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Introduction

This book is encompassing those mathematical methods used in describing and solving
second order partial differential equation (PDE) of elliptic, hyperbolic and parabolic

type.

Our priority is to make this difficult subject accessible to those interested in applying
mathematics using differential equations as models. It is accomplished by adding some
fundamental results from ordinary differential equations (ODE) regarding flows and
their differentiability properties which are useful in constructing solution of Hamilton
Jacobi equations.

The analysis of first order Cauchy-Kowalevska system is limited to their application
in constructing analytical solution for hyperbolic and elliptic equations which are fre-
quently used in Physics and Mechanics.

The exposition is subjected to a gradually presentations and the classical methods
called as Fourier, Riemann, Fredholm integral equations and the corresponding Green
functions are analyzed by solving significant examples.

The analysis is not restricted to the linear equations. Non linear parabolic equation
or elliptic equations are included enlarging the meaning of the weak solution.

This university text includes a Lie-geometric analysis of gradient systems of vector
fields and their algebraic representation with a direct implication in treating both first
order overdetermined systems with singularities and solutions for first order PDE.
We are aware that a scientific presentation of PDE must contain an additional text
introducing several results from multidimensional analysis and it is accomplished in-
cluding Gauss-Ostrogadsky formula, variational methods of deriving PDE and recov-
ering harmonic functions from its boundary values (see appendices LILIII of chapter
III).

Each chapter of this book includes exercises and problems which can be solved pro-
vided the given hints are used.

Partially, some subjects of this university-text have been lectured at Abdus Salam
School of Mathematical Sciences (ASSMS), Lahore and it is our belief that this pre-
sentation deserve a wider distribution among universities having graduate program
in mathematics.

The authors express their gratitude to Abdus Salam School of Mathematical Sciences
(ASSMS) of GC University Lahore for their encouragements and assistance in writing



2 Introduction

this book.

This book also includes two subjects that encompass good connection of PDE with
differential geometry and stochastic analysis. The first subject is represented by gra-
dient systems of vector fields and their influence in solving first order overdetermined
systems. The second subject introduces approximations of SDE by ODE which can
be meaningful in deriving significant results of stochastic partial differential equa-
tions(SPDE) represented here by stochastic rule of derivation.Our belief is that such
subjects must be presented in any introductory monography treating PDE.



Chapter 1

Ordinary Differential
Equations(ODE)

1.1 Linear System of Differential Equations

A linear system of differential equations is described by the following scalar differential
equations
dy’
dx

= Zaij(x)yj+bi(x),x€I§R,i=1,2,...,n (1.1)
j=1

where the scalar functions a;; and b; are continuous on the interval I C R (a;;,b; €
C(I;R)). Denote z = col(y',...,y") € R"™ as the column vector of the unknown
functions and rewrite (II]) as a linear vector system

dz

d—zA(x)z—i—b(gc),ergR,zeR" (1.2)
x

where A = (a;;), (4,7) € {1,...,n} stands for the corresponding n x n continuous
matrix valued function and b = col(by,...,b,) € R™ is a continuous function on [

valued in R™. A solution of the system ([2) means a continuous function z(z) :
I — R™ which is continuously differentiable (z € C(I;R™)) and satisfies (L2)) for any
zel, ie g—;(:zr) = A(z)z(x) + b(x), for all x € I. The computation of a solution as a
combination of elementary functions and integration is not possible without assuming
some particular structures regarding the involved matrix A. As far as some qualitative
results are concerned (existence and uniqueness of a solution ) we do not need to add

new assumptions on the A and a Cauchy problem solution receives a positive answer.

3



4 CHAPTER 1. ORDINARY DIFFERENTIAL EQUATIONS(ODE)

For a fixed pair (zg,z0) € I X R™ we define {z(z) : © € I} as the solution of the
system ([[2) satisfying z(z¢) = 2o (Cauchy problem solution). To prove uniqueness
of a Cauchy problem solution we recall a standard lemma.

Lemma 1.1.1. (Gronwall) Let p(x),a(x) : [a,b] — [0,00) and a constant M > 0 be
gien such that the following integral inequality is valid

olx) < M+ /I a(t)p(t)dt, z € [a,b]

where o and ¢ are continuous scalar functions. Then

b
p(z) < Mexp/ a(t)dt,¥Yx € [a,b]

a

Proof. Denote ¢(x) = M + f: a(x)e(t)dt and a straight computation lead us to
p(r) < ¢(x), a € [a,b] and

dyp(z)
W) _ o (a)e(e) < al@)(@), @ € 0,
{ wlay= M (1.3)

The differential inequality in (I3]) can be written as a scalar equation

dy(xz) _
W) _ o(2)p(z) + 6(), o € 0,
{w?@— M (1.4)

where 0(z) < 0,Vz € [a,b]. Using the integral representation of of the scalar equation
solution we get

x

P(z) = [exp/ a(t)dt]{M—i—/w(exp—/ a(s)ds)d(t)dt}

a
and as consequence(see (z) < 0,z € [a, b])we obtain

b
o(x) <P(z) < Mlexp / a(t)dt],Vz € [a, b

a

Theorem 1.1.2. (Existence and uniqueness of Cauchy problem solution)

Let A(z) : I — Mpxn(n x n matrices) and b(x) : I — R™ be continuous functions
and xg € I CR™ be fized. Then there exists a unique solution z(x) : I — R™ of the
system satisfying the initial condition z(xg) = zo (Cauchy condition).

Proof. We notice that a solution {z(z) : © € I} of (L2 satistying z(x¢) = 2o fulfils
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the following integral equation

2(z) =z + /I[A(t)z(t) +b(b)|dt,Va € T (1.5)

0

and conversely any continuous function z(x) : I — R™ which satisfies (LT) is contin-
uously differentiable

and d
d_z = A(z)z+b(z),Vx eI, z(x) = 2o
T

We suggest to look for a continuous function satisfying integral equation (LH]) and it
is accomplished using Picard’s iteration method which involves the following sequence
of continuous functions {zx(x) : ¢ € I'}i>o

20(x) = 20, 2zp41(x) = 20 + /CE [A(t)z(t) + b(2)]dt (1.6)

Zo

For each compact interval J C I, zg € J, the sequence {zx(z) : © € J}i>, C C(J;R™)
(Banach space) is a Cauchy sequence in a Banach space, where

Zi1(x) = 20 + w1 + v + Upg1, U1 (x) = 241 (x) — 25(x),5 =0 (1.7)

In this respect, {zi(x) : @ € J} rewritten as in (7)) coincides with a partial sum of
the following series

Z(x):zo—i—ul—i-UQ...-i-’uk-i-...,IEJ (1'8)

and the convergence of {> (z) : € J} C C(J;R™) can be obtained using a convergent
numerical series as an upper bound for it. The corresponding convergent numerical
series is of exponential type and it is contained in the following estimate. Using
standard induction argument we prove

kj+1|;v _ x0|j+1

T Vi=0,z€J (1.9)

| ujpa(@) |< (14 20 [)
where
k = max(maxicy | A(t) |, maxicy | b(t) |)
For j = 0 we see easily that | uy |< (14| 20 |)k | (z — 20) |,z € J, and using
(o) = 542(0) = 2y (0) = [ A@usa ()
z0
we get
l(z—wo)] kI+2) (2 — 20)] 712

| usia(2) |< k/ [ (0) |t < (| 20 )™

,zxeJ (1.10)

provided {uji1(z) : * € J} satisfies (L9). As a consequence, the inequality (L.9])
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show us that

kit | g
G+1)

where | J |= max,ey |  — xo |and the corresponding convergent numerical series is

given by (1+ | zo |)expk | J |, where the constant k& > 0 is defined in ([C3)). Using(LIT)

into (L8) we obtain that sequence{zy(x) : € I}k>, defined in (6] is uniformly

convergent to a continuous function {z;(x) : © € J} and by passing k — oo in (L6
we get

| ujra(z) |< (1+ ] 20 ) Vjz0xed (1.11)

2i(x) = 20+ /w[A(t)zj(t) +b(b)|dt, Yz € J (1.12)

0

It shows that {z;(z) : x € J} is continuously differentiable, z;(z¢) = 2o and satisfies
(T2) for any x € J C I. Define {Z(z) : € I} as a ”inductive limit” of the sequence
{zm(z) = 2;,,(x) 1 @ € Jm}mz1

where

I=J s Jms1 2 Iy 00 € I

m=1

Then z(z) = zm(z),x € Jpm,m > 1 is continuously differentiable function satisfying
integral equation (3.

Uniqueness

It will be proved by contradiction and assuming another solution {zi(z) : « € I}
of (2)exits such that z1(xg) = 2o and z1(z*) # Z(z*) for some a* € I then u(z) =
Z(z) — z1(x), x € I, verifies the following linear system

u(z) = / A(t)u(t)dt,z € I, where{Z(z),x € I'}is defined above. (1.13)

Let J C I be a compact interval such that xg,z* € I and assuming that zo < z* we
get

zo+|r—x0]
o(x) =| u() |</ a(t)p(t)dt, Ve € [0, 2] (1.14)

Zo

where a(t) =| A(t) |> 0 and ¢(t) =| u(t) | are continuous scalar functions. Using
Lemma [T withM = 0 we obtain ¢(x) = 0 for any = € [zg,z*] contradicting
©(z*) > 0. The proof for xg > x* is similar. The proof is complete. |
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1.2 Fundamental Matrix of Solution

A linear homogenous system is described by

d

— = Ala)z,z €R" (1.15)
where the (n x n) matrix A(x),z € I is a continuous mapping valued in M, x,. Let
xo € I be fixed and denote {z;(x) : € I} the unique solution of (LIX) satisfying the
Cauchy condition z;(xo) = e¢; € R",i € {1,2,...,n}

where {eg,...,e,} € R™ is the canonical basis. Denote

C(z;x0) = 21(2)..cczn(z) ||,z € T (1.16)

where z;(z) € R™ is a column vector. The matrix C(z;20),z € I defined in (ITI0),
is called the fundamental matrix of solutions associated with linear system (LI5).
Let S C C(I;R™) be the real linear space consisting of all solutions verifying (LI5).
The following properties of the fundamental matrix {C(z; ),z € I} are obtained by
straight computation.

1.2.1 Properties

Lemma 1.2.1. Let zg € I be fized and consider the fundamental matriz {C(x;x0), z €

I} defined in (10
Let{z(z) : x € I} be an arbitrary solution of (LI) (1.17)

Then
z(x) = C(z;20)20, ¢ € I, wherez(xo) = 2o

{C(x;x0),x € It is continuously differentiable (1.18)
% — A(;C)C‘(,T;,To),bx el (1.19)

C(xzo;20) = I (unit matriz)
det C(z;z0) # 0,z € I and D(x;20) = [C(z;20)] " satisfies (1.20)
% = —D(z;20)A(z),x € 1 (1.21)

D(xzo;x0) = I, (unit matriz)

dimS =n (1.22)
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Proof. For z(.) € S, let zo = z(xo) € R"™ be column vector and consider z(z) =
C(x;x0)20,z € I. Notice that each column of C(x; ) is a solution of (LIH). As far
as S is a linear space then {Z(z) : © € I} is a solution of ([LIH) fulfilling the Cauchy
condition
Z(xg) = C(zo;z0)20
Therefore
{z(z) : x € [}and{Z(z) : x € I}

are solutions for the linear system ([LIH) satisfying the same Cauchy condition z(z¢) =
20 = 2z(xp) and using the uniqueness of the Cauchy problem solution (see Theorem
[LT2) we get

z(x) = Z(x) = C(z;20)z0for anyx € T
The conclusion ([LI7]) is proved. To get (I9) we notice that each component {z;(z) :
x € I} of {C(z;20),x € T}, satisfies (LIH]) and it shows directly that

dC(z;x0) | dzr dzm .
and
C(zo; o) =|| €1...en ||=In (1.24)

The property (L20) can be proved by contradiction. Assuming that C'(z*;x¢)z0 = 0
for some x* € I and zp € R™, zg # 0, we get that the solution z*(z) = C'(z;x0)z20,2 €
I of (LI%)) satisfies z*(2*) = 0 which implies (see uniqueness) z*(z) = 0,Vz € I
contradicting z*(zg) = z9 # 0.Therefore detC(x,x¢) # 0 for any x € I and denote
D(z;x0) = [C(z;20)]71. On the other hand, consider {D;(x;z0) : © € I} as the
unique solution of the linear matrix system

Dieiro) Dy (a3 Az),x € 1 (1.25)
Dy (zo;20) = I,(unit matrix)
and by straight derivation we get
Dy (z;20C (x5 20) = In, Vo € 1 (1.26)

The equation (C2H) shows that D(x;2¢) = [C(x;20)] 7!, # € I. The last property
([C22) is a direct consequence of (LIT) and (L20). Using ([([LI7), we see easily that

dimS < n and from ([20) we obtain that {z1(z),...zn(z) : x € I} are n linearly
independent solutions of (L.IH). The proof is complete. O

Any basis of S will be called a fundamental system of solutions satisfying (LT3
and we shall conclude this section recalling Liouville’theorem.

Theorem 1.2.2. Let the (n x n) continuous matriz A(z) = [a;j(x)]i,; be given and
consider n solutions {z1(x),...,zn(x) : x € I} satisfying the linear system (LI3).
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Then {W (z) : x € I} is the solution of the following linear scalar equation

dW (z)
dx

= (TrA(2))W (z),z € I, W(z) = det || 21(z), ..., 2u(z) | (1.27)

where

TrA(z) = Za“(x) and W(x) = W(xo)exp /m [TrA(t)|dt,z € I

Zo

for some fized x¢ € I.

Proof. By definition %gf) = A(x)z;i(z),z € I,i € {1,...,n} and the matrix Z(z) =||
Z1(x)..2n () || satisfies

dz
@) _ s z)wel (1.28)
dz
Rewrite Z(z) using row vectors
p1(x)
Z(z) = . ael (1.29)
on ()
and from ([C27)) we get easily
dei(x = ,
da(: ) =Zaij(:v)cpj(ac),z€{1,...,n},x€] (1.30)
j=1

9 29
(3

where (a;1(),...a;n(x)) stands for the row of the involved matrix
A(z) = (aij())ijeq1,....ny-- On the other hand, the standard rule of derivation for a
det Z(x) = W(z) gives us

e1(z)
n pi—1(x)
‘m;(x) =" Wi(), where Wi(x)=det | dei) (1.31)
x T
i=1 Piv1(x)

on(®)
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and using (L29]) we obtain

Wi(z) = ay(x)W(z), i € {1,....,n} (1.32)

Combining (I30) and ([32) we get the scalar equation

dW (z) -
pra (; aii(x))W(z),x € I (1.33)
which is the conclusion of theorem.The proof is complete. O

We shall conclude by recalling the constant variation formula used for integral
representation of a solution satisfying a linear system.

1.2.2 Constant Variation Formula

Theorem 1.2.3. (Constant variation formula) We are given continuous mappings
A(z) : I — Myxn and b(z) : I — R"

Let {C(z;z0), x € I} be the fundamental matriz of solutions associated with the linear
homogenous system

d
é = A(2)z,z €1, 2 €R" (1.34)

Let {z(x),x € I}be the unique solution of the linear system with o Cauchy condition
z(xo) = 20

dz — )z T),x
{ %0_): i( )z +b@)z €l (1.35)
Then .
z(x) = C(x;x0)[20 —|—/ C Y t;zo)b(t)dt],z € T (1.36)

Proof. By definition {z(z),z € I} fulfilling (L30) is a solution of the linear system
([C38) provided a straight derivation calculus is used. In addition using z(x) = z¢ and
uniqueness of the Cauchy problem solution (see Theorem [[LI-2) we get the conclusion.

O

Remark 1.2.4. The constant variation formula expressed in ([L36]) suggest that the
general solution of the linear system (L38) can be written as a sum of the general
solution C(x; x0)z0, x € I fulfilling linear homogeneous system (L34) and a particular
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solution (L38) (see zo = 0) given by

C(x; o) /xcfl(t;xo)b(t)dt, xel (1.37)

Remark 1.2.5. There is no real obstruction for defining solution of a linear system
of integral equation

z(x) = 20 + /z[A(t)z(t) +b(t)]dt,x € [a,b] CR,z € R" (1.38)

where the matriz A(x) € Myx, and the vector b(z) € R™ are piecewise continuous
mappings of x € [a,b] such that A(x) and b(z) are continuous functions on [x;, Ti+1)
admitting bounded left limits

Alxiz1 —0) = lim A(x),b(zigz1 —0) = lim b(x)for eachi € {1,2,...,.N — 1}

T—T;41 T—>Ti41
(1.39)

Here a = xg < 21 < ... < xn = b is an increasing sequence such that [a,b] = [z, 2 N].
Starting with an arbitrary Cauchy condition z(xg) = zo € R™ , we construct the cor-
responding solution z(x),x € la,b], as a continuous mapping which is continuously
differentiable on each open interval (z;,x;41),7 € {1,2,...., N — 1} such that the con-
clusions of the above given result are preserved. We have to take the case of these
equations implying derivation W of the solution and to mention that they are
valid on each open interval (x;,x41),1 € {1,2,..., N — 1} where the matriz A(x) and
the vector b(z) are continuous functions. Even more, admitting that the components
of the matriz {A(x) : x € [a,b]} and vector {b(x) : x € [a,b]}are complex valued func-
tions then the unique Cauchy problem solution of the linear system (L38) is defined
as {z(x) € C" : x € [a,b], z(a) = 20 € C"} satisfying (L3]) Vx € [a,b].

1.3 Exercises and Some Problem Solutions

1.3.1 Linear Constant Coefficients Equations(Fundamental Sys-
tem of Solutions

(P1). Compute the fundamental matrix of solutions C(x,0) for a linear constant
coefficients system
dz(x)
dx
Solution Since A is a constant matrix we are looking for the fundamental matrix
of solutions C'(z) = C(x,0), where xy = 0 is fixed and as it is mentioned in Lemma

=Az,x R z€R" A€ My« (1.40)
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(CZT) (see equation ([LIR)). We need to solve the following matrix equation
dC(x

% = AC(z),z €R (1.41)
c)= 1I,

The computation of {C(z) : © € R} relies on the fact that the unique matrix solution
of ([I4Q) is given by the following matrix exponential series

x zk
eXpAa::In—I—FA—F...—FﬁAk—I—... (1.42)

where the uniform convergence of the matrix series on compact intervals is a direct
consequence of comparing it with a numerical convergent series. By direct derivation
we get

{ dCXPAz) _ AL A4 4T AR L = A(exp Az), Vo € R (1.43)

dx
(expAz)o—o = In

and it shows that C(x) = exp Az,Vx € R. It suggest the first method of computing
C(x) by using partial sum of the series (L42)
(P2). Find a fundamental system of solutions(basis of S) for the linear constant

coefficients system

;l_Z :AZ,.IGR,ZERn,AEMan (144)
X

using the eigenvalues A € o(A)(spectrum of A).

Case 1

The characteristic polynomial det(A—AI,) = P(A) has n real distinct roots {A1,...Ap} C
R,i.eo(A) = {1, .. n}, A # Aj, 0 # j. Let v; # 0,v; € R” be an eigenvector corre-
sponding to the eigenvalue \; € o(A), i.e

Av; = N, i € {1,...,n} (1.45)
By definition ,{v1, .., v, } C R™is a basis in R™ and define the vector functions
zi(z) = (exphix)v;,x € Ryi € {1,...,n} (1.46)

Each {Z;(z) : x € R} satisfies (L43)) and {Zz1(x),...,2,(z)} is a basis of the linear
space S consisting of all solutions satisfying (L43)). Therefore,any solution{z(z) : z €
I} of the system ([43) can be found as a linear combination of zi(.), ..., 2,(.) and
{a1,...,an} from z(z) = Y1 . a;Zi(x), x € R will be determined by imposing Cauchy
condition z(0) = zp C R™.

Case 11

The characteristic polynomial P(A) = det(A — AI,,) has n complex numbers as roots
{AMs o A} =0(A), N # Aj,i # j. As in the real case we define n complex valued
solutions satisfying (L43)

Zj(z) = (expAjz)v;,j € {1,...,n} (1.47)
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where v; C R™ is an eigenvector corresponding to a real eigenvalue A\; € o(A4) and
v; € C™ is a complex eigenvector corresponding to the complex eigenvalue A; € o(A)
such that v; = a; — ib;, (v; = a; + ib;) is the eigenvector corresponding to the eigen
value \; = a; — B3, (A\; = o + i85, 8; # 0). From {Zi(x), ..., Z,(z);z € R} defined
in (L4T) we construct another n real solutions {Zi(z),...,2z,(z);z € R} as follows
(n = m+ 2k). The first m real solutions

zi(z) = (exphiz)v;, i € {1,...,m} (1.48)

when {1, ..., A\, } € 0(A) are the real eigenvalues of A and another 2k real solutions

Zmtj(x) = ReZmj(z) = zmﬂ(””)‘*‘zgmﬂw(w) (1.45)
Zmakti (@) = ImZy4,(x) = Zmﬂ(w)_;imﬂﬂ(w)

for any j € {1,...,k}. Here {A\p41,..-, Am+2r} C 0(A) are the complex eigenvalues
such that 44k = XNnyj for any j € {1,...,k}. Since {zi(z),...,Z,(z);x € R} are
linearly independent over reals and the linear transformation used in (C41) and (48]
is a nonsingular one, we get {Z1(z), ..., 2, (x); x € R}as a basis of S.
Case III: General Case
o(4) = {A\,...Aa} C R, where the eigenvalue A\; has a multiplicity n; and n =
n1 + ... + ng.In this case the canonical Jordan form of the matrix A is involved which
allows to construct a basis of S using an adequate transformation 7' : R™ — R™. It
relies on the factors decomposition of the characteristic polynomial det(A — \I,,) =
P(A\) = (A= A)™...(A = Ag)™ and using Caylay-Hamilton theorem we get
{ P(A) = 0(null matrix) (1.50)
(A—X1,)"...(A— \gI,)™ = 0(null mapping : C* — C") ’

The equations ([49) are essential for finding a n x n nonsingular matrix @ =||
v1...0,, || such that the linear transformation z = Qy leads us to a similar matrix
B =Q 'AQ(B ~ A) for which the corresponding linear system

d
d—y = By, B = diag(B1, ..., Bg),dimB; = n;,j € {1, ..., d} (1.51)
X

has a fundamental matrix of solution.

Y (x) = expBx = diag(expBi«, ..., expBax)

Here
0 0 O 0
1 00 . . O
Bj = \jl,; + Cp; ;and 01 0 . . o = Ch,

000 .10
has the nilpotent property (Cp;)™ = 0 (null matrix). The general case can be com-

puted in a more attractive way when the linear constant coeflicients system comes
from n-th order scalar differential equation . In this respect consider a linear n-th
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order scalar differential equation
y"(2) + a1y V(@) + o+ any(e) = 0,7 € R (1.52)

Denote z(x) = (y(x),y™ (z), ...,y V(z)) € R* and (51 can be written as a linear
system for the unknown z.

dz

o =Apz,z€e R",z € R (1.53)
where
by
Ag =
bn

by =(0,1,0,...,0),...b,,—1 = (0, ...,0, D)and b,, = (—an, ..., —a1)

The characteristic polynomial associated with Ay is given by
Py(\) = det(Ag — A,) = \"+a \" P+ tan i\ +a, (1.54)

wherea; € R,i € {1,...,n} are given in (L52). In this case, a fundamental sys-
tem of solutions (basis) {yi(z),...,yn(z) : € R} for (LEI) determines a basis

{z1(2), ..., zn(x) : x € R}) for (I52), where
zi(z) = column{yi(x),ygl)(:t)...,yg"*l)(:t)},i e{1,...,n}

In addition, a basis {y1(x), y2(2)...,yn(x)} for the scalar equation (LEI) is given by
F= U‘j:l F; where

Fj = {(exp);z), z(expA;z), ...,z" ~* (exp);x)} (1.55)
if the real A\; € 0(Ap) has the multiplicity degree n;, and
F; = Fj(cos) U Fj(sin), if the complex \; € 0(Ap), A\j = a; +i0; (1.56)
has the multiplicity degree n;, where
Fj(cos) = {(expa;x), z(expa;x), ..., " ! (expa;x)} (cosBjz), » € R

Fj(sin) = {(expa;z), z(expa;z), ..., 2™~ (expa,x)}(sinf;z), z € R
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1.3.2 Some Stability Problems and Their Solution

(P1). Z(x; 2z0) = [expAx]zg,x € [0,00), be the solution of the

d
é = Az, z €[0,00),2(0) = 29 € R" (1.57)

We say that {Z(x, z0) : © > 0}is exponentially stable if
| Z(x, 20) |<| 20 | (exp — yz),Vx € [0,00), 29 € R" (1.58)
where the constant v > 0 does not depend on zg. Assume that
o(A+ AY) = {\1, ..., \a} satisfies \; < Ofor anyi € {1,...,d} (1.59)

Then {Z(x, z9) : © € [0.00)}is exponentially stable

Solution of P;

For each zp € R™, the corresponding Cauchy problem solution Z(z, 2p) = (expAx)
20, > 0, satisfies (L56) and in addition,the scalar function {p(z) =| Z(z, 29) |*, 2 >
0} fulfils the following differential inequality

dip(z)

e ((A+ ANZ(z, 20), 2(x, 20)) < 2wep(z), Ve =0 (1.60)

where
2w = max{ A, ..., \g} <o

provided the condition (LES) is assumed. A simple explanation of this statement
comes from the diagonal representation of the symmetric matrix (A + A') when an
orthogonal transformation T': R® — R", z = Ty(T = T~1')is performed.We get

(A + AY2(, 20), 3, 20)) = ([T (A + AT(as 20), 5l 20)) (L.61)

where
T YA+ ANT = diag(vy, ..., vn)

and
v; € o(A+ AY) for each {1,...,n}

Using (LG0)we see easily that
(A + AYZ(z, 20), 2(x, 20)) < [max{\1, .. \a}] | 2(z, 20) |*= 2wep(x) (1.62)

where
2w = max{ A, .., \a} <o

and

p(x) =| Z(x3, 20) [*= (TG(x; 20), TY(; 20)) = (25 20), T'TH(w; 20)) =| §la3 20) |*
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are used. The inequality (LGI]) shows that (LH9) is valid and denoting

0> p(x) = dz—:(:) —2we(x),x =0

we rewrite (L59) as a scalar differential equation

d“"—gf) = 2wep(z) + p(z),z >0
LS T o)

where 8(z) < 0,z € [0,00), is a continuous function.The unique solution of (G2
can be represented by

o(x) = [exp2wa][| zo |* —|—/ (exp — 2wt)5(t)dt] (1.64)
0
and using (exp — 2wt)S(z) < 0 for any ¢ > 0 we get

(1.65)

{ p(r) < [exp2wa] | 2o |*
| Z(z,20) = [p(z)]? < [expwa] | 20 |

for any > 0. It shows that the exponential stability expressed in (LE1) is valid
when the condition (58] is assumed.

(P2) (Lyapunov exponent associated with linear system and piecewise continuous
solutions) Let {y(t,x) € R™ : ¢t > 0} be the unique solution of the following linear
system of differential equations

dy(t) _ e n
{ y(dé) :— i(zé(ﬂtg;l (1),t=0,y(t) eR (1.66)

where the vector field f(y,o) : R™ x >° — R™ is a continuous mapping of (y,o0) €
R™ x >~ and linear with respect to y € R”

fly,0) = Alo)y +a(o), A(o) € Mpxn,a(o) € R™. (1.67)

Here G(t) : [0,00) — > (bounded set) C R? is an arbitrary piecewise continuous
function satisfying
o(t) = o(tk),t € [tk Ter), k=0 (1.68)

where 0 = 1% < tp... < tAk is an increasing sequence with klim tAk = 00. The analysis will
— 00

be done around a piecewise constant trajectory y(t) : [0,00) — Y (bounded set) C R™
such that R
At) = (Y(t),0(t)) : [o,00) = Y x Z =ACR" xR? (1.69)

satisfies A(t) = A(#r),t € [T, frp1), k > 0, where the increasing sequence {te a0 is
fixed in (L68). Define a linear vector field g(z,\) by

g(z,\) = f(z+v;0) =A(0)z+ f(N),\ = (v,0) € A,z € R" where f(y;0) (1.70)
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is given in (L66). Let the continuous mapping {z(¢,«) : ¢ = 0} be the unique solution
of the following differential equation

{ 0~ g(2(t); (), t >0 (1.71)

where the piecewise continuous function {A(¢),¢ > 0} is given in ([68). We may and
do associate the following piecewise continuous mapping {z(¢,x) : t > 0} satisfying
the following linear system with jumps

B = FEW),5(0),t € [br, beyr), 2() € R”
{ )= =) 5 k>0 (1.72)

where {z(t,z) : t > 0}is the continuous mapping satisfying (L70). It is easily seen
that the piecewise continuous mapping {Z(¢,x) : ¢t > 0} can be decomposed as follows

Z(t,x) = z(t,x) + y(t,z),t > 0,z € R" (1.73)
and the asymptotic behavior
lim Z(t,xz) = lim y(t),x € R™, is valid provided lim y(t) exists and
t— o0 t—o0 t— o0

. 2
tlg& | z(t,z) |*=0 (1.74)

for x € R™. We say that{z(t,z) : t > 0} satisfying (L70) is asymptotically stable if
[T3) is valid.

Definition 1.3.1. A constant v < 0 is a Lypounov exponent for {z(t,z) : t = 0} if
{Z(t, z) = (expyt)z(t,x) : t = 0}is asymptotically stable.

Remark 1.3.2. Notice that if {Z(t,z) : t > 0} satisfies (LZ0) then {z(t,z) =
(expyt)z(t,x) : t = 0}, satisfies the following augmented linear system

{ ﬁ_— 72 (0) F (emmg (0, ) ¢ (1.75)

In addition, the piecewise continuous mapping
Zy(t,z) = 2y(t, ) +Y(t),t 2 0 (1.76)

satisfies the following system with jumps

a1
5 () = 0L+ () (0,70
{zﬁm— o () + (1) (L.77)

It shows that the Lyapunov exponent v < 0 found for the continuous mapping {z(t,x) :
t > 0} satisfying (LT0Q) gives the answer for the following asymptotic behavior asso-
ciated with {Z(t,z)}

lim | Z,(t,x) — y(t) |*= tli?& | zy(t,x) |= 0, for eachz € R" (1.78)

t—o0
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and the analysis will be focussed on getting Lyapunov exponents for the continuous
mapping {z(t,x) : t > 0}

A description of the Lyapunov exponent associated with the continuous mapping
{z(t,z) : t > 0} can be associated using the corresponding integral equation satisfied
by a scalar continuous function

ho(t,z) = (exp2yt)h(2(t,z)),t > 0, where h(z) =| 2 |? (1.79)
In this respect,applying standard rule of derivation we get

dzy(t,x) ~ ~
{ e = (exp2yt) 27k + Lo(W)](3, (1, 2), A(0), > 0 (1.50)
hy(0,2) = ||

where the first order differential operator Ly : Po(z, \) — P»(z, A) is given by
Ly(p)(2,A) =< 0:¢(2,N)), 9(2, A) > (1.81)

Here P»(z, A) consist of all polynomial scalar functions of second degree with respect
to the variables z = (21, ..., z,) and with continuous coeflicients as functions of A € A.
In particular, for h € Py(z,\), h(z) =| z |?, we obtain

Ly(0)(z,A) = <0:h(2),9(2, ) >=<[A(0) + A" (0)z, 2] > +2 < f(A),z >
< B(o)z,z2> 42 < f(N),z > (1.82)

where the matrix B(o) = A(o) + A*(0)is symmetric for each o € >, C R? and
for f(A\) = A(o)v+a(o), A= (v,0) € A=Y x Y, given in (L60O). Rewrite (79 as
follows (see(71])

dh(t, )

o = [7 [ hy(t,2) = (exp2nt) < [[ v [ In — B(@(t))]2(t, x) >

+  2(exp29t) < f(X(1)), 2(t,z) >,t > 0. (1.83)

Regarding the symmetric matrix

Q+(0) =] 7| I — B(o).o € Y C R

we notice that it can be defined as positively defined matrix uniformly with respect

tooce)

<Qy(0)z,2>=c| 2|2, V2R 0 € Z,for somec > 0 (1.84)
provided, | v |>| B ||, where

I B |l= sup || B(o) ||

[2AS

In this respect, let T'(c) : R™ — R™ be an orthogonal matrix (T*(c) = T~!(c)) such
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that

T~ Y0)B(0)T(c) = diag(vi(0),...,vn(0)) =T (o)

{ B(o)e;(0) = v;(0)e;(0), € {1,2,..,n} (1.85)
where T'(0) =|| €1(0), ...,ex(0) ||. On the other hand ,using the same matrix T'(c) we
get

T H0)Q(0)T(0) = diag(v] (o), ...,v) (0)) =, (o) (1.86)

where v () =| v | —vi(0) = ¢ > 0 for any o € Y ,i € {1,....,n}, provided
| v |>|| B | and we get

|7 > B> sup | B(o) IZ]] B(o)e;j(o) ||= sup |vj(o) |,V €{1,...,n} (1.87)
[2AS (oA

Using (L8H), it makes sense to consider the square root of the positively defined
matrix Q- (o)

JI0:(@)] = T, (@) 77 (0) = Py(0),0 € 3 C R (1.88)

and rewrite < Q,(0)z,z > =2 < f()), 2z >= ¢,(2, A) as follows

p(2,A) =| Py(0)z = Ry (0) f(N) |2 = | By (o) f(N) |2 (1.89)

Ry(0) = 1/ Q5" (0) = T(0)[T4 ()] /T~ }(0) .

