ci \-\og(aw + hz + c)--\og(-aw+ b2 + c)

~ 1 , bz+ c+ aw= -Ci-logj—_ .

z w bz+ c — aw

When the quantity on the right-hand side is expanded in descending powers of z, the first

term is —^ , so that no term in - exists. Accordingly
2^^ ^

3 [•'•<rdz ,

where ^ is a constant independent of the arbitrary constants in the conditional equation,

and therefore determinable by assigning special values to those constants. Taking a=0,

h = 0, the three values of a- become each infinite, so that

s [''t dz

Now let x^= p (n^), for o-= 1, 2, 3 ; the last equation can be written

Ui + V2 +%= 0.

Also 3/^ = p' {uj ; so that, as the equation

«r("a)+^PK)+^=o
holds for 0-= 1, 2, 3, we have

F(«i), Pi^h), 1

•

i P'{u,), p{u,), 1

provided
?<i+ ?<2+%= '^- This is a known form of the addition-theorem.

Again, we have

.yi -2/2= --(•*! -^2)-

Also, from the equation whose roots are .^i, x->, x^, we have

,..,,.,.|,=^(|3|)'
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that is,

another form of the addition-theorem.

Ex. -2. Consider, in connection with the same equations, the integral 1^—^
. Wc have

^ f^Tzdz z . bz+ c+ c

2 I B= -Cj -log j—_
.+ c+ aw

in the same way. Now, for the descending expansions, we have

A

b

fbz+ c+ awX . , ^, , iaz-
1 =log(-l) + log

\bz+ c-awj °^ °
h

2azi

= log(-l)+^+...,
az"^

so that

z - bz + c+ aio _ b

\w ^ bz+ c — aw~2a'

and therefore

3 /•>.-&- 6

^ being a constant independent of a, b, c. By taking b = 0, c= 0, and a not zero,

we have e^, eo, e-^ as simultaneous values; hence

3 ('•<rzdz_^ b^ l F0<l)-r0^2)
4J,<,i. 2a 2'^{n,)-<&{u.^>:

Now in the integral I "-^j let s= ^0 (?«), ?6'= ^' (tt) ; it becomes

1^

Also ?<i, Uo, Ms corre.sponding to .Tj, o:-2, x^, are such that Mj + 2<2+M3=0; Ci, 62, 63 are

possible values of .r,, x-^, x^, and we can take ±a)i, ±W2, ±<»3 a^s possible values of u^, u.,, it;^.

Choosing them so that the sum shall still be zero, take wj, -0)2, 0)3 as the values; then

But •

C («2) = v + '/ = C («i ) + f («.•))

;

and therefore

a»i)+c(^^:.)+c(«3)=
U^'(Wl)-F("2)
2 ^(Ml)-^(M2)^

when Mj + M2+ W3= 0: in accord with Ex. 3, § 131.

E.v. 3. Consider, also in connection with the same equations as in Ex. 1, the integral

r dz
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where g is a constant. Denote by y, -y, the two vahies of w for z=g: «o that, if ^ = p(a),

then y= P'(a). We have

c-aw^

as before. In effecting the operations for 0, we note that

1 fts+c+aw .

from Ex. 1 ; and therefore, a fortiori,

Ci- ^logj— =0:
-[z — g)w bz+ c — aw

consequently, we shall have only the coefficient of to retain. Thus

1-' i^-g)'^^' y °bg+ c~-ay'

where C is a constant independent of a, b, c. To determine C, let a= 0, 6= 0; then

X is the value of ;rt, X2, .r;i : and we have

•i f'^ dz 1, hq^c-ay
2 :; r- = - log r-
„=\] x„{z-g)%o y °bg+ c + ay
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where W is an integral i)olynomial in its arguments, Af is any polynomial in 2, and

the summation on the right-hand side extends over all the simultaneous u- and i^-roots of

^^=0, 6'= 0.

Ex. 8. Using the result of Ex. 7, and taking

as a special case, prove that

Si, t'l, di, 1 =0,

»2» c., «2, 1

*3) C;{, Cli, 1

S4, C4, di, 1

(where .s,, cj, o?, ,=sn ?<i, en
?^i,

dn ?<i, and so for the others), if

?<l4-W2 +% + «4= 0.

In the same case, viz. when Ui + iio + u^ + Ui= 0, shew that

o-=l ^ "^ H-^-2SlS2S3«4<r= l S,

and obtain an expression for

2 n («_, a).

II. Reverting to the general theorem, it is clear that, when the

operations on the right-hand side have been completed, and the various

combinations of the parameters have been expressed as functions of the

variables in the upper limits of the integrals, the expression can, at the

utmost, involve only logarithmic and algebraic functions. Logarithmic

functions will occur in ciamection with each separate fiictor of M (2), and

no other part of the operation © will give rise to them ; so that, if the

right-hand side is to be fi'ee from logarithmic functions, M {z) must be

unity (that is, there are no factors), and conversely. Algebraic functions

will occur when the coefficient of z~'^ in the descending expansion in

powers of z is different from zero ; the usual (but not necessary) form in

which the coefficient is zero arises when the expansion begins with a

power 2~'i+'^', where /i is a positive commensurable quantity.

We proceed to apply the theorem to the integrals which give rise to

functions of the first kind, functions of the second kind, and functions of

the third kind, respectively upon the Riemann's surface.

Integrals of the first kind. In this case, we have il/(^)=l; and

W(w, z) is then an adjoint polynomial of order not greater than /; — 3

in IV (§§ 205, 234). Because M(z) is unity, there is no logarithmic term

resulting from the operation W.

The integral, being of the fii-st kind, is eveiywhere finite : so that, when

I

^
I

is very large, we have

W (w, z) , , A,

dw



252.] ahel'.s theorem 591

where ^o is determinate only save as regards multiples of the periods of the

integral, and k >0, being a positive integer unless ^ = x is a branch-point.

Hence, in the vicinity oi z= cc , we have

.W(u',z) ^-kA,
df ^>+« ^ •••

dw

Moreover, log^(w, z), when expanded in descending powers of z, contains no

term z^ having a positive integer for its index p. Consequently, in

„ W(tv, z) , .

Ci ^^ log (w, z)

dw

no term in - occurs, for any of the branches w ; and therefore
z

^ ^ W(w ,, z) . n/ X A

Hence

—TT

—

- dz = K,

diu

where 7^ is a constant of integration independent of the parameters in

e (2U, z).

The constant K can be obtained by taking the sum of the integrals

as determined by a different set of parameters in which (as K is a

constant independent of their value) may be made as particular as we
please. Moreover, we recall the property that an integral of the first

kind upon a Riemann's surface is not entirely determinate, its expression

being subject to additive integral multiples of its periods : and we have

the theorem that the sum of the values of an integral of the first kind

at the positions on a Riemann's surface, ivhere a polynomial 6 (w, z)

ranishes, remains unaltered no matter how the parameters in that poli/-

nomial are changed: subject always to modification by additive multiples

of the periods. The theorem is also expressed sometimes as follows : //
// (iv, z) denote an integral of the first kind, then

^ u{w„, z„)= S u(i/„, x„),
cr=l o- = l

where v.\, z^; ... ; tv^, z^; are the zeros, and y-^, x^; ...; 3/^, a;^; are the infini-

ties of any function (ft that is rational on the Riemann's surface; and the

moduli of the congruence are the periods.

Ex. 1. Obtain the result in the latter form by considering the int

/
" ^^' ^^ dz ^^^° "^ ^'''' ^'^ ^^

upon the liicniann's surface, (/> denoting the rational function.
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Ex. 2. The preceding result can be otherwise obtained : one method is indicated

in the preceding example : another is as follows, based upon a theorem due to Jacobi*

which will be proved in deducing the result.

We have /(?r, 2) = 0; and therefore

so that
O'W OS

,. dz dir

cw cz

Also with the variation of the parameters in 6 (?/-, z) = 0, we have

?^dw + '^dz+ 8e= 0,
oil) dz

'

and therefore

86 86

say. Accordingly, u denoting the integral of the first kind,

du= U{u; z) d^

_U86
~ J '

so that this is the element of the integral to be considered, the sum being taken for

the simultaneous roots of

f(2v,z)= 0, 6iu;z) = 0.

Take / to be a polynomial in tv and z, and let n be the degree of terms of the highest

order : also assume / to be quite general. Similarly take 6 to be a polynomial, and let m
be the degree of terms of the highest order ; m can be taken as less than n, but that does

not prove important for the present purpose. Let Z=0 denote the result of eliminating

IV between /=0 and ^= 0, so that Z is of degree mn in z ; likewise let W denote the result

of eliminating z between /=0 and ^= 0, so that W is of degree mn in u: Let the i-oots of

Z=0 be .z'l, ..., x„^n; those of W=0 be yj, ..., y„„, ; and let the simultaneous roots

of /=0, ^= be

•n> .'/i; -^'2, ^-y^ ; •*'».», !/mn;

which will be called the congruous roots. The other combinations will be called the

iKJU-congruous roots.

]jy the known theory of elimination, we have

Z=Af+B6, W=Cf+D6,

where the orders in w and z are :

A, VI -1 in vj
,

mil- a in s,

/?, n-\ in )r
,

m7i-)n in z,

C, mn-n in n-, m-\ in z
,

Z>, mn- lit in //•, /; - 1 in ^ ;

and therefore A, =AD-BC, is a polynomial whose higiiest power in n- alone is mn-l,
whose highest power in z alone is mn-\, and whose highest terms in ?p and z combined

are of order 2mn-m-n, that is, A is a polynomial of order 'Imn-m-n. Now the

* Ges. Wcrke, t. iii, p. 292.
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congruous roots make / and d vanish ; the non-congruous roots do not make / and 6

vanish, while they do make Z and W vanish ; accordingly, the non-congruous roots make

A vanish.

We have

0=A^X+B dd

dz oz oz

010 &w mo

oz dz

when congruous roots are substituted after differentiation : so that, for any such con-

gruous pair,

Z'W

and therefore

whence

6w cw dio cw

dz oz oz cz

, ,,M UA8d

M ^ ^ fUA8d\

r=i a= l \^ " /x=x„, ii=Va

aJ,

where fi= mn. But A = for the non-congruous roots, and therefore the expression

Ca86-^{Z' W) vanishes for non-congruous roots, assuming (as we may) that Z and ir do

not possess equal roots ; hence, adding these vanishing terms, we have

M , f^ M fUAM\
2 du^= 2 2 (7777.-7

t^ M /Ua86\

say.

Consider an expression yjr^, where e is a polynomial in iv and z of dimensions not

greater than 2mn — 3: and express it in partial fractions. As the denominator is of

the form WZ, that is, is

we have

Clearly

Now

n {iv-^j) n {z-Xi,

WZ' + 2
Bj
7+ 2

i=i 2 - ^i j=i IV - ,%• ,;=i j-^i
(.- - A-i) Iw - y,

C,-,-= i

W'Z'j

2 2 C'o

1 G
is manifestly the coefficient of —_ in the expansion of -rfTy in descending powers of w and z.

As G is of dimensions 2m/i-3, while H' is of dimensions mn and likewise Z, the first

term in that expansion is of dimensions - 3, so tliat there is no term in — . Consequently
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that is,

This leads at once to the result. For the most general integral of the first kind,

U is an adjoint polynomial of order n-3; so that UAdd is a polynomial of order

(71 — 3) + {27nn —m — n)-\- m,

that is, of order 2m/i - 3. Consequently

and therefore 2 dua-= 0,
<T= \

or 2 « is a constant, independent of the parameters in 6 and therefore independent of
<r=l

the upper limits of the integrals : which is the proposition to be established.

Note. Jacobi's theorem, indicated at the beginning of this proof, is an immediate

inference from the preceding analysis, viz.

r=l \ / x-Xfj, \

= 0,

where F is any polynomial of order not greater than m-\-n-Z.

Integrals of the second kind. We shall take only the normal elementary

integi'al of the second kind, and denote by z = a, iu = a its one infinity on the

surface. Then (§ 208) the subject of integration is

U{w, z)

where U is a polynomial of degree n—1, which vanishes at the n — 1 points

other than w = a given hy z = a, and also vanishes to order A, — 1 at a branch-

point of/ which is of order X. Then

U(Wr, z).

<^f

\og6(Wr, z)\ + K,

where K is an arbitrary constant, independent of the parameters in d(rv, z).

In order to effect the operations in @, we require, first, the coefficient of

in the expansion of
z — a

1 "; U{Wr,Z)
^ ^ , .

^ ^ ^7

—

^o^6{w,,z),
{z-afr=\

d̂Wr

in ascending powers oi z — a: and secondly, the coefficient of - in the ex-

1 V ^'(^^/•. •^) 1/3/ \

dWy

in descending powers o{ z.
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The latter is manifestly the coefficient of z in the expansion of

S —^. log 6 {iVr, Z)

div,.

in descending powers. Now our integral, being finite e^erywhere on the

surface except for the place where z = a, is finite at z= :c , and therefore

U {Wr, Z) Ko «3

dWr

when
i

^^
I

is very large : (there is no term — because the integral has no

logarithmic infinity). Moreover log 6 (Wr, z), expanded in descending powers,

has no positive powers of z. Hence the coefficient of z in the preceding

expansion is zero ; and therefore the part in contributed by the coefficient

of - is zero.
z

To obtain the coefficient of in the expansion, it is sufficient to
z — a ^

obtain the coefficient of ^ — a in the expansion of

S ^
log e {tUr, Z).

r = l Oj_

dWr

Take z — a = ^, lUr = (Xr -t- tv (say w = a + f) ; then, as in § 208,

doi ^ da

U (w, z) = U(o', a) + i ^J-/^

,

da

^ I
fd/y 6 {a, a)

I

a/"

/ J da

log e (w, z) = log d{a,a) + S-.-^ , ^4^!

•

The points z = a, w = a.,, oi.^, ..., a^ are neither algebraic nor logarithmic

infinities for the integral ; hence (§ 208)

U{ar,a) = 0, {r = 2,...,n),

38—2
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which conditions exclude an algebraic infinity, and

S(/^>^0.
(,-=2, ...,„),

which conditions exclude a logarithmic infinity, at any of the n — 1 places.

The point z = a, lu = a, is an algebraic but not a logarithmic infinity

;

hence

U{a,,a)'^V'dci) _ d{f, U)

df ^(al, a) d(ai, a)'

which excludes the logarithmic infinity for the integral. The algebraic

infinity at a^, a for the integral is clearly

U(aua) 1

df 2 — a'

da.

The coefficient of ^ in the foregoing expansion is

^("i, a) 1 dJJJ)
df^ 0{a,,a)'d(a„a)'

dec.

Hence
U(io,2)

^^ _ ^^
u(a,. a) 1 a (/, e)

, .Jf ^ ^ df d{a„a)'d{a„ay

^^~''^d~tu da,

The right-hand side is a rational function of the parameters in 6 and there-

fore is an algebraic function of the variables oc. Hence the sum of the values

of a normal elementary integral of the second kind at the positions on a

Riemanns surface, where a polynomial vanishes, is an algebraic function

of the variables of those jjositions.

The result can also be enunciated in the form : Let E {ru, z) denote a

normal elementary function of the second kind, Jiaving its sole simple infinity

A
at the position z = «, to = a, of the form —— . Also let w-,, z,; ... ; w„, Za :

' ^ z — a

denote the zeros: and y,, Xi\ ...
; y^, x^, denote tJie infinities of a function (}>,

rational on the Riemann surface : then

:£ B(w„, z,) - ^ E iy,, .xv) = -A p(/.logf)]

L d{tv,z) }„..

The equality is subject to additive multiples of the periods of the integral.

Ex. 1. In the preceding investigation, the assumption is made that a i.s finite, so that

2= Qu is a point where the integral is finite.

Obtciin the corresponding result when z=cc is the sole simple infinity of a normal
elementary integral of the second kind.
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Ex. 2. The line atv+^z+ y= touches the curve f{io, z)=0, and U{w, z) is an

adjoint i^olynomial of order n - 2, which vanishes at each of the remaining ?i - 2 points

where the line meets the curve. Obtain an expression for

M /'^o- U (w, z) dz

^IJ aw +^z+yqr

where the uj^per limits of the integrals are the points of intersection off{w, z) = with any-

other curve 6 {w,z) = 0; also an expression for

t^ /"-^o- U (v), z) dz

^Ij (aw+ ^z+yr¥'
dw

where k is an integer greater than unity.

Integrals of the third kind. We shall take only the normal elementary

integral of the third kind ; and we shall denote hy z = c, w = ^^; z = c, w = y. ;

its two logarithmic infinities on the surface. Then (§211, Ex. 2) the subject

of integration is

V(iu,z)

where V(w,z) is an adjoint polynomial of order n — 2, which vanishes at

the n — 2 points, other than the infinities of the integral. Moreover as

V is of order less than w — 1 in w, we have, by a known theorem in partial

fractions,

5 V(Wr,z) _

dWr

SO that, in the present case,

?7i 97-2

say, thus verifying the property proved in § 211.

We have

2. -7. ~ L^^} >. TT log d {lUr, Z),

dw dWr

where L is an arbitrary constant, independent of the parameters in 6 (w, z).

In the same manner as for the normal elementary integrals of the second

kind, we have

^ 1 i^ V{w,, z), ^ , , ^CL^,^?^-^^'log^K,.)=0.:

"bWr
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and therefore the right-hand side is

In this sum all the terms vanish except for r = 1, r = 2 : it thus becomes

dw

Proceeding as before, this result may be enunciated as follows : Let

U^ziw, ^) denote a normal elementary function of the third kind, having its two

logarithmic infinities at z = c, w = y^ ; z = c, w = yo', of the form

C -C
+

,
+

,

z — c z — c

respectively. Also let ^{iu,z) denote a i^ational function of position on the

Riemann's surface, having its zeros at iv^, z^; ; w^, z^^; and its poles at

y^, x^; ; 2//*' ^F- Then

2 U,dw^,z.)- i n,,(y.,.r.)=Clog^^^.

The equality is subject to additive multiples of the periods of the integral.

Ex. Let U{w,z) be an adjoint polynomial of order n-2, vanishing at n-2 of the

points where the (non-tangent) line a7v+ ^z+y= meets the curve. Obtain an expression

for

{ta, z) dz

dio

where the ui)per limits of the integrals are the points of intersection of /(?^ z) = with any

other curve 6 {w, z) = (.K (This is more general than the case in the te.xt, where : is taken

to have the same value at the two points.)

i l-Jt
r=iJ aw-{

III. Abel's theorem in general, and the special examples in particular,

shew that the sum of a number of integrals

I{W„,Za), =
I

dl,

can be expressed as a logarithmic and algebraic function, say G, so that

X I{tu„,z,) = G,
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and therefore

S / (W„, Z^) = - S / {Wa , Za) + G,
<r=l <7 = p+l

say, where p is the number of parameters in 6 (w, z). As there are fi roots of

the equation F{z) = 0, or fx simultaneous sets of roots of

/(u-, ^) = 0, 6 {uK z) = 0,

which depend upon the parameters, it follows that the parameters can be

regarded as functions of p of these roots, and that the remaining /x — p roots

can then be regarded as functions of the p roots. At this stage, these p roots

may now be considered as arbitrary quantities ; and therefore the sum of a

number of integrals with arbitrary upper limits can be expressed as a sum
(with an additive function G) of a number of integrals with other upper

limits, which are algebraic functions of those arbitrary quantities. The

question then arises : what is the smallest number of integrals in the second

set as a sum of which any number of integrals can be expressed ?

This number is equal to p, the genus of the permanent equation. Abel

originally obtained the number, though not in this special form : the investi-

gation is, however, a long one.

The result can be more briefly established by using the properties of

functions on a Riemann's surface which have already been proved. It will

suffice to establish the result for a sum of p + 1 integrals with arbitrary

upper limits ; for, granting the result for this case, then a sum of p + 2,

= (p + 1) + 1, integrals can be transformed into a sum of p + 1 integrals by

transforming the sum of any p + 1 in the p + 2 into a sum of p integrals

;

and so for the sum of a greater number. There are two cases, according as

the equation is hyperelliptic, or is not hyperelliptic.

When the equation is hyperelliptic, we take it in the form

Any other uniform function on the Riemanu surface can be made of only the

first degree in lu ; and we therefore take the conditional equation in the

form
e (w, z) = w -0 = 0.

The upper limits of the integrals satisfy the equation

Let 2^1, ..., Zp+^ he p + 1 arbitrary quantities, taken to be upper limits for an

integi^al fdl : and choose H to be a polynomial in z of degree p having

arbitrary coefficients. The most general form of contains /> + 1 of these

coefficients; they therefore can be chosen so that z^, ..., Zp+^ satisfy the

equation
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and they then are determinate. The equation is of degi-ee 2p + 1, and

consequently it has other p roots, say, oc^, ..., Xp'. these are functions of the

constants in 6 and therefore are functions of Zi, ...,Zp+^, being manifestly

algebraical functions. Now applying Abel's theorem to the integral jdT, we

have

so that

T/(2tv, ^a)+ i I{y.,x,) = G,

S I{w.,z,) = - S /(y„^,) + G^,,

1

or the sum of p + \ integrals is expressible as a sum (with an additive

function G) of p integrals. The result is therefore proved for the hj^per-

elliptic case.

When the equation is not hyperelliptic, we take it in the customary form

where the degree n off in 7U is equal to or is greater than 3. The conditional

equation

6 (w, z) =

is obtained by taking 6(w, z) as the most general adjoint polynomial of order

?i — 2 : that is, 6 (w, z) is to vanish to order A, — 1 at a multiple point of /
which is of order \. Now in order that a point on a curve may be multiple

of order X— 1, a number of conditions equal to \\{\ — \) must be satisfied;

hence the number of conditions to be satisfied, in order to make 6{w, z) an

adjoint polynomial, is

2i\(X-l)

= h(n- l)(n -2)-p,

by § 240. As is a polynomial of order n — 2, the number of terms it

contains is h (ii -l)n: and therefore the number of disposable constants in

the equation 6^ = is ^(r)-l)n—l. Some of these are used to make the

polynomial adjoint; hence the number of disposable constants in the adjoint

polj^nomial of order n — 2 is

h (n - 1) ;^ - 1 - {^ {n - 1) (n - 2) - p}

= v+p-2,

in all. As 7j ^ 3, it follows that 7i+ p — 2^p+l. If the number =^) + l,

choose the disposable arbitrary constants so that 6 shall vanish at the p+ I

positions w,, 2,; ...; Wp+^, %+i ;
given as assigned upper limits for the

integral. If the number is >p + 1, choose ^ + 1 of the constants so that 6

shall vanish at the assigned p + 1 positions Wa, z„, and the remaining ?i — 3 of

the constants, so that 6 shall vanish at /( — 3 definite positions «!, a,; ...;
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a,i_3, ttn-s; on the surface, to be regarded as fixed positions defined by pure

constants.

In the intersections of /=0, ^ = 0, a multiple point of order X, on/, being

of order A, - 1 on ^, counts for X, (\ — 1) points ; hence the number of points,

other than the multiple points, given by ^ = on the Riemann's surface is

7i(n-2)-l\(X-l)

= n(n-2)-{{n-l)(n-2)-2p\

= n + 2p-2

= (n+p-2)+p.

Of these, we have the n + p — 2, given by

w„, Ze, for cr = l, ...,p + l,

a,., a,., for ?•= 1, ..., ?i — 3,

the latter set not occurring if ?i = 3 ; let the remaining p be

y^, x^, for K = \, ..., p:

so that the upper limits for our integral are the sets iu„, z„; a^, a,-', y^, x^.

Applying Abel's theorem to the integral jdl with these as limits, we have

<r= l r = \ « = 1

Now each term in the second sum is a pure constant, so that, when the sum

is transferred to the right-hand side, it can be absorbed into the constant of

integration that occurs in G ; hence

X I{xu„, z„) = - :l I(y,, X,) + Gr,
(r= l K=l

thus proving the result for the case which is not hyperelliptic.

This result, that the sum of any number of integrals can be expressed as a sum
of p integrals, has of course an entirely different significance from the result that p linearly

independent integrals of the first kind exist upon a Riemann's surface. The two results

can be combined, as in § 239, so as to lead again to the inversion-problem ; this

discussion, however, is a fundamental part of the theory of Abelian functions, and is

beyond our present range.



CHAPTER XIX.

CONFORMAL REPRESENTATION: INTRODUCTORY.

253. In § 9 it was proved that a functional relation between two

complex variables w and z can be represented geometrically as a copy of

part of the ^•-plane made on part of the ?t;-plane. At various stages in the

theory of functions, particularly in connection with their developments in the

vicinity of critical points, considerable use has been made of the geometrical

representation of the analytical relation ; but it has been used in such a way

that, when the equations of transformation define multiform functions, the

branches of the function used are uniform in the represented areas.

The characteristic property of the copy is that angles are preserved, and

that no change is made in the relative positions and (save as to a uniform

magnification) no change is made in the relative distances of points that lie

in the immediate vicinity of a given point in the z-plane. The leading

feature of this property is maintained over the whole copy for every 'small

element of area: but the magnification, which is uniform for each eleuient,

is not uniform over the whole of the copy.

Two planes or parts of two planes, thus related, have been said to be

conforinally represented, each upon the other.

Now conformal representation of this character is essential to the consti-

tution of a geographical map, made as perfect as possible : and a question

is thus suggested whether the foregoing functional relation is substantially

the only form that leads to what may be called geographical similarity. In

this form, the question raises a converse more general than is implied by

the converse of the functional relation, inasmuch as it implies the possibility

that the property can be associated with curved surfaces and not merely

with planes. But a little consideration will shew that the generalisation is

a priori not unjustifiable, because, except at singular points, the elements of

the curved surface can, in this regard, be treated as elements of successive

planes. We therefore have* to determine the most general form of analytical

relation between parts of two surfaces which establishes the property of

conformal similarity between the elements of the surfaces.
'

* The followint,' investigation is due to Gauss: for references, see p. 611, note.
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Let X, y, z be the coordinates of a point R of one surface with t, u for its

parameters, so that x, y, z can be expressed in terms of t, u ; and let X, F, Z
be the coordinates of an associated point R' of the other surface with T, U
for its parameters, so that X, Y, Z can be expressed in terms of T, U. Then
the analytical problem presented is the determination of the most general

relations which, by expressing T and U in terms of t and m, establish the

conformal similarity of the surfaces.

Suppose that G and H are any points on the first surface in the imme-
diate proximity of R, and that G' and H' are the corresponding points on

the second surface in the immediate proximity of R': then the conformal

similarity requires, and is established by, the conditions : (i), that the ratio

of an arc RG to the corresponding arc R'G' is the same for all infinitesimal

arcs conterminous in R and R' respectively; and, (ii), that the inclination

of any two directions RG and RH is the same as the inclination of the

corresponding directions R'G' and R'H'. Let the coordinates of G and of H
relative to R be dx, dy, dz and Sx, 8y, Sz respectively; and those of G' and

of H' relative to R' be dX, dY, dZ and BX, BY, 8Z respectively. Let ds

denote the length of RG and dS that of R'Gr' ; let m be the magnification of

ds into dS, so that

dS = mds,

a relation which holds for every corresponding pair of infinitesimal arcs

at R and R'.

By the expressions of x, y, z in terms of t and u, we have equations of

the form

dx = adt + a'du, dy = hdt + h'du, dz = cdt + c'da,

where the quantities a, b, c, a', b', c' are finite. Let there be some relations,

which must evidently be equivalent to two independent algebraical equa-

tions, expressing T and U as functions of t and u ; then we have equations

of the form

dX = Adt + A'du, dY= Bdt + B'du, dZ = Cdt + C'du,

where the quantities A, B, C, A', B', G' are finite and are dependent partly

upon the known equations of the surface and partly upon the unknown
equations of relation between T, U and t, u. Then

ds- = (a^ + b-+ c^) dt- + 2 (aa + bb'+cc') dtdu -1- {a- + b"' + c'^) dii:",

dS' = {A' -h 52 + C) df + 2{AA'+ BB' + CC') dtdu + (A'' + B'' + C'"-) du".

Since the magnification is to be the same for all corresponding arcs,

it must be independent of particular relations between dt and du ; and

therefore

A^ + BI+ C' _ A A' ^^R' ^CC' _ A"" 4- B"" +C
a^ + 62 + (f

-
a(j' ^ 11^' ^ cc' ~ a'2 + 6'2

-I- c'2
'

each of these fractions being equal to ??il
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Again, since the inclinations of the two directions RG, RH; and RG',

RH'; are given by

dsSscos GRH
= (a- + b- + C-) dtU + {aa + hh' + cc) {dthii + Udu) + {a- + h'- + c'-) duhi,

dSBS cos G'R'H'

= (A"-+ B-'+C')dt8t + (AA'+BB' + CCr)(df8a+ 8tdu)+ (A''+B'- + C'-')daBu,

we have, in consequence of the preceding relations,

m-dsBs cos GRH= dS8S cos G'R'H'.

But dS=inds, 8S = viB.s; and therefore the angle GRH is equal to the

angle G'R'H'. It thus appears that the two conditions, which make the

magnification at R the same in all directions, are sufficient to make the

inclinations of corresponding arcs the same ; and therefore they are two

equations to determine relations which establish the conformal similarity

of the two surfaces.

These two equations are the conditions that the ratio dS/ds may be

independent of relations between dt and du; it is therefore sufficient, for

the present purpose, to assign the conditions that dS/ds be independent of

values (or the ratio) of differential elements dt and du.

Now ds'^ is essentially positive and it is a real quadratic homogeneous

function of these elements ; hence, when resolved into factors linear in the

differential elements, it takes the form

ds- = V {dp + idq) (dp — idq),

where n is a finite and real function of t and u, and dp, dq are real linear

combinations of c?f and du. Similarly, we have

dS-"- = N{dP+ idQ) (dP - idQ),

where, again, iV is a finite and real function of t and u or of T and U, and

dP, dQ are real linear combinations of dt and du or of dT and dU. Thus

.^_N (dP + idQ)(dP-idQ)
11 (dp + idq) {dp — idq)

It has been seen that the value of m is to be independent of the values and

of the ratio of the differential elements.

Now taking

^ _ aa' + hh' -Jf cc' a'- + h'- + c'-

so that 6 and jy are, by the two equations of condition, the same for ds and

dS, and denoting by y^ the real quantity f </> - 0-)^, we have

dn- = (a' + b- + c^) [dt + du (d + r»| [dt + dn (6 - /»{,

and dS'= {A' + B' + C-) [dt + du{d + if)] [dt + du {9 - if)].
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Then, except as to factors which do not involve infinitesimals, the factors of

rfi- and of dS^ are the same. Hence, except as to the former factors, the

numerator of the fraction for rn^ is, qua function of the infinitesimal

elements, substantially the same as the denominator; and therefore either

, . dP + idQ ,dP-idQ „ . . . . .

(Of)
, . -7 and , ., are finite quantities simultaneously;
dp + idq dp — idq ^ ^ '

or

_^ dP + idQ .dP-idQ „ . . . . .

,

(p) , ., and -, 7-^ are finite quantities simultaneouslv.
dp — idq dp + idq ^ -^

Either of these pairs of conditions ensures the required form of m, and so

ensures the conformal similarity of the surfaces.

£.v. Shew that both p and q satisfy the partial differential equation

{(4-a4)V(^l)]/=o.

Consider (a) first. Since (dP + idQ)l(dp + idq) is a finite quantity, the

difierentials dP + idQ and dp + idq vanish together, and therefore the quan-

tities P + iQ and p + iq are constant together. Now P and Q are functions

of the variables which enter into the expressions for p and q ; hence P + iQ

and p + iq, in themselves variable quantities, can be constant together only if

P + iQ=fip + iq),

where/ denotes some functional form. This equation implies two independent

relations, because the real parts, and the coefficients of the imaginary parts,

on the two sides of the equation must separately be equal to one another;

and from these two relations we infer that

P-^Q-fAp-ig),
where / (p — iq) is the function which results from changing i into — i

throughout /(/> 4- iq) and is equal to f(p — iq), if ^. enter into /only through

it's occurrence in ^ + iq. From this equation, it follows that

dP - idQ

dp - idq

is finite ; and therefore a necessary and sufficient condition for the satisfaction

of (a) is that P, Q and p, q be connected by an equation of the form

P + iQ=^f{p + iq).

Moreover, the- function / is arbitrary so far as required by the preceding

analysis; and so the conditions will be satisfied, either if special forms

of / be assumed or if other (not inconsistent) conditions be assigned so

as to determine the form of the function.

Next, consider (/3). We easily see that similar reasoning leads to the

conclusion that the conditions are satisfied, when P, Q and j'j, q are connected

by an equation of the form

P + iQ = g(p-iq);
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and similar inferences as to the use of the undetermined functional form of g
may be drawn. Hence we have the theorem :—

Parts of two surfaces may he made to correspond, point by point, in

such a way that their elements are similar to one another, by assigning

any relation betiueen their parameters, of either of the forms

P + iQ=f(p + iq). P + iQ = g{p-iq);

and every such correspondence betiueen two given surfaces is obtained by the

assignment of the proper functional form in one or other of these e(piations.

Ex. In establishing this conformal representation, only small quantities of the first

order are taken into account. Sketch a method whereby it would be possible to evaluate,

to a higher order of small quantities, the magnitude

dS ds
'

where dt<, dS' are two small conterminous arcs on one surface, and ds, ds' are the

corresponding small conterminous arcs on the other surface. (Voss.)

254. Suppose now that there is a third surface, any point on which

is determined by parameters X and /j, ; then it will have conformal similaritj-

to the first surface, if there be any functional relation of the form

\ + ifjb^ h (p + iq).

-But if h~^ be the inverse of the function A, then we have a relation

P + iQ=f{h-^(X + i^)}

^F{X + ifi),

which is the necessary and sufficient condition for the conformal similarity

of the second and the third surfaces.

This similarity to one another of two surfaces, each of which can be made
to correspond to a third surface so as to be conformally similar to it, is an

immediate inference from the geometry. It has an important bearing, in

the following manner. If the third surface be one of simple form, so that its

parameters are easily obtainable, there will be a convenience in making it

correspond to one of the first two surfaces so as to have conformal similarity,

and then in making the second of the given surfaces correspond, in conformal

similarity, to the third surface which has already been made conformajly

similar to the first of them.

Now the simplest of all surfaces, from the point of view of parametric

expression of points lying on it, is the plane: the parameters are taken to

be the Cartesian coordinates of the point. Hence, in order to map out two

surfaces so that they may be conformally similar, it is sufficient to map
out a plane in conformal similarity to one of them and then to map out

the other in conformal similarity to the mapped plane : that is to say, lae
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may, without loss of generality, make one of the surfaces a plane, and all

that is then necessary is the determination of a law of conformation.

We therefore take P = X,Q= Y, N=l: and then

F + iQ = X + iY=Z,

where Z is the complex variable of a point in the plane ; and the equations

which establish the conformation of the surface with the plane are

ds- = n (dp'- + d(f)
j

X + iY=f{p-^iq)

mhi =/ {p + iq)f; (p - iq) J

where/i (/J — ^5') is the form o{ f(p + iq) when, in the latter, the sign of i is

changed throughout.

As yet, only the form P + iQ =f(p + iq) has been taken into account.

It is sufficient for our present purpose, in regard to the alternative form

P + iQ = g(p — iq}, to note that, by the introduction of a plane as an inter-

mediate surface, there is no essential distinction between the cases*. For

as P ^ X, Q= Y, we have
X + iY= g (p-iq),

and therefore X — iY=g^{p + iq),

which maps out the surface on the plane in a copy, differing from the copy

determined by
X + iY= g,{p + iq),

only in being a reflexion of that former copy in the axis of X. It is therefore

sufficient to consider only the general relation

X^-iY=f{p + iq).

Ex. We have an immediate proof that the form of relation between two planes, as

considered in § 9, is the most general form i^ossible. For in the case in which the

second surface is a j^h^ne, we have ds- = dx'''-\-di/", so that ?i= l, p= .v, q=y- hence the

most genei-al law is

X-\-iY=f{x+ iy),

that is, io=f{z),

in the earlier notation. Some illustrations arising out of particular forms of the function

/ will be considered later (§ 257).

255. In the case of a surface of revolution, it is convenient to take ^
as the orientation of a meridian through any point, that is, the longitude of

the point, a as the distance along the meridian from the pole, and q as

the perpendicular distance from the axis ; there will then be some relation

between a and q, equivalent to the equation of the meridian curve. Then

ds- = da- + q-dcf)''

= q^{d(f>' + dd'),

* A discussion is given by Gauss, Ges. Werke, t. iv, pp. 211—216, of the corresponding result

wheu neither of tlie surfaces is plane.
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where dO = — , so that ^ is a function of only one variable, the parameter of

the point regarded as a, point on the meridian curve. Here n=q-; and so

the relation, which establishes the law of conformation between the plane

and the surface in the most general form, is

*• + iy =/(</> + i^)

;

and the magnification m is given by

m-(f^f{<b + ie)f;{4>-id).

Evidently the lines on the plane, which correspond to meridians of

longitude, are given by the elimination of 6, and the lines on the plane,

which correspond to parallels of latitude, are given b}- the elimination of </>,

between the equations

2x =ficf> + id)+f,{6-{d)

Ex. 1. A plane map is made of a surface of revolution so that the meridians and the

parallels of latitude are circles. Shew that, if (>•, a) be the polar coordinates of a point on

the map determined by the point {6, ^) on the surface, then

?^^ = - 2ac {ae""^ cos 2{c(f)+g) + b cos {g + k)},

—I— = 2ac {ae
''^

sin 2 (f0 +g) + b sin (g + h)},

where «, b, c, g, h are constants.

Prove also that the centres of all the meridians lie on one straight line and that the

centres of all the parallels of latitude lie on a perpendicular straight line. (Lagratige.)

Ex. 2. Prove that, in a plane map of a surface of revolution, the cur\ature of a

meridian at a point ^ is ^ (
-—

j
, and the curvature of a i)arallel of latitude at a point

is s-T (
— ). Hence shew that, if the meridians and the itarallels of latitude become

d(^ \mq)

circles on the plane map given by

the function /and the conjugate function/] must satisfy the relation

{/ (^ + i^i = !/i, <^-i6\,

where {/, \x.\ is the Schwarzian derivative. (Lagrange.)

Ex. 3. On the surface of revolution, let

\//-=: - Ai iin-ijJa,

where m, y, a- have the signitications in the text; shew that and y^ satisfy the equation

where Zi, z^ are the conjugate complexes .'• + ?)/ in the piano. ("Korkine.)
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256. The surfaces of revolution which occur most frequently in this

connection are the sphere and the prolate spheroid.

In the case of the sphere, the natural parameter of a point on a great-

circle meridian is the latitude A,. We then have da = ad\, where a is the

radius ; and q = a cos \, so that

ds- = a'^dX^ + ft- cos- Xdcfy^

= or cob'X {d(f>- + d'^^

where sech '^ = cos \. Hence we have

X + iY=f(cf> + i^);

and the magnification m is given by

ma cos \ = {/' (</) + 1^)// (0 - i'^)]K

There are two forms of / which are of special importance in representa-

tions of spherical surfaces.

First, let /(/u,) = ^>, where k is a real constant ; then

X + iY=k{cf) + i'^),

and therefore X = kef), Y — k^ = k sech"^ (cos A,)

;

that is, the meridians and the parallels of latitude are straight lines,

necessarily perpendicular to each other, because angles are conserved.

The meridians are equidistant from one another ; the distance between

two parallels of latitude, lying on the same side of the equator and

having a given difference of latitude, increases from the equator. We
have f ((f>

+ i^) =^ k = f\' ((f)
— i'^); and therefore

m = - sec A,,

a

or the map is uniformly magnified along a parallel of latitude with a

magnification which increases very rapidly towards the pole. This map is

known as Mercators Projection.

Secondly, let/(^t) = ke^'^'^, where k and c are real constants ; then

.Y + iY = ke^"
<*+''^' '= ke'"^ (cos cc/) -I- i sin C(/>),

and therefore X = ke-""^ cos c^ and F= ke-"^ sin c^.

For the magnification, we have

/'
((^ + /^) = Icke" <*+'^' and // (</> - i^) = - icke'^'' »*-'^',

so that mil cos \ = cke~'^^,

ck , , c^(l-sinX)i"'-"
or m =— e '^ sec A, = - ... . ^ ,

-
,

,, .

a a (1 -f sni X)^«'+"

F. F. .39
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The most frequent case is that in -which c = 1. Then the meridians are

represented by the concurrent straight lines

Y= X tan
(f)

:

the parallels of" latitude are represented by the concentric circles

X^+Y^ = k^e-^- = f^\-''''^,
1 + sm A,

the common centre of the circles being the point of concurrence of the

lines: and the magnification is

k

a{l + sinX)

'

This map is known as the stereogrwphic projection. The South pole is the

pole of projection.

It. is convenient to take the equatorial plane for the plane of z : the

direction which, in that plane, is usually positive for the measurement of

longitude, is negative for ordinary measurement of trigonometrical angles.

If we project on the equatorial plane, we have

which gives a stereographic projection.

Ejc. 1. Prove that, if x, i/, z be the coordinates of any point on a sphere of radius a and

centre the origin, every plane representation of the sphere is inchided in the equation

for varying forms of the function/'.

Kr. 2. In a stereographic projection of a sphere, the complex variable of a i)oint

corresponding to a point Pon the sphere is x-\-iy. Prove that the complex ^•ariable of the

j)oint, which corresponds to the point diametrically opposite to /*, is —^ .

X — ly

Ex. 3. Two conformal representations of the surface of a sphere on a plane are given

by Mercator's projection and a stereographic projection. Find the form of relation which

will transform these projections into one another.

Ex. 4. Shew that rhuml)-lincs (loxodromes) on a sphere become straight lines in

Mercator's projection and equiangular spirals in a stereographic.projection.

Ex. 5. A great circle cuts the meridian of reference (0 = 0) in latitude a at an angle a
;

shew that the corresponding curve in the stereographic projection is the circle

{X+ k tan af-\-{Y-'r k cot n sec a)^=F sec- a cosec- a.

Ex. 6. A small circle of angular radius r on the sphere has its centre in latitude c and

longitude a ;
shew that the corresponding curve in the stereograi)hic projection is the

circle

/ -, X-cosccoso\2 / /• cose sin a\-_ X-- sin^ r

\ cosr+ siuf,/ \ cos?-+ sinc/ (cosr+ sinc)'-^"
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The less frequent case is that in which the constant c is allowed to

remain in the function for the purpose of satisfying some useful condition.

One such condition is assigned by making the magnification the same at

the points of highest and of lowest latitude on the map. If these latitudes

be Xi, X., then

(1 - sin Xi) ^
"^-1' _ (Ij^ sin X,)^'"-^'

(1 +7in^x7)* ''^'' ~ (TT sinXy^i^^^
'

so that

/l_-sinXA /l+sinXA
«U-sin\J^ «U+smxJ

^ \1 - sm Xj ^ VI + sm Xo

This representation is used for star-maps : it has the advantage of leaving

the magnification almost symmetrical with respect to the centre of the map.

Ex. Prove that the magnification is a minimum at points in latitude arc sin c. «

Shew that, if the imxp be that of a belt between latitudes 30° and 60°, the magnification

is a minimum in latitude 45° 40' 50"; and find the ratio of the greatest and the least

magnifications.

Note. Of the memoirs which treat of the construction of maps of

surfaces as a special question, the most important are those of Lagrange*

and Gauss f. Lagrange, after stating the contributions of Lambert and of

Euler, obtains a solution, which can be applied to any surface of revolu-

tion ; and he makes important applications to the sphere and the spheroid.

Gauss discusses the question in a more general manner and solves the

question for the conformal representation of any two surfaces upon each

other, but without giving a single reference to Lagrange's work.: the

solution is worked out for some particular problems and it is applied, in

subsequent memoirs J, to geodesy. Other papers which may be consulted

are those of Bonnet§, Jacobij], Korkine1[, and Von der Mtihll**; and there

is also a treatise by Herz^f'f,

But after the appearance of Riemann's dissertation :|:|, the question

ceased to have the special application originally assigned to it ; it has

gradually become a part of the theory of functions. The general develop-

ment will be discussed in the next chapter, the remainder of the present

* Nouv. Mem. de VAcad. Roy. de Berlin, (1779). There are two memoirs: they occur in his

collected works, t. iv, pp. 635—692.

t Schumacher's Astr. Abh. (1825); Ges. Werke, t. iv, pp. 189—216.

X Giitt. Abh., t. ii, (1844), ib., t. iii, (1847); Ges. Werke, t. iv, pp. 259—340.

S Liouville, t. xvii, (1852), pp. 301—340.

Crelle, t. lix, (1861), pp. 74—88; Ges. Werke, t. ii, pp. 399—416.
* Math. Ann., t. xxxv, (1890), pp. 588—604.

* Crelle, t. Ixix, (1868), pp. 264—285.

tt Lehrbuch der Landkartenprojectiouen, (Leipzig, Teubner, 1885).

XX " Grundlageu fiir eine allgenieine Theorie der Fuuctionen einer veranderlichen complexen

Gri'isse," Gottingen, 1851 ; Ges. Werke, pp. 3—45, especially § 21.

39—2
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chapter being devoted to some special instances of functional relations

between w and z and their geometrical representations.

The following examples give the confornial representation of the respective surfaces

upon a plane or a part of a plane.

Ex. 1. A i)oint on an oblate spheroid is determined by its longitude I and its

geographical latitude \x. Shew that the surface will be conformally represented upon a

plane by the equation

for any foi-ni of the function /'; where sech<^ = cos^, and e is the eccentricity of the

meridian.

Also shew that, if the function / be taken in the form /(?«)= ^e*«", the meridians in

the map are concurrent straight lines, and the parallels of latitude concenti-ic circles ;• and

that the magnification is stationary- at points in geographical latitude arc sin c. (Gauss.)

Ex. 2. Let the semi-axes of an ellipsoid be denoted by p, {p^-h-y^., {p^-c^y-, in

descending order of magnitude. Shew that the surface will be conformally represented

upon a plane by the equation

A +.} =/{A(. + r.) + ilog^|^^-^^^A__j|

for any form of the function /; where u and v are expressed in terms of the ellii^tie

coordinates pj and p^ of a point on the surface by the equations

\p-

6= c dn a,

and the value of the constant /( is tn a dn a - Z (a). (Jacobi.)

Ex. 3. The circular section of an anchor-ring by a plane through the axis subtends an

angle n- - 2f at the centre of the ring, and the position of any point on such a section is

determined by I, the longitude of the section, and by X, the angle between the radius from

the centre of the section to the point and the line from the centre of the section to the

centre of the ring.

Shew that, by means of the equations

tan iX= cot he tan (ttj/ tan e),

the surface of the anchor-ring is conformally represented on the area of a rectangle whose

sides arc 1 and cote. (Klein.)

Ex. 4. Consider the surfcxce generated, by revolution round the axis of y, of the curve

whose equations are
.*' = a sin t,

J/'
= a (cos ( + log tan It),

sometimes called the tractrix.

The radius of curvature of the curve is —a cot t ; the lengtli of the noi-mal intercepted

between the curve and the axis of ^' is atan^ Hence the Gauss measure of curvature of

the surface of revolution is — 1/a^, that is, the surface of revolution is one of constant

negative curvature. Surfaces of the same measure of curvature can be deformed into one

the modulus is -
(

-^,—7-;, ] , the constant a is given by
c \p~-b-J
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another; in particular, when the measure is constant, the .surface is appHcable upon itself

in an infinite variety of ways*.

The arc-element of the surface of revolution is given by

ds- = dx - + di/' - + x - dff)-

= d^ cot^ t dt- + a- sin- 1 d(f>-

„ . „ / , , .> cos- 1 J .,\= a^ sui-^ t d(b- + .
'.- dt- .

V ^ sin*;;- /

Let a new variable yj/- be introduced by the relation

cos

«

so that

then the arc-element is given bv

When we write

this becomes

^=
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257. It was pointed out (§ 254) that the conformation of surfiiees is

obtained by a relation

P + iQ=.f{p + iq),

and therefore that the conformation of planes is obtained by a relation

whatever be the form of the function /, or by a relation

(/) {w, z) = 0,

whatever be the form of the function (^. Some examples of this conformal

representation of planes will now be considered ; in each of them the

representation is such that one point of one area corresponds to one (and

only one) point of the other.

Ex. 1. Consider the correspondence of the two i)lanes represented by

{a-h) iiP' - -Iziv + {a + b) = 0,

that is,

^
IV

Let r, 6 be the coordinates of any jjoint in the ;y-plane : and .i-, y the coordinates of any

point in the z-plane : then

>

2x-- :[(a-6)r+ ^^^]cos^, 2yJ^{a-h)r-''±^']^,n

Hence the 2-curves, corresponding to circles in the w-plane having the origin for their

common centre, are confocal ellipses, 2c being the distance between the foci, where

c2= a2-62: and the s-curves, corresponding to straight lines in the jo-plane passing

through the origin, are the confocal hyperbolas, a result to be expected, liecause the

orthogonal intersections must be maintained.

Evidently the interior of a ?<;-circle, of radius unity and centre the origin, is, by the

above j-elation, transformed into the part of the j-plane which lies outside the ellipse

a;'^la^+y^lb^=l, the wvcircuraference being transformed into the ^-ellipse.

Ex. 2. Discuss the correspondences ?6's^= l, w+ Z'=\.

Ex. 3. Consider the correspondence implied by the relation

, _ 1 /2A' \ , , . . , , 2K
k -^ ?y= sn — s =sn z, where .r +??/ =s = — z,

\ TT J TT

with the usual notation of elliptic functions. Taking w=A'+ iy, we have

k-^{X+ir) = m{x' +{>/')

sn Jt;' en ly' dn iy'+an iy' en .r' dn x'^
l-k'^sn^x'ar^Hy'

'

Let y'=±lK' : then nn iy'= ± ^- , en iy'=^ . , dniy=v'^l +^% so that

._j „ .„^_1+^- sn.r' I cnj7'dn.r'
'^^

' ^~
H-h 1 + ^' «ii^ >'•' ~ /ij 1 +^ sn2 x'

'

, ^ (! + >{.•) sn.r' -^ .cn.r'dn.r'

l+/(;sn2.r'
' -I+^-su^.t"

and therefore A'^ + Y- = 1

,
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which is the curve in the ;r-plaiie corresponding to the Hnes y'=±\K' in the ;'-plane,

TvK'
that is, to the lines */= ± ^-f^

in the c-plane.

When 11= +^^ and x' lies between A' and - A', that is, x Hes between in- and - \n, then

}' is positive and X varies from 1 to - 1 ; so that the actual curve corresponding to the

line J/=jj-' is the half of the circumference on the positive side of the axis of A'.

Similarly, the actual curve corresponding to the line y = - --jr- is the half of the circum-

ference on the negative side of that axis'.

The curve hereby suggested for the z-plane is a rectangle, with sides .r=±|7r,

?/=+——. To obtain the iy-curve corresponding to .r= i7r, that is, to x'= K, we have

, 1 , -.^ . ,^v en iy'

so that r=0 and X=tJJ
I en ly

dn iy'

'

Now 7/' varies from ^K' through to -iA"': hence X varies from 1 to k"^ and back

from k^ to 1. Similarly, the curve corresponding to x= — ^tt,

that is, to x'=— K, is part of the axis of .Y repeated from

-1 to -k^ and back from - k^ to -1.

Hence the area in the zi'-plane, corresponding to the rect-

angle in the 2-plane, is a circle of radius unity with two diametral

slits from the circumference cut inwards, each to a distance k^

from the centre.

The boundary of this simply connected area is the homo-

logue of the boundary of the 2-rectangle given hj x= ±|7r,

y=+^-TF : the analysis shews that the two interiors corre-

spond*. And the sudden change in the direction of motion of the ?'>point at the inner

extremity of each slit, while z moves continuously along a side of the rectangle, is due to

the fact that dw/dz vanishes there, so that the inference of § 9 cannot be made at this

point. (See also Ex. 15.)

Corollary. We pass at once from the rectangle to a square, by assuming K' =-- 2A' ; then

k= {j2- 1)-, and the corresponding modifications are easily made.

Ex. 4. Shew that, if z=s,n^{^w,k) where w= u+ w, then the curves « = constant,

«; = constant, are confocal Cartesian ovals whose equations may be w'ritten in the form

/'i
- r dn {u, k)= en (m, k\ r^ -f r dn (y i, k') = en (y«, k'),

where r and r^ denote the distances from the foci 2=0 and z= \.

If /'a
denote the distance of a point from the third focus 2= 7, fi»d the corresponding

equations connecting r, r^; and r^, r.^.

Shew that the curves u= K, v= E' are circles, and that the outer and the inner branches

of an oval are given by u and 2K-u, or by and 2K' -v. (Math. Trip., Part II., 1891.)

* For details of correspoDding curves in the interiors of the two areas, see Siebeck, Crelle,

t. Ivii, (1860), pp. 359—370 ; ib., t. lix, (1861), pp. 173—184 : Holzmiiller, treatise cited (p. 2, note),

pp. 256—263 : Cayley, Camh. Phil. Trans., vol. xiv, (1889), pp. 484—494, Collected iMathematical

Papers, vol. xiii, pp. 9— 19.
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Ex. 5. The ii'-i)lane is conformally represented on the r-plane by the equation

ih

c \l—ivj '

where /< and c are real positive constants.

Shew that, if an area be chosen in the ?f-plane included within a circle, centre the

origin and radius unity, and otherwise bounded by two circles centres 1 and - 1 (so that

its whole boundary consists of four circular ares), then the corresponding area in the

2-plane is a portion of a ring, bounded by two circles, of radii ce'' and ce~'' and centre the

origin, and bj' two lines each passing from one circle to the other.

Prove that, when the serai-circles in the w-plane are very small, so as merely to

exclude the points 1 and —1 from the circular area and boundary, the corresponding

:-figure is the ring with a single slit along the axis of real quantities*.

Ex. fi. Consider the correspondence implied by the relation

z=c sin w.

Taking ?c= A'+iF, we have

x+ iy= c sin {X+ iY)

= c sin X cosh Y+ ic cosX sinh Y,

so that X= c sin ^ cosh F, y= c cos A' sinh Y.

When }" is constant, then z describes the curves

c^ cosh^ Y c^ sinh'' Y
which, for different values of Y, are confocal ellipses.

Now take a rectangle l^dng between X—±\i
cos X is positive : hence when Y= + X, ?/

is positive and x varies from c cosh X to

— e cosh X, that is, the half of the ellipse on

the positive side of the axis of y is covered.

Let A'= — ^TT : then

y= and x= -ccosh Y.

As Y varies from +A through to —X
along the side of the rectangle, x passes

from B to n (the focus) and Ijack from H
to D.

For all values of X,

Fig. 87.

When Y= -X, then z describes the half of the ellipse on the negative side of the axis

of y : when A'= -l-i7r, then y = 0, x= c cosh J", so that z passes from A to S (a focus) and

back from ,S to J

.

Hence the 2-curve corresponding to the contour of the «;-rectangle is the ellipse

with two slits from the extremities of the major axis each t(

analytical relations shew that the two interiors correspond.

Ex. 7. Considei- the correspondence implied by the relation

'2
A'

. ,:\ fiK

the nearer focus : the

(^--'0=™(vO
From Ex. 3

unity,

it f(i that the interior of a circle, centre the origin and radius

rresponds to the interior of the ^-rectangle bounded by x=±\Tr, y— ±-tj^ ,

* See reference, p. 488, note.
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7

provided two diametral slits be made in the w-circle along the axis of .v to distances

1-^- ft'om the circumference ; and, from Ex. 6, it follows that the same ("-rectangle is

transformed into the interior of the ^-ellipse

where a=cco.sh -^ „ and 6=csinh—p ,
provided two .slits be made in the elliptical area

aloiig the major axis from the curve each to the nearer focus.

Thu.>5, by means of the rectangle, the interiors of the slit (?;-circle and the slit r-cUipse

are shewn to be conformal areas.

But the lines of the two slits are conformally equivalent by the above equation. For

the slit on the jiositive side of the axis of x extends from x—c to .r= ccoshX, where

X= -—7^ , and it has been described in both directions: we thus have
4A

z = c cosh /3,

where /3 passes from to X and back from X to 0. Hence

sin - 1 - = sin- 1 (cosh /3) = i tt + z/3,

so that the corresponding ^^'-curve is given by

Ic -'»j= sn Ah ^

Then, when /3 a.ssumes its values, w passes from 1 to k^ and back from k^ to 1, that is,

w describes the circular slit on the positive side of the axis of X.

Similarly for the two slits on the negative side of the axis of real quantities. Thus

the two slits may be obliterated : and the whole interior of the ?fvcircle can be represented

on the interior of the ^-ellipse.

From the equations defining a and 6, it follows that

(^) ^'
, 7x .T TtA''
^a—b\- —v^

in the Jacobian notation ; and c'^=cfi- b-.

Combining the results" of Ex. 1 and Ex. 7, w^e have the theorem* :

—

The part of the z-plane, which lies outside the ellipse x'^la^-\-y'^jh'^=\, is transformed

into the interior of a w-circle, of radius unity and centre the origin, by the relation

(a - b) tv^ - 2ziv+ {a + b) = ;

and the part of the z-plane, which lies inside the same ellipse, is transformed into the interior

of the same w-circle by the relation

k- 2 ?r= sn [^ sin-i {z {a^-b'^y i}1

,

v)here the Jacobian constant q which determines the constants of the elliptic functions, is

given by

fa- by

* Schwarz, Ges. U'erke, t. ii, pp. 77, 78, 102—107, 141.
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Ex. 8. Investigate the equations that effect the couformal representation of the

annular region between two confocal elhpses, whose semi-axes are ao, h^ and aj, ij, upon
the annular region between two coaxal circles whose limiting points are A and B. Prove

that, if the circles cut BA produced in Pq and Pj, then the ratio (ai + 6i) : (cfo + ^o) i^ one

of the anharmonic ratios of the range {BA, PqP{). (Math. Trip., Part II., 1896.)

Ex. 9. Consider the correspondence implied by the relation

{iv-\r\fz=A.

"When w describes a circle, of radius unity and centre the origin, then w= e'" : so that,

if r and 6 be the coordinates of z, we have

^(cos^-2"sin^) = (H-e''"')2,

or -^ ( cos -- i sin -
j
= 1 + e*' = 1 + cos + i sin ^.

^^^^^2-^ +.^'"-2 = ^'Hence
'

that is, rcos^ q~^>

shewing tliat z then describes a paral)ola, having its focus at the origin and its latus

rectum equal to 4.

Take curves outside tlie parabola given by

where /n is a constant ^1. Then

r=fj:^Hec^~,

1 1-— = - cos i(9,

so that 10+ 1 =~ e- ^^'= ^e- ^«'' cos ^

2 1
therefore A'+ 1 =- cos- ^6= - (1 +cos 6),

fi - ft

Y=-~ sin 0,

so that {x+ ] - ^y + 7 - 2

,

a series of circles touching at the point A'= — 1, V=0, and (foi' fi varying from 1 to x)
covering the whole of the interior of the w-circle, centre the origin and radius unity.

Hence, by means of the relation (w+ 1)2 2=4, the exterior of the 2-space bounded l)y

the parabola is transformed into the interior of the ?c-space bounded by the circle.

Ex. 10. Shew that, if z (</•"- l)--f 4w" = 0, the curves in the w-plane corresponding to

the real axis in the 0-plane are three arcs of circles ; and find the angles at which they cut.

Ex. 11. Prove that the infinite lialf-.strip in the z-plane, bounded by

0^.r<27r, 0^7/,

is represented u])on the interior of a w-circle of radius unity by the relation

1—i cos i z

\+icoH^z'
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E.v. 12. Consider the correspondence implied by the relation

w=tan- {\iTZ~).

We have = cos (hirz^) = cos {^nr- e-),
l-\-w ^- ' ^-

so that, if ir+ \ = Re®\ u = ^ir7-i cos ^d, v= ^irr^ sin ^6,

then 2R-^ cos - 1 = cos m cosh v,

•2R~^ sin Q = sin u sinh i\

The H'-ciu've.s, corresponding to the confocal parabolas in the s-plane, are

(2cose-^)=^ 4sin'ie „„

cos^ u sm'' ti

1 f ?{ < ^TT, then 2R-^ cos e > 1, that is, R<2 cos 6 ; while, if u > Jtt, we have R>2 cos 6.

It thus appears that the ^-space lying within the parabola u='k7r, that is, ?'cos-^^= l,

is transformed into the interior of a »'-circle, centre the origin and radius unity, by means
of the relation

?r= tan2(i7r^^).

By the two relations* in Ex. 9 and Ex. 12, the spaces within and without the parabola

are conformally represented on the interior of a circle.

Ex. 13. Consider the relation

then, if z=A' + i9/ and ir=:A'+iY, we have

-•+^y-
x^+ii+Yf

When w describes the whole of the axis of X from - qc to + x , so that we can take

X=tan0, F=0, where (j> varies from —
-^ to +~, we have .r= cos20, ?/= sin2<^; and

z describes the whole circumference of a circle, centre the origin and radius 1. For

internal points of this circle l—x'^ — 9/^ is positive: it is equal to 'lY-^{X^ + {l + YY}, and

therefore the positive half of the ti'-plane is the area conformal with the interior of the

circle, of radius unity and centre the origin, in the s-plane.

Ex. 14. On the circle in the «-plane in the preceding example, three points ABC are

taken as the angular points of an equilateral triangle. Circles BA, AC, CB are drawn

touching OB, OA; OA, DC; DC, OB; respectively, where is the centre. Draw the

figure in the ?<7-plane corresponding to the curvilinear triangle ABC.

Ex. 15. Again, consider a relation

'z - zc\2

z+ ic)

We have Z+zT^ ^"^'+^'-^'^\-ff+ t^f
^''""'^^

-^_ 4c.r (c^ — x"^ —y"^)

~
{x'^+ {y+cff

Let x=0, so that F=0 ; then

A'-W
(^+cy \y+c)

•

Schwarz, Ges. Werke, t. ii, p. 146.
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As z passes from A to B (where OA = OB= c), then 7/ changes from -c to +c, and .\'

changes continuously from + x to 0.

Let x^+ )/'' — c^= 0, so th;it i'=0; then

where y= c con 6. Hence, as z describes the semi-circular

arc BCA, the angle 6 varies from to it and X changes

from to - 00

.

(The whole axis of X is the equivalent of AOBCA ; and

at the w-origin, corresponding to 5, there is no sudden

change of direction through \it. The result is apparently

in contradiction to § 9 : the explanation is due to the • Fig. 88.

dir
fact that ^ = at B, and the inference of i^ 9 cannot be made. Similarly for .1, where

^- is infinite. See also Ex. 3.)
az

For any point lying within the 2-semi-circle, both x and v'^-x'^-y^ are positive, so

that Y is positive. Hence by the relation

\z-\-%c)

the interior of the i-semi-circle is conformally represented on the positive half of the

??'-plane.

It is easy to infer that the positive half of the /r-planc is the conformal equivalent of

(i) the interior of the semi-circle ACBA by the relation w= (~—-] :^ \z+ icj

(ii) CBDC "•=(^y:

(iii) BDAB
,z - ic)

(iv) DACD "-(^
And, by combination with the result of Ex. 13, it follows tliat the relation

"'~
^2 - ic\ - ~ * 22 _ (.ii _ 2cz

i+\
- ic\-

conformally represents the interior of the 2-semi-circle ACBA on the interior of the

?(;-circle, radius unity and centre the origin.

Similarly for the other cases.

Ex. 16. Shew that, by the relation

2-+ 22-1
'22-22-1

the interior of the circle \iv
j

= l is conformally represented on the interior of a semi-circle

in the 2-plane.
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Ex. 17. Find a figure in the i--})lane, the area of which i.s conformally repre.sented on

the positive half of the ;r-plane by

(i) »•= .», (ii) "•=
(J^-')",

(iii) to=z-^{\-zY.

Ex. 18. Consider the relation

then X= ae~'J cos X, Y=ae~v sinx.

The curves corresponding to ?/= constant are concentric circumferences; those corre-

sponding to .r= constant are concurrent straight lines.

As X ranges from to ^tt, both X and Y are positive ; for a given value of x between

these limits, each of them ranges from to oo , as y ranges from oo to - qc . As .r ranges

from \iT to TT, X is negative and Y is positive ; for a given value of x between these

limits, - X and Y range from to oo , as ?/ ranges from oc to — qc .

Hence the portion of the ^-plane lying between y= — cc , ?/=oo, x= 0, .r= 7r, that is,

a rectangular strip of finite breadth and infinite length, is conformally represented by the

relation

w= ae*^

on the positive half of the w-plane. Combining this result with that in Ex. 13, we see

that the same strip is conformally represented on the area of a w-circle, centre the origin

and radius a, by means of the relation

w-\
-=raie*^

Ex. 19. Find a portion of the s-plane that corresponds, under the relation w= e", to

the interior of the circle

2,2 + ^,2=1;

and the portion of the !f'^plane that corresponds to the interior of a circle

.r- + 2/-= C-

in the 2-plane, for varying values of c.

Note. It may be convenient to restate the various instances of areas in the 2-plane,

bounded by simple curves, which can be conformally represented on the area of a circle

in the ?<;-plane:

(i) The positive half of the s-plane ; Ex. 13.

(ii) An infinite strip of finite breadth; Ex. 11, Ex. 18, Ex. 19.

(iii) Area without an ellipse; Ex. 1.

(iv) Area within an ellipse ; Ex. 7.

(v) Area without a parabola; Ex. 9.

(vi) Area within a parabola; Ex. 10.