Using (L88) we get the following differential equation

where

dh,(t; )

7 = — | 7] hy(ts@) = (exp29t) | P, (3(0)z(t:2) — Ry (3,0)f (M)

+ (exp2yt) | RyG(0)FO)(E) [t >0 (1.90)

The integral representation of the solution {h(t;x) : t > 0} fulfilling (L90) leads us
directly to

ho(tie) = (exprd)llz? + / (expys) | By ()(s) F(Xs)) [ ds] (1.91)
— (expyt) / (expys) | Py(@(t)=(s:) — Ry (3)()F(N(s))) |? ds

for any ¢ > Oandz € R™. As far as {R,Y(E)(t)f(:\\(t)) :t > 0} is a continuous and
bounded function on [0, c0) we obtain that

/O (expys) | Ry ()(s)F(X(s)) |2 ds < Co ¥t > 0 (1.92)

and
hy(t,x) < (expyt)[| = |* +C4],Vt = 0 (1.93)
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where (., is a constant. In conclusion, for each v <0, |7 [> sup,ex~ | A(0) + A*(0) |,
we obtain
. 27 . o
tlﬂ& | zy(t, ) |°= tlﬂ& hy(t,z) =0

for each € R. The above given computations can be stated as

Theorem 1.3.3. Let the vector field f(y,o) : R™ x > — R™ be given such that
(LGE) is satisfied. Then any v < 0 satisfying | v |> supyey~ | A(o) + A(0™) | is a
Lyapunov exponent for the continuous mapping {z(t, z) : t > 0}wverifying (LZ00), where
X(t) = (y(t),o(t)) : [0,00) — A is fized arbitrarily. In addition, let {Z(t,x) : t > 0}
be the piecewise continuous solution fulfilling the corresponding system with jumps
(TE). Then tlirgo | Zy(t,x) —y(t) |= tlirgo | z4(t,x) |=0 for each x € R"

Remark 1.3.4. The result stated in Theorem L33 make use of some bounds sup, s, |
A(o)+A(c*) |=|| B || associated with the unknown matriz A(o),o € ¥ (bounded set) C
R<. In the particular case ¥ = {1, ...,0m}, we get a finite set of matrices A(ay), ... A(0m)

for which || B ||= maz{| Ax + AT |, ...,| Am + A%, |} where A; = A(0y).
An estimate of the the Theorem [[.3:3 stating that lim;_,o(expyt) | z(t,z) |=0
provided | v |= —y >|| B || and in addition z(t,x),t > 0 can be measured as contin-

uwous solution of the system (LT0). This information can be used for estimating the
bounds || B ||and as far as we get lim;_, o (expyt) | 2(t, x) |= 0

for some v < 0. We may predict that || B ||<| 7'|. On the other hand ,if we are able
to measure only some projections

vi(t,x) =< b;, z(t,x) >,1 € {1,2,..,m} of the solution z(t,z) : t > 0 satisfying ([LZ0)
then v(t,x) = (v1(t, @), ..um(t, x)) fulfils the following linear equation

LD = DE)v(t ) + d(X(E),t > 0 (1.94)
v(0,2) = 0(x) = (by, 2 >, ....bpm,x >)

where D(o) is an (m x m) continuous matriz and

d(o) = column(< by, f(N) >, ..., < b, f(A) >)

Here we have assumed that A*(c)[b1,...,bm] = [b1, ..., bm]D*(0) and [L33) gets the
corresponding version when ([L93) replaces the original system (20

1.4 Nonlinear Systems of Differential Equations

Let f(x, A\, y): I x A x G — R"be a continuous function,where I(interval) C R and
A C R™ are some open sets. Consider a system of differential equations(normal form)

dy

% = f(l', A, y) (195)



1.4. NONLINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS 21

By a solution of (L94]) we mean a continuous function y(z,A) : J x ¥ — G which is
continuously derivable with respect to € J such that

dy(xz, \)

Tn = flx,\y(z,\),Ve e JAED

where J C [ is an interval and ¥ C A is a compact set. The Cauchy problem for
the nonlinear system (C94) C.P(f;xo,yo0), has the meaning that we must determine
a solution of (1)y(z,A\) : J x ¥ — G which satisfies y(x9,\) = yo,\ € 3,where
xo € Tand yo € G are fixed. To get a unique C.P(f;xo,yo) solution we need to
replace the continuity property of f by a Lipschitz condition with respect to y € G

Definition 1.4.1. We say that a continuous function f(x,\,y): I x A x G — R"
is locally Lipschitz continuous with respect to y € G if for each compact set W =
J XY XK CIxAxG there exists a constant L(W) > 0 such that| f(z,\,y") —
fle,\Ny) <Ly =y |\Vy,y" e K,z e JAeA

Definition 1.4.2. We say that a C.P(f;x0,y0) solution {y(x;\) : x € J,\ € > }is
unique if for any other solution {yi(z;\) : x € Ji,A € Y} of (90) which verifies
y1(zo) = yo,we get y(z, ) = y1(x, N),V (2, ) € (JxD)(J1x>_,).Denote B(yo,b) C
R,, the ball centered at yo € R™ whose radius is b > 0

Remark 1.4.3. By a straight computation we get that if the right hand side of (L.94)
is continuously differentiable function with respect to y € G, i.e

of
Y

(x,\y): I xAxG—=R"ie{l,..,n}

are continuous functions and G is a convex domain then f is locally Lipschitz with
respect toy € G

1.4.1 Existence and Uniqueness of C.P(f, zo, yo)

Theorem 1.4.4. (Cauchy Lipschitz) Let the continuous function f(z; A\, y) : I x A X
G — R™ be locally Lipschitz continuous with respect to y € G, where I C R, A C
R™ G C R™ are open sets.For some xg € I,yo € G and X(compact) C A fized, we
take a,b > 0 such that I,(xo) = [vo — a,20 + a] C Tand B(yo,b) C G. Let M = maa{|
f@, X\ y) |z € I(z0), A € S, y € B(yo,b)}. Then there ezist o > 0,a = min(a, 1)
and a unique C.P (f;x0,y0) solution y(z, ) : In(zo) X ¥ — B(yo,b) of (9H).

Proof. We associate the corresponding integral equation (as in the linear case)
y(xz,\) = yo +/ FE Nyt N)dt,x € In(zg), A €2 (1.96)
o

where I,(x0) C I and X(compact) C A are fixed. By a direct inspection, we see
that the two systems ([94) and ([C95) are equivalent using their solutions and the
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existence of solution for (L94) with y(zg) = yo will be obtained proving that (L.93])
has a solution.In this respect, a sequence of continuous functions {yx(z,A) : (z,A) €
I, (to) X B}r>o is constructed such that

yO(:Eu )‘) = Y0, Yk+1 (JI, )\) =Y + / f(tu Aayk(ta )\))dta k > 0 (197)
xo

Consider a = min(a, ) and I, (20) = [zo—a, zo+a]. We see easily that the sequence
{yr(.)}k>0 constructed in (L96) is uniformly bounded if the variable x is restricted
to x € In(xo) C I,(xp). More precisely

yr(x, ) € B(yo,b),V(z,A) € In(zo) x X,k >0 (1.98)

It will be proved by induction and assuming that (LO7) is satisfied for £ > 0 we
compute

zo+|z—20]
(e ) w0 |< [ PNt )< Ma<h  (199)
zo
for any {(z,\) € I,(xo) x 3}. Next step is to notice that {yx(z, \) : (z,A) € Io(z0) x
Y}iso0 is a Cauchy sequence in a Banach space C(In(z9)) x 0;R™ and it is implied by
the following estimates

— g |E
| Yrr1(z, A) — y(z, N) |< bLkw

x N(z, A) € Tn(xg) x 8,k >0 (1.100)

where L = L(W) > 0 is a Lipschitz constant associated with f and W = I, (zg) x & x
B(yo,b), a compact set of I x AxG. A verification of (I.99) uses the standard induction
argument and for k£ = 0 they are proved in ([L98]). Assuming (.99) for & we compute
| ykJrQ(I’ /\) - ykJrl(I’ /\) |< f§)0+‘1710| | f(tv )\a ykJrl(tv )\)) - f(ta Avyk(ta A)) | dt <

Lff“ﬂzizol | Y1 (E,N) — yr(t,\) | dt < prtlzmzl g (CA9) is verified.Rewrite

0 k+1!

Yr1(2,A) = 3o + (y1(2, A) = yo) + ooy Fykr1(2, ) = (@, A) =
=y + Ejiouj(:zr, A), where u; = y;41 — yj
and consider the following series of continuous functions

S(x, A) = yo + Bj2guj(w, \) (1.101)

The series (L.I00) is convergent in the Banach space C'(I, (o) x X; R™) if it is bounded
by a numerical convergent series and notice that each {u;(z,A) : (z,) € In(zo) x X}

of (LI00) satisfies (see(T99))

LV |x—mx ) <bL.aj

u;(x,\) |< b - < -

L i=0 (1.102)

In conclusion, the series S(z, \) given in [[LT0T]is bounded by the following series

La La*
u=|yo | +b(1+ BB + ...+ n +...)=|yo | +bexp Lo
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and the sequence of continuous functions
{un(z, A) : (2,A) € La(0) X E}520
constructed in (Z96) is uniformly convergent to a continuous function

ylx, ) = klf?o yi (2, A) uniformly on (z, A) € In(z) X X (1.103)

It allows to pass k — oo into integral equation (L96]) and we get
ylx, \) =yo +/ FE Nyt N)de,V(z, A) € In(zo) X 2 (1.104)
0

which proves the existence of the C.P(f;xo,yo) solution.

Uniqueness. Let y;(z, ) : J; X321 — G another solution of (.94 satisfying y1(z¢) =
Yo, where Jj(compact set)C I and 3q(compact) C A. Define a compact set K1 C G
such that it contains all values of the continuous function

{y1(x, \) : (z,\) € J1 x X1} C K,

Denote

K = B(yo,b) N K1, J = Iy(z0) N J1,E =N,
and let _ o
L=LJxXxK)>0
be the corresponding Lipschitz constant associated with f and compact set W =
J x X x K.We have J = [xg — d1,x¢ + 02| for some §; > 0 and

_ rxotlz—aol ~ o~
[y(x, A) —yi(x, N) |< L/ [y(t, A) —yi(t,A) | dt,V(z,\) € J x 3 (1.105)

zo

For A € ¥ fixed,denote ¢(z) =| y(z, \) — y1(x, A) | and inequality (CI05) becomes

¢
p < L/ @(s)ds, t € [xo,xo + 2] (1.106)
Zo
which shows that ¢(t) = 0,Vt € [zg, xo + d2](see Gronwall Lemma in (I1])
Similarly we get ¢(t) = 0,¢ € [z — 1, z0]

and p(t) = 0Vt € J, lead us to the conclusion y(z, ) = y1(z,A), Vo € J and for an
arbitrary fixed A € 3. The proof is complete. O

Remark 1.4.5. The local Lipschitz continuity of the function f is essential for getting
uniqueness of a C.P solution. Assuming that f is only a continuous function of
y € G,we can construct examples supporting the idea that a C.P solution is not
unique. In this respect, consider the scalar function f(y) = 2+/|y |,y € R and the
equation d‘zl—(tt) = 2¢/| y(t) | with y(0) = 0. There are two C.P solution.y;(t) =0,t >0
and ya(t) = t2,t > 0 where a continuous but not a Lipschitz continuous function was
used.
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Comment. There is a general fixed point theorem which can be used for proving
the existence and uniqueness of a Cauchy problem solution .In this respect we shall
recall so called fixed point theorem associated with contractive mappings. Let T :
X — Xbe a continuous mapping satisfying

p(Tx, Ty) < ap(z,y) for anyx,y € X

where 0 < o < 1 is a constant and (X, p) is a complete metric space. A fixed point
for the mapping T satisfies TZ = Z and it can be obtained as a limit point of the
following Cauchy sequence {z, }n>0 defined by x,41 = Tx,, n > 0. By definition we
get p(zpi1, ) = p(Tag, Tap—1) < ap(zg, xr—1) < aFp(z1,x0) for any k > 1 and
P&, T) < By p(Thss Trajo1) < (Bfa" 1) p(x1, 20), where T2 gaf =

1 .
7 and {2, }n>1 is Cauchy sequence.

1.4.2 Differentiability of Solutions with Respect to
Parameters

In Theorem [[44we have obtained the continuity property of the C.P(f, zo, yo) solu-
tion with respect to parameters A € A satisfying a differential system. Assume that
the continuous function f(z, \,y) : I x A x G — R" is continuously differentiable with
respect y € G and X € A i.e there exist continuous partial derivatives

of (x, \y) Of(x, \y)
6y ’ 6)\]

IXAXG—=R"ie{l,...n},je{l,..m} (1.107)
where A C R™, G C R™ are open sets.

Remark 1.4.6. The assumption (LIOT) leads us directly to the local Lipschitz prop-
erty of f with respect to y € G. In addition, let y(x,\) : In(x9) X ¥ — B(yo,b) be the
C.P(f;x0,y0) solution and define

F(z,z(z)) = f(x,\y(z, ), z(x) = N\ y(z,N)) for each x € I,(xg). Using (LI0T)
we get that F(x,z(x)) satisfies the following differentiability property

Of (@, X, y(x, X))

F(z,2"(x) = F(z,2'(2))) = Dy [y(z, \") = y(2, \)]
" Of(x, N, y(z, X)) (N — N,
v 3 ARS8 o XX e )
— ylx, )|+ | N =X (1.108)

where

lim 0(x, N, \")=0

PUESY

uniformly with respect to x € I,(x9). To get (LIOY) we rewrite F(x,z"(x)) —
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F(z,2'(x)) as follows

1
F(x,2"(x)) — F(x,2' (x)) = /0 [%(m,@)]dﬁ

where
h(z,0) = F(z,2' () + 0(z" (z) — 2'(2)),0 € [0,1],2 € I(z0)

The computation of the derivatives allows to see easily that (LI0R) is valid. In ad-
dition using the assumption (LION)we obtain the Lipschitz continuity of the solution

{y(t,\): e >} and
| y(x, \") —y(z, ) |< C| N =N |,V € I,(x0),N,\" € B(M\o,3) =%  (1.109)

where C' > 0 is a constant. The property (LI09) is obtained applying lemma Gronwall
for the integral inequality associated with the equation

y(z, \") —y(x,\) = /OI[F(t, 2"(t)) — F(t,2'(t))]|dt, z € I (o)

where F(xz,z(x)) fulfils (LI0S).

Theorem 1.4.7. (differentiability of a solution)

Let f(z, A\, y) : I Xx A x G = R™ be given such that (LIOM)is satisfied. Letxy € I,y9 €
G, o € A be fized and define a,b,8 > 0 such that I,(x9) C I,B(yo,b) C G,>. =
B(Xo,8) € A. Then there exist o > 0 and y(xz,\) : In(z0) X >, — B(yo,b) as

a unique C.P(f,xo,y0) solution for (LI4) such that for each A\ € int¥ there exist

%ﬁf‘) =7yj(z),z € In(z0),j € 1,...,m,satisfying the following linear system

-~

dz  Of(z, A y(z,N)) N f(z, N, y(z,\)

P Dy z , , 2(x0) =0 (1.110)

x € In(z0) = [x0 — o, x0 + ¢ for each j € {1,...,m}.

Proof. By hypothesis, the conditions of Theorem [[L44] are fulfilled and let y(z, \) :
I, (z9) x ¥ — B(yo, b) be the unique solution of (L94]) satisfying y(xo, ) = yo, A € X.
Consider A € int3 and notice that differentiability of the solution with respect to
parameters at A = A is equivalent to showing

lir%Ez(x):o,v;veIa(xo),je 1..,m (1.111)
T
whereE? (z) is defined by (ey, ..., €m is canonical basis for R™)

Fi(x) = L[y, 3 + 7e;) — y(m, ) — 753 (2)], 7 # 0 (1.112)

T

and g;(x),z € I,(xo), is the unique solution of (LII0). Using remark for
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N =X+7eg, N =\ we get
, TAf o~
B = [ ZelveNmwa
T =N 1 = N
+ / Ot N+ T1ejN)= |y(t, N+ T1e; —y(t,A) | +1}dt  (1.113)
- T

0

Denote My = C' +1, wherel | y(t,X—i—Tej) —y(t,\)) |< C and let L > 0 be such that
| %ﬁj“’m |< LVt € I,(xg). Then the following integral inequality is valid

) zot+|z—zo| zota R N
| Bi(2) |< L/ E;(x)|dt+M1/ 100t X + 7, 8) | dt, € T (20)
’ ’ (1.114)
Applying Lemma Gronwall, from (L.IT4]) we obtain
| EJ(x) |< Ml(/ | 6(t, A+ Te;, A) | dt)expLa (1.115)
z0

Using lin% 0(t, X + Tej,X) = 0 uniformly of ¢t € I, (o) (see(TI0])) and passing 7 — 0
T—
into (LITH) we obtain
lz‘n%E;'(x) =0,Vz € I,(z0),j €1,....,m (1.116)
r—

The proof is complete. |

1.4.3 The Local Flow(Differentiability Properties)

Consider a continuous function g(z,2) : I x G — R™, where I C R and G C R"™ are
open sets. Define a new nonlinear system of differential equations

dz

i g(x, z),z(xg) = X € B(zo,p) € G, wherexg € I,z9 € G (1.117)

are fixed and A € B(zo, p) is a variable Cauchy condition. Assume

Og(x, z)
8Zi

there exist continuous partial derivatives IxG—=R'iel,...,n (1.118)
The unique solution of (LIIT), z(x,\) : In(z¢) X B(z0,p) — G satisfying z(zo, ) =
A € B(zp,p) € R™ will be called the local flow associated with the vector field g

satisfying (LIIX).

Theorem 1.4.8. (differentiability of local flow) Consider that the vector field g €
C(I x G;R™) satisfies the assumption (LIIR). Then there exist o > 0 and a con-
tinuously differentiable local flow z(x, ) : In(x0) X B(z0,p) — G of g fulfilling the
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following properties

for each \ € int B(zo, p) there exists a nonsingular(n X n)matrix (1.119)

Z(z) = az(;’x),x € I, (xo0), satisfying

_dx

d2(r) 20z 7)Yy € I, (o)
Z((EO) = In

Proof. For zp € G fixed define A = {z € G :| z — 20 |< p+ €} = int B(zg, p + €), where
€ > 0 is sufficiently small such that A C G. Associate a new vector field depending
on parameter A € A

f@\y)=gl@y+ N, 2 € LAENyeG=G—Blz,p+e) (1.120)

Let b > 0 be such that B(0,b) C G and B(z, p+€+b) C G. Notice that according to

(LII]) we get a smooth vector field f with respect to (A, y) € A x G and the following
system of differential equation with parameters A = (A1, ..., \,) C A

d ~
= = fl@\y)ylao) =0,y GCR” (1.121)

satisfies the differentiability conditions of the Theorem [LZ7 Let y(x, A) : In(zo) X
B(z9,p) — B(0,b) € G be the unique solution of ([LI2I) which is continuously

differentiable on (z,\) € I,(zo) x intB(zo,p) and y;{z) = %@’X),x € Ia(aro),:\\ €
intB(zo, p),fulfils
du _ of (@ Ay (@.N) af(@Ay(@.N) n
o= B U+ FEw yu € R x e I,(xg) (1.122)
u(zg)= 0

for each j € 1,..,n. Then z(z,\) = y(x,\) + A,z € I,(z0), A € B(zo, p), is the unique
continuously differentiable solution of the nonlinear system (LITT) with z(z, A) = A
and

Z(z) = ‘%S’A’ A) _ aygz;, N I,z € I(20), X € intB(zo, p) (1.123)

where Y (z) = ayg;”\) verifies the following system

_du o (1.124)

dy (z) — 8f(1)>5;‘j(mv)‘))i/\'($) + a.f(mv)‘)y(ka))7x c Ia(xo)
Y(z9) = null matrix
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Using (C123) and ([I24) we see easily that Z(zo) = I,, and

dZ(z) _ dY(2)] _ 9g(,2(x,)) 5 dg(x, 2(z, 1))
dz a dz _A 0z [Z(@) = In] + 0z
= Wf(m),x € I.(zo) (1.125)

The matrix satisfying (LI25) is a nonsingular one(see Liouville theorem) and the
proof is complete. O

Remark 1.4.9. Consider the nonsingular matriz 2(:6), x € I (x0) given in the above
theorem and define H(z) = [Z(z)]7 ,x € Io(z0). Then H(z),z € I,(xo) satisfies the

following linear matrixz system

7 - = Og(x,z z,A
i) _ _f(g)20le2@d) 4 e 1, (z) (1.126)
H(ZZ?()) - In

It can be proved by computing the derivative
df(x)Z(x)] _ dH(x)

o dz
dx b dx

1Z(x) + fl(x)[%] =0,z € I(z0)

Exercise(differentiability with respect to = € I)
Let g(x,z) : I x G — R™ be continuously differentiable mapping with respect to
z € GLet xg € I,2z9 € G and 5 > 0 be fixed such that Ig(zo) = [zo — 8,20 + ] C I.
Then there exist o > 0 and a continuously differentiable mapping z(z;s) : In(s) x
Ig(z9) — G satisfying

% = g(z,z2(x;9)), 2 € In(s) = [s —a, s + q] (1.127)
z(s;s) = 29, for eachs € Ig(xo)

and z(z) = %, x € I,(8) (for s € intl(xo)) fulfills the following linear system

B _ WA D 2t)0 € 1), 26) = ~9(5.20) (1.128)

Hint. A system with parameters is associated as in Theorem [[4.8 and it lead us to
a solution
z(z,8) : In(s) x Ig(xo) — B(z0,b) C G

of the following integral equation
z(x, 8) = 20 +/ g(t,z(t, s))dt,x € I,(s),s € Ig(xo)

Take § € intlg(xg) and using a similar computation given in Theorem [[A7] we get
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ill;% E.(z) =0,z € I,(3), where

E.(z) = %[z(x,g—l— 7)—2z(x,8) —12(2)], T #0

1.4.4 Applications(Using Differentiability of a Flow)

(a) The local flow z(x, \) : I (x0) X B(20,p) = R™ defined in Theorem [[LZ7] preserve
the volume of any bounded domain D C B(zg, p) for X € D provided TTW =
2?21%’;@’)‘)) = 0,2 € I,(20), A € D. In this respect, denote D(z) = {y € R,y =

2(x,A), A € D}, z € I,(x0) and notice that D(z¢) = D. Using multiple integrals we
compute volD(z) = [ ... [ dyi...dy, which reduces to

dz(z, A
D(x)z/.../met% | dAy..d)n

Using Liouville theorem and Tr%w = 0,Vx € Ia(aro),:\\ € D, we obtain

det%ﬁ’x) =1 for any z € Ia(xo),j\\ € D, where
0z x,x
59)\ ),:17 € I (xo)

satisfies the linear system (LIT19). As a result,det] azéﬁ’”] =1,Va € Io(xo)and X € D,
which proves that volD(z) = volD,x € I, (xo)
(b) The linear system (LII9) given in Theorem is called the linearized system

associated with (LIT7).

If g(x, z) = g(z) such that g(z) satisfies a linear growth condition

lg(2) | C(1+ | 2 |),Vz € R" (1.129)
where C' > 0 is a constant ,then the unique solution z(z, ), A € B(zo, p) verifying

d

(@) = gl=(z, ), 2(0) = A (1.130)
can be extended to the entire half line x € [0, 00).
In addition, if g(z9) = 0(zo is a stationary point)then the asymptotic behaviour of
z(xz, A) for x — oo and A\ € B(zp,p) can be obtained analyzing the corresponding
linear constant coeflicients system

dz _ 9g(20)

o, z,2(0) = A (1.131)
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It will be assuming that

dg(zo0)

z

anyA € o(A)(P(\) = det(A — AI,,) = 0) satisfies Re\ < 0, which implies | expAz |<
Mexp — wz] for some M > 0,w > 0.

We say that the nonlinear system ([LI30) is locally asymptotically stable around the
stationary solution zg(or zg is locally asymptotically stable)if there exist p > 0 such
that

A:

is a Hurwitz matrix i.e (1.132)

lim z(x,\) = 0,Y\ € B(zo,p) (1.133)

Tr—r0o0

There is a classical result connecting (LI32) and (CI33).

Theorem 1.4.10. (Poincare-Lyapunov) Assume that the n x n matriz A is Hurwitz
such that
| expAx |< M(exp — wz), YV € [0, 00)

for some constant M > 0,w > 0. Let f(y) : Q@ C R™ x R"™ be a local Lipschitz
continuous function such that Q is an open set and | f(y) |< L |y |,y € Q0 € Q),
where L > 0 is a constant. If LM —w < 0,then y = 0 is asymptotically stable for the
perturbed system

d
== Ay+ f(y).y € 2y(0) = A€ B0,p) SO (1.134)

Here the unique solution {y(x,\) : x = 0} of(40) fulfils lim y(x,\) = 0 for each
T—r 00
X € B(0, p) provided p = 32+ and B(0, p) C Q.

Proof. LetA € 2 be fixed and consider the unique solution {y(x,\) : = € [0,T]}
satisfying (I34). Notice that if A is sufficiently small then y(z,\) : z € [0, T],can
be extended to the entire half line € [0,00). In this respect, using the constant
variation formula for x € [0,7] and b(z) = f(y(z,N)) we get y(xz, \) = (expAx)\ +
Jy (exp(@ — t)A) f(y(t, X))dt,for any = € [0,T]. Using the above given representation
we see easily the following estimation

| y(2,\) |<] expAz || A | +/0 | exp(z — A || f(y(t,\) | dt <

<| A | M(exp — wx) —I—/ LM (exp —w(x — 1)) | y(t, A) | dtfor anyz € [0,T]
0

Multiplying by (expwz) > 0, we obtain
(expwz) | y(z, A |) <[ A| M+/ LM (expwt) | y(t, A )dt, @ € [0, T
0

and applying Gronwall Lemma for ¢(z) = (expwz) | y(z,A) | we get p(z) <| A |
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M(expLMz) for any = € [0,7]. Take § > 0 and p = 52 such that B(0,5) C Q.
It implies | y(z,\) |< $§ for anyz € [0,7] if | A |[< p. In addition, | y(T,\) |<
%exp(—aT), where o = w — LM > 0 and choosing T > 0 sufficiently large such that
Mexp — oI < 1 we may extend the solution y(z,\),z € [0,T] for x € [0,27] such

that
)
[y, ) =1y T, y(T ) IS M | y(TLA) [ exp — o < (3)

and
)

for any = € [T,2T]. It shows that y(x, \) can be extended to the entire half line
z €[0,00) if | A |[< p= 537 and § > 0 satisfies B(0,5) C Q

In addition the inequality established for x € [0,7T] is preserved for the extended
solution and | y(z,A) |<| A | Mexp(LM —w)z < Sexp(LM —w)z, for any z € [0, c0),

if| A< p= %. Passing to the limit z — oo, from the last inequality we get

lim | y(z,\) |= 0 uniformly with respect to A |< p and the proof is complete. O
xT—r 00

The following is a direct consequence of the above theorem.

Remark 1.4.11. Let A be n x n Hurwitz matriz and f(y) : Q(open) C R™ — R™ s
a local Lipschitz continuous function where 0 € Q. If | f(y) |[< a(] y |), Yy € Q,where

all y |) : [0,00) = [0,00) satisfies lin})@ = 0. Then the unique solution of the
=
system
dy
7 = A+ ) y(0)=Are B0,p)z=0

is a asymptotically stable(lim | y(x,\|=0)) if p > 0 is sufficiently small.
xT—r 00

Proof. Let M > 1 and w > 0 such that | expAz |< M (exp—wax). Consider L > 0 such
that LM —w < 0 and n > 0 with the property «(r) < Lr for any r € [0,n]. Define

N =y e Q| y|<n. Notice that g(y) = Ay + f(y),y € Q, satisfies the assumption of
Poincare-Lyapunov theorem which allows to get the conclusion. |

We are in position to mention those sufficient conditions which implies that the
stationary solution zy € R™ of the system

dz

o = 9(2),9(20) =0 (1.135)
is asymptotically stable.Let g(z) : D(open) C R™ — R”™ be given such that g(zp) = 0
and

(i) g(z) : D — R™ is continuously differentiable.

(if) The matrix % = A is Hurwitz.
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Under the hypothesis (i) and (ii) we rewrite

9(y) = Ay + f(y), wherey = z — zoand f (y) = g(20 +y) — 9(20)
Consider the linear system

dy

%:Ay+f(y),y€{yGR":|y|<u}:Q

where p > 0 is taken such that zo+Q C D. Using (i) we get that f is locally Lipschitz
continuous on () and the assumptions of the above given remark are satisfied. We see

easily that
' dg(z0 + 6 dg(=

0z 0
and )
w1<ally) = ([ 1oy o) |y ly e
Here h(0, |y |) = max,|<|y| | W - 9(8%0) | satisfies

lim h(0,| y |) = 0 uniformly on 6 € [0, 1] and lin% @ = 0 therefore, the assumptions
o d

ly|—0
of the above given remark are satisfied when considering the nonlinear system (L.133])
and the conclusion will be stated as

Proposition 1.4.12. Let g(z): D CR™ — R™ be a continuous function and zy € D
fized such that g(zo) = 0. Assume that the condition (i) and (ii) are fulfilled. Then
the stationary solution z = zo of the system (LI3H) is asymptotically stable, i.e
gclingo | z(x,\) — 20 |= 0 for any | X — z0 |< p, ifp > 0 is sufficiently small,where
z(x, A) i @ = 0 is the unique solution of (LI3H) with z(0,\) = A

Problem. Prove Poincare-Lyapunov theorem replacing Hurwitz property of the ma-
tric A with o(A+ A*) = {\1,..M¢} where \; < 0,1 € 1,...,d.

Comment(on global existence of a solution)

Theorem 1.4.13. (global existence)Let g(z,z) : [0,00) x R™ — R™ be a continuous
function which is locally Lipschitz continuous with respect to z € R™. Assume that
for each T > 0 there exists Cp > 0 such that

lg(z,2) [< Cr(1+ | 2 |),Vz € [0,T], z € R"
Then the unique C.P(g;0, zo) solution z(x, zo) satisfying

dz(z;20)
dx

= g(x, 2(z, 20)), 2(0,20) = 20, is defined for any z € [0, 00).

Proof. (sketch)It is used the associated integral equation

Saz0) =20+ [ gl x(t)dto € 0.KT)
0
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and the corresponding Cauchy sequence allows to get a unique solution
zi(x,20) : x € [0, KT] for each K > 1. The global solution will be defined as an

inductive limit Z(z, z9) : [0,00) = R", Z(z, z0) = Zi(x, 20), if z € [0, KT}, for each
k> 0. |

1.5 Gradient Systems of Vector Fields and their So-
lutions; Frobenius Theorem

Definition 1.5.1. Let X;(p;y) € R™ for p = (t1,...,tm) € Dy, = [[1"(—as,a:),y €
V CR™ be continuously differentiable (X; € C*(Dy,, x V;R™)) for j € {1,....,m}.

We say that {X1(p;y), ..., Xm(p;y)} defines a gradient system of vector fields(or fulfils
the Frobenius integrability condition) if

St 0iy) — S iy) = [Xalps ), X, (0 )V, j € {1,.ym}, where [Z1, Z5)(y) =

BZa;y(y)Zg(y) - aza;y(y)Zl (y) (Lie bracket).

1.5.1 The Gradient System Associated with a Finite Set of
Vector Fields

Theorem 1.5.2. Let Y; € C*(R",R"),z9 € R",j € {1,...,m} be fized .Then there
exist Dy, = [11" (—as,a;), V(zo) CR™ and X;(p;y) € R
X; € CH(Dj_1 x V;R"),j € {1,...m}, X1(p1;y) = Yi(y),such that

9y _
oty

0 0
Vi), g = Xa(t13), o g = Xnla, o fm139) (1.136)

1s a gradient system (%}Zﬁy) = [Xi(pi;.), X;(pj, )(y),i < j) and
Gp;z) =G1(t) 0. o Gy (tm (), p = (t1,y ey tim) € Dy € V() (1.137)

is the solution for ([LI3Q) satisfying Cauchy condition y(0) = = € V(xg). Here
Gj(t;x) is the local flow generated by the vector field Yy, j € {1,...,m}.

Proof. We shall use the standard induction argument and for m = 1 we notice that
the equations ([I36) and (LI37) express the existence and uniqueness of a local
flow associated with a nonlinear system of differential equation (see Theorem [[L1.g]).
Assume that for (m — 1) given vector fields Y; € C?(R™,R™) the conclusions ([CLI386])
and (LI37) are satisfied,i.e there exist

—

5(\2(27) = Y275(\3(t25 y)? "'7Xm(t27 "'7tm71; y) (1138)
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continuously differentiable with respect to
p=(ta,.estm) € [15' (—as,a;) and y € V(z9) € R™ such that

_ 9 .
- :Xg(tg;y),...,at—y :Xm(tg,...,tm_l;y) (1139)
satisfying Cauchy condition y(0) = x € V(zo). Recalling that (LI39) is a gradient
system we notice
X, Dy = L
37(15-) = [Xi(Pi,.), X; (P )](W),2<i<j=3,...,m (1.140)

where p; = (ta,...,t;—1) Let vector fields Y; € C*(R",R"),j € {1,...,m} and denote
y=Gp:z) = Gi(t1) o G(pix),p = (t1,D) € H(—ai,ai),x € V(xo) C V(xo) (1.141)
1

where Gy (t)(z) is the local flow generated by Y7 and G(p,z) is defined in (II3R).
By definition %tp;y) =Y1(G(p; x)) and to prove tAhat y = G(p; ) defined in (LI41)
fulfils a gradient system we write G1(—t1;y) = G(p;z) for y = G(p;x).A straight

computation shows

0G1(—t13y) Oy _ 9G (P y)

, forj = 2,. 1.142
ay ot o, o (1.142)

wh1ch is equivalent with writing

Hl( t17 ) (p]7G1( tlvy))uj:27"'7m

_ [8G1(U;y)]—1

Here the matrix Hy(o;y) = oy satisfies

d(g —H1 L(G1(03y)), H1(0;y) = I,(see Theorem [[L4.8). Denote

Xo(tisy) = Hi(—t1;y)Ya(G1(—t15y))

Xj(tlv---jjfﬁy):Hl(_tl§y))/(>j(t2"" ti—1;G1(~t1;9)),5 = 3,..,m

for y € V(xzg) C 17(:100) and p = (t1,....tm) € [1}"(—ai, a;). With these notations, the
system ([LT42) is written as follows

Jy 3y

_ Oy

X (tla"'atmfl;y) (1143)

and to prove that (LI43)) stands for a gradient system we need to show that

0X; .
8tj (pjvy) = [Xl(pzu ')7Xj(pj7 )](y)al < 1< )= 27 e (1144)
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For j = 2 by direct computation we obtain

8 (1:0) = Hi(~tr5) 0, V)G —:9) (1145

and assuming that we know (see the exercise which follows)

Hy(—t1;9)[Y1, Y2|(Gi(t1,y) = [Hi(—t1;.)Y1(G1(t1:.)), Hi(—t1;.)Ya(Gi(t15.))](y)
Y1(.), Xo(t1:-)](y) (1.146)

we get
28 (1:0) = D4 ), Kol ]0) (1.147)

The equation (LI4T) stands for (LI44]) when ¢ = land j = 2,3,...m. It remains to
show (LI44)) for j = 3,...,m and 2 < i < j. Using (L.I40) and

OXj (1)) — ) 2% (5 :

a_tl(pja y) - Hl(_tlv y)a_tl(pja Gl(_th y))a

we obtain ax
at-J (pjsy) = Hi(—t1;y)[Xa(Di3 ), X5 (05 )N Gr(—t1;9)) (1.148)

if 2<i<i<j=3,..,m. The right side in (L.I48) is similar to that in (.I44]) and
the same argument used above applied to (L.I48)) allow one to write

00X,
B pssy) = [Xilpis ), X5 (p3))(y) (1.149)
for any 2 < ¢ < j = 3,...,m, and the proof is complete. |

Exercise 1. Let X,Y7,Y; € C?(R",R") and consider the local flow G(o;x),0 €
(—a,a),x € V(zo) C R™and the matrix H(o;z) = [9%(0;2)]~! determined by the
vector field X (see Theorem [[LZg)). Then

H(—t;2)[Y1,Y2](G(—t;2)) == [H(—t; . )Y1(G(—t;.)), H(—t; ) Y2(g9(—t; .))|(x)

for any t € (—a,a),x € V(zp) C R™.

Solution. The Lie bracket in the right hand side of the conclusion is computed using
H(—-t;y) = %—g(t; G(—t;y)) and using the symmetry of the matrices ‘ggj (t;x),i €
{1,...,n},

we get the conclusion, where G = (G, ..., Gy,).

Exercise 2. Under the same conditions as in Exercise 1, prove that

H(=t;y)V1(G(=t;y)) = Yi(y), providedX =Y,
Solution. By definition H(0;y) = I,, and
Xi(ty) = H(=t;9)Y1(G(—t;y))

satisfies X1(0;y) = Y1(y). In addition, applying the standard derivation of X (¢;y)
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we get 2 X, (t;y) = 0 which shows X;(t;y) = Yi(y),t € (—a,a) and the verification
is complete.

1.5.2 Frobenius Theorem

Let X; € C*(R",R"),j € {1,...,m} be given and consider the following system of
differential equations

%:Xj(y),j:1,...,m,y(0):I€V§R" (1.150)
J

Definition 1.5.3. A solution for (LI50) means a function

G(p;x) + Dy x V. — R™ of class C*(G € C*(D,, x V;R™)) fulfilling (LI36) for
any p = (t1,....,tm) € Dy, = [17"(—as,a;) and © € V(openset) C R™. The system
([CI50) is completely integrable on O(openset) C R™ if for any xg € 0 there exists a
neighborhood V(xo) C 6 and a unique solution G(p; ), (p;x) € Dy x V(z0) of (LIB0)
fulfilling G(0;x) = x € V()

Theorem 1.5.4. (Frobenius theorem) Let X; € C*(R™,"),j € {1,....,m} be given.
Then the system (LISQ) is completely integrable on

0 (open set) CR™iff[Y:,Y;](z) =0

for any i,j € {1,...,m},x € 0, where [Y;,Y;] = Lie bracket. In addition, any local
solution y = G(p; x), (p,x) € Dy, x V(x0) is given by

G(p;z) = G1(t1)0...0G (tm)(z),where G;(o)(x) is the local flow generated by X, j €
{1,...,m}.

Proof. For given {Y1,...,Y,,} C C?*(R™;R") and x¢ € § C R" fixed we associate the
corresponding gradient system

— =Y — = Xo(ty; vy —— = X (to, .. t1; 1.151
8t1 l(y)7 3152 2( lvy)u 7atm ( 2 1 y) ( )

and its solution
y=G(p;z) = Gi(t1) 0 ... 0 G (ti)(x),p € Dy, = | |(—aj,aj) (1.152)

1

satisfying G(0;z9) = zo € V(x0)(see Theorem [[52) and G(p;x) € 6. By definition
g—g’j =X,(t1,...tj—1;y), 7 € {1,...,m}, if y = G(p; xp) and the orbit given in ([LI52) is
a solution of the system (LI5Q)if f

Xj(tr,tj15y) = Y;(y), 5 € {2,...,m},y € V(o) C 0O (1.153)
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To prove (LI53]) we notice that

Xo(tisy) = Hi(—t1;y)Ya(G1(—t13y)), for anyy € V(zo) (1.154)
where Hy(—t1;y) = [%C;l (—t1;y)] 7! satisfies linear equation
Yooiy) = Mo Gilo) o € (Cana)
H, (O;y) = I, '

(see Remark (LZA9) ). Using (LI54) and (LI5A), by a direct computation we get

{ Xo(0;y) = Ya(y),y € V(zo)

%ff;y)Z Hi(—t1;9)[Y1, Yol (Gi(—t13y))

for any y € V(o) C 0,t; € (—a1,a1). In particular
Xa(t1;y) = Yofor anyy € V(wo)iff[Y1, Y2](y) = Ofor any y € V(zo) (1.156)

A similar argument can be used for proving that

Xj(ty, - tj13y) = Yjly), for anyy € V(xo),j = 20 f f[Yi, ¥;](y) = 0
foranyl <i<j—1,y € V(xg) (1.157)

and the conclusion of the system (LI50) implies
[Yi, Yj](y) = 0,Vy € V(zo) € 0,4,j € {1,....m} (1.158)

The reverse implication, {Y1,...Y;,} € C*(R™,R™) are commuting on 6(open) C R™
implies that the system is completely integrable on 6 will be proved noticing t([TI50])
hat

Gl(tl) ° GJ(tJ)(y) = Gj (t]) o Gz(tz)(y)v for anyiuj € {17 ) m}7 ye V(xO) (1159)

if (LI50)is assumed. Here G,(0)(y) is the local flow generated by the vector field
Y;,j € {1,...,m}. It remains to check that the orbit (I.I52) is the unique solution of
the system (LI50) and in this respect we notice that

o(0;) = G(Op;2),0 € [0,1] (1.160)
satisfies the following system of ordinary differential equations

W(0:2) = I Y5(0(0;2) = g(p, (0 2))
{ 829(0;33) = x,plz (t1,itm) € Diy (1.161)

Here ¢(p,y) is a locally Lipschitz continuous function with respect to y € 6 and
{©(0;x) : 0 € 0,1]} is unique. The proof is complete. O
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Comment(total differential equation and gradient system)
For a continuously differentiable function y(p) : D,, = [[}"(—ak, ax) — R" define the
corresponding differential as follows

~_wm 9y(p)
=X ot;

dy(p)

where
p= (tl, ...,tm) S Dm

Let{Y1,..., Y} € C2(R™ R™) be given and consider the following equation (using
differentials)

dy(p) = XL, Y;(y(p))dtj,p € D,y(0) = z € V(zg) C R™.0 solution for the last
equation implies that

g—z =Y;(y),j € {1,...m},p = (t1,....tm) € Dy, is a gradient system for y € V(xo)
and it can be solved using Frobenius theorem((L54]). In addition, for an analytic
function of z € D C C,

w(z) : D — C™ defines the corresponding differential

dw(z) = dwi(z,y) +idwa(z,y),z =a+iy € D

where w(z) = wq(z,y) + iwz(x, y)and

v(x,y) = Z; (x,y) : Dy = Hf(—ak, ar) — R?" is an analytic function.Let
f(w) : Q@ C C™ — C™ be given analytic function and associate the following equation
(using differentials)

dw(z) = f(w(z))dz = [fi(v(z, y))dr — f2(v(2,y))dy] +

+ilfa(v(z,y))dz + fo(v(z,y))dy] where

f(w) = fi(v) +ife(v) and f1, fo are real analytic functions of v = ( Zl ) € Dy, =
2
Hiil(—ak, ax). To solve the last complex equation we need to show that Yi(v) =

( jj; > (v) and Ya(v) = < _le > (v)are commuting on v € Ds, which shows the

system % =Y1(v), g—Z = Y5(v) is completely integrable on Ds.

1.6 Appendix

(a1)Assuming that f(z,y) : I x G C R x R" — R” is a continuous function, Peano
proved the following existence theorem

Theorem 1.6.1. (Peano) Consider the following system of ODE

d
= = f(@,y),y(x0) = yo where (z0,y0) € I x G

is fired and {f(x,y) : (z,y) € I x G} is a continuous function. Then there exist
an interval J C I and a continuously derivable function y(x) : J — G satisfying
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y(xo) = yo and %(m) = f(z,y(x)),xz € J.

Proof. 1t relies on Arzela-Ascoli theorem which is refering to so called compact se-
quence

{yr(z), € D}p>1 C C(D;R™)

satisfying

(i) A boundedness condition |yx(x) |< M,Yz € D, k>0

(14) they are equally uniformly continuous, i.e for any e > 0there exists d(e) > 0
such that | 2" — 2’ |< §(e) implies | yp(z”) — yp(a’) |< eVa',2”" € D,k > 1

If a sequence {yx(z) : © € D}y>1 satisfy (i) and (i) then Arzela-Ascoli theorem
allows to find a subsequence {y,; () : * € D};>1 which is uniformly convergent on
the compact set D. Let a > 0 and b > 0 such that I, = [xg — a,z0 +a] C I
and B(yo,b) € G. Define M = max{| f(z,y) |: (z,y) € I, x B(yo,b)} and let
a =min(a, %) Construct the following sequence of continuous functions

«
yr(z) = [xo, 20 + o] = G, yr(x) = yo, forx € [xo,x0 + E]

(iii)

ye(z) = Yo —|—/ Ft, yr(t — %)),if x € [zo+ %,xo + ajfor each £ > 1
zo+ %

{yr(x) : © € [ro,20 + ]} is well defined because it is constructed on the interval
[zo + m$, 20 + (m + 1)F] using its definition on the preceding interval [zg + (m —
1)%,xo +m%]. It is easily seen that{yx(x) : x € [x0, a]}r>1 is uniformly bounded and
| k(@) —yo |< Ma <b.

In addition, | yr(z") —yr(2’) |= 0, if o', 2" € [x0, 20 + ] and | yr(2”) —yr(z’) [< M |
" —a' |if o’ 2" € [xo + ¢, w0 + o] which implies | yp(z") — yr(2') < M | 2" — 2" |
for any o', 2" € [xo,x0 + o, k > 1.

Let y(z) : [zo,z0 + @] = B(yo0,b) € G be the continuous function obtained using a
subsequence{y, () : = € [x0, 70 + a]};j>1,¥(x) = lim y,(x) uniformly with respect

j—o0

to x € [zo, o + . By passing j — oo into the equation (iii) written for k = k; we
get

—y0—|—/ I, dtVIG[zO,xo—Fa]

and the proof is complete. O

(a2). Ordinary differential equations with delay
Let 0 > 0 be fixed and consider the following system of ODFE

W)= flz,yx),y(x—0)),z €[0,a]
{ Ho) =  9(0),0 € [~0,0] (1.162)

@
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where ¢ € C([—0,0;R™) is fixed as a continuous function(Cauchy condition),and
flz,y,z) : IxR"xR™ — R™ is a continuous function admitting first order continuous
partial derivatives 0y, f(z,y,2) : I x R" x R* - R",i € {1,...,n}.

The above given assumptions allow us to construct a unique local solution satisfying
([LI62) and it is done starting with the system ([.I62)) on the fixed interval x € [o, 0]

d—Z = flz,y(z),¢(x —0)),z €0,0]
{ 5(0) = (0) (1.163)

which satisfies the condition of Cauchy-Lipschitz theorem. In order to make sure that
the solution of (L.IG3) exists for any x € [0, 0] we need to assume a linear growth of
f with respect to the variable y uniformity of (z, z) in compact sets,i.e

N flz,y,2) IS CA+ |y |)V € R" and (x, z) € J x K(compact) C I x R™,where the
constant C' > 0 depends on the arbitrary fixed compact J x K.

Any function f satisfying

(**Nf(x,y,2) = Az, 2)y + b(z, 2), (x,2) € I x R™ where the matrix A(z, z) € Myxn
and the vector b(z, z) € R™ are continuous functions will satisfy the necessary condi-
tions to extend the solution of (ILIG3) on any interval [mao, (m + 1)o],m = 0
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Exercises(Linear integrable system)

(1) Formulate Frobenius theorem ((L54])). Rewrite the content of Frobenius theorem
using linear vector fields Y;(y) = A;y, where A; € M,,«,(R),i € {1,...,n}.

(2) For any matrices A, B € M,,«,(R) define the meaning of the exponential mapping
(exptada)(B), where ad4(adjoint mapping associated with A)is the linear mapping
ad : Myyn(R) = M, xn(R), defined by ada(B) = AB — BA = [A, B](Lie bracket of
(4,B)).

(3) Show that (exptA)B(exp — tA) = (exptada)(B), for any A, B € M,,«n(R),

t € R where (exptada) is the linear mapping defined in (2).

(4)Rewrite the gradient system ((LE2))when the vector fields Y;(y) = A;y,i €
{1,...,m},are linear. Show that,in this case the vector fields with parameters are
the following

Yi(y) = Ary, Xa(ti;y) = (exptiada, )(A2)y, ooy Xin(t1, ooy tm—1;y) = [exptiada, o
(exptaada,)... o (exptm—_1ada,, ,)(Am)]y,such that the corresponding gradient sys-
tem

g—tyl =Yi(y), g—i = Xo(t1,y), ., 6(?5_?” = X (t1, ..., tim—1; y) has the unique solution
Y(t1, ey tmi yo) = (expt1Ar)...(expty, Am)yo-

Bibliographical Comments

The entire Chapter 1 is presented with minor changes as in the [12].
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Chapter 2

First Order Partial
Differential Equation

Let D C R™ be an open set and f(y) : D — R™ is a continuous function.Consider the
following nonlinear ODE

dy B
W_ ) (21)

Definition 2.0.2. Let Dy C D be an open set. A function u(y) : Dy — R is called
first integral for 210 on Dq if

1. u is nonconstant on Dy,
2. w is continuously differentiable on Do(u € C*(Do;R)),

3. for each solution y(t) : I C R — Dy of the system @2I)) there exists a constant
¢ € R such that U(y(t)) = ¢,Vt € I.

Example 2.0.1. A Hamilton system is described by the following system ofODE

dp 0H dg  OH B -
U= 9P g = 5, P @):p0) = ro,a(0) = @ (2.2)

where H(p,q) : G1 x G2 C R™ x R"® — R s continuously differentiable and G; C
R™ i € {1,2}, are open sets. Let {(p(t),q(t)) : t € [0,T]} be solution of the Hamilton
system (ZI)) and by a direct computation, we get

d

= H(p(t),4(t))] = 0 for any t € [0,T]

43
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It implies H(p(t),q(t)) = H(po,qo)Vt € [0,T] and {H(p,q) : (p,q) € G1 x G2} is a
first integral for (22I)

Theorem 2.0.3. Let f(y) : D — R™ be a continuous function,Dy C D an open subset

and consider a nonconstant continuously differentiable function U € C'(Dgo,R). Then
{U(y) : y € Do} is first integral on Doy of ODE iff the following differential equality

du(y) _wn Ouoo
< dy fly) >=%01 o0, () fi(y) = 0,Yy € Dy (2.3)
is satisfied, where
ou ou ou
f - (flu ceey fn)7 8_y - (8—y1, ceey 8—yn)

Proof. Let {u(y) : y € Do} be a continuously differentiable first integral ofODE [2.1))
and consider that y(t, o) : (—a, @) — Dy is a solution of (1) verifying (0, yo) = yo €
Dy. By hypothesis, u(y(t,yo0)) = ¢ = u(yo), for any t € (—a, ) and by derivation, we
get

0= %[u(y(t,yo))] =< g—Z(y(t,yo)), f(y(t,y0)) >, for any t € (—a, a) (2.4)

In particular, for t = 0 we obtain the conclusion (23] for an arbitrary fixed yo € Dy.
The reverse implication uses the equality (23]) and define ¢(t) = u(y(t)),t € (-, @)
where u € C1(Dy,R) fulfils @3) and {y(t) : t € (—a,a)} is a solution of @I). It
follows that

dy ou
20 =< SEW0). F (1) >= 0.t € (~a.0)
and
p(t) = constant,t € (—a, «)
The proof is complete. |

Let Q € R**! be an open set and consider that
flz,u) : Q@ = R" L(z,u) : 2 - R (2.5)
are given continuously differentiable function, f € C1(Q;R"),L € C*({4;R).

Definition 2.0.4. A causilinear first order PDFE is defined by the following differ-
ential equality
ou(x)
Ox

where f € CHQ;R"), L € CY(4R) are fizred and u(xz) : D — R is an unknown
continuously differentiable function such that (z,u(z)) € Q,Va € D

< f(z,u(z)) >= L(x,u(z)), z € D(open) C R™ (2.6)
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A solution for ([Z8) means a function u € C'(D;R) such that (z,u(z) € Q) and
(Z0)is satisfied for any x € D

Remark 2.0.5. Assuming that L(z,u) = 0 and f(x,u) = f(z) for any (x,u) €
D xR = Q then PDE defined in (2.8) stands for the differential equality(@3)) in
Theorem defining first integral for ODE Z1)). In this case, the differential
system [2ZT))is called Cauchy characteristic system associated with linear PDE

ou(x)
Ox

,f(x) >=0,z€ DCR" (2.7)

Proposition 2.0.6. Let Dy C D be an open subset and consider a monconstant
continuously differentiable scalar function u(x) : Dy — R. Then {u(x) : © € Dy} is
a solution for the linear PDE 1) iff {u(x) : © € Do} is a first integral for ODE

@) on Do.

Definition 2.0.7. Let a € D C R" be fized and consider m first integrals

{u1(y), ..y um(y) : y € V(a) C D} for ODE 1)) which are continuously differentiable
where V (a) is a neighborhood of a.We say that u; € C1(V(a);R),i € {1,...,m} are
independent first integrals of (1)) if Tank(aul (a), ..., %L—;”(a)) =m

Remark 2.0.8. Let f € CY(D;R") and a € D be fized such that f(a) # 0. Then there
exist a neighborhood V(a) C D and (n—1) independent first integrals {u1(y), ..., un—1(y) :

y € V(a)} of the system ([21).

Proof. Using a permutation of the coordinates (f1, ..., fn) = f we say that f,(a) #0
(see f(a) # 0). Denote A = {(A1, ..., A1) € R"™F : (A, ..., \n_1,a,) € D} and
consider {F(t,\) : (t,\) € [0,T] x £} as the local flow associated with ODE ([Z1])

( )\) f(F(t,)x)),tE[—a,a],)\gng
{ (O A= (A, A1, an) (2.8)

where ¥ C A is a compact subset and (a1, ..., a,—1) € intX. Using the differentiability
properties of the local flow {F(¢t,\) : (t,\) € [~a, a] x £}, we get

det( %—Ij g—i S afil ).(O,al,...,an,l) =
fila) 1 0 0
0 1
. 0 .
= det . . = (=) fua) £0
. .. 0
. . 1
fal@ 00 . . .0

and the conditions for applying an implicit functions theorem are fulfilled when the
algebraic equations

F(t,\) =y, yeV(a) CD,F(0,a1,....,an_1) =a (2.9)
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are considered. It implies that there exist ¢t = ug(y), i = u;(y),i € {1,...,n—1},y €
V(a), which are continuously differentiable such that

Fuo(y),ur(y), - un—1(y)) =y, vy € V(a) (2.10)

where uo(y) € (—a,a) and A(y) = (u1(y), -, un—1(y)), A € X, for any y € V(a).
In addition, {ug(y),...,un—1(y) : y € V(a)} is the unique solution satisfying (Z.10)
and

UQ(F(t, )\)) =1, ul(F(t)\)) =\, 1 € {1, vy — 1} (211)

Using (ZI1)) we get easily that {u1(y), ..., un—1(y) : y € V(a)} are (n—1) first integrals
for ODE (2] which are independent noticing that

Oui oy OF

< ay (0’)5 a—)\](()v)‘) >= 5ij

where

OF .
a—>\j(0,)\)=€j cR ,61']‘ :{

1, i=j
0, i#0,je{l,..,n—1}

and {ey,...,e,} € R™ is the canonical basis. In conclusion,

< 8u1

6—y(@),ej >= 0ij
for any
ije{l,..,n—1}
and
Tank( %—Z}(a) S aué;;l(a) ) =n-1
The proof is complete. O

Theorem 2.0.9. Let f(y) : D — R™ be a continuously differentiable function such
that f(a) # 0 for fited a € D. Let {ui(y),...,un-1(y) : y € V(a) C D} be the
(n—1) first integrals constructed in Theorem[Z{8. Then for any first integral of (21))
{u(y) : y € V(a)},u € CY(V,R), there exists an open set 0 C R"“Land h € C1(6,R)
such that u(y) = h(ui(y), ..., un—1(y)),y € Vi(a) C V(a).

Proof. By hypothesis {u(y) : y € V(a)} is a continuously differentiable first integral
of ODE (Z1]) and we get

’U,(F(t, Ay eeny )\n—l)) = h()\l, ceey )\n_l),Vt S [—Oé, Oé] (212)

provided that {F(t,\) : t € [~a,a],A € X} is the local flow associated with ODE
@) satisfying F(0, A1, ...; Ap—1) = h(A1, .oy A1, an)(see ([Z8)) of Theorem Z0.F]).
As far as F € C!((—a,a) x 3;R™) and u € C1(V(a),R) we get h € C1(,R) fulfilling
EI12) where (aq, ...,an—1) € O(openset) C 3. Using ([ZI0) in Theorem 0.8 we obtain
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F(up(y), ..yun—1(y)) =y € V(a)
and rewrite (ZI2]) for

t=wuo(y), \i = wi(y).i € {1,....,n—1}

we get
u(y) = h(u1(y), ..., un—1(y)) for somey € Vi(a) C V(a) (2.13)

where (u1(y), ..., un—1(y)) € 0, y € V1. The proof is complete. O

Remark 2.0.10. The above given consideration can be extended to non autonomous

ODE

%zf(t,y),teeIgR,yeGgR" (2.14)

where f(t,y) : I x G — R™ is a continuous function.
In this respect, denote

z=(t,y) eR"™ D=1xGCR"!

and consider
g(z): D — R

defined by
g(z) = coloumn(1, f(t,y)) (2.15)

With these notations, the system (ZI4) can be written as an autonomous ODE

dz

— = 2.16
o~ 9) (2.16)
where g € C1(D;R™"Y) provided f is continuously differentiable on (t,y) € I x G.
Using Proposition [2.0.0] we restate the conclusion of Theorem [2.0.9 as a result for
linear PDE (2.7]).

Proposition 2.0.11. Let a € D C R"™ be fized such that f(a) # 0, where f €
CH(D;R™) defines the characteristic system @21)). Let {u;(y) : y € V(a) C D},i €
{1,...,n — 1} be the (n — 1) first integral for @2I) constructed in Theorem [2.0.8
Then an arbitrary solution {u(z) : x € V(a) C D} of the linear PDE 21) can
berepresented

u(z) = h(ur(x),...;un—1(x)),z € Vi(a) C V(a)

where h € C1(6,R) and @ C R"1 is open set. In particular, each {u; : x € V(a) C D}
is a solution for the linear PDE 21), ¢ € {1,...,n — 1}

Remark 2.0.12. A strategy based on the corresponding Cauchy characteristic system
of ODE can be used for solving the qausilinear PDE given in (2.0]).
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2.1 Cauchy Problem for the Hamilton-Jacobi
Equations

A linear Hamiltonion-Jacobi (H-J) is defined by the following first order PDE

0S(t, )+ < 0, 5(t,x),g(t, ) >=L(t,z),t e I CR,x € GCR" (2.17)
where S € C}(I x G;R) is the unknown function

08 08
oS = E,&S = 9%

and
gt,): IxG—=R" L(t,z): I xG—=R

are given continuously differentiable functions. Here I C R and G C R" are open
sets and for each ty € I,h € C}(G;R) fixed. The following Cauchy problem can be
defined. Find a solution S(t,z) : (to — o, to + &) X D — R verifying (H-J) equation
@I (t,z) € (to — a,to + ) x D, D(open) C G such that S(tg,z) = h(x),z € D,
where tg € I and h € C}(G;R) are fixed, and (ty — a,tp + a) C I. A causilinear
Hamiltonion-Jacobi (H-J) equation is defined by the following first order PDE

hS(t,x)+ < 0:5(t, ), 9(t,x,S(t,x)) >= L(t,z,S(t,z)),t e [ CR,x € G CR" (2.18)

where g € C}(I x G x R;R"™),L € C}(I x G x R;R) are fixed and I C R,G € R"
are open sets. A Cauchy problem for causilinear (H-J)(ZI8))is defined as follows:let
to € Tand h € C'(G;R) be given and find a solution S(t,z) : (to — a,to + ) x
D — R verifying (ZI8)for any t € (top — a,to + o) € I and & € D(open) C G
such that S(to,z) = h(z),z € D. A unique Cauchy problem solution of ([ZI7) and
@I8) are constructed using the Cauchy method of characteristics which relies on
the corresponding Cauchy characteristic system of ODE. In this respect, we present
this algorithm for 2I8) and let {F(t,\) : ¢ € (to — o,to + @), A € & C G} be
the local flow generated by the following characteristic system associated with(Z.I8]),
F(t,\) = (o(t,\),u(t,\)) € R*H?

{ LN = [t Ft,N), A € (to—a,to+a)x D (2.19)

F(to,\) = (A u(to,N) =(ANA(A),AeXCG '

where f(t,z,u) = (g9(t,x,u), L(t,z,u)) € R"™ and h € C'(G;R) is fixed. Using
det ( g—f(t, A\) ) # 0for any t € (to — auto + @) and X\ € S(compact) C G (see
g—‘f\’(to,)\) = I, and we may assume that o > 0 is sufficiently small) an implicit
function theorem can be applied to the algebraic equation

o(t,\)=z€V(xg) CG (2.20)
We find the unique solution of (2:20)

A= (U1t ), .., Yn(t, ) 2 (to — a,to + ) X V(zg) = 2 (2.21)
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such that
Vi € CHto — a,to +a) x V(zg);R),i € {1,....,n}

fulfills

ot 1L, ), (t,2)) =2 € V(ng) € G (2.22)
for any t € (to — a,to + ) and = € V(xg)

1/)i(t0,17) :xi,i: 1,...,7’),,’(/): (U)l,...,l/)n) (223)

w Define S(t,x) = u(t, ¥ (t, z)) and it will be a continuously differentiable function on
(to — a,to + a) x V(zg) satisfying

S(to, x) = ulto, Y(to,x)) = ulte,x) = h(z),z € V(xg) (2.24)

In addition using ¥(t, p(t,A)) = A\, t € (to — o, to + ), and taking the derivative with
respect to the variable ¢, we get S(t,¢(t, X)) = u(t, \) and

0:S(t, p(t, \))+ < 9:5(t, o(t, N)), g(t, (t, N), u(t, N)) >= L(t, o(t, \), u(t,\)) (2.25)

Vit € (to — a,to + a), A € Vi(xg) where Vi(xg) C V(xg) is taken such that ¢(t, \) €
V(o) if (¢, /\) (to — a, to + ) x Vi(xo). In particular, for A = (¢, z) into (1.25),
we obtain

S (t,x)+ < 0, S(t,x), g(t, z,S(t,x)) >= L(t,z,S(t, x)) (2.26)

where ¢(t,9(t,z)) = x and u(t, ¥ (t,x)) = S(t,x) are used. In addition,the Cauchy
problem solution for ([2I8)) is unique and assuming that another solution {v(t,z)} of
[2I3) satisfies v(tg, ) = h(z)for z € D C G then v(t,z) = S(t,x),Vt € (to — &, to +
a),z € V(zg) (D where & > 0. It relies on the unique Cauchy problem associated
withODE (2I9). The proof is complete.