(vii) Area within a rectangle ; Ex. 3.

(viii) Area within a semi-circle ; Ex. 16.

(ix) As will be seen, in j^ 258, any circle changes into itself by a proper homo-

graphic relation.
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Consider the correspondence implied by the relation

\+ivV
'

Then we have two values of m^, say (r/', »v', where

IVi^

l + z

Fig. 89.

Let z describe the axis of x, so that z= x.

When < :c < 1, then w^^ is real and less than

unity and ^2^ is real and greater than unity. Hence

drawing a circle in the M'-plane, centre the origin

and radius 1, and six lines as diameters making angles

of ^TT with one another, and denoting a cube root of

1 by a, then, as z passes from to 1 along the axis of .r,

i(\ passes 'from A to 0,

Wo A to A' (at infinity),

a«'i G to 0,

aw^ C to C" (at infinity),

a%i E to 0,

a-ivo E to E' {aX infinity).

When 1 <a7< 00 , then w^^ is a real quantity changing continuously from to - 1, and

«'./ is a real quantity changing continuously from - cc to — 1. As z passes from 1 to qc

along the positive part of the axis of x,

ivi passes from to F,

w^ />' (at infinity) to B,

ait'i to B,

aWo B' (at infinity) to Z),

ahvi to 1),

a-ic^ E' (at infinity) to F.

Hence, as z describes the whole of the positive part of the axis of x, the branches of ic

describe the whole of the three lines A'l)', B'E', C"E'.

When X is negative, we can take x= —tan- 0, so that (p varies from to ^n. Tiien

„ I — I tan d) - 2(4/

w,^=- . v = e ;

' 1 + 1 tan cf>

so that, as z passes from to - oo , Wj describes the arc of the circle from A to F, aic^ the.

arc from C to B, and ahvi the arc from E to JJ. And then

., 2<l>i

HO that ir-> describes the arc of the circle from A to B, uWo the arc from (' to JJ, and a-Wo

the arc from E to F. Hence, as z describes the whole of the negative part of the axis of x,

the branches of w describe the whole of the circumference.

As z describes a line parallel to the axis of x and very near it on the positive side, the

paths traced by the branches are the dotted lines in the figures; the six divisions, in

which the symbols are placed, are the contbrmal representations by the six branches of w
of the positive half of the i-plane*.

* Cayley, Camb. Phil. Trnii)!., vol. xiii, (1880), pp. 30, 31 ; Coll. Math. Papers, vol. xi, pp. 174, 175.
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Ex. 21. When the variables are connected* by a relation

•*»(f)

where 0,, is the function which in coefficients is conjugate to c^, then the ^-circumference,

centre the origin and radius c, is transformed into the w-circumference, centre the origin

and radius c.

Taking «„ and z,^ as the conjugate variables, we have

SO that xmv^-=——- ^) '
^ "/ .

Now if 4 describe the circumference of a circle, centre the origin and radius c, we have

z - ce^' , Z(^= ce~^^, zz^= c^,

so that wwq= c^,

shewing that to describes the circumference of a circle, centre the origin and radius c.

To determine whether the internal area of the s-circumference corresponds to the

internal area of the ?t'-circumference, we take zz^^= c^-e, where e is small. Then

</>o (j)
= <^o (^2o +y = <^o (2o) +

I
<^o' (5(i)

;

therefore ww^^= f2 IH—5-
-^ 1 - - -^^r r

" 1 - - "t^-n r

= (.2 + c^e /- - 1 ^lifl - 1 ^IlM
Ic2 io0(-') 2 0o(^o),

l 0(2) >o(2o)J'

so that the interior of the z-circumference finds its conformal correspondent in the interior

or in the exterior of the i<>-circumference according as

d)' (z) tin' (zo)

(-') 9o (2(0

taken along the circumference.

The simplest case is that in which ^ (2) is of degree m, so that it can be resolved into

m factors, say (f){z) = A (z-a) {z-^)...{z-d): then

*.(f)=^.g-«.)(^-A)...(f-^„),
and

A (^-a)(z-l3)...{z-e)

Aoc"

0-s^)('-^)-('-l^)
* Cayley, Crelle, t. cvii, (1891), pp. 262—277; Coll. Math. Papers, vol. xiii, pp. 191—205.
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But the converse of the result obtained—that to the ?4-circumference there corresponds
the 2-circurnference—is not complete unless the correspondence is (1, 1). Other curves
which are real—they may be, but are not necessarily, circles—and imaginary curves enter
into the complete analytical representation on the 2-plane corres2)onding to the ;r-circum-

ference, of centre the origin and radius c on the w-plane.

Ex. 22. Discuss the 2-curves corresponding to
|
w

|

= 1, determined by

ziz-sJl)

1-^22

Ex. 23. Consider the relation
' 4 (22-2 + 1)3

27 (z^-z)-'

(Cayley.)

We have £ (
(22-2+1)3_ (2^2_^^^+l)3^

"27
I (22-2)2 (2„2_,^)2 J

The function on the right-hand side, being connected with the expressions for the six

anhai-monic ratios of four points in terms of any one ratio, vanishes for

4 (2-2o) (22o- 1) (2+ 2o- 1) {z (2o- l)-2o) (zz^-z^+l) {z {z^-\)+\}

27 (22-2)2 (2o2-2o/^

X-\-ir, z= x+ ii/,

2= 2o, -, 1-2(1,

SO that

w — ?f'o

Hence, taking

we have

2 • y^± 2iy (.772+y2 _ 1) ^2x - 1) (A-2 +.y2 - 2x) {{x^+f -x+ \ )2 + ?/2}

27 {x^+fy^{x'^+y^-2x+iy^

Hence it appears that, when F=0, so that v traces the axis of real quantities in its own
plane, the 2-variable traces the curves

i/ = 0, .r2+y2_i=o,

2x-\= 0, A-2 +^2 _ 2^= 0,

that is, two straight lines and two circles in its

own plane.

In order to determine the parts of the 2-platie

that correspond to the positive part of the w-plane,

it is sufficient to take Y equal to a small positive

quantity and determine the corresponding sign of

>/. Let

where Y (and therefore ?/) is small : then, to a first

;ipj)roximation,
'

^27 x^(x-iy
^ 4 {lx-l){x+\){.v-2){x^-x+\r

and the sign of ^ determines whether the part on the positive or negative side of the axis
of .<• is to be taken.

When X <-l, (jl is negative; z lies below the axis of x. When .*• is in AO, so that
v> -I <0,fim positive

; z lies above. When x is in OB, so that x>0 <^,fi is negative

;

z lies below. When x is in BO, so that x > jf < I, ^ is positive; z lies above. When x is

in CD, so that x > I < 2, /x is negative; z lies below. And, lastly, wlien x is beyond J), so

Fig. 90.
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that .1' >2, fi is positive and z lies above the axis of real quantities. The parts are indicated

by the .shading in fig. 90.

It is easy to see that w= 0, for z= F, Q; that iv= \, for z= A, B, D; and that w= cd,

for z— 0^ C. The zero value of w is of triple occurrence for each of the points P and Q;
the unit value and the infinite value are of double occurrence for their respective points*.

Note. It is easy to see that figures 89 and 90 are two diflferent stereographic projections

of the same configuration of lines on a sphere (§ 277, I., ?i= 3), so that the relations in

Ex. 20 and Ex. 23 may be regarded as equivalent.

Ex. 24. Find, in the same way, the curves in the ^-plane, which are the conformal

representation of the axis of A' in the ^f-plane by the relation t

^ (2*+ .-4 +14)3
'"

108 (^+ 2-4 -2)^*

Ex. 25. Shew that, by the relation

the lines, .t-= constant in the 2-plane, are transformed into a series of confocal lemniscates

in the ?y-plane ; and that, by the relation

2^ (c2+ ^i?2_ 1 ) = c'Zf2,

where c is a real positive constant greater than unity, the interior of a 2-circle, centre

the origin and radius unity, is transformed into' the interior of the lemniscate RR'=c
in the w-plane, where R and R' are the distances of a point from the foci (1, 0) and

(-1,0). (Weber.)

258. The preceding examples | may be sufficient to indicate the kind

of correlation between two planes or assigned portions of two planes, that is

provided in the conformal representation determined by a relation {w, z) =
connecting the complex variables of the planes. We shall consider only one

more instance; it is at once the simplest and functionally the most important

of all§. The equation, which characterises it, is linear in both variables ; and

so it can be brought into the form

_az -\-h

cz + d'

where a, b, c, d are constants : it is called a hmnograpJcic transformation,

sometimes a homographic or a linear substitution.

Taking first the more limited form

A*"w = -

,

z

and writing w = Re'^, z = ?-e'"*, yu = A;-e-y\ we have

Rr = k\ (d + e = 27, that is, ©-7 = 7-6',

* See Klein-Fricke, vol. i, p. 70.

t See Klein-Fricke, vol. i, p. 75.

X Many others will be found in Holzmiiller's treatise, already cited, which contains ample
references to the literature of the subject.

§ For the succeeding properties, see Klein, Math. Ann., t. xiv, pp. 120—124, ib., t. xxi,

pp. 170—173; Poincar^, Acta Math., t. i, pp. 1—6; Klein-Fricke, Elliptische Modtdfimctionen,

vol. i, pp 163 et seq. They are developed geometrically by Mobius, Ges. Werke, t. ii, pp. 189—204,
205—217, 243—314.

F F. 40
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and therefore the new w-locus will be obtained from the old ^-locus by

turning the plane through two right angles round the line 7 through the

origin, and inverting the displaced locus relative to the origin. The first

of these processes is a reflexion in the line 7 ; and therefore the geometrical

change represented by wz = fi is sl combination of reflexion and inversion.

A straight line not through the origin and a circle through the origin are

corresponding inverses ; a circle not through the origin inverts into another

circle not through the origin, and it may invert into itself; and so on.

Taking now the general form, we have

a ad — be

or transforming the origins to the points - and in the w- and the ^--planes
c c

respectively, and denoting — by fi, we have WZ= fji, that is, the former

case. Hence, to find the w-locus which is obtained through the transforma-

tion of a 0-locus by the general relation, we must transfer the origin to —
,

turn the plane through two right angles round a line through the new origin

whose angular coordinate is ^ arg. f ^—
]

, invert the locus in the displaced

„ . . . ^ \bc — ad\ J ^, ,. , ^,

position with a constant or inversion equal to —
, and tnen displace the

origin to the point — . Hence a circle will be changed into a circle by a

homographic transformation unless it be changed into a straight line ; and

a straight line will be changed into a circle by a homographic transformation

unless it be changed into a straight line.

The result can also be obtained analytically as follows ; the formula^

relating to the circle will be useful subsequently.

A circle, whose centre is the point (a, /9) and whose radius is r, can be

expressed in the form

{2 -a- I3i) (z„ -a + /3i) = r-,

or zzo +O2 + 00^0 + 7 = 0,

where - 6 = ol - ^i, — 0o = a + ^i, j = 6d„ — 7--. Conversely, this equation

represents a circle, when 6 and do are conjugate imaginaries and 7 is real

;

its centre is at the point -^(6+60), ^i{6-6o), and its radius is {60,, - 7)^.

When the circle is subjected to the homographic transformation

az + b

cz + a

— dw + b J ^, r ~ f^oW'o + ^0

we have x = and therefore Zo = .

cw-a CqWo - "0
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Substituting these values, the relation between w and Wq is

h'luiVf) + 6'iu -\- O^'iVq + 7' = 0,

where 8' = ddo — ddc^ — docdo + ycco,

6' = — b^)d + dtiod + ducbo — yctto,

do = — hdo + OcJ) + doado — yc^a,

y = bbo — 6aob — d^abo + yaa^.

Here S' and 7' are real, and 0' and 6^ are conjugate imaginaries; therefore

the equation between w and W(, represents a circle.

Ki: 1. A circle, of radius r and centre at the point (e, /), in the 2-plane is transformed

into a circle in the w-plane, by the homographic substitution

az+ b
w= i

:

cz + a

shew that the radius of the new circle is

r
I

ad— be \

A
I

c2 I'

where A= (o- cos ^3+ e)2+ (o- sin ^ +/)2 - r^,

and (T, ^ are the modulus and the argument respectively of - . Find the coordinates of

the centre of the ?«>-circle.

Ex\ 2. The inverse of a point P, with regard to a circle, is Q ; and the inverse of Q,

with regard to any other circle is R. Prove that the complex variables of P and R are

connected by a homographic relation

^^az+^
yz+ 8'

Moreover, since there are three independent constants in the general

homographic transformation, they may be chosen so as to transform any three

assigned ^^-points into any three assigned i(;-points. And three points on a

circle uniquely determine a circle : hence any circle can be transformed into

any other circle (or into itself) by a properly chosen homographic transforma-

tion. The choice of transformation can be made in an infinite number of ways :

for three points on the circle can be chosen in an infinite number of ways.

A relation which changes the three points z^, z^, z^ into the three points

t^i, Wa, w-i is evidently

{W - Wi) (W2 - W3) _ {Z - Zi) (Zr, - Z3)

Hence this equation, or any one of the other five forms of changing the three

points z-^, Zo, z^ into the three points Wj, Wg, W3 in any order of correspondence,

is a homographic transformation changing the circle through z^, z.^, z^ into the

circle through iVi, w^, w^.

40—2
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It has been seen that a transformation of the form w =f{z) does not

change angles : so that two circles cutting at any angle are transformed by

w= , into two others cutting at the same angle. Hence* a plane crescent,

of any angle, can he transformed into any other crescent, of the same angle.

The expression of homographic transformations can be modifiedj so as to

exhibit a form which is important for such transformations as are periodic.

If we assume that w and z are two points in the same plane, then there

will in general be two different points which are unaltered by the transforma-

tion ; they are called the fixed (or double) points of the transformation.

These fixed points are evidently given by the quadratic equation

au + b
u = ;

,

cu + d

that is, cu^ — (a — d)u — b = 0,

Let the points be a and /S, and let M denote (d — a)- + 46c ; then

2ca = a-d + M^\ 2c/3 = a - d - il/i

If, then, the points be distinct, we have

10 — a. _ (z — a.)(a — ca) _ „ £• - a

w^ ~ {z-^) {a - CyS)
" 7^"^'

a — CO. a + d — M^
where K

and therefore

a-cjB a + d + M^'

V^'^Tk) -ad-^bc-

The quantity K is called the multiplier of the substitution.

If there be a 2^-curve in the plane passing through a, the ty-curve which

arises from it through the linear substitution also passes through a. To find

the angle at which the ^r-curve and the w-curve intersect, we have w = a+ 8w,

z=a+ 8z: and then

Bw = K8z,

so that the angle betAveen the tangents to the w-curve and the ^•-curve is the

argument of K. Similarly, if a ^-curve pass through yS, the angle between

the tangents to the ^-curve and the w-curve is the argument of K.

The form of the substitution now obtained evidently admits of reapplica-

tion ; if Zn be the variable after the substitution has been applied n times, (so

that z^ = z, Zi = w), we have

* Kirchhoff, Vorlcmngen ilher mathctnatiache Physik, i, p. 286.
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The condition that the transformation should be lieriodic of the ?ith order

is that Zn = z and therefore that /i" = 1 ; hence

(a + df = 4 (ad — he) cos- —
,

where s is any integer different from zero and prime to ?^ ; K cannot be

purely real, and, in general, M is not a real positive quantity. The
various substitutions that arise through different values of s are so related

that, if points z-^, z^, ..., Zn be given by the continued application of one

substitution through its period, the same points are given in a different

cyclical order by the continued application of the other substitution through

its period.

Note The formula in the text may be regarded as giving the nth. poiver of a substi-

tution. The form of the substitution obtained is equally effective for giving the nth. root

of a substitution : all that is necessary is to express K in the form p/', and the «th

root is then

^i-« 1 1 ,

Ex. 1. The value of 2„ has been given by Cayley in the form

{K^ + -^ -\){az + h) + {K'' - K){-dz-\-h)

(K^ + i-l){cz+ d) + {K^-K){cz-a)
"

obtain this expression.

Ki\ 2. Periodic substitutions can be applied, in connection with Kirchhoff's result

that a plane crescent can be transformed into another plane crescent of the same angle
;

the plane can be divided into a limited number of regions when the angle of the crescent

is commensurable with tt.

Let ACBDA be a circle of radius unity, having its centre at the origin : draw the

diameter AB along the axis of y. Then the semi-circle ACB can be regarded as a plane

crescent, of angle ^ir ; and the semi-circle ABD as another, of the same angle. Hence

they can be transformed into one another.

We can effect the transformation most simply by taking A { = {) and B{= -i)&^ the

fixed points of the substitution, which then has the form

tv — i

Z+ l

The line AB for the w^cnwe is transformed from the 2-circular arc ACB: these curves

cut at an angle ^tt, which is therefore the ai'gument of E. Considerations of symmetry

shew that the s-point C on the axis of x can be transformed into the ?c-origin, so that

-i+i
whence K^i, so that the substitution is

w-i _ .z — i

w+i~ z+i'

It is periodic of order 4, as might be expected : when simplified it takes the form

l+z
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The figure (fig. 91) shews the eflfect of repeated application of the substitution through

a i)eriod. The first application changes the interior of ACBA into the interior of ABBA :

by a second apiilication, the latter area is transformed into the area on the positive side of

the axis of y lying without the semi -circle ABB ; by a third application, the latter area is

'^3\

transformed into the area on the negative side of the axis of y lying without the semi-

circle A CB ; and by a fourth application, completing the period, the latter area is

transformed into the interior of ACBA, the initial area.

The other lines in the figure correspond in the respective areas.

Ex. 3. Prove that the substitution

zJZ + l

JS-z

is jjeriodic of order six ; express it in canonical form ; and trace the geometrical effect of

the application of the successive powers of the substitution upon

(i) the straight line joining i and -i ;

(ii) the semi-circle on the last line lying to the right of the axis of y.

Ex. 4. Shew that, if the plane crescent of Ex. 2 have an angle of -tt instead of

\tt but still have +i and - i for its angular points, then the substitution

z+t

where t denotes tan ^ , is a periodic substitution of order 2n which, by repeated appli-

cation through a period to the area of the crescent, divides the plane into 2?i regions, all

but two of which must be crescent in form. Under what circumstances will all the 2«

regions be crescent in form ?
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Ex. 5. If in the plane of the complex variable 2, two circles be drawn entirely exterior

to one another, sketch the proof of the theorem, that a function of z exists which is real

at the circumferences of these circles and, exterior to the circles, is everywhere finite and

continuous save at 2=x, where its infinite part is Az'\ A being a real assigned constant

and n an assigned positive integer.

If o, /3 be the complex arguments of the limiting points of those circles, and n, b the

modulus of upon the circles surrounding a, /3 respectively, express this function
z — a

2 h
in terms of ^u-^c; where pu is Weierstrass's elliptic function formed with 2 and —. log -

as periods, u= —. log (
- "-—-

)
, c=—^. log (

-
)

.

Determine the geometric meaning of the transformation -,—^ = (
-

)
—-

z — a \aj z — a

efifect upon the function

and its

<-)"a)"'"'"c^^

and state the relation connecting this function with ^u above.

(Math. Trip., Part II., 1893.)

259. Homographic substitutions are divided into various classes, according

to the fixed points and the value of the multiplier. As the quantities a, h,

c, d can be modified, by the association of an arbitrary factor with each of

them without altering the substitution, we may assume that ad — be = 1;

we shall suppose that all substitutions are taken in such a form that their

coefficients satisfy this relation. Figures which, by them, are transformed

into one another are called congi^uent figures.

If the fixed points of the substitution coincide, it is called* a parabolic

substitution.

There are three classes of substitutions, which have distinct fixed points.

If the multiplier be a real positive quantity, the substitution is called

hyperbolic.

If the multiplier have its modulus equal to unity and its argument

different from zero, it is called elliptic.

If the multiplier have its modulus different from unity and its argument

different from zero, it is called loxodromic.

These definitions apply to all substitutions, whether their coefficients be

real or be complex constants; when we consider only those substitutions,

which have real coefficients, only the first three classes occur. Such sub-

stitutions are often called real.

The quadratic equation, which determines the common points of a real

substitution, has its coefficients real ; according as the roots of the quadratic

* All these names are due to Klein : I.e., p. G05, note.
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are imaginary, equal, or real, the real substitution will be proved to be

elliptic, parabolic, or liyperholic respectively. For all of these, we take

d . a ,. .,^

c
^

c

which imply a transference of the respective origins along the respective axes

of real quantit}' ; and then

ad — he 1X + iY=-
c- re 4- 11/

X — iy

so that

c2 {x" + y")

1

y cM«^' + 2/')'

The axes of x and of X have been unaltered by any of the changes made in

the substitution ; and Y, y have the same sign and vanish together ; hence

the effect of a real transformation is to conserve the axis of real quantities, by

transforming the half of the ^--plane above the axis of x into the half of the

w-plane above the axis of X.

A real transformation, which changes z into w, also changes Zq into Wq

(these being conjugate complexes). A circle, having its centre on the

axis of X and passing through a, /3, passes through a^, ^q also: hence a

transformation, which changes a circle through a, /3 with its centre on

the axis of x into one through 7, 8 with its centre on the axis of X, is

z — a ^ — a,^ _iv — J S — 7o

z — a^,' /3 - a w — ry^^,' B — y
'

Ex. 1. Shew that, if this circle, through a, /3, oq, /3o, cut the axis of x in h aud k,

— h R — I-

where h Hes in ^/3o and / in aag, and if [a0] denote ~—y. ^—y, a real quantity greater

than 1, then

(«-«o)(/3-A.) .
4 [a/3]

rpoincare)

Ex. 2. Prove that the magnification at any point, by a real substitution, is Y/i/.

(Poincare.)

Ex. 3. Any 2-circle, having its centre on the axis of x, is transforniod by a real

substitution into a i<;-circle, having its centre on the axis of X
Ex. 4. Obtain the real transformation, which makes three points z= a, (i, y on the

real axis correspond to the three points v:=0, 1, 00, in the form

z-yfS-u

Ex. 5. The points «'= 0, 1, 00 can be grouped in six ways; liiul the set of transforma-

tions which change any one grouping into the rest of the groupings.
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Ex. 6. A circle, of radius unity and having its centre at the point 0, 1, is drawn in

the w-jilane. A very small slit is made in the circumference at the point 0, 2 ; and two

straight lines are drawn towards + oo from this point, just above and just below the real

axis, and practically coinciding with that axis.

Draw the figures in the s-plane which arise from this figure by the respective substitu-

tions

^_1 ^__ J_ z-\ _^_

Let the classes of real substitutions be considered in order.

(i) For real jMraholic substitutions, the quadratic has equal roots: let

their common value be a, necessarily a real quantity, so that the fixed points

of the substitution coalesce into one on the axis of x. The quantity M is

then zero, so that {d + a)'- = 4. We may, without loss of generality, take

0? + a = 2. If both origins be removed to the point a, then, in the new

form, zero is a repeated root of the quadratic, so that h = 0, and a — d = 0.

Hence a = d=\, and the real substitution is

cz + l

that is*, — =- + c.

w z

The equations of transformation of real coordinates are

2/_
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(ii) For real elliptic substitutions, a and /S are conjugate complexes

;

hence M is negative, so that

{d - ay + 46c < 0,

or {d + a)- < 4 {ad — he) < 4.

The value of K, by using the relation ad — be = I, is

K = ^ [(a + dy--2-i (a + d) |4 - (a + dy]^.

It is easy to see that
|
-^

|

= 1 and that its argument is cos~^ (^ (a + rf)'- — 1}, so

that, if this angle be denoted by a; we have

K = e'^,

shewing that the substitution is elliptic.

It is evident that, if ^^ describe a circle through a and /3, its centre being

therefore on the axis of x, then iv also describes a circle through a. and /3

cutting the ^-circle at an angle cr. The two curves together make a plane

crescent of angle cr having a, /3 for its angular points.

Ex. Shew that a real elliptic substitution transforms into itself any circumference,

which has its centre on a/3 produced and cuts the line afi harmonically. (Poincare.)

(iii) For real hyperbolie substitutions, the roots of the quadratic are real

and different; hence the fixed points of the substitution are two (different)

points on the axis of oc. The quantity M is positive, so that

(a + dy > 4 :

we may evidently take a + d > 2. Moreover K is real and positive, shewing

that the substitution is hyperbolic.

Taking one of the fixed points for origin and denoting by / the distance

of the other, we have and / as the roots of

au + b
u = ^,

eu + a

with the conditions ad - he = \, a + d > 2. Hence h — 0,a — d = cf, ad = 1,

-j ; then K is greater or is less than 1 according as cf is positive or is

negative. We shall take if > 1 as the normal case : and then the sub-

stitution is

az

K = ''

w =
ez + d'

with a>l>d, a + d>2, ad = 1.

Ex. 1. A 2-curve is drawn through either of the fixed points of a real hyperbolic

substitution : shew that the iv-c\\r\e, into which it is changed by the substitution, touches

the 2-curve. Hence shew that any s-circle through the two fixed points of the substi-

tution is transformed into itself.
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Ex. 2. Let A be a circle through the origin and the point / ; and let Cq be the other

extremity of its diameter through /. Let a real hyperbolic substitution, having the origin

and / for its fixed points, transform Cq into Cj, Cj into C2, c^ into C3, and so on : all these

points being on the circumference of J.

Shew that the radius of a circle C„, having its centre on the axis of x and passing

through Cn and the oi-igin, is

so that C„ is the locus of all the points c„ arising through diflFei-ent initial circumferences

A. What is the limit towards which C„ tends as n becomes infinitely great ?

Ex. 3. Apply the inverse substitution, as in Ex. 2, to obtain the corresponding result

and the corresponding limit.

Ex. 4. Prove that a curve of finite length will meet an infinite number, or only a

finite number, of the circles (7„, according as it meets or does not meet the circle having

the line joining the common points of the substitution for diameter.

{Note. All these results are due to Poincare.)

It follows, from what precedes, that no real substitution can be loxodromic

;

for, when the multiplier of a real substitution is not real, its modulus is

unity.

It is not difficult to prove that when a substitution, with complex

coefficients a, b, c, d, is parabolic, elliptic, or hyperbolic, then a + d is

either purely real or purely imaginary. In all other cases, the substitution

is loxodromic.

Any loxodromic substitution can be expressed in the form

V) — a. _ z — OL

the coefficients of the quadratic determining a and yS are generally not real,

and the multiplier K, defined by

2ir = (a + rf)^ - 2 - (a + d) [{a + df - 4}^

is a complex quantity such that, if

K = pe'",

where p and « are real, then p is not equal to unity and w is not zero.

Ex. Shew that, if a, b, c, d are real or complex integers and ad - be is equal to 1 or i,

the only possible elliptic substitutions are periodic of order 2, 3, or 6 : and construct an

example of each. (Math. Trip., Part IL, 1898.)

260. Further, it is important to notice one property, possessed by elliptic

substitutions and not by those of the other classes : viz. an elliptic substitution

is either periodic or infinitesimal.

Any elliptic substitution of which a and /8 are the distinct fixed points,

(they are conjugate imaginaries), can be put into the form

w — a_j,z — a



636 INFINITESIMAL AND PERIODIC SUBSTITUTIONS [260.

where K\ = 1 : let K '= e^. Then the mth power of the substitution is
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parabolic substitution. And in the case of a hyperbolic substitution, we
have

w,-^ z-f3'

where X, is a real quantity which differs from 1. No value of q gives Wf^

nearly equal to z for every value of z : hence the substitution is not infini-

tesimal. And it is not substitutionally periodic.

Similarly, a loxodromic substitution is not periodic, and is not infini-

tesimal.

Hence it follows that, in dealing with groups of substitutions of the kind

above indicated, viz. discontinuous, all the elliptic transformations which occur

must he substitutionally periodic : for all other elliptic transformations are

infinitesimal. It is easy to see, fi-om the above equations, that the effect of

an unlimited repetition of a parabolic substitution is to make the variable

ultimately coincide with the fixed point of the substitution ; and that the

effect of an unlimited repetition of a hyperbolic substitution is to make the

variable ultimately coincide with one of the fixed points of the substi-

tution. These common points are called the essential singularities of the

respective substitutions.

261. It has been proved (§ 258) that a linear relation between two

variables can be geometrically represented as an inversion with regard to a

circle, followed by a reflexion at a straight line. The linear relation can be

associated with a double inversion by the following proposition*, due to

Poincare :

—

When the inverse of a point P with regard to a circle is inverted with

regard to another circle into a point Q, the complex variables ofP and Q are

connected by a lineo-linear relation.

Let z be the variable of P, u that of its inverse with regard to the first

circle of centre/ and radius r ; let w be the variable of Q, and let the second

circle have its centre at g and its radius s. Then, since inversion leaves the

vectorial angles unaltered, we have

(u-f){Zo-fo) = r^

for the first inversion, and
(w - g) (wo - gn) = s'

for the second". From the former, it follows that

and therefore ,+ = /o — (fo,

1 J- . OLZ + ^leadmg to w = S.

,

7^ + 6

* Acta Math., t. iii, (1883), p. 51.
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where, when aS — /3y = 1, we have

rsa =g(f,- go) + S-,

rs^ - gr' -fs' -fg {f,
-

g,),

rsy =fo-go,

rsB ^-f{fo-go) + r":

This proves the proposition.

Moreover, as the quantities /, g, r, s are limited by no relations, and as,

on account of the relation aS — ^y = 1, there are substantially only three

equations to determine them in terms of a, /3, 7, S, it follows at once that the

lineo-linear relation can he obtained in an infinite number of ways by a pair of

inversions, and therefore in an infinite number of luays by an even number of

inversions.

Again, taking the two circles used in the above proof, we have

rs{a + h ±^^) = {r ± sf -{f- g){f- g,)

= {r ± sf - d%

where d is the distance between the centres of the circles. Hence a + 8

is real, and the sukstitution cannot be loxodromic. Moreover, if the circles

touch, the substitution is parabolic ; if they intersect, it is elliptic ; if they

do not intersect, it is hyperbolic.

Eliminating r and s between the equations which determine a, 13, 7, 8, we

find

so that, when one centre is chosen arbitrarily, the other centre is connected

with it by the linear substitution*.

Ex. 1. Shew that, if /and g lie on the axis of real quantities, so that the substitution

is real, then
'•'= (./-X)(/-/u), s^ = {g-\){g-^),

where X and fi are the fixed points of the substitution.

Hence prove that, if two real substitutions be given, it is generally possible to

determine three circles 1, 2, 3, such that the substitutions are equivalent to successive

inversions at 1 and 2 and at 1 and 3 respectively. Discuss the reality of these circles.

(Burnside.)

E.V. 2. Shew that, if a loxodromic substitution be rei)resented in the preceding

geometrical manner, at least four inversions are necessary. (Burnside.)

This geometrical aspect of the lineo-linear relation as a double inversion

will be found convenient, when the relation is generalised from a connection

between the variables of two points in a plane into a connection between the

variables of two points in space.

Burnside, Mess, of Math., vol. xx, (1891), pp. 163—166.
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NOTE.

Some applications of conformal representation to

mathematical physics.

It may be useful to give instances of the manner in which the analysis

arising in the theory of conformal representation is used in some branches

of applied mathematics. The branches selected are merely typical; they

are not exhaustive. In each instance, the account is at once elementary and

introductory ; for the fuller development, recourse may be had to the respec-

tive authorities mentioned.

I. Hydrodynamics.

A. The simplest applications arise in connection with the irrotational

steady motion of a uniform incompressible fluid in two dimensions. It is

thereby implied that the motion is the same in all planes parallel to one

particular plane ; and this plane is taken to be the plane of x, y, that is, the

2^-plane.

Let p and q denote the component velocities at any point x, y of the

fluid, parallel to the axes of x and y respectively. When there is a velocity

potential, let it be denoted by u; then

_ du du

The equation of continuity is

P = -Fx' « = -ay

OX &y

that is, the velocity potential u satisfies the equation

dx^ di/~

The analysis in § 10 shews that there exists a function v, associated with

the function w, and uniquely determinate (save as to an additive constant)

by the relations

dv _ du dv _ du

dx dy ' dy dx'

These functions are such that, when w denotes u + iv and z denotes x + iy,

then a functional relation exists between w and z, the only other quantities

occurring in the relation being constants.
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The differential equation of the direction of motion at the point, that is,

of the stream line, is

dx _dy

P ~
^l'

or, what is its equivalent,

qdnc — pdy = 0.

In terms of the function v, this equation becomes

dv , dv , ^
^ dx + ^ dy =0

;

dx dy ^

consequently, the stream lines are given by the relation

V = constant.

As the stream line is the direction of the velocity at every point along its

course, it follows that there is nd flux of the liquid across a stream line.

Thus it is possible to consider

V = some particular constant

as a rigid wall along which the frictionless fluid flows ; and then the stream

lines of the fluid in such a motion are given by ?; = constant.

Moreover, we know that v satisfies the differential equation

dx"^ dy-

When expressed in terms of p and q, this equation is

^-?^ =
dx dy '

an equation which is the analytical expression of the property that the

motion is irrotational.

It thus appears that, when we have a relation between complex variables

w and -2^ in the form
u + iv = w =f{z) =f{x + iy),

we can take u as the velocity potential and v as the stream line function for

the type of fluid motion coi^idered. The relations between the functions

u and V are an analytical statement of the property that the equipotential

lines and the stream lines are orthogonal to one another.

Let V denote the resultant velocity at the point x, y, so that

jr., , ,
/duV /du\-

Now (§ 8)

consequently.

dw dw du . dv du . du
-,- = V- = ^ + * o^ = ^— * ^ = - /^ + '7

;

a2 dx ox ox ?x dy

v= dw\

.

dz]
'

so that the modulus of dwjdz gives the resultant velocity at any point.
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It is found convenient to consider the quantity dzjdiu in some hydro-

dynamical investigations. We write

c,_ _dz
^~~d^'

Thus
i
^ ;

= -p

'

and ^= -
p + iq

^ P +J^I

f- + (f

ye ,

where is the angle between the direction of the velocity and the axis of r.

(The introduction of the use of the s3'mbol ^ is due to KirchhofF.)

Further, if P denote the pressure at any point and if p denote the

(constant) density, we have

P—
\- p- + g- = constant

P

everywhere. Thus the surfaces of constant pressure are surfaces of constant

velocity ; in particular, a free surface (such as a surface between air and

water) is a surface of constant velocity in the kind of motion under con-

sideration.

Some examples will now be taken, very briefly, to illustrate the foregoing-

statements.

Kv. 1. Let
u>= az,

where a is a real constant. Then
ti= ax, r= ay.

Ill the fluid motion the velocity is constant, and equal to a ; the stream lines are parallel

to the axis of x ; and so the frictionless fluid can be regarded as flowing with constant

velocity between two parallel walls.

Ex. 2. Let

where a and c are real constants. Then

(-f).

(-^) sin^,

when polar coordinates are used.

The stream lines are given by t;= constant. In particular, the stream line v = 0, when
traced, is the axis of x from x=(X) to x= a, corresponding to ^ = ; then the semi-circle,

centre the origin and radius a ; and then the axis of x from x= -a to .r= - qc , corre-

sponding to 6= n. So the fluid can be regarded as flowing along a rigid wall past a

F. F. 41
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cylindrical boss. It may also be regarded as flowing past a fixed cylinder in a direction

perpendicular to the axis.

As regards the velocity, we have

dwdw /, a^\

P= -cf 1— -;jCos 2^1

,

5'= c-^sin2^.

so that

At an infinite distance

p=~c, q=0;

so that the velocity of the fluid towards infinity is constant and is parallel to the straight

wall.

Ex. 3. Let
z=w+e"',

an example constructed by Helmholtz *, who was the pioneer in this line of investigation.

Then
,v=tf,+e>^ cosv, i/= v+ e" sinv.

The stream line v= ir gives y= 7r for all values of ?<. We then have x=u — e" ; as u

varies from - qo to 0, the variable x varies from - oo to - 1 ; and as u continues its

variation from to + oo , the variable x varies from - 1 to — oo : that is, the complete

variation of u from — x to +oo requires a duplicated variation of the part of the axis

of X, from - 00 to — 1 in the first place, and then from - 1 to -.x in the second place.

Similarly for the stream line v= —n. We have the line y= —n, for all values of ti.

The range of x is the same as for the stream line y= 7r.

The stream line v= 0, symmetrically situated between these two stream lines v=7r

and V= - TT, allows the full variation of x from -|- x to - x .

As regards the velocity, we have

that is,

_ 1 + e" cos V— le" sin v
~ H-2e"cosy+ e"^" '

so that

-P ^ -9 1

l+e"cosv e"sin«; 1 + 2e" cos v+ e^"

'

Between t'= 7r and v—0, obviously q is negative; so that, in that range, the flow is

towards the axis of y. Between v—-ir and v = 0, obviously q is positive; so that, in

that range, the flow is again towards the axis of y.

We have the case of a fluid flowing in all directions along the proper stream lines into

a canal bounded by the walls ^/ = n and y= — -n, in the direction of the range from x= - 1

to .r= - X , symmetrically with respect to the plane y=0.

Ex. 4. Discuss similarly the hydrodynamical interpretation of the relations :

—

(i) ?/'= as2 ; (ii) z =axv^
;

(iii) ?<'= acosh2; (iv) 2=«coshw;

(v) w= a\o'gz
;

(vi) to= ae'.

* Berl. Munatsb., (ISOB), pp. 215—228.
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B. The preceding illustrations shew how interpretations can be given

for assigned functional relations between w and z. We shall now sketch,

very briefly, a constructive process which leads to the functional relations

appropriate to many propounded problems in the two-dimensional irrotational

motion of a perfect fluid.

Reverting to the symbol %, we have

^~ dw

ye ,

where V is the velocity at any place and <^ is the inclination of the stream

line to the axis of x. Now ^ itself is a complex variable ; so, in association

with the ^^-plane and the w-plane, we shall find it convenient to consider a

^-plane.

We have seen that, when we have a free surface in the -zf-plane, it is a

surface along which the velocity is constant. Without loss of generality,

we can take unity as this velocity—it is only an assumption as to the unit

of time. Thus a free surface in the w-plane gives a circle of radius unity in

the ^-plane.

The moving fluid, where it has not a free surface, is bounded (in the

problems to be considered) by plane walls. All of these are represented in

the w-plane by the equation y= constant; that is, by a succession of lines

parallel to the real axis in that plane. Along these plane walls the direction

of flow is straight ; and so is constant, that is, the corresponding lines in

the ^-plane are the radii of the circle of radius unity which represents the

free surface in the w-plane. W^e thus have a figure in the ^-plane.

Next, introduce another complex variable ^' , defined by the equation

r=iogr;

then ^' = log y + i(f),

so that we have another figure in another plane, the ^'-plane. The circle

F = 1 in the ^-plane becomes part of the ^'-axis of imaginary quantities,

which accordingly corresponds to the free surface in the motion, given in the

w-plane by a particular line v = constant. To the radial lines = constant

in the ^-plane, coiTespond straight lines in the ^'-plane parallel to the real

axis in that plane, that is, by general lines v = constant.

It thus is necessary to construct a relation which shall secure that a

figure in the w-plane bounded by straight lines parallel to its axis of real

quantities shall correspond to a figure in the f'-plane bounded by straight

41—2
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lines, neither necessarily nor usually parallel to the axis of real quantities in

the ^'-plane.

Finally, this result is achieved by making the figures in the u'-plane and

in the f'-plane respectively to be represented upon one and the same half of

another plane of a final complex variable t, the boundary in each representation

being transformed into the real axis in the ^plane.

We thus have a succession of planes of complex variables, conformally

represented each upon the next and therefore all upon one another.. There

is the ^-plane, the original plane of motion of the fluid. There is the

w-plane, giving the velocity potential and the' stream line function of the

motion. There are the ^-plane, relatively unimportant, and the ^'-plane

(where ^' = log ^), giving the magnitude and the direction of the velocity of

the fluid. And there is the ^plane, on the same positive half of which

both the variables t,' and w are represented. In these final representations

we have some relations of the types

F{X',t)=Q, G{;w,t)=0;

and so, eliminating t we have a relation

that is, a relation

which, on integration, gives the connection between the variables 2 and w.

The hydrodynamical problem can thus be made to depend upon the

solution of the associated problem in conformal representation. The examples

of the latter, which have been given already, can be used to solve some of

the hydrodvnamical problems which arise : one further illustration must

suffice here.

Ex. Imagine a fluid moving symmetrically between two parallel walls inserted into a

relatively infinite quantity of the fluid, .so as to form a sort of jet coming out between

the walls. We shall assume these to have their ends in a line pei-pendicular to their

direction.

Then in the s-plane, we have between the walls a fluid moving along the canal .sym-

metrically with respect to the middle line and outside the canal so as to supply the canal.

The boundary of the fluid is made up of the sides of the two walls in the fluid and the

double free surfiice within the canal, the two free surftices being symmetrical with respect

to the middle line.

In the f-plane, we have

so that the V)oundary formed by one wall up to its extremity is given by ^ = 0, that is, by

the axis of real quantities from x to + 1 ; then by the circumference of a circle of radius

V=l and centre the origin, representing the free surface ; and then by = 2n-, that is,

>'V the axis of real quantities from +1 to x , representing the other wall.
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In the ^'-plane, we have

8o the boundary of the configuration in the.^'-plane i.s

$' + ir)'= ]ogl + i(p

viz. it is two lines parallel to the axi.s of real quantities given by c\>= and (j) = 2Tr,

together with the part of the axis of imaginary quantities intercepted between these

lines.

The representation of this bounded area upon the half of the ^plane is (^ 269, p. 673)

given by
dC _ P

or, adapting the scale and settling the origin, we can take

C'=2cosh-^t.

When (' ranges along the line (p= from the origin to x , « ranges from 1 to oo along its

real axis. When f' ranges along the line = 27r from the axis of imaginary quantities to

infinity, t ranges from - 1 to - oo along its real axis. When (' ranges along the axis of

imaginary quantities from 7;' = to >;' = 27r, t ranges from 1 to - 1 along its real axis.

Now for the w-plane, let the breadth of the jet towards its issue (that is,, at a great

distance from the extremities of the walls where the jet enters the canal) be 26 ; so that

one free surface is given by v= b, and the other by v= -6. Let the velocity potential

curve through the finite extremities of the walls be w = 0. We have in general (§ 269,

p. 673)
w= 31 log t+K

At the place corresponding to the exti'emity of the lower wall, we have

2,'= 0-ib
;

and at the place corresponding to the extremity of the upper wall, we have

iv= + ih.

Hence

w= -- log t — io.

Consequently, the relation between z and iv is given by the elimination of t between the

two equations

ii> =— log t — ib

As a matter (^f fact, it is more convenient to keep the two equations and not eliminate t.

Along the free stream line, we have V=l, and so

dz _ _ j>/

or writing 6 = (^-\-tv, we have
dz ei

d\n

consequently along that stream line we have

{^ = 2co.sh-i <,

and therefore

^= cosi^.
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where t ranges from to 1. Also

M= — log COS §^

along the line. But u is the velocity potential ; and along the line, we have

(S till

so that we can take
u= —s.

Tims the equation of the free stream line is

Further, we have

s = 2 — log .sec 5 <

p - iq dw

along the stream line, because jo- + y-=]
; so

p= - cos 6, y = - sin 6,

and therefore 6 is the inclination to the axis of ,/; of the tangent to the stream line.

The foregoing equation is therefore the intrinsic equation of the free stream line. It

is easy to prove that the equivalent Cartesian equations of the line are

.r= 2- (.sinHi^-log.sec J^<9)
I

l/= -((9- sin (9)
j

taking the origin at the finite extremity of the wall. As 6 ranges from to tt, :r ranges

from to - 00 , and y ranges from to h, that is, y = 6 gives the asymptotic distance

between the free stream line and the nearer wall.

Similarly for the other free .stream line and the other wall. Thus, as the lu-eadth of

the i-ssuing jet is 26, the di.stance between the walls is; 6 + 26 + 6, that is, 46. Thus the

breadth of the issuing jet is one-half the distance between the parallel walls, a result first

stated approximately by Borda in 1766 and first proved by Helmholtz in 1868.

For a full discussion of many similar applications of the theory of conformal repre-

sentation to the irrotational motion of a liquid in two dimensions, reference may be

made to Lamb's Hydrodynamics (4th ed.), ch. iv. Some later investigations are due

to J. G. Leathem, Phil. Trans. (1915), pp. 439—487, and Proc. Lond. Math. Soc, Ser. 2,

vol. xvi, (1917), pp. 140—149; he gives some further references.

II. Electrostatics.

C. In all the space free from electric charges in a planar electrostatic-

field, the electric potential v satisfies the equation

da;- dy^

The equipotential lines are given by

V = constant.

The component of electric force in any direction is

_dv
dt'
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where dt is the increment in the positive direction ; thus the components of

electric force parallel to the positive directions of the axes are

dv dv

dx' dy' •

The direction of the line of electric force at any point is given by the

equation

-/(-^-^.)-V(-|).
that is, by

9v , dv

dy dx ^

The left-hand side is a perfect differential, because

d fdv\ 9 / 9'?;'

(I)
denoting it by du, we have

Eliminating v, we have

dy \dyj dx \ dx,

du _dv du _ dv

dx dy ' dy dx'

d^u d^u _ ^
9^^

"^
9^^

~
'

and the lines of electric force are given by

u = constant.

Alike from the physical properties, and from these mathematical expressions

for equipotential lines and from the lines of electric force, it follows that the

two sets of lines are orthogonal to one another at every common point.

It thus follows from former investigations (§ 8) that, if iu = u + iv and

z = X + iy,

w = some function of z =f{z).

The electric intensity at any point is

fdvV /dvV)^

that is, it is equal to

I dw\

\d^\'

corresponding to the velocity in the hydrodynamical problem and to the

magnification in the conformation problem. Further, v = constant along

any conductor ; thus, by Coulomb's law, if o- is the surface density of electrifi-

cation at any place on the plane conductor,

_ 1 dw\
~

47r dz ''
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the electric intensity being measured outwards from the surface of the

conductor.

Thus the analysis is the same throughout for the various classes of

problems. We have interpretations in the various vocabularies of the

different subjects of applied mathematics. We shall therefore deal very

briefly with a few quite simple examples.

Ex. 1. Let

w=^,

then we have the equipotential lines given by

v= r^sinA^

in polar coordinates, witli the equivalent equation

in Cartesian coordinates. They are a family of coaxial and oonfocal parabolas.

In particular, when ?;=0, we have ^= from .r= x to x=0 ; and then 6 = 2ii from

.>;= to a;= QO . Thus we have an infinitely thin conductor, in the form of a straight line

stretching along the axis of real quantities from the origin to infinity. The surface

density of electrification on this conductor at a distance d from the origin is

— rf •3.

The lines of electric force, given by

u= r2 cos h6= constant,

are represented in Cartesian coordinates by the equation

'^ifi{u'^ — .v)=y-
;

that is, they are a family of coaxial and confocal parabolas, orthogonal to the former

family.

Ex. 2. Let

"We have (Ex. 6, § 257)

.r=sin u cosh v, y=cos u sinh i\

The equipotential lines r= constant are given by the equation

^-
I

y- ^1 ...

cos"^ hv sin" hv
'

a fiimily of confocal ellipses.

In particular, when v= 0, x ranges from +1 to - 1 on tlio positive side and on the

negative side along the real axis. Thus there is an infinitely thin conductor in the form

of the straight line between —1 and +1 on the axis of real quantities. The surface

density of electrification on the conductor at a distance c from the middle is

The lines of electric force are given by

x^ ;/2 _ •

sin^ u cos2 u
~ '

that is, they are the family of confocal hyperbolas, orthogonal to the former family.
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Ex. 3. Construct electrostatic interpretations of the following equations :

—

(i) w— ism~^z;

(ii) w=\ogz;

(iii) z =\ogiv
;

(iv) z =iimo
;

(v) ?','= sn^
;

(vi) e^=cn«.'.

For a full discussion of the application of the theory of confonnal representation to

general problems in electrostatics, reference should be made to Sir J. J. Thomson's liecent

Researches in Electricity and Magnetism, ch. iii ; and to the treatise by J. H. Jeans, The

Mathematical Theory of Electricity and Magnetism.

III. Conduction of Heat.

D. The same analysis can be used for the discussion of any number of

two-dimensional problems in conduction of heat when the temperature is

steady : that is, when the temperature varies from place to place in the

plane of the two dimensions, while at every place it is independent of the

time.

For purposes of illustration, we shall assume that the conductivity K is

constant. The temperature at any point will be denoted by v ; so the flux

of heat at a point perpendicular to the axis of x is

and at a point perpendicular to the axis of y is

The condition that there is neither gain nor loss of heat at any place is

that is, K being constant,

dx dy

dx'^^d^-'^
-

The curves across which there is no flux of heat—they may be called lines of

flow—are given by
dx _ dy

that IS,

f^v , dv^dx — :^dy=0.
dy dx '^

Because

a_ /dv\ _^ f_dv
dy \dy I

^ dx\ dx,
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this last expression is a perfect differential, say du ; then

du _dv du dv

dx dy ' dy dx'

and therefore

3^ a^t _
dx' df-

~

Once more, we have the same equations as before. We know that u + iv can

be expressed as a function oi x + iy ; so, writing w = u-\- iv and z = x { iy, and

taking

w=f(z),

where / is any functional form, we can interpret the analytical relation as a

result in a steady temperature problem in the conduction of heat, by taking

the lines

V = constant

as the isothermal lines, and the lines

u = constant

as the lines of flow. The total flux of heat at any point is

'dvy]^

that is, it is

i(iy-(i)T-

I
dz

Ex. 1. Consider the relation

where a is a real constant. We have

a {u + iv) = \og-

:l0g

"-e''

1 + e2«

~~ ^^
l-2e-2J'cos2.r+ e-*«'

'

Thus
,
2e-2J' sin 2.r

«^= *^"
l_e-4,

, sin 2.V

sinh 2y

and

_ l +2e-^ycos2.r+e-'*''
cm- log -_ 2^ _ .^^ ^^g 2^, ^ g - 4y •

As regards the isothermal lines given by v= constant, we have v= when .i'= so long

as y is not zero, and v= when .t'= 5 7r so long as .?/ is not zero. When ?/ = and x ranges

2a'



261.] TO CONDUCTION OF HEAT 651

We thus have a half-infinite rectangular plane, kept at temperature zero along the half-

infinite plane wall a:=0, at temperature 7r/2a along the finite plane wall .y= between x =
and Jtt, and at temperatin-e zero along the half-infinite plane wall .r=^7r.

The isothermal lines in the solid are given by

sinh 2i/=asm2x;

for parametric values of a ; and the lines of flow are given by

cosh 2y = /3 cos 2.i-,

for parametric values of ^.

The actual flux of heat at any place is

|o?w|

that is,

2/1 1

a
I

sin 2z
\

4/1' 1

a cosh 2y - cos 2x

'

This result, in substance, was first given by Fourier *. *

Ex. 2. We shall use the property of conformal representation to change this solution

of a given problem into the solution of another problem. The relation was

gaw _ { cot. S.

The relation z'= - cos 2z gives

.r'= - cos 2x cosh 2«/, y= sin 2x sinh 2?/.

When the range of x is given by O^x^^tt and of y is given by O^.y, y' is always

positive or zero, and x' ranges from - 00 to + qo . Thus the open half-infinite rectangular

plane bounded by ^ ^ ^ I^tt, ^ y, is represented upon the positive half of the 2'-plane.

The relation

„ I — z'

" ~i + z'

gives (p. 619, Ex. 13) a representation of the positive half of the s'-plane upon the interior

of a circle, of radius unity and centre the origin, in the s"-plane.

Accordingly, we seek the relation between the original w and this final z" ; it is easily

found to be

1 - iz"

With this relation, we have {a being real)

-2x"+ i{l-x"^-i/"^)

and therefore

2a{u+ iv)= \0g-
(i+y,)2 + y'2

2a.=tan-i -^

\l„
\

The isothermal lines are given by i;= constant. We have v = when x"^+ i/"--l = so

long as x" is not zero. When x"= and x"'^+y"^-l is not zero, so that y" can range from

- 00 to - 1 and from 1 to -f a; , then v= 7r/4a. And when x" is not zero within the boundary

limits, we take x" positive. We thus have an infinite half-plane with a semi-circular

boss, of radius unity on the positive side of the half-plane. The boss is maintained at

temperature zero : the rest of the boundary of the infinite plane is maintained at tem-

perature 7r/4a.

* TMorie de la Chaleiir, cli. iii, § 5.
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Ex. 3. Obtain the lines of flow for the transformation in the last example.

Ex. 4. Construct the relation between w and z for a solid, the outer surface of which

is outwardly bounded by a circular cylinder kept at temperature zero and the inner

surface of which is another circular cylinder kept at temperature unity, the two axes being

parallel.

Ex. 5. Apply the transformation

z" = ^' "'*'

to obtain the steady temperature within a sector of a circle, bounded by radii ^= and

6 = a which are kept at temperature zero, and a circular arc given by r=\ between "these

radii kept at temperature unity.

Note. Very special cases as regards the boundary temperatures have

been taken. When any problem has been solved for a more general assign-

ment of temperature along a boundary, then any number of problems can

be solved for steady temperatures in a plane limited by other boundaries

conformall}* representable upon the first. For a number of applications,

reference may be made to Christoffel*, Mathieuf, and CarslawiJ:.

* See reference in foot-note, p. 666.

t Cours de physique mathematique , eh. iii.

t Fourier's series and integrals, ch. xiii.



CHAPTEE XX.

CONFORMAL REPRESENTATION : GENERAL THEORY.

262. In Gauss's solution of the problem of the conforraal representation

of surfaces there is a want of determinateness. On the one hand, there is an

element arbitrary in character, viz., the form of the function ; on the other

hand, no limitation to any part of either surface, as an area to be represented,

has been assigned. And when, in particular, the solution is applied to two

planes, then, corresponding to any curve given in one of the planes, a curve

or curves in the other can be obtained, partially dependent on the form

of functional relation assumed, different curves being obtained for different

forms of functional relation.

But now a converse question suggests itself Suppose a curve given also in

the second plane : can a function be determined, so that this curve corresponds

to the given, curve in the first plane and at the same time the conformal

similarity of the bounded areas is preserved, with unique correspondence

of points within the . respective areas ? in fact, does the conformal corre-

spondence of two arbitrarily assigned areas lead to conditions which can

be satisfied by the possibilities contained in the arbitrariness of a functional

relation ? And, if the solution be possible, how far is it determinate ?

An initial simplification can be made. If the areas in the planes,

conformally similar, be T and R, and if there be an area *S in a third plane

conformally similar to T, then *S' and R are also conformally similar to one

another, whatever S may be. Hence, choosing some form for 8, it will

be sufiicient to investigate the question for T and that chosen form. The
simplest of closed curves is the circle, which will therefore be taken as S

:

and the natural point within a circle to be taken as a point of reference is its

centre.

Two further limitations will be made. It will be assumed that the plane

surfaces are simply connected* and one-sheeted. And it will be assumed

* The conformal representation of multiply connected plane surfaces is considered by

Schottky, Crelle, t. Ixxxiii, (1877), pp. 300—351. Some special cases are considered by Burnside,

Land. Math. Soc. Proc, vol. xxiv, (1893), pp. 187—20G.
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that the boundary of the area T is either an analytical curve * or is made up

of portions of a finite number of analytical curves—a limitation that arises in

connection with the proof of the existence-theorem. This limitation, initially

assumed by Schwarz in his early investigationsf on conformal representation

of plane surfaces, .is not necessary: and Schwarz himself has shewn;]: that the

problem can be solved when the boundary of the area T is any closed convex-

curve in one sheet. The question is, however, sufficiently general for our

purpose in the form adopted.

Then, with these limitations and assumptions, Riemann's theorem^ on

the conformation of a given curve with some other curve is effectively as

follows :

—

Any simply connected part of a plane hounded by a curve T can always be

conformally represented on the area of a circle, the tiuo areas having their

elements similar to one another; the centre of the circle can be made the

honiologue of any jwint Oq within T, and any point on the circumference of the

circle can he made the honiologue of any point 0' on the boundary of T ; the

conformal representation is then uniquely and completely determinate.

263. We may evidently take the radius of the circle to be unity, for a

circle of any other radius can be obtained with similar properties merely by

constant magnification. Let w be the variable for the plane of the circle, z

the variable for the plane of the curve T; and let

log w = t — ni + ni.

Evidently n will be determined by m (save as to an additive constant), for

m + 7n is a function of z : and therefore we need only to consider m.

At the centre of the circle the modulus of tu is zero, that is, e"* is zero

:

hence m must be — cc for the centre of the circle, that is, for (say) z = Zo in T.

At the boundary of the circle the modulus of w is unity, that is, e"* is

unity: hence m must be along the circumference of the circle, that is, along

the boundary of T.

Moreover, the correspondence of points is, by hypothesis, unique for the

areas considered : and therefore, as e'" and n are the polar coordinates of the

point in the copy and as m is entirely real, m is a one-valued function,

which within T is to be everywhere finite and continuous except only at

the point Zq. Hence, so far as concerns m, the conditions are :

—

(i) m must be the real part of some function of z

:

(ii) ni, must be — x at some arbitrary point Zq-.

* A curve is feaid to be an analytical curve (§ 265) when the coordinates of any point on it

can be expressed as an analytical function (§ 34) of a real panuueter.

t Cndlc, t. Ixx, (1869), pp. 105—120.

+ Ges. Werke, t. ii, pp. 108—132.

§ Ges. Werke, p. 40.



263.] ON CONFORMAL REPRESENTATION 655

(iii) m must be along the boundary of T:

(iv) for all points, except z^^ , within T, m must be one-valued, finite and

continuous.

Now since m + ni = \ogw = \og R + i&, the negatively infinite value of m
at 2o arises through the logarithm of a vanishing quantity ; and therefore, in

the vicinity of z^, the condition (ii) will be satisfied by having some constant

multiple of log (z — Zq) as the most important term in m + ni ; and the rest of

the expansion in the vicinity of Z(, can be expressed in the form p{z — Zo), an

integral series of positive powers of z—Zo, because m is to be finite and

continuous. Hence, in the vicinity of z^, we have

log w = m + n?' = — log {z — z^) -\-p{z — z^),
A,

where X is some constant. This includes the most general form : for the

form of any other function for m + ni is

- log [{z - z,) g{z- z,)] +P(z- z,),

where g is any function not vanishing when z^z^: and this form is easily

expressed in the form adopted. Hence

1

2u = {z-ZoYeP^''-^'>\

Since w is one-valued, we must have X the reciprocal of an integer ; and

since the area bounded by T is simply connected and one-sheeted we must

have z — Zn fi one-valued function of w. Hence \ = 1 ; and therefore, in the

vicinity oi z^,

w = (z - Zo) eP^^-'^\

a form which is not necessarily valid beyond the immediate vicinity of Zq,

for p{z — Zo) might be a diverging series at the boundary. Thus, assuming

that p(z — Zq) is when z = z^,, we have, in the immediate vicinity of Zq,

m + ni == log {z — z^),

a form which satisfies the second of the above conditions.

It now appears that the quantity m must be determined by the con-

ditions :

—

(i) it must be the real part of a function of z, that is, it must satisfy

the equation V'^m = :

(ii) along the boundary of the curve T, it must have the value zero

:

(iii) at all points, except Zq, in the area bounded by T, m must be

uniform, finite and continuous : and, for points z in the

immediate vicinity of Zq, it must be of the form logr, where

r is the distance from z to z^.



656 RIEMANX'S THEOREM [263.

When ill is obtained, subject to these conditions, the variable w is thence

determinate, being dependent on z in such a way as to make the area

bounded by T conformally represented on the circle in the w-plane.

264. The investigations, connected with the proof of the existence-

theorem, shewed that a function exists for any simply connected bounded

area, if it satisfy the conditions, (1) of acquiring assigned values along the

boundary, (2) of acquiring assigned infinities at specified points within the

area, (3) of being ever^-where, except at these specified points, uniform, finite,

and continuous, together with its differential coefficients of the first and the

second order, (4) of satisfying V'^ii = everywhere in the interior, except at

the infinities. Such a function is uniquely determinate.

But the preceding conditions assigned to vi are precisely the conditions

which determine uniquely the existence of the function : hence the function

m exists and is uniquely determinate. And thence the function w is

determinate. .

It thus appears that any simply connected hounded area can be conformally
j

represented on the area of a circle, ivith a unique correspondence of points in \

the areas, so that the centre of the circle can he made the homologue of an

internal point of the bounded area.

An assumption was made, in passing from the equation

w^{z-Zo)e'^^'-'^^

to the equation which determines the infinity of m,.\iz. that, when 2 = ^o>

the value of p {z - z^) is 0. If the value oi p{z — Zq) when z = Zo be some

constant other than zero, then there is no substantial change in the conditions:

instead of having the infinity of m actually equal to logi^ — ^o!, the new

condition is that m is infinite in the same way as log|^^ — ^'oj, and then a

constant factor must be associated \\ith lu. A constant factor may also arise

through the circumstance that v is determined by m, save as to an additive

constant, say 7 : hence the form of w = e'«+"^* will be

w = A'eyh(. = All.

Since displacement in the plane makes no essential change, we may take I

a form iv = Au + B, where now the conformal transformation given by w is ^

over any circle in its plane, the one given by u being over a particular circle,

centre the origin and radius unity.

The conformation for w is derived from that for u by three operations :

—

(i) di.splacement of the origin to the point — BjA :

(ii) magnification ecpial to A'

:

(iii) rotation of the circle round its centre through an angle 7:
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these operations evidently make no essential change in the conformation.

If the limitation to the particular circle, centre the origin and radius 1,

be made, evidently B = 0, A' = 1, but 7 is left arbitrary. This constant

can be determined by assigning a condition that, as the curve C has its

homologue in the circle, one particular point of C has one particular point

of the circumference for its homologue : the equation of transformation is

then completely determined.

This determination of A', 5, 7 is a determination by very special con-

ditions, which are not of the essence of the conformal representation : and

therefore the apparent generality for the present case should arise in the

analysis. Now, if w = Au + B, we have

dz\ ^\dzl] dz\ ^\dz)

which is the same for the two forms ; and therefore the function to he

sought is

luhen the area included by C is to he represented on a circle so that a given

point internal to C shall have the centre of the ciixle as its homologue.

The arbitrary constants, that arise when w is thence determined, are given

by special conditions as above.

Again, if the conformation be merely desired as a representation of the

^-area bounded by the analytical curve G on the area of a circle in the

U'-plane (without the specification of an internal point being the homologue

of the centre), there will be a further apparent generality in the form of the

function. From what was proved in § 258, a circle in the it-plane is trans-

formed into a circle in the w-plane by a substitution of the form

Au + B

so that, if u be a special function, w will be the more general function giving

a desired conformal representation ; and, without loss of this generality, we
may assume AD — BG= 1. Using {lu, z] to denote

£('«4")-i[s('°«s)"r'

that is, ---jf^'y.

called the Schwarzian derivative by Cayley*, we have

jW, z] = [u, z],

* Camb. Phil. Trans., vol. xiii, (1879), p. 5, Coll. Math. Papers, vol. xi, p. 148 ; for its

properties, see the memoir just quoted, and my Treatise on Differential Equations, pp. 106—108.

F. F. 42
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which is the same for the two forms : and therefore tlie function to he

sought is

[w, z],

when the area included hy the analytical curve G is to he conformally repre-

sented on a circle. The (three) arbitrary constants, that arise when lu is

thence determined, are obtained by special conditions.

These two remarks will be useful when the transforming equation is

be-ing derived for particular cases, because they indicate the character of the

initial equation to be obtained : but the importance of the investigation is

the general inference that the conformal representation of an area bounded

by an analytical curve on the area of a circle is possible, though, as the proof

depends on the existence-theorem, no indication is given of the form of

the function that secures the representation.

Further, it may be remarked that it is often convenient to represent a

2;-area on a w-half-plane instead of on a w-circle as the space of reference.

This is, of course, justifiable, because there is an equation of unique trans-

formation between the circular area and the half-plane ; it has been given

(Ex. 13, § 257). Moreover, a further change, given by u' = — ,, is still

possible : for, when a, h, c, d are real, this transformation changes the half-

plane into itself, and these real constants can be obtained by making points

p, q. r on the axis change into three points, say 0, 1, oo , respectively—the

transformation then being

,
_u—p q — r

u — r q — p'

265. Before discussing the particular forms just indicated, we shall

indicate a method for the derivation of a relation that secures conformal

representation of an area bounded by a given curve C.

Let* the curve G be an analytical curve; in*the sense that the coordinates

X and y can be expressed as functions of a real parameter, say of a, so that

we have x=p (u), y = q (u) ; then

z = x + iy —p + iq = ^ (u).

If for u we substitute w = u + iv, we have

^ = </) (w)

;

and the curve G is described by z, when iv moves along the axis of real

quantities in its plane.

When the equation x -\- iy = ^ {u -\- iv) is resolved into two equations

involving real quantities only, of the form x = X (u, v), y = f^ {u, v), then the

eliminations of v and of u respectively lead to curves of the form

i/r (x, y, u) = 0, X (^^ 2/' ^) = ^'

* Beltrami, Ann. di Mat., 2"" Ser., t. i, (1867), pp. 329—366; Cayley, Quart. Journ. Math.,

vol. XXV, (1891), pp. 203—226, Coll. Math. Pa2)ers, vol. xiii, pp. 170—190; Schwarz, Gcs. Werke,

t. ii, p. 150.
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which are orthogonal trajectories of one another when u and v are treated as

parameters. Evidently x {^> y> 0) = is the equation of C : also

So far as the representation of the area bounded by C on a half-plane is

concerned, we can replace lu by an arbitrary function of Z(=X + iY) with

real coefficients: for then, when F=0, we have iu=f{X) and

x=p[f{X)], y = q{f(X)],

which lead to the equation of C as before, for all values of /. This arbi-

trariness in character is merely a repetition of the arbitrariness left in

Gauss's solution of the original problem.