2.2 Nonlinear First Order PDE

2.2.1 Examples of Scalar NonlinearODFE

We consider a simple scalar equation given implicitly by

dy

Fla,y(a),y' (@) = 0, (z) = 2

—— (@) (2.27)

where F(z,y,2) : D(open) € R?® — R be second order continuously differentiable
satisfying

F(IO; Yo, ZO) = 07 8ZF(x07y05 ZO) 3& 0 (228)
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for some (xq,yo, 20) € D fixed. Notice that for a smooth curve

{7(®) = (2(8),y(t), 2(1))) € D : t € [0, a]}

with
z(0) = 20, y(0) = yo,2(0) = 2o
we get
F(v(t)) =0,t €[0,q] (2.29)
provided
d dx dy dz

0= S FO(0)] = 0. F(1(0) S0 (1) + 0, F(1(1) L (0) + 0-F (1) F (1), £ € [0,0]  (230)

Using (Z30) we may and do define a corresponding characteristic system associated

with (Z2T)

{ %: FE(ay2), F=28(y.2) (2.31)
G = 5@y 2) + Gy, 2)2],2(0) = 20,5(0) = o, 2(0) = 2 '

Notice that each solution of (Z3I]) satisfies 229). Define x = z(t),y = y(t),z =

z(t),t € [—a,a], the unique Cauchy problem solution of (Z31]) and by definition

%(O) = 0,F(x0,y0,20) # 0 allows to apply an implicit function theorem for solving

the following scalar equation
x(t) = x € V(xo) C I(interval) (2.32)
We find a unique continuously derivable function t = 7(z) : V(zo) = (—a,a)

2(F () = zand F(x(t)) = t(j—z(x)‘fl—f(ﬂx)) _1) (2.33)

Denote
y(@) =y(7(2)),2(x) = 2(7(x)), x € V(zo) € I

and it is easily seen that

dy _ dy &7

2= D).

dr  dt (z) = 2(@)

It implies that R
F(.’,E,:/g\(.fb),y/(.f)) = O,V.I € V(IO)

provided

Fa(t),y(y), 2(t)) = 0,t € (=a,a)
is used. It shows that {y(x) : © € V(xo)} is a solution of the scalar nonlinear
differential equation ([227]).

Remark 2.2.1. In getting the characteristic system [23T)we must confine ourselves
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to the foilowing constraints y(t) = y(z(t)), %(t) = j—g(x(t)).fl—f(t) = 2(t)9Z where
z(t) = %(m(t)) and {y(x),x € I C R} is a solution of Z20). The following two
examples can be solved using the algorithm of the characteristic system used for the

scalar equation (Z2Z1).

Example 2.2.1. (Clairant and Lagrange equations)

{ y= za(y’)+b(y) (Clairaut equation)

y= zy +b(y) (Lagrange equation,a(z)=z) (2.34)

Here F(x,y, z) = za(z)+b(z) —y and the corresponding characteristic system is given
by

{ ‘fi—f = xd' (2) + V' (2), % = —a(z2) + z, % = z(zd (2) + V' (2)) (2.35)
z(0) = 202(0) = 20y(0) = yo
where
zoa(zo) + b(20) — Yo
and
zoa'(20) + ' (20) # 0
Example 2.2.2. (Total differential equations)
dy  g(z,y)
— = 2.36
dx  h(z,y) ( )

where g,h : D C R? — R are continuously differentiable functions and h(z,y) #
0,V(z,y) € D. Formally, (Z30) can be written as

—g(z,y)dz + h(z,y)dy =0 (2.37)

and [Z30) is a total differential equation if a second order continuously differentiable
function F': D — R exists such that

g—i(w,y) =—g(z,y), g—z(:v, y) = h(z,y) #0 (2.38)

Ify = y(x),x € I, is a solution of 23Q) then F(x,y(x)) = constant,x € I, pro-
vided F fulfils 238]). In conclusion,assuming(238]), the nonlinear first order equation
@38) is solved provided the corresponding algebraic equation

F(z,y(z)) =c (2.39)

is satisfied, where the constant ¢ is parameter.
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2.2.2 Nonlinear Hamilton-Jacobi E quations

A Hamilton-Jacobi equation is a first order PDFE of the following form
Opu(t,x) + H(t, z,u(t,x), 0,u(t,z)) =0,t e I CR,x € D CR" (2.40)

where H (t,z,u,p): I x D x R xR™ — R is a second order continuously differentiable
function.

Definition 2.2.2. A solution for H-J equation 2A0) means a first order continuously

differentiable function u(t,x) : I,(xo) x B(xo, p) where B(xo,p) C Iis a ball centered

at xo € D and I,(x0) = (xo — a,z0 +a) C I. A Cauchy problem for the H-J

equation(ZA0) means to find a solution u € C* (I, (o) x B(zo, p)) of @A) such that
u(to, ) = uo(z),z € B(xo, p) where tg € I and ug € C1(D;R) are fized.

solution for Cauchy problem associated with H-J equation ([2:40) is found using the
corresponding characteristic system

de = 6pH(t7x7u7p)7x(t0) = 5 S B(xf)ap) g D
bto

F = —[0.H(t,x,u,p) + po,H(t,z,u,p)],p(to) = po(§) (2.41)
S = —H(t,x,u,p)+ <p, OpH(t,x,u,p) >, ulte) = uo(§)
where po(€) = Oeup(€) and ug € C(D;R) are fixed. Consider that
{(@(t,€)),p(t,€),u(t,€) : t € La(20),§ € Blzo, p)} (2.42)

is the unique solution fulfilling ODE (2.40). By definition 9% (0, ) = I,, and assuming
that a > 0 is sufficiently small, we admit

0¢Z(t, &) is nonsingular for any(t,z) € I,(xo) x B(zo, p) (2.43)

Using (2:47)) we may and do apply the standard implicit functions theorem for solving
the algebraic equation

Z(t,&) = x € B(xg, p1),t € Io(xo) (2.44)
We get a continuously differentiable mapping
§=v(t,x) : La(x0) x B(zo, p1) — B(wo, p)
such that

Tt ot x) = z,9(o,z) =z and
1/)(15,55\(@5)) = ¢ for any

t € In(z0),x € B(xg, p1) (2.45)
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Define the following continuously differentiable function

u € C'(Ia(x0) X B(o,p1);R),p € C'(La(20) x B(zo, p1); R")

u(t, x) = ult, (t, z)), p(t, x) = p(t, P(t, x)) (2.46)

By definition u(to,z) = wuo(x),z € B(xo,p1) € D and to show that {u(t,z) :
t € I(x0),x € B(xo,p1)} is a solution for (Z40) satisfying u(to,z) = uo(z),x €
B(zg, p1) € D, we need to show

ou(t,x) = —H(t,xz,ult,z),p(t,x))
{ p(t,x) = 8zu(t,aj), (t,:z:) = [a(;po) X B($07P1) (2.47)

The second equation of (ZAT)is valid if
Ogu(t, §) = p(t, §)9ex(t,€), (p € R™)
is a row vector holds for each
t € I,(x0),& € B(xo, p) (2.48)

which will be proved in the second form

041, €) =< (1, €),03(1,€) >,k € {1, n) (2.49)
where Bolt
(0.9 = 0 6~ ... 60)
k

Using the characteristic system ([2:40) we notice that
fulfils
Ok (to, &) = Okuo(§)— < Oeup(§), e >=0,k € {1,...,n} (2.50)

where
{e1,...,en} CR"

is the canonical basis. In addition, by a direct computation, we obtain

dg B du dp(t,§)
0O = Al (Ol < =

dt
hZ(t,§) >—< ﬁ(t,{),@k[ili—f(t,f)] >t € In(xo) (2.51)
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Notice that

da . _
OLWOl = —OHEEE, W), B+ < Ot €)
° R i
%(ti) >+ < p(t,é“)ﬁk[d—f(tf)b (2.52)
and
Z—f(tvf):—[&H(tﬁ(tf)) a(t, &), p(t, &) + p(t, )0 H(t, (¢, €)),u(t, £),p(t, €)]  (2.53)

Combining [252)and (253) we obtain

PE(E) = —OuH(3(,), 5(1,€),P(1,€) D1, €) + DuH (1, 5(1,€), 1, ), 1, €))

< P(t,8), 0k(t, §) >= —0uH (L, Z(t, ), u(t, §), P(t, §))-Ae(t, €) (2.54)

which is a linear scalar equation for the unknown{\;} satisfying A (t0,&) = 0,k €
{1,...,n}(see@EI). It follows A (t,&) = 0,Y(t,&) € Io(xo) x B(xog,p1) and for any
k € {1,...,n}, which proves

p(t,x) = dgu(t,x), (t,z) € In(xo) X B(zo, p1) (2.55)

standing for the second equation in(Z4T). Using(2358), u(t, &) = u(t,Z(t,£))and the
third equation of the characteristic system (240) we see easily that

o~

0uu(t, (0, €))+ < Pt €), T (1,6) >= - T020.0.2056.)
b B0, 500 > (2.56)
which lead us to the first equation of (Z41)
0uu(t, 7(4,6)) = ~HI(1,3(0,),(4,6), 51,6)) 2.57)
for any (t,€) € I (o) x Blwo, p). In particular taking & = 4(t, z) in (Z5E8), we get
dou(t,x) = —H(t, , u(t, z), dpu(t, z)), ulto, z) = uo(z) (2.58)

V(t,x) € (to — a,to + ) x B(wo, p1)

which stands for the existence of a Cauchy problem solution. The uniqueness of
the Cauchy problem solution for H-J equation(Z40) can be easily proved using the
fact that any other solution u(t,z), (¢t,z) € I,(xo) X B(xo, p2) satisfying ([2.49) and
u(to, ) = uo(x),z € B(xg, p2) induces a solution of the same ODE ([2Z40). The
conclusion is that the uniqueness property for the Cauchy problem solution of ODFE
241) implies that the H-J equation ([2Z.40) has a unique Cauchy problem solution.
The above given computations and considerations regarding the H-J equation (2.40])
will be stated as

Proposition 2.2.3. Let H(t,z,u,p) : I x D x R x R® — R be a second order
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continuously differentiable scalar function, where I C R, D C R"™ are open sets. Let
(to,m0) € I x Dand ug € C'(D;R) are fived. Then the following nonlinear H-J
equation

Opu(t,z) + H(t, z,u(t,x), Opu(t,z)) =0 (2.59)
This has a unique Cauchy problem solution satisfying
u(to,x) — uo(x), x € B(zg, po) C D
In addition,the unique Cauchy problem solution
{u(t,z) : t € (to — o, to + @), x € B(xo,p0)}

of 2319) is defined by u(t,x) = u(t, Y(t,x))where {¢(t,x) : t € I,(x0),z € B(xo,po)}
is the unique solution of the algebraic (244l and

{(E(t,g),ﬁ(t,g),ﬂ(t,g)) S Ia(Io),g € B(fto,p)}

is the unique solution of the characteristic system (241))

Starting with the H-J equation (Z59)) (see(Z40)) we may associate the following
system of H-J equation for the unknown p(t, z) = dyu(t,x) € R™

Op(t,x) + < OpH(t,x,u(t,x),p(t,z))0.p(t, z) > (2.60)
=— [0.H(t,z,u(t,x),p(t,x)) + p(t, )0 H (t, z,u(t, ), p(t,x))]

where p = (p1, ..., pn), OpH and 9, H are row vectors. Using O, p(t, ) = 0.pi(t, x),1 €
{1, ...,n} we notice that [260) can be written as follows

Opi(t,x) + < Oupi(t,x), 0pH(t, x,u(t.z),p(t,x)) > (2.61)
=— [Op,H(t,z,u(t,x),p(t,x)) + pi(t,z)0,H (t, z, u(t, z), p(t, z))]

for each i € {1,...,n}, and

{(92(£,£)), 0p(t,€) = p(t; 02(t,€)), Ou(t, ) = u(t, 0x(t,€) : T € Ln(w0))}  (2.62)

satisfies the characteristic system (242) provided

WL = 9H(t,T(t,€), U(t,€),B(t,€)), t € La(xo)
{f(?é,@— ¢ (263)

The additional system of H-J equation (2.61]) stands for a causilinear system of evo-
lution equations

{ Ovi(t,x)+ < Oyvi(t, @), X (¢, 2, v(t,x)) >=  Li(t,z,v(t, v)) (2.64)

vi(to,r) = 03,0 € {1,...n}

Which allows to use the corresponding characteristic system suitable for a scalar
equation. It relies on the unique vector field X (¢, z,v) deriving each scalar equation
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in the system (2.64]).

Remark 2.2.4. In the case that the unique vector field X (t,x,v) is replaced by some
Xi(t,z,v), for each i € {1,...,n}, which are not commuting with respect to the Lie
bracket [ X;(t, z,.), X;(t,x,.)](v) # o, for some i # j, then the integration of the system
Z54) changes drastically.

2.2.3 Exercises

(E1).Using the characteristic system method, solve the following Cauchy problems

owu(t,z) = (O,u(t, ) u(0,x) = cosz,r € R,u € R (2.65)
Owu(t, 1, 12) = 2105, u(t, w1, 22) + (O, u(t, v1,22))? (2.66)
w0, 21,22) = 11 + 22, (21,22) ERZLueER '

(E2). Let f(t,z) : R x R™ = R and ¢(z) : R — R be some first order continuously
differentiable functions. Find the Cauchy problem solution of the following linear H-J
equations

8tu(ta I)+ E?:lai(t)aﬂﬁiu(ta I) - f(ta I)
Lo (267
where a(t) = (a1(t),...,an(t)) : R — R™ is a continuous function.
Opu(t, z)+ < A(t)z.0zu(t, z) >= f(t,x) (2.68)
u(0,z) = ¢(z) '
where A(t) : R — M, «,, is a continuous mapping.
2.3 Stationary Solutions for Nonlinear First
Order PDE
2.3.1 Introduction
We consider a nonlinear equation
Hoy(z, Opu(z),u(x)) = constant Ve € D C R" (2.69)

where
Hy(x,p,u) :R"xR" xR =R
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is a scalar continuously differentiable function
Hy € C'(R™ x R™ x R)

and d,u = (O1u,...,0,u) stands for the gradient of a scalar function. A standard
solution for (269) means to find u(z) : B(xg,p) € D — R,u € C'(B(zo,p)) such
that Ho(z, Oyu(x),u(z)) = constant Vo € B(zo, p) € D. The usual method of solving
[2369) uses the associated characteristic system

&
d—j = Z0(2),2(0,\) = 2(\), A € ACR" t € (—a,a) (2.70)
where Zg(z) : Rt — R27+1 > = (1, p,u), is the characteristic vector field corre-
sponding to Hy(z)

Zy(z) = (Xo(2), Po(2),Un(2)), Xo(z) = 0pHo(z) € R" (2.71)

Uo(z) =< p, Xo(2) >, Py(2) = —(0.Ho(2) + pOuHo(z)) € R"

For a fixed Cauchy condition Z(\) = (Z(\),p(A), w(N)) given on a domain A € A C
R™ !, a compatibility condition

8i(\) =< P(N), B:Z(\) >, € {1,..,n— 1} (2.72)

is necessary. In addition, both vector fields Zy(z) and the parametrization {Z(\) :
A € A} must satisfy a nonsingularity condition

the vectors in R", Xo(Z(N)), 01Z(A), ..., On—1T(A) (2.73)
are linearly independent for any\ € A € R"~!

By definition, the characteristic vector field {9, Hy(z) : z € R2n + 1} and we get

0= { < 8ZH0(Z)7Z0(Z) >

< 0xHo(2), Xo(2) > + < 9pHo(z), Po(2) > +0uHo(2)Uo(2) (2.74)

for any z = (z,p,u) € R?"*1. Using ([274) for the local solution {Z(¢,\) : t € (—a,a)}
of the characteristic system (2.70) we obtain Hy(Z(¢t,\)) = Ho(Z(\)),t € (—a,a), for
each A € A C R"~!. Looking for a stationary solution of the equation ([Z.69) we need
to impose the following constaint

Ho(3(t, \)) = Ho(zo)for any(t, \) € (—a,a) x A (2.75)

where zg = 2(0) = (%0, po, uo)(0 € intA for simplicity). The condition (Z73]) allows
to apply the standard implicit function theorem and to solve the algebraic equation

Z(t,\) = X € B(zo,p) € D (2.76)
We get smooth functions ¢ = 7(z) € (—a,a) and A = ¥(z) € A such that

Z(r(x),¢(z)) =z € B(xo,p) C D, 7(x0) = 0,9(x0) =0 € A (2.77)
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A solution for the nonlinear equation ([Z.69) is obtained as follows
u(z) = u(r(x), ¢ (x)), p(z) = p(r(x), P (2)),x € B(xo, p) C R" (2.78)

where p(z) fulfils
p(x) = dyu(x)
Obstruction. We need explicit condition to compute {Z(\) : A € A} such that (Z72]),

@13) and [27H) are verified.

2.3.2 The Lie Algebra of Characteristic Fields

Denote H = C*®(R?*"T1;R) the space consisting of the scalar functions H(z,p,u) :
R™ x R™ x R — R which are differentiable of any order. For each pair Hy, Hy € define
the Poisson bracket

{Hy, Hy}(2) =< 0.Ha(2), Z1(2) >,z = (z,p,u) € R*"H! (2.79)

where 0,Hs(z) stands for the gradient of a scalar function Hy € H and Zi(z) =
(X1(2), P1(2),U1(2)) € R?*™*! is the characteristic field corresponding to Hy € H.
We recall that Z; is obtained from H; € H such that the following equations

X1(z) = 0pH1(2), Pi(2) = —(0.H1(2) + pOuH1(2)), Ur(2) =< p,0pHi(z) > (2.80)

are satisfied. The linear mapping connecting an arbitrary H € H and its characteristic
field can be represented by

Zu(2) = T(p)(0:H)(2), z = (z,p,u) € R*"H! (2.81)

where the real (2n + 1) X (2n + 1) matrix T'(p) is defined by

O I, 0
Tp)=| —-In O -p (2.82)
0* p* 0

where O-zero matrix of M, xn, I,unity matrix of M, x,and 8 € R" is the null column
vector. We notice that T'(p) is a skew symmetric matrix

[T(p)]" =-T(p) (2.83)

and as a consequence, the Poisson bracket satisfies a skew symmetric property

<0, HlEZ) 2(2) > )
B < 0:Hy(2),T(p)0-Ha(2) >
{Hy, H2}(2) = < [T(p)]*0.Hi(z),0. Ha(2) >
—{H3, H,}

(2.84)
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In addition, the linear space of characteristic fields K C C°°(R?"+1 R?"+1) is the
image of a linear mapping S : DH — K where DH = {0.H : H € H}. In this
respect, using (Z8I]) we define

S(0.H)(z) = T(p)(0.H)(z),» € R*"H! (2.85)

where the matrix T'(p) is given in ([282). The linear space of characteristic fields
K = S(dH) is extended to a Lie algebra

Ly, C C(R*H1 R
using the standard Lie bracket of vector fields
(Z1,Z5) = [0.22(2)|Z1 — [0.21)Z2(2), Z; € K,i=1,2 (2.86)
On the other hand, each H € H is associated with a linear mapping
H(o)(2) = {Hig}(=) =< 0:0(2), Zn(2) >, 2 € R (2:87)

for each ¢ € H, where Zy € K is the characteristic vector field corresponding to
H € H obtained from 9,H by Zy(z) = T(p)(0.H)(z) (see (Z8))). Define a linear
space consisting of linear mappings

%
H={H Hen) (2.88)
and extend 7_-[> to a Lie algebra Ly using the Lie bracket of linear mappings
(1, Hy] = Hi o Hy — Hy o H; (2:80)

%
The link between the two Lie algebras Lg (extending K) and Ly (extending H) is
given by a homomorphism of Lie algebras

A: Ly — Ly satisfying A(H) = K (2.90)

and
A([H,, H3)) = [Z1, Z5) € LicwhereZ; = A(H,), i € {1,2} (2.91)

Remark 2.3.1. The Lie algebra Ly (2D 7_-[>) does not coincide with the linear space
7—-[> and as a consequence,the linear space K C Ly. It relies upon the fact the linear
mapping {Hy, Ha} generated by the Poisson bracket {Hy, Hy} € H does not coincide
with the Lie bracket [I—{_;, 17{_1)] defined in (Z89).

Remark 2.3.2. In the particular case when the equation (2269)) is replaced by Hy(x,p) :
R2" — R is continuously differentiable then the above given analysis will be restricted
to the space H = C>°(R?*";R). If it is the case then the corresponding linear mapping
S : DH — K is determined by a simplectic matric T € May xon

T = ( _(3. g ) ,DH = {0,H : H € C*(R*";R)} (2.92)
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In addition, the linear spaces ﬁ and K C C*°(R?"; R*") coincide with their Lie algebra
Ly and correspondingly Ly as the following direct computation shows

[Z1, Z5)(2) = TO,Hya, z € R*™ (2.93)

where

Z; =TO.H;, i€ {1,2}

and
H12 = {Hl,Hg}(Z) =< 8ZH2(2), Zl(Z) >

is the Poisson bracket associated with two scalar functions Hy, Hy € H. We get

T[0?Hs(2)|Z1(2) + T(9-Z3 (2))0- Ha
[0-Z2(2)]Z1(2) + T[0.(0; HYT*)]0. Ha(2)

022 =Y (o, (5)Z,(2) - T(02H(2))T0. o) 220
(0-25(2)]21(2) — [0-21(2)] Z2(2)
and the conclusion {Ly = ﬁ, Ly = K} is proved.
2.3.3 Parameterized Stationary Solutions
Consider a nonlinear first order equation
Hy(z,p(z),u(x)) = const Vo € D C R" (2.95)

With the same notations as in section 2.4.2, let H = C®(R*"*1;R)}, 2z = (x,p,u) €
R?"*! and define the skew-symmetric matrix

o 1, 0
T(p)=| -I, O =—p ,peR"” (2.96)
0 p* 0

By definition, the linear spaces K and DH are
K =S(DH), DC ={0.H : H € H} (2.97)
where the mapping S : DH — K satisfies
S(0.H)(z) = T(p)0.H(z), z € R#H! (2.98)
Let 2o = (20, po, uo) € R?"*! and the ball B(xg,2p) C R2"*! be fixed. Assume that
there exist {Z1, ..., Zm} C K (2.99)
such that the smooth vector fields

{Z1(2),...s Zim(2) : z € B(z0,2p)}
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are in involution over C*°(B(zo, 2p))

(the Lie bracket)[Z;, Z;](z) = Zafj(z)Zk(z), i,j€{l,...,m}
k=1

where
ok € C™(B(z0,2p))

A parameterized solution of the equation ([2:95]) is given by the following orbit

m

2\ 20) = G1(t1) 0. 0 G (tm)(20), A= (t1, . tm) € A= [[l~ai,ai]  (2.100)

where
Gi(1)(v), y € B(z0,p), T € [~ai,a]
is the local flow generated by Z;. Notice that

N,y ={z € B(20,2p) : 2 = Z(\, 20), A € A} (2.101)
is a smooth manifold and
dimM,, = dimL(Z1, ..., Zm)(20) = m < nif Z1(20), .., Zm(20) € R*TL - (2.102)

are linearly independent.

Remark 2.3.3. Under the conditions of the hypothesis [299) and using the alge-
braic representation of a gradient system associated with {Z1, ..., Zm} C K a system
{q1;-,qm} CC®(A,R™) ewists such that

g1 (A), .., gm(N) € R™arelinearlyindependent (2.103)

and OxZ(X, 20)qi(N) = Z;(Z(\, 20)) for any A€ A, i € {1,...,m}

Definition 2.3.4. A parameterized solution associated with [299)is defined by orbit
RI00) provided the equality Ho(Z(X, z0)) = Ho(z0), VA € A, is satisfied.

Remark 2.3.5. The conclusion (ZI03) does not depend on the manifold structure
given in (ZI00). Using [2104), we rewrite the equation Ho(Z(\, 20)) = Ho(20), VA €
A, in the following equivalent form

0= {Hl, Ho}(/z\()\ZQ)) =< 8ZH0(2()\, Zo)), Zl(%\()\, Zo)) > N E A (2104)

foreach i € {1,...,m}, where {H;, Hy} is the Poisson bracket associated with H;, Hy €
CHR?"YR), and Z; = S(0.H;),i € {1,....,m}. The equations ZI04) are directly
computed from the scalar equation Ho(Z(, z0)) = Ho(z0), VA € A, by taking the cor-
responding Lie derivatives where {q1, ..., qm } from (ZI03)) are used. As a consequence,
the orbit defined in (2I00), under the conditions (ZI103) and ZI02), will determine
a parameterized solution of (ZI04).

Remark 2.3.6. A classical solution for (Z93)) can be deduced from a parameterized
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solution {Z(A, z0) : A € A} if we take m = n and assume
the matriz [0,Z(0, 20)] € My, xn is nonsingular (2.105)

where the components (Z(\, 20), (A, 20),u(A, 20)) = Z(\, 20) define the parameterized
solution {Z(\, z0)}-

Proposition 2.3.7. Assume the orbit{Z(\, z0) : A € A} given in (ZI00) is a param-
eterized solution of (2Z98)) such that the condition [2I08) is satisfied.Let X = i(x) :
S(xo, p) = intA be the smooth mapping satisfying T(Y(x), z0) = x € B(xo, p), ¥(x0) =
0. Denote u(z) = u(y(x), z0) and p(x) = p(¢(z), z0). Then

p(x) = dpu(x)and Ho(z, p(z),u(z)) = Ho(z0), for anyx € B(xg,p) CR™  (2.106)

where p(x) ,x € B(xo, p)) verifies the following cuasilinear system of first order equa-
tions

[0z Ho(z, p(z), u(x)) + p(2)0u Ho(z, p(x), u(z))]
+[02p(x)]"OpHo(z, p(x),u(x)) = 0, z € B(zo, p) (2.107)

Proof. The component {Z(\, zo) : A € A} fulfills the condition of the standard implicit
functions theorem (see (ZI05)) and, by definition, the matrix

AZ(0.20) =|| X1(20, ..., Xn(20)) ||
where {Z1(2),...,Zn(2)} define the orbit {Z(\, z0)}. Let A = ¢(x
x

R™ — intA C R™ be such that (x) = 0 and Z(y(x), 2o
p(Y(x), 20), u(x) = u(y(x), z0) and using the equation

S~—
I

Ho(Z(A, 20)) = Ho(z0), A € A

we get
Ho(z(x)) = Ho(z0), V& € B(zo,p) S R"

where z(x) = (z,p(z),u(x)). Using (ZI03]) written on corresponding components we
find that O\u(A, z0)qi(A) = P, 20)06T(A, 20)qi(N)), i € {1,...,n} and

hu(A, z0) = p(A, 20)0T(A\, z0), A € A (2.108)
is satisfied, where p(A) € R™ is a row vector. On the other hand, a direct computation
applied to u(Z(A, z0)) = u(A, zo) leads us to

0 u(Z(, 20)).06T(\, 20) = Oru(A, z0) (2.109)

and using (ZI05) we may and do multiply by the inverse matrix [O\T(A, z0)]~*

in both equations ([ZI08) and (ZI09). We get (A, z0) = pu(ZT(A, 20)), for any
A € B(z0,2p) (p > 0 sufficiently small) which stands for
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Oyu(z) = p(z), x € B(zo,p) CR"

provided A = #(z) is used. The conclusions (Z107) tell us that the gradient 0, [Ho(z, p(z), u(x))]
is vanishing and the proof is complete. O

Remark 2.3.8. Taking {Z1,...,Zn} C K is involution we get the property ([2.103)
fulfilled (see §5 of ch II)

{Hi, Ho}(2(z, 20))

< 8ZH0(E()\, Zo)), Zl(%\()\, Zo)) > (2 110)
— <T(p)0-Ho(2(A, 20)), 0 Hi(Z(\, 20)) > '

- < 8ZH1'1(2(/\7ZO))7Z0(2(A720)) >, 1€ {17 7m}

It shows that {Hy,....,Hp} C H = C®(R* 1 R) defining {Z1,..., Zm} C K can be
found as first integrals for a system of ODE

% = Zo(2),Zo(2) = T(p)0.Ho(z) € K

corresponding to Ho(z).

2.3.4 The linear Case:Hy(z,p) =< p, fo(z) >

With the same notations as in §4.3 we define z = (z,p) € R?>" and H = {H(z) =<
p, f(x) >,p € R f € C®(R?",R?")}. The linear space of characteristic fields
K C C*°(R?*",R?") is the image of a linear mapping S : DH — K, where

DH ={0.H:HecH}, S(0.H)(z) =T, H(z), » € R*" (2.111)
T = ( _OI g ) foreachZ € K (2.112)
is given by
_ OpH (z) _ f(x)
20 ( 550 )= (2o > ) (2449

Let 2o = (po, x0) € R*" and B(z0,2p) C R*" be fixed and consider the following linear
equation of p € R"

Hy(z,p) =< p, fo(x) >= Ho(z0)for any z € D C B(z,2p) (2.114)

where fo € C1(R?",R?*"). We are looking for D C B(zg,2p) C R?*" as an orbit.

/Z\()\,Zo) = Gl(tl) 0...0 Gm(tm)(ZO), A= {tl, ...,tm} eAN= ﬁ[—ai,ai] (2115)
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where G;(7)(y), y € B(z0,p), T € [—ai,a;], is the local flow generated by some Z; €
K,ie{l,...,m}, m <n. Assuming that

{Z1, ..., zm} C K are in involution over C*°(B(zo,2p),R) (2.116)

where

\2) = fl(x) an 00 /M2Nn 2N
Zi(2) = ( —0z < p, fi(x) > ) A{f1, ..., fm} € CZ(R?", R?™)

are in involution over C*°(B(x¢), R) we define
D ={z€ B(20,2p) : z = 2(\, 20), A € A} C R*" (2.117)

where the orbit {Z(\, z9) : A € A} is given in (2.I15]). Notice that the orbit [2I1T) is
represented by

/Z\()\, ZQ) = (/,T\()\, ZQ),]/?\()\, ZQ)), ANEA, zg= (,’Eo,po) - R*" (2118)
where the orbit Z(A, z0), A € A, in R™ verifies
ZL'\()\,./L'Q) = Fl(tl) o...0 Fm(tm)(fto), A= {tl, ...,fm} eA (2119)

Here Fi(7)(x), © € B(xo,p) C R", 7 € [—ai,a;], is the local flowgenerated by the
vector field f; € C°(R™,R™) and {fi1,..., fm} C C*(R"™,R™) are in involution over
C>(B(xo,p))-

Remark 2.3.9. Denote by N, C R™ the set consisting of all points {T(\,z0) : A €
A} wusing the orbit defined in ZII9). Assuming that{fi(xo),..., fm(z0)} € R™are
linearly independent then {f(xo),..., fm(x)} € R™ are linearly independent for any
x € B(wo, p)(p sufficiently small) and the subset Ny, C R™ can be structured as an
m-dimensional smooth manifold. In addition,the set D C R?*" defined in (ZI1T)
can be wverified as an image of smooth mapping z(z) = (z,p(x)) : Nyy — D, if
p(z) = p(y(x),20) and X = ¥(x) : Blxo,p) = A is unique solution of the algebraic
equation T(\, xo) = x € B(zo, p).

Definition 2.3.10. The orbit {Z(\, z0) : A € A} defined in 2I10) is a parameterized
solution of the linear equation ZI14) if Ho(Z(\, z0)) = H(z0),V A € A.

Proposition 2.3.11. Let zg = (29, p0) € R*" and B(z0,2p) C R?" be fized such that
the hypothesis (ZI10) is fulfilled. For {Z1, ..., Zm} C K given in [2I16) assume in ad-
dition, that { f1, ..., fm} are commuting with { fo} i.e [fi, fo](z) =0, © € B(xo,2p), i €
{1,...,m}. Then the orbit {Z(\, z0) : A € A} defined in ZIIH) is a parameterized so-
lution of equation (ZI14)), where D € R?" is given in (ZI117).

Proof. By hypothesis ,the Lie algebra L(Z1, ..., Z,,) C C®(R?",R?") is of finite type
(locally) and {Z1, ..., Z,,, } is a system of generators in L(Z1, ..., Z,). As a consequence
L(Zy, ..., Zm) is (f.g.0; 20) and using the algebraic representation of the gradient sys-
tem associated with {Z1, ..., Z,} we get {q1,...,qm} C C°(A;R™) such that

HZN, 20).0i(\) = Zi(EO\ 20))s A€ A, i € {1, cymb, qt(N),s ooy g(N) € R™ (2.120)
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are linearly independent for any A € A.

The meaning of (f.g.0;zp) Lie algebra and the conclusion (ZI20) are explained in
the next section. For the time being we use (2.120) and taking Lie derivatives of the
scalar equation Ho(Z(\, 20)) = Ho(z0), A € A, we get

0=0xH(Z(X, 20)).¢i(\) =< 0-H(Z(\, 20)), Zi(Z(X, 20)) >, for any i € {1,...,m} (2.121)

and A € A. By definition

0. Hy = ( Oa <£)’(~§))(“’> > ),andZi(z) _ ( . j;f?dw N ),ie (1,.m}

which allows us to rewrite (ZI21)) as follows
<D\, 20), [fis fol @A, z0)) >=0,i € {1,....,m}, A€ A (2.122)
Using [fi, fol(x) = 0, z € B(xo,2p), i € {1,...,m} we obtain that [ZI2I)) is fulfilled

and it implies
ONHo(Z(A, 20)) =0, VA €A (2.123)

provided (ZI20) is used. In conclusion, the scalar equation Hy(z) = Hy(z) for any
z € D C R®, is satisfied, where D is defined in(@ZIIT) and the proof is complete. [

Remark 2.3.12. The involution condition of {Z1,..., Zm} C K is satisfied if
{f1, s fm} € C*(B(xo,2p); R")
are in involution over R. In this respect, using the particular form of
fi(x) ) y
Zilz) = ,Ai.I = —[0,fi(x)]"i € 1,....m
@ =( f0)) A = -pus@l i € (1, eum)
we compute a Lie bracket [Z;, Z;] as follows

Z:, Z)(2) = < [f};ifil(;”) > i.jef{l,..,m} (2.124)

Here [f;, f;] is the Lie bracket from C>°(R?",R*") and

= [0 (A (2)p)]. fi(w) + Aj(z) Ai(x)p — [0:(Ai(2)p)] f;(x)
= —Ai(x)A;(z)p

Pz](z) _ az[< Aj(ilf)p, fl('r) S - < /1l($)p7 fg(x) >] (2125)
= =0, <p,[fi, f](x) >
where
Pij(2) = [0:(A;(2)p)] Zi(2) — [0-(Ai(x)p)] Zj (x), = € R*" (2.126)

is used. Notice that (ZI28]) allows one to write (2312) as a vector field from K

(Z:,Z](2) = TO.Hij(2), 2 = (z,p) € R*" (2.127)
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where H;j =< p,[fi, fil(x) >, 1,5 € {1,....,m}. As a consequence, assuming that
{f1,., fm} are in involution over R we get that L(f1,..., fm) and L(Zy, ..., Zy) are
finite dimensional with {Z1, ..., Z} in involution over R.

2.3.5 The Case Hy(z,p,u) = Ho(x,p); Stationary Solutions

Denote C*®°(R?",R"),z = (z,p) € R*" and define the linear space of characteristic
fields K C C®°(R?*",R"),z = (z,p) € R*" by

K =S(DH), DH={0.H : H € H} (2.128)
Here the linear mapping : DH — K is given by
S(0.H)(2) =TO.H(z), HEH, » € R*" (2.129)

and T is the simplectic matrix

(0 L\ ;o _(-I., O
T_<_In O>,T_< o —In> (2.130)

Let zo = (w0,p0) € R?™ and B(z0,2p) C R*" be fixed and consider the following
nonlinear equation
Hy(z) = Ho(z0), Vz € D C B(zo,2p) (2.131)

where Hy € C(B(z0,2p);R) is given and D C B(z9,2p) has to be found. A solution
for (2I30]) uses the following assumption

there exist Z1, ..., Zy € K such that {Z1(2), ..., zm(2) : 2 € B(z0,2p)} (2.132)

in involution over C*°(B(zp,2p); R). Assuming that ([2I32) is fulfilled then a param-
eterized solution for (ZI3T]) uses the following orbit

m

2\ 20) = Gi(t1) 0 .. 0 G (tm)(20), A= (t1, s tm) € A = [ [[~ai, @] (2.133)
1

where
Gi(T)(y), y € B(20,p), T € [—as, a4

is the local flow generated by Z; € K given in (ZI32). By definition

Zi(2) = TO.H;(z) = ( —%ﬁéa@) >,i€ {1,....m} (2.134)

and we recall that, in this case, the linear space of characteristic fields K is closed
under the lie bracket. As a consequence, each Lie product [Z;, Z;] can be computed
by

(Zi,Zi](2) = TO.H;j(2), 1,7 € {1,...,m},z € R*" (2.135)
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where HU(Z) = {HZ,H]}(Z) =< 6zHij(2)7 Zl(Z) >=—< 82Hi, ZJ(Z) >

stands for Poisson bracket associated with two C! scalar functions. In addition, as-
suming (ZI32) we get that the Lie algebra L(Z1, ..., Z,) € C*(B(z0,2p),R") is of
the finite type (see in next section) allowing one to use the algebraic representation
of the corresponding gradient system. We get that{qi, ..., ¢;n} € C*(A,R™) will exist
such that

Mz, 20)i(N) = Zi(Z(N, 20)), 1 € {1, .oomP, A €N 1(A)y ooy g (A) € R™ (2.136)

are linearly independent, A € A, where {Z(\,20) : A € A} is the fixed orbit given in
EI33). Denote D = {z € B(z0,2p) : z = Z(\,20), A € A} and the orbit given in
[2I33) is a parameterized solution of the equation (ZI3T) if f

8)\[H0(2(/\, Zo))]qz(/\) =0,17¢€ {1, ,m} (2137)
Using (2136) we rewrite [2I37)as follows

0 =< s Ho(2(\, 20)), Zi(3(\, 20)) >= {Hi, Ho}(E(A z0))s A€ A,V i€ {1,..om}  (2.138)
It is easily seen that (2I3]) is fulfilled provided
Hy,...,H,, € C*(B(z0,2p),R")
can be found such that
0={H;,Ho}(z) =< 0.Hy(2),TO,H;(z) >=< Zy(2),0.H;(z) > (2.139)
for each i € {1,...,m}z € B(z0,2p) and Z;(z) = TO,H;(z),i € {1,...,m} are in

involution for z € B(zp,2p). In particular ,the equations in (ZI39) tell us that
{Hy, ..., Hy,} are first integrals for the vector field Zy(z) = T9.Ho(z).

Remark 2.3.13. Taking Hy € C*(B(z0,2p;R)) (instead of Hy € C') we are in posi-
tion to rewrite the equation (ZI39) using Lie product [Zy, Z;] (see [2135))) as follows

- { (20, Z;)(2), Vj € {1,...,m}, = € B(z0,2p) (2.140)

{Hi,Ho}(Zo) =< Zo(ZQ),azHi(Zo) > 1€ {1, ,m}

We conclude these considerations.

Proposition 2.3.14. Let 29 = (20, po) € R*™ and B(z9,2p) C R?" be fized such that
the hypothesis (ZI51) and ZI38) are fulfilled. Then {Z(X\, z,) : A € A} defined in
@I33)is a parameterized stationary solution of the nonlinear equation (ZI31]).
Remark 2.3.15. A standard solution for the nonlinear equation

Hy(x,p(x)) = const, Vo € D CR"

can be found from a parameterized solution provided the hypothesis ([2132) is stated
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with m = n and assuming, in addition, that X1(20), ..., Xn(20) € R™ from
_( Xz
Zi(z) = ( P.(2) ) ,i1€{l,..,n}
are linearly independent. It leads us to the equations
Hy(Z(\, 20),p(A, 20)) = 0 VX € A = [ [[~ai, ai] (2.141)
1

where the orbit Z(\, zo) = (T(\, 20), P(A, 20)) satisfies the implicit functions theorem
when the algebraic equations

(A, z0) = x € B(xo, p) CR"
are involved, Find a smooth mapping
A =(z) : B(z0,2p) = A
such that
(Y(x),20) =
and define
p(z) = p(¢(z), 20), © € B(zo,p) CR"
Then (ZIA0) written for A = (x) becomes

Hy(z,p(x)) = const = Ho(xo,po), Y& € B(xo, p) (2.142)

and p(z) : B(zo, p) — R™ is the standard solution. Assuming that 2142)is established
it implies that {p(x) : © € B(xg,p)} is a smooth solution of the following system of
the first order causilinear equations

0, Ho(, p(x)) + (0" (2))* 0, Ho(x, p(x)) = 0, x € B(ao, p) (2.143)

whose solution is difficult to be obtained using characteristic system method. In ad-
dition,if [0.p(x)] is a symmetric matriz (p(r) = dyu(x),u € C?(D;R)) then the first
order system ([2ZI43) becomes

O, Ho(z, p(x)) < Opp1(x)0pHo(z, p(x)) >
' + : =0 (2.144)

B, Ho(z, p(x)) < Oupn(2)0p Ho(, p(z)) >

for any x € B(zo,p) C R™, where p(x) = (p1(x), ..., pn(x)). In this case, the smooth
mapping y = p(x), x € B(xg, p), can be viewed as a coordinate transformation in R™
such that any local solution (Z(t,\),p(t,\)) of the Hamilton system

a =

& — 9 Hy(z,p) 2(0) = X € B(zo,a) C B(zo, p)
{ & = —0:Ho(z,p) p(0) =p(\)it € (—a,a) = I, (2.145)
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has the property p(t, ) = p(Z(t, ), (t,\) € I, x B(zo,a).

2.3.6 Some Problems

Problem 1. For the linear equation Hy(z,p) =< p, fo(z) >= ¢ define an extended
parameterized solution

~

Z(\ 20) = (Z(A 20), BN, 20), WA, 20)) € R X e A = [][~as, ai]
1

such that
6)\11,\()\, ZQ) = []/9\()\, zo)]*ﬁ,@()\, Zo) (2146)

where zo = (0, po, uo)-
Hint. Define the extended vector fields

Z¢ € COO(R2n+1,R2n+1)Zf(Z€) _ ( IZ{l((ivg)) )  Ze = (ZC,]% u) = (z,u)

where H’L(I)p) =<p, fl(x) > and Zl(xvp) = TazHi(Iap)v Z = (xvp)a S {15 -'-am}a
where the matrix T is defined in [ZI12). Assume the hypothesis [ZI16) of section
2.4.4 tulfilled and define the orbit

m

Z°(\ 20) = G§(t1) 0.0 G5, (tm) (20), A= (1, otm) € A= [[[~ai,ai]  (2.147)

where G¢(7)(y°) is the flow generated by Z¢. Prove that under the hypothesis as-
sumed in proposition 2311 we get {2°(\, z0) : A € A} as a parameterized solution
of the linear equation Hy(z,p) = const satisfied the conclusion (Z140)

Problem 2. For the nonlinear equation Hy(z,p) = const define an extended param-
eterized solution

2\, 26) = (BN, 26), DN, 26)), AN, 26) € R A€ A = [[[~as, ai]
1

such that
U\, 20) = [D(A, 20)]*OAT(A, 20), A € A where Z& = (20, po, up) € R*™ 1 (2.148)

is fixed.
e Zi(2°) = ( <p%é2) > ) where Zi(z)( )Ig((zz)) ) .
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is obtained from a smooth H; € C*°(R*",R) as follows
Zi(z) =T0,H;(z), i € {1,...,m}

given in (2I30) defined the extended orbit

2N, 26) = G5 (1) © oo 0 Gy (tn)(26), A = (b1, tm) € A = [[[—ai, 0] (2.150)

where G§(7)(y°) is the local flow {Zf}. Assume that
{Z8(29), ..., Z5,(2°) : 2° € B(z0,2p) C R} (2.151)

are in involution over C*°(B(zp,2p); R) and then prove the corresponding proposition
2314 of assuming that replaces the condition ([2132]).

2.4 Overdetermined system of First Order PDE and
Lie Algebras of Vector Fields

As one may expect, a system of first order partial differential equations
< 0;5(x),g9:(x) >=0,i€{1,...,m} g; € C°(R",R") (2.152)

has a nontrivial solution S € C?(B(z0,p) C R?") provided S is nonconstant on the
ball B(z, p) C R?"*! and

dimZL(g1, ... gm(z0)) =k <n (2.153)

Here L(g1, ..., gm) € C(R™,R™) is the Lie algebra determined by the given vector
fields {g1,....gm} C C®(R™,R™), it can be viewed as the smallest Lie algebra A C
C>°(R™,R™) containing {g1, ..., gm }-

Definition 2.4.1. A real algebra A C C>°(R"™,R") is Lie algebra if the multiplication
operation among vector fields X, Y C C(R™,R™) is given by the corresponding Lie
bracket [X,Y](z) = 25 (2)X () — Z(2)Y (2), 2 € R™. By a direct computation we
may convince ourselves that the following two properties are valid

[X,Y]=—[Y,X],VX,Y €A

and
[Xv [Y, Z]] + [27 [va]] + [Y, [ZvX]] =0,VX,Y,Z €A

(Jacobi s’ identity)

Remark 2.4.2. The system (ZI52) is overdetermined when m > 1. Usually a non-
trivial solution {S(z),x € B(xo,p)} satisfies the system (ZI5A) only on a subset
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M., € B(zg,p) € R™, which can be structured as a smooth manifold satisfying
dimMy, = k (see [2ZI53)); it will be deduced from an orbit of local flows.

Definition 2.4.3. Let A C C*(R™,R") be a Lie algebra and xo € R™ fized. By an
orbit of the origin xo of A we mean a mapping (finite composition of flows)

k

G(p,70) = Gi(t1) o ... o G(tx)(w0) ,p = (t1,tx) € Dy = [ [[~as, ai] (2.154)
1

where G;(t)(x),t € (—ai, a;),x € V(xo), is the local flow generated by some g; € A, i €

{1..k}.

Definition 2.4.4. We say that A C C°(R™,R")is finitely generated with respect to
the orbits of the origin xo € R™, (f,9,0,20) if {Yi,..., Y} C A will exist such that
any Y € A along on arbitrary orbit G(p,zo),p € Dy can be written

Y(G(p,x0)) = X3L,a;(p)Y;(G(p, 0)) (2.155)

with a; € C*(Dy,R)depending on' 'Y and G(p,xo),p € Di;{Y7,..Yu} C A will be
called a system of generators.

Remark 2.4.5. It is easily seen that {g1,..9m} C C*(R™),R™) in involution de-
termine a Lie algebra L(gr,..gm) which is (f.g.o.xg) for any x, € R™, where the

involution properly means [g;, ..., g;](x) = > afj (x)gr(x)¥,4,j € {1,...m} for some,

afjinCOO(R"), {91, .-+s gm } will be a system of generators. A nontrivial solution of the
system (1) will be constructed assuming that

L(g1,...9m)isa(f,g,0;x,) Lie algebra (2.156)

dimL(g1,...gm) (o) =k <n (2.157)
In addition, the domain V(xg) C R™ on which a non trivial solution satisfies(2I52l)

will be defined as an orbit starting the origin x, € R"

M
y(p) = Gl(tl 0...0 GM(tM)(JJQ), p= (tl, ...,tM) € Dy = H(—ai,ai) (2158)

where G;(t)(z),t € (—a;,a;) ,@ € B(xg,p) C R™ is the local flow generated by
Y: € L(g1,-s9m), © € {1,.... M}.Here {Y1,....,Yn} C L(g1,..., gm) is fized system
of generators such that

{Yi(zo), - Yi(20)} C R” (2.159)
are linearly independent and Yj(zo) =0, j € {1,..., M}
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2.4.1 Solution for Linear Homogeneous Over Determined Sys-
tem.

Theorem 2.4.6. Assume that g1, ...g;m C C*(R™),R™) are given such that the hy-
potheses (ZI50) and ZI5T) are satisfied. Let {Y1,..,Ya} € L(g1,..9m) be a system
of generators fulfilling2I59) and define

V(xzo) ={x € B(xo,p) CR" :z =y(p),p€ Dy} CR" (2.160)

where {y(p) :€ Dy} is the orbit define in(2ZI58). Then there exists a smooth non-
trivial function
S(x) : B(x,,p) = R such that the system ([2I52) is satisfied for any x € V(xq)given

in (ZI60),i.e
< 0pS(x), gi(x) >=0Vx € V(xg) i € {1,..m} (2.161)

Proof. To prove the conclusion ([ZI6I) we need to show the gradient system associ-
ated with the orbit {y(p) : p € D} defined in (2I58) has a nonsingular algebraic
representation

oylp) _ (Y1), Xa(t1, )y oy Xag (t1, oo tar—s; ) My (p))

dp
= M), Y2(), - Yau}(y(p))Alp)p € Dy (2.162)
where the smooth matrix A(p) = (ai;(p))i jeq1,my satisfies
A(O) = IM, aij € COO(DM) (2163)

(seem next theorem). On the other hand, we notice that according to the fixed
system of generators {Y1,...,Yar} C L(g1, ..., gm) (see ZI59)), we may and rewrite
the orbit(ZI5]) as follows

{y(p) :p € D} = {y(®) = Gi(t1), ..., Gr(tr) (o) : P = (t1,....tx) € Di}  (2.164)
Using a standard procedure we redefine
Mzo - {y(p> ‘pE B(O,Q)} C B(‘IOv Q) - an whereB(O,p) - Dk} (2165)

as a smooth manifold satisfying dimM,, = k < n for which there exist n — k smooth
functions ¢; € C>(B(xo, 0)) fulfilling

{ @i(@)=0,j€{k+1,..,n},x€ M, (2.166)

{0x0k+1(20), vy Oxon(z0)} € R™ are linearly independent

Using (2.163)) and detA(p) # 0 for p in a ball B(0,«a) € Djs we find smooth ¢; €
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C>(B(0,a);RM) j € {1,.., M}, such that

(2.167)

A(p)g;(p) = ej, p € B(0,a), {l1,...,Ips} € RM is the canonical basis
2l) g5(p) = Y;(y(p)), p € B(0,0), j € {1,..., M}

Using @T68) and EEIET) we get ,(y(p)) = 0, p € B(0,a) C Dar, j € {h+1,..,n}
and taking the Lie derivatives in the directions ¢1(p), ..., qar(p) we obtain
< Ouipi(y(P), Yi(y(P)) >=0p € B(0,) C Dy, i € {1,.., M}Vje{k+1,..,n} (2.168)

By hypothesis, L(g1, ..., gm) is a (f - g - 0;29) Lie Algebra and each g € L{g1,...,gm}
can be written

M
9(y(®) = aid)Yi(y(®), b € B(0,0) C R, a; € C*(B(0,a)) (2.169)
i=1
Using (2.168) and (2I69) we get
< Oppj(x), gi(x) > = 0Va e My, C B(0,p) for each

1e{l,..,m}and je{k+1,...,n} (2.170)

Here {¢prt1(2), ..., on(x) : © € B(0,0)} are (n — k) smooth solutions satisfying the
overdetermined system (ZI52) along the k-dimensional manifold M, in (ZI6H). The
proof is complete. O

Remark 2.4.7. The nonsingular algebraic representation of a gradient system

dy dy dy
— =Y — = Xo(ty; vy —— = Xpr(t1, ooy tar—1; 2.171
(’%1 1(y)7 6t2 2( 1ay)7 7atM M( 155 UM 1ay) ( 7 )

associated with the system of generators {Y1,..,Yam} C L(g1,...,gn) relies on the
assumption that L(g1,...,gm) s a (f - g - 0;x0) Lie algebra and the orbit 2I53) is a
solution of (ZITI) satisfying y(0) = xo. The algorithm of defining a gradient system
for which a given orbit is its solution was initiated in Chapter I of these lectures.
Here we shall use the following formal power series

Xo(t1;y) = (exptiadY1)(Y2)(y)
X3(t1,t2;y) = (exptiadYr) - (exptaadYa)(Ys)(y)

(2.172)
Xar(ty,to, s tar—15y) = (exptiadYy) - ... - (exptar—1adYpr—1)(Yar)(y)
where the linear mapping adY : L(g1, ...,gm) — L(g1, ..., gnr) is defined by
0Z oY n
(@aV)(2)0) = 20 V() = B2,y € B forcach V. 2 € Lgs,cogn) (2179

Actually, the vector fields in the left hand side of (ZIT2) are well defined by the



74 CHAPTER 2. FIRST ORDER PDFE

following mappings

Xao(t1;y) = Hi(—t1;y1)(Y2)(G1(~t1591)),v1 = ¥,
Xs(t1,t23y) = Hi(—t1;91) - Ha(—t2;y2)(Y3)(G2(—t2; y2))

Xnr(tr,ta, s tar—15y) = Hi(—t1;y1) - Ha(—t25y2) <o - Hy—a(—tar—1590—1)(Yar ) (yar)
(2.174)

where
Gi(—ti;yi), t € (—ai,a:), v € V(xo)

is the local flow generated by

0G;
Yo, Hi(t,y) = [ (ty)] ™
(t.y) [8y( y)]
and
Vi1 = Gi(—ti;y:), € {1,..., M — 1}, where y1 = y.

The formal writing 2I72) is motivated by the explicit computation we can perform
using exponential formal series and noticing that the Taylor series associated with

@I72) and @ITA) coincide.

2.5 Nonsingular Algebraic Representation of a
Gradient System

Theorem 2.5.1. Assume that L(g1, ..., gm) € C®(R™;R™) is a (f-g-0;x0) Lie algebra
and consider {Y1,...Yu} C L(g1,...,9m) as a fized system of generators. Define
the orbit {y, : p € Du} as in (ZI58) and associate the gradient system ZITI)
where {Xa(t1;Y), ..., Xar(t1,to, ..., tar—1;y)} are defined in (2I74). Then there exist
an (M x M) nonsingular matriz A(p) = (aij(p))ije{1,...,my» a5 € C(B(0,a) CR™)
such that

V() X2 (t15-), oo Xnr (b1, oy tar—15 )} (y(p) = {V10), Y2 (), -, Yr () Hu (p)) Alp) - (2.175)

for any p € B(0,a) CR™, and A(0) = Iy

.....

Proof. Using the (f-g-o0;x0) property of Lie algebra L(gx, ..., gp we fix the following
(M x M) smooth matrices B;(p), p € D, such that

adYi{Y1, ... Y y(p)) = {1, ..., Y Hy(p)) - Bi(p), i € {1,..., M} (2.176)

where {Y7,...,Yu} C L(g, .., gm) is a fixed system of generators. Let {Z1(t1,....,tn) :
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t € [0,t1]} be the matrix solution

az
d_tl = ZlBl (tl — t,tg, ...,tM), Z1 (O) = IM (identity) (2177)

The standard Picard’s method of approximations applied in (ZI77) allows one to
write the solution {z, (t1,...,ta) : t € [0,%1]} as a convergent Volterra series, and by
a direct computation we obtain

Xz(tl; y(p)) = {le, vy YM}(y(p))Zl (tl,tg, ceey tM)eg (2178)

where Xs(t1;y) is defined in ZI74) and {eq,...,epsr} C R™ is the canonical basis.
More precisely, denote

Ni(tyy) = Hi(—t;y){Y1, ... Y J(G1(—t; y))and X (t15y) (2.179)

can be written
Xz(tl;y) = Nl(tl;y)eg (2180)

Then we noticed that Ni(¢;y(p)), t € [0,t1] satisfies

dN,
dt
where the matrix By (p) is fixed in (ZIZ2I) and satisfies

= NlBl(tl - t,tQ, ,tM),Nl(O) = {}/1, ,YM}(y(p)) (2181)

adYi{Y1, ... Y H(Gi(=t;y) = {Y1, ..., Yu HG1(—=t;y)) - Bi(t1 — t,ta, ..., tar) (2.182)

for y = y(p). The same method of Approximation shows that a convergent sequence
{NF(t) : t € [0,t1]}r=0 can be constructed such that

NY(t) = {1, ... Yar}(y(p)) = N1(0)

NFEFY () = Ny (())Jr,f‘J\f{f(s)B1 (ty — s,t2, s tar)ds, k =0,1,2, ... (2.183)
0
It is easily seen that
NEFE(t) = Ni(0)ZE T (5, . tar), t € [0, 1] (2.184)
where {ZF(t;t1,...,tar) 1 t € [0,1]} x>0 defines a solution in (ZIT7) and
lim ZF(tsty, oo tar) = Zo(tite, .y tar) (2.185)
uniformly int € [0,¢1]. Therefore using (2.I84) and (ZI85) we get that
Ni(t) = lim NF(t) ,t € [0,t1] (2.186)

k—o00

is the solution in (ZIRI) fulfilling

Nl(t;y) = {le, ...,YM}(y)Zl(t;tl, ...,tM), te [O,tl] (2187)
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if y = y(p), and (ZIT]) holds. The next vector field X3(t1,t2;y) in (ZII9) can be
represented similarly and rewriting it as

Xs(t1,t2;y) = Hy(—t1;9) Xs(ta; y2), forys = y(p) = y (2.188)

Yo = G1(—t1;91) = Ga(t2) o ... o Gar(tar)

and
X3(t2;y2) = Ha(—t2;y2)Y3(Ga(—t2,92)) (2.189)

can be represented using the same algorithm as in (ZI78) and we get

—

Xs(to;y2) = {Y1, .., Yar }(y2) Zo(tos ta, ... tar)es (2.190)

Here the nonsingular and smooth M x M {Z5(t;ta,....,tar = ¢t € [0,t2]} is the unique
solution of the following linear matrix system

a7
d—; = ZyBy(ty — tits, ., tar), Z2(0) = Iy (2.191)

where By(ta,...,tar) p € Dy is fixed such that
adYa{Y1, ..., Yu}(y2) = {Y1, ..., Ya }(y2) Ba(to, ... tar), p € D (2.192)

Denote
N2(t7 y2) = H(ft,yg){yvla ) YM}GQ(_t7 y2)7 te [07 t2] (2193)

and we obtain
T3(t2;y2) = No(ta;y2)es = {Y1, ..., Yar} (y2) Za(toi to, ... tar)es (2.194)
That is to say, {Na(t;y2) : t € [0,t2]} as a solution of

dN:-
d—t2 = Nng(tz — t,tg, ...,lfM), NQ(O) = {Yl, ,YM}(?JZ) (2195)

can be represented using a standard iterative procedure and we get
Ng(t; y2) = {}/1, ey YM}(yQ)ZQ(t, to, ..., tM) ,1 € [0, tz] (2196)

where the matrix Zs is the solution in(ZI91]). Now we use ([2194]) into (2I8]) and
taking into account that yo = G1(—t1,y1) we rewrite

Hy (=t 90){Y1, ., Y }(Gr(=t1, 1)) = Ni(ti; 1) foryn = y(p) (2.197)

where {N1(t;y(p)) : ¢t € [0,¢1]} fulfills@I8T). Therefore the vector field Xs5(t1,t2;y)
in ([2I74) satisfies

Xg(tl,tQ;y) = {Yl, ...,YM}(y)Z(tl,tl, ,tM) X ZQ(tQ;tQ, ...,tM)eg (2198)

for y = y(p). An induction argument will complete the proof and each X,;(p;;y) in
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@IT4) gets the corresponding representation
Xjr1(pj+13y) = {Y1, . Y H@) Z (trs by o tr) X oo X Z5(tg5t5, s tar)ejn (2.199)

ity =y(p) and {Z;(t,t;,....tar : t € [0,¢;])} j € {2,..., M — 1} is the solution of the
linear matrix equation

dZz;
d—t‘] = ZjB_j(tj — t,tj+1, ...,t]W)a Z](O) = IM (2200)

Here the smooth matrix Bj(t;,.....,tar) ,p € Dar, is fixed such that
ad}/j{yla [x3) YM}(yJ) = {Yla [x3) YM}(yJ)BJ(tJa [ tM) (2201)

where y; = G;(tj) o...0 Gp(tam)(zo) ,j = 1,..., M. Now, for simplicity, denote the
M x M smooth matrix

Zi(p) = Zi(t1;t1, ooy tar) X oo X Zi(tj3t5, o tar), p = (t1, .., tar) € Dyr - (2.202)
Je{L,... M =1} and X;41(pj41:y)
in ([2Z199) is written as
Xin1i15y) = Y1, Yy W) Zj(p)ejn,if y = y(p), p € Dur (2.203)
In addition, define the smooth (M x M)
A(p) = (e1, Z1(p)ea, ..., Zn—1(p)enr), p € Dy (2.204)
which fulfills A(0) = In; and represent the gradient system (ZI7T) as follows
(), Xa(tr, )y ey X (tr, ooy tar—1, ) 3 (y) = {Y1, ., Yar }(y) A(p) (2.205)

if y = y(p), and the smooth (M x M) matrix A(p) is defined in [2204). The proof is
complete. O

2.6 First Order Evolution System of PDE and Cauchy-
Kowalevska Theorem

We consider an evolution system of PDE of the following form

N

B

Ouj = ;k(t,x,u)az—uk +b(t,z,u),j=1,...,N

=1 ‘ (2.206)
)

where v = (uq, ..., uy) is an unknown vector function depending on the time variable
t € R and 2 € R™. The system (Z200) will be called first order evolution system of

i=1k
u(0,2) = wo(x
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PDE and without losing generality we may assume ug = 0 (see the transformation
k. b; not depend on the variable t(see uy;; =

u = u — ug) and the coefficients a;,
t, Oun41 = 1). The notations used in (Z200) are the usual ones dyu = % ,Oiu =
9u i ¢ {1,..,n}. Introducing a new variable z = (z,u) € B(0,p) € R*™V, we

Oz’

rewrite the system (Z200) as follows

n N )
Opuj = Z: > @ (2)0up +bi(2), j=1,..,N (2.207)
u(@0)= 0

Everywhere in this section we assume that the coefficients az-k,bj € C*(B(0,p) C

RN are analytic functions, i.e the corresponding Taylor’s series at z = 0 is conver-
gent in the ball B(0, p) € R"*V (Brook Taylor 1685-1731)

2.6.1 Cauchy-Kowalevska Theorem

Theorem 2.6.1. Assume that
aly,bj € CV(B(o,p)) C RN
for any
ie{l,..,n},kje{l,...,n+ N}

Then the evolution system Z207) has an analytical solution u € C*(B(o,a)) C R**?
and it is unique with respect to analytic functions.