Now let the w-plane be divided into infinitesimal squares with sides

parallel and perpendicular to the axis of real quantities. Then the area

bounded by C is similarly divided, though, as the magnification is not every-

where the same, the squares into which the area is divided are not equal to

one another. The successive lines parallel to the axis of u are homologous

with successive curves in the area, the one nearest to that axis being the

curve consecutive to C. Similarly, if the Z-plane be divided.

Conversely, if a curve consecutive to- C, say C, be arbitrarily chosen, then

the space of infinitesimal breadth between C and C" can be divided up into

infinitesimal squares. Suppose the normal to C at a point L meet C in L'

:

along C take LM= LL', and let the normal to C at M meet C" in AI'; along

C take MN= MM', and let the normal to at iV meet C in N': and so on.

Proceeding from C with L'M', M'N', ... as sides of infinitesimal squares, we
can obtain the next consecutive curve G", and so on; the whole area bounded

by C may then be divided up 'into an infinitude of squares. It thus appears

that the arbitrary choice of a curve consecutive to C completely determines

the division of the whole area into infinitesimal squares, that is, it is a

geometrical equivalent of the analytical assumption of a functional form

which, once made, determines the whole division.

Next, we shall shew how the form / of the function can be determined

so as to make the curve consecutive to C a given curve. As above, the

curve C is given by the elimination of a (real) parameter between

x = p («), y = q (u)
;

and the representation is obtained by taking

w + iy = 2=p(w) + iq {w) = p {f{Z)] + iq [f{Z)].

Let the arbitrarily assumed curve C, consecutive to C, be given by the

elimination of a (real) parameter 6 between

x=p + eP, i/z=q + eQ,

where p, P, q, Q are functions with real coefficients, and e is an infinitesimal

constant : the form of/ has to be determined so that the curve corresponding

42—2



660 CONFORMATION OF AREA [265.

to an infinitesimal value of Y is the curve C. Taking u=f{X), where u

and X are real, we have, for the infinitesimal value of F,

= |P (") + ^ ^ fix^ ^''^l

"^
' [^

^''^ '^ dX^ ^^^J
'

TT c^w / ^du ,

so that ^' = /) — i jY 9 ' 2/ = ^2 + ^ Ty i^

'

dashes denoting diff"erentiation with regard to u. This is to be the same

as the curve C", given by the equations

x = p + eP, y = q + €Q.

Hence the (real) parameter 6 in the latter differs from u only by an infini-

tesimal quantity : let it be w - /x, so that we have

x=p — fip' + eP, y = q — /!(/ + eQ,

the terms involving products of e and fi being neglected, because they are

of at least the second order. Hence

du , , ^ ^ du ,

-fip' + eP=-Yjjq, -fiq +€Q=Yjjp ;

whence /x (p'" + q'^) = e (Pp' + Qq),

and e(p'Q-q'P)=Y^{p^ + qT-

Now e is a real infinitesimal constant, as is also Y for the present purpose

:

so that we may take 6 = AY, where J. is a finite real constant : and A may

have any value assigned to it, because variations in the assumed value

merely correspond to constant -magnification of the -^-plane, which makes

no difference to the division of the area bounded by C. Thus

Aip'Q-qP)=-^(p'' + q'%

and therefore AX =
\ -^—^^ du,
} pQ-qP

the inversion of which gives u = f{X) and therefore w = f{Z), the form

required.

Also we have a = AY —, ,,-,
p--^q'

shewing that, if the point x=p + €P, y = q + eQ on C" lie on the normal to G

at x=p, y = q, the parameters in the two pairs of equations are the same;

the more general case is, of course, that in which the typical point on C is in

* Beltrami obtains this result more directly from the geometry by assigning as a condition

that the normal distance between the curves is equal to the arc given by du : I.e., (p. 658, note),

p. 343.



265.] BOUNDED BY ANALYTICAL CURVE 661

the vicinity of C. And it is easy to prove that the normal distance between

the curves at the point in consideration is

dX'

where ds is an arc measured along the curve C.

Ex. \. As an illustration* let (7 be an ellipse x'^/a^+ i/'^ib-= l and let C be an interior

confocal ellipse of semi-axes a— a, 6-/3, where a and 13 are infinitesinially small ; so that,

since .

{a -a)--{b- /3)-= a- - b-= c\

we have aa= b^—ce say; then the semi-axes of C are a— e, b-je. We have
b

p= a cos u, q=b sin ?{,

cr= cosM, (^=-j-smi<,

so that AX= \
— du=~ u,

J c c

or, taking A = —^, we have X=u and therefore Z=w. Hence the equation of transform-

ation is

z= x+i>/= a cos Z+ ib sin Z

;

or, if « = ccosh Yq, 6= csinh Fq, and if Y' denote Y^— Y, the equation is

s =»c cos {X+ iY')= c cos Z'.

The curves, corresponding to parallels to the axes, are the double system of confocal

conies.

Ex. 2. When the curve C is a parabola, with the origin as focus and the axis of real

quantities as its axis, and C" is an external confocal coaxial parabola, the relation is

z=aiZ+if;

substantially the same relation as in Ex. 9, § 257.

Ex. 3. When C is a circle with its centre on the axis of real quantities and C is

an interior circle, having its centre also on the axis but not coinciding with that of C, the

circles being such that the axis of imaginary quantities is their radical axis, the relation

can be taken in the form
2=ctauZ. (Beltrami ; Cayley.)

Note. Although, in the examples just considered, the successive curves

G ultimately converge to a curve of zero area (either a point or a line), so

that the whole of the included area is transformed, yet this convergence

is not always a possibility, when a consecutive to G is assigned arbitrarily.

There will then be a limit to the ultimate curve of the series, so that the

representation ceases to be effective beyond that limit. The limitation

dz
may arise, either through the occurrence of zero or of infinite values of -^^

for areas and not merely for isolated points, or through the occurrence of

branch-points for the transforming function. In either case, the uniqueness

of the representation ceases.

* Beltrami, I.e., (p. 658, note), p. 344 ; Cayley, (ib.), p. 206.
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E:r. 4. Consider the area, bounded by the cardioid

/•= 2a(l+cos^);
then we can take

x=^p = '2,a (1 +COS u) cos m, y= q=<jla (1 +C()s?/)sin ?<,

where evidentl}' u = 6 along the curve. Let the consecutive curve be given by

x= -a€ + 2a(i + f) (1 + cosm')cosm', y— la {\+ e) {\ + cob u') sm. u\

so that, to determine X, we assume /'= — a+2a (1+cosm) cos?<, §= 2a (1+cosm) sinw,

for «' — ?(=— ^ a small quantity.

AVe have jo'^+ j'^= 16«'^ cos^ ^w,

9'P-jt>'$=12a2cos4?/,

p'P-\-q'Q= — 2a^ sin m
;

and then, proceeding as before and choosing A of the text as equal to — |, (which implies

that e is negative and therefore that the interior area is taken), we find

X=u,

therefore Z= v: Thus the cardioid itself and the consecutive curves are given by

z=.p+ iq= 2a{\-\-cosZ)e^.

To trace the curves, corresponding to lines parallel to the axes of X and I', we have

C^y'
= 2cosiZe^'-^,

(t)
= 2 cos I

^0^-^'^".

Hence, multiplying, we have

and, dividing, we have

that is,

and therefore

Moreover, we have

•= 4ae (cos -^-Z cos ^^o)

= 2rte" ^ (cosh F+ cos Z)

:

ie_ iX cos,\Z

cos 1^0

'

i{X-e)_ cos \

X

cosh \Y+is,va\

X

sinh \ Y
"cos ^Z cosh |F- i sin^Xsinh |z'

tan \{X-e)= tan \X tanh h Y.

dz „ . iz ,,
,

iz..

j-^^^cae (l + e ),

which vanishes when Z=ir (271+ 1), that is, at the point X—{2n + l)-n, Y=0; whence the

cusp of the cardioid is a singularity in the representation.

When F=0, then X=6 and ?-=2a (1 +cos^), which i.s the cardioid; when Y is very

.small and is expressed in circular mea.sure, then

tan ^{X-e)=^Y tan | X,

or X=d+Ytsin^d,

so that /•= 2« ( 1 + cos d)-4aY.

It is ea.sy to verify that

^= m'+ ^^
}'tan ^u,

agreeing with the former result.

The relation may be taken in the form

[z/a)^= 2 cos hZe^^' = e'^+l,
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which shews that z= a is a branch-point for Z. Two different paths from any point to a

point P, which together enclose «, give different values of Z at P. Hence the representa-

tion ceases to be effective for any area that includes the point a.

Consider a strip of the Z-plane between the lines F=0, F= 4-oc , X= — ^tt, X= -Vhir.

First, when Z=\'iT-\-iY, we have X=\ir^ so that

tan {\iz - \6) = tanh \ Y ;

and therefore tan^^= e~ ,

, 2a
whence r= —„.

1-J-cos^'

a part of a parabola. And when Y varies from oc to 0, ^ varies from to \t:.

Secondly, when Z=X^ so that F=0, we have X=6, and then

?- = 2a(l-|-cos^):

and, when X varies from \tv to - ^tt, Q varies from \i7 to —\tt.

Thirdly, when Z= - ^Tr-l-iF, we have X= — ^tt, so that

tan (In- -I- \6) = tanh ^ Y,

whence tan^^=-e~ ,

so that, as Y varies from to qo , ^ varies from —W to 0. And then

_ 2a

^~H-cos^'

another part of the same parabola as before.

Lastly, when Y is infinite and X varies from - — to + „ , we have

tan|(A'-^) = tan|X,

so that ^= ; and then r= a, in effect the point of the z-plane cori'esponding to the point

at infinity in the Z-plane.

We thus obtain a figure in the s-plane ABCDA corresponding to the strip in the

Z-plane : the boundary is partly a parabola DAB, of focus and axis OA, and partly

a cardioid with for cusp—the inverse of the parabola with regard to a circle on the

latus rectum BD as diameter: the angles at B and D are right.

x=-*

Fig. 92.

To trace the division of the space between the axes of the cardioid and of the parabola

corresponding to the division of the plane strip into small squares, we can proceed as

follows.
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266. It has been pointed out (§ 265, Note) that, though a curve and its

consecutive in the 2^-plane correspond with a curve and its consecutive in the

-ic-plane, the conformation is only effective for parts of the included areas, in

which the magnification, if it is not uniform, becomes zero or infinite only at

isolated points, and in which no branch-points of the transforming relation

occur. The immediate vicinity of a curve C is conformable with the

immediate vicinity of a corresponding curve >S', arbitrarily chosen limits

being assigned for the vicinity.

But, as remarked by Cayley*, w^ien a curve is given, then the con-

secutive curve can be so chosen that the whole included area is conformable

with the whole corresponding area in the Z-plaue. For a circle can be thus

represented, the ultimate limit of the squares when consecutive curves are

constructed being then a point : this can be expressed by saying that the

area can be contracted into a point. For instance, the relation

z{iv-^ 1) + i{tu-l) =

transforms the 2^-half-plane into the area included by a ty-circle of radius

unity. The lines parallel to the axis of x are internal circles all touching

one another at the point (—1, 0) : and the lines parallel to the axis of y are

circles orthogonal to these, having their centres on a line parallel to the axis

of Y and all touching at the point (— 1, 0). Similarly for the contraction of

any circle, by making it one of two systems of orthogonal circles : the form of

the necessary equation is obtained as above by taking the next circle of the

same system as the consecutive curve : and a circle can thus be contracted to

its centre (the infinitesimal squares being bounded by concentric circles and

by radii) when the w-circle is derived from a strip of the ^-half-plane by the

relation lu = e''^. Such a contraction of a circle is unique.

But, by Riemann's theorem, it is known that the area of a given

analytical curve can be conformally represented on the area of a given

circle, so that a given internal point is the homologue of the centre and

a given point on the curve is the homologue of a given point on the

circumference of the circle :' and that the representation is unique. Hence

it follows that, when an analytical curve G is given, a consecutive curve

C" can be chosen in such a manner as to secure that the construction of

the whole series of consecutive curves by infinitesimal squares will make

the curve C contract into an assigned point f.

267. The areas, already considered in special examples, have been

bounded by one or by two analytical curves : we shall now consider two

special forms of areas bounded by a number of portions of analytical curves.

These areas are (i) the area included within a convex rectilinear polygon,

(ii) the area bounded by any number of circular arcs, and especially the area

* I.e. (p. 658, noU'), pp. 213, 214.

t For further developments, see Cayley's memoir cited p. 6-58; note.
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bounded by three circular arcs. For the sake of analytical simplicity, the

former will be conformally represented on the half-plane, the transformation

to the circle being immediate by means of the results of § 257.

In regard to the representation* of the rectilinear polygon, convex in

the sense that its sides do not cross, we shall take the case corresponding

to the first of the two forms of § 264 ; it will be assumed that the origin in

the w-plane is left unspecified and that the magnification is subject to an

unspecified increase, constant over the plane. Our purpose, therefore, is to

represent the w-area included by a polygon on the half of the ^-plane ; the

boundary of the polygonal area in the ^t'-plane is to be transformed into the

axis of real quantities in the ^-plane.

It follows, from Schwarz's continuation-theorem (§ 36), that a function

defined for a region in the positive half of a plane and acquiring continuous

real values for continuous real values of the argument can be continued

across the axis of real quantities : and the continuation is such that conju-

gate values of the function correspond to conjugate values of the variable.

Moreover, the function, for real values of the variable, can be expanded in

a converging series of powers, so that

w — u)q = {x — c) P {x — c),

where P is a series of positive, integral powers with real coefficients that

does not vanish when c is the value of the real variable x.

Suppose a convex polygon given in the ?f;-plane, the area included by

which is to be represented on the ^r-plane, and the contour of which is to be

represented along the axis of x by means of a relation between lu and z.

First, consider a point say /3 on the side Ay-iAr which is not an angular

point. Then, if 6 denote the inclination of A^-iAr to

the axis of u, the function

(w - /3) e-'>+«'

is real when w lies on the side Ar-iAr'. it changes sign

when w passes through /3 : and for all other points w,

lying either in the interior or on the other sides of the

polygon, it has the same properties as w. Hence, if h be

a (purely real) value of ^ corresponding to w = yS, we have '

Fig. 93.

{lo - ^) e-'"'-+''» = {z-h) P (z - b),

* In connection with the succeeding investigations the following authorities may be

consulted

:

Schwarz, Ges. Werke, t. ii, pp. 65—83; Christoffel, Aim. di Mat., 2''" Ser., t. i, (1867),

pp. 95—103, ib., t. iv, (1871), pp. 1—9; Schlafli, Crell,', t. Ixxviii, (1873), pp. 63—80;

Darboux, Theorie generale ties surfacex, t. i, (2nd ed.), pp. 507—512 ; Phragm^n, Acta

Math., t. xiv, (1890), pp. 229—231.
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for points in the vicinity of /8 : the series P{z— b) does not vanish for z = h,

because the magnification i -^ i
is not to vanish at any current point ; and,

when w lies on the side -4,.yi,._i, then z = a;.

Next, consider the vicinity of an angular point of the polygon. Let 7 be

the coordinate of A,., let fiir be the internal angle of the polygon, and let yjr be

the inclination of y1,.^,.+i to the axis of u: and consider the function

When w lies on the side A,.A,.-i at a distance d from Ar, then

w — <y = de^^''^^\

so that the function is then real and positive.

When IV lies in the interior of the polygon, the function has the same

properties as w, and its argument is negative.

When lu lies on the side J.,.^,.+i at a distance d' from J.,., then

w — y = d'e^'^, so that the function is d'e~'''''+^-'^\ that is, d'e''!^"". Hence
1^

is real and positive along the side Ar-iAr, and is real and negative along

the side AyAr+i. If then z = c he the value corresponding to w; = 7, we

can expand this function in the form (z — c) Q' (z — c), where Q' (z — c) does

not vanish for c; and therefore

.
(w-7)e-''(-+^) = (^-cfE(^-c),

where R (= Q'**) does not vanish for z = c.

These forms assume that neither h nor c is infinite. The point on the

boundary of the polygon (if there be one), corresponding to x= -jo , can be

obtained as follows. We form a new representation of the ^-plane given by

which conformally represents the upper half of the ^-plane on itself: and

then, on the assumption that such point at infinity does not correspond

to an angular point of the polygon, we have ^ = corresponding to an

ordinary point of the boundary, so that

where Q does not vanish when z = X)

.

If an angular point, at which /litt is the internal angle of the polygon,

has its homologue at infinity, a similar argument shews that, in its immediate

vicinity, the transformation is

(w - 7') e- '<-+«') = /'^J? (/)

=>(;)
where R does not vanish when ^ = 00
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All kinds of points on the boundary of the w-poh'gon have been con-

sidered, corresponding to points on the axis of x.

We now consider points in the interior. If w' be such an interior point

and z be the corresponding ^•-point, then

w — w' = {z — z') S {z — z'),

where S does not vanish for z = z', because at every point ^ - must be different

from zero : for otherwise the magnification from a part of the ^-plane to a

part in the interior of the polygon would be zero and the representation

would be ineffective.

Now in the present case, just as in the first case suggested in § 264, it is

manifest that, if a particular function w' give a required representation, then

Aw' + B, where
[

^ = 1, will give the same w-])o\ygon displaced to a new

origin and turned through an angle a, = arg. A, that is, no change will be made

in the size or in the shape of the polygon, its position and orientation in the

?t'-plane not being essential. Hence the function to be obtained may be

expected to occur in the form lu = Aiv' + B ; hence

div _ . dw'

dz^ dz
'

and therefore log -^ = log e'" + log -r-

,

d /, dw\ d /, dw'\
so that ,

dz

Thus, in re'presenting a figure hounded hy straight lines, the function to he

ohtained is

Now in the vicinity of a boundary-point 13, not being an angular point

and corresponding to a finite value of z, we have

w-/3 = e'^'''-'^(z-b)P{z-h),

and therefore Z = Pj (z — h),

having z = b for an ordinary point.

For a boundary-point /S', not being an angular point and corresponding

to an infinite value of z on the real axis, we have

2 1 /1\
and therefore Z = — - + -Q, {-]

,

z z- \z)

where Qj is not zero for 2 = x . Thus Z vanishes for such a point.
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In the vicinity of an angular point 7, corresponding to a finite point c on

the real axis, we have

w - 7 = e' ('^+'') {z - cY R{z- c),

and therefore Z = \- RAz — c),
z — c

where R^ has z=ciov an ordinary point.

In the vicinity of an angular point 7', corresponding to a place at

infinity on the real axis, we have

Z = At + 1

z z- \zj

where R^ is not zero when z = cc . Thus Z vanishes at such a point.

Lastly, for a point w' in the interior of the polygon, we have

w — iv'={z — z) S (z — z'),

and therefore Z = S^(z — z'),

having z = z' for an ordinary point.

Hence Z, considered as a function of z, has the following properties :

—

It is an analytical function of z, real for all real values of its argument,

and zero when x is infinite :

It has a finite number of accidental singularities each of the first order

and all of them isolated points on the axis of cc: and at all other

points on one side of the plane it is uniform, finite and continuous,

having (except at the singularities) real continuous values for real

continuous values of its argument.

The function Z can therefore be continued across the axis of x, conjugate

values of the function corresponding to conjugate values of the variable: and

its properties make it, by § 48, a rational meromorphic function of z.

Let a, b, c, . .
.

, I be the points (all in the finite part of the plane) on the

axis of X corresponding to the angular points of the polygon, and let

air, /Stt, 77r, . .
.

, Xtt

be the internal angles of the polygon at the respective points.

The residues at these points are a— 1, /3 — 1, 7 — 1,...,X— 1 respectively

;

so, after § 48, we consider the function W given by

r=z '«—̂ '5^+1^1 + ...+^
[z — a z — b z - c z — I

It is finite everywhere in the finite part of the plane z.
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If no angular point of the polygon corresponds to ^ = x , then for large

values of z we have

where t{-\ is finite for large values of z. But

S (tt — air) = sum of the external angles of the polygon

= 27r,

so that S (a - 1) = - 2.

Thus TT is zero of the second order when z = cc .

If an angular point of the polygon corresponds to z= <X) , then for large

values of z we have

z z- \zj z ^ z- \z

where Ti-\ is finite for large values of z. But now

(tt — iiir) + S (tt - ttTr) = sum of the external angles of the polygon

= -27r,

so that 1 - /x + 2 (1 - a) = - 2,

that is, /i+ l + 2(a-l) = 0.

Thus W is zero of the second order when z = oo .

Consequently W has no pole anywhere in the 2^-plane ; so it is a constant.

At infinity, W is zero, so that this constant is zero. Hence we have

and each of the quantities a, /3, ..., X, is less than 2. This equation*, when

integrated, gives

w = Gj{z- ay-^ (z - bf-' ...(z- l)^-' dz + C,

where G and C are arbitrary constants, determinable from the position of

the polygon f.

It is to be noted that, when no angular point of the iu--po\ygon has its

homologue at infinity, the relation

V («_!) = _ 2

is satisfied ; and that this relation does not hold when an angular point of

the ^t;-polygon has its hoinologue at infinity.

The final expression for tv in terms of z is commonly called the Schwarz-

Christoffel transformation.

* This relation is made the basis of some interesting applications in hydrodynamics, by Michell,

Phil. Trans., (1890), pp. :-589—431. See also the authorities quoted in the " Note on some appli-

cations of conformal representation to mathematical physics," pp. ()39— 652, ante.

t This result was obtained independently by Christoffel and by Schwarz: I.e., p. 006, note.
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268. It may be remarked, first, that any three of the real quantities

a, b, c, ..., I can be chosen arbitrarily, subject to the restrictions that the

points a, b, c, ..., I follow in the same order along the axis of a? as the angular

points of the polygon and that no one of the remaining points passes to

infinity. For if three definite points, say a, b, c, have been chosen, they can,

by a real substitution

K + ^/

where p, q, r, s are real quantities satisfying ps — qr = 1, be changed into

other three, say a', b', c' : and then, substituting

and using the relation S(a — 1)= — 2,

we have w=rj(^-a'Y-'(^-by-K..{^-rf-'d^+C\

where F is a new constant. By the real substitution, the axis of real

quantities is preserved : and thus the new form equally effects the con-

formal representation of the polygon.

But, secondly, it is to be remarked that when three of the points on the

axis of a; are thus chosen, the remainder are then determinate in terms of

them and of the constants of the polygon.

269. The simplest example is that of a triangle of angles utt, /?7r, jTr, so

that

a + /3 + 7 = l.

Then a particular function determining the conformal representation of this

w-triangle on the half ^^-plane is

dz

I {z - ay-'' {z - by~^ (z - cf-y

'

so that ,^ = {z- a)i-« {z - by-^ {z - cy-y ,

a differential equation of the first order*.

For general values of a, /3, y, which are rational fi'actions, the integral-

function w is an Abelian transcendent of some class which is greater than 1 :

and then, after §§ 110, 239, z is no longer a definite function of w, and the

path of integration must be specified for complete definition of the function.

If a = 0, the only instance when the integral is a uniform function of w
is when yS = ^, 7=2- ^^'^ ^^^^ the function is simply-periodic. In such

a case, the it'-figure is a strip of the plane of finite breadth, extending in one

* Equations of this type are discussed iu my Theory of Differential Equations, Part 11, voL ii

;

in particular, see Chapters ix, x. The cases when the integrals are uniform functions, either

algebraic, simply-periodic, or doubly-pei iodic, are discussed in § 137 of the volume quoted.
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direction to infinity and terminated in the finite part of the plane by a straight

line perpendicular to the direction of infinite extension.

Ex. Discuss the case when a= 0, ^=0, y= l, pointing out the relation between the

half of one plane and a strip in the other.

If no one of the quantities a, /3, 7 be zero, then on account of the condition

4-/3 + 7 = 1, the only cases when the integral gives 2^ as a uniform function

of w are as follows :

—

(I) Qt = J , 13 = \, 7=3; an equilateral triangle :

(II) a = ^, /S = -^ , 7 = 7; an isosceles right-angled triangle :

(III) a = ^, 13 = 1, 7 = ^; a right-angled triangle, with one angle equal

to jTT.

In each of these cases ^ is a uniform doubly-periodic function of xu ; and

after arranging the constants of integration, the respective relations are

2i
(I)
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When one (but only one) of the homologues of the angukr points is at

infinity, the form is

iv=l{{2-a)(z-b)(z-c)]-^dz,

so that again 2; is a doubly-periodic function of 2.

When two of the homologues of the angular points are at infinity—and

there cannot be more than two—then after the explanations of § 267, the

form of relation is

d A dw\ _ — ^ — ^
dz\ ° dzj ^ z — b z — c'

We shall consider the last form at once. There are two alternatives

according as b and c are distinct or as they coincide. When they are distinct,

we take 6 = + l, c = — 1; when they coincide, we take b = c = 0.

For the first case, we easily find

'

{Z' - 1)2

= A cosh~^ z + B.

Dropping the constant B (which only affects the origin in the w-plane),

we have

z = cosh -r
,A

and we shall take A real. Thus

. u V . , u . V
X = cosh -r COS , , V = smh -^ sin -r

;

A A -^ A A'

the upper half of the 2-plane is conformally represented upon the interior of

a strip in the iv-jAsme bounded by the lines v = 0, v = itA , and the part of

u = between these two lines.

For the second case, we have

dz'0"«S)=4>
and so we easily find

w = A\ogz + B.

Again dropping the constant B and taking A real, we have

J, y = e^sm-jx = e^ cos— , y = e^ sm

the upper half of the 2^-plane is conformally represented upon the interior of

the strip in the ty-plane bounded by the lines v = 0, v = itA.

Passing now to the general form, we shall first suppose that the rectangle

is a square. We choose 00 , ], as points on the axis of x corresponding to

three of the angular points in order. The symmetry of the figure then

F. F. 4.3
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enables us to choose — 1 as the point on the axis of a; corresponding to the

remaining angular point. As the homologue of one angular point is at

infinity, and as — 1, 0, 1 are the homologues of the other three, we have the

relation between w and z in the form

^u = Cj[z{z-\){z-\-l)\-^-dz+G'

dz= + C',

w

C and C being dependent upon the position and the magnitude of the

2^-square.

Again, the half ^-plane is transformed (§ 257, Ex. 13) into the interior of

a ^-circle, of radius 1 and centre the origin, by the relation

I + z

Then except as to a constant factor, which can be absorbed in C, the integral

in tu changes to

so that, by the relation

(1 _ Z')^

'

the interior of a Z-circle, centre the origin and radius 1, is the conformal

representation of the interior of some

square in the M^-plane. Denoting by

L the intee-ral —; , so that 2L

is the length of adiagonal,theangular

points of the square are D, A, B, G

on the axes of reference : and these

become d, a, b, c on the circumference

of the circle. They correspond to — 1, 0, 1, oo on the axis of *• in the

representation on the half-plane.

Ex: Shew that the area outside a square in the w-plane can be conformally repre-

sented on the interior of a circle in the «-plane, centre the origin and radius unity, by the

equation

the ^-origin corresponding to the infinitely distant part of the ?''-plane. (Schwarz.)

Secondly, let the rectangle have uneipial sides. Then the symmetry of

the figure justifies the choice of j , 1, - 1, — t; as four points on the axis of .r

Fig. 94.
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corresponding to the angular points of the rectangle when it is represented

on the half-plane. We thus have

.'o

If the rectangle be taken so that its angular points are a, a -I- 2bi, — a + 2bi

1 _1
k' k'

a in order, these corresponding to 1, r ,
— r , — 1 respectively, then we have
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Thus in the case of a quadrilateral, taking ac
, 0, 1 as the homologues of

D, A, B respectively and - as the homologue of C, c
fi

-^

(where /u.<l), the equation for confonnal representation '^j

is

w = Cu + C,
where

rz
i'

- A
u = z^-'^ (1 — zf~^ (1 — fxz)y~^ dz = Zdz, say. pig. 95

Jo .0

If the w-origin be taken at A, and the real axis along AB, we have

0=C",

a = cC Xdx+C,

c^e^- = 6'| Xdx + G\

be' '^-p>=cr xdx+c,

being the equations for the four angular points. They determine only three

quantities G, C, /x, so that they coexist in virtue of a relation, which is in

effect the relation between the sides and the angles of a quadrilateral.

An equation to determine /j, is

a
j
Xdx = de'"""

j
Xdx :

the second equation serves to determine G, because C" = 0.

The equation determining p. can be modified as follows*, so as to be expressed in

terms of the hypergeometric series.

Let -e^°'= X, so that the equation is

r.^^'Hi
Xd.v.

Now to con^pare these integrals with the definite integrals which are solutions of the

difl'erential equation of the hypergeometric series, we take

o'=l--y, )3'= a, y'= a+^,

SO that X=x^'~\l-xy'~^''\l- y.v)

-

"'.

And a'>0<l, y-i3'>0, a' + 1 -7=2 - y- a-/3= 8 > 0,

SO that, as /i < 1, the definite integral is finite at all the critical points.

* For the analytical relations in reference to the definite integrals, see Goursat, " Sur

re<luation diff^rentielle lin^aire qui admet pour int^grale la s6rie hyperg^om^trique," Ann.

de VEc. Norm. Sup., 2"° S6r., t. x, (1881), Suppl., pp. 3—142; and for the relations between the

bypergeometrio series, see my Treatise oit Differential Eq^tations, 4th ed., pp. 211—230, 290—293,

the notation of wliich is here adopted.
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We have

/:

r(^')r(y'-/3') ,

FcT)
^("^'P^y^ N

_ r(a)r(/3)

r(a + /3)
^'

i:

^,rf(/3-i)r (/3)r(y)
.

ro+y)
'^^'

Xc^r-
.-'rJ(y'-^'-l)+T«V r (a'+ l -y) r (1 -a') i-y' ^^ ..^Y'-^'-l

r(2-y)

-./(P+Y) r(y)r( 8)

r(y+S) ^2

xi^f/3'-y' + l, 1-a', 2-y', -^^

n(y-i)n(-a')n(-/3') ^ ^(a+^)^(y)^(l-a)
' n(i-y')n(y-a'-i)n(y-^'-i) r(y+8)r(i-8)rO)'

^(-«')^(-^') r(y)r (i-a)
' n(y-a'-/3')n(-y) ro+y)r(y+S-i)'

then ri = l/iF2+iViF4.

Substituting, we have

rTa i\^J^lLM V ,^»-(^-i) r(/3)r( y)-|

By using properties of the Gamma functions, the coefficient of J^j can be proved equal to

e"'" r(3)r(y),, . ,,,_,, . ^, e"''"siny7r r (3) r (y)—
vj^—^{o?sm (a+/3) TT-asm^TT = -. «— c ~~^—-~ ,

asman r(/3+ y) ^ ^ ^ * asmaTr r(/3+ y)
'

and the coefficient of F-^ can be proved* equal to

e''" r(y)r(S),, . . .
,

, • /o . N )
e'''" sin yrr , r (y) r (S)—

;

^^—^ {a sin (a + jS+ y) TT-a sm (/3+y) tt= -.
'— b -^—^ .

a sin an T (y+ S)
^ ^

-^M-ryy \i -r yj j asmaTr r(y+ S)

Moreover •

i"2=y2n=3/4=M'~''(i-M/'"'"^>U-«', 1-/3', 2-y, ^},

r4=y24=y8=/"''(i-M)''""'"^>{i-«', 1-3', y-«'-ri'+i, i-^}:

so that 3} _jP{y,J -̂», y+ 5
, ^1 .

^4 F{y, 1-a, y+ ^, l-,x}'

and therefore an equation to determine ^ is

/^{y, l-g, y+ 8, /i} _C rO)r(y+ d)

F{y, I -a, y+ /3, 1-^} 6r(S)r(y+ ^)-

* In reducing the coefficients to these forms, limiting cases (such as ^ + 7= 1) of the quadri-

lateral are excluded.
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Ex. 1. A convex quadrilateral in the ?/'-plane has its sides AB, BC equal to unity, its

angles A and C each equal to av, and its angle B equal to ^n
;
prove that it can be

conformally represented upon the positive half of the s-plane by the relation

(Math. Trip., Part II., 1895.)

Ex. 2. A regular polygon of n sides, in the w-plane, has its centre at the origin

and one angular point on the axis of real quantities at a distance unity from the origin.

Shew that its interior is conformally represented on the interior of a circle, of radius

unity and centre the origin, in the --plane by means of the relation

2 r- 2

I
(1 - x") » dx= /

' (1 -2«) »dz. (Schwarz.)

Ex. 3. A plane non-reentrant hexagon ABCDEF is symmetrical about its diagonal

AD: prove that the enclosed area can be conformally represented upon a half-plane,

so that the angular points correspond to points oo , — 1, — /:i, 0, //, 1 on the real axis,

provided /x is determined by the equation

, i^e^''~\\-ef-\\-ii:'er\ie=ci'''6^-\6- iY-^ii-^j.^f

where the variable 6 is real throughout the two ranges of integration, b and c are the

sides AB and BC respectively, and ott, /Stt, yn are the internal angles A, B, C respectively.

(Trinity Fellowship, 1898.)

270. It is natural to consider the form v^hich the relation assumes when

we pass from the convex polygon to a convex curve, by making the number

of sides of the polygon increase without limit. The external angle between

two consecutive tangents being denoted by d\/r, and the internal angle of the

polygon at the point of intersection of the tangents being ^tt, we have

TT — ^TT = d-^,

so that c — I = •

TT

Let X be the point on the axis of real quantities, which corresponds to this

angular point of the polygon ; then the limiting form of the relation

dz\ ^ dzj z-a

d /, rfw\ 1 r d,^^

dzV''^rz) = -^\j^x^

where x is the point on the real axis in the ^^-plane corresponding to the

point on the xu-c\\rve at which the tangent makes an angle i/^ with some

fixed line, and the integral extends round the curve, which is supposed to be

simple (that is, without singular points) and everywhere convex.
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The disadvantage of the form is that x is not known as a function of ^ ;

and its chief use is to construct curves such that the contour is conformally

represented, according to any assigned law, along the axis of real quantities

in the 2-plane. The utility of the form is thus limited : the relation is not

available for the construction of a function by which a given convex area in

the w;-plane can be conformally represented on the half of the 2r-plane*.

Ex. Let .f= tan ^ v//' : then taking the integral from — tt to +7r, we have

dz\ ^ dz) TT J -„z-tan^ylr

.^^s-tan0"

The integral on the right-hand side is

h __^
J

x„z+ tan
(f)

rf0

/:

fh^ d<^ fo d(fi

Jo z- tan
(f) ] x„z+ tan

.'

dy

- 2^ /i 1 n

and therefore

d f. dw\ '.

which, on further integration, leads to the ordinai'y expression for a circle on a half-

l)lane.

271. In regard to the conformal representation on the half of the

^-plane of figures in the ?<;-plane bounded by circular arcs, we proceed

f

in a manner similar to that adopted for the conformal representation of

rectilinear polygons.

* See Christoffei, Gott. Nachr., (1870), pp. 283—298.

t For the succeeding investigations the following authorities may be consulted :

—

Schwarz, Ges. Werke, t. ii, pp. 78—80, 221—259.

Cayley, Camb. Phil. Tram., vol. xiii, (1879), pp. 5—68; Coll. Math. Papers, vol. xi,

pp. 148—216.

Klein, Vorlesungen iiber das Ikosaeder, Section I., and particularly pp. 77, 78.

Darboux, Theorie generale des surfaces, t. i, (2nd ed.), pp. 512—526.

Klein-Fricke, Theorie der elliptischen Modulfunctioneu, t. i, pp. 93—114.

Goursat, I.e., p. 676, note.

Schonflies, Math. Ann., t. xlii, (1893), pp. 377—408, ib., t. xliv, (1894), pp. 105—124.
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It is manifest that, if u =f{z) determine a conformal representation on

the 2^-plane of a w-polygon bounded by circular arcs and having assigned

angles, then

where A, B, C, D ma}- be taken subject to the condition AD — BG = 1, will

represent on the half ^-plane another such polygon with the same assigned

angles : for the homographic transformation, preserving angles unchanged,

changes circles into circles or occasionally into straight lines. Hence, as

in § 264, when the transforming function is being obtained, it is to be expected

that it will be such as to admit of this apparent generalitj^ : and therefore,

since

[w, z] = [u, z],

where [w, z\ is the Schwarzian derivative, it follows that, in obtaining the

conformal representation of a figure hounded hy circular arcs, the function to

he constructed is

*Sf = w, ^ =^ - f —r .

^
' w \w 1

We proceed, as in the case of the rectilinear polygon, to find the form of

the appropriate function in the vicinity of points of various

kinds. But one immediate simplification is possible, which b

enables us to use some of the earlier results.

Let G be an angular point, GA and GB two circular

arcs, one of which may be a straight line : if both were

straight lines, the modification would be unnecessary. In-

vert the figure with regard to the other point of intersection

of GA and GB : the two circles invert into straight lines cutting at the same

angle /xtt. Take the reflexion of the inverted figure in the axis of imaginary

quantities : and make any displacement parallel to the axis of real quantities :

if W be the new variable, the relation between lu and W is of the form

aW + h _
cW + d~'"'

where ad — he = 1 ; and therefore

{ W, z] = [lo, z].

Consider the function for the PT-plane. Let V be the point corresponding

to G, an angular point of the polygon, having z = c as its homologue on the

axis of X, account being taken of the possibility of having c = oo ; let yS be any

point on either of the straight lines corresponding to a point on the contour

of the polygon not an angular point, having z = h 0,^ its homologue on the

axis of X. If a contour point not an angular point have 2^ = oo as its

homologue on the axis, denote it by /3'.
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Then for the vicinity of /3, we have (as in § 267) a relation of the form

dW
then log -j— = const. + log P, (z — b),

so that [W,z]= Po_ {z - h),

where Po is an integral function of z — h, converging for sufficiently small

values of \z — h\.

For the vicinity of /3', we have similarly

z

then
dW

and therefore \W, z] =
z*

\ ^ (\

z* \z

where Q, is finite for ^r = oo .

In the vicinity of the angular point F, having a finite point on the axis of

X for its homologue, we have

W -T = e^(-+«) {z-cYR{z- c),

and, proceeding as before, we find that

'"^^l =¥:^' + i^ + ^'<^-^)-

where C^ depends on the coefficients in the series R(z — c).

But if the angular point F have the point at infinity on the axis of x for

its homologue, we have

F-F=e»>+«>-T('-
zi^ \z

then, proceeding as before, we find that

z- z^ -

where 2\i-] is finite when 2 = 00
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Lastly, for a point W in the interior having its homologiie nt z = z\ we

have

and then { Tf, z] =So(z- z).

Hence { TF, z\, considered as a function of z, has the following properties :

—

(i) It is an analytical function of z, real for all real values of the

argument z ; and if x = oo do not correspond to an angular

point of the polygon, then for very large values of z

where Qo is finite when 2^ = oo .

(ii) It has a finite number of accidental singularities, all of them

isolated points on the axis of x : and at all other points on one

side of the plane it is uniform, finite, and continuous, having

(except at the accidental singularities) real continuous values

for real continuous values of its argument. Its form near the

singularities, and its form for infinitely large values of z, it

2; = 00 be the homologue of an angular point, are given above.

Hence {W, ^| can be continued across the axis of x, conjugate values of

{TF, z\ corresponding to conjugate values of z : and thus its properties make

it a rational meromorphic function of z.

wo cases have to be considered.

First, let the angular points of the polygon have their homologues at

finite distances from the ^^-origin, say, at a, 6, . .
.

, ^ : and let avr, ^Stt, . .
,

, Xtt be

the internal angles of the polygon at the vertices. Then

has no infinity in the plane ; it is a uniform analytical function of z, and

must therefore be a constant, which, by the value at ^ = 00 , is seen to be

zero. Hence

the summation being for the homologues of all the angular points of the

polygon. But when z is very large, we have, in this case

F. =pMi)'
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SO that, expanding 1J{z) in powers of - and comparing with the latter form,

we have, on equa,ting coefficients of z~'^, z~^, z~^,

= 2Aa' + 2a(l-aO,

relations among the constants of the problem.

Secondly, let one angular point, say a, of the polygon have its homologue

on the axis of x at infinity, and let octt be the internal angle at a : and let the

homologues of the others be h, ..., k, I, the internal angles of the polygon

being /^tt, . .
. , kit, Xtt. Then the function

has no infinity in the plane : it is a uniform analytical function of z, and

must therefore be a constant, say M ; thus

-b ' ^- (z-bf

But, when z is very large, we have

r,, = iii^)[i.
->(!)]

because a; = x is the homologue of the vertex a of the polygon, the angle

there being wtt ; also, T i-j is finite when 2 = oo . Hence, expanding in

powers of - and comparing coefficients, we have

if=0,

so that {W,z] = X ?\ + n^~^^„^2I{z),
^

z — b-'iz-b)- ^

where the summation is for the homologues of all the angular points other

than a, and the constants are subject to the two conditions

The form of the function
{
W, z] is thus obtained for the two cases, the

latter being somewhat more simple than the former : and the exact expansion

of W in the vicinity of a singular point can be obtained with coefficients

expressed in terms of the constants.
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272. In either case the equation which determines W is of the third

order; but the determination can be simplified by using a well-known

property of linear differential equations*. If y^ and y., be two solutions of

the equation

the quotient of which is equal to the quotient of two solutions of

54 + /F=0,
ax~

dP
where I = Q—-^ P-, being the invariant of the equation for linear trans-

formation of the dependent variable, and where Yjy = e^^''"", then the equation

satisfied by s, = yi/y., is

{s, x} = 21.

Hence for the present case, if we can determine two independent solutions

Zx and Zo of the equation

for the first case, or two independent solutions of the equation

for the second case, then

AZ, + BZ,
^ CZ, + DZ,

is the general solution of the equation

{F, 0| = 2/(^)or 2/(^),

and therefore is the function by which the curvilinear w-polygon is conform-

ally represented on the ^-half-plane.

273. As a first example, consider the w-area between two circular arcs

which cut at an angle Xir. The 2r-origin can be conveniently taken as the

homologue of one of the angular points, and the ^-point at infinity along the

axis of X as the homologue of the other. Then we have

provided A = 0, A .{)=}^{l--)^)-\{\ - X-),

both of which conditions are satisfied by -4 = ; and so

* See my Treatise on Differential Equations, §§ 59—62.
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The linear differential equation is

so that

and therefore the general solution for W is

cz'^ + d

The (three) arbitrary constants can be determined by making z = and

z= oo coiTespond to the angular points of the crescent, and the direction of

the line 2: = Zo (which is the axis of x) correspond to one of the circles, the

other of the circles being then determinate.

If the w-circles intersect in — i (the homologue of the 2^-origin) and + i

(the homologue of cc^ oo), and if the centre of one of the circles be at the

point (cot a, 0), then the relation is

where c is an arbitrary constant, equivalent to the possible constant magnifi-

cation of the 2r-plane without affecting the conformal representation : it can

be determined by fixing homologous points on the contour of the crescent.

More generally, if the w-circles intersect in iv^ and Wo, respectively homo-

logous to 2^ = and z= cc , then

is the form of the relation.

Evidently a segment of a circle is a special case,

274. Next, consider a triangle in the w-plane formed by three circular

arcs and let the internal angles be Xtt, /att, vtt. The homo-

logue of one of the angular points, say of that at /att, can be

taken at z = oo; of one, say of that at Xtt, at the 2;-origin

;

and of the other, say of that at vir, at a point z=l: all on

the axis of x. Then we have

2/(.)
B C-+ T +
z z —\ (^-1?'

where the constants B and C are subject to the relations

5+C'=0,

£.0 -K7. 1 = 1 (1 - /^') - i (1 - ^0 - i (1 - ^\

so that - B=C=\{X-- /x- + y2 _ 1),

and therefore

Fig. 97.

/(^) = i
l-\2

+ \

1 - V- ,
\-

fi- 4- V-

z{z-\)
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But I{z) is the invariant of the differential equation of the hypergeometric

series*

d^ y-(a+0+l)zdZ a/3
Z=0,

z{l-z) dz z(l-z)'

provided \"- = (l-ryy-,
fj?
= {a-^y, v^ = (ry -a- l3y

;

so that, if Z^ and Z., be two particular solutions of this equation, the function

which gives the conformal representation of the w-triangle on the ^-half-

plane is

AZ^ + BZ,

'^~CZ, + DZ,'

The transforming function thus depends upon the solution of the differential

equation of the hypergeometric series, and for general values of \, /x, v

which are > < 1 we shall obtain merely general values of a, y8, y; hence

the transforming function 'will be obtained as a quotient of two particular

solutions of the equation of the series. Now according to the magnitude of

\z\, these solutions, which are in the form of infinite series, change: and thus

we have lu equal to an analytical function of z, which has different branches

in different parts of the plane.

The distribution of the values z ^0, 1, oo as the homologues of the three

angular points was an arbitrary selection of one among six possible arrange-

ments, which change into one another by the following scheme :

—

2
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obtainable either as a limiting form of the above, or by means of the solutions F{a, ^, y, z)

and F{a, /3, a+^-y+ 1, 1 —z) of the difterential equation of the hypergeometric series. In

the respective cases the general relations, establishing the conformal representation, are

^aw+by _'l -(l-z)^

H-(l-2)*'

/aw+ by
\cw+ d)

and

aiv+ b , \-(\-z)^= log ^^ '—

.

cw + d ''i^(^i_z^h

The three circles, arcs of which form the triangle, divide the whole of the*

w'-plane into eight triangles which can be arranged _
in four pairs, each pair having angles of the same

magnitude. Thus

D, D' have angles Xtt, /jltt, vir.

A, A' Xtt, (1 -//,)7r, (1 -i/)7r,

B, B' (1-X)7r, /XTT, (l-j/)7r,

and 0, C" {I -X)7r, {1- fM)7r, vtt
;

and when any one of the triangles is given, it

determines the remaining seven. It is convenient

to choose the particular pair which has the sum of its angles not greater

than the sum for any of the others. A triangle of the selected pair is called

the reduced triangle*; let it be the triangle D. Let Stt be this smallest

sum, so that S ^X + /u, + v, as the sum of the angles in each of the other

pairs of triangles is equal to, or greater than, Sir, we have

4*SV < sums for pairs A, B, G, D
< 677,

SO that S< 'i, that is, \ + fj,
+ v <^. (The only case of exception arises when

all the four sums are equal to one another ; and then X = /ji = v = ^.)

We have already, in part, considered the case in which \ + fju + v = 1.

For, when this equation holds, inversion with the other point having X-rr for

its angle as centre of inversion, changes f D into a triangle bounded by

straight lines and having Xir, ^nr, vir as its angles ; and therefore, in that

case, the problem is merely a special instance of the representation of a

w-rectilinear polygon on the 2^-half-plane.

But there is a very important difference between the cases for which

X-\- ^ + V < 1 and those for which X->r iJb + v >1: in the former, the ortho-

gonal circle (having its centre at the radical centre of the three circles) is real,

and in the latter it is imaginary. The cases must be treated separately.

* Schwarz, Ges. Werke, t. ii, p. 236.

t The tigure in the text does not apply to this case, because, as may easily be proved, the

three circles must meet in a point.
'
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275. First, we take \ + fi + v < 1. Then of the two triangles, which

have the same angles, one lies entirely within the orthogonal circle and the

other entirely without it ; and each is the inverse of the other with regard to

the orthogonal circle*. Let inversion with regard to the angular point Xir in

A take place : then the new triangle is bounded by two straight lines cutting

at an angle Xtt and by a circular arc cutting them at

angles /xtt and vir respectively, the convex side of the

arc being turned towards the straight angle. The

new orthogonal circle is the inverse of the old and its

centre is A, the angular point at Xir ; its radius is the

tangent from A to the arc CB, and therefore it com-

pletely includes the triangle ABC.

The homologue of A is, as before, taken to be the ^r-origin 0, that of C to

be the point z=l, say c, and that of B to be z = cc on the axis of x, say b for

-1- oc and 6' for — oo .

Suppose that we have a representation of the triangle on the positive

half-plane of z. The function [w, z] can be continued across the axis of x

into a negative half-plane, if the passage be over a part of that axis, where

the function is real and continuous, that is, if the passage be over Oc, or over

cb, or over b'O; and therefore w is defined for the whole plane by [w, z] = 2/ (z),

its branch-points being 0, c, b. Any branch on the other side, say w^, will

give, on the negative half-plane, a representation of a triangle having the

same angles, bounded by circular arcs orthogonal to the same circle, and

having 0, c, b for the homologues of its angular points. Thus if the con-

tinuation be over c6, the new w-triangle has CB common with the old. and

the angular point A' lies beyond CB from A.

To obtain the new triangle A'CB geometrically, it is sufficient to invert

the triangle AGB, with regard to the centre of the circular arc CB. This

inversion leaves CB unaltered ; it gives a circular arc CA' instead of CA
and a circular arc BA' instead of BA: the angles oi A'CB are the same as

those oi ACB. Since the orthogonal circle oi ACB cuts CB at right angles

and CB is inverted into itself, the orthogonal circle is inverted into itself;

therefore the triangle A'CB has the same orthogonal circle as the triangle

ACB.

The branch w, , by passing back across the axis round a branch-point into

the positive half-plane, leads to a new branch w^, which gives in that half-plane

a representation of a triangle, again having the angles Xtt, imtt, vjt and having

0, c, b for the homologues of its angular points. Thus if the passage be

over Oc, the new w-triangle has A'C common with A'CB and the angular

})()itit H" lies on the side of CA' remote from B : but if the passage be

* For the general properties of such systems of circles, see Lachlan, Quart. Journ. Math.,

vol. xxi, (188()), pp. 1- -59.
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over cb, then we merely revert to the original triangle CAB. The new

triangle has, as before, the same orthogonal circle as A'CB.

Proceeding in this way by alternate passages from one side of the

axis oi X to the other, we obtain each time a new w-triangle, having one side

common with the preceding triangle and obtained by inversion with respect

to the centre of that common side : and for each triangle we obtain a new
branch of the function w, the branch-points being 0, 1, oo . If, by means of

sections such as Hermite's (§ 103), we exclude all the axis of x except the part

between two branch-points, the function is uniform over the whole plane thus

bounded.

All these triangles lie within the orthogonal circle, and they gi'adually

approach its circumference : but as the centres of inversion always turn that

circle into itself, while the sides of the triangle are orthogonal to it, they do

not actually reach the circumference. The orthogonal circle forms a natural

limit (§81) to the part of the w-plane thus obtained.

Ex. Shew that all the inversions, necessary to obtain the complete system of triangles,

can be obtained by combinations of inversions in the three circles of the original triangle.

(Burnside.)

Each of the triangles, thus formed in successive alternation, gives a

w-region conformally represented on one half or on the other of the 2^-plane.

If, then, the original triangle be combined with the first triangle that is

conformally represented on the negative half-plane, every other similar

combination may be regarded as a symmetrical repetition of that initial

combination : each of them can be conformally represented upon the whole

of the ^-plane, with appropriate barriers along the axis of x.

The number of the triangles is infinite, and with each of them a branch

of the function w is associated: hence the integral relation between lo

and z which is equivalent to the differential relation [w, ^} = 2/ (2), when

\ + IM + v <\, is transcendental in w.

In the construction of the successive triangles, the successive sides passing

through any point, such as G, make the same angle each with its predecessor

:

and therefore the repetition of the operation will give rise to a number of

triangles at C each having the same angle Xir.

If X, be incommensurable, then no finite number of operations will lead to

the initial triangle : each operation gives a new position for the homologous

side and ultimately the w-plane in this vicinity is covered an infinite number

of times, that is, we can regard the ?y-surface as made up of an infinite

number of connected sheets.

If X, be commensurable, let it be equal to IjV, where / and /' are finite

integers, prime to each other. When I is odd, 21' triangles will fill up the

tti-space immediately round C, and the (2/'+ l)th triangle is the same as the

p. F. 44
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first : but the space has been covered I times since 2l'\'ir = 21^, that is, in the

vicinity of C we can regard the w-surface ^s made up of I connected sheets.

When I is even (and therefore /' odd), /' triangles will fill up the space round

C completely, but the {l'-{- l)th triangle is not the same as the first: it is

necessary to fill up the space round C again, and the (2r+l)th triangle is

the same as at first ; the space has then been covered I times, so that again

the w-surface can be regarded as made up of I connected sheets. The

simplest case is evidently that in which \ is the reciprocal of an integer, so

that / = 1 ; and the ?(;-surface must be regarded as single-sheeted.

Similar considerations arise according to the values of /jl and of v.

If then either X, /x, or v be incommensurable, the number of zy-sheets is

unlimited, that is, z as a function of w has an infinite number of values, or the

equation between z and w is transcendental in z. Hence, lulien \ + fi + v < 1

and either \ or /x or v is incommensurable, the integral relation between w and

z, which is equivalent to the differential relation {w, z] = 21 (z), is transcend-

ental both in w and in z.

If all the quantities X, /u, v be commensurable, the simplest case of all

arises when they are the reciprocals of integers*. Then ^ is a uniform

transcendental function of w, satisfying the equation

(w, z\ = 21 {z)
;

or, making z the dependent and w the independent variable, we have the

result :

—

1 function z that satisfies the equation

dzd?z_ dz_
^
fdH_

dw^ dw ^ \dw^

1 I 1_2^ \

l~
,

n' , l^ nf-
"*"

?i2

z' H^-iy " z{z- 1) \dw)
'

ivhere I, m, n are integers, such that -r H 1- - < 1, is a uniforni transcendental^
I m n -^

function of w.

Restricting ourselves to this case, merely for simplicity of explanation,

it is easy to see that the whole of the space within the orthogonal circle is

divided up into triangles, with angles Xtt, /litt, vir bounded by circular arcs

* The cases, wben X, m, " are commensurable with one another but are not, each of them,

tlie reciprocals of integers, have not j'et been fully investigated. In an earlier edition of this

work (2nd edn., p. 654), a theorem was stated which by a special example was proved to be

incorrect ; see a pamphlet Ucber die VervielfiUtigunij von Kreisbogendreiecken nach dcm Sym-

metriegesetze, by Dr Paul Ziililke (1903); the special example (I.e., p. 20) appears to be due to

Schwarz. Reference may also be made to a paper by Hodgkinson, Proc. L. M. S., vol. xv, (1916),

pp. 166—181.

As regards the whole matter, see a brief note at the end of this chapter (p. 712).
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which cut that circle orthogonally : and, by the inversion which connects the

space external to the circle with the internal space, the whole of the outside

space is similarly divided. Moreover, it has been seen that every triangle

can be obtained from any one by some substitution of the form Wr = — ^

:

•^

CrW + dr

therefore the division of the interior of the circle into triangles is that

which is considered, in the next chapter, for the more general case of division

into polygons, the orthogonal circle of the present case being then the
' fundamental ' circle. The uniform transcendental function of iv is therefore

automorphic : the infinite group of substitutions is that which serves to

transform a single triangle into the. infinite number of triangles within the

circle*.

One or two special cases need merely be mentioned.

If any one of the three quaintities \, fx, v be zero and if \ + ij. + v is

not equal to unity, the triangle can be included under the general case

just treated. For let X = 0, and suppose that jm + v \& not greater than unity :

if //. + !/ were greater than unity, the triangle would be a particular instance

of the class about to be discussed. The division of the area within the

(real) orthogonal circle is of the same general character as before : a

particular illustration is provided by the division appropriate to the

elliptic modular-functions, for which //- = | , i' = j (§ 284). When two

triangles, one of which is obtained from the other by continuation in the

.0-plane across the axis of real variables, are combined, they give a w-space

(corresponding to the whole of the ^-plane) for which A, = 0, /*' = ^, v = l.

Since the orthogonal circle is real, it forms a natural limit to these spaces

;

when it is transformed into the axis of real variables in the w-plane by

a homographic substitution, the positive half of the w-plane is divided as

in figure 108 (p. 723).

The extreme case of the present class, for which \-\- fx + v is less than

unity, is given by \ = 0, /i = 0, i/ = : the triangle is then the area between

three circles which touch one another. Reverting to the differential equa-

tion of the hypergeometric series, we have 7=1, a = /9 = |; the equation is

d^Z 1 - 2z dZ \ „
dz'''^ z{l-z)'dz z(l-z) '

hich is the differential equation of the Jacobian quarter-periods in elliptic

functions with modulus equal to ^-. If

K I (\-zsin'cf>)'^d(ji, K'^f" [l-(] -z) sin"- (hrKlA,
J (( J

* The figure for the example i'=l, ai = t. ^ = i '^ given by Schwarz, Ges Wrrke, t. ii, p. 240;

and the figure for the example v=l, /x = ^, \ = l is given in Klein-Fricke (p. 370f; both of course

satisfying the conditions \ + fx + v<l.

44—2
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then

or , more generally,

K'

aK + hK'
w = ,>

—

cK + dK' '

a relation between lu and z which gives the conformal representation of the

M'-triangle upon the z-half-plane.

276. We now pass to the consideration of the case in which the triangle

with angles Xtt, fxir, vtt has no real orthogonal circle : the other associated

triangles have therefore not a real orthogonal circle. In this case, the sum

of the angles of the triangle is greatei* than tt, so that we have

\^- jx ¥ V > \ from the pair D and D'

,

— \ + yu,+ r<l from the pair A and A'

,

\ — /jb + v < I from the pair B and B',

\ + /u, — V < 1 from the pair C and C,

as the conditions which attach to the quantities X, /x, v. As before, we invert

with respect to the angular point Xtt in A: then the new triangle B is

bounded by two straight lines and a circle, the

intersection of the lines being in the interior of the

circle, because the orthogonal circle is imaginary.

Let d be distance of L from the centre of the

circle, 6 the angle OLN, r the radius of the circle

:

then

Fig. 100.

rf sin ^ = — r cos vk, d sin (Xtt — 6) = — r cos jxir,

which determine d and 6. Let R^ = r- — dr, so that

iR is the radius of the (imaginary) orthogonal circle.

With L as centre and radius equal to R describe a sphere : let P be

the extremity of the radius through L perpendicular to the plane Then F
can be taken as the centre for projecting the plane on the sphere stereo-

graphically* ; so that, if Q be a point on the plane, Q' its projection on

the sphere, PQ . PQ = 2R. The projection of LN is a great circle through

P, the projection of LM is another great circle through P inclined at Xtt

to the former : and since PO is equal to the radius of the plane circle, so

that its diameter subtends a right angle at P, the stereographic projection

of that plane circle is a great circle on the sphere, making angles vir and

fXTT with the former great circles. There is thus, on the sphere, a triangle

bounded by arcs of great circles, that is, a spherical triangle in the ordinary

sense, whose a|igles are Xtt, /att, itt : and this spherical triangle is conformally

• Lachlan, (I.e., p. Gfi8, note), p. 43.
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represented on the 2^-half-plane, its angular points L, N, M finding their

horaologues in z = (), 1, oo respectively.

Just as in the former case, the successive passages, backwards and

forwards across the ^-axis, give in the w-plane new triangles with angles

Xtt, ixtt, vtt, all with the same imaginarj^ orthogonal circle of radius iR and

centre L : each of these, when stereographically projected on the sphere

with P as the centre, becomes a spherical triangle of angles Xtt, /att, vir

bounded by arcs of great circles, every triangle having one side common
with its predecessor : and the triangles are equal in area.

Moreover, the triangles thus obtained correspond alternately to the

positive half and the negative half of the ^•-plane : and it is convenient to

consider two such contiguous triangles, connected with the variable w, as

a single combination for the purposes of division of the spherical surface,

each combination corresponding to the whole of the ^-plane.

The repetition of the analytical process leads to the distribution of the

surface of the sphere into such triangles : and the nature of the analytical

relation between w and z depends on the nature of this distribution.

If X, /jl, or V be incommensurable, then the number of triangles is

infinite, so that the relation is transcendental in w: and the surface of

the sphere is covered an infinite number of times ; that is, corresponding

to z there is an infinite number of sheets, so that the relation is tran-

scendental in z. Thus, when \ + /x + v is greater than 1 and any one of

the three quantities \, /*, v is incommensurable, the integral relation

between w and z, which is equivalent to

{iv,z} = 2I(z),

is transcendental both in w and in z.

If the quantities X, fi, v be commensurable, the simplest possible cases

arise in connection with the division of the surface by the central planes

associated with the inscribed regular solids. These planes give the divisions

into triangles, which are equiangular with one another.

First, suppose that the spherical surface is divided completely and

covered only once by the two set's of triangles, corresponding to the upper

half and the lower half of the ^•-plane respectively. One of the sets, say

N in number, will occupy one half of the surface in the aggregate : and

similarly for the other set, also iV in number. Hence

R-{\-\- IM + v—\)'ir= the area of a triangle

= ^ (area of a hemisphere;,

2
so that \-\- ii-\-v — 1 = jj-.
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Then, in passing round an angular point, say Xtt, the triangles will

alternately correspond to the upper and the lower halves: hence, of the

whole angle 27r, one half will belong to one set of triangles and the

other half to the other set. Hence tt -^ Xtt is an integer, that is, X is the

reciprocal of an integer, say y . Similarly for /z, which must be of the form

—
; and for v, which must be of the form -

; where ni and n are integers.
m n

Thus 111,2
/ m n N

The only possible solutions of this equation are

(I.)* \ = ^, fi'=2> " = ^"y integer, N = '2n
;

(II.) \ = ^, f^=}^, v = l ,
N=12:

(IV.) X = J, ;a=^, v = \ ,
N=24>;

(VI.) x = i, ;x=i. 1^ = 1
,

iV=60.

277. In each of these cases there is a finite number of triangles : with

each triangle a branch of lu is associated, so that there is only a finite number

of branches of w : the sphere is covered only once, and therefore there is only

a single ^^-sheet. Hence the integral relation between w and z is of the first

degree in 2 : and it is polynomial in lu, of degrees 2n, 12, 24, 60 respectively.

The regular solids, with' which these sets of triangles are respectively

associated, are easily discerned.

I. We have X, yu,, v = ^, ^, -. The solid is a double pyramid, having

its summits at the two poles of the sphere : the

common base is an equatorial polygon of 2w sides

:

the sides of the various triangles, in the division of

the sphere, are made by the half-meridians of longi-

tude, through the angular points of the polygon from

the respective poles to the equator, and by arcs of

the equator subtended by the sides of the polygon.

II. We have \, fi, v^^, ^, ^. The solid is the

tetrahedron; and the division of the surface of the

sphere, by the planes of symmetry of the solid, into

24 triangles, 12 of each set, is indicated, in fig. 102, on the (visible) half of

the sphere, the other (invisible) half of the sphere being the reflexion, through

the plane of the paper, of the visible half

• The reason for the adoption of these numbers to distinguish the cases will appear later,

in § 279.
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The angular summits of the tetrahedron are T, the middle points of its

edges are S, the centres of its faces are F: all

projected on the surface of the sphere from

the centre. If desired, the summits of the

tetrahedron may be taken at F : the centres

of the faces are then T.

Each of the angles at T is Jtt: each of

the angles at F is ^-tt: each of the angles at

S is ^TT.

The shaded triangles (only six of which

are visible, being half of the aggregate)

correspond to one half of the ^-plane; and

the unshaded triangles correspond to the

other half of the ir-plane.

IV. We have X, /n, v =^, ^, I. The solid is the cube or the octahedron.

These two solids can be placed so as to have the same planes of symmetry,

by making the centres of the eight faces of the octahedron to be the summits

of the cube. In the figure (fig. 103), the points are the summits of the

octahedron : the points C are the summits of the cube and the centres of

the faces of the octahedron : and the points S are the middle points of the

edges : all projected from the centre of the sphere.

The shaded triangles (the visible twelve being one half of the aggregate)

correspond to one half of the ^-plane ; the unshaded triangles correspond to

the other half of the ^-plane.

Each of the angles at is ^tt : each of the angles at C is ;\7r : each of

the angles at >Si is ^tt ; and it may be noted that the triangles GOC are the

triangles in the tetrahedral division of the spherical surface, the point
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in the present triangle COG being the point <S in a triangle STF, and the

two points being the points F and T in the former figure (fig. 102).

VI. WehaveX, /i, z^ = i, :\,i.

The solid is the icosahedron or the dodecahedron. These two solids can

be placed so as to have the same planes of symmetry, by making the centres

of the twenty faces of the icosahedron the vertices of the dodecahedron. In

the figure (fig. 104) the vertices of the icosahedron are the points /: those

of the dodecahedron arc the points D : and the middle points of the edges

are the points ;S'. The shaded triangles (the visible thirty, six in each lune

through the vertex of the icosahedron, being one half of their aggregate)

correspond to one half of the ^^-plane : the unshaded triangles, equal in

number and similarly distributed, correspond to the other half of the ^-plane.

The angles at the vertices / of the icosahedron are J-tt ; those at the vertices

I) of the dodecahedron are ;\7r ; and those at the middle points S of the edges

(the same for both solids) are ^tt.

278. Having obtained the division of the surffice, we now proceed to

determine the functions which establish the conformal representation.

In all these cases, z is a rational function of w : therefore when we
know the zeros and the infinities of z as a function of w, each in its proper

degree, we have the function determined save as to a constant factor. This

factor can be determined from the value of lu when z = l.