Proof. Without restricting generality we assume n = 1 and write a;;, = ajlk. The main

argument of the proof uses the property that the coefficients ¢, from the associated
Taylor’s series

> ok > tl(Ek ak-‘rl
Ul(t,l') = Z C;kt Tr = Z W[WUi(t7x)]t:0’$:0 (2208)
1,k=0 l.k=0

are uniquely determined by the evolution system(2.207) and its analytic coefficients.
Then using an upper bound for the coefficients ¢j,,, we prove that the series (2208)])
is convergent. In this respect we notice that

M

[a—ui(t,x)]tzo = 0for anym >0 (2.209)
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(see uy(z) = 0) using ([2:207) we find the partial derivatives

8ui

0%u; &u; 0®u; OPui
E (07 {L‘)’ %(0, x), W(O7 ./L')a 8t28:17(

0, :E)u

(0,2) (2.210)

and so on which are entering in ([2:208), for each i € {i,..N}. If

a;i(z) = Z g2k 2% andbj | 2 |= Z hi 2 (2.211)
|a|=0 |a|=0

for | z |[< p,a=(a,..ant1),| @ |= a; + ....ant1, and a; > 0, «; integer, the
¢t = Pll(g2™ agims (h)a.] (2.212)

when Pfk is a polynomial with positive coefficient(> 0). It uses the coefficients
e}, ((Z208)) and noticing that by derivation of a product we get only positive co-
efficient. Now we are constructing the upper bound coefficient Cj, for C}, given in

[2212) such that

vilt,z) = Y Ct'a®, i=1,2,..,N (2.213)
1,k=0

is a local solution of the Cauchy problem.
. 0 .
Ovj = ZNAjk(Z)gV(k) + B;(2), vj(0,2) =0, j € {1,..,N} (2.214)
k=1
Here Aj;, and B; must be determined such that
Aj(z) = > GIFz* Bj(z) = > Hj2" (2.215)
|| =0 |a|=0

where | gI* |[< GIF, | W, |< H,

Using (2215, we get
Cix = Pil(GL™)agoms | HY lag] 2| Pill 93" lagims (| Bl)as] 12l el | (2.216)

and the upper bound coefficients {C7, } are found provided A;; and B, are deter-
mined such that the system(Z214)) is satisfied by the analytic solution v(t,z) given
in (ZZIH). In this respect, we define the constants GZ* and HiFandHJ using the
following estimates

My =max | ajix(2) |, M =max | bj(2) | j,k=1,.N|Z|<p (2.217)
we get
|gg¢k|<%<ﬁ‘_!!_ Gof
_ pleT of . (2.218)
{ |hh|< M < laf = H
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= all z ., 1 Jall
Ape) = Y mlelEe oy Llal
|or|=0 ' '

A + ... +ZN+1]
p

z
P
= M[1 Lofor |z | et | zver < p o (2:219)

21+ ...+ 2N+1

Bj(z) = Y Hlfze=M[1- 7Y, for | 21 | 4. | 2ver |< p (2.220)

=0 P
Here we have used
% N41
Z aZo‘ = (Z 2", al = (ou))...(anq1!), 2% = 200 20 (2.221)
o=k i=1

Notice that the coefficients Aji, B; do not depend on (j, k) and each component
v;(t,x) can be taken equals to w(t,x),i € {1,...,N}, where {w(t,z)} satisfies the
following scalar equation
Mp

8 =
e p—x—Nuw

(1 4+ NOoyw), w(0,z) =0for |z |+N |w|<p (2.222)

by a direct inspection we notice that for 2 € R™ we need to replace = € R in (Z222))

by © — y = > a; where x = (x1,...z,) and w(t,z) — w(t,> x;) The solution of
1 1

[2222)) can be represented by

Wt x) = %[p—:v—\/(p—xﬁ—élMNpt],if o |< /7 (2.223)
and 0

t =
< 16MN

T(M, p)

n

In the case z € R™ we use y = (D ;) instead of z € R and w(t,y) satisfy both the
1
equation ([2222]) and the representation formula(2223). O

2.6.2 1st Order Evolution System of Hyperbolic & Elliptic
Equations

In the following we shall rewrite some hyperbolic and elliptic equation appearing in
Mathematical Physics as an evolution system of first order equation. It suggest that
assuming only analytic cofficients we may and do solve these equations applying the
Cauchy-Kowalevska theorem (C-K)

(E1). Klein-Gordon equations(D.B Klein 1894-1977, W.Gordon 1893-1939)
They are describing the evolution of a wave function y associated with a vanishing
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“spin” particle and in differential form is expressed using standard notations, as follows

{ 07y = Ay — my + f(y,0y,0uy), m > 0,t >0,y € R (2.224)
y(0,2) = yo(z) = 0,y (0,2) = y1(z), x € R"
where O,y = %,axy = (O1Y, .., Ony), Oiy = g—;’i and
the laplacian Ay = 3 8?y. Denote
1
u = (awya 8ty7 y) € Rn+27 uO(:L,) = (6Iy0($)7 hn (:E)u yO(x))

and F(u) = f(y, 0wy, Ozy). Then [2.224]) is written as an evolution system

6,5’11,]‘ = 8jun+1, j € {1, ,n}

Orun, diu; + F

nir 2 Oii+ Flu) (2.225)

3tun+2 = Up+1

uw(0,7) = u’(x)

(E2). Maxwell equations(J.C.Maxwell 1831-1879)
Denote the electric field E(t,z) € R3 2 € R3¢ € R, the magnetic field H(t,x) €
R3,z € R?,¢t € R and the Maxwell equations are the following

Oe(E) _ _ _ 0
aﬁFmatE AxH= 0,B0,2)=FE O(m) 2.226)
where D = ¢(F) and B = p(H) are some nonlinear mappings satisfying
e(B),u(H) :R* =R (2.227)

are analytic functions with uniformly positive definite matrices %, % for £, H
in bounded sets. In addition, we assume

«(B) = «BE+O(EP), uH)
= poH +O(| H |*)withey > 0, g > 0 (2.228)
((E)=eE+O( E ), u(H) = poH + O(| H |*)witheg > 0,110 >0 (2.229)
divD(t,z) = 0,divB(t,z) = 0, D(0,z) = D°(z), B(0,z) = B®(z) (2.230)

where D(t,z) = e(E(t,z)) and B(t,z) = p(H(t,2)). The vectorial products A x H
and A x E are given formally by the corresponding determinant

Ax E = det 01 O O3 :i(62H3—83H2)+j(83H1—81H3)+k(81H2—62H1)
Hy H> Hjs

(2.231)
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A X E = det 01 Oy O3 = i(82E3—83E2)+j(83E1—81E3)+k(81E2—82E1)
FE1 FEs FEj

(2.232)
where (i,7,k) € R? is the canonical basis. Denote u = (E, H) € R® and the system

([2226) for which the assumptions (2227), (Z229) and ([2230) are valid will be written

as an evolution system

3
dru ="y [A(w)] "' AV0ju, u(0,2) = u’(z) = (E°(z), H(x)) (2.233)

Jj=1

where (6 x 6) matrices A’ are given by

0 O 0
bl O3 0 0 -1
> (@) 0 1 0
0 _ 3 1 _
0 0 1 O3
0 -1 0
0 0 1 0 -1 0
O3 0 0 -0 O3 1 0 O
- 1 0 0 - 0 0 0
A= 0 0 -1 , AT = 0 1 0
0 O 1 O3 -1 0 1 O3
1 0 0 0 0 0

where O3 is (3 x 3) zero matrix, A%(u) is strictly positive definite matrix and each A
is a symmetric matrix. Recalling that Maxwell equation means the evolution system
with analytic coefficients ([2:233)) and, in addition the constraints ([2:230), we notice
that ([2:230) are satisfied, provide

divD"(z) = 0 and divB®(z) =0 (2.234)
In this respect, we rewrite the original system (2226) as
DA x H=0, ;B + A x E0, D(0,z) = D%=x), B(0,z) = B%(z)  (2.235)

and by a direct computation we get

{ 9y [divD(t, z)] = div[0,D](t, z) = div(A x H)(t,z) =0 (2.236)

O[divB(t, x)] = div][0:B|(t, z) = div(A x E)(t,x)

which show that ([2:234]) implies the constraints (Z.230)
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2.7 (F;) Plate Equations

(they cannot be solved by (C-K) theorem). They are described by the following
equation

n

Oy + A%y = (O, 2y) + > bi(Ory, 02)0i(0hy), = € R" (2.237)
=1

where f and b; are analytic functions, and y(t, z) € R satisfies Cauchy conditions.

y(0,2) = yo(x), Oy(0,2) = y1(x) (2.238)

Here “A”is the standard laplacian operator, “0,”is the gradient acting as linear map-
pings for which “A2”and “92”have the usual meaning. Denote

U= (‘ﬁya O (aty)u aty) = (ulu sy Up2, Up241, - - -5 Un24n, un2+n+1)

2
= n”+n+1
= (ylbyl?; ey Ynls - Ylns Y2ny - oo Ynns Un2415 - - - 7un2+naun2+n+l) eER

as the unknown vector function, where (n x n) matrix 92y is denoted as a rowvec-
tor (Y11, -+, Ynn) € R™. By a direct inspection we see that

atyij = 8¢8jun2 +n+1= 8iun2+j, 1,] € {1, .. .,TL}

Opn2ynp1 = — Z: A(yii) + F(u)

=1 I (2.239)

Bi0unz 45 = 0j(Opunznir) = = 2 Aya) + X F-Flu)djus
= k=1
U(va) = (éﬁyo(x),am, Y1 (ZC),yl (CL‘)) = uO(x)

n
where F(u) = f(un2oni1,0%y) + 3 bi(Unzing1, 02y)up24;. As far as the system
i=1
[2239) contains laplacian “A”in the right hand side it cannot be asimilated with a
first order evolution system. Actually, it is well known that a parabolic equation
has no rewriting as a first order evolution system and show that the simplest plate
equations.

8fy+A2y =0 y(0,2) = yo(z), Oy(0,2 = y1(x)) (2.240)

are equivalent with a parabolic type equation (Schrodinger)

{ dew = iAw(or — idyw(t,x) = Agw(t,x)) (2.241)

t
w(o,z) = y1(z) + iAyo(z) = w°(z)

Remark 2.7.1. Let {y(t,x)} be the analytic solution of the plate equation (4). Define
the analytic function w(t,z) = Oy(t,z) + iAyy(t,z) € C. Then {w(t,z) : (t,x) €
D C R 1Y} satisfies Schridinger (S) equation @240) and initial condition w(o, x) =
y1(z) + iAyo(z) = w(x). Conversely, if w(t,z) = y(t,z) + iz(t,z) satisfies [Z241)
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then Rew(t,z)4 = y(t,z) and Imw(t,x) = z(t,x) are real analytic solution for the
homogeneous equation of the plate(2Z240)) with Cauchy conditions y(0,z) = yo(x) and
z(0,2) = zo(x) correspondingly. Moreover, the solution of the Schrédinger equation
@240) agrees with the following representation w(t,z) = wu(it,x) where u(r,xz) =
(477) % [o. leap(—)]uo(y)dy and we get —idyw(t,z) = O-u(it,x) = Agu(it,z) =
Ayw(t,z) (S-equation).

2.7.1 Exercises

(1) Using the algorithm for Klein-Gordon equation, write the evolution system cor-
responding to the following system of hperbolic equations

Ryi= > Cimjr(02y)0mOkys, i =1,.on,y = (Y1, ... Yn)

m,j,k=1

yi(0,2) =y (x), Oi(0, @) = yj(2), i=1,...,n,z €R"

(it appears in elasticity field)
Hint. 0,y = (0xy1, -, OxUn) , Ox¥i = (O1Yiy -, Onyi),j € {1,...,n}
Denote u;py = Okyi(t,z), k€ {1,....,n},i € {1,...,n}

Up2y; = Oy, 1 € {1,...,n}

Up2yni; =Yi, t € {1,...,n}

we get

(9,5 Uik = 8k8t Yi = 89% Up2 4 1€ {1, ,n}

Otz =02 = Y Cimjr(Uity ooy Unn)Os, (ugk), i € {1,...,n}
m,j,k=1

Optp2ynyi = Oryi = U2y, i €4{1,...,n}

(2) Using (C-K) theorem solve the following elliptic equation
2,92 _ .2 2 _ _
Hint. Denote ¢ = z, 0yu = u1, O,u = us ,u = uz and we get

8tu1 = 8y(8tu) = ayUQ 8tu2 = agu = —8yu1 + t2 + y2 8tU3 = U2
u1(0,y) =0 u2(0,y) =0 "1 us(0,9) =0

We are looking for

t t2
’U/B(tu y) = U3(O, y) + Fatu?)(oay) + 56152”3(073/) + .



2.7. (Es) PLATE EQUATIONS 85

Now compute
uz(0,y) = 0, Qyuzli—o = uali—o = 0, OPus|i—o0 = Opuzli—o = y*, OFuzli—o

for k > 3. We obtain u(z,y) = us(z,y) = s22y?

(3) by the same method solve
97 + 05 =y, u(0,y) = 0y u(0,y) = 0

and get

8
=

x2y2
ulwy) = - - 3

[\

2.7.2 The Abstract Cauchy-Kawalewska Theorem

(L.Nirenberg, J.Diff. Geometry 6(1972)pp 561-576)

For 0 < s < 1, let X, be the space of vectorial functions v(x) € C™ which are
holomorphic and bounded on Dy = [[j_,{| z; |[< sR} C C?. Denote || v ||s=supp_ |
v(z) |. Then X, is a Banach space and the natural inspection X; C X (s < s) has
the norm || ¢ ||< 1. By the standard estimates of the derivatives (see Cauchy formula),
we get || Ojv |y < R7M || v |ls (s— &) for any 0 < s’ < s < 1 and for a linear equation
the following holds true

Theorem 2.7.2. Let A(t) : X5 :— Xy be linear and continuous of | t |< n for any
0 < s <1 fulfilling

(i1) || A@)v |l < C [ v ||s—sr, VO< s <s<1

Let f(t) be a continuous mapping of | t |< n with values in Xs, 0 < s <1 fulfilling

(i2) | £(8) [ls<

, for0 < s <1

K
a(l —s)
where 0 < a < SLK is fixed and K > 0 is given constant. Then there exists a unique

function u(t) which is continuously differentiable of |t |< a(l — s) with values in X
for each 0 < s < 1, fulfilling

du

(C1)— (t) = A(t)u(t), u(0) =0

(Co) [ u®) |s< 2K (4552 = 1)7! for any | ¢ |< a1 — s).

Theorem 2.7.3. The nonlinear case is refering to the following Cauchy problem

(@)% = Fu®),0) | ¢1< 1, u(0) =0
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Let the condition (on) and(as) be fulfilled. Then there exists a > 0 and a unique
function u(t) which is continuously differentiable of |t |< a(l — s) with values in X
fulfilling the equation () and || u(t) [|s< RV |t|< a(l —s), for each 0 < s < 1.

2.8 Appendix Infinitesimal Invariance

J.R.Olver (Application 0f Lie algebra to Diff.Eq, Springer, 1986, Graduate texts in
mathematics; 107)
1. One can replace the complicated, nonlinear conditions for the invariance of a
subset or function under a group of transformations by an equivalent linear condition
of infinitesimal invariance under the corresponding infinitesimal generators of the
group action. It will provide the key to the explicit determination of the symmetry
groups of systems of differential equations. We begin with the simpler case of an
invariant function under the flow generated by a vector field which can be expressed
as follows

f(G(t;z)) = f(z), t € (—a,a)x € D CR" < (2.242)

g(f)(x) =< 0, f(x),9(x) >=0,Vz € D. (2.243)

where G(0; z) = z, % =g(G(t;x)), t € (—a,a), z € D

Theorem 2.8.1. Let G be a group of transformation acting on a domain D C R™.
Let F: D — R™, m < n, define a system of algebraic equations of mazximal rank

(Fj(x)=0,j=1,...,m) ;rankg—F):C) =m,Vz e D, F(z)=0 (2.244)
x

Then G is a symmetry group of system if f
g(Fj)(xz)=0,Vee{ye D :F(y)=0},j=1,2,...,m (2.245)

where g is the infinitesimal generators of G.

Proof. The necessity of ([2245) follows by differentiating the identity F(G(t;z)) =
0,t € (—a,a) in which z is solution of (Z244)) and G(t;z),t € (—a,a), is the flow
generated by the vector field g. To prove the sufficiency, let zy be a solution of the
system using the maximal rank condition we can choose a coordinate transformation
y = (y',...,y") such that zo = 0 and F has the simple form F(y) = (y*,...,y™). Let
9(y) = (¢*(y), ..., g™ (y)) € R™ be any infinitesimal generators of G expressed in the
new coordinates and rewrite ([22248]) as follows

g y)=0,i=1,2,..mVyeR" ¢yl =...=9y™=0 (2.246)
Now the flow G(t)(zo),t € (—a,a) generated by the vector field g and passing
through =y = 0 satisfies the system of ordinary differential equations dd—cf(t)(xo) =
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g (G(t)(z0)), G(0)(z0) = 0, Gi(t)(wo) = 0,t € (—a,a),i = 1,...,m which means
F(G(t)(z9)) =0, t € (—a,a). The proof is complete. O

Example 2.8.1. Let G = SO(2) be the rotation group in the plane, with infinitesimal
generator (g = —y0y + x0y)

g(z,y) = col(—y,x). The unit circle S; = {x* + y? = 1} is an invariant subset of
SO(2) as it is the solution set of the invariant function f(x,y) = 22 +y* — 1. Indeed,
g(f)(z,y) = —2zy+2zy = 0, V(x,y) € R? s0 the equations (4) are satisfied on the unit
circle itself. The mazimal rank condition does hold for [ since its gradient Of(x,y) =
col(2x,2y) does not vanish on S'. As a less trivial ezample,consider the function
flz,y) = (2% + 1)(2% + y? — 1) and notice that g(f)(x,y) = —2zy(z? + 1)1 f(z,y)
which shows that g(f)(x,y) = 0 whenever f(z,y) = 0. In addition Of(z,y) = (4zs +
2292, 22y + 2y) vanishes only when x =y = 0 which is not a solution to f(x,y) = 0.
We conclude that the solution set {(z,y) : (2% +1)(2® +y*>—1) = 0} is a rotationally-
invariant subset of R2.

Remark 2.8.2. For a given one-parameter group of transformations y = G(t)(z), x €
D CR" t € (—a,a) generated by the infinitesimal generator

dG(t)(x)

T =g (x)0p1 4 ... + g™ ()0 (see it

=9(G(1)(x)), t € (=a,a),G(0)(z) = =
g(z) = col(g* (), ...,g"(z)). We notice that the corresponding invariant functions are
determined by the standard first integrals associated with the ODE % = g(x).

2.8.1 Groups and Differential Equations

Suppose we are considering a system S of differential equation involving p independent
variables z = (x!,...,2P) and ¢ dependent variablesu = (u!,...,u?). The solution of
the system will be of the form u®* = f*(z), « =1, ...,q. Denote X = R?, U = R? and
a symmetry group of the system S will be a local group of transformations,G, acting
on some open subset M C X x U in such a way that” G transforms solutions of S to
other solutions of S”. To proceed rigorously, define the graph of u = f(z),

IFy={(z,f(x):2€Q} CX xU

where 2 C X is the domain of definition of f. Note that I'; is a certain p—dimentional
submanifold of X xU. If I'y C M¢(domain of definition of the group transformations
G) then the transform of I'y by G is just

GIy={(Z,u) =G(z,u) : (x,u) €Ty}

-~

The set GT's is not necessarily the graph of another single valued function © = f(Z)
but if it is the case then we write f = G.f and f the transform of f by G.
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2.8.2 Prolongation

The infinitesimal methods for algebraic equations can be extended for ”systems of
differential equations”. To do this we need to prolong the basic space X x U to a space
which also represents the various partial derivatives occurring in the system.If f : X —
U is a smooth function,u = f(z) = (f'(z),..., f4(x)) there are ¢.p, numbers u§ =
0; f*(x) needed to represent all different k& — th order derivatives of the components
of f at point z. We let Uy = R%.pi be the Euclidean space of this dimension,endowed
with coordinates uj corresponding to o = 1, ..., ¢, and all multi-indices J = (J1y s k)
of order k, designed so as to represent 0y f*(x) = w.
2o

Set U™ = U x Uy x ... x Uy, to be the product space.v]:zhose coordinates represents
all the derivatives of functions u = f(x) of all orders from 0 to n. Note that U™ is
Fuclidean space of dimension

q+qpy+ ... +qpp = qp"

Atypical point in U™ will be denoted by u™ so u™ has ¢.p™ different components u$
where @ = 1,...,¢ has J sums over all unordered multi-indices J = (j1,...,jr) with
1< <p,j1+...+Jr =k and 0 < k < n. (By convention for k& = 0 there is just one
such multi-index,denoted by O, and u§ just replace to the component u® of w itself)

Example 2.8.2. p = 2,q¢ = 1.Then X = R? (2!,2?) = (2,y) and U = R has
the single coordinate w. The space Uy isomorphic to R* with coordinates (uy,u,)
since these represents all the first order partial derivatives of u with respect to x and
y. Similarly Uy = R? has coordinates (Uyy, Uszy, Uyy) representing the second order
partial derivatives of u, namely %&‘271 ;i =0,1,2. In general, U, = R*1 | since
there are (k+1) k-th order partial derivatives of u, namely

#yi,i ,i=0,1,..,k. Finally, the space U?> = U x Uy x Uy = RS, with coordinates

u? = (U Uy, Uy, U, Uy Uyy) TEPTESENLS 0ll derivatives of u with respect tox and y of
order at most 2. Given a smooth function u = f(x) f : X — U there is an induced
function u™ = pr(™ f(z) called the n — th prolongation of f which is defined by the
equations

uf =0;f%x), J = (1, k), L<je <p, 1+ +ik=k 0<k<n

for each a=1,...,q(see X =RP, U =RY).

The total space X x U™ whose coordinates represents the independent variables,the
dependent variables and the derivatives of the dependent variables up to order n is
called the n—th order jet space of the underlying space X x U (it comes from viewing
pr ™ f as a corresponding polynomial degree n associated with its Taylor series ar the
point x )If the differential equations are defined in some open subset M C X x U then
we define the n-jet space M) = M x Uyx,; x U, of M.
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2.8.3 Systems of Differential Equations

A system S of n — th order differential equation in p independent and ¢ dependent
variables is given as a system of equations

Ay(z,u™)y=0nu=1,...,b (2.247)
involving = = (x!,...,2P),u = (u',...,u9) and the derivatives of u with respect to x
up to order n. The function A(z,u™) = (Ay(z,u™)),..., Az, u™), will be assumed
to be smooth in their arguments so A can be viewed as a smooth map from the jet
space X x U™ to some [— dimensional Euclidean space A : X x U™ — R..

The differential equations themselves tell where the given map A variables on X x U™
and thus determine a subvariety

Sa ={(z,u"): A(z,u") =0} C X x U" (2.248)

On the total jet space.
From this point of view, a smooth solution of the given system of differential equations
is a smooth function u = f(z) such that

Ay (z,pr™ f(@) =0,v=1,...,1

whenever x lies in the domain of f. This condition is equivalent to the statement that
the graph of the prolongation pr(™ f(z) must lies entirely within the subvariety Sa
determined by the system

DY = {0, pr™ ()} € Sa = (A, u™) = 0} (2:249)

We can thus take an n — th order system of differential equations to be a subvariety
Sa in the n = jet space X x U™ and a solution to be a function u = f(z) such that
the graph of the n — th prolongation pr(™ f is contained in the subvariety Sa.

Example 2.8.3. Consider Laplace equation in the plane
Ugg + Uyy = 0 (2.250)

Here p = 2,q = 1,n = 2 coordinates (x,y, U, Uy, Uy, Ugg, Ugy, Uyy) of X x U™ (a
hyperplane)there, and this is the set a for Laplac’s equation.A solution must satisfy

9? 0?
8—;20 6—y£ =0 VY(z,y)

This is clearly the same as requiring that the graph of the second prolongation pr?f
lie in Sn. For example, if
flz,y) = a® = 3ay®
then
pr? f(z,y) = (¢ = 3ay? 32® — 3y*, —6ay; 62, —6y, —6x)
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which lies in
Sa( see 6z + (—6x) = 0)

2.8.4 Prolongation of Group Action and Vector Fields

We begin by considering a simple first order scalar differential equation
du 9
i F(z,u), (z,u)e DCR (2.251)
x
This condition is invariant under a one-parameter group of transformations
G(e) = expeg defined on an open subset D C xU = R? where

is the infinitesimal generator.

Let u = u(x; xo, ug) be s solution of (Z.251)) satisfying u(wx; o, ug) = ug and (xg, ug) €
D arbitrarily fixed. Then u(Zo(€); zo, uo) = uo(€), € € (—a, a)

where

(Zo(€), uo(e€)) = G(€)(wo, uo)

It leads us to the following equations

B 3502 (0) = D0 (¢) =5 Flag,uo)-Elan ) = danwa)  (2253)

for any (xo,uo) € D C R?,
On the other hand, the equation (Z251]) can be viewed as an algebraic constraint

F(z,u) —u; =0 (2.254)

on the variables (z,u, u,) € R? and we may do ask to find a prolonged and parameter
group of transformations G(1)(¢) 4 expeg™) acting on a prolonger subvariety M) =
X x U x UM = R? such that the set solution [Z254)is invarient. In this respect,
notice that the new vector field ¢!) is a prolongation of the vector field g given in

@D, priVg — g
9D (@, u,uy) = E(x,u)0y + A2, 1)y + 1(x, u)d,y, where(€(z,u), p(x,u),) (2.255)

satisfies (Z253) V (x,u) € D C R2. The set solution(Z254) is invariant under the
infinitesimal generator (Z253) if f(f(z, u,uy) = F(z,u) — uy)

(02 /)€ + (Ouf)d + (Ou, [N =0 (2.256)

for any (x,u, u,) verifying (2254). An implicit computation of (Z256]) show us that
(n(x, u, uy), ¢z, u), {(x,u)) must satisfy the following first order partial differential
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equation

Once we found a symmetry group G, the integration of the equation (Z251) may
become a simplex one using elementary operations like integration of a scalar function.

2.8.5 Higher Order Equation

Consider a single n — th order differential equation involving a single dependent vari-

able u p .
Alz,u™) = A(z,u, =, .., 22 =0z €eR 2.258
(CE,U ) (fL',U, dfl?’ Y dxn Y ( )
If we assume that(2258) does not depend either of u or x then the order of the
equation can be reduced by one. In this respect consider that A in (Z258) satisfied
OuA = 0Oi.e the vector field g = 0,, has a trivial prolongation pr’*g = g = 0,, generating
a corresponding prolonged group of symmetry G for the equation

~ dl
Az, uq,...u, =0),whereu; = d—u., ie{l,....,n}l,..n (2.259)
xl

Denote z = 9 and rewrite (Z259) as

dnfl -
3_27 T Z) =A(z, 2" V) =0 (2.260)
X X

E(x,z,

Whose solutions provide the general solution for (Z259) and u(z) = [ h(y)dy+cis a
solution for ([2:259) provided z = h(z) is a solution for (2:260). The second elementary
group of symmetry for (2.258)) is obtained assuming that A does not depend on x and
write(2.25]) as

~ ~ du d™u
Aw™) =A(u, —,...,—
W@™) = Alu, .o o

This equation is clearly invariant under the group of transformations in the

x—direction, with infinitesimal generator ¢ = 0,. In order to change this into the
vector field g = 0, corresponding to translations of the dependent variable,it suffices
to reverse the rules of dependent and independent variable; we set y = u, v = =.

Then compute ‘;—Z = 2, using u(v(y)) = y. Similarly, we get
dy

)=0 (2.261)

d*u vy d™u

au_ PR S ORI
& T o)
and rewrite (Z261)) as follows
Ay = Agy, B dmuy R0 @ (n)
A™) = A, =, =) = Al ) = A (2.262)
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where v{") = flkTZ .k =1,...,n. The equation (Z262) is transformed into a (n—1)—th

order differential equation as above denoting 1/751) = z as the new unknown function.

Bibliographical Comments

The first part till to Section 2.3 is written following the references [8],[12] and [I3].
Section 2.3 contained in a ASSMS preprint (2010). Sections 2.4 and 2.5 are written
following the book in the reference [I1]. Sections 2.6 and 2.7 are using more or less
the same presentation as in the reference [12].



Chapter 3

Second Order Partial
Differential Equations

3.1 Introduction

PDE of second order are written using symbols 9y, d,, 8y, 0., 07, 92, 85, 0? where t € R
is standing for the time variable, (x,y,2) € R? are space coordinates, and a symbol
0s(0?) represent first partial derivative with respect to s € {t,z,y, 2} (second partial
derivative). There are three types of second order PDE we are going to analyze here

and they are illustrated by the following examples

Ou— Oju = 0 (hyperbolic) (u(z,y)
Au = Pu+02u = 0 (elliptic) (u(zx,y)
du = dju+dju = Au (parabolic)  (u(t,z,y)

R, (z,y) € R?)
R, (z,y) € R?)
€ R,t € R, (z,y) € R?)

S
S
PDE of second order have a long tradition and we recall the Laplace equation (Pierre
Simon Laplace 1749-1827)
O2u + (“)gu +0%u = Au = 0 (elliptic, linear, homogeneous) (3.1)
and its nonhomogeneous version
Ay = (?iu—l-@;u—l- O?u = f(x,y,2) (Poisson equation) (3.2)

originate in the Newton universal attraction law (Isaac Newton 1642-1727). Intu-
itively, it can be explained as follows. An attractive body induces a field of attraction

93
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where intensity at each point (z,vy,2) € R? is calculated using Newton’s formula

- H
- 7\/(517—3170)24’(9—:90)24‘(2—250)2

where 7 is a constant, ;4 = mass of the body, considering that the attractive body is
reduced to the point (z,yo, 20) € R3. In the case of several attractive bodies which
are placed at the points (z;, vi, 2:), @ € {1,..., N}, we compute the corresponding
potential function

N
= Hi _ Hi

where
P = ((E,y,Z),Pi = (:Eiuyiuzi)

and

H(P.P) = Vo= )P+ (g )P+ (2 — 2.

It was Laplace who proposed to study the corresponding PDE satisfied by the po-
tential function u and in this respect denote u; = 7# and compute its partial

— Y=Y . Z—Zi
, Oyr = =5 = 0,r = 22 and

(z — 2z)

r3

X—T;
T

derivatives. We notice that 0,r =

(y—vi)

T — X
( Z), Oyu; = —Yi 3 s Oy = —yp

Oyt = —Yi——5—
,

Using B3] we see easily that

2
i = yuil—75 + 355

a2
D2u; = ypil—5 + 3%] (3.4)
2u; = ypil—7 + 35E]

and by adding we obtain

Auy = Ofu; + Oou; +02u; =0, i=1,2,... N (3.5)
which implies
(u= Zuz)Au = Pu+ 8§u + 0?u = 0 (Laplace Equation) (3.6)
i=1

3.2 Poisson Equation

It may occur that we need to consider a body with a mass distributed in a volume
having the density p = p(a, b, ¢) at the point = a,y = b, z = ¢ and vanishing outside
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of the ball a? + b? + C? < R?. In this case the potential function will be computed as

follows
pla,b,c)dadbde
- I S (37)
a?4-b24+-C2< R?

where P = (2,y, 2), P(a,b,¢) = (a,b,c) and the constant v is included in the function
p. By a direct computation we will prove that if p(a, b, ¢), (a,b,¢) € B(0, R), is first
order continuously differentiable then the potential defined in ([B7) satisfies Poisson
equation.

Au = 2u+ Oju+ 02u = —dmp(x,y, 2), (x,y,2) € B(0,R) (3.8)

and

Au = 0, (z,y,2) € B(0, R) (Laplace Equation) (3.9)

We recall that a similar law of interaction between electrical particles is valid and
Coulomb law is described by
mimeso

p = y—3—, (mi,mz) — electric charges of (P1, %) (3.10)
r

v = % a constant,

r? = (21— 22)” + (Y1 — y2)® + (21 — 22)° P1 = (21,51, 21) P2 = (2,92, 22).
The associated electrostatic field (Ey, Ey, E.) is defined by
E, = 0yu, £, = 0yu, E, = 0,u
and in this case we get the following Poisson equation

47 p

0pEy + 0,E, + 0.E. = (3.11)

€

when a density p is used and the electrical potential function has the corresponding
integral form.