278.] OF TRANSFORMING RELATIONS 097

The variable tu belongs to the stereographic projection of the point of

the spherical surface on the equatorial plane, the south pole being the pole

of projection. If X, Y, Z be the coordinates of the point on the spherical

surface, the radius being unity, then

X + iY
\+Z

For a point in longitude^ and latitude ^tt-S, we have X = cos ^ sin 8,

F= sin / sin 8, ^= cos S : so that, if preferable, another form for lu is

w = e'^ tan |-8.

In our preceding investigation, the angle at Xtt was made to correspond

with z = 0, that at vir with 5=1, that at fxir with z= cc .

Case I. We take \= -
, tJi, = ^, v= ^.

For the angular points //.tt we have 8 = ^tt ; / = 0, ^^ ,
—

, . .
. , each pomt

belonging to two triangles of the same set, that is, triangles represented on

the same half of the plane : thus the various w-points in the plane are

for r = 0, 1, . .
.

, " — 1, each occurring twice. Hence z='X) , when the function

n-\ ?^''
.

n (w-e'^ )-

vanishes, that is, 5 = oo
, when (w" — 1)'- vanishes.

For the angular points vrr, we have h = ^ir\ 1= - , — ,
— ,..., each

point belonging to two triangles of the same set : thus the various ?r-points

in the plane are

e"
,

for ?- = 0, 1, ..., /( - 1, each occurring twice. Hence z = l, when the function

n [lo-e-^-'^y

vanishes, that is, z=l, when (w" + 1)" vanishes.

Now z is a uniform function of lu : hence we can take

where iT is a constant, easily seen to be unity : because, when iv =
(corresponding to the common vertex Xtt at the North pole) and when
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w = CO (corresponding to the common vertex Xtt at the South pole), z vanishes,

as required. The relation is often expressed in the equivalent form

z -.z-l -.1 = - 4w" :
- (ty'^ +lf : (w" - 1)-,

which gives the conformation on the half ^-plane of a w-triangle bounded by

circular arcs, the angles being -, ^tt, ^tt. The simplest case is that in

which the triangle is a sector of a circle with an angle - at the centre.

The preceding relation is a solution of the equation

If we choose X = ^, /i = ^, i' = -; so that z = when {tu" + iy- vanishes,

2 = x> when (w" — 1)- vanishes, and z = l when ?<;" vanishes, the relation

establishing the conformal representation is

z : z-1 .l={w''+l)- : 4>w'' : (w'' - 1)-.

This relation is a solution of the equation

[lu, z] = ^
1 — f n- n-

^+7- TTo+
z- {z-\f z{z- 1)_

Case II. We take X, = ^ ; so that z = must give the points »S', each of

them twice, since there are two triangles of the same set at 5: yu- = ^ (and

these are taken at T), so that z = (x> must give the points T, each of them

thrice : and v = \ (and these are taken at F), so that z=\ must give the

points F, each of them thrice.

Taking the plane of the paper as the meridian from which longitudes are

measured, the coordinates of the four w-points in the plane, corresponding to

T by stereographic projection, are

V3 x/3 \/3 \/3

V3 V3 V3 ^ V3

say Wi, W2, w-i, Wi. Then 2'= 00 gives each of these points thrice: that is,

z= cc , when {(w — Wj) ... (w — tv^)Y vanishes, or ^ = 00 , when

(w'-2?y- V3- 1)=*

vanishes.
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The coordinates of the four points corresponding to F, are
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The lines by which the i/;-plane is divided into triangles, each conformally

represented on one or other half of the ^-plane, are determined by z = Z(,,

that is, by

(w* - 2w^ V3 - 1)=* ^ (Wo^-2wo-V3-iy
w^w^ + iy Wo^Wo^+iy-

The figure is the stereographic projection of the division of the sphere, and

it can be obtained as in § 257 (Ex. 20, Ex. 23).

Case IV. We take X = ^, so that z = must give the eight points C;

each is given three times, because at C there are three triangles of the same

set : we take v = I, so that z = 1 must give the six points 0, each four times

:

and /tt = I , so that z = <X) must give the twelve points S, each of them twice

We take the plane of the paper as the meridian. The points are 0, 1,

i, —1, —i, 00 ; each four times. Hence z=l, when the function

{w{w'-l)Y
vanishes.

+ 1 + i
The points C are the eight points ^^^7^^^ : the product of the eight

coiTesponding factors is

w^ + 14^iv* + 1:

and each occurs thrice, so that z = 0, when the function

{w^ + Utu" + ly
vanishes.

The points S are (i) the four points —Ji:
—- in the plane of the paper,

giving a corresponding product

w* — 6w- + 1 :

. + i
(ii) the four points t~~7^

—
^ i" ^^e meridian plane, perpendicular to the

plane of the paper, giving a corresponding pi-oduct

w^ + 6w- + 1

:

and (iii) the four points e* , (for r = 0, 1, 2, 3), in the equator, giving a

corresponding product

iu'+ 1.

Each of these points occurs twice: and therefore 2^=00, when the function

{(w^ + 1) {w' - 6w'^ + 1) {w" + 6w2 + 1)]-,

that is, when the function

(?<;'-- 33^-^ - 33 «^^ + ly-'

vanishes.
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the constant multiplier being determined as unity, by taking account of the

value unity for z : and

(wi2 _ 33^« _ lystu* + 1)2
•

The relation can be expressed in the equivalent form

z -.2-1 : 1 = (i(f + Uiv' +iy : 108w' {lu' - 1)* : {iv'- - 33w« - SSw' + L)-.

It gives the conformation on half of the 2;-plane of a M^-triangle bounded by

circular arcs and having its angles equal to ^tt, ^tt, ;j7r respectively.

The lines, by which the W'p\a.ne is divided into the triangles, are. given

\)y z = Zo, that is, by

(w« + Uw* -1-1)" (wo« + 14ZV + 1)^

Fig. 106.

The division is indicated in fig. 106, being the stereographic projection of

the divided spherical surface of fig. 103, with respect to the south pole,

taken to be diametrically opposite to the central point 0.

Case VI. We take \ = ^, so that z = must give the twenty points D,

each of them thrice; v = ^, so that z = l must give the twelve points /, each
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of them five times ; and /i. = ^ , so that z= <x> must give the thirty points S,

each of them twice.

Let an edge of the icosahedron subtend an angle Q at the centre of the

sphere:, then its length is 27'sin^^. Also, five edges are the sides of a

pentagon inscribed in a small circle, distant 6 from a summit : hence the

radius of this circle is rsin Q and the length of the edge is 2rsin ^sin^Tr.

so that

2 sin \d = 1 sin 6 sin \tt,

whence tan \0 = I (\/5 - 1), cot ^ ^ = ^ (V5 + 1).

Let OL denote e^". Then the value of w corresponding to the north pole /

is ; the values of %v for the projections on the^equatorial plane of the five

points / nearest the north pole are

tan \Q, a- tan \ 6, a'^ tan ^6, a** tan ^d, a.^ tan ^6

:

the values oi lu for the projections on the equatorial plane of the five points /

nearest the south pole are

acot^^, cc- cot he, a^cot^6', o^cot^6', a»coti(9:

and for projection of the south pole the value of iv is infinity. The product

of the corresponding factors is

w . n (w- a-' tan ^6) . 11 {w - a:->-+' cot ^ 0) . 1

r = r = (l

= w (iv' - tan'' ^6) {iv' + cot^ i 6)

= w (w^" + llw' - I),

after substitution. Each point / occurs five times ; and therefore z=l, when

the function

vanishes.

The points D lie by fives on four small circles with the diameter through

the north pole and the south pole for axis. The polar distance of the small

circle nearest the north pole is tan 8 = 3 — y/5, and of the circle next to it is

tan 8' = 3 + \/5, so that

,^ \/l.5-6V5-l , i„ V15 + 6V5-1
tan 46= i^ 7^ , tan ^ 6 = ^—

—

jz .

The function corresponding to the projections of the five points nearest the

north pole is

w' + tan'"* ^8,

and to the projections of the five nearest the south pole is

w' — cot'* ^8;
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while, for the projections of the other two sets of five, the products are

lif' + tan'"' ^8'

and W - cot* \
3'

respectively. Each occurs thrice. Hence z = ^, when the function

[{%if + tan* iS) (w* - cot* 1 8) (w* + tan^S') {vf - cot* \'^')\\

vanishes, that is, when (w-«- 228w'*+ 494w'»+ 228?<;''+ 1)^ which is the

reduced form of the preceding product, vanishes.

Fig. 107.

The points S lie by tens on the ec^uator, by fives on four small circles

having the polar axis for their axis. Proceeding in the same way with the

products for their projections, it is found that z=-<x> , when the function

[w^" + 1 + 522w* (w-'" - 1) - 10005 i/;'" (ji^'" + 1 )}2

vanishes.
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(w^o - 228iu'' + 494W''' + 22Hi(/' + 1Y"^
[uf' + 1 + 522iu' i^u'' - 1) - \0005iu'' (lo"' + 1)}-'

'

the constant factor being found to be unity, through the value of 1 — 2;

which IS l-z-
^^^^ ^^^ ^^2^, ^^^„„ _ 1) - 1 0005a;" (w'" + l)}'-'

'

These rehitions give the conformal representation on half of the 2-plane of a

^'-triangle, bounded by circular arcs and having angles hir, ^ir, ^tt.

The lines, by which the ?(;-plane is divided into the triangles, are given

by z = Zq, that is, by

(w-'» - 22Hw'' -I- 494w'» + 228w' + 1)=^ _ (wp-" - 228<^ + 494m;o" + 228 Wp^ + 1)^

^5 (^^10 +nw^-iy
~

Wp^ (Wo'" 4- 1 1 Wp* - 1
X'

The division is indicated in figure 107, which is the stereographic projection* of

the divided spherical surface of figure 104, with /ja as the pole of projection.

279. The pi'eceding are all the cases, in which simultaneously 2^ is a

uniform function of w, and w is an algebraical function of z : they arise when

the surface of the sphere has been completely covered once with the two sets

of triangles corresponding to the upper half and the lower half of the ^-plane.

But an inspection of the figures at once shews that they are not the

only cases to be considered, if the surface of the sphere may be covered

more than once.

In the configuration arising through the double-pyramid, the surface of

the sphere will be covered completely and exactly in times, if the angles at

the poles be 2in'irjn, where m is prime to n. The corresponding relation

between w and z is obtained from the simpler form by changing n into njm.

In the tetrahedral configuration (fig. 102) the surface of the sphere will

be exactly and completely covered twice by triangles FFT (or by triangles

TTF, it being evident that these give substantially the same division of the

surface). The relation between w and z will then be of the same degree,

12, as before in w, for the number of different triangles in the two it^-sheets

is still twelve of each kind : because there are two w-sheets corresponding

to the single i;-plane, that relation will be of the second degree in z. The

values of the angles are determined by

(III.) \,^.,v=l,\A

* lu regard to all tliu configurations thus obtained as stBi-eographic projections of a spherical

surface, divided by the j)lanes of symmetry of a regular solid, i\I(")bius's " Theorie der symme-

trischen Figuren" (Gcs. Werkc, t. ii, especially pp. 642—699), may be consulted with advantage;

and Klein-Fricke, Kllipiixche Modul/unctionen, vol. i, pp. 102—106.
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Again, in the octahedral configuration, the surface of the sphere will

be exactly and completely covered twice by triangles OCO. The relation

between w and z will be of degree 24 in w and degree 2 in 2^ : and the values

of the angles are determined by

(V.) x,f^,v=hh\-

Similarly, a number of cases are obtainable from the icosahedral configu-

ration, in the following forms

:

(VII.) X, fi, V = |, ^, I with triangles such as JiDjD.^;

(VIII.) \H',v = hhi DJJ,;

(IX.) X,/., . = 1,1,1 SJJ,;

(X.) \,/.,z. = f,i,4 DJJ,;

(XI.) X,/.,. = 1,1,1 IJJ,;

(XII.) X,;u, ^ = 1,1,4 I^DsD,,,

(XIII.) x,M, 1^ = 1,4,1 IJJ^o-,

(XIV.) x,^.,. = 1,1,1 IAD,;

(XV.) X, f.,v = h h i IJ^D,.

Other cases appear to arise : but they can be included in the foregoing,

by taking that supplemental triangle which has the smallest area. Thus,

apparently, I^DJ^^ would be a suitable triangle, with X, //,, i/ = §, |, i; it is

replaced by /jaDao/^io, an example of case (X.) above.

These, with the preceding cases numbered* (I.), (II.), (IV.), (VI.), form

the complete set of distinct ways of appropriate division of the surface

of the sphere.

It is not proposed to consider these cases here : full discussion will be

found in the references already given. The nature, however, of the relation,

which is always of the form

f{z) = F{tu),

where / and F are rational functions, may be obtained for any particular

case without difficulty. Thus, for (III.), we have

[lU, z\ = \

when

z:\-z \=-\'lsJ?>io' iiu' + \y : {lu' + 2iu- V3 - 1>^ : {w' - 2iv^ V3 - 1)^

Again, if

z : 1-z : l=(Z + iy : -4Z: {Z-lf,

* These numbers are the numbers originally assigned by Schwarz, Ges. Werke, t. ii, p. 246,

and used by Cayley, Camb. Phil. Trans., vol. xiii, pp. 14, 15.

K K. 45
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a special case of § 278, I., by taking n = l, then

z^

Hence [w, Z] =
(^^^J

[{^v, z] - [Z, z]]

16{Z

(Z.

1 14 1 1 I 4
T7
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an assigned curve in the other : there is no indication of the character of the

relation for an arbitrary curve or a family of curves. But in one case, at any

rate, it is possible to give an indication of the limitations on the functional

form of the relation.

Let there be a family of plane algebraical curves, determined as potential

curves by a variable parameter*: and let their equation be

F{x, ij,u) = 0,

where u is the variable parameter, which, when it is expressed in terms of x

and 1/ by means of the equation, satisfies the potential-equation

d-ii d^u _

Since u is a potential, it is the real part of a function w of .r + iy : and the

lines u = constant are parallel straight lines in the ty-plane. It therefore

appears that the functional relation between w and z must represent the

w-plane conformably on the ^^-plane, so that the series of parallel lines in the

one plane is represented by a family of algebraical curves in the other : let

the relation, which effects this transformation, be

X (^' ^) = ^•

Let the algebraical curve, which corresponds to some particular value of u,

say u = 0, be

F{x,y,0)=f(x,y) = 0,

which in general is not a straight line. Let a new complex ^ be determined

by the equation

this equation is algebraical, and therefore ^ can be regarded as a function of

w, say T|r (w), between which and z, regarded as a function of w, say (}> (w),

there is an algebraical equation.

Now when u = 0, z describes the curve

f(x,y)=0:

hence at least one branch of the function ^, defined by

/(r/-f-f) = o,

* Such curves are often called isothcriiuil, after Larue. The discussion of the l)0^sible func-

tional relations, that lead to algebraical isothermal curves, is due to Schwarz, Ges. Werkc, t. ii,

pp. '26U—268: see also Hans Meyer, " Ueber die von geraden Linien und vou Kegelschuitten

gebildeten Schaaren vou Isotliermen ; so wie iiber einige von speciellen Curven dritter Ordnung

gebildete Schaaren von Isothernieii," (a Gottingen dissertation, Ziirich, Zurcher and Furrer,

1879); Cayley, Quart. Journ. Math., vol. xxv, (1891), pp. 203—226, Cull. Math. Papers, vol. xiii,

pp. 170—191 ; and the memoir by Von der Miihll, cited p. 611.

45—2
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can be taken as equal to x when u = 0, that is, there is one branch of the

function ^ which is purely real wheii w is purely imaginary.

The curves in the ^-plane are algebraical : when this plane is conformally

represented on the ^-plane by the foregoing branch, which is an algebraical

function of z, the new curves in the f-plane are algebraical curves, also

determined as potential curves by the variable parameter u. And the ^-curve

corresponding to u = is (the whole or a part of) the axis of real quantities.

In order that the conformal representation may be effected by the functions,

they must allow of continuous variation : hence lines on opposite sides of

u = correspond to lines on opposite sides of the axis of real quantities. The

functional relation between ^= ^ -hirj and w= u + iv is therefore such that

^ + ir) = yjr (u + iv),

^— ir} = ylr(— u + iv).

The equation of the ^-curves, which are obtained from varying values of

u, is algebraical : and therefore, when we substitute in it for f and 77 their

values in terms of \|r (m + iv) and i/r (- w + iv), we obtain an algebraical

equation between t/t {u + iv) and \\r{—u + iv), the coefficients of which are

functions of u though not necessarily rational functions of u. Let 6 ^ — 2u\

and let ^/rg, i/ts denote yfr{iv), ylr(w + 6) respectively; then the equation can

be represented in the form

9(ir„^|r„^) = 0,

rational in yjr^ and -v//-,,, but not necessarily rational in 6.

Because the functions allow continuous variation, we can expand i/tj in

powers of 6: hence

^i:^^-^^-^'^-^^'^- ^)=«-

When this equation, which is satisfied for all values of w and of 6, where

w and are independent of one another, is arranged in powers of 0, the

coefficients of the various powers of 6 must vanish separately. The coefficient

independent of 6, when equated to zero, can only lead to an identity, for it

will obviously involve only yjr^ : any non-evanescent equation would determine

yfr^ as a constant. Similarly, the coefficient of every power of 6, which

involves none of the derivatives of yfr,^, must vanish identically. The co-

efficient of the lowest power of 6, which does not vanish identically, involves

yfr2, -. - and constants: but, because the equation g {"^i, '^i, 0) = is

rational in t/t,, the second and higher derivatives of yjr.i, associated with the

second and higher powers of 6 in the expansion of yjr-j, cannot enter into the

coefficient of this power of d. Hence we have



280.] ALGEBRAIC ISOTHERMAL CURVES 709

an algebraical equation between -\|r.> and -r-~ , the coefficients of which are

constants.

The coefficient of the next power of 6 will involve ,^" , and so on for the

powers in succession. Instead of using the equations, obtained by making

these coefficients vanish, to deduce an algebraical equation between -xlrg

and any one of its derivatives, we use h = 0. Thus for --—
, the equation

would be obtained by eliminating -v/r./ between the (algebraical) equations

and so for others.

Returning now to the equation

in which, as it is rational in yjr^ and yps, only a limited number of co-

efficients, say k, are functions of 0, we can remove these coefficients as

follows. Let k — 1 differentiations with regard to w be effected : the resulting

equations, with g = 0, are sufficient to determine these k coefficients ration-

ally in terms of -i/rg, ^jr3 and their derivatives. But the coefficients are

functions of 6 only and do not depend upon w : hence the values obtained for

them must be the same whatever value be assigned to w. Let, then, a zero

value be assigned : -v/^g and its derivatives become constants ; -yjrs becomes

'\lr{0), say yjr^, and all its derivatives become derivatives of yp-^; so that the

coefficients can be rationally expressed in terms of yjri and its derivatives.

When these values are substituted in g = 0, it takes the form

gi (f2, ^3,^1, fi, ^i", ...) = 0,

rational in each of the quantities involved. But between i/ti and each

of its derivatives there subsists an algebraical equation with constant co-

efficients : by means of these equations, all the derivatives of yfr^ can be

eliminated from (/i
= 0, and the final form is then an algebraical equation

G{ylr,,yjr.,,f,) = 0,

involving only constant coefficients. But

and therefore the function yfr (lu) possesses an algebraical addition-theorem.

Now i|r(t(;) and (t>(io) are connected by the algebraical equation

therefore <f)(w) possesses an algebraical addition-theorem. But, by § 151,
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when a function (})(w) possesses an algebraical addition-theorem, it is an

algebraical function either of w, or of e'^"', or of an elliptic function of w, the

various constants that arise being properly chosen : and hence the only

equations

X {z, w) = 0,

which can give families of algebraical curves in the z-plane as the corformal

equivalent of the parallel lines, u = constant, in the w-plane, are such that z

is connected by an algebraical equation either luith w, or with a simply-periodic

function of lu, or tuith a doubly-periodic function of iv.

There are three sets of fundamental systems, as Schwarz calls them, of

algebraical curves determined as potential curves by a variable parameter

:

they are curves such that all the others can be derived from them solely by

algebraical functions.

The first set is fundamental for the case when z is an algebraical function

of w : it is given by
u = constant,

being a series of parallel straight lines.

The second set is fundamental for the case- when z is an algebraical

function of e*"*"; if W denote ef*"*, then z is an algebraical function of IF, and

all the associated curves in the ir-plane are conformal representations of the

algebraical curves in the TF-plane. If /a = a + jSi, where a and ^ are real,

then

(a^ + /3^) «t = U log (Z^ + rn + /9 tan-i ^
,

a relation which can lead to algebraical curves in the IF-plane only if a or

/S be zero. If a be zero, then yu, is a pure imaginary, and the TF-curves are

straight lines, concurrent in the origin : if /3 be zero, then yu, is real, and the

1'1'^-curves are circles with the origin for a common centre. Hence the set

of fundamental systems for the case, when z is an algebraical function of e^"",

consists of an infinite series of concurrent straight lines and an infinite series

of concentric circles, having for their common centre the point of concurrence

of the straight lines.

The third set is fundamental for the case when z is an algebraical function

of a doubly-periodic function, say, of sn fxw.

Ex. Prove that eitlier the moduhis k is real or an algebraical transformation of

argument to another elHptic function having a real modulus is possible : and shew that

the set of fundamental curves are quartics, which are the stereographic projection of

confocal sphero-conics. (Schwarz, Siebeck, Cayley.)

We thus infer that all families of algebraical curves, determined as

potential curves by a, variable parameter, are conformal representations of
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one or other of these sets of fundamental systems, by equations which are

alqehraical.

But though it is thus proved that the relation between z and w must

express z as an algebraical function either of w, or of e**'", or of sn ixw, in

order that a family of algebraical curves may be the conformal representation

in the ^--plane of the lines u = constant in the it;-planc. the same limitation

does not apply, if we take a single algebraical curve in the ^r-plane as the

conformal representation of a single line in the t«-plane.

1 - TF
Let w = z ^r then the lines in the TF-plane, which correspond to the

I + W ^ ^

parallel lines, u = constant, in the w-plane, are the system of circles

Now consider a relation

IT

/2K
k - Tf = sn

where Z is as yet some unspecified function of z : then

Hence | WW, = sn (^^~ z\ sn (^ Z^ ,

so that, if W describe the circle corresponding to u = 0, we have

^ = sn(-/)sn(-^„

whence Z — Zf,= ^^
If Z =sm~' z, and therefore Zo = sin~' z,, then

2x = z + Zo = '2 sin 1{Z+ Z,) cos '-^ = (q'^i + q^) sin i (Z + Zo),

'2iy = z-Zo = '2cos^(Z+ Z,) sin
^J^^

= i {q~^ - q*) cos \{Z {- Zq),

so that 1 1
"T

{q'^^^qh iq-^-qh'

an ellipse, agreeing with the result in § 257, Ex. 7. This is obtained from

the relation

,_il-w (2K . , \
k 2 = sn — sin~' z ,

1 +W \ TT I

which is not included . in the general forms of relation obtained in the

preceding investigation.
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But the equation

I V TT J W+lj [ V TT 7 M+1) (if +1)2

does not lead to an algebraical relation between a- and y for a general (non-

zero) value of u. Neither the conditions of the earlier proposition nor its

limitations apply to this case.

The problem of determining the kinds of functional relation which will

represent a single algebraical curve in the ^-plane upon a single line of the

?y-plane is wider than that which has just been discussed : it is, as yet,

imsolved.

Note on § 275 (see foot-note, p. 690).

The investigations in §§ 276-279 shew how important, in the development

of the polyhedral functions connected with the hypergeometric series, is the

surface of a sphere, that is, a surface of constant positive curvature. All the

cases in which algebraic expression can arise for \ + fj,
+ v > 1 are thereby

considered.

It might seem not improbable that a corresponding use of surfaces of

constant negative curvature could be made (or X + /x + v < 1 ; but the whole

investigation is much more difficult, because the relation between w and z is

always transcendental in one of the two variables. The following propositions

are worthy of record.

A. All surfaces of given constant (negative) curvature are deformable

into one another, without stretching or tearing*.

Consequently, it is sufficient to take any one of

them as a surface of reference ; and the simplest,

as regards the geometrical property, appears to be

the surface of revolution formed by the rotation

of the plane tractrix—the symmetrical involute of

a catenary—about its asymptote which is the

directrix of the catenary. The equations of the

generating curve
-f-

are

x'o = a sin </), //o = a (cos cf) + log tan | (p) ;

the range of (j> for the upper part of the (dotted)

curve is tt to ^tt, and for the lower part is Itt to 0.

The curve is periodic analytically, so far as con-

cerns
(f>,

with a period 27r; but geometrically it is

* A well-known tlieorem, originally due to Minding;, on tlie basis of a theorem proved by

Gauss; see my Lectures on Differential Geometry, %% '211, 212.

t See Darboux, Theorie generale den surfaces, (t. iii, pp. ;5!)4 8(i(i.), for a discussion of the

surface.
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imaginary, and therefore also the sheet of the surface is imaginary, for the

half-period ir to 2-Tr, and for every corresponding half-period. And there is

an infinite number of sheets, real and imaginary.

The arc s^ of the tractrix from its vertex is given by

Sq = ct log cosec <^.

The arc of the surface of revolution is given by

ds- = ds^r + Xq^ d&'

= -J,dii:' + de'),
u-

where u = -.—r

.

sin<^

The surface is isothermal in terms of these variables u and 6
;
the range

of ^ is to 27r, and the range of u (for </> between \ir and 0) is from 1 to oo

.

The area of the upper half of the surface is the same as that of the lower

half: each of them

= I 27rX(,dSo = 27ra^.
Jo

For the Gaussian measure of curvature of the surface of revolution, we have

pz= — a cot <^, n = a tan ^,

(the radius of curvature and the normal of the generating curve, and these

are in opposite directions) : so the measure is Ijpn, that is, — 1/a'.

Geodesies on the surface*, are given by the equation

^_l(dey Id^
du^ u \duj u du

'

the primitive of which is

u' + (6 - ay = /3-'

;

that is, in the u, 6 plane, the representatives of the geodesies are circles

having their centres on the straight line which is the axis of 6.

Thus, if we write

U = 'q, 6 = ^,

the surface becomes

ds^ = '^^(d^-^ + dv');
V~

it is conformally represented on the ^, rj plane ; angles are conserved ; and its

geodesies are transformed into circles in this plane having their centres on the

axis of ^.

In this conformal representation of the half-surface of constant negative

curvature upon the ^, rj plane, where | ranges from to 27r (and in any

* See my Lectures on Differential Geometry, pp. 84, 131.
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periodic repetition of this range) while 77 ranges from 1 to x , we are

representing an infinite half-closed rectangle, bounded by a line parallel to

the axis of ^ and two lines parallel to the axis of 77.

B. (This statement is left as an exercise, as well as the discussion

concerning the whole range of the f'-plane.) It should be proved that, by

the relation

r=sin^{i(r-oi,

one sheet of the original surface of revolution is represented upon half of

the ^'-plane where ^ = ^ + irj-

C. Now, it is a known theorem (originally due to Gauss) that, in

particular, for the surface of constant negative curvature*, the area of

a geodesic triangle having angles Xtt, /ultt, vir, is

7r2a(l —X — fjL-v).

Thus we can associate the curvilinear triangles in the original plane, for

which \-\- iJL-^ V < 1, with a surface of constant negative curvature.

D. The ^, 77 plane, or the ^-plane, can be changed into a w-plane

where w = X + iY, by the relation

i-i;

so that the whole of the interior of a w-circle of radius unity can be

represented on the upper half of the ^-plane while the circumference of the

circle is transformed into the. axis of real quantities; and likewise for the

exterior of the w-circle into the lower half of the ^-plane by the same

transformation.

As already stated (p. 690), the whole subject concerned with the restriction

\-\- fi + V <\ awaits much fuller investigation.

* Ges. Werke, t. iv, p. 245 ; my Lectures on Differential Geometry, p. 161 ; Carslaw's trans-

lation of Bonola's work Non- Euclidean Geometry, p. 136.



CHAPTER XXI.

Groups of Linear Substitutions.

281. The properties of the linear substitution

az + b
w =

,

,

CZ+ a

considered in Chap. XIX. as bearing upon the conformal representation of two

planes, were discussed solely in connection with the geometrical relations of

the conformation : but the applications of these properties have a significance,

which is wider than their geometrical aspect.

The essential characteristic of singly-periodic functions and of doubly-

periodic functions, each with additive periodicity, is the reproduction of the

function when its argument is modified by the addition of a constant quantity.

This modification of argument, uniform and uniquely reversible, is only a

.special case of a more general modification which is uniform and uniquely

reversible, viz., of the foregoing linear substitution. This substitution may
therefore be regarded as the most general expression of linear periodicity,

in a wider sense : and all functions, characterised by the property in the

general form or in special forms, may be called automorphic.

Our immediate purpose is the consideration of all the points in the

plane, which can be derived from a given point z and from one another by

making z subject to a set of linear substitutions. The set may be either

finite or infinite in number ; it is supposed to contain every substitution

which can be formed by combining two or more substitutions. Such a set

is called a group.

The substitution is often denoted by S (z), or by

az 4- h^

cz + d/

it is said to be in its normal form, when the real part of a (if a be a complex

constant) is positive and ad — hc=\.

The ideas of tlie theory of groups of substitutions are necessary for a proper considera-

tion of the properties of automorphic functions. What is contained in the present chapter

is merely sufficient for this requirement, being strictly limited to such details as arise in

connection with these special functions. Information on the fuller development of the

theory of groups, which owes its origin as a distinct branch of mathematics to Galois,
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will be found in appropriate treatises such as those of Serret*, Jordan t, NettoJ, Klein §,

and Burnsidell ; and in memoirs by Klein**, Poincarett, Dyck:|::J:, and Bolza§§. The

account of the projjerties of groups contained in the present chapter is based upon the

works of Klein and Poincard just quoted.

A substitution can be repeated ; a convenient symbol for representing

the substitution, that arises from n repetitions of S, is S'\ Hence the various

integral powers of S, considered in § 258, are substitutions, indicated by the

symbols >S'-, S\ S\ ....

But we have negative powers of S also. The definition of S'' (z) is

given by
SS" (z) = S (z),

so that *S'" {z) = z and it is often called the identical substitution : the

definition of S~'^ (z) is given by

SS-' (z) = S' (z) = z,

so that S~^ (z) is a substitution the inverse of S : in fact, if w = *S'(^) = ,

,

^ ^ cz + d

then z = S~^ w = . And then, from t^~'^z, by repetition we obtain
cw — a J r

S-";S-\S-\ ....

If some of all the substitutions to which a variable z is subject be

not included in *S^ and its integral powers, then we have a new substitution

T and its integral powers, positive and negative. The variable is then

subject to combinations of these substitutions : and, as two general linear

substitutions are not interchangeable, that is, we do not have T{Sz) = S{Tz)

in general, therefore among the substitutions to which z is subject there

must occur all those of the form

where a, /3, 7, S, . . . are positive or negative integers.

If, again, there be other substitutions affecting z, that are not included

among the foregoing set, let such an one be U : then there are also powers

of U and combinations of S, T, U (with integral indices) operating in any

order: and so on. The substitutions S, T, U, ... are caUed fundjnnental

:

the sum of the moduli of a, j3, 7, h, ... of any substitution, compounded from

* Cours d'Alfjebre Superiewe, t. ii, Sect, iv, (Paris, (Jauthier-Villars).

t Traite dcs substitutions, (ib., 1870).

:J:
Suhstitutionentheorie und ihre Anwendtinri anf die Alpebra, (Leipzig, Teubner, 1882).

§ Vorlenungen ilber das Ikosaeder, (ib., 1884).

Ii
Theory of groups offinite order, (Cambridge, University Press, 2nd ed., 1911).

** Math. Ann., t. xxi, (1883), pp. 141—218, where references to earlier memoirs by Klein are

given.

•ft Acta Math., t. i, (1882), pp. 1—62, pp. 193—294 ; ib., t. iii, (1883), pp. 49—92.

tt Math. Ann., t. xx, (1882), pp. 1—44; ib., t. xxii, (1883), pp. 70—108.

§§ Avier. Journ. of Math., vol. xiii, (1890), pp. 59—144.
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the fundamental substitutions, is called the index of that substitution ; and

the aggregate of all the substitutions, fundamental and composite, is the

group.

There may however be relations among the substitutions of the group,

depending on the fundamental substitutions ; they are, ultimately, relations

among the fundamental substitutions, though they are not necessarily the

simplest forms of those relations. Hence, as we may have a relation of

the form

...ti''../P...U'...{z) = z,

the index of a composite substitution is not a determinate quantity, being

subject to additions or subtractions of integral multiples of quantities of the

form (a) + (6) + (c) 4- ..., there being one such quantity for every relation:

we shall assume the index to be the smallest positive integer thus obtainable.

282. There are certain classifications which may initially be associated

with such groups, in view of the fact that the arguments are the arguments

of uniform automorphic functions satisfying the equation

f{Sz) =f{z) :

in this connection, the existence of such functions will be assumed until their

explicit expressions have been obtained.

Thus a group may contain only a finite number of substitutions, that is,

the fundamental substitutions may lead, by repetitions and combinations, only

to a finite number of substitutions. Hence the fundamental substitutions,

and all their combinations, are periodic 'in the sense of § 260, that is, they

reproduce the variables after a finite number of repetitions.

Or a group may contain an infinite number of substitutions : these may

arise either from a finite number of fundamental substitutions, or from an

infinite number. The latter class of infinite groups will not be considered

in the present connection, for a reason that will be apparent (p. 732, note)

when we come to the graphical representations. It will therefore be

assumed that the infinite groups, which occur, arise through a finite number

of fundamental substitutions.

A group may be such as to have an infinitesimal substitution, that is,

there may be a substitution —-7 , which gives a point infinitesimally near

to z for every value of z. It is evident there will then be other infinitesimal

substitutions in the group ; such a group is said to be continuous. If there

be no infinitesimal substitution, then the group is said to be discontinuous,

or discrete.

But among discontinuous groups a division must be made. The definition

of group-discontinuity implies that there is no substitution, which gives an

infinitesimal displacement for every value of z: but there may be a number
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of special points in the plane for regions in the immediate vicinity of which

there are infinitesimal displacements. Such groups are called improperly

discontinuous in the vicinity of such points: all other groups are called

properly discontinuous. For instance, with the group of real substitutions

72^ + 8'

where a, /3, 7, 8 are integers such that aS — /37 = 1, it is easy to see that, when

2, and z., are real, we can make the numerical magnitude of

as small a non-evanescent quantity as we please by proper choice of a, /3, 7, 8 :

thus the group is improperly discontinuous, because for real values of the

variable it admits infinitesimal transformations. But such infinitesimal

transformations are not possible, when z does not lie on the axis of real

quantities, that is, when z is complex : so that, for all complex values of

z, the group is properly discontinuous.

The various points, derived from a single point by linear substitutions,

will, in subsequent investigations, be found to be arguments of a uniform

function. Continuous groups would give a succession of points infinitely

close together; that is, for these points, either /(2^) would be unaltered in

value for a line or a small area of points and therefore constant everywhere,

or else the point would be an essential singularity, as in § 37. We shall

therefore consider only discontinuous groups.

A group containing only a finite number of substitutions is easily seen to

be discontinuous : hence the groups which are to be considered in the present

connection are the discontinuous groups which arise from a finite number of

fundamental substitutions*.

The constants of all linear substitutions of the form
r~fj

^^^ ^^^P"

posed subject to the relation ad-bc= 1. This condition holds for all

combinations, if it hold for the components of the combination. For let

^^a^^^ rp^(J:l + b.

ryZ + 6' CZ + d'

„, _ {aa + ^c)Z'^ab + l3d _ Az + B
^^6" ^^~

{rya + 8c)z + ryb + Sd
"^

Cz + D '

whence AD-BC = {ah - /3y) {ad - be) = 1.

* Tliese diHcontinuous, or discrete, groups will Ik; considered from the point of view of auto-

rnorphic functions. But the theory of such groups, whicli has many and wide applications quite

outside tlie range of the subject of this treatise, can he applied to other parts of our subject.

Thus it has been connected with the discussion of Riemann's surfaces by Dyck, Math. Ann.,

t. xvii, (1880), pp. 473—509, and by Hurwitz (I.e., p. 4.56, note).
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It is easy to see that ST {^ U) and TS {= V) are of the same class, that

is, they are elliptic, parabolic, hyperbolic or loxodromic together : but there is

no limitation on the class arising from the character of the component sub-

stitutions.

Moreover, if U = V, so that S and T are interchangeable, then

a — d _ c _ b

a — S 7 ^'

that is, S and T have the same fixed points. They can be applied in an}'

order ; and, for any given number of occurrences of S and a given number of

occurrences of T, the composite substitution will give the same point. Thus
if S = 2 + CO, then T = z + co' ; if S = kz, then T= k'z. The class of func-

tions, which have their argument subject to interchangeable substitutions

of the former category, have already been considered : they are the periodic

functions with additive periodicity. The group is S^^T'"', (= z + mco + m'co'),

for all integral values of m and of m.

The latter class of functions have what may be called a factorial

periodicity, that is, they resume their value when the argument is mul-

tiplied by a constant*.

283. Some examples have ali-eady been given of groups containing a

finite number of substitutions f, in the case of certain' periodic elliptic

substitutions. The effect of such substitutions is (p. 628) to change a

crescent-shaped part of the plane having its angles at the (conjugate) fixed

points of the substitution into consecutive crescent-shaped parts : and so to

cover the whole plane in the passage of a substitution through the elements

constituting its period. They form the simplest discontinuous group—in

that they have only one fundamental 'substitution and only a finite number
of derived substitutions.

The groups which are next in point of simplicity are those with onh'

two substitutions that are fundamental and only a finite number that

are composite. Both of the fundamental substitutions must be periodic,

and therefore elliptic, by § 260. Taking one of these groups as an example,

* Functions having this property are discussed by Pincherle, " Sulle funzioni monodrorae

aventi un' equazione caratteristica," Rend. Ixt. Lomb., Ser. 2, t. xii, (1879), pp. 536—.542. See

also Rausenberger's Theoiie der periodischen Functionen, (Leipzig, Teubner, 1884): iu particular,

Section VI.

t The complete theory of finite groups of linear substitutions is discussed, partly in its

geometrical lelation with polyhedral functions, by Klein, Math. Ann., t ix, (1870), pp. 183—188,

and, iu its algebraical aspect, by (jordan, Math. Ann., t. xii, (1877), pp. 23—46. A reference

to these memoirs will shew that the previous chapter contains all the essentially distinct finite

groups of linear substitutions.
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one of its fundamental substitutions has ± 1 as its fixed points and it is

periodic of the second order : it is evidently

lu = ^z = -
.

z

The other has ^ and oc as its fixed points, and it is periodic of the second

order : it is evidently

w =Tz=\ — z.

Evidently &H = z, T-z = z, {S = S-\ T=T-'), so that we have already all the

powers of the fundamental substitutions taken separately.

But it is necessary to combine them. We have Uz = STz = r , a new
•^

1 -z
substitution : and then

U"-z =^^ , U^^z = z,
z

so that U is periodic of the third order. Again

Vz = TSz = ^-^,
z

which is not a new substitution, for Vz = U'-z : and it is easy to see that there

is only one other substitution, which may be taken to'be either TUz or SVz

:

it gives

TUz=SVz=^,
z — 1

again periodic of the second order.

Hence the group consists of the six substitutions for z given by

1 _ 1 z- 1 z

' z' ' 1 —z ' z ' ^ — 1
'

taking account of the identical substitution.

These finite discontinuous groups are of importance in the theory of

polyhedral functions : to some of their properties we shall return later.

Next, and as the last special illustration for the present, we form a

discontinuous group with two fundamental substitutions but containing an

infinite number of composite* substitutions. As one of the two that are

fundamental, we take

10= Iz = ,

z

which is elliptic and periodic of the second order. As the other, we take

w = Sz= z + I,

which is parabolic and not periodic. All the substitutions are real.

* One such group ha.s already occurred : its fuudamental (parabolic) substitutions were

w — Sz = z + u), w—Tz=z + (i)'.
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Evidently T^z = z, so that T = T'^ : and *S'"*^ = z + m, where m is any

integer. Then all the composite substitutions are either of the form

. . .S^TS'^TS'^z or of the form ...SpTS^'TS'^Tz, both of these being included

in
-J

, where a, b, c, d are integers, such that ad — be = 1.

Ex. Prove the converse—that the substitution -^-—
j , where a, b, c, d are integers

cz-\-a

such that ad-bc=l, is compounded of the substitutions >S' and T.

This gi-dup, again, is of the utmost importance : it arises in the theory of

the elliptic modular-functions. As with the polyhedral groups, the general

discussion of the properties will be deferred : but it is advantageous to

discuss one of its properties now, because it forms a convenient introduction

to, and illustration of, the corresponding part of the theory of groups of

general substitutions.

284. In the discussion of the functions with additive periodicity, it was

found convenient to divide the plane into an infinite number of regions such

that a region was changed into some other region when to every point of the

former was applied a transformation of the form z + mw + m'oi', that is, a

substitution : and the regions were so chosen that no two homologous points,

that is, points connected by a substitution, were within one region, and each

region contained one point homologous with an assigned point in any region

of reference.

Similarly, in the case when the variable is subject to the substitutions of

an infinite group, it is convenient to divide the plane into an infinite number

of regions ; each region is to be associated with a substitution which, applied

to the points of a region of reference, gives all the points of the region, and

each region is to contain one and only one point derived from a given point

by the substitutions of the group. It is a condition that the complete plane

is to be covered once and only once by the aggregate of the regions.

When the discontinuous group has only the two fundamental substitutions,

Sz = z -\- \ and 7V = , the division of the plane is easy : the difficulty of

determining an initial region of reference is slight, relatively to that which

has to be overcome in more general gi'oups*.

The ordinates of z and w (= Sz) are positive together or negative together

;

and similarly for the ordinates of z and tu (= Tz) : so that it will suffice to

divide the half-plane on the positive side of the axis of real quantities.

For the repetitions of the substitution S, it is evidently sufficient to divide

the plane into a series of strips, bounded by straight lines parallel to the axis

of y at unit distance apart.

* In addition to the references already f,'iven, a memoir by Hurwitz, Math. Ann., t. xviii,

(1881), pp. 531—544, may be consulted for this group.

F. F. 46
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For the application of the substitution T, we have to invert with regard

to a circle of radius 1 and centre the origin, and to take the reflexion of the

inversion in the axis of y.

In these circumstances, we can choose as an initial region of reference, the

space bounded by the conditions

1 1 o , .

It is sufficient to prove that any point in this region when subjected to a

substitution of the group, necessarily of the form -%
, where a, b, c, d are

integers such that ad — be = I, is transformed to some point without the

region, and that the aggregate of the regions covers the half-plane.

If c be 0, then a=l=d and the transformation is only some power of *Sf,

which transforms the point out of the region.

If c be + 1, then, since ad — bG = l, we have

1

z ->rd

a and d being integers. For any point z within the region, |-2 + c?|, which is

the distance of the point from some point 0, + 1, ± 2, ... on the axis of x, is

> 1 : hence
\'w — a\< 1,

that is, the distance of w from some point 0, +1, + 2, ... on the axis is < 1,

and therefore the transformed point is without the region.

Similarly, if c be — 1.

If lei be > 1, then w— =—-„ r.
'

'
'

c c- dz+-
c

As z is within the region, \z +- ^ -^ : and therefore

V3
2

a

c^ 4

so that \iv— \^ -^~< ^\/S.
C

I

i.\J (j

Hence the distance of w from some point 0, + 1, ± 2, ... on the axis of x

\s, <\ \/3, that is, the transformed point is without the region.

The exceptions are points on the boundary of the region. The boundary

x — — \ is transformed by <S to a; = 4-^: the boundary x^^-if^l is trans-

formed by T into itself: but all other points are transformed into others

without the region.
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We now apply the substitutions S and T to this region and to the

resulting regions. Each substitution is uniform and is reversible : so that

to a given point in the initial region there is one, and only one, point in each

other region.

The accompanying diagram (Fig. 108) gives part of the division of the

plane into regions, the substitutions associated with each region being

placed in the region in the figure ; it is easy to see that the aggregate of

regions completely covers the half-plane. All the linear boundaries of ^S",

for different integral values of n, are changed by the substitution T into

circles having their centres on the axis of a; and touching at A : thus the

boundary between S and S'^ is transformed into the boundary between

TS and TS'\ All the lines which bound the regions are circles having

their centres on the axis of x or are straight lines perpendicular to that

axis ; and the configuration of each strip is the same throughout the

diagram.

Fig. 108.

It will be noticed that in one region there are two symbols, viz., S~^TS~^

and TST : the region can be constructed either by 8~'^ applied to TS~^ or by

T applied to ST. It therefore follows that

TST = S-'TS-\

Hence S . TST. S=S. S-'TS-' . S = T,

or, since T^ = 1, we have STSTST= 1 = TSTSTS,

a relation among the fundamental substitutions. Thus the symbol of any

region is not unique : and, as a matter of fact, if we pass clockwise in a small

46—2
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circuit round from the initial region, we find the regions to be 1, T, TS, TST,

TSTS, TSTST, TSTSTS, the seventh being the same as the first and giving

the above relation.

By means of this relation it will be found possible to identify the non-

unique significations of the various regions. At each point there are six

regions thus circulating always, either in the form ©>S, ®ST, ^STS, ... or in

the form ^T, STS, (f^TST, .... And by successive transformations, the space

towards the axis of a; is distributed into regions.

The decision of the region to which a boundary should be assigned will

be made later in the general investigation ; it will prove a convenient step

tcfwards the grouping of edges of a region in conjugate pairs.

Note. It may be proved in the same way that, for any discontinuous

group of substitutions, the plane of the variable can be divided into regions

of a similar character. As will subsequently appear, there is considerable

freedom of choice of an initial region of reference, which may be called a

fundamental region.

285. We now pass to the consideration of the more general discontinuous

groups, based on the composition of a finite number of fundamental substitu-

tions. By means of these groups and in connection with them, the plane of

the variable can be divided into regions, one corresponding to each substitu-

tion of the group. The regions are said to be congruent to one another

:

the infinite series of points, one in each of the congruent regions, which arise

from z when all the substitutions of the group are applied to z, are said to

be corresponding or homologous points : and the point in Bo of the series is

the irreducible point of the series. As remarked before, the correspondence

between two regions is uniform : interiors transform to interiors, boundaries

to boundaries.

,Two regions are said * to be contiguous, when a part of their boundaries is

corhmon to both. Each region, lying entirely in the finite part of the plane,

is closed : the boundary is made up of a succession of lines which may for

convenience be called edges, and the meeting-point of two edges may for con-

venience be called a corner.

Such a group, when all the substitutions are real, is called f Fuchsian,

by Poincar^ ; the preceding example will furnish a simple illustration, useful

for occasional reference. All the substitutions are of the form

as2! + bs

CgZ \- ds
'

* Poincar^ uses the term limitrophes.

t Math. Ann., t. xix, p. 554, t. xx, pp. 52, 53: Acta Math., t. i, p. 62. The same term is

applied to a less limited class of groups ; see p. 740, note.
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which form will be denoted by /« (z). We shall suppose that an infinite

group of real substitutions is given, and that it is known independently to

be a discontinuous group: we proceed to consider the characteristic properties

of the associated division of the plane, which is to be covered once and only

once by the aggregate of the regions. The fundamental region is denoted

by Ro : the region, which results when the substitution /,„ (z) is applied

to the points of R^, will be denoted by ii,„.

So long as we deal with real substitutions, it is sufficient to divide the

half-plane above the axis of x into regions : and this axis may be looked upon
as a boundary of the plane. Since the group is infinite, the division into

regions must extend in all directions in the plane to its finite or infinite

boundaries : for we should otherwise have infinitesimal transformations. Thus
the edge of a region is either the edge of a contiguous region, and then it is

said to be of the first kind ; or it is a part of the boundary of the plane, that

is, in the present case it is a part of the axis of x : and then it is said to be of

the second kind. Since all real substitutions transform a point above the axis

of X into another point above the axis of x, it follows that all edges congruent

with an edge of the first kind (an edge lying off the axis of x) themselves

lie off the axis of x, that is, are of the first kind : and similarly all edges con-

gruent with an edge of the second kind are themselves of the second kind.

The corners, being the extremities of the edges, are of three categories.

If a corner be an extremity of two edges of the first kind and not on the

axis of X, then it is of the first category : and the infinite series of corners

homologous with it are of the first category. If it be common to two

edges of the first kind and lie on the axis of x, then it is of the second

category: and the infinite series of corners homologous with it are of the

second category. If it be common to two edges, one of the first and one of

the second kind, it is of the third category ; of course it lies on the axis

of X and the infinite series of corners homologous with it are of the third

category. We do not consider two edges of the second kind as meeting

:

they would, in such a case, be regarded as a single edge.

Each edge of the first kind belongs to two regions. We do not assign

such an edge to either of the regions, but we use this community of

region to range edges as follows. Let the edge be Ep, common to i^o

and jRp ; then, making the substitution inverse to fp {z\ say fp~^ {z), Rp
becomes Rq, R^ becomes R^p, and Ep hecomes fp~^ (Ep), which is necessarily

an edge of the first kind and is common to the new regions R_p and Rq,

that is, it is an edge of Rq. Let it be Ep : then Ep and Ep may be

the same or they may be different.

If Ep and Ep' be different, then we have a pair of edges congruent to

one another : two such congruent edges of the same region are said to be

conjugate. Since the substitutions are of the linear type, the coiTespondence
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being uniform, not more than one edge of a region can be conjugate with

a given edge of that region.

If Ep and Ep be the same, then the substitution transforms Ep into

itself: hence some point on Ep must be transformed into itself As the edge

is of the first kind so that the point is above the axis of X, the substitution

is elliptic and has this point as the fixed point of the substitution in

the positive half-plane. The two parts of Ep can be regarded as two

edges : and the common point as the corner, evidently of the first category.

Because the directions of the edges measured away from the point are

inclined at an angle tt, it follows that the multiplier of the elliptic sub-

stitution is e% or — 1. An illustration of this occurs in the special

example of § 284, where the circular boundary of the initial region of

reference is changed into itself by the fundamental substitution wz = -1,

that is,

w — i _ z — i

w + i z + i'

Hence the edges of the first kind are even in number and can he arranged

in conjugate pairs.

Further, a point on an edge of the first kind is transformed into a

point on the conjugate edge—uniquely, unless the point be a corner, when

it belongs to two edges. Hence points on edges of the first kind other than

corners correspond in pairs.

An edge of the second kind is transformed into one of the second kind,

but belonging to a different polygon : there is no correspondence between

points on edges of the second kind belonging to the same polygon.

Each corner, as the point common to two edges, belongs to at least three

regions. As a point of one edge, it will have as its homologue an extremity

of the conjugate edge : as a point of another edge, it will have as its homologue

an extremity of the edge conjugate to that other : and these homologues may
be the same or they may be different. Hence several corners of a given

region may be homologous : the set of homologous corners of a given region is

called a cycle. Since points of a series homologous with a given point all

belong to one category, it is convenient to arrange the cycles in connection

with the categories of the component parts.

The number of edges of the first kind is even, say 2n : and they can be

arranged in pairs of conjugates, say E^, E^+i ; E,,, En+2 ',••• Then since En^p

is the conjugate of Ep, and fn+p(z) is the substitution which changes Rq into

Rn+p, fn+p{^) is a substitution changing Ep into En+p. After the preceding

explanation, y^~' (z) is also a substitution changing Ep into its conjugate En+p :

hence we have

f,^p(z)=fp-^(z).
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Hence for a division of the plane, each region of which has 2n edges of the

first kind, the group contains n fundamental substitutions : the remaining n

substitutions, necessary to construct the remaining contiguous regions, are

obtained by taking the first inverses of the fundamental substitutions.

The edge Ep has been taken as the edge common to Rq and Rp, the region

derived from R^ by the substitution fp {z). Every region will have an edge

congruent to Ep-. if Ri be one such region, then the region, on the other side

of that line and having that line for an edge (the edge is, for that other

region, the congruent of the conjugate of Ep), is obtainable from Rq by the

substitution /j- {^(s)}. We thus have an easy method of determining the

substitution to be associated with the region, by considering the edges which

are crossed in passing to the region : and, conversely, when the substitutions

are associated with the regions, the correspondence of the edges is known.

As in the special example, there are relations among the fundamental

substitutions. The simplest mode of determining them is to describe a small

circuit round each corner of Ro in succession : in the description of the circuit,

the symbol of each new region can be derived by a knowledge of the edge last

crossed and when the circuit is closed the last symbol is the symbol also of Rq,

so that a relation is obtained.

286. The only limitations as yet assigned to the initial region (and there-

fore to each of the regions) of the plane are (i) that it contains only one point

homologous with z, and (ii) that the even number of edges of the first kind

can be arranged in congruent conjugate pairs. But now,

without detracting from the generality of the division, we

can modify the initial region in such a way that all the

edges of the first kind are arcs of circles with their centres

on the axis of a;. For let C...^J^5...i)GC be a region with

CGD and AFB for conjugate edges; join CD by an arc of

a circle CED with its centre on the axis of x : and apply to

CED the substitution inverse to that which gives the region
v-

^
n

in which E lies : let AHB be the result, being also (§ 258),

an arc of a circle with its centre on the axis of x. Then the part AFBHA,
say >S'o, is transformed to CODEC, say Sq, by the substitution which causes a

passage from Rq across CGD into another region: every point in >S„ has a

homologue in S^ : and there is, by the hypothesis that Ro is the initial region,

no homologue in R^ of a point in So except the point itself. If, then, we take

away So from Ro and add >S^o', we have a new region

RJ = Ro + So — oq.

It satisfies all the conditions which apply to the regions so far obtained : there

is no point in Ro homologous with a point in it, and the conjugate edges

COD and AFB are replaced by conjugate edges CED, AHB congruent

}<::^>
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by the same substitution as the former pair. And the new conjugate

edges are circles having their centres on the axis of x.

Proceeding in this way with each pair of conjugate edges that are not

arcs of circles having their centres on the axis of x, and replacing it by a pair

of conjugate edges congruent by the same substitution and consisting of

arcs of circles having their centres on the axis of x, we ultimately obtain a

region in which all the edges of the first kind are arcs of circles having their

centres on the axis of x. These can, of course, be arranged in conjugate pairs,

congruent by the assigned fundamental substitutions. Straight lines perpen-

dicular to the axis of x count as circles with centres at x= <x> on that axis

:

all other straight lines, not being parts of the axis of x, can be replaced by

circles.

The edges of the second kind are left unaltered.

A region, thus bounded, is called a normal polygon.

Further, this normal polygon may be taken convex, that is, edges do not

cross one another. If the preceding reduction of a region to the form of

a normal polygon should lead to a cross polygon, then, as is usual in

dealing with the area of such cross figures, part of the area is to be

considered negative : and therefore, for every point in this negative part,

there must be two points in the positive part. Hence,

in the positive part, there are

(i) points, none of which has a homologue in

the negative part, or in the positive

part except itself: their aggi-egate gives

a normal polygon Q :

(ii) two sets of points, each set of which consists

of the homologues of points in the nega-

tive part, and makes up a positive normal

polygon; let the polygons be T^ and T.>.
^^'

The negative part is a normal polygon T, to which T^ and T^ are each congruent.

We now change R by adding a normal polygon T and subtracting a

normal polygon T^ : thus for the new region we have a positive (that is, a

convex) polygon Q, and a positive (convex) polygon T^. No point in Q has a

homologue in T^: hence T, and Q together make up a region such that

homologues of all points within it lie outside : this region is a normal

polygon, and it is convex. Hence we may take as the initial region of

reference a normal convex polygon, that is, a convex polygon bounded by arcs of

circles having their centres on the axis of x, or by portions of the axis of x : the

number of arc-edges is even, and they can be arranged in conjugate pairs.

Simplicity is obtained by securing that the curves, which compose the

boundary, are as like one another in character as possible. The substitutions
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are linear and they change boundaries into boundaries : the whole plane is to

be covered : and there are no gaps between a bounding edge and the homo-

logue of the conjugate bounding edge. The only curves, which satisfy this

condition of leaving no gaps, and which are of the same character after any

number of linear transformations, are circles and straight lines.

287. We have seen that two (or more than two) corners of a convex

polygon may be homologous : it is

now necessary to arrange all the

corners in their cycles. Let AB and

ED be two conjugate edges of a

normal polygon, and let —

—

, be ^ ^_f ^& ' cz + d ^ 37
the substitution which changes AB Fig. ill.

into ED ; then, as usual, we have

a ad — bcl 11
w—

c d c' d
z+- z+-

c c

so that avgJw j +arg. (2- + -) = 7r.

This at once shews that, whatever be the value of- and of-, the points A,
c c

E are homologous, and likewise the points B, D. Hence to obtain a corner

homologous to a given corner we start from the corner, describe the edge of

the polygon beginning there, then describe in the same direction* the conju-

gate edge : the extremity of that edge is a homologous comer.

The process may now be reapplied, beginning with the last point ; and it

can be continued, each stage adding one point to the cycle, until we either

return to the initial point or until we are met by an edge of the second kind.

In the former case we have a completed cycle, which may be regarded as a

closed cycle. In the latter case we can proceed no further, as edges of the

second kind are not ranged in conjugate pairs; but, resuming at the initial

point we apply the process with a description in the reverse direction until

we again arrive at an edge of the second kind : again we have a cycle, which

may be regarded as an open cycle.

In the case of a closed cycle, if one of the included points be of the first

category, then all the points are of the first category : the cycle itself is then

said to be of the first category. If one of the points be of the second category,

then since no edge of the second kind is met in the description, "all the edges

met are of the first kind ; and therefore all the points, lying on the axis of x

* This is necessary : the direction is easily settled for a complete polygon the sides of which

are described in positive or in negative direction throughout.
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and being the intersections of edges of the first kind, are of the second

category : the cycle itself is then said to be of the second category.

Open cycles will contain points of the third category : they may also

contain points of the second category, because points both of the second and

of the third categories lie on the axis of x, and homology of the points does

not imply conjugacy of all edges of which they are extremities. Such cycles

are said to be of the third category.

It thus appears that the cycles can be derived when the arrangement in

conjugate pairs of edges of the first kind is given ; and it is easy to see that

the number of open cycles is equal to the number of edges of the second

kind.

We may take one or two examples. For a quadrilateral, in which

the conjugate pairs are 1, 4 ; 2, 3—the numbers being

as in the figure—we have by the above process A, AB,

DA, A : that is, A is a cycle by itself Then B, BC, CD,

D, DA, AB, B: that is, B and D form a cycle ; and then

C, CD, BC, C, that is, C is a cycle by itself The cycles

are therefore three, namely, A ; B, D; C. Fig. 112.

For a hexagon, in which the conjugate pairs are 1, 5 ; 2, 4; 3, 6, the

cycles are two, namely, A, F, D, C and B, E. If the conjugate pairs be

Fig. 113.

1, 6; 2, 5 ; 3, 4, the cycles are four, namely, A ; B, F; G, E; D. If the

conjugate pairs be 1, 4 ; 2, 5 ; 3, 6, the cycles are two, namely. A, C, E

;

B, D, F.

For a pentagon, with one edge of the second kind as in the figure and

Fig. 114.
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having 1, 3 ; 4, 5 as the conjugate pairs, the cycles are three, namely,

E] A, D; B, C; the last being open and of the third category.

For a quadrilateral as in the figure, having three corners on the axis of a;

and 1, 2; 3, 4 as the arrangement of its conjugate

pairs, the cycles are D; A, C\ B; the last two

being of the second category.

We have now to consider the angles of the

polygons taken internally. It is evident that at

any corner of the second category, the angle is

zero, for it is the angle between two circles meeting

on their line of centres ; and that at any corner of

the third category the angle is right. There therefore remain only the

angles at corners of the first category. Let A^, A2, ..., An be the corners

in a cycle of the first category and denote the angles by the same letters.

Since A^ and Ag are homologous corners, they are extremities of conjugate

edges. Apply to the plane, in the vicinity of A2, the substitution which

changes the edge ending in A2 to its conjugate ending in A^: then the

point Ao is transferred to the point A^; one edge at Ao coincides with its

conjugate at A^ and the other edge at A 2 makes an angle

A 2 with it, because of the substitution which conserves

angles. The latter edge was the edge which followed Ao

in the cycle for the derivation of A^: we take its conju-

gate ending in J. 3, and treat these and the points A^ and '^' ^^^•

A3 as before for A^ and A 2 and their conjugate edges, namely, by using the

substitutions transforming conjugate edges and passing from A3 to A2 and

then those from A2 to A^.

Proceeding in this way round the cycle, we shall have

(1) a series of lines at the point, each line between two angles being

one of the conjugate edges on which the two comers lie :

(2) the angles corresponding to the corners taken in cyclical order.

Hence after n such operations we shall again reach an angle Ai. If the edge

do not coincide with the first edge, we repeat the set of n operations : and

so on.

Now all these substitutions lead to the construction of the various regions

meeting in A, which are to occupy all the plane round A, and no two of

which are to contain a point which does not lie on an edge. Hence

after the completion of some set of operations, say the joth set, the

edges of A^ will coincide with their edges of the first angle A^; and

therefore

p{A, + A,+ ...+ An) = 27r,

so that A^ + Ao+ ... + An =— .

P
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Hence the sum of the angles at the corners, in a cycle of the first category,

is a submultiple of 27r.

Further, if q be the number of polygons at -4, we have

np = q.

Corollary 1. For a cycle of the second category—it is a closed cycle—
both p and q are infinite.

The cycle contains only a finite number of corners, because the polygon

has only a finite number* of edges : as each corner is of the second category,

the angle is zero : and therefore the repetition of the set of operations can be

effected without limit. Hence p is infinite ; and, as n polygons at a corner

are given by each set of operations, the number q of polygons is infinite.

Corollary 2. Corresponding to every cycle of the first category, there is

a relation among the fundamental substitutions of the group.

Let fy> be the substitution interchanging the conjugate edges through A^

and A.^; f^ the substitution interchanging the conjugate edges through A^

and .4 3 ; and so on. Let U denote

/r^/.3-./.-....A-,.n-(^);

then Up {z) = z.

For U is the substitution which reproduces the polygon with the angle

-4i at J.1 ; and this substitution is easily seen, after the preceding explanation,

to be periodic of order p. Moreover, this substitution JJ is elliptic.

288. The following characteristics of the fundamental region have now

been obtained

:

(i) It is a convex polygon, the edges of which are either arcs

of circles with their centres on the axis of x or are portions

of the axis of x-.

(ii) The edges of the former kind are even in number and can be

arranged in conjugate pairs: there is a substitution for which

the edges of a conjugate pair are congruent; if this sub-

stitution change one edge a of the pair into a! , it changes

the given region into the region on the other side of a'

:

(iii) The corners of the polygon can be arranged in cycles of one or

other of three categories

:

* If the number be infinite, the edRes must be infinitesimal in length unless the perimeter of

each of the polygons is infinite : each of those alternatives is excluded.

The reason for finiteness (§ 282) in the number of fundamental substitutions in the group

is now obvious : their number is one-half of the number of edges of the first kind.
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(iv) The angles at corners in a cycle of the second category are zero

:

each of the angles at corners in a cycle of the third category

is right : the sum of the angles at corners in a cycle of the

first category is a submultiple of 27r.

Let there be an infinite discontinuous group of substitutions, such that its

fundamental substitutions are characterised by the occurrence of the fore-

going properties in the edges and the angles of the geometrically, associated

region : and let the whole gi-oiip of substitutions be applied to the region.

Then the half-plane on the positive side of the axis of x is covered : no

part is covered more thq,n once, and no part is unassigned to regions. It is

easy to see in a general way how this given condition is satisfied by the

various properties of the regions. Since the edges of the first kind in

the initial region can be arranged in conjugate pairs, it is so jvith those

edges in every region : and the substitution, which makes them congruent,

makes one of them to coincide with the homologue of the other for the

neighbouring region, so that no part is unassigned. No part is covered

twice, for the initial region is a normal convex polygon and therefore every

region is a normal convex polygon : the edges are homologous from region to

region, and form a common boundary. The angle of intersection with a

given arc is sufficient to fix the edge of the consecutive polygon : for an arc

of a circle, making on one side an assigned angle with a given arc and having

its centre on the axis, is unique. At every corner of any polygon, there will

be a number of polygons : the corners which coincide there are, for the

different polygons, the corners homologous with a cycle in the original

region : and the angles belonging to those corners fill up, either alone or

after an exact number of repetitions, the full angle round the point.

We have seen that the substitution, which passes from a polygon at a

point to the same polygon, after n polygons, reproduces the angular point

at the same time as it reproduces the polygon; the point is a fixed point

of an elliptic substitution. Similarly, if the point belong to a cycle of the

second category, n is infinite and the substitution does not change the point,

which is therefore a fixed point of the substitution ; as the fixed point is on

the axis, the substitution is parabolic (§ 292).

The preceding are the essential properties of the regions, which are

sufficient for the division of the half-plane when a group is given, and

therefore by reflexion through the axis of x, they are sufficient for the

division of the other half-plane.

The position of corners of the first category, and the orientation of edges

meeting in those comers, are determinate when the group is supposed

given : within certain limits, half of the corners of the third category can

be arbitrarily chosen.
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289. In the preceding investigation, the group has been supposed given :

the problem was the appropriate division of the plane. The converse problem

occurs when a fundamental region, with properties appropriate for the

division of the half-plane, is given : it is the determination of the group.