Proof of the equation (B:8) for u defined in (B7). Rewrite the potential function on
the whole space

u(z,y, 2 ///\/x—a ZbZ;Q—F(z—c)Qdadbdc (3.12)

and making a translation of coordinatesa —x = £, b—y =n, c—2z = 7, we get

u(z,y, 2 /// plat&ytn z+T) dé dndr (3.13)
VEe+n?+12

where the integral is singular and £ = n = 7 = 0 is the singular point. The integral
in (313) is uniformly convergent with respect to the parameters (x,y, z) because the
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. . . p* *
function under integral has an integrable upper bound 7@’ where p max|p|.

In this respect, we notice that if (z,y, 2) € B(0, R) C R? then B(0,2R) can be taken
as a domain D where the integration of ([B.13) is performed. (see £2+n?+72 < (2R)?).
Taking a standard coordinates transformation (spherical coordinates)

E=rcospsiny, n =rsinpsiny, c =rcosy, 0 < < 2m, 0 <Y <7, 0<r < 2R

we rewrite (8I3) on D = B(0,2R) as follows

*dédnd 2R 2d ) 2
///M :477,,*/ rar :47Tp*( R) (3.14)
/S VE 4+ 1?2+ o2 0 r 2

where
1 2R 2 ™ 2R
// ~d&dndo = (/ —dr(/ sindi).2T = 47T/ rdr
r o T 0 0
D
and
0,
det | 0,n | = —r’siny(v = (r,,%)) are used .
0,0

In addition by formal derivation of (BI3]) with respect to(z,y, z) we get the following
uniformly convergent integrals

[y )

Oelp(x + &y + eta,z+ 0)]
]C[/) NI dedndo (3.15)

Using p(x + &,y + 1,2 + o) = 0 on the sphere £2 + 7% + 02 = (2R)? and

Olp(x+ & y+n2+0))
VE+n? +o?

we get

Ep(x+&+m2+0)
(52 + 772 + 0-2)3\2

{p(z+E+m,2+0)
Ozu = // Ry dédn (3.16)

= Oellp(x+ &y +nm24+0)VE +n* + 0>+

provided

=/7KM&%®MMWU=/‘W@mmmﬂ—ﬂﬁmuﬂwmd
D1

D

is used where

=+V@R) —n? — 0%, & = —/ Q2R —n? — o

and ¢(&;,m,0) =01 € {1,2}. The 1ntegra1 (Bjﬁbls uniformly convergent with respect
to(x,y,z) € D(0,R) and noticing \/m < 1, we get the following integrable
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upper bound

* 2R 2
opu < [[[—LLdnde e [T Ry (37
2
/. /52 _|_772 +O'2 0 r

which proves that (3I0]) is valid. Similar arguments are used to show that d,u and
0, u exist fulfilling

(524’,,,724’,0-2)3\2

dou = j;) S dédndo

Oyu= [ np(z+&1y+mz+o) dédndo
D (3.18)

Applying 9, to (O,u) in BI6),0, to dyu and 9, to (0,u) in (BIF) we get convergent
integrals
Ru=[[] m&[ﬂ(m,&y, 1,z + 0)]d¢dndo
D

35“ = fgf m&;[/’(%@ya 1,z + o)]dédndo (3.19)
2u= [[[ @rtompeOalp(@. & y,n, 2 + 0)|dsdndo
D

where Os[p(z + &,y + 1,z + 0)](s € & n,0) is a continuous and bounded function
on D(see p is first order continuously differentiable on D) using [BI9) we get the
expression of the laplacian

Au = OFu+ d3u + dZu
_ £0e 409y +000 [p(z+€,y+n,2+0)]
=JIJ GETETES dedndo (3.20)

_ 02R{£f Br[p(erEﬁTyj”’”U)] das, }dr

where S,. is a sphere with radius
r=(&+n"+0%)?
and
0rp =< (Oep, 0o, 0op), (5,17 >
Here each (¢,7n,0) € S, can be represented as

(&,n,0) = (réo,mM0,700)

where
(507 7o, UO) S Sl
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and using d S, = r2d S; we rewrite [3.20) as follows
{ff O [p(x + o,y + nor, z + oor)|dr}dS;
Auld = ff T —|— 2Ry, y + 2Rno, z + 2Royg) — p(z,y, 2)]dSh (3.21)
- ffp x, Y,z dSl —4770(3371% Z)
It shows that the equality (3.8]) (Poisson equation) is for any (x,y, z) € B(0, R) where
R > 0 was arbitrarily fixed and the proof is complete. [

We conclude this introduction by showing that the potential function u(z,y, z) defined
in (B7) satisfied the following asymptotic behaviour

lim u(z,y,z) =0, or lim /22 +y?+ z%u(z,y, z /// a,b,c)dadbdc (3.22)
r—00

T™—> 00

In this respect ,denote @ = (x,y,2), P = (a,b, ¢), dv = da dbdc and rewrite equation

[B22)) as follows
o= [ 85 -

0@ = i [ G = [[f o0

Here we notice that a = W satisfies | a |< 1,3 1 —a)=1+a+ada’*+,...

and | 7(0,Q) — (P, Q) |< r(0, P) leads us to (823) and (8:22) are valid. We conclude
the above given considerations by

Theorem 3.2.1. Let p(z,y,2) : R® — R be a continuously differentiable function
in a open neighborhood V (zo,yo0,20) C R® and vanishing outside of the fized ball
B(0,L) CR3. Then

pla,b,c)dadbde 3
(xy7 - /// PPabC)) ,P—(x,y,z)ER
a2+b2+C2< L2

satisfies the following Poisson equations
Au(w,y,z) = (07 + 0y + 02 Ju(w,y, z) = —Amp(x,y, 2) (3.24)
for any (z,y,2) € V(zo,v0, 20), Au(z,y,z) = 0V (x,y, 2) not in B(0,L). In addition
lim u(z,y,z) =0 (or lim ru(x,y,z /// a,b,c)dadbde (3.25)
r—00 T—>00
B(0,L)

Remark 3.2.2. The result in Theorem [Z21l holds true when replacing R? with
R™(n > 3) and if it is the case then the corresponding newtonian potential function
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u(x):/.../p(y)dﬁ—_-;dyn

ntimes

is given by

where p(y) : R™ — R is a continuously differentiable function vanishing outside of the
n

ball B(0,L) C R" and r =| & —y |= (3. (s — y;)?)2. The corresponding Poisson
i=1

equation is given by

Z Otu(z) = Au(z) = p(x)(—01) Yo € R™, where oy = measS(0,1)

3.3 Exercises

Using the same algorithm as in Theorem [3.2.T] prove that the corresponding potential
function(logarithm)in R? is given by

1
u(x,y) = a,b){ln - tda db
)= [ ot )

and satisfies the following Poisson equation

Au(z,y) = (9 + 0))ula,y) = —2mp(x,y), ¥ (z,y) € V (2o, yo)

Here p : R? — R is first order continuously differentiable in the open neighborhood
V(x0,90) C R? and vanishes out side of the disk B(0, L) C R?. By a direct computa-
tion show that the following Lapace equation

Au(z) =Y dPu(x) =0 Yz €R", (n>3), 3 #0
1=1

is valid, where

3.4 Maximum Principle for Harmonic Functions

Any solution of the Lapace equation Au(z,y, z) = 0 will be called harmonic function
Maximum principle o
A harmonic function u(z,y, z) which is continuous in a bounded closed domain G =
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GUT and admitting second order continuous partial derivatives in the open set G C R3
satisty

max _u(z,y,z) = max u(z,y,z)and min _u(z,y,z) = min u(x,y,z2)
(z,y,2)€G (z,y,2)€T (z,y,2)€G (z,y,2)€T

where I' = 0G ( boundary of G )

Proof. Denote m = max{u(v,y,2) : (v,y,2) € I'} and assume that max{u(z,y,z2) :
(x,y,2) € G} = M = u(xo,yo,70) > m, where (o, Y0, 20) € G. Define the auxiliary
function

V(,T, Y, Z) = U(l‘,y, Z) + T;n[(x - ‘TO)Q + (y - yO)2 + (Z - 20)2]

and
d = max{r(P,Q) : P,Q € G} and r(P,Q) =| P - Q |

(distance between two points). By definition,
r2(P, Po) = (z — 0)* + (y — 90)* + (2 — 20)%, (P = (2,9, 2), Po = (%0, %0, 20))

and using 72 (P, Py) < d?
we get
M-m M+m

2 2
On the other hand, v(xo, o, 20) = u(w0, Y0, 20) = M and it implies max{v(z,y, 2) :
(x,y,2z) € G} = V(P) is achieved in the open set P € G. As a consequence

,V(z,y,2) €T

v(z,y,2z) <m+

8$V(iayaz) = 07 ayy(fvyvz) = Oa an(f,?vE)a ai”(fvyvz) < 0
2. (= 77 5 2 — — —
0,v(7,7,%Z) <0 and 0;v(7,7,%Z) <0
where P = (%,7,%). In addition

M —m

Av(P) €0 and Av(P) = Au(P) + ¥E

[Ar* (P, Po))p_p =

M—m
———(2+2+2)>0

2d

which is a contradiction. Therefore
u(z,y, 2) < m=max{u(z,y,2): (z,y,2) €T}, V(z,y,2) € G
To prove the inequality
u(z,y, 2) = min{u(z,y,2) : (z,y,2) €T}, V(z,y,2) €G
we apply the above given result to {—u(z,y, 2)}. The proof is complete. O
Remark 3.4.1. With the same proof we get that a harmonic function in the plane

dzu(z,y) + Oju(z,y) = 0(z,y) € D C R?
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which 1s continuous on o
D=DUJD satisfy

maz{u(z,y) : (x,y) € D} = maz{u(z,y) : (x,y) € D}
min{u(z,y) : (z,y) € D} = min{u(z,y) : (v,y) € 9D}
Remark 3.4.2. The Poisson equation
Au(z,y, z) = —dwp(z,y, 2) (3.26)

has a unique solution under the restriction.

lim u(z,y,2) = 0 where p(z,y,2) : R* - R

r—00

is a continuous function. Consider that uyi,us are solutions of the Poisson equation

B28) fulfilling
lim ui(x,y,2) =0, € {1,2}
T— 00

Then u = uy — ug satisfies Au(z,y, 2) =0 for any (z,y,2) € R® and lim u(z,y,2) =
r—00

0. In particular, {u(z,y,2) : (z,y,2) € B(0,R) C R3} satisfies, maximum principle,
where B(0, R) = G and T = {(z,y,2) € R® : 22+9%+2% = R?}. We get u(zo, yo, 20) <
maz{u(x,y,z) : (x,y,2) € T'} and u(xg, yo, z0) = min{u(z,y,z) : (z,y,z) € T'} for any
(%0, Y0, 20) € int B(0, R). In particular, for (xo,yo,z0) € int B(0, R) fized and passing
R — 00 we get u(xo, Yo, 20) = 0 and ui(z,y,2) = us(z,y,2) for any (z,y,z) € R3.

3.4.1 The Wave Equation; Kirchhoff, D’Alembert and
Poisson Formulas

Consider the waves equation
OPu(t,x,y, 2) = C’g(aiu + (?Su + 0%u)(t,z,y, 2) (3.27)
for (x,y,2) € D(domain) C R?® and initial condition
u(0,2,y,2) = ug(0,z,y, 2), O:u(0,2,y,2) = ui(x,y, 2) (3.28)

The integral representation of the solution satisfying (827 and [B.28))is called Kirch-
hoff formula. In particular, for 1- dimensional case the equation and initial conditions
are described by

Otu(t,z) = CRO2u(t,x),u(0,2) = uo(x), dpu(0, z) = uy(z) (3.29)
and d’Alembert formula gives the following representation

uo(z + cot) + up(x — cot) 1 /COHI
+ JR—
2 200 T

u(t,z) = uy(o)do (3.30)

—cot
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In this simplest case, the equation ([B29)is decomposed as follows

(O + c002) (0 — coOz)u(t,z) =0 (3.31)
and find the general solution of the linear first order equation
Ov(t, ) + coOyv(t,z) =0 (3.32)
By a direct computation we get
v(t,z) = vo(x — cot), (t,z) ER X R (3.33)

where v9(A) : R — R is an arbitrary first order continuously differentiable function.
Then solve the following equation

Opu(t, z) — coOyu(t, x) = vo(x — cot) (3.34)
u(0,2) = uo(x), 8tu(0,x) up(x) '
From the equation u(0,z) = ug(x), dyu(0, z) = ui(x) we find vy such that
u1(z) — coOpuo(z) = vo(x), z € R (3.35)
and using the characteristic system associated with (8:34) we obtain
t
u(t,z) = up(x + cot) + /uo(x + cot — 2¢08)ds (3.36)
0
Using 338 into 334) we get the corresponding D’Alembert formula
. ; 1 z+cot
u(t,z) = uo(x + x0t) + uo(x — cot) 4+ / ui(o)do (3.37)
2 200
x—cot

given in ([B30) In the two-dimensional case (z,y) € R?we recall that the Poisson
formula is expressed as follows

27 cot
ult,my) = // uo(z + pcos<pj4;)|—pszng0) dpdy)
27 cot )
ul T+ pcosgo, Y+ psineg
/ / D ) (3.39)

The general case ,(z,y,z) € R?, will be treated reducing the equation 3.27) to an
wave equation analyzed in the one-dimensional case provided adequate coordinate
transformations are used. In this respect, for a Py = (2o,¥0,20) € D fixed and
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B(Py,r) € D we define (u is the mean value of u on .S,)

u(r,t) =2 // (t,z,y,z = —// (t,x,y,2)dS1 (3.39)

where S, = OB(P,,r) is the boundary of the ball B(Py,r), and dS, = r2dS; is
used.The integral in (8339) can be computed as a two dimensional integral provided
we notice that each (x,y,z) € S, can be written as

(2,9, 2) = (vo + ar,yo + Br,z0 +r) = Po + 1w (3.40)
where (a, 3,77) = ware the following
a=sinfcosp 0 <O <m
B =sinfsing 0 < p< (3.41)
v = cosf

Here dS, = r?sinfdpdf and rewrite ([3.39) using a two dimensional integral

2

1
u(r,t) = — //u(t,Po + rw)sinfdedd (3.42)
T

assuming w = (a, 8,7) given in ([B42).The explicit expression of @(r,t) in (14) will
be deduced taking into consideration the corresponding wave equation satisfied by
u(r,t) when u(t,z,y, z) is a solution of [B27). In this respect, integrate in both sides
of B2T) using the three dimensional domain D, = B(Fy,r), Py = (20, Yo0,20), and
the spherical transformation of the coordinates (z,y, z)

(,9,2) = (w0 + pa,yo + pB + 20 + py) = Po + pw (3.43)

where 0 < p < r and (6, ¢), 5(0, ¢),v(0) satisty BA). We get
// O2u(t, x,y, z)drdydz —/ / O2u(t, Py + pw)p*dSy)dp (3.44)

where dS; = sinfdfdpand S; = S(Py,1) is the sphere centered at Py. Denote A =
02 + 85 +0? and for the integral in the right hand side we apply Gauss-Ostrogradsky
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formula. We get

ca // Au(t,z,y, z)drdydz = C3 //[a@mu(t,Po—i—rw)
D, S

+  Boyult, Py + rw) + y0,u(t, Py + rw)]dS,

= ¢ [[ 1ttt ro+ropias:)

S
= CSTQ(?T[// u(t, Py + rw)dSh]
S

(3.45)

where (a, 8,7) = w are the coordinates of the unit outside normal vector at S,.. Using

B39) we rewrite (3:45) as

o5 // Au(t, x,y, 2)dedydz = CZr?(4m)0,a(r, t)
D,

In addition, notice that ([3:44]) can be written as

// Ofult, Po + pw)dwdydz = / p2[5f///u(t,Po+pw)dSl]dp
0
D, S1

= / 4mp?07u(p, t)dp
0

and deriving with respect to 7 in B46)and F41) we obtain
C
= 99, [r*0,7(r,t)]

Denote @(r,t) = ru(r, t) and using ([B48) compute

roFu(r,t)

% 0, [r20,1(r, t)]

= S2ro.a(r,t) + r20%u(r, 1))
= C2[20,u(r,t) + ro2u(r,t)]

o7u(r,t)

Notice that
O%T(r,t) = 20,7(r, t) + ro*u(r, t)

and rewrite [49) as follows
OFt(r,t) = C2oXa(r,t), r >0
where T satisfies the boundary condition

T(0,1) = 0

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)
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Extend w(r,t) for r < 0by u(—r,t) = —u(r,t) where r > 0. In addition, the initial

conditions for u(r,t) are the following

u(r,0) = ru(r, = ff uo(z,y, 2)dS,

0) =
ou(r,0) = = [[w :vy, 2)dS,
S,

(3.53)

The solution {u(r,t)} fulfilling (351))and ([353) are expressed using Poisson formula
(see(@.30))

@(r+ Cot) + @(r — Cot) 1 [T

u(r,t) = 5 + 2, Y(o)do (3.54)
where
o(€) =(€,0) = g//u1 x,y, z)dSe (3.55)
and
0l = 0(.0) = 7 [ [ wo(e.y.2)ase (3.56)
Se

Using (350) and (B356) we get the Kirchhoff formula for the solution of the wave
equation (3:27)) satisfying Cauchy conditions (3:28)) and it can be expressed as follows

u(t,Py) = dr 4W // uo(x,y, 2)dSy|r=cot + | yy Co // u1(x,y, 2)dSy|r=cyt

S, (Po Sr(Po)
= 2)d — z)d
47TCO dr Cot // uo(z,y, 2 S+Cot // up(z,y, 2)dS] (3.57)
cot PO) cor PO)
where
27
// uo(x,y,2)dS = / / (Py + (Cot)w)(Cot)*sinfddyp

Seqt(Po)

and w = (a, B,7) is defined in B4I). Passing Py — P = (z,y, z) in the Kirchhoff for-
mula [B57) we get the integral representation of a Cauchy problem solution satisfying

B2D) and B2)

t 2)d — z)d
utag ) = poliar [[ wewnas)+ o [[ wyis) 65

cot PO) cor PO
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where the integral in (58] is computed as follows

27 ™
C’Lot // u(f,n,o)dS:Cot/O /0 u(z+(Cot)ar, y+(Cot) B, z+(Cot)v)sinddOdy (3.59)

Seqt(Po)

a =sinfcosp 0 <O <
and («, 8,7) are defined in B4 ¢ B = sinfsing 0 < ¢ < 27
~v = cosf

Proposition 3.4.3. Assume that ug,uy € C*(R3) are given. Then {u(t,z,y,2):t €
Ry, (z,y,2) € R?} defined in B.58) is a solution of the hyperbolic equation (B.2T)
satisfying the Cauchy condition (B.23).

Proof. Notice that if u(t, z,y, ) satisfies the wave equation [B27) then v (¢, z,y, z) =
Owu(t, x,y, z) verifies also the wave equation ([B27)). It allows us to get the conclusion
and it is enough to prove that

27 ™
u(t,z,y,z) = Cot/ / u(z + (Cot)a,y + (Cot) B, z + (Cot)y)sinddddy  (3.60)
o Jo

fulfils the wave equation ([B.27)).In this respect, using ([B.60]), compute the correspond-
ing derivatives involved in equation ([B27)) and we get

27 ™
o = Ly (o) / / u(x + (Cot)a,y + (Cot)B, = + (Cot)y) sinfdfdo
o Jo
1 2 T
= % + n / / (Oeu)a + (0yu)B + (05 )yCat*sinfdfdy (3.61)
o Jo
Notice that (a,3,7) = nrepresent the unit vector oriented outside of the sphere

Sc, and dS = (Cot)?sinf df dep we rewrite ([B.61))

u I
Ou= 1+~ (3.62)
where
27 i
I = / / (Oew)or + (9yu) B + (05)vCt2sinfdOdp
0 0
ou
- / ©as
Scot
= / / / (OFu + Oju + O7u)dédndo (3.63)
B(z,y,z;Cot)

is written using Gauss-Ostrogrodsky formula,and B(z,y, z; Cot) is the ball in R3
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centered at P = (z,y, z). From ([B.62)), deriving again we get

1 1 1 1 1
2 —
8t = gatu — —t2u+ gatl I g(

t? —+ —) _— — + — 8tI = —8,5 (364)

u I u I
t t 2 2

On the other hand,using ([B.63)) and applying the spherical coordinate transformation
in the three-dimensional integral we get

1= COt 27T foTr (8£2u + 8$u + 02u)sinOdOdo|r?dr
Ol = Co e 2)(03u + 82u + 2u)ds (3.65)

Scot

and (364) becomes
8t2u— — / (Au)(&,n,0)dS (3.66)

Sc)r z,Y,z

Denote Au(t, z,y,z) = (07u+ d2u+ Bfu)(t, x,y,z) and a direct computation applied

in (B60) allows to get
S soenons o

Sc)t z,Y,2)

Ault,z,y,z) =

and each term entering in the definition (358) will satisfy the wave equation ([B.27).
In addition, using ([B.59]), we see easily that the Cauchy condition given in (328 are
satisfied by the function u(t,x,y, z) defined in (Z58). The proof is complete. O

3.5 Exercises

(a1) consider the wave equation in plane
6152 (t xz y) - CO[a (t xz y) +62 (t xz y)] (vaay) = yO(xvy)u atu(ouxuy) = Ul(fli,y)

Find the integral representation of its solution. (Poisson formula see (3:68])).
Hint. It will be deduced from the Kirchhoff formula (see proposition 1) considering
that the variable z does not appear. We get

u(t,z,y) =

|: /271' Cot )
+ peos,y + psing))dpde

27Co /7_ 2 (=

Cot

/ / ui(x + pcosg,y + psing)dpdg] (3.68)

c(%t2 — p?
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In the Kirchhoff formula (see(358)) the function u(£,7) does not depend on o and a
direct computation gives the following

(0 € 0,7, ¢ € [0,27])

2m ™
E = / / u(z + (Cot)sinfcosp, y + (Cot)sindsing)(Cat?)sinfdode
A

2w
()(C3t?)sinfdfde + / / ()C3t*sinfdfdg

2m 3
= 2/ / u(z, cotsinfcosg, y + (cot)sinfsing)(Cat?)sinfdode
0

Change the coordinate p = (Cot)sinf and get dp = (Cot)cosfdf for 0 < 6 < § where
cos = /1 — sin?0 = 1_0—0t _Ct (Cot)?
We get

27 C()t
=2 / NCEET: u(x + peosp, y + psing)dpde
- p?

and Kirchhoff’s formula becomes Poison formula given in (3.68]).
(a2) Prove that the solution of the non homogeneous waves equation.

{ Ofu— C3(2u+ 0y + 02u) = f(x,y,2,1)

u(0,z,y,2) =0 du(0,z,y,2) =0 (3.69)

is presented by the following formula.

V(@=)2+(y—n)>+(2—0)?

fé“n,at C )
oy, 2 o dédndo  (3.70
) //c> T
z,y,2;Cot

solution.

3
Denote p = (v,y,2),q = (§{,n,0) and|p —q |= [Z(pz — )% ; B(p, Cot) is the ball

centered at p with radius Cpt. To get(B70) as a solut1on of (BEQI) we use the solution
of the following homogeneous equation

v = AV, V|i—g = v0(p), OV|1=0 = f(p,0) = 11(p) (3.71)

where the initial moment ¢t = o(replacing t = 0) is a parameter.Recall the Kirchhoff
formula for the solution satisfying (B271))

471'00 bl / / @ gs,) + / / UIT@dST] (3.72)
Sr(P)

5.(P)

v(t,p) =
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where r = Cot and dS, = r?dS; = r?sinfdfdy forf € [0,27], where S is the unit
sphere. Making use of the spherical coordinates transformation

q=p+rw, w = (sinfcosp, sinfsing, cosh), r = Cot (3.73)
we rewrite (B72) as follows
v(t,p) = —8t // vo(p + rw)dSy ] —|——// v1(p + rw)dSy (3.74)
S1(P) S1(P)
where dS; = sinf df dy. Using the Cauchy conditions of B71) from B74) we get
v(t,p;o / flp+Co(t — o)w;0)dS1, 0< o < (3.75)
S1(P)

where ¢t — o representing ¢ and v|;—, = 0 are used. We shall show that u(¢,p) defined
by (Duhamel integral)

u(t,p):/o v(t,p;o)do (3.76)

is a solution of the wave equation ([B.69). The initial conditions w(0,p) = 0
0yu(0, p) are easily verified by direct inspection. Computing lapacian operator A, =
92 + 02 + 92 applied in both sides of [B76) we obtain

t
Apu(t,p):/ Apv(t,pyo)do (3.77)
0

Notice that ”9;” applied in B170) lead us to

&

U(t,p) :V(t5p7 o= t+fo 815” t y P O )dg

8t2u(t7p) = 3tV(t D;0)o=t +f0 8 v(t,p;o)do = (3.78)
:f(p,t)+00f0A v(t,p;0)do
= f(p,t) + C5Apu(t, p)

and {u(t,p)}defined in B70G) verifies the wave equation [B.G9). Using B70) we

rewrite (70 as in conclusion (B70). In this respect, substituting B.75]) into (0]
we get following formula (dS; = sinf df dyp)

u(t, p; o) = / (t— o) // Fp + Colt — 0)w: 0)dS1]dor (3.79)

S1(P

Making a change of variables Cy(t — o) = r, we get

Cot 27
u(t, p) 471'02/ / / flp+rw,t— )r sind df dp dr (3.80)



110 CHAPTER 3. SECOND ORDER PDE

and noticing that r = é, | w 2= 1we rewrite ([B:80) as follows

_ 1 Clp—ql, 1
“(t’p)_zmcg ///f(q,t o )|p_q|dq (3.81)

B(p,Cot)

and the proof is complete. [

3.5.1 System of Hyperbolic and Elliptic Equations(Definition)

Definition 3.5.1. A first order system of n equations

m
ApOyu + ZAi(x,t)aiu = f(z,y,u),ue R",x € R™ (3.82)
i=1
is t-hyperbolic if the corresponding characteristic equation det || o Ao(x,t) +
St EA(x,t) ||= o has n real distinct roots for the variable o at each point (t,x) €

[0,T7] x D, D C R™, for any & € R™,£ # 0. There is a particular first order system
for which a verification of this property is simple

Definition 3.5.2. The first order system [B.82)) is symmetric t- hyperbolic (defined by
Friedreich)if all matrices Aj(x,t)j € 0,1,...,m are symmetric and Ao(x,t) is strictly
positive definite in the domain (t,z) € [0,T] x D

Definition 3.5.3. The first order system [B82) is called elliptic if the corresponding
characteristic equation det || o Ag(z,t) + > i, EA; ||= 0 has no real solution (0,&) €
R™H (0,€) £0, (2,1) € D x [0, 7).

Example 3.5.1. In the case of a second order PDE
a(x, t)dfu + 2b(z, t)a(i,z)u + c(z, t)02u + d(z,t)dwu + e(z,t)dpu = fz,t,u),z € R (3.83)
We get the following characteristic equation

a(x, t)o? + 2b(t, x)o + c(t,2)€* =0 (3.84)

Hint Using a standard procedure we rewrite the scalar equation ([3:83) as an evolution
system for the unknown vector uy(t,z) = O,u(t,x), us(t,z) = Owu(t,z),us(t,z) =
u(t,z). We get

8{[14 = azu2
a(x, t)Opus = —2b(x, t)0pus — c(x, t)0pur + f1(z,t,ur, us, us) (3.85)
Owuz =us, teR, x €R

where f(z,t,ur, u2,u3) = f(x,t, us) — e(x, t)u; — d(z,t)us. The system ([B.8H) can be
written as (3:82) using the following (3 x 3) matrices
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1 0 0 0 -1 0
Ao(z,t) = 0 a(z,t) 0 |, Ao(z,t) = c(x,t) 2b(z,t) O
0 0 1 0 0 0
Compute
o =& 0
det || cAo(xz,t) + EA1(x,t) || = det| &c oca+2bE 0
0 0 o

= ola(x,t)0® + 2b(z, t)o€ + c(x,t)&E?]

and the characteristic equation ([3.84) is obtained.

3.6 Adjoint Second Order Differential Operator; Rie-
mann and Green Formulas

We consider the following linear second order differential operator

n n n
Lv= ZZA”(A?%V'FZBZ(%V'FCU (386)
i=1 j=1 i=1
where the coeflicients A;;, B;, andC' are second order continuously differentiable
scalar functions of the variable x = (z1,...,z,) € R" and 9;v = %, 8%1/ = %.
k3 T J

Without restricting generality we may assume that A;; = A;;(seed;; — %(Aij +A4i5))
and define the adjoint operator associated with L(L> = M)

My = i iafj(Aul/) — Z&(Blu) + Cv (387)

i=1 j=1 i=1

By a direct computation we convince ourselves that the following formula is valid

vLy, —uMv =Y 0;P;, u,v € C*(R") (3.88)
1=1

where
n

B = Z[VAijaju - u[)j (A”V)] + Biuy

Jj=t
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In this respect notice that
Z@iPi = {ZZVAW@ U+ZVB(9U+CUV}
i=1 i=1 j= i=1

i=1 j=1

I
—

AU v)— i ud;(B;v) + Cul/]
i=1

+ iiaua (Aijv) — Oud;(Ai;v)]

i=1 j=1

where the last term is vanishing.

3.6.1 Green Formula and Applications

Consider a bounded domain 2 C R"™and assume that its boundary S = 02 can be
expressed using piecewise first order continuously differentiable functions. Then using
Gauss-Ostrogradsky formula associated with (B:88]) we get

/(VLu —uMv)dzy,...dz, =+ /(Z Picosnz;)dS (3.89)
Q 5 =1

(Green formula) where cosnx;, i € {1,...,n}, are the coordinates of the unit orthog-
onal vector 77 at S oriented outside of S.

Example 3.6.1. Assume Lu = Au = E O?u (laplacian) associate the adjoint Mv =
=1
Av (laplacian) and Py = vo;u — udyv, P2 = vOou — udqv, Py = vOsu — udsu satisfying

B3]). Applying B89) we get the Green formula for Laplace operator.