The fundamental substitutions of the group are those which transform an edge

into its conjugate, and they are to be real—conditions which, by § 258,

are sufficient for their construction. The whole group of substitutions is

obtained by combining those that are fundamental. The complete division

of the half-plane is effected, by applying to each polygon in succession the

series of fundamental substitutions and of their tirst inverses.

It is eAadent that a given division of the plane into regions determines

the group uniquely : but, as has already been seen in the general ex-

planation, the existence of a group with the requisite properties does not

imply a unique division of the plane.

As an example, let the fundamental substitutions be required when a quadrilateral as

in Fig. 112, having 1, 2 ; 3, 4 for the conjugate pairs of edges, is given as a fundamental

region. The cycles of the corners are B; I); A, C; so that

I
^ m Ji

'

where I, m, n are integers.

The simplest case has already been treated, § 284: there, /= 2, /« = oo, « = 3, A=0;
the region is a triangle, really a quadrilateral with two

edges as conterminous arcs of the same circle. We shall

therefore suppose this case excluded; we take the case

next in point of simplicity, viz. 1= 2, A = C. Then AB
and BC are conterminous arcs of one circle : we shall

take the centre of this circle to be the origin, its radius

unity and B on the axis of i/ ; then ^ is a fixed point

of the substitution, which changes AB into BC. The

substitution is

it is one of the two fundamental substitutions.

Evidently A = — , ADB= ^. Let Ehe the centre of the circle AD, and p its radius:
•^ n m

then OAE=-, ODE=~ - -, and so

p2 + 1 _ 2p cos -= 0E'^= p2 cos-^
"^

,

whence psin^—= cos—f-fcos^ sin^—
) ,'^ m 71 \ n mj

the negative sign of the radical corresponding to the case when Z) lies below ABC. The

radius p must be real and therefore

we omit the case of ?/i=x, and therefore n>2.
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The fundamental substitution, which changes AD into CD, has D and the complex

conjugate to D for its fixed points : these points are ± ip sin — . The argument of the

multiplier is — , being the angle ADC: hence the substitution is

which reduces to

w+ipsm— z + ips\n

+ p snV

hcos —
p m

where p has the value given by the above equation.

This substitution, and the substitution w= --
, are the fundamental substitutions of

the group. The special illustration in § 284 gives

m= 00 , o = 00 , %= 3, p sin''' — = 2 cos — = 1

;

'^ ^ m n

the special form therefore is

w=z-\-\.

Taking cos—= «, cos- =6, £^ = {a'^-\-h'^-\Y, we have p(i-a2)= 6+ A; the second

fundamental substitution is

„ az+ A + b

{A-b)z+ a

It is easy to see that

where Tz= --
; the complete figure can be constructed as in § 284.

An interesting figure occurs for m=4, n = 6.

In the same way it may be proved that, if an elliptic substitution have re for its

common points and 26 for the argument of its multiplier, its expression is
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Similarly, two more relations will arise out of the substitution which transforms CD
into DA. And three relations are given by the conditions that the sum of the angles at

A and C is an aliquot part of Stt, and that each of the angles B and D is an aliquot part

of 277.

290. All the substitutions hitherto considered have been real : we now

pass to the consideration of those Avhich have complex coefficients. Let

be such an one, supposed discontinuous : then the effect on a point is obtained

by displacing the origin, inverting with respect to the new position, reflecting

through a line inclined to the axis of x at some angle, and again displacing

the origin. The displacements of the origins do not alter the character of

relations of points, lines, and curves: so that the essential parts of the

transformation are an inversion and a reflexion.

Let a group of real substitutions of the character considered in the

preceding sections be transformed by the foregoing single complex substitu-

tion : a new group

{ az + p 70 + 5 \

will thus be derived. The geometrical representation is obtained through

transforming the old geometrical representation by the substitution

W^ + S ^
so that the new group is discontinuous.

The original group left the axis of x unchanged, that is, the line z = z^

was unchanged ; hence the substitutions

az +
^z :^h'

will leave unchanged the line which is congruent with z = z^ by the

substitution f"^--^. z\. This line is
\<^z + /

- 3^ + /3 ^ - Kz, + /3o

<yz — a. 7o^o — ^0

or it may be taken in the form

imagmary part of —— = 0.
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It is a circle, being the inverse of a line ; it is unaltered by the substitutions

of the new group, and it is therefore called* the fundamental circle of this

group. The group is still called Fuchsian (p. 74'0, note).

The half-planes on the two sides of the axis of x are transformed into the

two parts of the plane which lie within and without the fundamental circle

respectively : let the positive half-plane be transformed into the part within

the circle.

With the group of real substitutions, points lying above the axis of x

are transformed into points also lying above the axis of x, and points below

into points below : hence with the new group, points within the fundamental

circle are transformed into points also within the circle, and points without

into points without.

The division of the half-plane into curvilinear polygons is changed into a

division of the part within the circle into curvilinear polygons. The sides of

the polygons either are circles having their centres on the axis of x, that is,

cutting the axis orthogonally, or they are parts of the axis of x : hence the

sides of the polygons in the division of the circle either are arcs of circles

cutting the fundamental circle orthogonally or they are arcs of the funda-

mental circle.

The division of the part of the plane without the circle is the trans-

formation of the half-plane below the axjis of x, which is a mere reflexion

in the axis of x of the half-plane above : thus the division is characterised by

the same properties as characterise the division of the part within the

fundamental circle. But when the division of the part within the circle

is given, the actual division of the part without it can be more easily

obtained by inversion with the centre of the fundamental circle as centre

and its radius as radius of inversion.

This process is justified by the proposition that conjugate complexes are

transformed by the substitution (

s;
' •^j '^^^^ points which are the in-

verses of one another with regard to the fundamental circle. For a system

of circles can be drawn through two conjugate complexes, cutting the real

axis orthogonally : when the transformation is applied, we have a system of

circles, orthogonal to the fundamental circle and passing through the two

corresponding points. The latter are therefore inverses with regard to the

fundamental circle.

This proposition can also be proved in the following elementary manner.

Let OC, the axis of x, be inverted, with A as the centre of inversion, into a circle:

P and Q be two conjugate complexes, and let AP cut the axis of x in C : let CQ cut the

diameter of the circle in R. Since OG bisects PQ, it bisects AR; and therefore the centre

( >f the circle is the inverse of R.

* Klein uses the word HmqJtkrcix.

F. F. 47
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Let JO and (j be the inverses of Pand Q : join pq, qr. Then the angle pqQ= CPQ= CQP,
id Aqr= CRO : thus pqr is a straight line.

Also

and

1': =
Aq
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which secures that the fundamental circle in the H'-plane shall bo of radius unity and

centre the origin, is easily obtained.

It has been proved that inverse points with respect to the circle correspond to conjugate

complexes; hence ;''= and w=cc correspond to two conjugate complexes, say X and Aq,

and therefore

z-\
2-Xo

where
|
k

|

= 1 because the radius of the fundamental circle is to be unity. The presence

of this factor k is equivalent to a rotation of the (/'-plane about the origin. As the origin

is the centre of the fundamental circle, the circle is unaltered by such a change : and

therefore, without aflfecting the generality of the substitution, we may take k = 1, so that

now
z-X

where X is an arbitrary complex constant. The substitution is not in its canonical form,

which however can at once be deduced.

291. It has been seen, in § 260, that, when any real substitution is para-

bolic or hyperbolic, then practically an infinite number of points coincide

with the fixed point when the substitution is repeated indefinitely, whatever

be the point z initially subjected to the transformation; this fixed point lies

on the axis of w, and is called an essential singularity of the substitution.

When we consider such points in reference to automorphic functions, which

are such as to resume their value when their argument is subjected to

the linear substitutions of the group, then at such a point the function

resumes the value which it had at the point initially transformed ; that is,

in the immediate vicinity of such a fixed point of the substitution, the

function acquires any number of different values : such a point is an essential

singularity of the function. Hence the essential singularities of the group

are the essential singularities of the corresponding function.

Now all the essential singularities of a discontinuous group lie on the

axis of a; when the group is real ; the line may be or may not be a con-

tinuous line of essential singularity. If, for example, a; be any such point

for the group of §§ 283, 284 which is characteristic of elliptic modular-

functions, then all the others for that group are given by

ax + h

ex + d'

where a, h, c, d are integers, subject to the condition ad — bc=l : and

therefore all the essential singularities are given by rational linear trans-

formations. For points on the real axis, this group is improperly dis-

continuous : and therefore for this group the axis of a; is a line of essential

singularity.

Hence when we use the transformation ( H., A to deduce the division
\yz + )

of the fundamental circle into regions, the essential singularities of the new

47—2
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group are points on the circumference of the fundamental circle : the cir-

cumference is or is not a line of essential singularity for the function or

the gi'oup*, according as the group is properly or improperly discontinuous

for the circle.

Ex. Shew that for all tigure.s, congruent to a closed simply connected figure by the

transformation

az+ c

<V-l-«o'

where a, a,, and c, Cq are conjugate constants such that aap — cco=l, the quantities

T=(\^l ff rdrdd

where s= ?t'^, are invariable. (Poiucare.)

Let ABC be a triangle, having for its sides arcs of circles that are orthogonal to the

fundamental circle of the substitution ; and denote by a, b, c the quantity L for the three

sides respectively. Prove that

cosh c= cosh a cosh b — sinh a sinh b cos C. (Kapteyn.)

292 It is convenient to divide the groups into families, the discrimin-

ation adopted by Poincare being made according to the categories of cycles of

angular points in the polygons into which the group divides the plane. The

group is of the

1st family, if the polygon have cycles of the 1st category only,

2nd 2nd ,

3rd 3rd ,

4th 2nd and 3rd ,

5th 1st and 3rd ,

Gth 1st and 2nd ,

7th all three categories.

Thus in the polygons associated with groups of the 1st, the 2nd, and the Gth

families, all the edges are of the first kind ; in the polygons associated with

groups of the remaining families, edges of the second kind occur.

A subdivision of some of the families is possible. It has been proved that

the sum of the angles in a cycle of the first category is a submultiple of 27r.

If the sum is actually 27r, the cycle is said to belong to the first sub-category:

if it be less than -Itt (being necessarily a submultiple), the cycle is said to

belong to the second sub-category. And then, if all the cycles of the polygon

belong to the first sub-category, the group is said to belong to the first order

in the first family : if the polygon have any cycle belonging to the second

* Poincare calls the proup F'lcbsian, both when all tlie coefficients are real and when they

arise from the transformation of sucii an infinite pronp by a sinRle substitution that has imaginary

coefficients. A convenient rdsum^ of his results is given by him in a paper, Math Ann., t. xix,

(18H2), pp. .553—564.
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sub-category, the group is said to belong to the second order in the first

family.

It has been proved in § 288 that a corner belonging to a cycle of the

second category is not changed by the substitution which gives the conti-

guous polygons in succession ; the corner is a fixed point of the substitution,

so that the substitution is either parabolic or hyperbolic. In his arrange-

ment of families, Poincare divided the cycles of the second category into

cycles of two sub-categories, according as the substitution is parabolic or

hyperbolic: but Klein proved* that there are no cycles for hyperbolic

substitutions, and therefore the division is unnecessary. The families of

groups, the polygons associated with which have cycles of the second

category, are the second, the fourth, the sixth and the seventh.

There is one very marked difference between the set of families, con-

sisting of the first, the second and the sixth, and the set constituted by

the remainder.

No polygon associated with a real group in the former set has an edge of

the second kind : and therefore the only points on the axis taken account of

in the division of the plane are the essential singularities of the group.

The domain of any ordinary point on the axis in the vicinity of each of the

essential singularities is infinitesimal : and therefore the axis of x is taken

account of in the division of the plane only in so far as it contains essential

singularities of the group and the functions. This, of course, applies equally

to the transformed configuration in which the conserved line is the funda-

mental circle : and therefore, in the division of the area of the circle, its

circumference is taken account of only in so far as it contains essential

singularities of the groups and the functions.

But each polygon associated with a real gi'oup in the second set of

families has an edge of the second kind : the groups still have all their

essential singularities on the axis of x (or on the fundamental circle)

and at least some of these are isolated points; so that the domain of an

ordinary point on the axis is not infinitesimal. Hence parts of the axis of

X (or of the circumference of the fundamental circle) fall into the division of

the bounded space.

293. There is a method of ranging groups which is of importance in

connection with the automorphic functions determined by them.

The upper half of the plane of representation has been divided into

curvilinear polygons ; it is evident that the reflexion of the division, in the

axis of real quantities, is the division of the lower half of the plane. Let the

polygon of reference in the upper half be Rq and in the lower half be Rg,

obtained from Rq by reflexion in the axis of real quantities. Then, if the

* Math. Ann., t. xl, (1892), p. 132.
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group belong to the set, which inchides the first, the second and the sixth

famiHes, R^ and Ro do not meet except at those isolated points, which are

polygonal corners of the second category. But if the group belong to the

set which includes the remaining families, then Rq and Rq are contiguous

along all edges of the second kind, and they may be contiguous also at

isolated points as before.

In the former case J?,, s^-nd Rq may be regarded as distinct spaces,

each fundamental for its own half-plane. Let Rq have 2?i edges which can

be arranged in n conjugate pairs, and let q be the number of cycles all

of which are closed ; each point in one edge corresponds to a single point in

the conjugate edge. Let the surface included by the polygon Rq be deformed"

and stretched in such a manner that conjugate edges are made to coincide by

the coincidence of corresponding points. A closed surface is obtained. For

each pair of edges in the polygon there is a line on the surface, and for each

cycle in the polygon there is a point on the surface in which lines meet ; and

the lines make up a single curvilinear polygon occupying the whole surface.

The process is reversible ; and thei-efore the connectivity of the surface is an

integer which may properly be associated with the fundamental polygon.

When two consecutive edges are conjugate, their common corner is a

cycle by itself The line, made up of these two edges after the deformation,

ends in the common corner which has become an isolated point ; this line

can be obliterated without changing the connectivity. The obliteration

annuls two edges and one cycle of the original polygon : that is, it diminishes

n by unity and q by unity. Let there be r such pairs of consecutive edges.

The deformed surface is now occupied by a single polygon, with ?i — r sides

and q — r angular points: so that, if its connectivity be 2iV'"-l-l, we have

(§ 165)

2N=2 + {n-r)-l-(q-r)

= n + l-q.

The group is said to be of genus N.

In the latter case, the combination of Rq and Rq may be regarded as

a single region, fundamental for the whole plane. Let Rq have 2n edges of

the first kind and m of the second kind, and let q be the number of closed

cycles : the number of open cycles is m. Then Rq has 2/? edges of the first

kind and q closed cycles ; it has, in common with Rq, the in edges of the

second kind and the m open cycles. The correspondence of points on the

edges of the first kind is as before. Let the surface included by Rq and

Rq' taken together be deformed and stretched in such a manner that con-

jugate edges coincide by the coincidence of corresponding points on those

edges. A closed surface is obtained. As the process is reversible, the

connectivity of the surface thus obtained is an integer which may properly

be associated with the . fundamental polygon.
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This integer is determined as before. For each pair of edges of the first

kind in either polygon, a line is obtained on the surface ; so that 2n lines are

thus obtained, n from Rq and n from Bq. Each of the common edges of the

second kind is a line on the surface, so that m lines are thus obtained. The

total number of lines is therefore 2n + 7n. For each of the closed cycles

there is a point on the surface in which lines, obtained through the deform-

ation of edges of the first kind, meet : their number is 2g, each of the

polygons providing q of them. For each of the open cycles there is a point

on the surface in which one of the m lines divides one of the n lines arising

through Ro from the corresponding line arising through Rq : the number of

these points is m. The total number of points is therefore 2q + m.

The total number of polygons on the surface is 2. Hence, if the con-

nectivity be 2iV^-f-l, we have (^ 165)

'IN =2 + 2n + m - {2q + m) - 2

= 2» - 2q.

The group is said to be of genus N.

Thus for the generating quadrilateral in figure 11 2' (p. 730), the genus of

the group is zero when the arrangement of the conjugate pairs is 1, 2 ; 3, 4

:

and it is unity when the arrangement of the pairs is 1, 3 ; 2, 4. For the

generating hexagon in figure 113 (p. 730), the genus of the group is zero when

the arrangement of the conjugate pairs is 1, 6 ; 2, 5 ; 3, 4 : and it is unity

when the arrangement of the pairs is 1,4; 2, 5 ; 3, 0. For the generating

pentagon in figure 114 (p. 730), the genus of the group is zero when the

arrangement of the conjugate pairs is 1, 3; 4, 5 : and it is two when the

arrangement of the pairs is 1, 4; 3, 5. For a generating polygon, bounded

by 2n semi-circles each without all the others and by the portions of the

axis of X, the number of closed cycles is zero : hence N= n.

294. In all the group.s, which lead to a division of a half-plane or of a

circle into polygons, the substitutions have real coefficients or are composed

of real substitutions and a single substitution with complex coefficients

:

and thus the variation in the complex part of the coefficients in the group is

strictly limited. We now proceed to consider groups of substitutions

V 72+6/

in which the coefficients are complex in the most general manner: such

groups, when properly discontinuous, are called Kleinian, by Poincare.

The Fuchsian groups conserve a line, the axis of x, or a circle, the funda-

mental circle : the Kleinian groups do not conserve such a line or circle,

common to the group. Every substitution can be resolved into two
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displacements of origin, an inversion and a reflexion, as in § 258. The inver-

sion has for its centre the point - B/y, being the origin after the first displace-

ment ; the reflexion is in the line through this point making with the real

axis an angle tt — 2 arg. 7. The only line left unaltered by these processes is

one which makes an angle ^tt - arg. 7 with the real axis and passes through

the point ; and the final displacement to the point a/7 will in general displace

this line. Moreover, arg. 7 is not the same for all substitutions ; there is

therefore no straight line thus conserved common to the group.

Similar considerations shew that there is no fundamental circle for the

group, persisting untransformed through all the substitutions.

Hence the Kleinian gi-oups conserve no fundamental line and no funda-

mental circle : when they are used to divide the plane, the result cannot be

similar to that secured by the Fuchsian groups. As will now be proved,

they can be used to give relations between positions in space, as well as

relations between positions merely in a plane.

The lineo-linear relation between two complex variables, expressed as a

linear substitution, has been proved (§ 261) to be the algebraical equivalent

of any even number of inversions with regard to circles in the plane of the

variables. This analytical relation, when developed in its geometrical aspect,

can be made subservient to the correlation of points in space.

Let spheres be constructed which have, as their equatorial circles, the

circles in the system of inversions just indicated : let inversions be now carried

out with regard to these spheres, instead of merely with regard to their

equatorial circles. It is evident that the consequent relations between points

in the plane of the variable z are the same as when inversion is carried out

with regard to the circles : but now there is a unique transformation of points

that do not lie in the plane. Moreover, the transformation possesses the

character of conformal representation, for it conserves angles and it secures

the similarity, of infinitesimal figures: points lying above the plane of ^

invert into points lying above the plane of z, so that the plane of z is

common to all these spherical inversions and therefore common to the sub-

stitutions, the analytical expression of which is to be associated with the

geometrical operation ; and a sphere, having its centre in the plane of the

complex z is transformed into another sphere, having its centre in that plane,

so that the equatorial circles correspond to one another.

Through any point P in space, let an arbitrary sphere be drawn, having

its centre in the plane of the complex variable, say, that of the coordinates

|, 7]. It will be transformed, by the various inversions indicated, into another

sphere, having its centre also in the plane of ^, rj and passing through the

point Q obtained from P as the result of all the inversions ; and the equatorial

planes will correspond to one another.
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Let the sphere through Q be

or p + n"' + r - 2af - 267?' + A; = 0.

Hence, if Q be determined by

2' = f + r??', ^o' = I' - ^^', p'' = P + V'- + r' = z'z^ + ^'^

this equation is p- + Kz' + hzd + k = 0,

where — h, — ho= a + ib, a — ih respectively. The equatorial circle of this

sphere is evidently given by ^' = 0, so that its equation is

z'z^ + h^z + hzj + k = ;

this circle can be obtained from the equatorial circle of the sphere through P

by the substitution / = —-- ^ . Hence the latter circle, by § 258, is given by
yz + b

zzo (aoo + h^ay, + ha^y + kyy^) + z^ {aS + K^^o + fta^S + ky,,B)

+ z (a^o + ^o«So + hjSoy + kyBo) + /3/3o + fhjSSo + h^^B + kBBo = ;

and therefore the equation of the sphere through P is

p' {acio + /?o^7o + ha^y + kyy,) + z^ {aS + KMo + ^^"oB + ky^B)

+ z (a^, + h„aBo + hl3oy + A7S0) + /3/3o + K^B, + A^S + kBBo = 0.

The quantities h, h^, k are arbitrary quantities, subject to only the single

condition that the sphere passes through the point Q: there is no other

relation that connects them. Hence the equation of the sphere through P
must, as a condition attaching to the quantities h, h^, k, be substantially the

equivalent of the former condition given by the equation of the sphere

through Q. In order that these two equations may be the same for h, h^, k,

the variables p-, z , z^ of the point Q and those of P, being p-, z, z^, must give

practically the same coefficients of h, Jiq, k in the two equations, and therefore

p- : p-aa, + z,a,^ + za^,, + ^/3u

= z : /3-a7o + ^o/^Yo + zaB,, + /8S„

= z^ : p-a^y + ZqUoB + z/3oy + ^^B

= 1 : p-yyo + z^y^B + zyB^ + BB^.

These are evidently the equations which express the variables of a point Q in

space in terms of the variables of the point P, when it is derived from P by

the generalisation of the linear substitution

, atu + 8
w = —7 :

yiu + 6
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they may be called the equations of the substitution. It is easy to deduce
that

r=.„ _i
? />'77o + -^070^ + Z'iK + BBo

'

which may be combined with the preceding equations of the substitution.

Also, the magnification for a single inversion is dsjds, or rj/r, where 1\

and r are the distances of the arcs from the centre of the sphere relative to

which the inversion is effected. But rjr = ^J^, where ^j and ^ are the

heights of the arcs above the equatorial plane ; hence the magnification is

^i/^, for a single inversion. For the next inversion it is fj/^i, and therefore it

is ^2/? for the two together ; and so on. Hence the final magnification in

for the whole transformation is

,,^^r^ 1

^ ?'77o + (7^ + S)(7o2o + S„)

^ 1

a quantity that diminishes as the region recedes from the equatorial plane.

It is justifiable to regard the equations obtained as merely the generalisa-

tion of the substitution : they actually include the substitution in its original

application to plane variables. When the variables are restricted to the plane

of |> V> we have p^ = zz^, and therefore

^, ^ zzpayo + Zq^Jo + zaSp + /SBp _ az + l3

zzojjo + ^o7oS + zySo -\-SBq~ jz + 8'

on the removal of the factor j„Zo + Bo common to the numerator and the

denominator; and ^' vanishes when ^=0. The uniqueness of the result is

an a posteriori justification of the initial assumption that one and the same
point Q is derived from P, whatever be the inversions that are equivalent to

the linear substitution.

Ex. 1. Let an elliptic suUstitutioii have w and v as its fixed points.

Draw two circles in the plane, passing through u and v and intersecting at an angle

equal to half the argument of the multiplier. The transformation of the plane, caused by

the substitution, is equivalent to inversions at these circles ; the corresponding transforma-

tion of the space above the plane is equivalent to inversions at the sjjheres, having these

circles as equatorial circles. It therefore follows that every point on the line of intersection

of the spheres remains unchanged : hence when a Kleinian substitution is elliptic, evert/

point on the circle, in a plane perpendicular to the plane of x, y and having the line joining

the common points of the substitution as its diameter, is unchanged by the substitution.

Poincar^ calls this circle G the double (or fixed) circle of the elliptic substitution.

Ex. 2. Prove that, when a Kleinian substitution is hyperbolic, the only points in

space, which are unchanged liy it, are its double points in the plane of x, y ; and shew

that it changes any circle through those points into itself and also any sphere through

those points into itself.
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Ex. 3. Prove that, when ths substitution is loxodromic, the circle C, in a plane

peri)endicular to the plane x, y and having as its diameter the line joining the common

points of the substitution, is transformed into itself, but that the only points on the

circumference left unchanged are the common points.

Ex. 4. Obtain the corresponding properties of the substitution when it is parabolic.

(All these results are dive to Poincare.)

295. The process of obtaining the division of the 2r-plane by means of

Kleinian groups is similar to that adopted for Fuchsian groups, except

that now there is no axis of real quantities or no fundamental circle

conserved in that plane during the substitutions : and thus the whole

plane is distributed. The polygons will be bounded by arcs of circles as

before : but a polygon will not necessarily be simply connected. Multiple

connectivity has already arisen in connection with real groups of the third

family by taking the plane on both sides of the axis.

As there are no edges of the second kind for polygons determined by

Kleinian groups, the only cycles of corners of polygons are closed cycles

;

let A^, J.1, ..., An-\ in order be such a cycle in a polygon i?n. Round A^

describe a small curve, and let the successive polygons along this curve be

i^o, i^i, ..., Rn-x, Rn, •••• The corner Aq belongs to each of these polygons:

when considered as belonging to R,n, it will in that polygon be the horaologue

of Am as belonging to Rg, ii m< n; but, as belonging to Rn, it will, in that

polygon, be the homologue of Ao as belonging to jR,,- Hence the substitution,

which changes Rn into Rn, has ^o for a fixed point.

This substitution may be either elliptic or parabolic, (but not hyperbolic,

§ 292): that it cannot be loxodromic may be seen as follows. Let pe"^ be

the multiplier, where (§ 259) p is not unity and co is not zero : and let

2o denote the aggregate of polygons Rq, R^, ..., Rn-i, ^i the aggregate

Rn, ..., Rm-i, and so on. Then %o is changed to Si, Sj to Sj, and so on,

by the substitution. Let p be an integer such that p&> ^ 27r ; then, when

the substitution has been applied p times, the aggregate of the polygons

is 1p, and it will cover the whole or part of one of the aggregates So, 2,, ....

But, because p^ is not unity, S^ does not coincide with that aggregate or the

part of that aggi-egate : the substitution is not then properly discontinuous,

contrary to the definition of the group. Hence there is no loxodromic

substitution in the group. If the substitution be elliptic, the sum of the

angles of the cycle must be a submultiple of 27r ; when it is parabolic, each

angle of the cycle is zero.

In the generalised equations whereby points of space are transformed

into one another, the plane of w, y is conserved throughout : it is natural

therefore to consider the division of space on the positive side of this plane

into regions P^, Pj, ..., such that Pq is changed into all the other regions in

turn by the application to it of the generalised equations. The following
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results can be obtained by considerations similar to those before adduced in

the division of a plane*.

The boundaries of regions are either portions of spheres, having their

centres in the plane of x, y, or they are portions of that plane : the

regions are called polyhedral, and such boundaries are called faces. If the

face is spherical, it is said to be of the first kind : if it is a portion of

the plane of x, y, it is said to be of the second kind. Faces of the

second kind, being in the plane of x, y and transformed into one another,

are polygon.s bounded by arcs of circles.

The intersections of faces are edges. Again, an edge is of the first

kind, when it is the intersection of two faces of the first kind : it is of

the second kind, when it is the intersection of a face of the first kind

with one of the second kind. An edge of the second kind is a circular

arc in the plane oi x, y : an edge of the first kind, being the intersection

of two spheres with their centres in the plane of x, y, is a circular arc,

which lies in a plane perpendicular to the plane of x, y and has its

centre in that plane.

The extremities of the edges are corners of the polyhedra. They are

of three categories

:

(i) those which are above the plane of x, y and are the common
extremities of at least three edges of the first kind :

(ii) those which lie in the plane of x, y and are the common extremities

of at least three edges of the first kind :

(iii) those which lie in the plane of x, y and are the common extremities

of at least one edge of the first kind and of at least two edges of

the second kind.

Moreover, points at which two faces touch can be regarded as isolated corners,

the edges of which they are the intersections not being in evidence.

Faces of a polyhedron, which are of the first kind, are conjugate in pairs:

two conjugate faces are congruent by a fundamental substitution of the group.

Edges of the first kind, being the limits of the faces, arrange themselves

in cycles, in the same way as the angles of a polygon in the division of the

plane. If Eq, E^, ..., En-i be the n edges in a cycle, the number of regions

which have an edge in E^ is a multiple of n: and the sum of the dihedral

angles at the edges in a cycle (the dihedral angle at an edge being the

constant angle between the faces, which intersect along the edge) is a

submultiple of 27r.

The relation between the polyhedral divisions of space and the polygonal

divisions of the plane is as follows. Let the group be such as to cause the

* See, in particular, Poincarc!', Acta Math., t. iii, pp. 66 et seq.
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fundamental polyhedron P^ to possess n faces of the second kind, say Fo^,

Fo2, ..., Fon. Every congruent polyhedron will then have n faces of the

second kind; let those of Pg be F,-^, Fgo, ..., F,n. Every point in the plane

of x, y belongs to some one of the complete set of faces of the second kind

:

and, except for certain singular points and certain singular lines, no point

belongs to more than one face, for the proper discontinuity of the group

requires that no point of space belongs to more than one polyhedron.

Then the plane of x, y is divided into n regions, say D^, Do, ..., D^; each

of these regions is composed of an infinite number of polygons, consisting of

the polygonal faces F. Thus i),. is composed of ^or, F-^r, F^,-, ... ; and these

polygonal areas are such that the substitution Sg transforms F^ into Fgr-

Hence it appears that, by a Kleinian group, the whole plane is divided into

a finite number of regions ; and that each region is divided into an infinite

number of polygons, which are congruent to one another by the substitutions

of the group.

296. The preceding groups of substitutions, that have complex co-

efficients, have been assumed to be properly discontinuous.

Ex. Prove that, if any group of substitutions with complex coefficients be improperly

discontinuous, it is improperly discontinuous only for points in the plane of .r, y.

(Poincare.)

One of the simplest and most important of the- improperly discontinuous

groups of substitutions, is that compounded from the three fundamental

substitutions

z =Sz = z + 1, z =Tz = , z' =Vz = z {- i,

z

where i has the ordinary meaning. All the substitutions are easily proved to

be of the form

where aS — /37= 1, and a, ^, 7, S are complex integers, that is, are represented

by m + ?w', where m and n are integers. This is the evident generalisation of

the modular-function group: consequently there is at once a suggested

generalisation to a polyhedron of reference, bounded by

which will thus have one spherical and four (accidentally) plane faces.

The following method of consideration of the points included by the

polyhedron of reference differs from that which was adopted for the polygon

of reference m the plane.

If possible, let a point (^, 77, ^) lying within the above region be transformed

by the equations generalised from some one substitution of the group, say
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from —^ , into another point of the region, say f ', t)
,

^'. Then we have
7^ +

\>^>-\> \>y)>-h f + ^' + r>l-

From the last, it follows that ^> ^ : and similarly for |'. 7/, ^', by the |

hypothesis that the point is in the region. Now

r^ 1 1

K P'll^ + ^o7oS + 2^780 + SSo
! 7^ P + 1

7^ + S |-

'

and therefore V{KK) = 7p + ^2 17^ + ^l'-

Hence, as t, and ^' are both > ^^ , we have
1 7 [- < 2 : so that, because 7 is

a complex integer, we have

7 = 0, ± 1, +*,

as the only possible cases. .

If 7 = 0, then since aS — ^87 = 1, we have aS = 1 and a, B are complex I

integers : thus either

= 1) a = -l] a= i] a = — i)

For the first of these sub-cases we have, from the equations of the substitu-

tion,

z' = 2 + 13,

where yS is a complex integer : if the new point lie within the region, then

/S = 0, and we have

which is merely an identity.

For the second, we have z = z — jB : leading to the same result.

For the third, we have, since §„ = i,

z' = -z-\- 1/3.

But as 11', ??'
j , III, 1 77 1

are all less than i, wo have /3 = 0, and so

|' = -|, v' = -v; :^nd ^' = ^.

For the fourth case, we have

z = — Z — lyQ,

loading to the same result as the third. Hence, if 7 = 0, the only point lying

within the region is given by

determined by the substitution w = —
.

, which is TVT~^V~^2^V.
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If
1
7! = 1, that is, 77o = 1, then

p = />- + ^•o7o8 + ^7^0 + S^o •

Of the two quantities ^ and ^', one will be not greater than the other : we
choose ^to he that one and consider the accordingly associated substitution*.

Thus f/r^l, /o->l, and so

ZojoS + ZySo + SSo < 0,

say 2,- + z~ -]
" < 0.

7 To 7 7o

Now I7I = 1, so that - is of the form p +iq, where p and q are integers : thus

we have

p- + q-+ 2p^ + 2qr) < 0,

which is impossible because 2f < 1, 2?; < 1.

Hence it follows that within the region there are only two equivalent

points, derived by the generalised equations from the substitution

, iww =—
-.

;

— t

and that all points within the region can be arranged in equivalent pairs

f, r), ^ and - f ,
-

??, ^.

If the region be symmetrically divided into two, so that the boundaries of

a new region are

^>^>0, h>v>-h p + T+T'^l, ^>o,

then no point within the new region is equivalent to any other point in the

regionf. As in the division of the plane by the modular group, it is easy

to see that the whole space above the plane of ^, r) is divided by the group

:

therefore the region is a polyhedron of reference for the group composed of the

fundamental substitutions S, T, V.

The preceding substitutions, with complex integers for coefficients, are of use in appli-

cations to the discussion of binary quadratic forms in the theory of luimbers. The special

division of all space corresponds, of course, to the character of the coefficients in the

substitutions : other divisions for similar groups are possible, as is proved in Poincare's

memoir already quoted.

* Were it f ', all that would be necessary would be to take the inverse substitution.

t Bianohi, Math. Ann., t. xxxviii, (1891), pp. 313—324, t. xl, (1892), pp. 332—412 ; Picard, ib
,

t. xxxix, (1891), pp. 142—144; Mathews, Quart. Journ. Math., vol. xxv, (1891), pp. 289—296.
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These divisions all presupi)ose that the group is infinite : but .similar divisions for only

finite groups (and therefore with only a finite number of regions) are possible. These are

c()n.sidered in detail in an interesting memoir by Goursat* ; the transformations conserve

an imaginary sjjhere instead of a real plane as in Poincar^'s theory.

Ex. Shew that, for the infinite group composed of the fundamental substitutions

/=--, /= 2+l, £' = 2+ e,

where € is a primitive cube root of unity, a fundamental region for the division of space

above the plane of z, con-esponding to the generalised equations of the group, is a sym-

metrical third of the polyhedron extending to infinity above the sphere

and bounded by the sphere and the six planes

2^=±1, ^+ ;;^3=±1, ^-r;x/3=±l. (Bianchi.)

* " Sur les substitutions orthogonales et les divisions regulieres de I'espace," Ann. de I'Ec.

Norm. Sup., S"" S6r., t. vi, (1889), pp. 9—102. See also Schonflies, Math. Ann., t. xxxiv, (1889),

pp. 172—203 : other references are given in these papers.



CHAPTER XXII.

AuTOMORPHic Functions.

297. As was stated in the course of the preceding chapter, we are

seeking the most general form of the arguments of functions which secures

the property of periodicity. The transformation of the arguments of trigo-

nometrical and of elliptic functions, which secures this property, is merely a

special case of a linear substitution : and thus the automorphic functions to

be discussed are such as identically satisfy the equation

where Si is any one of an assigned group of linear substitutions of which only

a finite number are fundamental.

Various references to authorities will be given in the present chapter, in connection

with illustrative examples of automorphic functions : but it is, of course, beyond the scope

of the present treatise, dealing only with the generalities of the theory of functions, to

enter into any detailed development of the properties of special classes of automorphic

functions such as, for instance, those commonly called polyhedral and those commonly
called elliptic-modular. Automorphic functions, of types less special than those just

mentioned, are called Fuchsian functions by Poincare, when they are determined in

association with a Fuchsian group of substitutions, and Kleinian functions, when they

are determined in association with a Kleinian group : as our purpose is to provide only

an introduction to the theory, the more general term aviomorpMc will be adopted.

The establishment of the general classes of automorphic functions is effected by

Poincare in his memoirs in the early volumes of the A eta Mathematica, and by Klein in

his memoir in the 21st volume of the Mathematische Annalen: these have been already

quoted (p. 716, note) : and Poincare gives various historical notes* on the earlier scattered

occurrences of automorphic functions and discontinuous groups. Other memoirs that may
be consulted with advantage are those of Von Maugoldtt, WeberiJ:, Schottky§, Stahl||,

* Acta Math., t. i, pp. 61, 62, 293: ib., t. ill, p. 92. Poiucare's memoirs occur in the first,

third, fourth and fifth volumes of this journal : a great part of the later memoirs is devoted to

their application to linear differential equations.

t Gtitt. Nachr., (1885), pp. 313—319; ib., (1886), pp. 1—29.

::: Gott. Nachr., (1886), pp. 359—370.

§ Crelle, t. ci, (1887), pp. 227—272.

II
Math. Ann., t. xxxiii, (1889), pp. 291—309.

F. F. 48
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Schlesiuger* and Rittert : and there are two by Burnside:|:, of special interest and
importance in connection with the third of the seven families of groups (§ 292). Finally,

reference may be made to the comprehensive treatise** by Fricke and Klein.

298. We shall first consider functions associated with finite discrete

groups of linear substitutions.

There is a group of six substitutions

1
,

1 z-1 z
z, - , l-z, , ,

,

z \— z z z— 1

which (§ 283) is complete. Forming expressions z — x, z , z — {\—x),

1 a; — 1 X
z — = , z , z and multiplying them together, we can express

their product in the form

so that A{z)J''-^^l

is a function of z which is unaltered by any of the transformations of its

variable given by the six substitutions of the group. The function is well

known, being connected with the six anharmonic ratios of four points in a

line which can all be expressed in terms of any one of them by means of the

substitutions.

Another illustration of a finite discrete group has already been furnished

in the periodic elliptic transformation of § 258, whereby a crescent of

the plane with its angle a submultiple of Itt was successively transformed,

ultimately returning to itself: so that the whole plane is divided into portions

equal in number to the periodic order of the substitution.

If a stereographic projection of the plane be made with regard to any

external point, we shall have the whole sphere divided into a number of

triangles, each bounded by two small circles and cutting at the same angle.

By choice of centre of projection, the common corners of the crescents can be

projected into the extremities of a diameter of the sphere : and then each of

the crescents is projected into a lune. The effect of a substitution on the

crescent is changed into a rotation round the diameter joining the vertices

of a lune through an angle equal to the angle of the lune.

299. This is merely one particular illustration of a general correspondence

between spherical rotations and plane homographies, as we now proceed to

shew. The general correspondence is based upon the following proposition

due to Cayley :

—

•
Gre.lle, t. cv, (1889), pp. 181—232.

t Math. Ann., t. xli, (1892), pp. 1—82.
+ Lond. Math. Soc. Proc, vol. xxiii, (1892), pp. 48—88, lb., pp. 281—295.

** Vorlemngen iiber die Theorie der automorphen Functionen, (Leipzig, Teubner, Bd. i, 1897).
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When a sphere is displaced hy a rotation round a diameter, the variables of

the stereographic projections of any point in its original position and in its

displaced position are connected by the relation

,
_(d + ic) z — {b — ia)

(6 -f ia) z + (d — ic)

'

where a, b, c, d are real quantities.

Rotation about a given diameter through an assigned angle gives a

unique position for the displaced point : and stereograpHic projection, which

is a conformal operation in that it preserves angles, also gives a unique point

as the projection of a given point. Hence taking the stereogi'aphic projec-

tion on a plane of the original position and the displaced position of a point

on the sphere, they will be uniquely related : that is, their complex variables

are connected by a lineo-linear relation, which thus leads to a linear substitu-

tion for the plane-transformation corresponding to the spherical rotation.

Now the extremities of the axis are unaltered by the rotation ; hence the

projections of these points are the fixed points of the substitution. If the

points be |, 77, ^ and — |, — 77, — ^, on a sphere of radius unity, and if the

origin of projection be the north pole of the sphere, the fixed points of the

substitution are

tt^ and -i±h.

so that the substitution is of the form

•

r ^+iv ^ + iv

^ + irf _ ^ + ir)

'

To determine the multiplier K, we take a point P very near C, one extremity

of the axis : let P' be the position after the rotation, so that CP' = CP. Then,

in the stereographic projection, the small arcs which correspond to CP and

CP' are equal in length, and they are inclined at an angle a. Hence the

multiplier K is e'* : for when z, and therefore /, is nearly equal to — ,. , a

fixed point of the substitution, the magnification is
|

iT
|

and the angular

displacement is the argument of K, which is a.

Inserting the value of K, solving for z' and using the condition

^^ + 7)'+ ^^= 1, we have

, _(d + ic) z — {b — ia)
~

{b + ia) z \-(d - ic)

'

where a = ^ sin |a, b = tj sin ^a, c = ^ sin ^a, d = cos |a,

so that a;- + b" + c- + d- = 1,

the equivalent of the usual condition to which the four coefficients in any

48—2
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linear substitution are subject : it is evident that the substitution is elliptic.

The proposition* is thus proved.

When the axis of rotation is the diameter perpendicular to the plane, we

have, by § 256,

z = ke-^+i*, z' = ke-^-^' <*+•'

,

so that z = ^e'",

agreeing with the above result by taking 1=0 = 77, ?=!> so that a = = b,

c = sin ^a, d = cos ^a.

It should be noted that the formula gives two different sets of coefficients

for a single rotation : for the effect of the rotation is unaltered when it is

increased by 27r, a change in a which leads to the other signs for all the

constants a, b, c, d.

It thus appears that the rotation of a sphere about a diameter interchanges

pairs of points on the surface, the stereographic projections of which on the

plane of the equator are connected by an elliptic linear substitution : hence,

in the one case as in the other, the substitution is periodic when a, the

argument of the multiplier and the angle of rotation, is a submultiple of 27r.

In the discussion of functions related in their arguments to these linear

substitutions, it proves to be convenient to deal with homogeneous variables,

so that the algebraic forms which arise can be connected with the theory of

invariants. We take zz^ = z-^ : the formulae of transformation may then be

represented by the equations

z^' = K (az, + jSz^, Zo = K (7^1 + S^o),

for the substitution z' = (az + ,8)/('yz + S). As we are about to deal with

invariantive functions of position dependent upon rotations, it is important

to have the determinant of homogeneous transformation equal to unity.

This can be secured only if k = + 1 or if « = — 1 : the two values correspond

to the two sets of coefficients obtained in connection with the rotation.

Hence, in the present case, the formulae of homogeneous transformation are

Zt' = {d + ic) Zi — {h — ia) z^, z^ = (6 + id) z-i + {d — ic) z^,

where a? ]rh^ -\- c- + d-, being the determinant of the substitution, = 1 ; every

rotation leads to two pairs of these homogeneous equations f. Each pair of

equations will be regarded as giving a homogeneous substitution.

Moreover, rotations can be compounded : and this composition is, in the

analytical expression of stereographically projected points, subject to the same

algebraic laws as is the composition of linear substitutions. If, then, there

* Cayley, Math. Ann., t. xv, (1879), pp. 238—240; Klein's Vorlesimgen iiher das Ikosaeder,

pp. 32—34.

+ The succeeding account of the polyhedral functions is based on Klein's investigations, which

are collected in the first section of his Vorlesimgen iiber das Ikosaeder (Leipzig, Teubner, 1884): see

also Cayley, Camb. Phil. Trans., vol. xiii (1883), pp. 4—68; Coll. Math. Papers, vol. xi, pp. 148—216.

It will be seen that the results are intimately related to the results obtained in §§ 271—279,

relative to the conformal representation of figures, bounded by circular arcs, on a half-plane.
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be a complete group of rotations, that is, a group such that the composition

of any two rotations (including repetitions) leads to a rotation included in the

group, then there will be associated with it a complete group of linear

homogeneous substitutions. The groups are finite together, the number of

members in the gi'oup of homogeneous substitutions being double of the

number in the group of rotations : and the substitutions can be arranged in

pairs so that each pair is associated with one rotation.

300. Such groups of rotations arise in connection with the regular solids.

Let the sphere, which circumscribes such a solid, be of radius unity : and let

the edges of the solid be projected from the centre of the sphere into arcs of

great circles on the surface. Then the faces of the polyhedron will be repre-

sented on the surface of the sphere by closed curvilinear figures, the angular

points of which are summits of the polyhedron. There are rotations, of proper

magnitude, about diameters properly chosen, which displace the polyhedron

into coincidence (but not identity) with itself, and so reproduce the above-

mentioned division of the surface of the sphere : when all such rotations have

been determined, they form a group which may be called the group of the

solid. Each such rotation gives rise to two homogeneous substitutions, so

that there will thence be derived a finite group of discrete substitutions

:

and as these are connected with the stereographic projection of the sphere,

they are evidently the group of substitutions which transform into one

another the divisions of the plane obtained by taking the stereographic

projection of the corresponding division of the surface of the sphere. For

the construction of such groups of substitutions, it will therefore be sufficient

to obtain the groups of rotations, considered in reference to the surface of

the sphere.

I. The Dihedral Group. The simplest case is that in which the solid,

hardly a proper solid, is composed of a couple of coincident regular polygons

of n sides* : a reference has already been made to this case. We suppose the

polygons to lie in the equator, so that their comers divide the equator into

n equal parts : one polygon becomes the upper half of the spherical surface,

the other the lower half. The two poles of the equator, and the middle

points of the n arcs of the equator, are the corners of the corresponding solid.

Then the axes, rotations about which can bring the surface into such

coincidence with itself that its partition of the spherical surface is topo-

graphically the same in the new position as in the old, are

(i) the polar axis,

(ii) a diameter through each summit on the equator,

(iii) a diameter through each middle point of an edge

:

the last two are the same or are different according as n is odd or is even.

* The solid may also be regarded as a double pyramid.
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For the polar axis, the necessary angle of rotation is an integral multiple

of — . Thus we have ^ = = 7;, ^ = 1, and therefore 1
n \

a = = 6, c = sm -
, rt = cos —

;

n n

. the substitutions are
inr ijrr

z^' = e^ Zi, Zo = e " Z2,

for r = 0, I, ..., n- 1, and
inr inr

2/ = — e'*2i, Z^ — — e '^ Z2,

for the same values of r. These are included in the set

inr inr

z-l =. e'^ z-i, Z2 = e " Zo,

fQj. ,^ = 0, 1, 2, ..., 2n — l, being 2n in number: the identical substitution is

included for the same reason as before, when we associated a region of

reference in the ^r-plane with the identical substitution.

For each of the axes lying in the equator, the angle of rotation is

evidently ir. Let an angular point of the polygon lie on the axis of ^, say at

^ = 1, 7; = 0, ^=0. Then so far as concerns,(ii) in the above set, if Ave take

1
•

1 J-
2r7r . 2r7r

the axis through the (r + l)th angular pomt, we have ^ = cos -^ , 7? = sm—
,

^=0; hence, as a is equal to tt, we have, for the corresponding substitutions,

2rni _ 2rni

z^' = ie " ^2, z^=ie "2^1,

for r = 0, 1, ..., 71— 1, and
irni 2rni

z-l = — ie ^ Z2, Z2 = — ie ^ z^,

for the same values of r.

And so far as concerns (iii) in the above set, if we take an axis through

the middle point of the rth side, that is, the side which joins the rth and the

(2r-l)7r . (2r-l)7r ^ „ ,

(r + l)th pomts, then ^=cos^ —
, 77 = sm'—^ , ^=0: hence as a

is equal to tt, we have, for the corresponding substitutions,

Zt = %e

for r = 0, 1, ..., ?i— 1, and

z( = -ie ^ Z2, Zo= — ie " Zi,

for the same values of r.

If n be even, the set of substitutions associated with (ii) are the same in

pairs, and likewise the set associated with (iii) ; if w be odd, the set associated

with (ii) is the same as the set associated with (iii). Thus in either case there

are 2n substitutions : and they are all included in the form

inr inr

Z2 = ie " Z2, 22 =ie "^ Zi,

for r = 0. 1, ..., 2n-l.
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Thus the whole group of ^n substitutions, in their homogeneous form, is

= e '- Zi

inr

for r = 0, . .
.

, 2?? — 1 : and in the non-homogeneous form, the group is

2in-r

z =e "• z, z

2inr

e n

where r = 0, 1, ..., n—1 for each of them. The non-homogeneous expres-

sions are not in their normal form in which the determinant of the coefficients

in the numerator and denominator is unity. Each expression gives two

homogeneous substitutions.

It is easy geometrically to see that all the axes have been retained : and

that they form a group, that is, composition of rotations about any two of the

axes is a rotation about one of the axes. The period for each of the equatorial

27rr
axes is 2 ; the period for a rotation about the polar axis depends on the

reducibilitv of -

.

^ n

Before passing to the construction of the functions which are unaltered

for the dihedral group of substitutions, we shall obtain the tetrahedral group

and construct the tetrahedral functions, for the explanations in regard to the

dihedral functions arise more naturally in the less simple case.

II. The Tetrahedral Group. We take a regular cube as in the figure.

Then ABGD is a tetrahedron, A'B'CD' is the polar tetrahedron.

D' A

Fig. 119.

It is easy to see that the axes of rotation for the tetrahedron are

(i) the four diagonals of the cube AA\ BB', CC, DD'

;
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(ii) the three lines joining the middle points of the opposite edges of

the tetrahedron.

The latter pass through the centre of the cube and are perpendicular to

pairs of opposite faces. When the sphere circumscribing the cube is drawn,

the three axes in (ii) intersect the sphere in six points which are the angles

of a regular octahedron. Thus, though the axes of rotation for the three

solids are not the same, the tetrahedron, the cube, and the octahedron may

be considered together : in fact, in the present arrangement whereby the

surface of the sphere is considered, the cube is merely the combination of the

tetrahedron and its polar.

For each of the diagonals of the cube, the necessary angle of rotation

for the tetrahedron is or |7r or |7r : the first of these gives identity, and

the others give two rotations for each of the four diagonals of the cube, so

that there are eight in all.

For each of the diagonals of the octahedron, the angle of rotation for

the tetrahedron is tt : there are thus three rotations.

With these we associate identity. Hence the number of rotations for the

tetrahedron is (8 + 3 + 1 =) 12 in all.

There are two sets of expressions for the tetrahedron according to the

position of the coordinate axes of the sphere. One set arises when these are

taken along Ox, Oy, Oz, the diagonals of the octahedron ; the other arises

when a coordinate plane is made to coincide with a plane of symmetry of the

tetrahedron such as B'DBD'.

Let the axes be the diagonals of the octahedron. The results are

obtainable just as before, and so ma}^ now merely be stated

:

For OB', ^ = V= ^= -i^'i when a = Ivr, the substitution is

z — i'

, .z + 1
z =1 .

Z-'l

For OA, ^= — 7; = ^=-^,; when a = 'jv, the substitution is

' = _ - ^ + 1

z — 1'

and when a = ^tt, the substitution is

z — i

z + i'
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For OG, — f = ''7 = ^=-7K; when a = ^tt, the substitution is

, .2-1
Z =1

,

z + l

and when a = |7r, the substitution is

, _ z + i

z — i'

For OD' , — ^ = — 'n
= ^=—f^\ when a = |7r, the substitution is

, _ z — i

z + i'

and when a = |7r, the substitution is

z+1

For Ox, f=l, »? = 0, ^=0 and a = tt : the substitution is

z

For Oy, ^ = 0, ?? = 1, ^=0, and a = tt : the substitution is

,__1
z'

For 0^^, ^ = 0, 7/ = 0, ^=1 and a = tt : the substitution is

z = — z.

And identity is 2'= z.

Hence the group of tetrahedral non-homogeneous substitutions is

' , ,1 ,-^-1 ^ .z + l j^-* ,z + i
Z = +Z, +-, +Z , ± % zr , + --—

-. , ± .

,

- ~Z ~ Z+1 Z — 1 ~Z + l Z — l

when the axes of reference in the sphere are the diameters bisecting opposite

edges of the tetrahedron. Each of these substitutions gives rise to two homo-

geneous substitutions, making 24 in all.

To obtain the transformations in the case when the plane of xz is a plane

of symmetry of the tetrahedron passing through one edge and bisecting the

opposite edge, such as B'BBD' in the figure, it is sufficient to rotate the

preceding configuration through an angle ^tt about the preceding 0^-axis,

and then to construct the corresponding changes in the preceding formulas.

For this rotation we have, with the preceding notation of § 299, ^ = = r],

^ = 1, a = Itt : then a = = b, c = sin Att, d = cos ^tt, so that d±ic = e^^^''

:

and therefore the ^' of the displaced point in the stereographic projection is

connected with the ^ of the undisplaced point in the stereographic projection

by the equation

^-d-ic^ ^^ V2
^-
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If then Z be the variable of the projection of the undisplaced point and Z'

that of the projection of the displaced point with the present axes, and z

and z be the corresponding variables for the older axes, we have

1+i 1+1

,

, . -1—^/7/ 1—^/7
that IS, z =—-r- Z , z=- —— Z.

Taking now the twelve substitutions in the form of the last set and substi-

tuting, we have a group of tetrahedral non-homogeneous substitutions in the

form

I Z^2-(l + i) Zy2 + (l+i)Z- + Z, ±^, ±^(i_,-)^ + ^2' -\l-i)Z-^2'

. ZV2 + (1 - i) . ZV2-(l-0
-\l+i)Z-^/2' -*(l+t)Z+V2'

when one of the coordinate planes is a plane through one edge of the

tetrahedron bisecting the opposite edge: each of these gives rise to two

homogeneous substitutions, making 24 in all.

301. The explanations, connected with these gi'oups of substitutions,

implied that certain aggregates of points remain unchanged by the operations

corresponding to the substitutions. These aggregates are (i) the summits of

the tetrahedron, (ii) the summits of the polar tetrahedron—these two sets

together make up the summits of the cube : and (iii) the middle points of the

edges, being also the middle points of the edges of the polar tetrahedron

—

this set forms the summits of an octahedron.

When these points are stereographically projected, we obtain aggregates

of points which are unchanged by the substitutions. We therefore project

stereographically with the extremity z of the axis Oz for origin of projection:

and then the projections of x, x', y, y , z, z are 1, — 1, t, — i, oo
, 0, which are

the variables of these points.

Instead of taking factors z—\, 2'+l, ..., we shall take homogeneous

forms z^—Z2, z^ -\- Z2, Zi — iz2, z^ + iz^, Zo, z^\ the product of all these factors

equated to zero gives the six points. This product is

t = z^z^izi* - Z2%

For the tetrahedron ABCD, the summits A, B,G, D are -7;;, —^r , -7^\
sjo kJO ^o

1 1 1 11111-1 ,. , ,

-V3' -V3' -V3' -v3' v3' v^' V3' v3' v3 '

^'^^p^^^^^iy
^

^^^

therefore the variables of the points in the stereogi-aphic projection are
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Forming homogeneous factors as before, the product of the four equated to

zero gives the stereographic projections of the four summits of the tetra-

hedron ABCD. This product is

"¥ = z,*-2V^^iX- 4- 2.^

Similarly for the tetrahedron A'B'C'D'; the product of the factors

corresponding to the stereographic projections of its four summits is

<I> = iTj-* + 2 \/^Zz,^zi + ^2'-

And the product of the eight points for the cube is ^^, that is,

W = z^^ + l^z^W -^ zi-

All these forms t, <I>, "^ are, by their mode of construction, unchanged

(except as to a constant factor, which is unity in the present case) by the

homogeneous substitutions : and therefore they are invariantive for the group

of 24 linear homogeneous substitutions, derived from the group of 12 non-

homogeneous tetrahedral substitutions. If "^ be taken as a binary quartic,

then is its Hessian and t is its cubicovariant : the invariants are numerical

and not algebraical : and the syzygy which subsists among the system of

concomitants is

a relation easily obtained by reference merely to the expressions for the forms

^, ^, t.

The object of this investigation is to form Z, the simplest rational

function of z which is unaltered by the group of substitutions. For this

purpose, it will evidently be necessary to form proper quotients of the

foregoing homogeneous forms, of zero dimensions in 2^1 and Zo. Let R
be any rational function of z, which is unaltered by the tetrahedral

substitutions. These substitutions give a series of values of z, for which

Z has only one value : hence R and Z, being both functions of z and

therefore of one another, are such that to a value of Z there is only one

value of R, so that ii is a rational function of Z.

In particular, the relation between R and Z may be lineo-linear : thus Z
is determinate except as to linear transformations. This unessential indeterm-

inateness can be removed, by assigning three particular conditions to

determine the three constants of the linear transformation.

The number of substitutions in the 2^-group is 12. As there will thus

be a gi'oup of 12 ^-points interchanged by the substitutions, the simplest

rational function of Z will be of the 12th degree in z, and therefore the

numerator and the denominator of the fraction for Z, in their homogeneous

forms, are of the 12th degree. The conditions assigned will be

(i) Z must vanish at the summits of the given tetrahedron :

(ii) Z must be infinite at the summits of the polar tetrahedron

:

(iii) Z must be unity at the middle points of the sides.
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As Z is a fractioDal function with its numerator and its denominator each

of the 12th degree and composed of the functions 4>, ^, t, it must, with

the foregoing conditions, be given by

By means of the syzygy, we have

Z:Z-1:1 = ^':-12 V'^^i^ : ^\

which is Klein's result. Removing the homogeneous variables, we have

Z : Z-\ : 1 = (2^ - 2 V^^^' 4- 1)=' : - 12\/^2^ (^ - 1)^ : {z^ + 2V^^^ + ly .

and then Z is a function of z which is unaltered by the group of 12 tetra-

hedral substitutions of p. 761. And every such function is a rational function

of Z.

This is one form of the result, depending upon the first position of the

axes. For the alternate form it is necessary merely to turn the axes through

an angle of ^tt round the ^r-axis, as was done in § 300 to obtain the new
groups. The result is that a function Z, unaltered by the group of 12

substitutions of p. 762, is given by

Z : Z-l :l=(2*- 2^/S2" - If : - 12^3^- (^ + 1)' : (z" + 2^/Sz- - If.

It still is of importance to mark out the partition of the plane corre-

sponding to the groups, in the same manner as was done in the case of the

infinite groups in the preceding chapter. This partition of the plane is the

stereogi-aphic projection of the partition of the sphere, a partition effected by

the planes of symmetry of the tetrahedron. Some idea of the division may
be gathered from the accompanying figure, which is merely a projection on

the circumscribing sphere from the centre of the cube. The great circles

Fig. 120.
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meet by threes in the summits of the tetrahedron and its polar, being the

sections by the three planes of symmetry, which pass through every such

summit, and the circles are equally inclined to one another there : they meet

by twos in the middle points of the edges and they are equally inclined to

one another there. They divide the sphere into 24 triangles, each of which

has for angles ^tt, ^tt, ^tt. (See case II., § 278.)

The corresponding division of the plane is the stereographic projection of

this divided surface. Taking A as the pole of projection, which is projected

Fig. 121.

to infinity, then A' is the origin : the three great circles through A' become

three straight lines equally inclined to one another; the other three great

circles become three circles with their centres on the three lines concurrent

in the origin. The accompanying figure shews the projection : the points in

the plane have the same letters as the points on the sphere of which they

are the projections : and the plane is thus divided into 24 parts. There are,

in explicit form, only 12 non-homogeneous substitutions: but each of these

has been proved to imply two homogeneous substitutions, so that we have

the division of the plane corresponding to the 24 substitutions in the group.

The fundamental polygon of reference is a triangle such as GA'x

.

302. It now remains to construct the function for the dihedral group.

The sets of points to be considered are :

—

(i) the angular points of the polygon : in the stereographic projection,

these are

•Irtsi

e '"'

, for s = 0, 1, ..., n— 1

;
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(ii) the middle points of the sides : in the stereographic projection,

these are
it; (2J+ 1)

e "
, for 5 = 0, 1, . .

.
, 71 — 1 ; and

(iii) the poles of the equator which are unaltered by each of the

rotations : in the stereographic projection, these are and oo .

Forming the homogeneous products, as for the tetrahedron, we have, for (i),

for(ii), F = z,"+22'*;

and, for (iii), W==z^z^;

these functions being connected by a relation

Because the dihedi'al gi'oup contains 2n non-homogeneous substitutions,

the rational function of z, say Z, must, in its initial fractional form, be of

degree 2n in both numerator and denominator; and it must be constructed

from U,V,W
The function Z becomes fully determinate, if we assign to it the following

conditions

:

(i) Z must vanish at points corresponding to the summits of the

polygon,

(ii) Z must be infinite at points corresponding to the poles of the

equator,

(iii) Z must be unity at points corresponding to the middle points of

the edges

:

and then we find

Z:Z -1:1 = {H^''-^)Y- IM^" + 1)P : -^'N

which gives the simplest rational function of z that is unaltered by the

substitutions of the dihedral group.

The discussion of the polyhedral functions will not be carried further here : sufficient

illustration has been provided as an introduction to the theory which, in its various

bearings, is expounded in Klein's suggestive treatise already quoted.

Ex. 1. Shew that the anharmonic group of § 298 is substantially the dihedral group

for w= 3 ; and, by changing the axes, comi)lete the identification. (Klein.)

Ex. 2. An octahedron is referred to its diagonals as axes of reference, and a partition

of the surface of the sphere is made with reference to i)lanes of symmetry and the axes of

rotations whereby the figure is made to coincide with itself.

Shew that the number of these rotations is 24, that the si)here is divided into 48

triangles, that the non-homogeneous substitutions which transform into one another the

partitions of the plane obtained from a stereographic projection are

Z 2-1' 3-1-1 Z+ l Z-l

where /:=0, 1, 2, 3; and that the corresponding octahedral function is

Z . Z-\ : \={z»+ 14z*+lf: {z^^-3Sz^-:i3z*+l)^ : 108^{z*-iy. (Klein.)
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303. We no^v; pass from groups that are finite in number to the

consideration of functions connected with groups that are infinite in

number. The best known illustration is that of the elliptic modular-

functions; one example is the form of the modulus in an elliptic integral

as a function of the ratio of the periods of the integral. The general

definition of a modular-function* is that it is a uniform function such that

an algebraical equation subsists between -v/r i ^ j and i/r {w), where a, /3,

7, S are integers subject to the relation aS — yS7=l. The simplest case is

that in which the two functions yfr are equal.

The elliptic quarter-periods K and iK' are defined by the integrals

2K=\ {z{l-z){l-k'2)]-^dz=[ {z(l-z){l-cz)rKlz,
.0 Jo •

2K'= C{z(l-z)(l-k''z)l^dz=C{z(l-z)(l-c'z)}-idz,
JO Jo

where c + c' = 1. The ordinary theory of elliptic functions gives the equation

jr. dK' dK ___ IT

dc do ^cc'

'

whatever be the value of c. To consider the nature of these quantities as

functions of c, we note that c = 1 is an infinity of K and an ordinary point of

K', and that similarly c = is an infinity of K' and an ordinary point of K :

and these are all the singular points in the finite part of the plane. The
value c = CO must also be considered. All other values of c are ordinary

points for K and K'.

For values of c, such that
|
c < 1, we have

so that, in the vicinity of the origin,

A [^\ - _ '^

dcKK J 4.K'cc'

IT

Hence in the vicinity of the origin

K' 1

- ]- + 2 + positive integral powers of c[

log c 4- P (c),

where P (c) is a uniform series converging for sufficiently small values of
j

c
|

:

and therefore, still in the vicinity of the origin,

K' = --^\ogc + KP{c).

* This is the definition of a modular- function which is adopted by Hermite, Dedekind, Klein,

Weber, and others.



768 ELLIPTIC [303.

Now let the modulus c describe a contour round the origin and return to

its original value. Then K is unchanged, for the c-origin is not a singularity

of K.

The new value of K' is evidently

-^(27ri + \ogc)+KP(c),

that is, iK' changes into 2K + iK'. Hence, when c describes positively a

small contour round the origin, the quarter-periods K and iK' become K and

IK 4- iK' respectively.

In the same way from the equation

j^, dK _ „ dK' _ _ TT

dc' dc' ^cc"

and from the expansion of K' in powers of c' when \c'\< 1, we infer that

when c' describes positively a small contour round its origin, that is, when c

describes positively a small contour round the point c = 1, then iK' is unchanged

and K changes to K— 2iK'.

It thus appears that the quantities K and iK', regarded as functions of

the elliptic modulus c, are subject to the linear transformations

U{K)^K
\

V{K) = K-2iK'\
U (iK') =2K + iK'] ' V (iK') = iK']

'

without change of the quantity c ; and the application of either substitution

is equivalent to making c describe a closed circuit round- one or other of the

critical points in the finite part of the plane, the description being positive if

the direct substitution be applied and negative if the inverse be applied.

When these substitutions are applied any number of times—the index

being the same and composed in the same way for K as for iK'—then,

denoting the composite substitution by P, we have results of the form

PK^SK + yiK'l
PiK'=^K + aiK']'

where /3 and 7 are even integers, a and B are odd integers of the forms

1 + 4/), I +4>q, say = 1 (mod. 4), and, because the determinant of U and that

of V are both unity, we have aS - /37 = 1 by § 282. These equations give

the partially indeterminate form of the values of the quarter-periods for an

assigned value of the modulus c.

Conversely, we may regard c as a function of w=-^ , the quotient of

the quarter-periods. The quotient is taken, for various reasons : thus it

enables us to remove common factors, it is the natural form in the passage

to g-series, and so on. The function is unaltered, when w is subjected

i
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to the infinite group of substitutions derived from the fundamental

substitutions

Uw =w+ 2, Viv-
1 - 2«(;

Denoting the function c by (f){w), we have

We have still to take account of the relation of iK'jK to c, when the latter has

infinitely large values. For this purpose, we compare the differential expressions

k {x (1- X) (1 - k'-x))-^ dx, {y (1 -y) (1 - l-'yT^-dy,

which are equal to one another if k^x=y and kl= \. As .r moves from to 1,^ moves

from to F, that is, from to 1/Z"- ; integi'ating between these limits, we have

- kK=\->ri\',

where A and A' are quarter-periods with modulus l=\lk. As y moves from to 1,

X moves from to 1/^^ . integrating between these limits, we have

k{K-\-iK')^\,

so that kiK'= — «
A'.

In order to obtain the effect on A' and iK' of an infinitely large circuit described

positively by c, we make I describe a very small circuit round its origin negatively. By

what has been proved, the effect of the latter is to change A and i\' into A and tA' — 2A

respectively. Hence the new value of kiK' is

- lA'+ '2.A= k {3iK' + 2K);

and the new value of kK is

\+iA'-2A=-k{2iK' + K).

Hence if i(/ denote the new value of u; consequent on the description of the infinitely

large circuit by c, we have

w = -=U^ V-^iv.
2io + l

No new fundamental substitution is thus obtained ; and therefore U, V are the only

fundamental substitutions of the group for c, regarded as a modular-function.

Again, c is a rational function of c and is therefore a modular-function

:

consequently also cc is a modular-function. Being a rational function of

c, it is subject to the two substitutions U and V, which are characteristically

fundamental for </> (w). Now cc' is unchanged when we interchange c and c,

that is, when we interchange K and K' ; so that, if K^ and iK^' be new

quarter-periods for a modulus cc', we have

K, = K', iK,' = iK,

and therefore iVi = .

w

Thus cc' as a modular-function must be subject to the substitution

1
Tw =

w
49
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But rf7r«,=-A_ = _^J_^_ = _^^_K.,

SO that V is compounded of T and U. Hence the substitutions for cc\

regarded as a modular-function, are the infinite group which is derived from

the fundamental substitutions

Uiv = tu + 2, Tw = .

w
Denoting the modular-function cc' by

;)^
(w), we have

cc'=x(«^)=x(^+ 2)= %(--).

To obtain the change in w caused by changing c into cjc , we use the

differential expression

[y{\-y){\-Py)]---dy.

When the variable is transformed by the equation* (1 — y){\ —k^x) = l —x,

where k'H- = — k'-, the expression becomes

k'{x(l-x){l-k'cc)}~^dx.

When y describes the straight line from to 1 continuously, x also

describes the straight line from to 1 continuously. Integrating between

these limits, we have
A = k'K,

where A is a quarter-period. When y describes the straight line from

to l/l continuously, x describes the straight line from to oo continuously,

or, say, the line from to l/'k'^ and the line from 1/k- to oo continuously.

Integrating between these limits, we have

A -I- iA' = k' {K + iK') + h^k' r {x (1 -x){l- k'x)\~^ dx

= k'{K + iK') + k'K,

on using the transformation k'^xu = 1 and taking account of the path described

by the variable u : and therefore

iiV ^ k' (K + iK').

Hence the change of modulus from k to ik/k', which changes c to — c/c, gives

the changes of quarter-periods in the form

A = k'K, iA' = k' {K + iK')

;

and therefore the new value of iv, say Wj, is

Wi = w + 1 = Siu.

It therefore follows that, when — c/c' is regarded as a modular-function

of the quotient tu of the quarter-periods K and iK', it must be subject to

the substitutions

w
S{w) = w+\, U(w) = w-^'I,

'^(^^)=]^-2w;-
* This is the equation expressing elliptic functions of k'u in terms of elliptic functions of u.

I
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Evidently S- = U, and U may therefore be omitted ; V and S are the

fundamental substitutions of the infinite group of transformations of w,

the argument of the modular-function c/c'.

As a last example, we consider the function

(c^-c + iy

(c- - cf '

It is a rational function of cc', and therefore is a modular-function having the

substitutions Tw and Uw. By § 298, it is unaltered when we substitute

r- for c. It has just been proved that this change causes a change of tu

into lu + l, and therefore /, as a modular-function, must be subject to the

substitution

Siu = w + 1.

Evidently Shv = w + 2= Uw, so that U is no longer a fundamental substitution

when 8 is retained. Hence we have the result that J is unaltered, when w is

subjected to the infinite group of substitutions derived from the fundamental

substitutions

8iu=^w + l, Tw = ,

w
so that we may write

c^{c — lf ^
^

\ w)

This is the group of substitutions considered in § 284 : they are of the

form
5^

, where a, /3, 7, 8 are real integers subject to the single relation

aS - ^7 =^ 1.

These illustrations, in connection with which the example in § 298 should be consulted,

suffice to put in evidence the existence of modular-functions, that is, functions periodic

for infinite groups of linear substitutions, the coefficients of which are real integers. The

theory has been the subject of many investigations, both in connection with the modular

equations in the transformation of elliptic functions and also as a definite set of functions.

The investigations are due among others to Hermite, Fuchs, Dedekind, Hurwitz, and

especially to Klein* ; and reference must be made to their memoirs, or to Klein-Fricke's

treatise on elliptic modular-functions, or to Weber's ElUptische Functionen, for an exposi-

tion of the theory.

304. The method just adopted for infinite groups is very special, being

suited only to particular classes of functions : in passing now to linear

substitutions, no longer limited by the condition that their coefficients are

real integers, we shall adopt more general considerations. The chief

purpose of the investigation will be to obtain expressions of functions

characterised by the property of reproduction when their argument is

subjected to any one of the infinite group of substitutions,

* Some references are given in Enneper's ElUptische Functionen, (2" Aufl.), p. 482.

49—2
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The infinite group is supposed of the nature of that in § 290 : the

members of it, being of the form

a,-^ + /3i\

are such that a circle, called the fundamental circle, is unaltered by any of the

substitutions. This circle is supposed to have its centre at the origin and

unity for its radius.

The interior of the circle is divided into an infinite number of curvilinear

polygons, congruent by the substitutions of the group : each polygon contains

one, and only one, of the points in the interior associated by the substitutions

with a given point not on the boundary of the polygon. Hence corresponding

to any point within the circle, there is one and only one point within the

fundamental pol^^gon, as there is only one such point in each of the polygons :

of these homologous points the one, which lies in the fundamental polygon

of reference, will be called the irreducible point. It is convenient to speak of

the zero of a function, implying thereby the irreducible zero : and similarly

for the singularities.

The part of the plane, exterior to the fundamental circle, is similarly

divided : and the division can be obtained from that of the internal area by

inversion with regard to the circumference and the centre of the fundamental

circle. Hence there will be two polygons of reference, one in the part of the

plane within the circle and the other in the part without the circle : and

all terms used for the one can evidently be used for the other. Thus the

irreducible homologue of a point without the circle is in the outer polygon

of reference : for a substitution transforms a point within an internal polygon

to a point within another internal polygon, and a point within an external

polygon to a point within another external polygon.

Take a point z in the interior of the circle, and round it describe a small

contour (say for convenience a circle) so as not to cross the boundary of the

polygon within which z lies : and let Zi be the point given by the substitution

fi{z). Then corresponding to this contour there is, in each of the internal

polygons, a contour which does not cross the boundary of its polygon : and as

the first contour (say Co) does not occupy the whole of its polygon and as the

congruent contours do not intersect, the sum of the areas of all the contours

Gi is less than the sum of the areas of all the polygons, that is, the sum is

less than the area of the circle and so it is finite.

If fjbi be the linear magnification at z/, we have

1
I

dzi

^'~\rYiZ + Bi\^~\dz

and therefore, if vii be the least value of the magnification for points lying

within Co, we have

Ci > mrCf,.
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The point is the homologue of z = cc by the substitution

z, —\!'
I

, and therefore — Sifyi lies without

the circle : though, in the limit of i infinite, it

may approach indefinitely near to the circum-

ference *.

Let this point be G : and through G and

0, the centre of the fundamental circle, draw

straight lines passing through the centre of

the circular contour. Then evidently

and, if Mi be the greatest magnification, then Fig. 122.

1

GQ^

that
Mi^GP^
mi GQ''

Now G is certainly not inside the circle, so that GQ is not less than RA :

thus

^-1 ^=14-^ 14.4^ ^
GQ~ '^ GQ '^ GQ^ '^ RA^RA'

which is independent of the point G, that is, of the particular substitution

p-^ )
by K, we have

rrii

or Mi < Knii.

Evidently /Xj is finite.

Now

and therefore

so that

1 K^

\yiZ + di\* Co

S \yiz + Bi\-* < jr S Gi.

* For, in § 284, when the coefficients are real, a point associated with a given point may, for

j = ao , approach indefinitely near to a point on the axis of x : and then, by the transformation of

§ 290, we have the result in the text.
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It has been seen that 2 Gi is less than the area of the fundamental circle and

is therefore finite : hence the quantity

iZ + hi

is finite. It therefore follows that S fx^ is an absolutely converging series.
j =

Similarly, it follows that S /ij'" is an absolutely converging series for all

integral values of m that are greater than unity*. This series is evidently

i=

and the absolute convergence is established on the assumption that z lies

within the fundamental circle.

Next, let z lie without the fundamental circle. If z coincide with some

one of the points — hij^i, then the corresponding term of

the series

i=

is infinite.

If it do not coincide with any one of the points

— hijrfi, let c be its distance from the nearest of them, so

that

I

^iZ + hi
-^ <

1

7; i--"* C-2"^.

Let z' be any point within the fundamental circle : then

Fig. 123.

I7i|

Now Oz < 1 + OG < 1 + —
'

, for any point within the circle, so that
l7i

\liz' + ^d"''" > l7il~"" 1 +
I

i

[ •

Hence
i^'

+

Only a limited number of the points — 8^/7,- can be at infinity. Each of

the corresponding substitutions gives the point at infinity as the homologue

of — Si/7t ; and therefore, inverting with regard to the fundamental circle, we

have a number of homologues of the origin coinciding with the origin, equal

to the number of the points — 81/7^ at infinity. The origin is not a singularity

of the group, so fhat the number of homologues of the origin, coincident with

it, must be limited.

* A completely general inference as to tlie convergence of the series, when m=\, cannot be

made : the convergence depends upon the form of the division of the plane into polygons, and

Burnside (I.e., p. 754) has proved that there is certainly one case in which S /x^ is an absolutely
1=0

converging series. •
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Omitting the corresponding terras from the series, an omission which does

not affect its convergence, we can assign a superior limit to — : let it be

C-l. Then



776 THETAFUCHSIAN FUNCTIONS [305.

and the right-hand side is finite, if in addition z do not coincide with any of

the points — Sj/y,- or with any of the essential singularities of the group.

Hence % {z) is an absolutely converging series for any value of z in the plane

which does not coincide with (i) an accidental singularity of H{z\ or one of

the points homologous with, these singularities by the substitutions of the

group, or with (ii) any of the points — S,/7i, which are the various points

homologous with ^ = oo by the substitutions of the group, or with (iii) any of

the essential singularities of the group, which are points lying on the funda-

mental circle.

All these points are singularities of (^ {z).

((x-z-\- 3-\

,^ )yiZ T" o{/

is infinite, the point being an accidental singularity of H ( ^~—j)- The

rest of the series is then of the same nature as (z) in the more general

case, and therefore converges. Hence the point is an accidental singularity

of the function S (z) of the same order as for H, that is, the series of points,

given by the accidental singularities of H (z) and by the points homologous

with them through the substitutions of the group, are accidental singularities

of the function B (z).

In the same way it is easy to see that the points — Si/ji are either

ordinary points or accidental singularities of (z) ; and that the essential

singularities of the group are essential singularities of (z). Hence we

have the result :

—

The series (z) = :l (yiz + SO"'^ S. .

/=() xji^ + Oi/

where the summation extends over the infinite number of members of an assigned

discontinuous group, is a function of z, provided the integer m be > 1' and H{z)

he a rational function of z. The singularities of are

:

—
(i), the accidental singularities of H (z) and the points homologous

with them by the substitutions of the group : all these points are

accidental singularities of ^{z)

;

(ii), the points — 8i/<yi, which are the points homologous with z = oo bg

the substitutions of the group : all these points, if not ordinary

points of ^ (z), are accidental singularities ; and

(iii), tJie essential singularities of the group: these lie on the fundamental

circle and they are essential singularities ofS (z).

If H{z) had any essential singularity, then that point and all points homo-

logous with it by substitutions of the group would be essential singularities

of S{z). The function 0(2), thus defined, is called* Thetafiichsian by

Poincar6.
* Acta Math., t. i, (1882), p. 210.
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If the group belong to the first, the second, or the sixth family,

it is known that the circumference of the fundamental circle enters into

the division of the interior of the circle (and also of the space exterior to

the circle) only in so far as it contains the essential singularities of the

group. *But if the group belong to any one of the other four families,

then parts of the circumference enter into the division of both spaces.

In the former case, when the group belongs to the set of families,

made up of the first, the second, and the sixth, the circumference of the

fundamental circle is a line over which the series cannot be continued : it

is a natural limit (§ 81) both for a function existing in the interior of the

circle and for a function existing in the exterior of the circle : but neither

function exists for points on the circumference of the fundamental circle.

The series represents one function within the circle and another function

without the circle.

It has been proved that the area outside the fundamental circle can

be derived from the area inside that circle, by inversion with regard to

its circumference. Hence a function of z, existing only outside the funda-

mental circle, can be transformed into a function of — , and therefore also

of - , existing for points only within the circle. When, therefore, a group

belongs to the first, the second, or the sixth family, it is sufficient to consider

only the function defined by the series for points within the fundamental

circle: it will be called the function ©(^).

In the latter case, when the group belongs to the third, the fourth, the

fifth, or the seventh families, then parts of the circumference enter into the

division of the plane both without and within the circle. Over these parts

the function can be continued : and then the series represents one {and only

one) function in the two parts of the plane: it will be called the function ©(2).

306. The importance of the function © {z) lies in its pseudo-automorphic

character for the substitutions of the group, as defined by the property now

to be proved that, if 5. be any one of the substitutions of the group, then

itnz + /3'

Liet TT = —;—r~cr/

>

a^ + ^ jj 7f ^ + Oi

7t —T"^ + Oi
'72:4-6

which is, of course, another substitution of the infinite group : then

72 -I- S ' 72 + 8
'

®(^) = <-/^ + s>""«W-
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Hence 6 f°i±-^) = I (^^i^)""' H i^^^±^]

,7/2 + 8/

= (7^ + 8f" (^),

thus establishing the pseudo-automorphic character.

This function can evidently be made subsidiary to the construction of

functions, which are automorphic for the group of substitutions, in the same

manner as the cr-function in Weierstrass's theory of elliptic functions and

the so-called Theta-functions in the theory of Jacobian and of Abelian

transcendents. But before we consider these automorphic functions, it is

important to consider the zeros and the accidental singularities of a pseudo-

automorphic function such as f) (z).

On the supposition that the function H, which enters as the additive

element into the composition of ©, has only accidental singularities, it has

been proved that all the essential singularities of © lie on the circumference

of the fundamental circle ; and that the accidental singularities of © are,

(i) the points homologous with the accidental singularities of H, and

(ii) the points — Si/ji, which all lie without the circle.

When the function H (z) has one or more accidental singularities within

the fundamental circle, then there is an irreducible point for each of them,

which is an irreducible accidental singularity of © (z). Hence in the case of

a fmiction which exists only within the circle, the number of irreducible

accidental singularities is the same as the number of (non-homologous) accidental

singularities of H {z) lying within the fundamental circle. If, then, all the

infinities of the additive element H {z) lie without the fundamental circle, and

if the function © {z) exist only within the circle, then © {z) has no irreducible

accidental singularities : but, in particular cases, it may happen that © {z) is

then evanescent.

When the function H {z) has one or more accidental singularities without

the fundamental circle, then there is an irreducible point for each of them,

this point lying in the fundamental polygon of reference in the space outside

the circle : and this point is an irreducible accidental singularity of © {z),

•when © (z) exists both within and without the circle. Further, the point

— hij'^i is an infinity of order 2?/i : there is a homologous irreducible point

within the polygon of reference without the circle, being, in fact, the

irreducible point which is homologous with z=oo . Henci' taking the two

fundamental polygons of reference—one within, for the internal division, and

one without, for the external division,—it follows that in the case of a function,

which exists all over the plane, the number of irreducible accidental singularities
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is equal to the whole number of accidental singularities of the additive element

H {z), increased by 1m.

307. To obtain the number of irreducible zeros we use the result of

§ 43, Cor. IV., combined with the result just obtained as to the number of

irreducible accidental singularities. A convention, similar to that adopted

in the case of the doubly-periodic functions (§ 115), is now necessary: for if

there be a zero on one side of the fundamental polygon, then the homologous

point on the conjugate side of the polygon is also a zero and of the same
degree : in that case, either we take both points as irreducible zeros and of

half the degree, or we take one of them as the irreducible zero and retain

its proper degree. Similarly, if a corner be a zero, every corner of the cycle

is a zero : so that, if the cycle contain \ points and the sum of its angles be
27r— , then the corner is common to Xfju polygons ; we may regard each of the

corners of the fundamental polygon in that cycle as an irreducible zero, of

degree equal to its proper degree divided by Xim, or we may take only one of

them and count its degree as the proper degree divided by /i—the just

distribution of zeros common to contiguous polygons being all that is

necessary for the convention—so that the number of zeros to be associated

with the area of each polygon is the same, while no zero is counted in more

than its proper degree. A similar convention applies to the singularities.

With this convention, the excess of the number of irreducible zeros

over the number of irreducible accidental singularities, each in its proper

degree, is the value of

liri J &{z)

taken positively round the fundamental polygon within the circle when the

function © (z) exists only within the circle, and round the two fundamental

polygons, within and without the circle respectively, when the function @ (z)

exists over the whole plane.

But should an infinity of ^-j ^ lie on the curve along which integration

extends, (it will arise through either a zero or a pole of ®), then, in order

to avoid the difficulty in the integration and preserve the above convention,

methods must be adopted depending upon the family of the group.

When all the cycles belong to the first sub-category (§ 292), we can

proceed as follows : the general result can be proved to hold in every case.

If an infinity occur on a side, another will occur on the conjugate side, the

two being homologous by a fundamental substitution. A small semi-circle is

drawn with the point for centre and lying without the polygon, so that, when
the element of the side is replaced by the serai-circumference, the point

lies within the polygon : the homologous point on the conjugate side is

excluded from the polygon when the element there is replaced by the
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homologous semi-circumference. The subject of integration is then finite

along the modified sides.

A similar process is adopted when a corner is an infinity of „
^

. A

small circular arc is draAvn so as to have the point included in the polygon

when the arc replaces the elements of the sides at the point : the homologous

circular arcs at all the points in the cycle of the corner vnW exclude all those

points, also poles, when they replace the elements of the sides at the point.

The subject of integration is then finite everywhere along the modified path

of integration.

First, let the function exist only within the circle

of the polygon, A'B' the conjugate side;

and let

^ yz + 8

be the corresponding fundamental substi-

tution which transforms AB into A'B',

so that ^ may be regarded as the variable

along A'B'.

Then we have e(^) = {yz + Sy^"^ (z)

Let AB he any side

Fig. 124.

and therefore
@(0

d^: -^—

^

dz + -^sttH^ dz.
yz + 8 (z)

But as z moves from A to B, ^ moves from A' to B' (§ 287): and the latter

is the negative direction of description. Hence, with the given notation, the

sum of the parts of the

and B'A', is

BU^z)

e(z)

integral, which arise through the two sides AB

dz, for AB + for B'A'

dz, taken along AB;
z +

so that, if E denote the required excess, we have

dz
8'E

z +

the new integral being taken along those sides of the polygon which are

transformed into their conjugates by the fundamental substitutions of the

group.

Consider the term which arises through the integration along AB: it is

evidently

TTl
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XT 1
d^ I

JN OW we have -y- =
p srr; ,

dz (yz + By

so that, if M be the magnification in transforming from A to A', and if
<f)a

be

the angle through which a small arc is turned, we have at A

{riZ + 8)-

Evidently (^^ is the excess of the inclination of A'P', that is, of A'C to the

line of real quantities over the inclination of AP, that is, of J. C to that line :

and therefore at A
log (yz + 8) = -^ log M-U4>a-

Since the whole integral must prove to be a real quantity, we omit the

parts — ^r— . logM as in the aggregate constituting an evanescent (imaginary)

quantity : hence we have

2^ (- <^a + <f>b)

as the part corresponding to the side AB. In this expression, ^^ is the angle

required to turn AG into a direction parallel to A'C, and (^^ is the angle

required to turn QB, that is, GB into a direction parallel to Q'B', that is,

G'B', both rotations being taken positively. Thus

cf)a
= inch A'G' — incl. AG,

<j)i,
= 27r- incl. BG + incl. B'G'

;

and therefore

(f)^
_ (^^ = _ 27r + incl. A'G' - incl. B'G' + incl. BG - incl. AG

= — 27r + c/ + Ci,

where C] and c/ are the angles AGB, A' G'B' respectively. Hence, if we take

c and c' to be the external angles AGB, A'G'B' as in the figure, we have

c + Ci = 27r = c' + c/,

and therefore ^6 — </>„ = c + c' - 27r.

The part corresponding to the arc ^^ in the above integral is therefore

~{c + c'- 27r).

There are no sides of the second kind in the path of integration, because the

function is supposed to exist only within the circle. Therefore the whole

excess is given by

E^^^ic + c'-^-rr),
Lit

the summation extending over those sides of the polygon, being in number

half of the sides of the first kind, which are transformed into their conjugates

by the fundamental substitutions of the group.
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Draw all the pairs of tangents at the extremities of the bounding arcs

of the fundamental polj'gon of reference

:

then the angles, such as c and c' above,

are internal angles of the rectilinear

polygon formed by the straight lines.

The remaining internal angles of this

new polygon are the angles at which

the arcs cut, which are the angles of

the curvilinear polygon : and therefore

their sum is the sum of the angles in

the cycles, that is, the sum is equal to

.. 27r

where '^ is the of the angles in
Fig. 125.

one of the cycles. Now let 2?i be the number of sides of the first kind in

the curvilinear polygon, so that n is the number of fundamental substitutions

in the group : hence the number of terms in the above summation for E is

n, and therefore

E = — ma + 2" S (c + c).

Moreover, the rectilinear polygon has 4n sides : and therefore the sum of the

27r
internal angles is (4?i - 2) vr. But this sum is equal to S (o + c') + 2 — ,

where the first summation extends to the different conjugate pairs and

the second to the different cycles : thus

1
(4?i - 2) TT = 2 (c + c') + 27rS

Therefore 1 = — mn + ?/i (2?i — 1) 7/iS —

where the summation extends over all the different cycles in the fundamental

polygon. Hence for a function, which is constructed from the additive

element H {z) and exists only within the fundamental circle of the group, the

excess of the number of its irreducible zeros over the number of its irreducible

accidental singularities is

™(„-l-2l),

where m is the parametric integer of the function constructed in seHes, 2« is

2ir
the number of sides of the first kind in the fundamental polygon, — is the sum
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of the angles in a cycle of the first kind of corners, and the summation extends

to all these cycles.

The number of in-educible accidental singularities has already been

obtained ; it is finite, and- thus the number of irreducible zeros is finite.

Secondly, let the function exist all over the plane : then the irreducible

points are (i) points lying within (or on) the boundary of the fundamental

polygon of reference within the fundamental circle and (ii) points lying

within (or on) the boundary of the fundamental polygon of reference without

the fundamental circle, the outer polygon being the inverse of the inner poly-

gon with regard to the centre. For such a function the excess of the number
of irreducible zeros over the number of irreducible accidental singularities is

the integral
' '0'(^)

27rtj"@

taken positively round the boundaries of both polygons. We shall assume

that there are no zeros and no infinities on the path of integration ; the

result can, however, be shewn to be valid in the contrary case.

For the sides of the internal polygon that are of the first kind the value

of the integral is, as before, equal to

m(n-l — 1 —
V Mi,

and for the sides of the external polygon that are of the first kind, the value

is also

Let the value of the integral along the sides of the second kind in

the internal polygon be /. Those lines are also sides of the second kind

in the external polygon ; but they are described in the sense opposite to

that for the internal polygon, the integral being always taken positively

:

hence the value of the integral along the sides of the second kind in the

external polygon is — /.

Hence the excess of the number of irreducible zeros over the number of

irreducible accidental singularities of a function © (z), luhich is constructed

from the additive element H (z) and exists all over the plane, is

1m

vihere the summation extends over all the cycles of the first category of either

(but not both) of the fundamental polygons of reference.

As before, the number of irreducible zeros of such a function is finite,

because the number of iiTcducible accidental singularities is finite.
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In every case, this excess depends only upon

(i) the parametric integer 7n, used in the construction of the series

:

(ii) the number of sides, 2n, of the first kind in the polygon of

reference

:

(iii) the sum of the angles in the cycles of the first category.

Kv. Prove that a corner belonging to a cycle of the first category is in general a zero

of order p, sucli that

p= -m (mod. fx),

where 27r jfx is the sum of the angles in the cycle : and discuss the nature of the corners

which belong to cycles of the remaining categories. (Poincare.)

308. We are now in a position to construct automorphic functions, using

as subsidiary elements the pseudo-automorphic functions which have just

been considered.

For, if we take a couple of these functions, ©i and ©2> associated with a

given infinite group, characterised by the same integer m, and arising through

different additive elements H (z), then we have

where
^^

is any one of the substitutions of the group ; and therefore

jz -\- BJ _f>i (z)
_

/ccz + /3\~^;{z)'-

^'[yz + sJ

that is, the quotient of two such functions is automorphic. Denoting the

quotient by Pn{z)*, we have

the automorphic property being possessed for each of the substitutions.

It thus appears that such functions exist : their essential property is

that of being reproduced when the independent variable is subjected Co any

of the linear substitutions of the infinite group.

The foregoing is of course the simplest case, adduced at once to indicate

the existence of the functions. The construction can evidently be general-

ised : for, if we have any number of functions ©i, ..., 0^, 4>i, ..., 4>g with

characteristic integers mi, ..., nij., n^, ..., iig and all associated with one group

• Poincar^ calls such functions Fuchsian functions: as already indicated (§ 297), I have

preferred to associate the general name autortKwphic with them. But, because Poincare himself

has constructed one class of such functions by means of series as in the foregoing manner, his

name, if any, sliould be associated with this class : the symbol Pn [z) is therefore used.
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while constructed from different additive elementary functions H (z), then,

denoting

©i(^) ^r(2)

^A^) ^s{2)

by Pn (z), we evidently have

so that, provided only 1 nq= 2 viq,

q=l 9=1

the function is automorphic. If we agree to call m, the integer characteristic

of a pseudo-automorphic function, the degree of that function, then the quotient

of two products of pseudo-automorphic functions is automorphic, provided the

products be of the same degree.

There are evidently two classes of automorphic functions : those which

exist all over the plane, and those which exist only within the fundamental

circle. The classes are discriminated according to the composition of the

functions from the subsidiary pseudo-automorphic functions.

When the pseudo-automorphic functions, which enter into the composi-

tion of the function, exist all over the plane, then the automorphic function

exists all over the plane. But when the pseudo-automorphic functions, which

enter into the composition of the function, exist only within the fundamental

circle, then the automorphic function exists only within the circle.

Ex. Consider the quantities go, and ^3, defined in § 123. We have

1
5f2= 6022

(7?2i<Ui-t-m2a)2)*'

where the double summation extends over all positive and negative integer values of wij

and >n2, simultaneous zeros alone excepted. Writing <a= a)]/ci>2, we have

0-2 (w) = 60a)2 - * 22 ,
-.

and therefore

where

. i/i=?Hia-l-W2'y, i/2=Wi,^-h»l2S.

Because ab-^y= \, we have

wij= Mib - M^y, wi2= — Mx^ -t- Mio.

If then a, )3, y, 5 be integers, subject solely to the condition aS-/3y= l, it follows that, to

every pair of integer vahies of Wj and nu, there corresponds one pair (and only one pair)

of integer values of Mx and J/, ; and conversely. Also, simultaneous zeros for the one set

are simultaneous zeros for the other ; so that

.2 ' -- '

(i/i<o 4- J/2)* (?n,a)-|-7?i2)*"

50
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Consequently,

Similarly, as

1
5f3(co)= 14022

140a)2-6 22
1

we have

It therefore follows that g-^g^f^ is automorphic ; and if we take

/ : J^- 1 : 1 ^^r^a
: ^ng^^ -. g^^ _ 21g.,^ ( = A),

then J is an automorphic function, such that

(;r4)-«.J

where a, /S, y, S are integers subject to the condition a6-/Sy= l. Evidently g^idn) and

gfa (cd) are pseudo-automorphic for the group. Taking

ei= /i(H-c'), 63= -yx(l+c'), e2= M(«-<^').

where c+ c'= l, we have

5-2= - 12/i2 (CC'- 1), 5r3= _ 4^3 (2 + cc') {c-c'),

A=16.272./;i''cV2,

so that

4 {\-c+ c^f
-^-^^

C-''(1-C)2"'

as in § 303, where other examples are given,

309. It is evident that all the essential singularities of an automorphic

function, thus constructed, lie on the fundamental circle. For whether the

pseudo-automorphic functions exist only vi^ithin that circle or over the whole

plane, all their essential singularities lie on the circumference : so that,

whatever be the constitution of the various subsidiary pseudo-automorphic

functions, all the essential singularities of the automorphic function lie on

the fundamental circle.

Next, the number of irreducible zeros of an automorphic function is equal

to the number of its irreducible accidental singularities. For an irreducible

zero of an automorphic function is either (i) an irreducible zero of a factor

in the numerator or (ii) an irreducible accidental singularity of a factor in

the denominator; and similarly with the irreducible accidental singularities

of the function. The numerator and the denominator may have common
zeros ; this will not affect the result.

First, let the automorphic function exist only within the circle : then

each of its factors exists only within the circle. The space without the circle

is not significant for any of the factors of the function, because they do not
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there exist. Let e^, ..., e^, e/, ..., e/ be the excesses of zeros over accidental

singularities for the pseudo-automorphic functions within the fundamental

circle : then

where n and 2 — are the same for all these functions, and

Now the excess of zeros over poles in the denominator becomes, after the

above explanation, an excess of poles over zeros for the automorphic

function : hence, for this automorphic function, the excess of zeros over

accidental singularities is

r s

= ^ eg- S €q
q=l q=l

q — '"q
/^jV \q = l q = l

0,

by the condition 2 m^ = X n^. Hence the number of irreducible zeros of
9=1 q=l

the automorphic function is equal to the number of irreducible accidental

singularities.

Secondly, let the automorphic function exist all over the plane ; then

all its factors exist all over the plane. For the present purpose, the sole

analytical difference from the preceding case is that each of the quantities e

now has double its former value : and therefore the excess of the number of

zeros over the number of poles is

("-'--^-)
(J,

•"'-,!/'')

which, as before, vanishes. Hence the number of irreducible zeros of the

automorphic function is equal to the number of its irreducible accidental

singularities.

It follows, as an immediate Corollary, that the number of irreducible

points for which an automorphic function assumes a given value is equal to

the number of its irreducible accidental singularities. For

Pn{z)-A,

where ^ is a constant, is an automorphic function : the number of its

irreducible accidental singularities is equal to the number of its irreducible

zeros, that is, it is equal to the number of in-educible points for which

Pn{z) assumes an assigned value.

50—2
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Moreover, each of these numbers is finite: for the number of irreducible

zeros and the number of iiTeducible accidental singularities of each of the

component pseudo-automorphic factors is finite, and there is only a finite

number of these factors in the automorphic function. The integer, which

represents each number, will evidently be as characteristic of these functions

as the con-esponding integer was of functions with linear additive periodicity.

Note. The preceding method, due to Poincare, of expressing the pseudo-

automorphic functions as converging infinite series of functions of the

variable, is not the only method of obtaining such functions. It was

shewn that uniform analytical functions can be represented either as

converging series of powers or as converging series of functions or as

converging products of primary factors, not to mention the (less useful)

forms intermediate between series and products. The representation of

automorphic functions as infinite products of primary factors is considered

in the memoirs of Von Mangoldt and Stahl, already referred to in § 297.

310. Let Pni(z), F-n.2(z), say Pj.and P.., be two automorphic functions

with the same group, constructed with the most general additive elements

;

and let the number of irreducible zeros of the former be Ki, and of the

latter be k.,.

Then for an assigned value of Pi there are k^ irreducible points : Pa has

a single value for each of these points, and therefore it has k^ values alto-

gether for all the points, that is, it has Ki values for each value of Pj.

Similarly, Pi has k^ values for each value of P^. Hence there is an alge-

braical relation between P^ and Pg of degree k., in Pj and of degree «i in P2,

which may be expressed in the form

F,,{P„P,) = 0.

Let Pn{z), say P, be any other uniform automorphic function, having

the same group as Pi and P2; and let k be the number of its irreducible

zeros. Then we have an algebraical equation

Pi(P, Pi) = 0,

which is of degree k^ in P and of degree /c in Pj ; and another equation

P,(P,P,) = 0,

which is of degree k^ in P and of degree k in P.,. The last two equations

coexist, in virtue of the relation

F,,{P„p.;) = o

satisfied by Pj and Pg. Since F^=-0 = F.. coexist, the ordinary theory of

elimination leads to the result that the uniform function P can be expressed

rationally in terms of Pj and P^, so that we have the theorem that every

automorphic function associated with a given group can be expressed rationally

in terms of two general automorphic functions associated vnth that group: and

between these two functions there exists an irreducible algebraical relation.
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The genus (§ 178) of this algebraical relation can be obtained as follows.

Let iY denote the genus of the group, determined as in § 298 : then the

fundamental polygon of reference, if functions exist only within the circle, or

the two fundamental polygons of reference, if functions exist over the whole

plane, can be transformed into a surface of multiple connectivity 2N+ 1. The

automorphic functions are uniform functions of position on this surface; and

hence, as in Riemann's theory of functions, the algebraical relation between

two general uniform functions of position, that is, between two general auto-

morphic functions is of genus N, where iV is the genus of the group*.

It is now evident that the existence-theorem and the whole of Riemann's

theory of functions can be applied to the present class of functions, whether

actually automorphic or only pseudo-automorphic. There will be functions

of the same kinds as on a Riemann's surface : the periods will be linear

numerical multiples of constant quantities acquired by a function when its

argument moves from any position to a homologous position or returns to its

initial position. There will be functions everywhere finite on the surface,

that is, finite for all values of the variable z except those which coincide with

the essential singularities of the group. The number of such functions,

linearly independent of one another, is N; and every such function, finite

for all values of z except at the essential singularities, can be expressed as

a linear function of these N functions with constant coefficients and (possibly)

an additive constant. And so on, for other classes of functions f.

311. Because Pn {z) is an automorphic function, we have

and therefore, as aS — /37 = 1,

Hence, if @ {z) be a pseudo-automorphic function with m for its characteristic

integer, so that

\yz + 8J (^)(z)
we have —

h(;ta
{Pn{z)Y

* It may happen that, just as in the general theory of algebraical functions, the genus of the

equation between two particular automorphic functions may be less than N : thus one might be

expressed rationally in terms of the other. The theorems are true for functions constructed in

the most general manner possible.

t The memoirs by Burnside, quoted in § '297, develop this theory in full detail for the group

which has its (combined) polygons of reference bounded by 2ii circles with their centres on the

axis of real quantities, the group being such that the pseudo-automorphic functions exist over

the whole plane.
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that is, (& (z) {Pn' (z)]^^ is an automorphic function. Such a function can

be expressed rationally in terms of Pn (z) and some other function, say of

P and Q : hence the general type of a pseudo-automorphic function with

a characteristic integer in is

i^Tm Q).

where / is a rational function.

Corollary. Two automorphic functions P and Q, belonging to the same

group, are connected by the equation

For evidently unity is the characteristic integer of the fii-st derivative of an

automorphic function.

This equation can be changed to

dQ
dP =AP, QX

where f is a rational function : moreover, P and Q are connected by an

equation
F{P,Q) = 0,

which is an algebraical rational equation, and can evidently be regarded as

an integral of the above differential equation of the first order, all trace of

the variable z having disappeared. Evidently the form of/ is given by

|5+/(p.e)|=o.

Again, denoting
""^

^ by t, and Pn(——^j by U (^), we have

say

Then

so that

yz

U'(^) = (yz + ByPn'(z),

u' = {ryz + Byp\

7ITB "^
P'

^={y^+^y

27 (yz + 8) + (yz + BY P"

and therefore
li^

~
1 1 ]f f

= ( 7^ + ^
)

' /^^ ~ 1 1
p^ [

'

whence
n'2 P'2

rheve [P, z\ is the Schwarzian derivative. It thus appears that, if P be an
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automorphic function, then {P, z\ P'~'^ is a function automorphic for the

same group.

But between two automorphic functions of the same group, there subsists

an algebraical equation : hence there is an algebraical equation between

P and \P, z\ P'~^, that is, P {z), an antoinorphic function of z, satisfies

a differential equation of the third order, the degree of which is the integer

representing the number of irreducible zeros of P and the coefficients of which,

where they are not derivatives of P, are functions of P only and not of the

independent variable.

This equation can be differently regarded. Take

2/, =M y. = zP'^;

then it is easy to prove that

1 c?^^i_l dy,_ {P,z]

y,dP' y^dP^ ^ P'^ '

The last fraction has just been proved to be an automorphic function of z;

and therefore it is rationally expressible in terms of P and any other general

function, say Q, automorphic for the group. Then y-^ and y^ are independent

integrals of the equation

% = y<^{P,Q\

where Q and P are connected by the algebraical equation

F{P,Q) = 0.

Conversely, the quotient of two independent integrals of the equation

where Q and P are connected by the algebraical equation

F{P,Q) = 0,

can be taken as an argument of which P and Q are automorphic functions

:

the genus of the equation P = is the genus of the infinite group of sub-

stitutions for which P and Q are automorphic*.

Ex. One of the simplest set of examples of automorphic functions is furnished by

the class of homoperiodic functions (§ 116). Another set of such examples arises in the

triangular functions, discussed in § 275 ; they are automorphic for an infinite group, and

the triangles have a circle for their natural limit. A third set is furnished by the polyhedral

functions (§§ 276—279).

As a last set of examples, we may consider the modular-functions which were obtained

by a special method in § 303.

* Klein remarks {Math. Ann., t. xix, p. 143, note 4) that the idea of uniform automorphic

functions occurs in a posthumous fragment by Riemann (Gt's. Werke, number xxv, pp. 413—416).

It may also be pointed out that the association of such functions with the linear differential

equation of the second order is indicated by Riemann.
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First, we consider them in illustration of the algebraical relations between functions

automorphic for the same group. It follows, from the construction of the group and the

relation of c to w, that, in the division of the plane by the group with Uw and Vw for its

fundamental substitutions, where

^'^^= ^<'+ ^^ F*.= j-^,

there is only a single point in each of the regions for which c has an a,ssigiied value ; hence,

regarding c as an automorphic function of w, the number k (§ 310) is unity. If there be

any other function C of w, automorphic for this group, then between C and c there is an

algebraical relation of degree in C equal to the number k for c, that is, of the first degree

in C. Hence ever)/ function automorphic for the group, ivhose fundamental substitutions

are U and F, ivhere

Uw=w+2, [w=-—-—

,

' l-2w
is a rational function of c.

In the same way, it can be inferred that every function automorphic for the group,

whose fundamental substitutions are

U7v=w+ 2, Tw=--,
w

is a rational ftniction of cc' ; and that every function automorphic for the group, whose

fundamental substitutions are

Siv= iv+ \, Tw=--,

that is, automorphic for all substitutions of the form --,, where a, b, c, d are real
^ t- J J . cw + ct

((.2 — 0+1)3
integers, such that ad-bc=\, is a rational function of J— ~2r/~_-\\2

•

Secondly, in illustration of the general theorem relating to the diflferential equation

of the third order which is characteristic of an automorphic function, we consider the

quantity c as a function of the quotient of the quarter-periods. Let z denote -jr : then

because every function, automorphic for the same group of substitutions as c, is a rational

function of c, we have

^-72"^= rational function of c;

and therefore, by a property of the Schwarzian derivative,

{z, c}= —same rational function of c.

By known formulte of elliptic functions, it is easy to shew that

, 1-c + c^

^^'^^~2c''^(l-c)2'

thus verifying the general result.

Similarly, it follows that ]-^ , oi , where 6= ci/, is a rational function of cc', the actual

value being given by

iK' J

\iK' A _ 1 -5(9 + 16(9-

and that \-p^, A is a rational function of J, the actual value being given by

jiK^ 116/2-1 23.7- 330

\T' j~ 2J2(4J'-27)2 •

In this connection a memoir by Hurwitz* may be consulted.

* Math. Ann., t. xxxiii, {1H89), pp. 345—352.
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The preceding application to differential equations is only one instance

in the general theory which connects automorphic functions with linear

differential equations having algebraic coefficients. This development

belongs to the theory of differential equations rather than to the general

theory of functions : its exposition must be reserved for another place.

Here my present task comes to an end. The range of the theory of

functions is vast, its ramifications are many, its development seems illimit-

able : an idea of its freshness and its magnitude can be acquired by noting

the results, and appreciating the suggestions, contained in the memoirs of

the mathematicians who are quoted in the preceding pages.



MISCELLANEOUS EXAMPLES.

I.

1. Find the curves which cut orthogonally the family of curves rir2r3= o, where r,,r2, rj

are the distances of a variable point from three fixed points.

2. P and Q are conjugate functions, so that P+iQ is a function f{z) of a complex

variable z=x-\-iy and

P- Q= {cos x + sm X- e~'')l(2 cos x — e« - e~v).

Find f{z), subject to the condition f(^7r) = 0.

3. Evaluate the integral
/« X"

^^
J _^ 1 -2.r cos^+.r2 '

where a, 6 are real, obtaining the necessary limitation of the values of a, for which the

integral is finite.

4. Evaluate rigorously the integrals

n sin ac?.g

^ ' j_il-2a;cosa+ ^2'

in which a may have any real value.

State in each case the value or values of a for which the integrals are discontinuous

functions of a.

5. Prove that, if a and h are real, then

sin {x — a)

x — a
/°° sin(.r-

j-oo {x-a){x-b)
"•^^'^

(a-6) '

sin {x - a) sin (x-b) _ _ sin (a - b)

6. Prove that, if a is positive,

Justify differentiating the integral under the sign of integration any number of times

with respect to a, and so obtain the formula

Finally justify the deduction of the formula

( e-<^x-cos2bxdx=-<-} e «,
/ 2 [aj

by expansion of the cosine as a power series and integration term by term.
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7. Prove that, if 0<«<1,
r* sin:r , n

dx-
Jo ^" 2r(«)sin(i7rn)

8. Prove that

dx=

,

Jo sinh^' (l + e-«'r)2'

/•" dx

Jo (H-a7i')coshi7r^ ^^

9. Obtain expansions of the cosine and sine integrals defined by

... p cos ^ , ... /« sin jr ,

ci(a')=/ dx, si(^)=/ dx,
J 00 '*' J ^

appropriate for calculation (i) when x is large, and (ii) when x is small.

/"O g-kx
Express I ^s o "^^ ^" terms of the cosine integral and sine integral.

JO"' +^

10. Shew that, if m is real and positive,

11. Prove that, when a is real and positive,

5—5- (cos a+ sin a).

1:

12. By contour integration (or any method) prove that

/ f^ sin.;r , tt
,

. ,

;-. ^(x2-2.r+ 2)
^^ = 2l(^-^^^y+ ^^"y)'

/:

(.r2-2.r+ 2)

1 - cos X
dx =— (e - cos y— sin y),

a; (.r2- 2.^+ 2) ' 2e

the angle y being the unit of circular measure.

13. Prove that, when n is even,

, f
sinh«.t; 1 '"=»,

, f 2riT .
,tan"M —r—. TV '= 2 tan^i-i'sec^ ., smh a;

(cosh(?i + l)A-J ,.=1 I 2TO+ 1

14. Prove that, if a>0, the value of the integral

taken round three sides of a rectangle from

z=R to R-\-ni, R+ni to -R+ ni, —R+ ni to — /2,

will tend to zero as R and n tend to 00 (« being an even integer)."

Deduce, or otherwise prove, that

/*
"^

sill Q^
I tanh (^7r.r) -— ., dx= a cosh o— sinh a log (2 sinh a).

./
" 1 + .'T-

IS. Prove that, if a < 1,

/ e'^-l 2 t TrrJ

1 r^ x'*e' 7 _ 1 /"" .r"~'(ix'_ " i**^!

r(n+ l)jo (e^^a)2 r(n) j e^-a " ^ + 2^"''
S^"*"--
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16. Prove that, if a is positive,

x= a-\-t sin jr,

obtain the expansion of in powers of ^, in the form

1 _ 1 cosa " ^" o?""^'(sin"a)

^-a~fsina sin a „=i(7i+ l)!% daP^'^'^

18. By evaluating the integral (where c is real)

/"-COsh{V(c2-22)}rf2,

taken round a path which consists of the real axis and a large semicircle, prove that

/' cosh {s,/(c2 - x'-)} dx=\iT (cosh c — \).
X

Prove similarly that

if 0<a<l, where /„(^)= i +U + ^_^^+ „. ;

and shew that the integral is equal to Jtt if a= l, and is zero if a>\.

19. Criticise the following argument :

—

"Putting 2=rcos^= r/i; r"^= x"^+ y'^
-\- z" , vs^rsind, the functions (where n is a

positive integer)

1 pir
^r-

I
(z+ i-CS COS cf))" dcf),

Zn J Q

1 /"Si-

^r- / {z+ iw COS (f))-'^"*'^)d(f)^^ J
,^

are finite over a unit sphere, and for C7 = they reduce to ?•" and r~(" + i) respectively.

They must therefore be equivalent to r™/',, (fi) and r-(" + i)/'„(/x) respectively."

Shew that the conclusion is invalid with regard to the second integral when z is

negative : and give the correct result.

Prove that, if the coefficients a„ are such that the series 2 |a„— a„+i |
is convergent,

then the series 2a„ P„ (^) converges uniformly in any interval for fi which falls within the

interval (-1, +1).

Determine an asymptotic formula for the sum of 2 P„
(fj.),

as r tends to 1 and fi

tends to 1.

20. Prove that, when the real part of ?i is greater than - 1,

•/n(^) = .T^.
l'^'^'e^''^^-^-'h-n-ldt,

Am J c-xi

where Jn (x) is Bessel's Function of order n satisfying the equation

d^y 1 dy /, n^\

Establish the relations

''""(-2SF-' "' ">"'



MISCELLANEOUS EXAMPLES 797

21. Prove that gi^cos^ may be expanded in either of the two forms

Jo{r) + 2 2 i»J„(?-)cos?i(9,
71= 1

(^ J^(2n + l)i»J„+i(r)P„(cos^).

By employing the first expression, or otherwise, prove the theorem

Jo {{r^ + r'^ - ^rr' cos d)^ = Jo (r) J„ {r') + 2 2 ./„ (r) J„ (/) cos nd.

22. Prove that

•^-^^)=2;^-j./"pi2r-¥J|^i'

where the path of integration encloses the negative real axis in the M-plane.

Prove, (i), that

/,„ (
qx) e - hx^ .r"'

+
1 0?^ ^

/: (2A)m + l

(ii), that, with /„(.r) = z-"J„(i>),

sin(» + m)7r r(«+m+ l) _/7z + ot + 1 n +m + 2
_ ,

A_ i L. )! i JP , . n+ 1. v~^ ]

.

where |y |

> 1, and the real parts of ay, bi/, are negative ; and

(iii), that J,„ ( «^) /„ (o.r)
^-"^ -

"
+

1 (^.r=^ ^n-^n-ii^ ^x

.

where q> p, n>m> -\.

23. Shew that

eAcose= 2»-in(7i-l)''i% + /{-)Cfc"(cos^)%^^\

where Ct" (cos 6) is the coefficient of A* in the expansion of (1 — 2A cos ^ 4- A^) -" in powers of h.

Prove further that

^.(»)^.«-^./:::>^-^/.(^)f
where c is any real positive quantity, the real part of n is greater than - 1 and the real

parts of (a + b)^ are positive, and hence deduce the addition theorem for

J.„J{a^+ b^-2abcos6)

y{a^+ b2-2abeosd)}"'

. . dz is equal to i-rzr\
^^~^ <"*

to 0, according as c is positive or negative. Explain how this integral may be employed

in the transformation of a multiple integral taken through a limited domain.

Hence or otherwise, prove that

11^:i-«-r'a' b-^
^^^^

r dd

+ (2,_;,)2+ /,2.A ^ '' '"^
J ^e)^{a^+^)^{b^+ 6)h'

where the double integration is taken for all values of ^, ;;, such that 1 - ^ — ^ is ^ and

JC V^ ft

do is the positive root of the equation 1 — ,—^ - ,

• - -^^ =0.
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25. If the contour of the integral separates positive and negative sequences of poles

of the subject of integration and at a large distance from the origin is parallel to the

imaginary axis, shew that, for general complex values of oj, a^, /3i and ^2. the integral

Ziiri J

is convergent and equal to

r (ai + /3i) r (g^+ ^2) r (ai + 13,) r {a^+ /3i)

r(ai + a2+/3i+/32)

Deduce, or obtain independently, Riemann's transformation

F {2a, 213; y; x}= F{a,^; y; 4^(1-^)},

when -y= a + /3 + |, R{x)<^, |^|<1, \4:X {I -x)\<l.

26. Give the definition of r (z) by means of an infinite product and prove that it

agrees with the equation

where the integral is taken along a path which encloses the negative real axis and inter-

sects the positive real axis.

Prove that

-^ =
\
_^j{t)z-'dt, (OO),

where the phase oi z is between — ^tt and -f-|7r.

27. The generalised Riernann f- function is defined, when 7? (
-

J
>0, by the relation

'Ias, a, .)=^^^^ j^(-.)r-^---^.,

the contour of the integral embracing a straight axis L from the origin through the point

- to infinity, and { — x)',~^ having a cross cut along the axis L and being real when x is
CO

real and negative.

Obtain an expression for the continuation of the function for all finite values of \a\.

Shew further that, except for particular values of ajco or s, the equality

"'-l
1 _f(,\ I g'rt («) fd" ^'~'~|

,i=o(«+ ww)*~^
^*'

„=o ^! \_dx'''l-sjx=mu,

exists, and is asymptotic in Poincare's sense when m is large.

28. Prove by contour integration that

I cos -r^ log sn i(du= —^K tanh
( g "^ ) •

(It may be assumed that K and K' are real and positive.)

11.

29. Find the most general values, for any path of integration, of

n dz n ^__
jo 2^+ 1' Jo(22+i)i"

30. Investigate the periods of the integrals
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Let f{z) denote a function that is regular over the whole of any finite region of the

plane of z, including the finite part of the range of the axis of real quantities. Prove that

the function

where the integration extends along that axis, is regular for all places within the region

off the axis
;
prove also that, for two adjacent places on opposite sides of the point k on

the real axis between and 1, the difference of values of the function is ^^{/{k).

31. A variable u is defined as the integral of a rational function of z by the equation

du^l + z"^
^

dz~l+z^'
shew that 2 is a periodic (but not uniform) function of ^l, and determine its independent

periods.

32. Within a closed path of integration C in the plane of the complex variable t, the

function
(f)

(t) has no singularity, while /(<) has poles only; express the value of the

integral / -—j^ (t) dt in terms of the values of {t) at the zeros and poles oi fit) which
] c J (0

fall wnthin C.

li f{t) = fig {t)-y where ^(0) = 1 and g{t) has no singularity within a small circuit

round t= Q, prove that/(0 has two zeros (say t= Xi, ^2) within the circuit, when \y\ is

sufl&ciently small. Shew further that

0(.ri)+(^(*'2)= 2(^(0)+ i^,r,

where nA^ is the coefficient of <2»-i in the expansion of
/ ,^n(„ in powers of t.

33. Extend Cauchy's Theorem of Residues, so as to establish the following result :

—

If 7' be a simple contour in the plane of a variable t, and C^ be a simple contour in the

plane of a variable u, etc., and if n analytic functions f{t, u, ...z), (}){t, u, ...z) ..., of the

n variables t, u, ... z, have no singularities or zeros for values of ^, m, . . . z, on these contours,

then

-^( I I —
(27ri)" J Tj u'" J z f{t, M, ...z)(fi{t,u,...z) d{t,u, ...z)

is an integer.

34. Prove that the integral I - dt is an analytic function of a; in any region from

which the negative real axis is excluded.

35. Shew that the integral

j^ fit, 2) dt

will converge uniformly for a given domain of values of z, provided a function
<f>

(t) exists

independent of z and such that I \(f>{t)\dt converges, and !\ -r is always greater
J a

_ _
\j{h^)\

than some fixed positive quantity, for values of z within the domain and for values of t on

the range of integration.

Investigate a condition which depends on the theory of uniform convergence and

subject to which the integral

jyit,z)dt

can be differentiated under the integral sign.

Evaluate the integral ( e~'*sin tz — in terms of the error-function I e~* dt.
jo i J Z

1 a (/,</)...) _, ,^•"^ ' dtdu...dz
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36. If one development of a monogenic analytical function be the convergent series

the values of y to be considered, say y=f{p(:\ are those arrived at by continuation of this

series
;
prove that if x be considered as a function of y one convergent development of

X reducing to zero when y= is obtained by reversing this series ; and if (^ (.y) be the

fimction arising by continuation of this single series, discuss the question whether ^ (y)

takes all the values which satisfy the equation y=f{x).

37. Prove that, if ai+a2 + «3+--- i^ convergent, then the series

«1 «2 ,
«3

1« "^2* 3"

represents a function of the complex variable s— (T-^it which is analytic throughout any

domain D lying entirely to the right of the axis of t.

Prove, by taking a„= (-l)"~', that Kiemann's ^-function is analytic for o->l except

for a simple pole at s= 1.

38. By considering the expression

or otherwise, shew that '\i x— c be a singular point of a function f{x) represented in a

certain region by an expression F{x) it may happen, not only that Fix) and all its

differential coefficients are finite at that point, but also that the series

2 —, i^(") (c) . ix - cY
„=o »i !

converges for all finite values of x.

39. Prove that the series

2 (H-?l2^r2)-l(l+K2 + .r2)-l

n=l

converges for all real values of .r, but represents a function which cannot be expanded in

positive powers of x.

Shew further that when x lies between 1 and v'2 it can be expaijded in powers of x

and .r~'.

40. If the triangle formed by zj, 225 23 does not enclose the origin the series

=0 00 « 1
» 2 2 2

1 1 1 (»/i2i+m2Z2+ OT323)''

is absolutely convergent when p>3.

41. By considering the behaviour of both sides of the identity

• \_z-z\ Z-Zi Z-ZnJ

where/(2) = (2-zj)(3-22)...(2 — 2„), on passing round an oval path on the Argand diagram

(or otherwise), prove that an oval path, enclosing all the roots of /(2) = 0, necessarily

encloses all the roots of /'(2) = 0.

42. Shew that the equations

e'= axy ^= ax'^, e*= a.r',

where a > e, have respectively (i) one positive root, (ii) one positive and one negative root,

and (iii) one positive and two complex roots within the circle |a:| = l.



MISCELLANEOUS EXAMPLES 801

43. If f{z) denote a single-valued monogenic function, and R[f{2)] be a rational

function of f{z), shew that a pole of /(z) is equally a pole of Ji [/{»)], unless it is an
ordinary point.

What statement can be made for an essential singularity of f{z) ?

44. Find for what values of z the series

» -, - im

represents a monogenic function of z, and for what values its differential coefficient is

represented by the series of the difterential coefficients of its terms.

45. Rearrange the series

z + iz^ + iz^+...

in powers of (z-^i), and find the value of z of greatest modulus on the circle of con-

vergence of the new series, and the sum of the series for this value of z.

46. Investigate the convergence of the series

00 jj^" + 2

^*"»=i(«»-l-l)K+ 2)'

where a is a positive integer > 1 ; also the region of existence and the singularities of the

function represented by it.

47. Prove that, when n is an integer,

(z+ ix cos a+ iy sin a)"

= ^0+ 2 J,„{(^.i•-|-y)'»+(^^-J/)'»} cos ma -fi 2 Arn{{ix+yy^-{ix-y)'^}8.\nma,

where ^to= s- > \
. t-^^ —,

2" (%-fm)! c?2» + '^ '

r^ being equal to x^+y'^+ z- and being treated as a constant in the differentiations.

Deduce the expressions for the 2rt + 1 complete spherical harmonics which are of

order n.

48. If f{z), (j) (z), and ^ryr be each regular functions of the complex variable z in the

vicinity of the origin, shew that

for sufficiently small values of
1 2 1.

If \z\<j2-l, shew that

V °1-^/ ,^=1 n\ •S.5...{2n-l)\l-zy '

49. If -J— is expressed in the form 2
, n being a

U (x +tan2 -''
)

'='
^-t-tan2-^

r= i V 210+1

J

2'ft+l

positive integer, shew that

J,.= ^-^—r- sm2 :^ ,
cos^»- '^

.

50. Shew that a straight line can be drawn in the plane of the complex variable z

which divides the plane into two regions in one of which the function

z{z-\) z{z-\){z-2)
1-2+

2! Y\
"^•••

is everywhere zero, and in the other of which it is everywhere infinite.

F. F. 51
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5L A regular function f{z) has zeros «!,..., a,„ of orders oj, ..., a,„ and it has poles

Ci, ...,c„ of orders yi,...,y„ within a given simply-connected region, which contains no

other singularities of the function ; also f{z) is regular and has no zero along S, the

boundary of the region ; and R{z) is any function of 2 which is regular within and along S.

Prove that
m n Iff (p)
2 a,.R{a,)- 2 y,R{c,) = ~- Ii{z) -L^^ dz,

the integral being taken along the contour.

Apply this result to prove (or otherwise obtain) the theorem that, if /(2, C) be a regular

function of its arguments within finite domains round the respective origins and if /(z, 0)

has the origin for a zero of order n, then the equation

/(2, f) = 0,

regarded as an equation in z, has /i roots which vanish with f and which are the roots of

an equation

where fj, ..., f„ are regular functions of f all of which vanish when ^=0.

52. By consideration of the expression 2 —g .
-—— , or in any other way, prove that

the function defined by the series 2 cin^"', where a„ denotes the sum of the reciprocals of

the squares of all the divisors of ?i, exists only within the unit circle whose centre is the

origin.

53. Let
(f)

{.v) be an analytic function defined by a series of powers of ^, of unit radius

of convergence. The points a^— a and .v=b ai-e singularities of

respectively. Shew that the real parts of a and b are respectively not less than, and not

greater than, ^.

If /(a;) is the function defined by the series 2 a„.*'" of radius of convergence greater
M=0

than unity, and the functions

are expanded in series of powers of x, shew that the necessary and sufficient condition

that all the singularities oi f{x) are of the form ^+H is that the radii of convergence of

these two latter series should both be unity.

54. Shew that, if the series 2a„.'r" has positive (or zero) coeflficients and unit radius of

convergence, then ^7=1 is a singular point of the function represented by the series.

Shew that every point of the unit circle is a singular point of the function

./(•^)= 2^,-
(I n I

55. Prove that the region of existence of the function 2 a:", where c,i = l, 2, 3, ..., n,
11 =

is bounded by a line of essential singularities everywhere dense upon this line.

Investigate Runge's theorem that a function, expressible as a series of rational

functions, can be constructed whose region of existence is any arbitrarily given connected

finite area.
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" 2
56. Shew that 2 2" has the circumference of its circle of convergence as a Hne of

n=l
essential singularity.

Discuss the statement " si Ton donue au hasard une serie de Taylor dont le cercle de

convergence ait un rayon fini, en general la fonction qu'elle represente ne pourra §tre

prolongee au delk de ce cercle." (Hadamard.)

57. Shew that the function represented by the power series 2'/„2" has at least one

singular point on the circle of convergence.

If the terms of the series 2a„ are all positive after a certain stage, shew that 2«„2" has

a singularity at the point of intersection of the circle of convergence with the positive

real axis.

Deduce that the function

/(2)= 2n-»32"

has the unit circle as its natural boundary, although/ (2) and all its differential coeflBcients

converge absolutely at every point of the circle.

58. If 2a,i have a finite sum, prove that the sum of ^a^z"' for
| 2 1 < 1 is continuous as

z suitably approaches 2=1.

If 2rt„ is a real series which tends to infinity, prove that

Lim 2a„2'*=oo

,

when 2 tends to 1 along the radius from the origin.

CC CO

59. If the radii of convergence of the power series 2 a„.3;", 2 6„a-" be p and o-

M=0 M=
respectively, shew that the radius of convergence of the conjoined series

00

2 rt,j6„,r" is "^ p<T.

n=0

Shew further that the singularities of the conjoined series are all included in the points

obtained by conjunction of the singularities of the two original series.

Consider as an example the case when
, 1.3...(2w-l)

60. Shew that the nature of the singularity at .v=\ of the function defined, when

1
0?

I

< 1, by the series

x^ 2 ,

ft=oa+ TO

is given by

-iog(i-.H»(i)-^W+.^J/l^- "'-'>;;;<''-''->(; + ^^...l).

Determine the behaviour near j;= 1 of the more general function defined similarly by

2 ~ where s is any complex quantity.

61. Prove that, if p. be small, and if x (assumed to lie between and h) be not small

compared with /n, the sum
sinh n-n-u.

2„ „ , . . ^ T N
cos mrx,

n^ (smh 2njr/x - 2nnfi)

where n=\, 3, 5, ..., is approximately equal to

and obtain an exjjression for the difference when - is large, in terms of the roots of the

equation
sinh 2=2.

51—2
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III.

62. Shew that, when wi aud n become infinite together in a finite ratio,

r=-n\ rnj \n J Z

63. Discuss the convergence of the infinite product

where Ci, C2, C3, ... have the single limiting point = 00

.

Form an integral function whose zeros are the points log 2, log 3, log 4, ....

64. Assuming 2
| «„ |

is convergent, deduce the form of the product

Prove that, if |j|<l,

65. If I and m become infinite in such a way that — =/>, where jo is a finite quantity,

shew that

2 ( «2

+

v"^) n' \!^^'^::!L±^^±fV = (cosh ^v - cos 2m) p^
,

where the accent in n' denotes that the term corresponding to 7i= is to be omitted.

66. Discuss the problem of finding, where possible, the most simple type of integral

function whose zeros are given by
n

a+ 2 mj-ar,

where m^ can take all positive integral values (zero included) and the w's are general

complex quantities.

67. If 0(^) = J^|(l-^).»},

and if the values of 0(a') and its differential coefficient for x= h be denoted by a and h,

prove that
X _bx

J, {0-.T^)'""'}-^'• *'*+*'•

68. Discuss the problem of constructing an integral function whose zeros are known.

What is meant by the class of a function ? Is it possible to determine it without knowing

its zeros ?

Prove that, \i F {z) be an integral function of class jo, and have all its zeros real, then

F'{z) has at most p imaginary zeros, if p be even, and (/>- 1), if p be odd.
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69. Shew that the function

r(g)r(a )

r(2+a) '

which, when a is positive, can be expressed in the form

where
^J-X)''(a-l)(.-i)...(<^-n)

^ ^^^,_

can, when a is negative, be expressed by the series

2 14^ + 6^.(4.

where G^ (z) is a polynomial of degree (v-l) in z, defined by the equation

^ ,. _ (-l)»(a + .^-l)(a+ .-2)...(a+ v-.0{g(^)-6-'(-^0}

and where v is the integer next greater than — a.

70. If «!, a2> «3 •••> be an assigned simple sequence of zeros whose moduli ultimately

increase without limit; if the real part of a„, for n=l, 2, 3..., is positive; and if

2 1/1 a„
I**

is convergent, shew that the product

n r^^ ^f
"-*

,
exp Ti 'lM>){ajy\

is convergent if (r^2p > 2, where

71. Construct a function f{x) which has a pole at each of the points ;r=l, .r=2, ...

and no others, and such that/(.r) - x cot ttx^-O, at each of these points.

72. Discuss the continuity of the function

z z^ z^

and prove that, whatever be the character oif(z) and 5'(«), the function

^ {zg (z) -f{z)} + {f{z) - g {z)} <}> (z)

represents the function /(s) within the circle
|
2

|

=1 and the function g (z) without that

circle.

73. A finite region of the plane being given which does not include the part of the

real axis between z=l and 2= +qo, obtain a series of polynomials which converges uni-

formly over this region and represents (1 - z)~^ therein.

74. For the region between the two circles

(.v-a){x-b)+f= 0, (x-a'){x-b')+i/^= 0,

where a, b, a', b' are real and positive, and a<a'<b'<b, ab= a'b', obtain a function of 2,

single-valued and developable save at y= 0, x=i{a+ a'), where it has a pole of the second

order, whose values are equal at any two corresponding points of the circumferences

where they are intersected by any circle orthogonal to both.
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75. Let it be assumed

(1) that f{z) is a regular function of z in an annular region J, bounded by an outer

curve S and an inner curve s

;

(2) that 6 {z) is a regular function at all poiiit« in the interior of /S", and has a single

zero a within this contoiu-

;

(3) that X is a point within A
;

(4) that for all points z of the contour S the inequality

is satisfied, and for all points z of the contour s the inequality

is satisfied.

Shew that /(a;) can be expanded in powers of ^(.r) in the form

/•(x)= 2 J„^»(^)+ 2 ^ ,

m=0 n=l ^ W
where . __L i f{^)6'{z)dz

B^= ^jf{z)6--'{z)6'{z)dz;

and shew how the coeflScients A^ and fi„ can be evaluated when the function f{z) has no

singularities in the interior of the curve s except poles.

76. Obtain the theorem known as Mittag-Leffler's, for the expression of a single

valued monogenic function whose singularities have only the infinite point as their point

of condensation, as a series of functions each with only one finite singularity.

Prove the ordinary formula for cot nz as an infinite series of rational functions each

with one pole, pointing out the properties of the trigonometrical functions which you

assume. Prove the corresponding formula for the logarithmic differential coefficient of

the Gamma function r(l + 0).

77. Explain what is meant by a branch and a branch-point of an analytic many

valued function. Illustrate your remarks by consideration of the following functions :

log (•-), V0o«(.-* !^^', y[-^^>}
In each case enumerate all the branches of the function and the singularities attaching

to each branch, and show how to pass from any branch to any other branch by the

description of a suitably chosen contour.

78. Defining the principal value of log z as that value whose amplitude lies between

- IV and TT, prove that the coefficient of ?' in the expression

log(H-?'2)-log(l-w),

where r<\ and each logarithm has its principal value, is that value of

/2rcos^\
arc tan (^--_^.,

j

which lies between — ^n- and -f^n-.
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IV.

79. By the relation

with the customary significance for Z and z, shew that a family of circles in the Z-plane,

having the origin for a common centre, and a ftxmily of straight lines, concurrent in the

origin, are transformed into a double family of confocal conies in the 0-plaue. Draw the

family of curves which are the representation, in the Z-plane, of the circles

I

2 — 1
I

= constant.

80. The interior of the circle
1
2

|

= 1 is to be conformally represented on part of the

w-plaue by the relation

log(l-ag)

"""loga-^)'

where a is a real constant lying between and 1 ; indicate the part of the ?(;-plane

required for the purpose.

81. Find all systems of values of u, v^ for which an'^i^u+ iv) is real, where ?t and v are

real and 0<F<1.

82. Determine completely an area on the .r-plane of which the conformal repre-

sentation on the half ^plane is given by a function t satisfying the equation

where h is real and less than unity.

83. The coordinates of two points are connected by the equation

X+ 1"F= en (.r+ ly)/ {1+ sn {x+ iy)],

the modulus k being as usual positive and less than unity. Shew that, as {x, y) describes

the boundary of the rectangle formed by the lines ^=0, x= K, y=0, y=K', the point

(^Y, Y) describes the complete boundary of a quadi'ant of a circle of unit radius.

84. Prove that, \i X-\-iT=f{x-{-iy)^ the curves X= constant, 7"= constant cut ortho-

gonally, provided that at the point of intersection / has a finite differential coeflicient

which is not zero.

Find what these curves are, if /(.r+ i;y) = tan~i (.l•-^-^^) ; and prove further that if the

point X, J^ travels along the axis of A' from X=0 to A'=7r/4, along the line X=itIA in the

positive direction to infinity, and back along the axis of Y, the point {x, y) describes the

complete boundary of a quadrant of a circle of imit radius.

85. Prove that the relation

,_ \+iz

i+z

transforms the part of the axis of x, between the points z=l and s= -1, into a semi-

circle passing through the points /= 1, and /= -I. Find all the figures that, by suc-

cessive applications of the relation, can be obtained from the originally selected paii. of

the axis of x.



aOb MISCELLANEOUS EXAMPLES

86. If a be real and greater than unity, if

shew that in that sheet of the Rieraaim Surface which represents u on the 2-plane, for

which «/2 tends to the limit + 1 as 2 tends to infinity, %i will have the value - 1 when z

is zero, and will be real and positive for that part of the real axis for which z>a.

Taking
•^=K"''^)'

so that ?t2=22_ 2^2+ 1^

shew that —r- I

•llIT J U

is a solution of Legendre's Equation

ff2p fjp

the integral being taken round a closed contour including the points z= a, «=-, but

excluding the origin.

Assume (after verification) that

rf f,2"
+ l(22_l) ,,,2"^M |3(l-x2)2» + 2 2" +

1

2»)

dz r u-^ ^ -^ u
j [ u^ u^ u)

87. Writing Z=X+iT, where X and Fare real, and taking

Z=sin2,

determine a simply-connected region of the plane of z which is transformed conformally

into the half-plane J'>0.

88. Prove that the relation

2= acos01ogZ),

u 9 •. 7,9 u o
(^'^ + ^'"

where a^= a- — o\ cosh ^n = -^—r„

,

gives the conformal representation of the interior of the region bounded by the ellipse

-2+^=1, and two lines joining the foci to the extremities of the major axis, upon the

interior of an annular region in the Z-plane bounded by two concentric semi-circles and

two segments of a diameter.

89. Find the area on the 2-plane of which the upper half of the if'-plane is the

(z— c\^
conformal representation, when iv and z are connected by the relation w=\ > .

If «•= -iccot|2, shew that the infinite rectangle bounded hy x=0,a:=n, //= 0, y= c30 on

the 2-plane is conformally represented on a quarter of the c-plane.

90. Shew that the most general representation uf the interior of a circle of unit radiu.s

upon itself is expressed by the formula

2' = {ze'''+ fie'^)l{zfie
" '^ -1- e" '"),

where n is real and positive but less than unity. Obtain the most general conformal

representation of the interior of a square upon itself.
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9L Prove that the surface of revolution engendered by the revolution of the tractrix

about its base can be confornially represented upon the plane of z, in virtue of the fact

that the square of its arc-element can be conformally i-epresented in the form

where x ranges from to 2Tr, and y ranges from 1 to +qc .

Discuss its representation upon the s'-plane, when z and / are connected by the relation

/= sinMi('"-0},

indicating what part of the /-plane is covered by the conformal representation.

92. Develope the Schwarz-ChristofFel formula for conformal representation in detail

in the case when the polygon i.s a triangle whose angles are — , — , — , discussing the

character of each variable as a function of the other.

93. Obtain the conformal representation of the interior of the equilateral triangle

whose vertices are 2=1, s = ^ x/3, s= - 1, upon the upper half of the plane of f, expressing

each of the variables z and f explicitly in terms of the other.

94. State briefly in precise analytical terms what you understand by a closed oval

curve everywhere convex and with a detinite tangent. For such a curve drawn in the

plane of the complex variable z, an analytic function exists, single-valued and finite,

and having its imaginary part positive within the oval, which is real and has one pole of

the first order on its perimeter. Explain how this is to be proved.

Find the function for the conformal representation of the part of an infinite plane

which is exterior to two intersecting circles upon the upper half of another plane, verifying

that it has the properties desired.

K'
95. Assuming that -^ is real and positive, establish the formula

Kk %Kx - g"-^sin(2«-l):r

2»r IT n=\ 1 - ^•'" '

detennining the values of x for which it holds ; and find the corresponding formula for

any finite value of x.

96. Prove that

sn

and that

-r/l+£2»-iy / l-2g2"co8 2^-|-g^" XT
"^'"•^

1 L\ l + J^" / Vl-2?2»-icos2a,'-t-9*"-vJ'

1-sn^ =(^-«"'-^)nLU+V" ) (l-2g^»-'cos2:r-Hg^n-2j
>

97. Prove that, if /' = - (--«) , a being positive and less than unity.

(l+a2)(l+2a-a2)'

and prove that the value of sn"^ |^ is obtained by writing — for a in this expression.
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98. Discuss the functional relations connecting the pairs of the three quantities

(i) the cross ratio of the roots of the quartic polynomial f{z), (ii) the absolute invariant J
of this quartic, (iii) the ratio r of two fundamental periods of the elliptic integral

\dx[f{x)]-

99. Obtain a formula of reduction for
J
sn" mc^m ; and thence shew how to perform the

integration when n is an even positive integer.

Establish the formula

= 1.

100. Prove that

sii u

en u

the f-functions being formed with the periods IK, 4iK'.

^ ^ Jo (H-cni0dn2

^'-1 {C{u-K)-C{u -K- ^iK') -Ci'iiK')],

101. EstabUsh the identity of the infinite series

with the infinite product

GU{\- 25r2"-i cos 2x + q^-"-^\

where G= u(\-q^^').

Either of these expressions being denoted (as in Jacobi's lectures) by ^ {x), prove that, if

2f k^Bi^ = a,+ 2 1 a„ cos 2nx,
IT 3 {x) 1

where «„= 2 2 (
- 1)» q(m+h)(2n+m+h)^

102. If Mi4-M2+ W3+ «4=2/r, shew that the anharmonic ratios of the four quantities

sn wi , . .
.

, sn M4 are equal to those of the quantities sn ( Wj +K\ . .
. , sn (^4 + K).

103. Prove that one of the values of

K
dn^+cn^

l^
fdn u-cn u

\

^"] f
f

1 - sn ^ | *
f

1+snw 1 ^"j

1+cnrt J \ l-cnu ) J iMn u-k' sn uj |dn u+ k' sn u) J

i2x+ q*'' \

is 2(1+^')-

104. Establish the formula

2Kx .

"-^
('/l + </2"""'\2 l-2o2» cos 2^+ 0*"

Prove also that

2Kx
^ ^"

TT « 1 _ 2(^2"
-

1 sin ^+^»--

2A'.. „ 2A'.rl i " «=i 1 +V"-' «in 0;+ ?^-^

dn^^^^-zt
,, 2A'.rp
; sn y

7T j
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105. If $1 {u)=2qoqi sin nu H {1 - fe'^^iv} {1 _ qing-2„iu]^

where 5'o= II(1-^"-''), 5'= e'«> /(r) >0, and
|

/(m) J</(t),

/(t) being the imaginary part of t, shew that

and express ^i (w) as a series of sines of multiples of nu.

Shew further that, if |/(m)
|
and

|
I{v)

\
are both less than /(r),

- ^^^? ^i^t"'"/''^ = cot nu+ cot TT «' + 4 2 2 o2»m si^ (27r,m+ ^irmv).

106. Shew that, if

I{{u)=H'{0)e 2.0 a-(n),

then ^(«)= Csin? n f 1 - 2o2» cos— + ?<»V
2co 1 \ o) /

where q= e^^<^'l'^ and (? is a constant.

Further, taking for periods 2a)= 2ff^, 2a)'=2iK', shew that

-1 tV;t

ff={u + 2iK')= e~ K H{u);

and deduce that

5^ (w) = 25-? sin —^ - 2q-i sni -^+ 2j * sni ^^ + , . . ad mf.

How are the functions sn «, en u, dn «, connected with R {u) and the allied functions 1

107. If 5' = e ^
, x= ituI2K and the real part of AT'/^ be positive, shew that

,2«

"•-y? 2̂?*""^'\^, l-2g^'»-icos2..+ g^'^-2
-

Shew further that, if the modulus of the imaginary part of 'ujK' is less than unity,

log en (u) = log cos X- 2 — ^
r^, (2 sin 7?ia;)2.

108. Assuming the addition formulee for the Jacobian elliptic functions sn u, on u,

dn u, shew that

d— dn2M ^^gn^tfcn^it

+dn3Ml*
l+dn2M dn^M

If F (n) = \
,'

} , shew that
il+dnttj '

P{v)+ P{u+ 2iK') _ _ sn 2u en u

P{u)-P{u+ 2iK')~ en 2u sn «
*

Determine the zeros and poles of the function P {u\ and the first term of the]expansion

of the function in the vicinity of each of these places.

109. By considering the intersections of the curves

y= l-\-mx+ ')ix^,

y^=x{\-x){\-Bx\
or otherwise, shew that, if Mi, ... M4 are such that «i + M2+ M3+ M4= 0,

^(Mi)+... + )5'(M4) = ^{S]2+... + S4'^+ 2CiC2C3C4-2»,52S354-2)^,

where Sj = sn «i , Ci = en Mj , etc.



812 MISCELLANEOUS EXAMPLES

110. With the usual notation for the Jacobian eUiptic functions, prove that

a,n{u+ v) _ cn{u+ v) _ dn{u+ v) _ 1

SlC2£^+ »2ClC?i~CiC2-Sj«20^0^2~C^lC?2-^^«l»2ClC2~ l-F^iW'

where Si, Cj, d^ denote the elliptic functions of u, and $2, C2> <^2 denote the elliptic functions

of V.

Prove that

8n^{u+ v), an (u + v) sn {71 — v)

,

sn^{u — v) I 8ltf'\s2^CiC2did2

cn^{u+ v), cu{u + o)cn{u-v), cn^{u-v) {l-kWsi^f

dn2 (?(+ v), dn {u + v) dn {u - ;), dn"- (ji - y) I

111. Shew that, if ?t, + ?«.2 + «.?+ "4= 0, the expression

(sn Ux sn U2 — sin ?;,-j sn 7(4) sn {u^ + ?<2)

is unchanged by any permutation of the suffixes ; and that, ii u+ v-\-io= 0,

1 -dn^M — dn^y-dn^.w+ adn^idn vdn w=}(^ sx^^u sa^v sv?w.

112. Shew that, \i .v+ iy= H\-r {u + iv) and x — iy= sn'^ {u — iv),

{(.r - 1 )2 +y2}2 = {.r2 +y2 }^ dn 2u + en 2?<.

113. Shew that ?<'=cn z dn z satisfies the equation

Fw'* -
( 1 + F) (/t'* + Akhv^) zv"^+ ( 1 - 'i<;2) (Z-'-i+ ik^w^)^= 0.

114. Denoting the second Jacobian elliptic integral by -E{u), prove that

where s, c, rf, are the elliptic functions of u.

115. Prove that, if the imaginary part of r be positive, the series

•5(7ft('0= 2 exp[2Trui{n + hg) + iTrT{n + lg)^ — iirh{n+^g)]

is absolutely and uniformly convergent for all finite values of u.

Starting with

,i_»in{0) 1^ 1 ^nW
5oo(0)'

- xVx^oiW
deduce the equation

_ 1 /"^ dx

vo complex numbers, sucl:

imaginary part positive, and

116. If 0)1 and 6)3 be two complex numbers, such that the quotient — has its
0)1

0)1

find the relations between di {>i -{ 2(oi), 61 (?t+ 2o)3) and d^ {11), where

61 {u)— 2q*iiiu^x-2q'^Hm '^.v+ 2q'^' tiin^.v- ....

Writing ^-^

F{z) = Aei{u)l{di{u^a)$,{a)}, J =2(^i -3(?5 +5gV-_...), b=e^

prove that bF{q^z)= F{z).
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Shew further that F{z)~i ^-^

—

j^- has a Laurent-expansion vaHd within the ring

^P<|2/6|<|1/2|2,

and that F{z)=- '2i
2"

^ ^^^ -i.
, if

I ? 1^ <
I
^/^

I
< 1,

+x ¥'"(1) i^i 11 ,2

- X 1 - 6^^''
1 6 1 \q\

117. Prove that, if
|

5'
|
< 1, the series

^1 {x) = 2 I (
- 1 )" q{n+hf sin (2%+ 1 ) x,

and the product

sin .V n ( 1 - 2j2n cog 2^+ ^'»),

differ from one another only by a constant factor.

ttA"

Prove also that, if g = e AT
,

5, (a-+ mw'tt A"//t ) = ( - 1)'"? ~ '»'e- 2'»»^5i (a:),

//* being any integer.

118. Defining the Jacobian theta-functions by the equations

e, {X) = "2
( - 1 )'H j".2g-.».«^ e^ (.,.) ^ I ^,„.g2,na.;

- x _x

t<9i(.r)= 2 (-l)'»j("»+i)-'e(-''»+i)=«^i, ^2W= 2 g(m+iFg(2m4-l)a;t^

prove that ^O) ^21 ^3 are even functions of x, while 61 is an odd function of .i' ; that 6q and

^3 are periodic with tr as period, while ^i and ^2 are periodic with 27r as period ; and that

all four functions are pseudo-periodic with i log q as a period, two of them with - e^ as

a factor, and the other two with - - e^ as a factor.

?
Prove that

^3- (0) ^3 (^ + y) e, (.r ~//) = ^3^' (.^) ^3'^ (2^)-f^i2 (^) ^j2 (3^)

= ^o2(^)^o''^(y) + ^2^(.t^)^22(y);

and deduce from these equations similar expressions for

6z'{o)er{^-+y)e,{x~y)
for r= 0, 1, 2.

119. With the notation

^{x)= 2 (-1)"?"

^2 {x)= 2 ^i (2n - 1)2 e(2« - 1) a;j;

^(V+ ^)=53(^), 52(^-1-^)= -5, (*),

establish the periodic and pseudo-periodic properties of the 3-functions.

Prove also that the expression

1 1

is unaltered when .Vj, x<i, X3, x^ are replaced by

h{Xi+X2+ X3^-Xi), \{Xi+X<i,-X-i-Xi\ ^{Xi-X^ + X^-Xi), ^{X^-X^-Xz + Xi);

respectively.
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VI.

120. Examine under what circumstances p {ku) is a rational function of p («), k being

a suitable constant multiplier ; and if Un be a function of u defined by the equations

prove that f^2m + i
and U^m/P' are rational integral function.s of p {u), ^g.2 and gs, with

integral coefficients, and that

Un-..Crn.,n= U,,xU„_,UJ- U^,,U,„_,U,,^

where m and n are positive integers.

Prove that, if p{u), g^^ and g^ are rational numbers,

p{nn)<e'''\

where X is independent of the positive integer n.

121. Prove that, if pui ,
pu^, pu^ are distinct solutions of the equation

ap{u) + b= p'iu),

then Ui + 2i2+ U3= mo} + n(o', where co and o)' are the periods, and m and n are integers.

Prove that

122. If ^1 (u) denote the function with 2o),, 2&)i' as primitive periods, r= — , ri =— ,

the imaginary parts of r, rj being positive, and

P{o>) P,(co0'

prove that r,
=

'
^ ^ , where A, B, C\ D, are integers such that AD- BC= 1 and such that

B and C are even.

123. Shew that, if u and z are connected by a relation

dz

J 00(24+6022'''+ 4a3Z+ a4)2

where the invariants of the elliptic functions are given by

g-i= ai+ 3rt2^, Si= a2ai — a^^ - a^.

Express in terms of functions of u and Uq the value of the integral

'+^z+ y
dz.

where u and z are connected as above, and «y is related to Zq in the same way as u to z.

124. Shew that the determinant

I 1, P(«3), P'("3), ^"(«3), ..., ^(»-2>(W3)

1, P(«„), ^'(«h), ^"(«»),-, ^("-''(Wn)

{a-(wi)o-(w2)o-(?(3) ...(7(m„)}»
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where X </i ; X, fi=l, 2, 3, ..., n ; cand T is a numerical constant. Determine the value

of C.

Prove that the four roots of the equation

are the values of p (a), where 3a is any period of the function p (u), a not being itself a

period.

Prove also that the value of the product

{P{u)-p{a)} {p{u+ a)-p{a)} {p{u+ 2a)-p{a)}

is independent of u.

125. If p (u) denote Weierstrass's doubly-periodic function, and X be a constant not

an aliquot part of any period of this function, prove that the function

^iti'"^-')

considered in the infinite plane of x with the exclusion only of the points x=0, x=<x> , is

capable of assuming for every given value of x, values as near as may be desired to any

assigned value.

126. The symbol p being used to denote Weierstrass's elliptic function, prove that if

the relation

ap{u) + bp'{u) + c=0

is satisfied by u= Ui and by tc= U2, it is also satisfied hj u= - Ui - u^^. Deduce the addition

formula for the function.

With the customary notation for gj, 62, ^3 (ej > 62> ^3)) prove that

{p{u^v)-e,}{p{u-v)-e.^ ^ [{
p{u)-e,} {p {v)-e,}-e,e,-2e^^-^

{p {u + v)- e,] {p {u - V)

-

63} iW {u) - 63} {P (v) - e,} -e^e,- 2e^^]
'

127. Prove that a doubly-periodic meromorphic function of ?« can be expressed

linearly in terms of functions ^{ic— a), (' {u-a\ ..., where f(20 =—j-t-

Evaluate
| ,,^ , ^

—
,^ , .,„ .

J{p{u)-p{a)}^

128. Shew that the equation

dx

xo s/f{xy

where /(,r) is any quartic function Qf .r, and Xf^ is a root oi f{x), is equivalent to the

equation

where the doubly-periodic function p (2) is formed with the invariants g^ and g^ of f{x).

If ^0 be not a root of f{x), shew that the last equation must be replaced by

^^^ ,

/^ (^0) F jz) +i/ (-^o) W (^)
-^f" (^0)} + ^hf(^-o)f"' (^0)

2 {P{z)-^f"ixo)\^--,^fixo)f"'{xo)

129. Shew that, if ?i is an odd prime, the value of the elliptic function of the 7ith

part of a primitive period, e.g. &[—), may be obtained by solving an equation of degree

71-1-1, and ;i-i-l equations of degree 71— I.

I'J a
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130. Starting from the definition of cr (2) as an infinite product, prove the formula

a- {b + c) (T {b - c) a- {a + d) a- {a - d) + a- {c+ a) a {c- a)(r{b + d) cr {b-d)

+ (r{a+ b) ir{a-b)a {c+d)<r {c-d) = 0.

Shew that, if (bcu) be written for

P'{b), P'{c), F(«)
I

then the relation between the o--functions resulting from the identity

(bcu) (adu) + (cau) (bdu) + (abu) (cdu) =

is substantially the same as the above.

131. Prove that \f A, B, C, D are any constants,

Jo-j (U) + Bcr2 (U) + C(Ts {U)+D(T {u)

can be factorized in the form

-Cr)K^>(v)'("")'
where a+^+y+ 8= 0.

Deduce, or prove otherwise that 2<r (a) a- (b) or (c) a (d) is equal to

0-1 (V) O-i (V) 0-1 jlP ) (Ti (0 a-2 JV) 0-2 (V) 0-2 («^) (T^ (0

(61-62) (61-63) (6-2- ei) (62- 63)

where 2a= u+ v+ v;-t, 2b = -7t+ t! + v>+ t,

2c=u-v + >o+ t, 2d= u + V — w+ 1.

132. Prove that

:f)=-^'w- ^t-3F(»)r(»)-irM.

Prove also that a- (nu) {a («)}"""" is a uniform doubly-periodic function of u.

133. From the definition of the o--function

(r(«)= ?/nYl-|')en^20i,

where SI = 2m<i> + 2m' co', and the product refers to every pair of integers m, m', not both

zero, deduce directly the value of a- (u + 2<i>) j a- (u). And proceed thence to deduce the

series for the function <r (w) in integi'al powers of e <"
, it being assumed that the imaginary

part of the ratio w'/w is positive.

134. Express jc as a single-valued function of u, when

_ f^ _d^

"~jov/{(l-20(l + «^)}"

135. If

_ f-^ dx

express x as a single-valued function of ?<, by the help either of Jacobi's or Wcierstrass's

functions.
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1 36. Shew that, if Zi+Z2+h= 0,

[ {P {h) - «2} W (^2) - ^3} W (^3) - ^3}]^ - [W in) - e,} {P {z-d - e^} W (zs) - 62}]'

137. Using the customary notation, obtain the formulae

P{U)-P{V)= ^2(„)^2(^) '

^, ^ , {P(^)pw-k92}{p(^)+pm-hp'i^)p'(y)-i93
Pi'^^+^)= WWTpW

Prove also that

2C(2«)-4C(M)=|;',

3t(3«)-9C(») =
_i_,

P*-^92P'-9sP-is^-^

and shew that n^ (nu) - n^ ^ {n) can be expressed in terms of p and p' only, n being an

integer.

138. Prove that

2F (2«) P' (u) = {P {u) - p (w + co)} {p (u) -p{u + o)')} {P (w) -p{u+ 0)")}.

139. Express (62 - 63) '^n {p {Ur) - ei}^ + two similar terms, by means of Jacobi's elliptic

'='

functions ; and hence (or otherwise) shew that, when 2 ?«,.= 0, the expression is equal to
r=l

- (ei- 62) (62 -63) (63-61).

140. Shew that
2a

(-1)
o-(m)[KDT"

„2rj(i<+<o)/j)

where 2(0 is a period of ^ (?*) and «i is an integer, is the mt\\ root of a rational integral

function of ^ {u) and p' (w).

141. Obtain a general formula for p{nu) in terms of p{u).

The periods of p{u) being 26), 2a)', and a, 6, c, d, denoting the quantities

,(|), ,(-), ,(-^'), ,(^_--),

prove that aa + ggi -|- ^2^1 = q, e"^6^ - €C^ + 0?^ = 0,

where e is an imaginary cube root of unity.

142. Specify briefly the descriptive properties characterising the elliptic function

p (u), and prove that the function is determined thereby.

Shew that the function
(f)

{u) = {p (u) - e^}^ is a single-valued function; obtain its

periods, and the expression of (f>{u+ v) in terms of («), <p' («), {v), (j>' (v).

Find the ^-function having the periods of cf) (?*), and the relation connecting this new

^-function with (}> (it).

143. Prove that

P' (^0 - Pl('ii) _ P' («) - P' (t'2) _ 2a(u) a{u+f, + v,),Ti>>,-v.^

P{ti)-P{vi) p{u)-p(:v<i) a{u+ Vi)a{ii + V2)(rivi)<T{v.2)'

Deduce that the' cross-ratio of the pencil of tangents from any point on a non-singular

cubic to the curve is constant.

F. F. 52
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.^(to-u)-{-C{w-v) + C{^')-Ci^i)-

144. Shew how to build an integral function of two variables whose second logarithmic

differential coefficients possess fourfold ])eriodicity, obtaining the necessary relation between

the periods.

If, with the usual notation, a (u) be the odd elliptic theta-function of one variable and

m, a, b, n be constants, obtain the simultaneous periods of the second logarithmic

derivatives of the function of u and v

enia ^gmv „. (2^ _ a) + e-'>"'' o- {u-h)l

and the algebraic relation connecting these derivatives.

145. Prove that every elliptic function can be expressed linearly in terms of f (i<-ai),

((u— az), ... and their differential coefficients, where ({u) = (r' {u)1<t{u).

Prove that

2 iP(«)-F(«') ^{'v)-'^{io)\

146. Establish the formula :

I

1, P(m), <^'{u) =-2a{u-v)(r{v-w)(T{iv-u)(T{u+ v + w)l(T^(u)(r^{v)a^(u').

I
1, P{v), F(^)

I, p{w), p'{w)

147. Express
; 1, p (x), p^{x), p' {x)

h Pi^), &'{>/), P'iy)

1, Pi^), P(2), P'{z)

1, Pi^), P(«), F(«) .

as a fraction whose numerator and denominator are products of o--functions. Deduce

that, if a= ^(^), ^=p{y), y= P{z), 8 = p{u), whet-e ^+y+2+ M=0,

(e2-e3){(«-ei)(^-ei)(y-ei)(8-ej)}^+(e3-ei){(a-e2;0-e2)(y-e2)(S-e2)}*

+ (ei - eg) {{a - 63) (^ - 63) (y - 63) (S - 63)}^ = (eg - 63) (63 - e^) {ei - «,).

148. Denoting the roots of At'^-g.it-g^i^O by gj, 62, 63, prove that

where I, m, n = \, 2, 3, and the summation extends over the three corresponding terms.

149. Prove that, for any three arguments Mj, u^, M3,

f (Ml) + C {'H)+ C (%) - C («i + ^2+ M3)

^

o

{P («i) - P («2)} {P («2) - P («.0} {P («3) -^M
^' (Ml) {^ («2) - ^ (%)} + P' («2) {^ (%) - P («l)} + ^' («3) [P (Ml) - P (W2)}

150. Express the function [p {z)-ei]^ as the sum of an integral function of z, having

no singularities in the finite part of the 2-plaue, and of a series of rational functions of

each of which has only one pole.

151. Prove the formula

1 p{u-<^,)-i'i

p{u)-ei {ei-e„,){ei-e,,)'

where /, m, n are the numbers 1, 2, 3 in any order.

152. Prove that

^(i««) + P(ico + a,')= 2e„

^ (i ««)- P (i «-+«') = 2 {(^1- 62) («i-e3)}^

^'(ia>)=-2{(e,-e2)(e,-e3)}i{(e,-e2)*+(ei-e3)*}.
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153. Shew that

^ a jz + a) (T (z-a) <T (z-i- c) <T (z-c)

^ ^'^= ^
a^{z)a\a)<rHc)

'

where P («) = (^i.9'2)^, & {o)= -{^^92)^-

154. State the properties of the eUiptic function p{u) which prove that there is a

single-vahied function a (m), such that a^{u)= ip{u)-ei, and ua{u) = l when m = 0.

Defining similarly b{u)= {p (u) - e^)^ , c (m) = (P (m) - 63)^ ,
prove that

^ a{u)b{v)c{v)-a{v)b{u)c{u)
"" ^" + '^

-
^ a^{v)-a^{u)

•

Shew also that
a (m+ co) a (?<)= a' (&>) = - a'^ {h w),

2a {^l) b (ti) c {u) a{2u)= a^ {u) - a* (^co),

i i - - a (w) [ a?M = log [| M {6 (m) + c (?«)}],

where a {u) = —^— .

155. From the theory of doubly-periodic functions, or otherwise, obtain the formula

Shew how to express the points of a plane quartic curve, which has two double points,

by means of elliptic functions.

VII.

156. Obtain Euler's relation C+F=E+-2 connecting the numbers of corners, faces

and edges of an ordinary convex solid bounded by plane faces ; and extend this result to

the case of a solid for which the surface is not simply connected.

A closed rectangular box has a partition lying midway between two opposite faces, and

this partition is pierced with two holes. Discuss the connectivity of the inner surface.

157. Prove that on any closed surface in space (or on a Riemann's surface) a system

of closed curves can be drawn, so that (i) it shall be possible to pass from any one point of

the surface to any other by a continuous path which does not cut the closed curves, and

(ii) any two paths so drawn between two given points shall be continuously deformable

the one into the other without crossing the closed curves.

Construct such a system of closed curves for a three-sheeted Riemann's surface with

two branch lines at each of which the three sheets are connected cyclically.

158. A table consists of a rectangular parallelepiped resting on two other rectangular

parallelepipeds, placed vertically, and each pierced with a hole. Upon the table is laid a

book, and upon this a much smaller book. Estimate the connectivity of the surface of the

whole resulting solid, each book being regarded as a rectangular parallelepiped.

159. There are n rings placed in order, each connected to those on either side by a

cylinder, whilst the two rings at the end have each a point boundary. Find the con-

nectivity of the surface so formed.

Thei-e are n rings placed in order, each connected to those on either side by a cylinder,

whilst the first and last rings are connected to each other by a cylinder. To the surface

so formed, a point boundary is supplied. Find the connectivity of the surface.

52—2
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160. Prove that, if an anchor ring be hollowed out and the exterior and interior

surfaces connected by a hollow cylinder, and if a point boundary be supplied to the surface

so formed, then its connectivity is 5.

161. A surface of connectivity n has b boundary lines. Shew that it is impossible,

without dividing the surface, to make more than | (m-6) cross-cuts, each of which passes

from a point of an original boundary to another point of the same boundary.

162. A variable u is defined by means of the relation

where f= ^^^ - <h '^' - 9-i •

and the inversion of this relation is expressed in a form

s= Q{u);

apply Abel's Theorem to shew how an expression can be obtained for Q{u + v) in terms of

Q (w)> Q' (")) Q (^)5 Q' («'')• Find also the periods of the function Q (u).

Construct the integrals that remain finite on the Riemann's surface associated with

163. The equation f{w, z)= is algebraic in tc and z ; and it is satisfied by w= a, z=a.

Shew that, when z=a + z', where \z'\ is small, then values of w are given by a + M^, where

I

?c'
1
is small, and where w', if not a imiform function of /, belongs to a set of values the

members of which interchange cyclically when z describes a small circle round a.

Obtain explicitly the branches of the function «•, as defined by the equation

w^+ Stcz+ z^=l

for values of z, (i) near the origin 2= 0, (ii) near the point z= -I.

164. Shew that the integral

I
{{x - ai) {x - a^) {x - aa) (.r - 04)}" ^ dx

J «!

is transformed to the integral

2 {(«,-«.,) K-a3)}-i
J

{(1 -r') (1 -X-y)}"^ dy

by the relations

y2= («2-«4)('^-«l) p^ («2-tti)(a3-a4 ) _

(a2-ai)(.r-a4)' (a3-«i)(«2-a4)
'

and obtain an expression for the general value of the former integral.

16."). Prove that every integral of the first class associated with the equation

is of the form

jiA.+ Bz^O't^

where A, B, C are arbitrary constants ; and construct integrals of the .second and the tliird

classes, associated with the same equation.

166. Obtain the integrals of the first kind connected with the equation

%ifl = z{z-\){z-a){z-h\

where jaj>|6| > 1 ; and shew how to obtain the addition-theorem for the functions that

arise in the inversion of the integrals.
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167. For the equation
y^ - byx^+ 4ar= 0,

find the form of the everywhere finite integrals.

168. Determine the genus of the equation

y' =x{\-xf.

Find a system of integrals of the first kind, and also an elementary integral of the

third kind with its infinities at the values .r= 0, x= \.

169. Construct and dissect the Riemann's surfaces associated with the equations

(i) %fi=z^{z^-\\

(ii) w^^{z-a,f{z-a.^-'^{z-a^)\

(iii) w*= {z- a^f {z-a.^^{z- a^f.

Give two dissections for the last surface, one of which does not involve any cut in one

of the sheets.

170. Construct a Riemann's surface on which the function w defined by the equation

can be exhibited as a uniform function.

171. Explain in general terms the principles of the theory of the dissection of a

Riemann's surface, to render the surface simply connected, and the part which the

number of everywhere finite integrals upon the surface plays in the number of necessary

dissections.

Shew how to find the number of everywhere finite integrals associated with an equation

.y"'= (.«-ai)».(.r-a2)"'^....

Find these integrals in particular for the equation

^ {x-c)(x-d)''
and dissect the surface.

172. Describe the character and position of the infinities of the integral

[
y'^+ mx-^+ Ax+By+ C ^

J {2y^-x^-l)y
'^"^'

where w is an imaginary cube root of unity, and x, y are connected by

x^'+xhf+ 3/2 =, ^4^ j^^ 3 .

and find the sum of its values extended from the points where P.r+$y+ ^=0 to the

points where P'x-\-Q'y+ R' = 0.

173. Construct a Riemann's surface to rejiresent the equation

{x-\)y^= .r:^{x+\f;

draw cuts reducing it to a simply connected surface ; and construct an Abelian integral

of the first kind associated with the equation,

174. Discuss the general character of the Riemann's surface which represents the

equation

(?(;-2)(w2_22)(^3_23)=l.

and prove that its genus is equal to 4.
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175. Ill the -whole of a Riemann's surface of n sheets, the total number of branch

points is s ; and the numbers of the branches of the represented algebraic function,

which interchange at the branch-points, are ?«i, mj, ..., m, respectively. Prove that the

connectivity of the surface is

i 2 >/!,)- (2;i-|-s-3),

and that its genus is

Prove that the genus of the Riemann's surface associated with the equation

v^-^= A{z-af{z-hf(z-c)\

where a, 6, c are unequal constants, is 7 ; and indicate the relations between the sheets

of the surface at each of the branch-points.

176. Indicate various classes of functions of position on a Riemann's surface of genus

p, explaining specially the characteristic properties of the functions which usually are

called of the first kind, the second kind, and the third kind, respectively, as well as of

adjoint polynomials; and prove that an adjoint polynomial possesses 2/) -2 zeros on the

surface.

At a set of m among these 2p- 2 places, q other adjoint polynomials vanish together

:

at the remaining 2/?-2 — ?« places, q other adjoint polynomials similarly vanish together.

Prove that, on a general Riemann's surface,

q' -q= 7n -p+\.

177. Find the genus p of the relation

Construct a rational function associated therewith with p-\-\ arbitrary poles, and

obtain the forms of p everywhere finite integrals.

178. For the Riemann's surface associated with the equation

xy + Ui + Ui = 0,

where u^, u^ are homogeneous polynomials in x, y respectively of orders 3 and 4 with

general coefficients, construct a set of linearly independent integrals of the first kind

and an elementary integral of the third kind whose infinities are at a?=0, y =0.

Find, save for an additive constant, the sum of the values of the integral

at the intersections with the given curve of the line Ax-\-By-\-C=^^ expressed in terms

of J , ZJ, C, and the coeflBcients of the curve.

179. Construct a Riemann's surface suitable for the representation of a function y
given bv the equation

y»(.r-2) = (a;2-t-l)2.

Make a series of cuts which will render the surface simply connected.

180. Shew that the genus of the equation

is unity ; and construct an integral of the first kind associated with tlie equation.

Similarly for the equation

/= (l-a.-2)(l-P^2).
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181. Obtain the position and character of the branch places of the Riemann's sui-face

representing the equation
y* + Ayx- + 3a' = 0,

and the forms of the everywhere finite integrals.

182. For the fundamental equation

describe the behaviour of the intet:;ral

and find the sum of its four values integrated from the four points where P^^x + Q^^y+ Rq= 0^

to the four points where Px-\-Qi/+R = 0.

183. Prove that the equation of a curve of order n, having \n{n- 3) - 1 double points,

can be transformed birationally int» the hyperelliptic form

where/ is a polynomial of degree 5 or 6. Transform in this way the equation

184. Prove that the equation
/fc y) dx

wherein y^= '\jfi- g^^x — g^, defines .<;, y as single-valued meromorphic functions of «.

If y'^=^ofia:/^-\-^h3i^-\-%cx"-\-\dx-\-e^ and R{x,y) denote a rational function of x and y,

find three integrals

R (x, y) dx/^

respectively (i) everywhere finite, (ii) algebraically infinite to the first order but not

logarithmically infinite, at x= ^, y— Vi (i") logarithmically but not algebraically infinite

at X= ^, y= >j, and &t x=az
, y = ax- ; and shew that every integral I R {x, y) dx is expres-

sible, save for rational functions of x and y, in terms of integrals of these three forms.

185. If JO and n be positive integers, 3/''=l-f a^.^ + a2.r2-^-... -fa„.r», the right-hand

side having no repeated roots, prove that

-/: dxjyP

\n an elliptic integral, provided that p and a have the greatest values consistent with

the inequalities

^"-F-^1 and --f -^1.
p 11 n p

Determine the possible values of p and n.

Shew that p {v) can be expre.ssed in the form

where v=0 corresponds to x=0, y=\.

Completely determine the invariants g.2 and g^ in the cases /»= 2, n = 4, and p= 3, ?i= 3.
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VIII.

186. If f{x) be a quintic polynomial in .r, and

'^i xdx
.
[^ xdx

Uc
'/{x)

pi dx f^' dx _ r^ixdx_ f^x^

investigate the character and general form of ^i + .rg as a function of Mj and Mo-

187. If y" be a quintic polynomial in x, vanishing when x= ai and when x=a2, and

f^' dx /"•''i dx f-^' xdx p2 xdx

} a, y } a, y J a, y J a, y

discuss the character of XiXo and of {(«i — ^i) («i -A'2)r as functions of u^ and tt^.

188. If A, B, C, D* E, F be constants, f{x) a quintic polynomial, {x^yr^) a variable

pair satisfying y^=f{x), and (xi), (x.^), ..., be the zeros of the rational function in {x, i/)

A{x+Xo) + Bxxo + C1^'+ D,

, ^
d r [(''^^Ex+F, ^

[('-^ Ex+F, ^evaluate -j— I dx+ / dx+
a^oL./ y J y

189. Quantities u and ;• are defined by the relations

2u=r-'-fdx+ri^^dy,

where X= (x - a^) {x — «i) (.^• - a^) {x - a,.)) (x - a^),

Y is the same function of _y as X is of x, and the constants ao? «i> «2> '^s? «4 are real,

unequal, and (so arranged) are in descending order of magnitude. Prove that any

rational .symmetric function of x and y is an even quadruply-periodic function of u and v,

and that, in particular,

(«r - x) (a,- - y)

(for ;•=(), 1, 2, 3, 4) is the perfect .square of a quadruply-periodic function of u and v, which

is even for even values of r and is odd for odd values.

Writing p,?= (a^ - ^) («r - y)»

obtain the types of quadratic relations connecting the fifteen functions ; and prove that

Pi .
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190. If the curve F{z, w)= be of degree m, shew that every integral of tlie first

kind is of the foi'm

where Q (z, u) is a polynomial in z and u of degree (m- 3) at most.

If the curve F{3, m)= have no multiple points except such as have distinct tangents,

shew that any multiple point of order q on the curve i^ is a multiple point of order q — \

on the curve Q.

Find the integrals of the first kind for the curve

Z^-ii^ + ahu= ;

and discuss the transformation of this curve to the hyperelliptic form.

191. Shew that every uniform function of position on a Riemann's surface, connected

with an algebraic equation f{w, z)= Q of degree m in lo, the function having infinities

only of finite order, can be expressed in a form

H{z) +
U(w,z)

df

where U is a polynomial in w of degree ^m — 2 having rational functions of z for its

coefficients, and ff (z) is a rational function of z.

Prove that there are integrals of rational functions of w and z, which do not acquire

an infinite value upon the surface.

Construct these integrals, when the algebraic equation is

w5=2 (1-0) (1 -az) (1 - bz) (l-cz),

where the constants a, b, c are unequal to one another and no one of them is either zero

or unity.

192. If an analytical correspondence be set up lietween two variable points a- and y
of a non-singular Riemann's surface, of such a nature that to every point x there cor-

respond ?n. variable points i/i, y^i ..., j/,„, distinct in general from x^ prove that

m
2 ?ffr(,yi) + yWfc(.r) = Ji, (^=1, 2, ..., jo),

where -y is a certain positive or negative integer, Jj is a quantity independent of .r, and

?«!, u-i, ..., Mp are p independent and everywhere finite integrals on the surface.

Prove further that, if Cj, C2, •••) % ^® suitably chosen constants, and if

6{V^, V2,...,Vp)= d{Vi)

denote the ^-functiijn belonging to the surface, then

6 {uiiy) - Ui {x) - Ci)
»='» B{ui{y)-Ui{yn) - Ci]

e {Mi {y) - «i (^) - Ci] 6 {UiW - Ui (X) - a} „=i 5 {Ui
(yO) _ « . (yj - cj d {«.- (y ) - «.- (y„0) _ ,x

is an algebraic function of x and y ; x'^, y", denoting fixed points and x, y a variable point

of the surface, yi**, y.J^, ..., y.^" the points corresponding to .r".

Deduce that such a correspondence can always be represented by an algebraic function

properly interpreted.
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193. If w,, w.,, ..., Wp he the p normal integrals of the first kind on a Riemann's
surface, and 5/,(*' be the modulus of periodicity of the normal integral of the second

species to «<.^ {z) with respect to the cut 6^, shew that

5ftW=-2n'(cA).

Hence or otherwise shew that the necessary and sufficient conditions, that q distinct

points Ci, Co, ..., Cg(q^p) should be such that at a certain number of them a regular

function assumes the same value, are

1

1 W2'(Ci), ...,W2{Cg)

'. Wp'(Cl), ...,tVp(Cg)

Shew also that if, for every integral of the first kind W{z'),

W (ci) dci + W (f2) dc2+...+ W' (cg) dcg= 0,

then Ci, C2, ..., Cg are points at which a regular function assumes the same value.

IX.

194. Give an outline of a proof that a potential function u exists, subject to the

conditions,

(i) at all points within the area of a circle of radius unity, the quantities

'*'
ei' 37/' a^2. 9p are regular functions of .v and y such that ^2 + ^,=0 ;

(ii) the quantity u acquires assigned values along the circumference, which are

regular functions of the position on the circumference ; and obtain the function in

the form

where
/(^Z/-) represents the values along the circumference. Prove also that/(\//-) can have

a finite discontinuity at a limited number of points.

Apply the transformation x+ii/=^7)~ ;pl—^ to the above integral so as to prove

that a potential function u, which exists over the whole plane and is such that its value

is unity between — 1 and + 1 on the real axis and elsewhere is zero on the real axis, is given

by- ^ where 6 is the angle subtended at the point in the plane by the part of the real axis
TT

lying between — 1 and + 1.

195. Deduce, from Caucliy's integral formula, Poisson's expression for the \alue of a

developable potential function at any point interior to a given circle, in terms of the

values of the function on the circumference.

Shew ab initio in the case when ti{t) is finite and continuous for all roal values of t^

the values « ( ± 00 ) being the same, that the integral

1 /+=" u (t) y dt

represents a developable potential function of {x, y), for y>0, reducing when (.i-, y)

approaches to (.Tq, 0) to the value u{Xf^).

Evaluate the integral when u {t) = -^ .
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196. Taking as an area the whole of the plane of z with the exception of the finite

straight line joining 2= — 1 to 2= 1, find a function of 2, which is single- valued in the area,

is real on the boundary, and is discontinuous within or upon the boundary of the area

only like (z - i)-i.

197. Find a function which shall be regular within the circle 1^1 = 1 and shall have on

the circumference the value

a2 - 2a cos 6 + cos 2(9 + 1 (2a sin ^ - sin iff)

(a2- 2a cos ^+ 1)2
'

where
|
«

|
> 1.

198. Prove that the most general form for a function which (i) is to be single-valued

and analytic in a rectangle in the plane of the complex variable u whose coi-ners are « = 0,

M= 2a), u=iH, u—2co + iff, where co, ^are real ; and (ii) is to be further such as to assume

equal values at opposite points, ii — ih, ii= ih + 2(o, of one pair of sides; is a series of

integral powers of exp ( — uj .

If a<b be real and positive, and the function p (ic) be constructed with the real

period 2&) and the period 2u>' given by
, ico , b

O) =— log -
,

TT a

find the region in the plane of z given by the formula

when ( varies in the annulus lying between two circles with centre at ^= 0,of respective

radii a and b.

Shew that there is, in this annukis, only one value of ^ corresponding to any point in

the region obtained.

199. Shew how to define an integral function of the two variables u, v, which shall

satisfy the equations

(f)
(;i+l, V) = ({){U, V)=

(f)
(u, v + l),

({){u+ p, v + (r)= fxe
'^

(f)
(tt, v), cf) {u + p, v+ a-')=fi'e'^^(f) {u, v),

obtaining any necessary conditions for the constants p, o-, p', o-', X, X', p, p.

200. If the substitutions of an infinite discontinuous group be

(1=1, 2, ...CO),
yiZ+

shew that the series

i=i

is absolutely convergent when m is a greater integer than unity, except for special points 2.

Construct a group of substitutions of genus p, for which the fundamental polygon is

the space outside 2p circles, and the fundamental substitutions, make these circles corre-

spond in pairs ; and shew that, subject to certain inequalities, the series

2(yi2 + 8i)-2

is absolutely convergent for groups of this character.
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201. Give an example of a rational function R {x) which is unaltered by a group of

transfonnatious of the form x'= {ax-\-b)l{cx+d), finding, for your example, a region in

the plane of the complex variable x in which the function assumes every value just once.

Exi)lain some general method of expressing automorphic function.s when the group of

linear transformations is assigned.

202. In the equation

^(l-^)S+(l-2.)j^-i..= 0,

which is satisfied by the quarter periods K and iK' of the Jacobian elliptic functions

formed with the modulus k='Jz, shew that 2 is a uniform function of the quotient

i = -=- of two .solutions of the equation, being automorphic for the group generated by the

.substitutions

(.,^+ 2) and (^ 2^-^-),

Shew how, by using this as an auxiliary diflferential equation, any linear diflferential

equation with uniform coefficients and three singular points can be solved in terms of

uniform functions.
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Abbildung, conforme, 11.

Absolute convergence of series, 21 ; of pro-

ducts, 91.

Ahsoluter Betrag, 3.

Absolute value, 3.

Accidental singularity (pole), 17, 61.

Addition-theorem, algebraic, 344.

Adelphic order, 364.

Adjoint curves, 445.

Adjoint polynomials, 445.

Algebraic addition-theorem, 344,

Algebraic function, determined by an equation,
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Analytical curve, 458, 478, 658.

Analytic function, 10; monogenic, 67.

Anharmonic group, 754.

Argument, 3.

Argument and parameter, interchange of, 513.

Arithmetic mean, method of the, 458.

Ausserwesentliche singulnre Stelle, 61.

Automorphic functions, 715, 753.

Betrag, absoluter, 3.

Bicursal, 555.

Bien defini, 190.

Bifacial surface, 372.

Birational transformation, 537.

Boundary, 369.

Branch, 16.

Branch-line, 385.

Branch-point, 17, 183.

Branch-section, 385.

Canonical resolution of surface, 402.

Categories of corners, cycles, 725, 729.

Circle, discriminating, 133.

Circle of convergence, 22.

Circuit, 374.

Class, or genus, (of connected surface), 371.

Class of doubly-periodic function of second

order, 263.

Class of equation, 395.

Class of group, 742.

Class of singularity, 177.

Class of tertiary-periodic function, 335.

Class of transcendental integral functions, 109.

Class-moduli, 545.

Combination of areas, 480.

Compound circuit, 374.

Conditional convergence of series, 21 ; of pro-

ducts, 91.

Conditional equation in Abel's theorem, 581.

Conformal representation, 11.

Conforme Abbildung, 11.

Congruent figures, 631, 724.

Conjugate edges, 725.

Connected surface, 359.

Connection, order of, 364.

Connectivity, 364.

Constant modulus for cross-cut, 427.

Contiguous regions, 724.

Continuation, 67.

Continuity, region of, 67.

Continuous substitution, 717.

Convergence of series, 22; of products, 91.

Convexity of normal polygon, 727.

Corner of region, 724.

Coiipure, 165, 220.

Critical point, 17.

Cross-cut, 361.

Cross-line, 385.

Cycles of branches of algebraic function, 570.

Cycles of corners, 726.
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Deficiency, 403.

Deformation of loop, 407.

Deformation of surface, 379.

Degree of cycle, 570.

Degree of pseudo-automorphic function, 785.

Degree of rational function on Riemann's

surface, 420.

Derivative, Schwarzian, 657.

Dihedral group, 757.

Diramazioue, puiito di, 17.

Dirichlet's principle, 458.

Discontinuity, polar, 17.

Discontinuous groups, 717.

Discontinuous substitution, 717.

Discrete substitution, 717.

Discriminating circle, 133.

Divergence of series, 22; of products, 91.

Domain, 60.

Duinaine, 60.

Dominant function, 39.

Double (or fixed) circle of elliptic substitution,

746.

Doubly-periodic function of first, second, third,

kind, 320, 321.

Edge of region, 724.

Edges of cross-cut, positive and negative, 424.

Einandri(j, 16.

Ehideuti'i, 16.

Einfach zusammenhfiitgend, 360.

Element, 67.

Element of doubly-periodic function of third

kind, 338, 340.

Elementary integral of the second kind, third

kind, 446, 452.

Elliptic substitution, 631.

Equivalent homoperiodic functions, 260.

Essential singularity, 19, 61.

Exceptional value, 66.

Existence-theorem, 416, 455.

Factor, primary, 101.

Factorial functions, 531.

Families of groups, 740.

Finite groups, 719.

First kind, doubly-periodic function of the,

321.

First kind of Abeliau integrals, 444.

Fixed (or double) points of substitution, 628.

Forlsetzung, 67.

Fractional factor for potential function, 476.

Fractional part of doubly-periodic function,

259.

Fuchsian functions, 753.

Fuclisian groups, 740.

Fundamental circle for group, 737.

Fundamental loops, 407.

Fundamental parallelogram, 237, 244.

Fundamental polyhedron (of reference for

space), 748.

Fundamental region (of reference for plane),

724.

Fundamental substitutions, 716.

Gattunfi (kind of integral), 444.

Genere, 109.

Geneve (genus of connected surface), 371.

Genre (applied to singularity), 177.

Genre (upplied to transcendental integral

functions), 109.

Genre (genus of connected surface), 371.

Genus (of connected surface), 371.

Genus (of equation), 395.

Genus (of group), 742.

Geschlecht, 395, 403.

Giramento, punto di, 17.

Gleichverzweigt, 419.

Grenze, natilrliche, 158.

Grenzkreis, 133.

Group of substitutions, 715.

Gruiidzahl, 364.

Harmonic functions, 9.

Hauptkreis, 737.

Holoniorphic, 17.

Homogeneous substitutions, 756.

Hoinographic transformation, or substitution,

625.

Homologous (points), 237.

Homoperiodic, 263.

Hyperbolic substitution, 631.

Hyperelliptic curves or equations, 565.

Improperly discontinuous groups, 718.

Index of substitution, 717.

Infinitesimal substitution, 636, 717.

Infinity, 17.

Integrals of the first kind, second kind, third

kind, Abelian, 444, 446, 452.

Interchange of argument and parameter, 513.

Invariants of elliptic functions, 295.

Inversion-problem, 517.

Irreducible circuit, 374.

Irreducible (point), 236, 237.

Isothermal, 707.

Kleinian functions, 753.

Kleiuian group, 743.
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Lacet, 182.

Lacunary functions, 166.

Level values, 269.

Lignc de passage, 385.

Limit, natural, 153.

Limitrophe, 724.

Lineal- cycles, 570.

Linear substitution, 625.

Loop, 182.

Loop-cut, 362.

Loxodromic substitution, 631.

Majorante, 39.

Mehrdeutig, 16.

Mehrfach zusammenhdngend, 361.

Meromorphic, 17.

Modular-function, 767.

Modular group, 721.

Modulus, 3.

Modulus for cross-cut, constant, 427.

Modulus of periodicity (cross-cut), 427.

Mouadelphic, 360.

Monodromic, 16.

Monogenic, 15.

Monogenic analytic function, 67.

Monotropic, 16.

Multiform, 16.

Multiple circuit, 374.

Multiple connection, 362.

Multiplicateurs, fonctions a, 531.

Multiplier of substitution, 628.

Natural limit, 153.

NatUrliche Grenze, 153.

Negative edge of cross-cut, 424.

Non-essential singularity, 61.

Normal (connected) surface, 381.

Normal form of linear substitution, 715.

Normal form of transformable equations, 567.

Normal function of first kind, second kind,

third kind, 508, 510, 511.

Normal polygon for substitutions, 728.

Order of a doubly-periodic function, 259.

Order, of connection, adelphic, 364.

Order of rational function on Biemann's

surface, 420.

Ordinary point, 60.

Origin of cycle, 570.

Orthomorphosis, 11.

Oscillating series, 21.

Parabolic substitution, 631.

Parallelogram, fundamental or primitive, 237,

244.

Path of integration, 21.

Period, 235.

Periodicity for cross-cut, modulus of, 427.

Permanent equation in Abel's theorem, 581.

Polar discontinuity, 17.

Pole, 17, 61.

Polyadelphic, 361.

Polyhedral functions, 706.

Polytropic, 16.

Positive edge of cross-cut, 424.

Potential function, 457.

Primary factor, 101.

Primfitnctioji, 101.

Primitive parallelogram, 244.

Products, convergence of, 91.

Properly discontinuous groups, 718.

Pseudo-periodicity, 301, 304, 320, 321,

Punto di diramazione, j'unto di giramento,

17.

Querschnitt, 361.

Ramification (of Riemann's surface), 395.

Ramification, point de, 17.

Rational function, 84.

Real substitutions, 631.

Reconcileable circuits, 374.

Reducible circuit, 374.

Reducible (point), 236, 237.

Region of continuity, 67.

Regular, 17, 60.

Regular singularities, 192.

Representation conforme, 11.

Residue, 48.

Resolution of surface, canonical, 402.

Retrosection, 362.

Riemann's surface, 382.

Root, 17.

Rilckkehrschnitt, 362.

Schleife, 182.

Schwarzian derivative, 657.

Second kind, doubly-periodic function of the,

321.

Second kind of Abelian integrals, 446.

Secondary-periodic functions, 322.

Section, 69, 165, 220.

Section (cross-cut), 361.

Series, convergence of, 22.

Sheet, 382.

Simple branch-points, 208.

Simple circuit, 374.

Simple connection, 360.

Simple curve, 24.

Simple cycle of loops, 408.



832 GLOSSARY OF TECHNICAL TERMS

Simple element for tertiary-periodic function,

338, 340.

Singular point, 17.

Singularity, accidental, 17, 61.

Singularity, essential, 19, 61.

Special function on Riemann's surface, 526.

Species of singularity, 177.

Sub-categories of cycles, 740.

Sub-rational representation of variables, 551.

Substitution, homogeneous, 756.

Substitution, linear or homographic, 625.

Synectic, 17.

Umgebung, 60.

Unconditional convergence of series, 22 ; of

products, 91.

Unicunsal, 548.

Unifacial surface, 372.

Uniform convergence of series, 22 ; of pro-

ducts, 91.

Uniform function, 16.

Verzweigungschnitt, 385.

Verzweigungspunkt, 17.

Taglio trasversale, 361.

Tertiary-periodic functions, 322.

Tetrahedral group, 759.

Thetafuchsian function, 776.

Third kind, doubly-periodic function of the, 321.

Third kind of Abelian integral, 452.

Transcendental function, 84.

Transformation, birational, 537.

Tramersale, 361.

Wesentliche singulare Stelle, 61.

Winding-point, 392.

Winding-surface, 392.

Windungspunkt, 17.

Zero, 17.

Zusammenhdngend, einfach, mehrfach,

361.
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Abel, 269, 518, 580.

Abel's formula for sum of transcendental

integrals, 585 : examples of, 587-590 ; ap-

plied to integrals of first kind, 590 ; of

second kind, 594; of third kind, 597.

Abel's Theorem on integrals, quoted, 519

;

proved, 579-601 : the main result, 585.

Abelian transcendental functions, arising by

inversion of functions of the first kind on

a Eiemann's surface, 517;

Weierstrass's form of, 518.

Absolute convergence, of series, 21 ; of pro-

ducts, 91.

Accidental singularities, 17, 61, 78;

must be possessed by uniform function,

78;

form of function in vicinity of, 78;

are isolated points, 78;

.number of, in an area, 82, 86;

if at infinity and there be no other

singularity, the function is polynomial,

83;

if there be a finite number of, and no

essential singularity, the uniform

function is rational and meromorphic,

85.

Addition-theorem, for uneven doubly-periodic

function of second order and second class,

290;

for Weierstrass's ^-function, 307;

quasi-form of, for the <r-function and

the f-function, 307;

definition of algebraical, 344;

algebraical, is possessed by algebraical

functions, 344;

by simply-periodic functions, 345;

by doubly-periodic functions, 346;

function which possesses an algebraical, is

either (i) algebraical,' 347;

or (ii) simply-periodic, 350, 352;

or (iii) doubly-periodic, 354;

F. F.

satisfies a differential equation be-

tween itself audits first derivative,

355;

condition that algebraical equation be-

tween three variables should express,

357;

form of, when function is uniform,

358.

Adjoint curves, 445.

Adjoint polynomial on Riemann's surface,

quotient of one by another, is a special

function, 527.

Adjoint polynomials, 445.

Algebraic equation between three variables

should express an addition-theorem, condi-

tion that, 357;

Algebraic equation, defining algebraic multi-

form functions, 190 (see algebraic function);

genus of, 395;

for any uniform function of position on

a Riemann's surface, 417.

Algebraic equation defines functions that are

analytic, 207.

Algebraic equation has roots, 88.

Algebraic function, cycle of branches of, 570:

birationally transformed, 571-577.

Algebraic function is analytic, 207.

Algebraic (multiform) functions defined by

algebraical equation, 190;

branch-points of, 191
;

infinities of, are singularities of the

coefficients, 192;

graphical method for determination

of order of, 194

;

branch-points of, 197;

cyclical arrangements of branches round

a branch-point, 200;

when all the branch-points are simple,

208;

in connection with Riemann's surface,

386.

53
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Algebraic function on a Eiemann's Burface,

integrals of, 436;

integrals of, everywhere finite, 438

;

number of, in a special case, 438;

when all branch-points are simple, three

kinds of integrals of, 439;

infinities of integrals of, 440, 443;

branch-points of integrals of, 443.

Algebraic functions on a Riemann's surface,

constructed from normal elementary func-

tions of second kind, 520;

smallest number of arbitrary infinities

to render this construction possible,

520;

Riemann-Roch's theorem on, 521

;

smallest number of infinities of, which,

except at them, is everywhere uniform

and continuous, 523;

which arise as first derivatives of func-

tions of first kind, 524
;

are infinite only at branch-points,

525

;

number of infinities of, and zeros

of, 525;

most general form of, 526

;

determined by finite zeros, 526;

Brill-N5ther law of reciprocity for,

528;

determine a fundamental equation for a

given Riemann's surface, 528;

relations between zeros and infinities of,

535.

Algebraic isothermal curves, families of, 707

et seq. (see isothermal curves).

Algebraic plane curve birationally transformed

into another with double points only, 569-578.

Algebraic relation between functions automor-

phic for the same infinite group, 788;

genus of, in general, 789.

Analytic function, monogenic, QI,.

Analytic function represented by series of

polynomials, 69, 134.

Analytic function defined by algebraic equation,

207..

Analytical curve, 459, 478, 658;

represented on a circle, 478;

area bounded by, represented on a half-

plane, 658;

consecutive curve can be chosen at

will, 659.

Analytical test of a branch-point, 186.

Anchor-ring conformally represented on plane,

612.

Anharmonic function, automorphic for the an-

harmonic group, 754.

Anharmonic group of linear substitutions, 754.

Anissimoff, 133.

Appell, 174, 223, 342, 343, 530, 531, 559, 570.

Appell's factorial functions, 531 (see factorial

functions).

Area, simply connected, can be represented

conformally upon a circle with unique cor-

respondence of points, by Riemann's theorem,

654;

form of function for representation on a

plane, 657, 670; on a circle, 657;

bounded by analytical curve represented

on half-plane, 658

;

bounded by cardioid on half-plane, 662
;

of convex rectilinear polygon, 666 et

seq. (see rectilinear polygon)

;

bounded by circular arcs, 679 et seq. (see

curvilinear polygon).

Areas, combination of, in proof of existence-

theorem, 480.

Argand, 2.

Argument (or amplitude) of the variable, 3.

Argument of function possessing an addition-

theorem, forms of, for a value of the function,

347 et seq.

Argument and parameter of normal elementary

function of third kind, 515.

Ascoli, 459.

Automorphic function, 753

;

constructed for infinite group in pseudo-

automorpbic form, 771 et seq. (see

thetafuchsian functions)

;

expressed as quotient of two theta-

fuchsian functions, 784

;

its essential singularities, 786

;

number of irreducible zeros of, is the

same as the number of irreducible

accidental singularities, 786

;

different, for same group are connected

by algebraical equation, 788; genus

of this algebraical equation in general,

789;

connection between, and general linear

difi'erential equations of second order,

791

;

modular-functions as examples of, 7!)2.

Baker, 247, 396, 404, 519, 528, 530, 537, 567,

579; a rule for determining the genus of a

Riemann's surface, 404.

Barnes, 103.

Barrier, impassable, in connected surface, 360;

can be used to classify connected sur-

faces, 361

;

changed into a cut, 361.
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Beltrami, 658, 660, 661.

Bernoulli's numbers, 48.

Bertini, 570.

Bianchi, 751, 752.

Bieursal equations and curves, 555.

Biehler, 342.

Biermaun, 67, 344.

Bifacial surfaces, 372, 380.

Birational transformation, 415, 537-579
;

conserves genus of equation, .542;

conserves kind of function, 543;

conserves Sp-3 + p class-moduli, 545.

Birational transformation of algebraic plane

curves, 569-.578: of cycles of branches of

algebraic function, 571-577.

Birational transformation of equations of

geuus zero, 550; of genus unity, 558; of

genus greater than unity, 566; of genus

greater than two, 569.

Blumenthal, 113.

Bolza, 716.

Bonnet, 611.

Bonola, 714.

Boole, 585.

Borchardt, 257.

Borda, 646.

Borel, 113, 134, 173.

Boundary of region of continuity of a function

IS composed of the singularities of the

function, 68.

Boundary, defined, 369

;

assigned to every connected surface, 361,

369;

edges acquired by cross-cut and loop-

cut, 362;

of simply connected surface is a single

line, 370;

effect of cross-cnt on, 370;

and of loop-cut on, 371.

Boundary conditions for potential function,

460 (see potential function).

Boundary, functions on a Eiemann's surface

without, 491.

Boundary values of potential function for a

circle, 465;

may have limited number of finite dis-

continuities, 470;

include all the maxima and the minima
of a potential function, 476.

Boundaries of connected surface, relation

between number of, and connectivity,

371.

Branches of a function, defined, 16;

affected by branch-points, 180 et seq.

;

obtained by continuation, 180

;

are uniform in continuous regions where

branch-points do not occur, 184;

which are affected by a branch-point,

can be arranged in cycles, 185;

restored after number of descriptions of

circuit round branch-point, 186

;

analytical expression of, in vicinity of

branch-point, 187;

number of, considered, 188;

of an algebraic function, 190 (see alge-

braic function)

;

a function which has a limited number

of, is a root of an algebraic equation,

210.

Branch-lines, are mode of junction of the sheets

of Riemann's surfaces, 385;

properties of, 386 et seq.;

free ends of, are branch-points, 886;

sequence along, how affected by branch-

points, 387;

system of, for a surface, 387;

special form of, for two-sheeted surface,

391;

when all branch-points are simple, 403
;

number of, when branch-points are

simple, 412.

Branch-points, defined, 16, 183;

integral of a function round any curve

containing all the, 42;

eii'ect of, on branches, 178, 180 et seq.

;

analytical test of, 186;

expression of branches of a function in

vicinity of, 187
;

of algebraic functions, 191, 197;

simple, 208, 403;

number of simple, 209;

are free ends of branch-lines, 386;

effect of, on sequence of interchange

along branch-lines, 387;

joined by branch-lines when simple,

391;

deformation of circuit on Riemann's

surface over, is impossible, 396;

circuits round two, are irreducible, 396

;

number of, when simple, 402;

in connection with loops, 404 (see

loops)

;

canonical arrangement of, when simple,

411.

Brill, 404, 415, 528, 530, 570.

Brill-Nother law of reciprocity, 528.

Brioschi, 322, 328.

Briot, 531.

Briot and Bouquet, vi, 27, 44, 47, 197, 203,

246, 249, 257, 269, 519.
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Bromwich, 6, 21, 292.

Burnside (W.), 141, 402, 456, 638, 653, 664,

689, 716, 754, 774, 789.

Burnside (W. S.) and Panton, 440, 584.

Canonical form, of complete system of simple

loops, 409;

of liiemann's surface, 413;

resolved, 414.

Canonical resolution of Riemann's surface, 402.

Cantor, 176.

Cardioid, area bounded by, represented on strip

of plane, 662;

on a circle, 663.

Carslaw, 21, 23, 652, 714.

Casorati, 2, 27, 407.

Categories of corners, 725 (see corners).

Cathcart, 6, 20, 61.

Cauchy, v, vi, 24, 27, 31, 49, 50, 52, 59, 75,

82. 207, 214, 359, 585.

Cauchy's theorem on the integration of a

holomorphic function round a simple curve,

27;

and of a meromorphic function, 30;

on the expansion of a function in the

vicinity of an ordinary point, 50.

Cayley, 2, 11, 92, 397, 403, 552, 555, 557, 615,

622, 623, 629, 657, 658, 661, 665, 679, 705,

707, 710, 754, 756.

Cesaro, 113.

Chessin, 250.

Christoffel, 652, 666, 670, 679.

Chrystal, vi, 2, 6, 199, 218.

Circle, areas of curves represented on area of:

exterior of ellipse, 614;

interior of ellipse, 617

;

interior of rectangle, 615, 674;

interior of square, 615, 674;

exterior of square, 674

;

exterior of parabola, 618

;

interior of parabola, 619

;

half-plane, 619;

interior of .'•cmicircle, 620

;

infinitely long strip of plane, 621

;

any circle, by properly chosen linear

substitution, 627;

any simply connected area, by Riemann's

theorem, 654;

interior of cardioid, 662
;

interior of regular polygon, 678.

Circle of convergence of series, 22.

Circuits, round branch-point, effect of, on

branch of a function, 182, 184;

restore initial branch after number of

descriptions, 186;

on connected surface, 374

;

reducible, irreducible, simple, multiple,

compound, reconcileable, 374;

represented algebraically, 375

;

drawn on a simply connected surface are

reducible, 376

;

number in complete system for multiply

connected surface, 377;

cannot be deformed over a branch-point

on a Riemann's surface, 397.

Circular functions obtained, by integrating

algebraical functions, 226;

on a Riemann's surface, 430.

Class-moduli of equations under birational

transformation, 544: number of, 545.

Class, of transcendental integral function as

defined by its zeros, 109;

Laguerre's criterion of, 111

;

simple function of given, 112

;

essential singularity, 176;

tertiary-periodic function, positive, 335;

negative, 338;

(see genus).

Classes of doubly-periodic functions of the

second order are two, 262.

Clebsch, 208, 247, 403, 407, 408, 411, 415, 453,

518, 519, 548, 554, 557, 569, 579.

Clifford, 380, 408.

Closed cycles of corners in normal polygon for

division of plane, 730 (see corners).

Combination of areas, in determination of

potential function, 480.

Complex variable defined, 1

;

represented on a plane, 2

;

and on Neumann's sphere, 4.

Compound circuits, 374.

Conditional convergence of series, 21 ; of pro-

ducts, 91.

Conditional equation in Abel's Theorem, 581.

Conditions that one complex variable be a

function of another, 7.

Conduction of heat, application of conformal

representation to, 649.

Conformal representation applied to hydro-

dynamics, 639 ; to electrostatics, 646 ; to

conduction of heat, 649.

Conformal representation of planes, established

by functional relation between variables, 11;

magnification in, 11;

used in Schwarz's proof of existence-

theorem, 478;

mostgeneral form ofrelation that secures,

is relation between complex variables,

606;

examples of, 614 at seq.
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Conformal representation of surfaces is secured

by relation between complex variables in the

most general manner, 606
;

obtained by making one a plane, 607;

of surfaces of revolution on plane, 607

;

of sphere on plane, 609

;

Mercator's and stereographic projec-

tion, 609, 610;

of oblate spheroid, 612

;

of ellipsoid, 612;

of anchor-ring, 612

;

of surface of constant negative curvature,

613;

Riemann's general theorem on, 654
;

form of function for, on a plane, 657

;

on a circle, 657.

Congruent regions by linear substitutions, 631,

724.

Conjugate edges of a region, 725 (see edges).

Conjugate functions, 9.

Connected sui'face, supposed to have aboundary

,

360, 368, 375 ;

to be bifacial, 372
;

divided into polj^gons, Lhuilier's theorem

on, 372
;

geometrical and physical deformation of,

379;

can bedeformed into anyother connected

surfaceof the sameconnectivityhaving

the same number of boundaries, if both

be bifacial, 380

;

Klein's normal form of, 381;

associated with irreducible equation, 392.

Connection of surfaces, defined, 359 ;

simple, 360

;

definition of, 362

;

multiple, 361

;

definition of, 362
;

affected by cross-cuts, 366 ;

by loop-cuts, 367

;

and by slit, 368.

Connectivity, of surface defined, 364 ;

affected by cross-cuts, 366 ;

by loop-cuts, 367

;

by slit, 368

;

of spherical surface with holes, 3(58
;

in relation to irreducible circuits, 376 ;

of a Riemann's surface, with one boun-

dary, 394;

with several boundaries, 396.

Constant, uniform function is, everywhere if

constant along a line or over an area, 72.

Constant difference of integral, at opposite

edges of cross-cut, 424
;

how related for cross-cuts that meet, 425

;

for canonical cross-cuts, 426 (see

moduli of periodicity).

Constant negative curvature, surfaces of, 712.

Construction of rational function on Riemann's

surface, 519-524.

Contiguous regions, 724.

Continuation, of function by successive domains,

67;

Schwarz's symmetric, 70

;

of function with essential singularities,

120;

of multiform function to obtain branches,

180.

Continuity of a function, region of (see region

of continuity).

Continuous convergence, 22.

Continuous group, 718.

Contour integration, 43-49.

Contraction of areas in conformal representa-

tion, 665.

Convergence of products, kinds of, 91.

Convergence, of series, kinds of, 22 ; circle of,

22 ; of products, 91.

Convex curve, area of, represented on half-

plane, deduced as the limit of the representa-

tion of a rectilinear polygon, 679.

Convex normal polygon for division of plane,

in connection with an infinite group, 728
;

angles at corners of second category and

of third category, 730 ;

sum of angles at the corners in a cycle

of the first category is a sabmultiple

of four right angles, 731

;

when given leads to group, 734 ;

changed into a closed surface, 742.

Corners, of regions, 724

;

three categories of, for Fuchsian group,

725;

cycles of homologous, 726 ;

how obtained, 730

;

closed, and open, 730

;

categories of cycles, 730 ;

of first category are fixed points of

elliptic substitutions, 734

;

of second and third categories are fixed

points of parabolic substitutions, 734
;

sub-categories of cycles of, 741

;

open cycles of, do not occur in Kleinian

groups, 747.

Crescent changed into another of the same

angle by a linear substitution, 628 ;

represented on a half-plane, 684.

Criterion of character of singularity, 80

;

class of transcendental integral function,

111.
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Critical integer, for expansion of a function in

an infinite series of functions, 148.

Cross-cuts, defined, 361
;

effect of, on simply connected surface,

363;

on any surface, 363 ;

on connectivity of surface, 366 ;

on number of boundaries, 370

;

and irreducible circuits, 377 ;

on Riemann's surface, 31)8 ;

chosen for resolution of Riemann's sur-

face, 399

;

in canonical resolution of Riemann's

surface, 401

;

in resolution of Riemann's surface in its

canonical form, 413

;

difference of values of integral at opposite

edt;es of, is constant, 424
;

moduli of periodicity for, 426 ;

number of independent moduli, 428

;

introduced in proof of existence-

theorem, 487 et seq.

Curve, birational transformation of algebraic

plane, 569-578.

Curves, adjoint, 445.

Curvilinear polygon, bounded by circular arcs,

represented on the half-plane, 679 et seq.

;

function for representation of, 680
;

equation which secures the representa-

tion of, 683

;

connected v^ith linear differential

equations, 684

;

bounded by two arcs, 684 ;

bounded by three arcs, 685 (see curvi-

hnear triangles).

Curvilinear triangles, equation for representa-

tion of, on half-plane, 685 ;

connected with solution of differential

equation for the hypergeoraetric series,

686;

when the orthogonal circle is real, 688 ;

any number of, obtained by inver-

sions, lie within the orthogonal

circle, 689

;

equation is transcendental, 689 ;

discrimination of cases, 689, 690
;

particular case when the three arcs

touch, 691

;

when the orthogonal circle is imaginary,

692;

stereographic projection on sphere

so as to give spherical triangle

bounded by great circles, 693
;

connected with division of spherical

surface by planes of symmetry of

inscribed regular solids, 694 et

seq.;

cases when the relation is algebraical

in both variables and uniform in

one, 694

;

equations which establish the

representation in these cases,

697 et seq.

;

cases when the relation is algebraical

in both variables but uniform in

neither, 704 et seq.

Cycles of branches of algebraic function, 570:

birational transformation of, into linear

cycles, 571-577.

Cycles of corners, 726 (see corners).

Cyclical interchange of branches of a function

which are affected by a branch- point, 185

;

when the function is algebraic, 200.

Darboux, 23, 53, 70, 83, 379, 613, 666, 679, 712.

Dedekind, 767, 771.

Deficiency of a curve, 403
;

equal to genus of associated Riemann's

surface, 403 ;

determined by Baker's rule, 404 ;

is an invariant for rational transforma-

tions, 415, 542.

Deformation , of a circuit on a Riemann's surface

over branch-point impossible, 397

;

of connected surfaces, geometrical and

physical, 379

;

can be effected from one to another

if they be bifacial, be of the same

connectivity, and have the same

number of boundaries, 380

;

to its canonical form of Riemann's sur-

face with simple winding-points, 413
;

of loops, 405 et seq.

;

of path of integration, of holomorphic

function does not affect value of the

integral, 30

;

over pole of meromorphic function

affects value of the integral, 39 ;

of multiform function (see integral

of multiform function)

;

form of, adopted, 224

;

effect of, when there are more

than two periods, 247
;

on Riemann's surface (see path of

integration)

;

of path of variable for multiform

functions, 181
;

how far it can take place without

affecting the final branch, 181-

184.
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Deformation of surfaces of constant negative

curvature, 712.

Degree of a function on a Riemann's surface,

420.

Degree of cycle of branches of algebraic

function, 570.

De Haan, 47.

Derivative, Schwarzian, 657 (see Scliwarzian

derivative).

Derivatives, a holomorpbic function possesses

any number of, at points within its region,

36;

do not necessarily exist along the boun-

dary of the region of continuity, 36,

158;

superior limit for modulus of, 38
;

of elliptic functions with regard to the

invariants, 311, 312.

Description of closed curve, positive and nega-

tive directions of, 3.

De Sparre, 114.

Differential equation of first order, satisfied by

uniform doubly-periodic functions, 277 ;

' in particular, by elliptic functions, 277,

278;

possessing uniform integrals, 283

;

satisfied by function which possesses an alge-

braic addition-theorem, 356.

Differentiation of uniformly converging

function-series, 156.

Dihedral function, automorphic for dihedral

group, 765 (see polyhedral functions).

Dihedral group, of rotations, 757 ;

of homogeneous substitutions, 758
;

of linear substitutions, 759 ;

function automorphic for, 765.

Dingeldey, 381.

Dini, vi.

Directions of description of closed curve, 3.

Discontinuous, groups, 717
;

properly and improperly, 718
;

all finite groups are, 719
;

division of plane associated with, 724

(see regions).

Discrete group, 717.

Discriminating circle for uniform function, 133.

Discrimination between accidental and essen-

tial singularities, 61, 80.

Discrimination of branches of a function ob-

tained by various paths of the variable, 181

-184.

Divergence, of series, 22 ; of products, 91.

Division of surface into polygons, Lhuilier's

theorem on, 372.

Dixon, 139, 589.

Domain of ordinary point, 60.

Dominant function, 3',l.

Double points of linear substitution, 628.

Double-pyramid, division of surface of cir-

cumscribed sphere by planes of symmetry,

694
;

equation giving the conformal represen-

tation on a half-plane of each triangle

in the stereographic projection of the

divided spherical surface, 698.

Doubly-infinite system of zeros, transcendental

function having, 104.

Doubly-periodic functions, uniform, 235 ;

graphical representation of, 236 ;

those considered have only one essential

singularity which is at infinity, 2-57,

267, 281 ;

fundamental properties of uniform, 258

et seq.;

order of, 259 ;

equivalent, 260

;

integral of, round parallelogram of

periods, is zero, 260

;

sum of residues of, for parallelogram, is

zero, 262

;

of first order do not exist, 262 ;

of second order consist of two classes,

262;

number of zeros equal to number of

infinities and of level points, 266

;

sum of zeros congruent with the sum of

the infinities and with the sum of the

level points, 267

;

of second order, characteristic equation

of, 270

;

zeros and infinities of derivative of,

271;

can be expressed in terms of any

assigned homoperiodic function

of the second order with an ap-

propriate argument, 273 ;

of any order with simple infinities can

be expressed in terms of homoperiodic

functions of the second order, 274 ;

are connected by an algebraical equation

if they have the same periods, 276

;

differential equation of first order satis-

fied by, 276

;

in particular, by elliptic functions,

•277 ;

can be expressed rationally in terms of

a homoperiodic function of the second

order and its first derivative, 279 ;

of second order, properties of (see second

order)

;
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Liouville's theorem as to, 281

;

expressed in terms of the f- function, 302;

and of the tr-function, 305
;

possesses algebraical addition-theorem,

344.

Doubly-periodic integral of differential equation

of first order, 283.

Du Bois-Reymond, 158.

Durege, 64, 363, 381.

Dyck, 381, 716, 718.

Edges of cross-cut, positive and negative, 424,

499.

Edges of regions in division of plane by an

infinite group, 724

;

two kinds of, for real groups, 725 ;

congruent, are of the same kind, 725 ;

conjugate, 725

;

of first kind are even in number and can

be arranged in conjugate pairs, 726 ;

each pair of conjugate, implies a funda-

mental substitution, 726.

Eisenstein, 105, 107.

Electric force, electric intensity, 647.

Electrostatics, application of conformal repre-

sentation to, 646.

Elementary function of second kind, 509 (see

second kind of functions).

Elementary functions of third kind, 511 (see

third kind of functions).

Elementary integrals of second kind, 446
;

determined by an infinity, except as to

additive integral of first kind, 448
;

number of independent, 449 ;

connected with those of third kind, 453.

Elementary integrals of third kind, 452
;

connected with integrals of second kind,

453;

number of independent, with same log-

arithmetic infinities, 453.

Elements of analytic function, 67 ;

can be derived from any one when the

function is uniform, 68
;

any single one of the, is sufficient for

the construction of the function, 68.

Ellipse, area without, represented on a circle,

614;

area within, represented on a rectangle,

616;

and on a circle, 617.

EUipsoid conformally represented on i)lane,

612.

Elliptic equations, or curves, 555.

Elliptic functions and equations of genus unity,

556.

Elliptic functions, obtained by integrating mul-

tiform functions, in Jacobiau form, 228
;

in Weierstrassian form, 231, 293 et seq.;

on a Riemann's surface, 432 et sec].

EUiptic substitutions, 631, 633;

are either periodic or infinitesimal, 635;

occur in connection with cycles of cor-

ners, 741, 747.

Enneper, 771.

Equations, of genus greater than two, 566

:

normal form of, 569.

of genus two, 562-565: variables in,

expressible by sextic or quintic radical, 563:

only limited number of birational trans-

formations into one another, 566 : normal

form of, 567.

of genus unity, 554-562 : variables in,

expressible by quartic or cubic radical, 554,

and as uniform elliptic functions, 556 : bi-

rationally transformable into one another

with one arbitrary parameter, 558 : normal

form of, 567.

of genus zero, 548-554 : variables in,

expressible as rational functions, 548 : bi-

rationally transformable into one another

with three arbitrary parameters, 550 : sub-

rational representation of variables in, 551,

made rational, 552 : normal form of, 567.

Equipotential lines in planar electrostatics, 647.

Equivalent homoperiodic functions, 260;

conditions of equivalence, 265.

Essential singularities, 19, 61

;

uniform function must assume any value

at or near, 64, 116;

of transcendental integral function at

infinity, 90;

form of function in vicinity of, 118;

continuation of function possessing, 120;

form of function having finite number

of, as a sum, 121

;

functions having unlimited number of,

Chap. VII.

;

line of, 165

;

lacunary space of, 166

;

classification of, into classes, 175

;

into species, 177

;

into wider groups, 177;

of pseudo-automorphic functions, 776;

of automorphic functions, 7H6.

Essential singularities of groups, 637, 739;

are essential singularities of functions
.

automorphic for the group, 739 ;

lie on the fundamental circle, 739

;

may be the whole of the fundamental

circle, 740.
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Exceptional values unattainable near an

essential singularity, 66.

Existence of functions on a Riemann's surface

without boundary, 491.

Existence-theorem for functions on a given

Riemann's surface. Chap. xvii.

;

methods of proof of, 459 ;

abstract of Schwarz's proof of, 460

;

results of, relating to classes of functions

proved to exist under conditions, 496.

Expansion of a function in the vicinity of an

ordinary point, by Cauchy's theorem, 50

;

within a ling, by Laurent's theorem, 54.

Expression of uniform function, in vicinity of

ordinary point, 50

;

in vicinity of a zero, 75

;

in vicinity of accidental singularity,

79;

in vicinity of essential singularity, 118

;

having finite number of essential singu-

larities, as a sum, 122

;

as a product when without acciden-

tal singularities and zei'os, 125,

126;

as a product, with any number of

zeros and no accidental singu-

larities, 130;

as a product, with any number of

zeros and of accidental singulari-

ties, 132;

in the vicinity of any one of an infinite

number of essential singularities, 135;

' having an assigned infinite number of

singularities over the plane, 137

;

generalised, 138;

having infinity as its single essential

singularity, 140

;

having unlimited singularities distrib-

uted over a finite circle, 140.

Expression of multiform function in the vicinity

of branch-point, 187.

Factor, generalising, of transcendental integral

function, 99;

primary, 101

;

fractional, for potential-function, 476

;

major and minor, 477.

Factorial functions, pseudo-periodic on a Rie-

mann's surface, 531

;

their argument, 531

;

constant factors (or multipliers) for cross-

cuts of, 532

;

forms of, when cross-cuts are canon-

ical, 532;

general form of, 532

;

expression of, in terms of normal ele-

mentary functions of the third kind,

533 et seq.

;

zeros and infinities of, 535
;

cross-cut multipliers^ and an assigned

number of infinities determine a

limited number of independent, 537.

Factorial periodicity, 719.

Factors (or multipliers) of factorial functions

at cross-cuts, 532

;

forms of, when cross-cuts are canonical,

532.

Falk, 239.

FamiUes of groups , seven, 740
;

for one set, the whole line conserved by

the group is a line of essential singu-

larity ; for the other set, only parts

of the conserved line are lines of

essential singularity, 741.

Finite groups of linear substitutions, 719, 754 ;

containing a single fundamental substi-

tution, 719;

anharmonic, containing two elliptic

fundamental substitutions, 720.

Finite number of essential singularities, func-

tion having, expressed as a sum, 122.

First kind of pseudo-periodic function, 320.

First kind of functions on a Riemann's surface,

498;

moduli of periodicity of functions of,

500 et seq.

;

relation between, and those of a

function of second kind, 503

;

when the functions are normal, 508

;

number of linearly independent functions

of, 505

;

normal functions of, 508

;

inversion of, leading to multiply periodic

functions, 515

;

derivatives of, as algebraical functions,

524;

infinities and zeros of, 525

;

conserved under birational transforma-

tion, 542.

First kind of integrals on Riemann's surface,

444;

number of, linearly independent in par-

ticular case, 445

;

are not uniform functions, 445
;

general value of, 446 (see first kind of

functions);

sum of, expressed by Abel's Theorem,

590.

Fixed circle of elliptic Kleinian substitution,

when the equation is generalised, 747.
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Fixed points of linear substitution, 628.

Floquet, 329.

Form of argument for given value of function

possessing an addition -theorem, 347 et seq.

Fourier, 651.

Fractional factor for potential function, 476;

major, minor, 477.

Fractional part of doubly-periodic function,

259.

Fredholm,.54.

Fresnel's integrals, 44.

Fricke, vii, 153, 453, 523, 526, 530, 625, 704, 754.

Frobenius, 312, 322, 328.

Fuchs, 133, 771.

Fuchsian functions, 753 (see automorphic

functions).

Fuchsian group, 723, 740;

if real, conserves axis of real quantities,

723;

when real, it is transformed by one

complex substitution and then con-

serves a circle, 737;

division of plane into two portions

within and without the fundamental

circle, 737;

families of, 740;

genus of, 742.

Function defined by algebraic equation is

analytic, 207.

Function on Riemann's surface, construction

of rational, 523 ; special, 626.

Function, Riemann's general definition of, 8;

relations between real and imaginary

parts of, 9

;

equations satisfied by real and imaginary

parts of, 12

;

monogenic, defined, 15

;

uniform, multiform, defined, 16;

branch, and branch-point, defined, 16;

holomorphic, defined, 17

;

meroraorphic, defined, 17;

continuation of a, 67;

region of continuity of, 67;

element of, 67

;

monogenic analytic, definition of, 67 ;

constant along a line or area, if uniform,

is constant everywhere, 73

;

properties of uniform, without essential

singularities, Chap. iv.

;

rational integral, 84;

transcendental, 84;

having a finite number of branches is

a root of an algebraical equation,

210;

potential, 457 (see potential function).

Function possessing an algebraic addition-

theorem, is either algebraic, J>v algebraic

simply-periodic, or algebraic doubly-periodic,

347;

has only a finite number of values for

one value of the argument, 355 ;

if uniform, then either rational, or

simply-periodic, or doubly-periodic,

355;

satisfies a differential equation between

itself and its first derivative, 356.

Functional dependence of complex variables,

form of, adopted, 7

;

analytical conditions for, 7

;

establishes conformal representation,

11.

Functionality, monogenic, not coextensive with

arithmetical expression, 164.

Functions, expression in series of (see series of

functions).

Functions of two variables, Weierstrass's

theorem on regular, 203-6.

Fundamental circle of Fuchsian group, 737

;

divides plane into two parts which are

inverses of each other with regard to

the circle, 738;

essential singularities of the group lie

on, 740.

Fundamental equation for a Riemann's surface

is determined by algebraical functions that

exist on the surface, 529.

Fundamental parallelogram for double period-

icity, 237, 244

;

is not unique, 244.

Fundamental region (or polygon) for division

of plane associated with a discontinuous

group, 724;

can be taken so as to have edges of the

first kind cutting the conserved line

orthogonally, 728, 738;

in this case, called a normal polygon,

727;

which can be taken as convex,

728;

angles of, 730 (see convex normal

polygon);

characteristics of, 732.

Fundamental set of loops, 407.

Fundamental substitutions of a group, 716;

relations between, 717, 726, 732;

one for each pair of conjugate edges of

region, 726.

Fundamental systems of isothermal curves,712

;

given by a uniform algebraic function,

or a uniform simply-periodic function,
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or a uniform doubly-periodic function,

712;

all families of algebraic isothermal curves

are derived from, by algebraic equa-

tions, 713.

Galois, 715.

Gauss, 2, 11, 103, 458, 602, (307, 611, 712,

714.

General conditions for potential function, 460

(see potential function).

Generalised equations of Kleinian group, 745

(see Kleinian group)

;

polyhedral division of space in connec-

tion with, 747.

Generalising factor of transcendental integral

function, 99.

Genus of, algebraic equation associated with a

Riemann's surface, 395;

between automorphic functions, 789

;

connected surface, 371 ; conserved under

birational transformation, 542;

Fuchsian group, 742

;

Eiemann's surface, 395

;

of Riemann's surface equal to deficiency

of associated curve, 403
;

determined by Baker's rule, 404.

Genus zero, equations of, 548-554;

unity, equations of, 554-562 J

two, equations of, 562-565

;

curve of, transformable into a quar-

tic, 565.

Gordan, 208, 247, 407, 415, 453, 518, 519, 569,

579, 719.

Goursat, 82, 105, 172, 222, 223, 243, 342, 530,

676, 679, 752.

Graphical determination of, order of infinity of

an algebraic function, 194
;

the leading term of a branch in the

vicinity of an ordinary point of the

coe£&cients of the equation, 196

;

the branches of an algebraic function in

the vicinity of a branch-point, 199.

Graphical representation of periodicity of func-

tions, 236, 237.

Green, 458.

Greenhill, 227.

Group of linear substitutions, 715;

fundamental substitutions of, 716 ;

relations between, 717

;

continuous, and discontinuous (or dis-

crete), 717

;

properly and improperly discontinuous,

718;

finite, 719 (see finite groups);

modular, with two fundamental sub-

stitutions, 720

;

division of plane into polygons

associated with, 721 et seq.

;

relation between the funda-

mental substitutions, 723;

division of plane for any discontinuous

group, 724 (see region)

;

fundamental region for, 724

;

Fuchsian, 724,740 (see Fuchsian group)

;

when real, conserves axis of real quanti-

ties, 724;

fundamental substitutions of, connected

with the pairs of conjugate edges of a

region, 726

;

seven families of, 740

;

conserved line in relation to the essential

singularities, 741

;

Kleinian, 743 (see Kleinian group)

;

dihedral, 757;

tetrahedral, 759.

Grouping of branches of algebraical function

at a branch-point, 200.

Giinther, 530.

Guichard, 126, 176, 177, 256, 257.

Gutzmer, 53.

Gyld^n, 150.

Hadamard, 54, 113, 803. «

Half-plane represented on a circle, 619;

on a semicircle, 620;

on an infinitely long strip, 621

;

on a sector, 622

;

on a rectilinear polygon, 665 et seq. (see

rectilinear polygon)

;

on a curvilinear polygon, bounded by

circular arcs, 79 et seq. (see curvilinear

polygon, ciirvilinear triangle).

Halphen, 105, 309, 312, 322, 332, 342, 343, 572.

Halphen's birational transformation of plane

curves, 572; used to transform cycle of

branches of algebraic function, 572-577.

Hankel, 153, 223.

Hardcastle, F., 381.

Hardy, 6.

Harnack, 6, 10, 20, 61, 459. -

Heine, 223.

Helmholtz, 642, 646.

Henrici, 459.

Hermite, vii, 23, 48, 95, 103, 113, 134, 165,

219, 220, 222, 302, 322, 324, 326, 333, 842,

518, 531, 541, 547, 767, 771.

Hermite's sections for integrals of uniform

functions, 220.

Herz, 611.
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Hexagon, symmetrical about one diagonal,

area of, represented on half-plane, 678.

Hilbert, 134.

Hill, M. J. M., 69.

Hobson, 6, 21, 102.

Hodgkinson, 690.

Hofmaun, 414.

Holder, 64.

Hole in surface, effect of making, on connec-

tivity, 367.

Holomorphic function, defined, 17;

integral of, round a simple curve, 27;

along a line, 28;

when line is deformed, 29;

when simple curve is deformed, 30;

has a derivative for points within, but

not necessarily on the boundary of,

its region, 36;

superior limit for modulus of derivatives

of, 38

;

expansion of, in the domain of an ordi-

nary point, 50, 60;

within a ring of convergence by

Laurent's theorem, 55.

Holzmiiller, 2, 391, 615, 625.

Hom^n, 172.

Homogeneous form of linear substitutions, 756.

Homogeneous substitutions, 756;

two (^rived from each linear substitu-

tion, 756;

dihedral group of, 758.

nomographic substitution connected with sphe-

rical rotation, 755.

nomographic transformation, or substitution,

625 (see linear substitution).

Homologous poiuts, 237, 724.

Homoperiodic functions, 263;

when in a constant ratio, 263
;

are connected by an algebraical equation,

263.

when equivalent, 265;

Hoiiel, 2.

Humbert, 519, 530.

Hurwitz, 456, 566, 718, 721, 771, 792.

Hydrodynamics, application of conformal repre-

sentation to, 639.

Hyperbolic substitutions, 631, 633;

neither periodic nor infinitesimal, 636;

do not occur in connection with cycles

of corners, 741, 748.

Hyperelliptic equations or curves, 565.?

Hypergeometric series, solution of differential

equation for, connected with conformal repre-

sentation of curvilinear triangle, 685 et seq.

;

cases of algebraical solution , 697 et seq.

Icosahedral (and dodecahedral) division of sur-

face of circumscribed sphere, 696;

equation giving the conformal represent-

ation on a half-plane of each triangle

in the stereographic projection of the

divided surface, 704.

Identical substitution, 716.

Imaginary parts of functions, how related to

real parts, 9

;

equations satisfied by real and, 12.

Improperly discontinuous groups, 718

;

example of, 749 et seq.

Index of a composite substitution, 716;

not entirely determinate, 717.

Infinite circle, integral of any function round,

41.

Infinite class of integral function, 113.

Infinitesimal curve, integral of any function

round, 40.

Infinitesimal substitution, 717.

Infinities, of a function defined, 17;

of algebraic function, 192.

Infinities of doubly-periodic functions, irre-

ducible, are in number equal to the irreducible

zeros, 266

;

and, in sum, are congruent with their

sums, 267

;

of pseudo-periodic functions (see second

kind, third kind).

Infinities of potential function on a Riemann's

surface, 495.

Integral function, 52;

of infinite class, 113.

Integral with complex variables, defined, 20;

elementary properties of, 22, 23

;

over area changed into integral round

boundary, by Riemann's fundamental

lemma, 25;

of holomorphic function round simple

curve is zero, 28

;

of holomorphic function along a line is

holomorphic, 29;

of meromorphic function round simple

curve containing one simple pole, 31

;

round simple curve, containing seve-

ral simple poles, 33 ;
y

round curve containing multiple /
pole, 37;

of any function round infinitesimal circle,

40;

round infinitely great circle, 41;

round any curve enclosing all the

branch-points, 42.

Integral of multiform function, between two

points is unaltered for deformation of path
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not crossing a branch-point or an infinity,

215;

round a curve containing branch-points

anil infinities is unaltered when the

curve is deformed to loops, 216

;

also when the curve is otherwise deformed

under conditions, 217;

round a small curve enclosing a branch-

point, 217;

round a loop, 224;

deformed path adopted for, 225

;

with more periods than two, can be

' made to assume any value by modi-

fying the path of integration between

the limits, 246.

Integral of uniform function round parallelo-

gram of periods, is zero when function is

doubly-periodic, 260;

general expression for, 261.

Integrals, at opposite edges of cross-cut, values

of, differ by a constant, 424;

when cross-cuts are canonical, 426

;

discontinuities of, excluded on a Rie-

mann's surface, 427

;

general value of, on a Eiemann's surface,

428;

of algebraic functions, 436

;

when branch-points are simple, 438;

infinities of, of algebraic functions,

439;

first kind of, 444

;

number of independent, of first kind,

445;

arenot uniform functionsofposition,

445;

general value of, 446;

second kind of, 446 (see second kind);

elementary, of second kind, 446 (see

elementary integrals)

;

third kind of, 450 (see third kind)

;

elementary, of third kind, 452 (see

elementary integral);

connected with integrals of second

kind, 453.

Integration, Eiemann's fundamental lemma in,

24.

Interchange, cyclical, of branches of a function

affected by a branch-point, 185;

of algebraical function, 210.

Interchange of argument and parameter in

normal elementary function of the third

kind, 515.

Interchange, sequence of, along branch-lines

determined, 387.

Interchangeable substitutions, 719.

Invariants, derivatives of elliptic functions with

regard to the, 312

;

as automorphic functions, 785.

Inversion-problem, 517;

of functions of the first kind with several

variables leading to multiply periodic

functions, 517 et seq.

Inversions at circles, even number of, lead to

lineo-linear relation between initial and final

points, 638.

Irreducible circuits, 374;

complete system contains same number
of, 375

;

cannot be drawn on a simply connected

surface, 376;

round two branch-points, 398.

Irreducible equation and singleness of con-

nected surface, 392.

Irreducible, points, 236, 237, 724, 772;

zeros of doubly-periodic function are the

same in number as irreducible infini-

ties, 266;

hkewise the number of level-points,

266;

also of automorphic functions, 787

;

sum of irreducible points is independent

of the value of the doubly-periodic

function, 267.

Isothermal curves, families of plane algebraical,

707;

form of equation that gives such families

as the conformal representation of

parallel straight lines, 710;

three fundamental systems of, 710

;

all, are conformal representations of

fundamental systems by algebraical

equations, 711

;

isolated, may be algebraical by other

relations, 711.

Isothermal lines in conduction of heat, 650.

Jacobi, 108, 223, 228, 239 et seq., 278, 518,

592, 611, 612.

Jacobi's theorem in algebraic equations used to

deduce Abel's Theorem, 592-594.

Jeans, 649.

Jordan, 40, 87, 222, 570, 716.

Kapteyn, 740.

Kinds of edges in region for Fuchsian group,

725 (see edges).

Kinds of pseudo-periodic functions, three prin-

cipal, 320, 321;

examples of other, 342.

Kirchhoff, 628, 641.
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Klein, vii, 153, 381, 417, 453, 458, 518, 523,

526, 530, 545, 566, 579, 612, 625, 631, 679,

704, 716 et seq., 753 et seq.

Kleinian functions, 753 (see automorphic

functions).

Kleinian gionp, 743;

conserves no fundamental line, 748;

generalised equations of, applied to space,

745;

conserve the plane of the complex

variable, 745;

double (or fixed) circle of elliptic

substitution of, 746

;

polygonal division of plane by, 746;

polyhedral division of space in connec-

tion with generalised equations of,

747;

relation between polygonal division of

plane and polyhedral division of space

associated with, 748.

Kcinigsberger, 269, 519.

Kopcke, 161.

Korkine, 608, Oil.

Krause, 342.

Krazer, 519.

Kronecker, 153.

Lachlan, 688, 692.

Lacunary functions, 166.

Lagrange, 608, CU.

Laguerre, 109, 111, 112.

Laguerre's criterion of class of transcendental

integral function. 111.

Lamb, 646.

Lame, 328, 707.

Lame's differential equation, 328
;

can be integrated by secondary periodic

functions, 330;

general solution for integer value of n,

381;

special cases, 332.

Laurent, 50, 54, 57, 58, 82, 252, 253.

Laurent's theorem on the expansion of a func-

tion which converges within a ring, 54.

Law of reciprocity, Brill-Nother's, 528.

Leading term of a branch in vicinity of an

ordinary point of the coefficients of the

equation determined, 196.

Leathern, 646.

Legendre, 228.

Lerch, 161.

Level places are isolated points, 74.

Lhuilier, 372.

Lhuilier's theorem on division of connected

surface into polygons, 372.

Limit, natural, of a power-series, 153.

Lindelof, 49.

Lindemann, 403, 530.

Linear cycles of branches of algebraic func-

tions, 570 ; all cycles can be birationally

transformed into, 577.

Linear differential equations of the second

order, connected with automorphic functions,

791.

Linear substitution, 625;

equivalent to two translations, a reflexion

and an inversion, 626;

changes straiglit lines and circles into

circles in general, 627

;

can be chosen so as to transform any

circle into any other circle, 628;

changes a plane crescent into another of

• the same angle, 628;

fixed points of, 628;

multiplier of, 628;

condition of periodicity, 629;

parabolic, 681

;

and real, 632;

elliptic, 631;

and real, 633
;

is either periodic or infinitesimal,

635;

hyperbolic, C31

;

and real, 633

;

loxodromic, 631, 635

;

can be obtained liy any number of pairs

of inversions at circles, 637
;

group of, 715 et seq. (see group)

;

normal form of, 715;

identical, 716

;

algebraical symbols to represent, 716;

index of composite, 716;

infinitesimal, 717;

interchangeable, 719

;

in homogeneous form, 756.

Lines of flow in conduction of heat, 649,

650.

Liouville, 190, 249, 257, 269.

Liouville's theorem on doubly-periodic func-

- tions, 281.

Lippich, 363, 881.

Logarithmic differentiation of converging

products is possible, 92.

Logarithmic infinities, integral of third kind

on a Riemaun's surface must possess at

least two, 452.

Loop-cuts, defined, 862

;

changed into a cross-cut, 367;

effect of, on connectivity, 367;

on number of boundaries, 371.
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Loops, defined, 182;

effect of a loop on a branch, is unique,

184;

symbol to represent effect of, 405;

change of, when loop is deformed,

406;

fundamental set of, 407

;

simple cycle of, 408;

canonical form of complete system of

simple, 409.

Love, 672.

Loxodromic substitutions, 631, 635;

neither periodic nor infinitesimal, 637

;

do not occur in connection with cycles

of corners, 747.

Liiroth, 407, 408, 551, 554.

Magnification in conformal representation, 11,

603;

in star-maps, 611.

Mair, 381.

Major fractional factor, 477.

Maps, 611.

Mathews, 751.

Mathieu, 652.

Maximum and minimum values of potential

function for a region he ©n its boundary,

476.

Maxwell, 458.

Mercator's projection of sphere, 610.

Meromorphic function, defined, 17

;

integral unchanged by deformation of

simple curve in part of plane where

function is uniform, 31;

integral round a simple curve, containing

one simple pole, 31

;

round a curve containing several

simple poles, 33

;

round a curve containing multiple

pole, 36;

cannot, without change, be deformed

across pole, 39;

is form of uniform function with a

limited number of accidental singu-

larities, 85

;

all singularities of rational, are acci-

dental, 87.

Meyer, 707.

Michell, 670.

Minding, 712.

Minimum number of integrals in terms of

which any number is expressible by Abel's

Theorem, 599 ; the same as genus of equa-

tion, 599.

Minor fractional factor, 477.

Mittag-Leffler, vi, 68, 69, 70, 134 et seq.,

176, 322, 324, 326.

Mittag-Lefiler's theorem on the expression of a

uniform function over its whole region of

existence, 69.

Mittag-LetSer's theorems on functions having

an unlimited number of singularities, dis-

tributed over the whole plane, 134;

distributed over a finite circle, 133.

Mobius, 372, 623, 704.

Modular-function defined, 767;

connected with elliptic quarter-periods,

767;

(see modular group)

;

as automorphic function, 792.

Modular group of substitutions, 719
;

is improperly discontinuous for real

variables, 718
;

division of plane into polygons, asso-

ciated with, 720 et seq.

;

relation between the fundamental sub-

stitutions of, 723;

for modulus of elliptic integral, 768

;

for the absolute invariant of an elliptic

function, 770.

Moduli of periodicity, for cross-cuts, 427

;

values of, for canonical cross-cuts, 427 ;

number of linearly independent on a

surface, 428;

examples of, 429 et seq.

;

introduced in proof of existence-theorem

,

487 et seq.

;

of function of first kind on a Eiemann's

surface, 498 et seq.;

relation between, of a function of first

kind and a function of second kind, 503

;

properties of, for normal function of

first kind, 508;

of normal elementary function of second

kind are algebraic functions of its

infinity, 510;

of normal elementary function of third

kind are expressed as normal functions

of first kind of its two infinities, 513.

Modulus of variable, 3.

Monogenic, defined, 15;

function has any number of derivatives,

36;

analytic function, 67.

Monogenic functionality not coextensive with

arithmetical expression, 164.

Multiform function, defined, 16;

elements of, in continuation, 68;

expression of, in vicinity of a branch-

point, 187;
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defined by algebraic equation, 190 (see

algebraic function)

;

integral of (see integral of multiform

function)

;

is uniform on Riemann's surface, 384,

390.

Multiple circuits, 374.

Multiple periodicity, 247;

of uniform function of several variables,

248.

Multiplication-theorem, 344.

Multiplicity of zero, 75

;

of pole, 80;

of a function on a Riemann's surface,

421.

Multiplier of linear substitution, 628.

Multipliers of factorial functions at cross-cuts,

532;

forms of, when cross-cuts are canonical,

582.

Multiply connected surface, 360

;

defined, 360;

connectivity modified by cross-cuts, 364

;

by loop-cuts, 367;

and by slit, 368

;

boundaries of, affected by cross-cuts, 370

;

relation between boundaries of, and con-

nectivity, 371

;

divided into polygons, Lhuilier's theorem

on, 372;

number of circuits in complete system

of circuits on, 377.

Multiply-periodic uniform functions of n vari-

ables, cannot have more than 2n periods,

248;

obtained by inversion of functions of

first kind, 515 et seq.

Natural limit, of a power-series, 153;

of part of plane, 689

;

for pseudo-automorphic function with

certain families of groups, 777.

Negative curvature, surfaces of constant, 712.

Negative edge of cross-cut, 424, 499.

Nekrassoff, 133.

Netto, 716.

Neumann, vii, 5, 6, 42, 182, 190, 363 et seq.,

384, 401, 458, 459, 518, 531, 535, 586.

Neumann's sphere used to represent the vari-

able, 4;

used for multiform functions, 182.

Normal elementary function of second kind,

509 (see second kind of functions).

Normal elementary function of third kind, 510

(see third kind of functions).

Normal form of equations subject to birational

transformation, 567-569.

Normal form of linear substitution, 715.

Normal functions of first kind, 508 (see first

kind of functions).

Normal polygon for division of plane, 72H;

can be taken convex, 728 (see convex

normal polygon).

Normal surface, Klein's, as a surface of refer-

ence of given connectivity and number of

boundaries, 381, 413.

Nother, 404, 528, 530, 570.

Number of zeros of uniform function in any

area, 75, 77, 82, 86

;

of periodic functions (see doubly-periodic

functions, second kind, third kind)

;

of ijseudo-automorphic functions (see

pseudo-automorphic functions).

Octahedral (and cubic) division of surface of

circumscribed sphere, 695

;

equation giving the conformal repre-

sentation on a half-plane of each

triangle in the stereographic projec-

tion of the divided surface, 701.

Open cycles of corners in normal polygon for

division of plane by Fuchsian group, 710

(see corners);

do not occur in division of plane by

Kleinian group, 747.

Order (Borel's) of integral function, 113.

Order of a function on a Riemann's surface,

420.

Order of doubly-periodic function, 259.

Order of infinity of a multiform function deter-

mined, 193.

Ordinary point of a function, 60;

domain of, 60.

Origin of cycle of branches of algebraic

function, 570.

Oscillating series, 21.

Painleve, 70, 134, 165.

Parabola, area without, represented on a circle,

618;

area within, represented on a circle, 619.

Parabolic substitutions, 631, 632;

neither periodic nor infinitesimal, 636;

occur in connection with cycles of cor-

ners, 741, 747.

Parallelogram for double periodicity, funda-

mental, 238, 243;

edges and corners in relation to zeros

and to accidental singularities of func-

tions, 258.
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Parametric integer of thetafucbsian functions,

784.

Path of integration, 20;

can be deformed in region of holomor-

phic function without affecting the

vakie of the integral, 30;

on a Kiemanu's surface, can be de-

formed except over a discontinuity,

422.

Periodic Hnear substitutions, 629;

are elhptic, 633.

Periodicityof uniform functions, of one variable,

285 et seq.

;

of several variables, 247.

Periodicity, modulus of, 427 (see moduli of

periodicity).

Periods of a function of one variable, 285

;

cannot have a real ratio when the func-

tion is uniform, 237;

cannot exceed two in number indepen-

dent of one another if function be

uniform, 242.

Permanent equation in Abel's Theorem, 581.

Phragmen, 134, 444, 457, 666.

Picard, 64, 66, 166, 329, 348, 491, 530, 560,

566, 569, 751.

Pinoherle, 174, 719.

Plane used to represent variation of complex

variable, 2.

Pochhammer, 222.

Poincare, vii, 39, 113, 114, 166, 172, 342, 844,

566, 623, 632 et seq., 637, 716 et seq., 740,

752 et seq.

Poisson, 458.

Poles of a function defined, 17, 61.

Polyhedral division of space in connection with

generalised equations of group of Kleinian

substitutions, 748.

Polyhedral functions, connected with conformal

representation, 696 et seq.

;

for double-pyramid, 697, 766

;

for tetrahedron, 698-764

;

for octahedron and cube, 700

;

for icosahedron and dodecahedron, 703.

Polynomials, adjoint, 445.

Polynomials, analytic function represented by

serie.s of, 70, 134.

Polynomials on a Riemann's surface, adjoint,

lead to special functions, 527.

Position on Riemann's surface, most general

uniform function of, 417;

their algebraical expression, 419;
has as many zeros as infinities, 420.

Positive edge of cross-cut, 424, 459.

Potential function, defined, 457;

F. P.

conditions satisfied by, when derived

from a function of position on a Rie-

mann's surface, 457;

general conditions assigned to, 460;

boundary conditions assigned to, 460;

Green's integral-theorems connected

with, 461 et seq.

;

is uniquely determined for a circle by

general conditions and continuous

finite boundary values, 463

;

integral expression obtained for,

satisfies the conditions, 467
;

the boundary values for circle may
have finite discontinuities at a

limited number of isolated points,

470;

properties of, for a circle, 475

;

maximum and minimum values of, in a

region, lie on the boundary, 476
;

is determined by general conditions and

boundary values, for area conformally

representable on area of a circle, 478

;

for combination of areas when it

can be obtained for each sepa-

rately, 480;

for area containing a winding-point,

485;

for any simply connected surface,

486;

introduction of cross-cut moduli for, on

a doubly connected surface, 487 ;

on a triply connected surface, 490
;

on any multiply connected surface,

491;

number of linearly independent, every-

where finite, 495, 505

;

introduction of assigned infinities, 495 ;

classes of, determined, 496
;

classes of complex functions derived from,

with the respective conditions, 496.

Power-series, as elements of an analytical

function, 67 et seq., 152 et seq.;

region of continuity of, consists of one

connected part, 152

;

may have a natural limit, 153.

Primary factor, 101.

Primitive parallelogram of periods, 244.

Pringsheim, 21, 91, 162, 239.

Product-form of transcendental integral func-

tion with infinite number of zeros over whole

plane, 99.

Products, convergence of, 91.

Prym, 400, 401, 417, 459, 519, 531.

Pseudo-automorphic functions, 777 (see theta-

fucbsian functions).

54
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Pseudo-periodic functions, Chap, xii.;

of the first kind, 320;

of the second kind, 321

;

properties of (see second kind)

;

of the third kind, 321

;

properties of (see third kind)

;

on a Kiemaun's surface (see factorial

functions).

Pseudo-periodicity of the j'-function, 301

;

of the (T-function, 305.

Puiseux, 197.

Quadrilateral, area of, represented on half-

plane, 676;

determination of fourth angular point,

three being arbitrarily assigned, 678.

Quartic transformable into sextic curve, 546

;

into another quartic, 547.

Raffy, 396.

Ramification of a Riemann's surface, 395.

Ratio of periods of uniform periodic function

cannot be real, 238.

Rational function on Riemann's surface, how

to construct, 523.

Rational integral of differential equation of

first order, 283.

Rational representation of variables in equation

of genus zero, 548.

Rational transformation, 537, 579.

Rauseuberger, 342, 719.

Real and imaginary parts of functions, how

related, 9;

equations satisfied by, 12
;

each can be deduced from the other, 12.

Real potential function, 457 (see potential

function).

Real substitutions, 723 (see Fuchsian group).

Reciprocity, Brill-Niither's law of, 528.

Reconcileable circuits, 374.

Rectangle, area within, represented on a circle,

613;

and on an ellipse, 615;

on a lialf-plaiie, 674, 675.

Rectilinear polygon, convex, represented on

half-plane, 666 et se<i.;

function for representation of, 668

;

equation which secures the representa-

tion of, 668

;

three angular points (but not more) may
be arbitrarily assigned in the repre-

sentation, 670

;

determination of fourth for quadri-

lateral, 677;

three sides, 673 (see triangle);

four sides, 674 (see rectangle, square

quadrilateral);

limit in the form of a convex curve, 678.

Reducible circuits, 374.

Reducible points, 236, 237.

Region of continuity, of a uniform functioii,

67, 150

;

bounded by the singularities, 68;

of a power-series consists of one con-

nected part, 152;

may have a natural limit, 153

;

of a series of uniform functions, 153 et

seq.;

of multiform function, 179.

Regions in division of plane associated with

discontinuous group:

fundamental, 724;

uniform correspondence between, 724 ;

contiguous, 724;

edges of, 724 (see edges)

;

corners of, 724 (see corners).

Regular functions of two variables, Weier-

strass's theorem on, 204-6.

Regular in vicinity of ordinary point, function

is, 60.

Regular polygon, area of, couformally repre-

sented on a circle, 678.

Regular singularities of algebraical functions,

192.

Regular solids, planes of symmetry of, dividing

the surface of the circumscribed sphere, 694

et seq.

Representation, conformal, 11 (see conformal

representation).

Representation of complex variable on a plane,

2;

and on Neumann's sphere, 4.

Residue of function, defined, 48;

when the function is doubly-periodic, the

sum of its i-esidues is zero, 261.

Residues (Cauchy's) in Abel's Theorem, 585.

Resolution of Riemann's surface, 398 et seq.;

how to choose cross-cuts for, 399

;

canonical, 402;

when in its canonical form, 413.

Revolution, surface of, conformally represented

on a plane, 608.

Riemann, v, vi, vii, 8, 10, 15, 24, 158, 214, 220,

359 et seq., 372 et seq., 416 et seq., 421,

453, 458, 459, 509, 518, 521, 527, 530, 543,

545, 548, 567, 611, 654, 792.

Riemann, J., 459.

Riemann-Roch's theorem on algebraic functions

having assigned infinities, 521; comple-

mented by Brill-Ntither law, 528.
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Eiemann's definition of function, 8.

Kiemann's fundamental lemma in integration,

24.

Biemann's surface, aggregate of plane sheets,

382;

used to represent algebraic functions, 384

;

sheets of, joined along branch-lines, 385

;

can be taken in spherical form, 393;

connectivity of, with one boundary, 394
;

with several boundaries, 396;

genus of, 395

;

ramification of, 395;

irreducible circuits on, 397;

resolution of, by cross-cuts into a simply

connected surface, 398 et seq.

;

canonical resolution of, 402

;

form of, when branch-points are simple,

411;

deformation to canonical form of,

412

;

resolution of, in canonical form, 414;

uniform functions of position on, 417;

their expression and the equation

satisfied by them, 419;

have as many zeros as infinities,

420;

integrals of algebraic functions on a, 423

et seq.;

existence-theorem for functions on a

given, 455

;

functions on (see first kind, second kind,

third kind of functions, algebraic

functions).

Eiemann's theorem on conformalrepresentation

of any plane area, simply connected, on area

of a circle, 654.

Bitter, 754.

Eoch, 521, 530.

Boots of a function, defined, 17 ; of an algebraic

equation, 88.

Eolations, connected with linear substitutions,

754^-

groups of for regular solids, 757

;

dihedral group of, 757

;

tetrahedral group of, 759.

Eouche, 53.

Bowe, 580,

Eunge, 134.

Salmon, 403, 415, 524.

Schlafli, 666.

Schlesinger, 754.

Schlomilch, 2.

Schonflies, 679, 752.

Schottky, 653, 753.

Schroder, 162.

Schwarz, vii, 13, 70, 161, 344, 455 et seq., 491,

566, 617, 619, 654 et seq.

Schwarz-Christofifel transformation, 670.

Schwarz's symmetric continuation, 70.

Schwarzian derivative, used in conformal re-

presentation, 657, 680 et seq.

Scott, C. A., 578.

Second kind of pseudo-periodic function, 321

;

Hermite's expression for, 324, 326;

limiting form of, when function is

periodic of the first kind, 325,

327

;

Mittag-LefHer's expression for, in inter-

mediate case, 325, 327

;

number of irreducible infinities same

as the number of irreducible zeros,

327;

difference between the sum of irreducible

infinities and sum of irreducible zeros,

328;

expressed in terms of the (7-function,

328;

used to solve Lamp's differential equa-

tion, 328.

Second order of doubly-periodic functions (see

also doubly-periodic functions), properties of,

Chap. XI.

;

of second class and odd, 286;

connected with Jacobian elliptic

functions, 289;

addition-theorem for, 290

;

of first class and even, illustrated by

Weierstrassian elliptic functions, 293

et seq.
;

of second class and even, 313 et seq.

Second kind, of functions on a Eiemann's sur-

face, 498

;

relation between moduli of periodicity of

functions of, and those of a function

of first kind, 503

;

elementary function of, is determined by

its infinity and moduli, 509;

normal elementary function of, 509
;

moduli of periodicity of, 510;

used to construct algebraic functions

on a Biemann's surface, 520.

Second kind, of integrals on a Eiemann's sur-

face, 446;

elementary integrals of, 446;

general value of, 448

;

elementary integrals of, determined by

an infinity except as to integral of

first kind, 448

;

number of, 449

;



852

(see second kind of functions)

;

sum of, expressed by Abel's Theorem, 594.

Secondary periodic function, 322 (see second

kind of pseudo-periodic function).

Sections for integrals of uniform functions,

Hermite's, 69, 165, 220.

Sector on a half-plane, G22.

Seidel, 162.

Semicircle represented on a half-plane, 620;

on a circle, 620.

Sequence of interchange along branch-lines

determined, 387.

Series, convergence of, 21.

Series of functions, expansion in, .135 et seq.

;

region of continuity of, 156;

represents the same function throughout

any connected part of its region of

continuity, 157;

may represent different functions in dis-

tinct parts of its region of continuity,

162.

Series of polynomials representing analytic

function, 69, 134.

Series of powers, expansion in, 50 et seq.

;

function determined by, is the same

throughout its region of continuity,

152;

natural limit of, 153.

Serret, 716.

Sextic hyperelliptic curve transformable into

quartic, conditions, 546.

Sheets of a Eiemann's surface, 382

;

relation between variable and, 384

;

joined along branch-lines, 385.

Siebeck, 615, 710.

Simple branch-points for algebraic function,

208;

number of, 209, 403 ;

in connection with loops, 404;

canonical arrangement of, 411.

Simple circuit, 374.

Simple curve, defined, 24

;

used as boundary, 369.

Simple cycles of loops, 408
;

number of independent, 409.

Simple element for tertiary periodic functions,

of positive class, 338
;

of negative class, 340.

Simply connected surface, 360;

defined, 362;

effect of cross-cut on, 363

;

and of loop-cut on, 367;

circuits drawn on, are reducible, 376

;

winding-surface containing one winding-

point is, 395.

Simply infinite system of zeros, function having,

101.

Simply-periodic functions, 237;

graphical representation, 237, 251;

properties of, with an essential singu-

larity at infinity, 252 et seq.

;

when uniform, can be expressed as series

of powers of an exponential, 253;

of most elementary form, 255;

limited class of, considered, 257

;

possess algebraical addition-theorem,

345.

Simply-periodic integral of differential equa-

tion of first order, 283.

Single connected surface associated with irre-

ducible equation or with repetition of

irreducible equation, 393.

Singular line, 165.

Singular points, 17.

Singularities, accidental, 17 (see accidental

singularity)

;

essential, 19 (see essential singularity):

discrimination between, 61, 80;

bound the region of continuity of the

function, 67;

must be possessed by uniform functions,

78;

of algebraical functions, regular, 192.

Singularity of a coefficient of an algebraic equa-

tion is an infinity of a branch of the function,

193.

Slit, effect of, on connectivity of surface, 368.

Special function on Riemann's surface, 508

;

is quotient of one adjoint polynomial by

another, 517.

Species of essential singularity, 177.

Sphere conformally represented on a plane,

609;

Mercator's projection, 609;

stereographic projection, 610.

Spherical form of Riemann's surface, 393

;

related to plane form, 393.

Spherical surface with holes, connectivity of,

368.

Spheroid, oblate, conformally represented on

plane, 612.

Square, area within, represented on a circle,

615, 674 ;

on a lialf-plane, 673, 675;

area without, represented on a circle, 674.

Stahl, 519, 753, 788.

Star-shaped region of continuity, constructed

by Mittag-Leffler, 69.

Stereographic projection of sphere on plane as

a conformal representation, 610;
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of curvilinear triangle on the surface of

a sphere, 693.

Stickelberger, 312, 519.

Stieltjes, 172, 173.

Stokes, 458.

Stolz, vi.

Straiglit line changed into a circle by a linear

substitution, 626.

Stream-lines, 640, 641 et seq.

Strip of plane, infinitely long, represented on

half-plane, 621;

on a circle, 619;

on a cardioid, 662.

Subcategories of cycles of coi-ners, 741.

Sub-rational representation of variables in

equation of genus zero, 551.

Substitution, linear or homographic, 625 (see

linear substitution).

Sum of residues of doubly-periodic function,

relative to a fundamental parallelogram, is

zero, 261.

Sum of transcendental integrals, Abel's expres-

sion for, 585 : examples of, 587-590 : of first

kind, 590: of second kind, 594 : of third kind,

597: minimum number equivalent to, 599.

Surface, connected, 359;

has a boundary assigned, 360, 368, 375;

effect of any number of cross-cuts on, 363;

connectivity of, 364

;

affected by cross-cuts, 366;

by loop-cuts, 367

;

and by slit, 368 ;

genus of, 371

;

of constant negative curvature repre-

sented on a plane, 613, 712;

supposed bifacial, not unifacial, 372;

Lhuilier's theorem on division of, into

polygons, 372;

Eiemann's (see Eiemann's surface).

Symbol for loop, 405

;

change of, when loop is deformed, 406.

Symmetric continuation, Schwarz's, 70.

System of branch-lines for a Riemann's surface,

387.

System of zeros for transcendental function,

simply-infinite, 101

;

doubly-infinite, 104;

cannot be triply-infinite arithmetical

series, 108

;

used to define its class, 109.

Tannery, vi, 162.

Tannery's series of functions representing dif-

ferent functions in distinct parts of its region

of continuity, 162.

Teixeira, 174.

Tertiary periodic functions, 322 (see third kind).

Test, analytical, of a branch-point, 186.

Tetrahedral division of surface of circumscribed

sphere, 695;

equation giving the conformal represent-

ation on a half-plane of each triangle

in the stereographic projection of the

divided surface, 699.

Tetrahedral function, automorphic for tetra-

hedral group, 764 (see polyhedral functions).

Tetrahedral group, of rotations, 759

;

of substitutions, 761

;

in another form, 762;

function automorphic for, 764.

Thetafuchsian functions, 776;

their essential singularities, 776 ;

exist either only within the fundamen-

tal circle, or over whole plane, accord-

ing to family of group, 777;

pseudo-automorphic for infinite group,

778;

number of irreducible accidental singu-

larities of, 778

;

number of irreducible zeros of, 782

;

parametric integer for, 784;

quotient of two with same parametric

integer is automorphic, 785.

Third kind, of functions on a Eiemann's sur-

face, 498;

normal elementary function of, 511;

moduli of periodicity of, 512;

elementary functions of, 511;

interchange of argument and para-

meter in, 513;

used to construct Appell's factorial

functions, 533 et seq.

Third kind, of integrals on a Eiemann's surface,

450;

sum of logarithmic periods of, is zero,

451;

must have two logarithmic infinities at

least, 452;

elementary integrals of, 452 (see third

kind of functions);

sum of , expressed by Abel's Theorem, 597.

Third kind of pseudo-periodic function, 321;

canonical form of characteristic equa-

tions, 322

;

relation between number of irreducible

zeros and number of irreducible infini-

ties, 333

;

relation between sum of irreducible zeros

and sum of irreducible infinities, 334

;

expression in terms of (r-function, 335

;
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of positive class, 335
;

expressed in terms of simple ele-

ments, 337;

of negative class, 338

;

expressed in terms of Appell's ele-

ment, 340;

expansion in trigonometrical series,

340.

Thomie, 530.

Thomson (Lord Kelvin), 458.

Thomson, Sir J. J., 649.

Three principal classes of functions on a

Riemann's surface, 498 (see first kind, second

kind, third kind, of functions).

Tractrix and surface of constant negative

curvature, 612, 672.

Transcendental function, 84;

it has 2 = 00 for an essential singu-

larity, 90;

with unlimited number of zeros over the

whole plane, in form of a product,

92 et seq.

;

most general form of, 99

;

having simply-infinite system of zeros,

102;

having doubly-infinite system of zeros,

104;

Weierstrass's product form of, 107

;

cannot have triply-infinite arithmetical

series of zeros, 108

;

class of, determined by zeros, 109;

simple, of given class, 112.

Transcendental integrals, Abel's expression for

sum of, 585: examples of, 587-590: of first

kind, 590 : of second kind, 594 : of third

kind, 597.

Transcendents, Abel's Theorems relating to,

579-601.

Transformation, birational, 537-579; effect of,

on irreducible equation, 539.

Transformation, homographic, 625 (see linear

substitution).

Transformation, rational, 537, 579; effect of,

on irreducible equation, 540.

Transformation, uniform, 415; birational (see

birational transformation).

Triangle, rectilinear, represented on a half-

plane, 671; with special cases, 672;

separate cases in which representation is

complete and uniform, 672;

curvilinear, represented on a half-

plane, 685 (see curvilinear tri-

angle).

Trigonometrical series, expansion of tertiary

periodic functions in, 340.

Triply-infinite arithmetical system of zeros can-

not be possessed by transcendental function,

108.

Triply-periodic uniform functions of a single

variable do not exist, 243;

example of this proposition, 435.

Two equations of genus, 562-565.

Two-sheeted surface, special form of branch-

lines for, 390.

Two variables, Weierstrass's theorem on

regular functions of, 204-6.

Unconditional convergence of -series, 21 ; of

products, 91.

Unicursal equations or curves, 548.

Uuifacial surfaces, 372, 380.

Uniform convergence of series, 21 ; of pro-

ducts, 91.

Uniform function, defined, 16.

Uniform function, must assume any value at

an essential singularity, 61, 64, 115;

has a unique set of elements in continua-

tion, 68;

is constant everywhere in its region if

constant over a line or area, 72

;

number of zeros of, in an area, 77

;

must assume any assigned value, 78;

must have at least one singularity, 78

;

is polynomial if only singularity be

accidental and at infinity, 83

;

is rational and meromorphic if there be

no essential singularity and a finite

number of accidental singularities,

85;

transcendental (see transcendental func-

tion) ;

Hermite's sections for integrals of, 220

;

of one variable, that are periodic, 238 et

seq^;

of several variables that are periodic,

247;

simply-periodic (see simply-periodic uni-

form functions);

doubly-periodic (see doubly-periodic uni-

form functions).

Uniform function of position on a Riemann's

surface, multiform function becomes, 383,

390;

most general, 418;

algebraic equation determining, 419

;

has as many zeros as infinities, 420.

Uniform integrals of differential equations of

the first order, and their characters : con-

ditions for, 283.

Uniformity of elliptic functions, 233-235.
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Uniformly converging function -series can be

differentiated, 156.

Unity, equations of genus, 554-562.

Unlimited number of essential singularities,

functions possessing. Chap. vii.

;

distributed over the plane, 134 ;

over a finite circle, 140.

Velocity, and velocity potential, in hydro-

dynamics, 639 et seq.

Vivanti, 113.

Von der Miihll, 611, 707.

Von Mangoldt, 753, 788.

Voss, 606.

Watson, 103.

Weber, 223, 625, 753, 767, 771.

Weierstrass, v, vi, vii, 15, 51, 61 et seq., 64, 67,

68, 92 et seq., 118 et seq., 134 et seq., 166,

173, 204, 277, 299, 344, 358, 518, 519,

528.

Weierstrass's J/- test for uniform convergence,

292.

Weierstrass's ^-function, 296;

is doubly-periodic, 297

;

is of the second order and the first class,

298;

its differential equation, 299

;

its addition-theorem, 307

;

derivatives with regard to the invariants

and the periods, 311.

Weierstrass's cr-function, 293;

its pseudo-periodicity, 305

;

periodic functions expressed in terms of,

306;

its quasi-addition-theorem, 307

;

differential equation satisfied by, 312;

used to construct secondary periodic

functions, 328;

and tertiary periodic functions, 335.

Weierstrass's f-function, 292;

its pseudo-periodicity, 301;

periodic functions expressed in terms of,

302;

relation between its parameters and

periods, 303;

its quasi-addition-theorem, 307.

Weierstrass's product-form for transcendental

integral function, with infinite number of

zeros over the plane, 92 et seq.

;

with doubly-infinite arithmetic series of

zeros, 107.

Weierstrass's theorem on regular functions of

two variables, 204-6.

Weyr, 103.

Whittaker, 103.

Wiener, 161.

Winding-point, 392.

Winding-surface, defined, 392;

portion of, that contains one winding-

point is simply connected, 395.

Witting, 114.

Zero, equations of genus, 548-554.

Zero of a function on Riemann's surface, how

estimated in multiplicity, 421.

Zeros of doubly-periodic function, irreducible,

are in number equal to the irreducible infini-

ties and the irreducible level points, 266

;

and in sum are congruent with their

sum, 267.

Zeros of uniform function are isolated points, 74

;

form of function in vicinity of, 75

;

in an area, number of, 75, 77, 82, 86

;

of transcendental function, when simply-

infinite, 102;

when doubly-infinite, 104;

cannot form triply-infinite arith-

metical series, 108.

Zuhlke, 690.
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