///(1/5’(1, — udv)dridredrs = / [P1(cosnzy) + Py(cosnxs) + P(cosnxs)]|dS

s
ou ou
= — —u—|dS 3.90
/ / v on u(?n] (3.90)
s
Where %(g—;) stands for the derivative in direction of the vector
ou >
W% = Z(@iu)cosn:ri =< Qpu, W > T = (cosnxy, (cosnay, (cosnas))

=1
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Example 3.6.2. Consider

L = 83 u+ a(x,y)du + b(z,y)dyu + c(z, y)u
and define
My = Biyl/ — Og(av) — 0y(bv) + cv, P, = %(Vayu —udyv) +auv

and

P =-(vd,u—udv) +buv

N =

The corresponding Green formula lead us to

//[uLu—uM,u]d:vdy
Q

/S{[%(w?yu — udyv) (3.91)

= auvlcos(n,z) + [%(u@wu — u0yv) + auv]cos(n,y)}ds

3.6.2 Applications of Riemann Function

Using 391 we will find the Cauchy problem solution associated with the equation
Lu=F (3.92)

and the initial conditions

tlyme) = Po(@), yuly = ple) = p1(@), @ € [a, ] (3.93)

Here the curve {y = y(z)}is first order continuously differentiable satisfying d*fi(;) <
0, € [a,b]. The algorithm belongs to Riemann and using B.93) we find 0, u|y—, ()

as follows. By direct derivation of ul,—, ) = wo(z), we get

d_?(fﬂ) = Oy u(z, u(x)) + 0y u(x, u(x))d#_(;)
{ 8(19” u(z, p(x)) = ¢p(z) — 1 (@i (2) ¢ (3.94)

Rewrite the Green formula ([3.91)) using a domain  C R? as follows. where A and B
are located on the curve y = u(z) intersected with the coordinates lines of the fixed
point P = (xo,yo). Applying the corresponding Green formula (3:91]) on the domain
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PAB (triangle) we get

//(VLu — uMv)dxzdy
Q

B
/A [%(uayu — udyv) + auvldy

P
- / [z (VOpu — udyv) + buv]de
A 2

P
+ / [%(uayu —udyv) + auvldy
B

P
+ / [%(V@mu—uamu)—kauV]dI (3.95)
A

Where dy = cos(n,x)dS and dx = —cos(n,y)dS and considering that dS is a
positive measure. Rewrite the last two integrals from (B:95)

P P
/ [l(uayu —udyv) +auvldy = 1ul/|§ + / (—udyv) + auvldy
B 2 2 B
1 P
= §u1/|§ +/ u(—=0yv) +avldy (3.96)
B
and
/ [g(yamu —udyv) + auvlde = §uy|i + / u(—0,v) + bv]dx (3.97)
A A

these formulas lead us to the solution provided the following Riemann function v(z, y; o, yo)
is used

x

y
My =0,v|p—g, = exp/ a(xg, 0)do, V|y=y, = exp/ b(o, yo)do (3.98)

Yo Zo
From (398) we see easily that

{ V(Io,yo;xovyo) = 15mday”|r:zo = a(Ian)V|I:107

3.99
an|y:yo = b(x,yo)y|y:y0 ( )

Using (3.98) and (399) into (397 we get

// v(z,y; o, yo)F(z,y)dedy = (uv)(P) + T + 1 =u(zo,yo) +T'+1  (3.100)
)

where

B

B
= +/ [%(Vayu —ulyv) + auv|dy — / [%(V@zu —udyv) +buvlde (3.101)
A A
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and
1 P P
I= —5[(uu)(B) + (uv)(A)] + / u(—0yv) + av]dy +/ u(=0zv) + bvldz (3.102)
B A

Notice that the integral in (8102) are vanishing provided that the initial conditions
(B39) are used for Riemann function v (see(3.98)) and (399)) and the equation (BI00)

is written as

w(zo,90) = %(uu)(B) + (uv)(A) =T + // v F(x,y)dxdy (3.103)

where T' is defined in BI0I). The Cauchy problem solution defined in (92 and
(B93) has a more explicit expression if the Cauchy conditions are vanishing and it
can be achieved by modifying the right hand side F' as follows

Rlr,y) = Flz,y) =@ (@) —alz, y){eo(@) + [y — v@)leh (@) — V' (@)er ()}
= bz, y)ei (@) = c(@,y){po(@) + (y — p(@))pr(2)} (3.104)
Theorem 3.6.1. The Cauchy problem solution defined in B92) and [B93) is given

by
w(o, o) = / / (@, s 20, yo) F (2, y)dady
Q

where v is the corresponding Riemann function defined in [398) and B399) and Fy
is (3.104).

Remark 3.6.2. In the case we consider a rectangle PASB = Q and look for a Cauchy
problem solution

Lu=F (where L and F are defined in (392)) (3.105)

u|w:wl = ¢l(y)7 u|y:y1 = ¢2(£L’), S = (96171/1) (3106)

then Green formula lead as to the following solution

B A
u(zo,yo0) = ulp :Wls+/ V(<P’2+b<ﬂ2)d$+/ V(<ﬂ’1+a<ﬂ1)dy+//VF(I,y)dxdy
B S
Q

(3.107)
where v(x,y; o, Yo) is associated Riemann function satisfying B98) and B99). Let
u(z,y;x1,y1) be the Riemann function for the adjoint equation Mv = 0 satisfying

x

Lu=0,uly=y, = exp/b(al,yl)da,u|x =1 = exp/a(xl,a)da (3.108)

Z1 Y1

In this particular case , the corresponding solution u verify BI08) and BI00) with
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F =0,¢5 4+ byps = ¢lap; =0, and the representation formula BI0T) becomes

u(wo, Yo, T1, Y1) = v(T1, Y1, 0, Y0)(see u(S) = u(z1,y1;21,y1) = 1) (3.109)

The equation [BI09) tell us that the Riemann function is symmetric: if u(zo, Yo, yY1;
x1,y1) is the Riemann function for(xo,yo) € R? satisfying (L u)(xo,yo) = 0 and initial
condition given at © = x1,y = y1 then u(xo,yo;x1,y1) as a function of ((x1,y1)
verifies the adjoint equation Mv = 0.

Remark 3.6.3. The equation BI04) reflects the continuous dependence of a solution
for the Cauchy problem defined in B92) and BI3) with respect to the right hand
side F' and initial conditions @, @1 restricted to the triangle PAB. A solution is
determined inside of this triangle using the fized F, o, p1 and the curve y = p(x)
and outside of this triangle. We may get different solutions according to the modified
initial conditions prescribed outside of this triangle.

Remark 3.6.4. A unique solution (Riemann function) verifying the Cauchy problem
defined in (BI08) can be obtained directly using the standard method of approximation
for a system of integral equations associated with(Z98). In the rectangle

zo <z <a,yo <y < b we are given vz—g, = ©1(Y), V]y=y, = @2(x) with ¢1(yo) =
w2(z0) and denote O,v = X\, Oyv = w. Rewrite B93) as follows

5 = G = ale A+ ba )W + oy
where C(z,y) = —c(z,y) + dzalz,y) + Oyb(z,y) and we get a system of integral

equations

Mz, y) = Mz, yo) + }[a(x, o)Az, o) + bz, 0)w(z,0) + 6(3:, o)v(z,o)]ldo

Yo

w(z,y) = w(xg,y) + j[a(x, o)Az, o) + bz, 0)w(x,0) + 6’(3:, o)v(z,o)]ldo

v(e,y) = p2(2) + [ w(z, yo)do

where ANz, y0) = ph(x), w(zo,y) = ¢} (y).

Example 3.6.3. (Green functions for Lapace operator)
Let Q € R3 be a bounded domain whose boundary S = 0N is represented by smooth
functions. We are looking for a smooth function u : Q — R satisfying Poisson equation

Au= f(P), P € Q( A-Laplace operator) (3.110)
and one of the following boundary conditions

u|s = Fo(S) (Dirichlet problem) (3.111)

%L@ = F1(S) (Neumann problem) (3.112)
n
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It is known that Laplace operator is self adjoint and using Green formula

///(mu — uAV)Q = //(u% - u%)d&‘ (3.113)
@ S

we see that a vanishing Dirichlet (Neumann) condition is selfadjoint as the Green

formula BII3) shows.

3.6.3 Green function for Dirichlet problem

Definition 1
Let G(P, Py), P, Py € ), be a scalar function satisfying

1. G(P, Py)is a harmonic function (A G = 0) with respect to P € ), P # P
2. G(P,Py)|pes =0, 5 =00
3. G(P,Ry) = 1= + g(P, By),where r = |P — P|

and ¢ is a second order continuously differentiable function of P € Qverifying A g =
0, VP e

A function G(P, Py) fulfilling 1, 2 and 3 is called a Green function for Dirichlet problem
BI1I0), BIII). The existence of a Green function satisfying 1 , 2 and 3 is analyzed
in [2](see [2] in references)

Theorem 3.6.5. Assume that the Green function G(P, Py) satisfying 1, 2 and 8 is
found such that the normal derivative g—g(s) of G at each s € S exists. Then the
solution of Dirichlet problem BII0)+@III]) is represented by

u(Pp) // Fy(s 8G s)ds — /// (P, Py) f(P)dxdydz

Proof. Take § > Osufficiently small such that B(Py,d) C Q and denote o = 9B(Fy,0).
Apply Green formula in the domain Q' = Q\ B(Fp,0). Let u(P), P € Q,be the solu-
tion of the Dirichlet problem (FII0)+(BI1]) and denote v(P) = G(P, Ry), P € .
Both functions u(P),v(P), P € €, are continuously differentiable and we get

/// (P, Po) AudP = //“——G )(s)ds (3.114)

where S = SUo = oY
Denote nthe orthogonal vector at the surface 0 = 0B(FPp, ), |n| = 1,oriented to the
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center Py and n’ is the orthogonal vector at o oriented in the opposite direction of
n.Using G|pes = 0 we get

[[[ewrspracasa: = [[ 656+ [[at- 120
Q/ S

o

- //(u%— %)do (3.115)

o

Letting & — 0 we get that the last integral in (BII5) is vanishing (see u, g are
continuously differentiable with bounded erivatives). In addition, the second integral
in the right hand side of [B.IIH) will become.

0.1 10u
%’TE// ol = o) = %mwgz//“d”‘“%z/ 5—‘1”—“7”0)

(3.116)
u(po) // Fy(s s)ds — /// (p,po) f(p)dxdydz (3.117)
and the proof is complete. O

Theorem 3.6.6. The function u(pg),po € Q given in Theorem [Z60 is the solution

of the Dirichlet problem BI10)+@I1I).

Proof. Tt is enough to prove the existence of the Dirichlet problem solution (B110)+ BI1I).
Let ¢ be the newtonian potential with the density functionf(p) on the domain €2,

_LF /// %f(p)d:z:dydz (3.118)
Q

It is known that ¢ satisfies the following Poisson equation dp = f. Define v =u — ¢
and it has to satisfy

v|S =ulS—p= FO(S) v(s)
Av(P)=0,P € Qv ffvo (3.119)

The existence of the harmonic function v verifying (8I19) determines the unknown
uas a solution of the Dirichlet problem BI10)+@I1I). O
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3.7 Linear Parabolic Equations

The simplest linear parabolic equation is defined by the following heat equation
opu(t,r) = O*u(t,x), t > 0,2 € R (3.120)
lim u(t,z) = p(x),z € R (3.121)
t—0

¢ € Cp(R) is fixed. A solution is a continuous function u(t,z); [0, 00) x R — R which
is second order continuously differentiable of x € R for each ¢ > o and satisfying
BI120) + (3I12I) for some fixed continuous and bounded function ¢ € Cy(R).

3.7.1 The Unique Solution of the Cauchy Problem (BI20) and
B.121)

It is expressed as follows.

1 =9
ult,x) = —— exp — =S80 g 3.122
(ta) = <= [ wlope - E e (3,122
(Poisson formula for heat equation) Denote
_ -1 (y —a?)
P(o,z,y)dy = (V4ro) "exp — P foro>0,z,yeR (3.123)
o

By a direct computation we get the following equations

/P(a,:z:,y)dy = landdy, P(o,z,y) — 0*P(0,2,y) =0 foranyo > 0,2,y € R
R
(3.124)

The first equation of ([B.124]) is obtained using a change of variable 72’\_/5 = z and

1
/P(o,x,y)dy = \/40/P(U,:E,:E +2y0oz)dz = NG /(exp —|z[*)dt =1 (3.125)
T
R R R
where [(exp — t?)dt = /7 is used. In addition, the function P(c,z,y) defined in
R
BI123) fulfils the following.

lir% o(y)P(o,z,y)dy = ¢(x), foreachx € R (3.126)
c—=0 Jp
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where ¢ € Cp(R) is fixed. Using BI24) we see easily that {u(t,z) : ¢ > 0,z € R}
defined in ([BI22) satisfies heat equation (3I20), provided we notice that

“(t,l’):/sﬁ(f)P(t,x,g)dg, t>0,z€eR (3.127)
R
" s u(t,x) = [ ()0 P(t,x,&)dE
t U t,IE = i t,:E, ,
{ P u(t,x) = fii(f)@gP(t,x,g)@, (3.128)

The property ([B120) used for (BI27) allows one to get [BIZ).

Remark 3.7.1. The unique solution of the heat equation (BI20) + BI2I) can be
expressed by the formula BI22) even if the continuous p(x) : R — R satisfies a
polynomial growth condition

lo(z)| < c(1+ |z|Y), Vz e R (3.129)

There is no change in proving that the unique Cauchy problem solution of the heat
equation for v € R.

Ou(t,z) = Apu(t,x), t >0,z € R (3.130)
; _ n _ 2
{el—%b u(t,z) = o(z),z € R", A, = Zl 0y, (3.131)
is expressed by
- _n |‘T — §|2
u(t,z) = (4mrt)™ 2 w(&)exp — Td{ (3.132)

where ¢ € Cp(R™).

3.7.2 Exercises

(a1) Find a continuous and bounded function u(t,z);[0,7] x R — R fulfilling the

following
(1) dpu(t,u) = a®0?u(t,z),t € (0,T], z € R, a >0
(2) }iH(l) u(t,z) = cosz, x € R.
—

Hint. The equation (1) can be written with the constant a? = 1 provided we use a
change of variable £ = £ and denote
x
u(t,z) =v(t,—), t€[0,T],x € R
a
Here v(t,y) : [0,T] x R — R satisfies the equation

ov(t,y) = asu(t,y), (t,y) € (0, T] xR
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and initial condition v(0,y) = cos(ay) (az2). Find a continuous and bounded function
u(t,z,y) : [0,T] x R x R — R satisfying the following linear parabolic equation

(1) dpu(t, x,y) = a*jult, z,y) + V> u(t, 2,y), t € (0,T]
(2) }irr(l)u(t, x,y) = sinx + cosy, a >0,b> 0, x,y € R
—

Hint. The equation (1) and (2) will be rewritten using the following changes y; =
2 y2 = ¥ and
u(t,z,y) = v(t, Z,%) where v(t,y1,y2) : [0,7] x R x R — R satisfy (see@.I30)n = 2)

O v = 8511/ + 8521/
lim v(t, g1, 2) = sinag) + cos(by2)

3.7.3 Maximum Principle for Heat Equation

Any continuous solution u(t, z), (¢t,2) € [0,T]x[A, B], satisfying heat equation (B120)
for 0 <t < T and z € (A, B) will achieve its extreme values

max(¢,z)e[0,7]x [A, B u(t,x) and ming ,yeo,7]x[A,B] u(t,x) on the boundary dD of the
domain D = {(t,z) € [0, T] x [A, B]}, where

oD = ({0} x 14, B) (0. 7) x {4h (0, T) x {B})

Proof. Denote M = max; yyep u(t,x),m = max , a5 u(t,x) and assume M > m.

Let (to,x0) € D, (to,zo) notindD be such that u(to,x0) = M and consider the
following auxiliary function

M—m
We see easily that v (¢, x) satisfies
M —m 9 M —m

for any
(t,z) € 0D, and v(to, o) = u(to, x0) = M, consider v(t1,r1) = max( z)ep V(t, ) >
M. As a consequence, (t1,21) not in 9D and

{ O (ty, 1)

s &Cu(tl,xl) =0, 6%V(t1,£[:1) <0, ’Lf (f1,$1) S {T} X (A,B)
(3.135)
In both cases (9;v — 02v)(t1,71) = 0 and (t1,21) not in D. On the other hand,using

=0, &Cu(tl,xl) =0, 62V(t1,$1) <0, ’Lf (f1,$1) € intD
6t1/(t1,:v1) 2 0
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the heat equation (BI120) satisfied by u(¢, «) when (¢, z) not in dD we get (see(@BI33)

M—m
5 <0 (3.136)

(O = o)t 0n) = 54

contradicting the above given inequality. It proves thatM < m. Replacing v with
{—u} and using

max {—u(t,z)} = max {—u(t,z)}

(t,x)eD (t,x)€dD

we get the second conclusion

min {—u(t,z)} = min_{—u(t,x)}
(t,x)eD (t,z)€dD

O

Remark 3.7.2. In the above given proof we may assume that the heal equation
BI20) Osu(t,z) = d2u(t,x) is satisfied for any (t,z) € (0,T) x (A, B) (omitting
t = T) and the result is still valid noticing that uw(t,z) < m for 0 <t < T — ¢ will
imply u(t,x) < mfor any 0 <t < T (seeu is continuous). In addition, the conclusion
of the mazimum principle allows to extend it for |u(t, z)|, i.e |u(t, x)| < maz{|u(t,z)| :
(t,z) € OD}.

Remark 3.7.3. The computation and arguments used for the scalar heat equation

BI20) can be extended to the case x € R™ replacing the equation BI120) by BI30)
and considering a ball B(Py,p) C R™ instead of [A,B] C R. If it is the case, the

corresponding mazimum principle associated with heat equation (BI30) says

maz u(t,x) = maz_u(t,x)
(t,x)eD (t,x)€dD
and
min_u(t,z) = min_ u(t, )
(t,w)eD (t,x)€dD
where

D =10,T] x B(Px, p), oD = ({0} x B(Ps, p)) U([0, T] x dB), P. € R™, (fized),0B =
boundary of B(Px,p).

Here the heat equation(3I30) is assumed on the domain (t,z) € (0,T] x int B(Py, p)
and the corresponding auziliary function is giwven by(see(3I33))

—m
= — ),

M
t = u(t
vtx) = ult. o) + =

where

u(to,zo) = M = mazx u(t,z) =m= maz_u(t, )
(t,x)eD (t,)€dD

and M = u(to, xo) > m will lead us to a contradiction.

Remark 3.7.4. Using mazimum principle for heat equation we get that the Cauchy

problem solution for (B120) +BI2) (or BI30) +@BI31))) is unique provided the ini-

tial condition ¢ and the solution {u(t,x) : t = 0,2 € R™} are restricted to the bounded
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continuous functions. In this respect,let M > 0 be such that
lu(t,z)] < M, |o(x)] < M foranyt >0, z € R(x € R")
Consider the following particular solution of ([BI120)

2,

2M
v(t,x) = F($2 +2t) satisfying O = 02vandv(0,x) = 722 >0

oM
v(+L,t) = F(LQ +2t) > 2M

If BI20) +@IZ0) has two bounded solutions then their difference u(t, x) = uy(t, z) —
uz(t,x) is a solution of heat equation BI20), satisfying |u(t,z)| < 2M, (t,z) €
[0,00) X R,and u(0,2) = 0.0n the other hand h(t,x) = v(t,x) — u(t,z) satisfies
BI20) for any (t,x) € int D, D =[—L,L] x [0,T] and

h(t,z) = v(t,z) —u(t,z) >0, ¥ (t,z) € 0D

Using a mazximum principle we get
2M
u(t,z) < F(gf +2t)V (t,x) € [0,T] x [-L, L]
and similarly for u(t,x) = —u(t, z) we obtain

—u(t,z) < QL—]\;[(gc2 +2t)V(t,z) € [0,T] x [-L, L]

Combining the last two inequalities we get

2M
|u(t, z)| < ?(12 +2t)V (t,x) € [0,T] x [-L, L]
and for any arbitrary fized (t,z)(t > 0) letting L 1 oo we obtain u(t,x) = 0 which
proves uy(t,x) = ua(t, x) for each t > 0.

Exercise. Use the above given algorithm(n = 1)for the multidimensional heat equa-
tion (11)(n > 1) and get the conclusion:the Cauchy problem solution of BI30) +
(3I3T)) is unique provided initial condition ¢ and the solutions{u(t,z) : ¢t > 0,z €
R} are restricted to the bounded continuous functions.

Hint. Let M > 0be such that |u(t,z)|, |p(x)] < M for any ¢t > 0,2 € R™and con-
sider V (t,x = 24 )(|z[? + 2t) satisfying BI30) and (I3I) with V(0,z) = 2 [z|* >
0V (t,z) =2)(|z> +2t) > 2M if z € 0B(0, L). Proceed as in Remark (B74).
Problem P;(Maximum Principle for Linear Elliptic Equation)
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Consider the following linear elliptic equation

0 = Z aij(?ixj u(x)
ij=1
= Trace[A.0%u(z)]
= Trace[02u(x)A], z € Q (bounded domain) C R" (3.137)

§| x|? Vo € R, for somed > 0). Under the above given conditions, using an ade-
quate transformation of coordinates and function, we get a standard Laplace equation
in R” for which the maximum principle is valid.

(R) Show that for a continuous and bounded function u(z) : Q — R satisfying (3.137)
for any = € Q2 we get the following maximum principle:

maxu(z) = maxu(z) (min u(r) = minu(x)), where Q) = QUT, T' = 99
e zel €Q zer

Hint. Let 7' : R™ — R" be and orthogonal matrix (T* = T~1!) such that
A=TDT™ ', whereD = diag(dy, . ..,d,), di >0 (3.138)

Define A\2(square root of the matrix A)= 7' D27~ !and make the following trans-
formations
z = A"y, v(y) = u(A"Vy) (3.139)

Then notice that{v(y) : y € Q1}is a harmonic function satisfying

0=Av(y) = Trace[@iu(y)], Vye (3.140)

where
Q) = [AN71Qandl; = 00 = [AV2)7IT

As far as the maximum principle is valid for v(y) : Q; — R satisfying BI40)we get
that

u(z) = v([AN] ), 2 € Q
satisfies the maximum principle too.
Problen P;(Maximum Princie for Linear Parabolic Equations)
Consider the following linear parabolic equation

Opu(t, z) = Z aijaiﬂj u(t,z) = Trace[A.02u(t,z)] = Trace[0*u(t,z)A] (3.141)
ij=1

t € (0,7T],z € Q(boundeddomain) C R"™ and let u(t,z) : [0,7] x Q@ — R be a

continuous and bounded function satisfying the parabolic equation@I4I). If the

matrix A = (aij); je(1,...n} s symmetric and strictly positive(< z, Az >>§ || ||

, Vo € R", forsomed > 0)then {u(z) : = € Q} satisfies the following maximum
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principle:

max u(t,r) = max_ u(t,r)( min u(f,r) = min_ u(t,x 3.142
S (t, ) Wiy ( )((m)eD (t, ) o oin (t,2)) (3.142)

where D = [0,T] x @ € R"*! anddD = ({0} x Q) LU ([0, T] x 99).
Hint. The verification is based on the canonical form we may obtain in the right hand
side of (BI4I)) provided the following transformations are performed

=AMy, v(t,y) = u(t, AN?y), y € Q; = [A1?]71Q (3.143)

where the square root of a symmetric and positive matrix A\2 = T(I)2 7! is used.
Here I' = diag(v1,...,Yn), 7 > 0and T : R™ — R™is an orthogonal matrix (7* = T~1)
such that A =TT T~'. Notice that using IZI) we get that {v(¢t,z):t € [0,T],y €
04} satisfies the standard heat equation

ow(t,y) = Ayv(t,y) = Trace[@iu(t,y)], te0,t],yeh (3.144)
and the corresponding maximum principle

max v(t,x) = max_v(t,z)( min v(t,z) = min_ v(tz)) (3.145)
(t,y)€D1 (t,y)€dD; (t,y)€D1 (t,y)€dD;

is valid,where Dy = [0, T] x Dy and dD; = ({0} x Q1)L ([0, T] x 991). Using u(t, ) =
v(t, [A"N2]"1z), z € Q,and ([BI45) we obtain the conclusion (F.I45).

3.8 Weak Solutions(Generalized Solutions)

Separation of Variables(Fourier Method)
Boundary problems for parabolic and hyperbolic PDE can be solved using Fourier
method.We shall confine ourselves to consider the following two types of PDE

(1) Louta,2) = Ault,z,y,2), t € 0.7, (2,,2) € D C B
a

(II) 6152U(t,(b,z) = Au(t,x,y,z), te [OaT]u (ZC,y,Z) €D - ]Rg

where the bounded domain D has the boundary S = dD. The parabolic equation (T)
is augmented with initial conditions(Cauchy conditions)

(Ll) u((),x,y,z) = w(xvyaz)a (517,2/72) € D
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and the boundary conditions

(Ib) u(t,.I,y, Z)|(w,y,z)€$ =0te [Oa T]

The hyperbolic equation (II) is augmented with initial conditions

(IIa) U(O, z,Y, Z) = 900(1:7 Y, Z)u atu(ou z,Y, Z) = 901(957 Y, Z)u ((E, Y, Z) €D
and the boundary conditions

du

(1) 7

(t,x,y, 2) = (W105u + wadyu + w3d,u)|(x,y,2) € S =0

where n = (w1, ws, ws3) is the unit orthogonal vector at S oriented outside of D.

3.8.1 Boundary Parabolic Problem

To solve the mixed problem (I, I,, I,) we shall consider the particular solutions satis-
fying (I, I, I) in the form

u(t,z,y,z) =Tt)U(x,y,2) (3.146)
It lead us directly to the following equations

AU(z,y,z) 1. 7'(t)
— = —=—=,1€[0,T D 3.147
T = o 1€ 0T ) € (3.147)
and it implies that each term in ([BI47) equals a constant —\ and we obtain the
following equations
AU + XU = 0;T'(t) + a*XT(t) = 0 (3.148)

(see T(t) = Cexp — Aa’t,t € [0,T]). Using (BI48) and the boundary conditions (1)
we get
U((E, Y, Z)'(x,y,z)ES =0 (3149)

The values of the parameter A for which (BI4])+(BI49) has a solution are called
eigenvalues associated with linear elliptic equation AU + AU = 0 and boundary con-
dition (8I49). The corresponding eigenvalues are found provided a Green function is
used which allow us to rewrite the elliptic equation as a Fredholm integral equation.
Recall the definition of a Green function.

Definition 3.8.1. Let S = 0D be defined by second order continuously differentiable
function.A Green function for the Dirichlet problem AU = f(P), Ul|s = Fy(S) is a
symmetric function G(P, Py) satisfying the following conditions with respect to P € D
(o) AG(P,Py) =0,V P € D,P # Py,where Py € D is fized,

(ﬁ)G(P7PO)|S =0, G(P7P0) = G(P07P)7 andG(P,PO) = 41?—’—9(P7P0)7 r= |P_P0|
(v) g(P, Py) is second order continuously differentiable and Ag(P, Py) =0,V P € D.
GYU(Ry) = [[ Fo(s)0.G(s)ds — [[[ G(P, Py)f(P)dwdydz where f(P) = —AU(P)

s D
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and Fy(s) =0,s € S

The solution of the Dirichlet problem BI48)+([B.149) can be expressed as in
Theorem B.6.5 Under these conditions,the integral representation formula () lead
us to the following Fredholm integral equation

U(Ry) = A / / / G(P, Py)U(P)dadyd: (3.150)
D

where G(P, Py) = 1= + g(P, Py) is an unbounded function (see 1) verifying

1
G(P,P)) < —, 0 < aw < 3, for some constant A >0 (3.151)
/rna

Define

G*(P, Py) = min(G(P, Fy), 5%), whered > 0 is fived
We get G(P, Py) — G*(P,Py) >0V P € D and

0> G(P,Py) — G*(P, Py) gA(ria - 5%) ifr<s (3.152)

Using (3152) and ¢ sufficiently small we obtain

//D IG(P, Py) — G*(P, Py)|dP = //D/mpvpo)_G*(P,Po)]dP

N

1
A// —dP < % where £ > 0 (3.153)
T
<oy
is arbitrarily fixed.On the other hand, G*(P, P,) is a continuous and bounded function

for P € D and approximate it by a degenerate kernel

N

G*(P,Py) = > i( P)ys(Py) + Ga(P, Py) (3.154)
i=1

/ é (G (P, Py)\dP <

From (3I53) and BI54) we get that G(P, Py) in (3150) can be rewritten as

N
G(P,Py) =Y @i(P)¢i(Py) + G1 (P, Py) (3.155)

i=1

where

DO ™
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where G1(P, Py) = G2(P, Py) + [G(P, Py) — G*(P, Py)| satisfies

// |G1(P, Py)|dP < % %: (3.156)
Using these remarks we replace the equation [BI50) by the following one
— /\/// G1(P,P))U(P)dP = [(E— \A)UJ(Fo) (3.157)
D

N
1/1i(P0)//D/80i(P U(P)aP

where the operator B1p = [E — AA1](p) has an inverse

Bl = [B+ Ay + N2A2 + .+ XeAF 4 ], for any |A| < where || A; ||< g

(3.158)
is acting from C(D)to C(D).Denote &(Py) = (By '4;)(Po) and rewrite (BI57) as the

following equation
N
U(r) =AY &) [[[ epuar (3.150)
i=1 i

which has a nontrivial solution for any A € {A1, A2, ...} where the sequence {\;};>1 of
real numbers satisfies |A| < C only for a finite terms,for each constant C' > 0 arbitrarily
fixed. Let{U;};>1 be a sequence of solutions associated with equation ([BI5J) and
eigenvalues {\;};>1, they are called eigen functions. Notice that (see (8)) G(P, Py)
is a symmetric function which allows one to see that the eigenvalues are positive
numbers, A; > 0, and the corresponding eigenfunctions {U,};>1 can be taken such

that /// Ui(p)Uj(P)sz{ (1) ii; (3.160)
D

{U;};>1 is a complete system in C(D) C C(D) i.e any ¢ € C(D) can be represented

P) = iajUj(P) (3.161)

where the series is convergent in Ly (D)

b
I Ay |’

(see Y a5 < 00) and

j=1
i / i Zag (P)PAP) = 0
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The coefficients {a,},;>1 describing the continuous function ¢ € C(D) are called
Fourier coefficients and satisfy

///SD(P)Uj(P)dP: aj,j 21,9 €C(D) (3.162)
D

is fixed in I,. Now we are in position to define a weak solution of mixed problem
(I,1,,1p) and it will be given as the following series

oo

u(t,z,y,z) = Z(exp — Nia*t)a; Uiz, y, 2) (3.163)

=1

which is convergent in Lo(D), uniformly with respect to ¢ € [0,7T]. Using (3:162) and
(BI6T) the initial condition in (I,) is satisfied in a weak sense, i.e

oo

[ un(0,P) = () l2= 0, un(t, 2,y,2) = Z(exp — Nia*t)a;Us(x,y, z)
i=1

lim
N—o00
Here {un(t,z,y,2) : t € [0,T], (z,y,2) € D} n>1 is defined as a sequence of solutions
N
un(t,x,y,z) = Z(exp — Na*t)a; Uiz, y, 2) (3.164)
i=1
satisfying the parabolic equation ([B.I40]), the boundary condition () and
uN(OaIayvz):@N(Iayvz)v (517,2/72) €D (3165)

such that, J\;im Il ©—on |la=0((I,) is weakly satisfied).
— 00

3.8.2 Boundary Hyperbolic Problem

To solve the mixed problem (I7,II,,11I;) we shall proceed as in the parabolic case
and look for a particular solution

u(t, P) = T(t)U(P), u € C*(D), T € C*([0,T]) (3.166)
satisfying (IT) and the boundary condition(I7,). The function [B.I66]) satisfies (II) if

T'(t)  AU(P)
() _ U(P)

T(t)AU(P) =U(P)T"(t)or = —\?(const) (3.167)

which imply the equations
')+ N T(t) =0 (3.168)
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AU(P) + NU(P) =0, %'S =0 (3.169)

For the Neimann problem solution in ([BI69), we use a Green function Gy(P, Py)
satisfying

AG = é(where C =wvolD)P # Py
3.170
{ 0,G1ls = (8.170)
In this case % stands for the solution of the adjoint equation
Ay =0,0,0s=0 (3.171)
The Green function (Gq has the structure
1
Gi(P, Po) = T +9(P), 7 =|P, Pol, g(P) = a| P|* + g1(P) (3.172)
where g; verifies
Agi(P)=0,VP e D,and
3.173
{ On g1ls = ~[a0u| PP + £ 0(3)]ls (3.173)

The constant « is found such that

// (AGy)dwdydz = ﬁ///A(%)d:z:dydz—l—Gavol(D)
D D

= —1+4+6avol(D)= a=1\3va(D) (3.174)
In addition, using the Green function G; we construct a weak solution for the Netimann

problem
AU(P) = f(P), (0,U)|S=0 (3.175)

///f(P)d:Cdydz =0 (3.176)
D

The Green formula (3I49) used for v = Gy and {U(P : P € D)} satistying (3175
and (31) will get the form

/// P)AG1(P, Py))dzdydz = /// G1(P, Py) f(P)dxdydz (3.177)

Looking for solution of (BI69) which verify

assuming that

/ [[ vtPyizdyaz = o(see 1(P) =2 UP)in (30) (3.178)
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from (BI70) and (BITT) we obtain an integral equation

U(Py) =\ /// G1(P, Py)U(P)dxdydz, P = (x,y, 2) (3.179)
D

which has a symmetric kernel G1 (P, Py). As in the case of the parabolic mixed prob-
lem we get a sequence of eigenvalues and the corresponding eigenfunctions {U;}j>1.
In this case they are satisfying

U; € C*(D), 8,Uj|s = 0Oand /// Uj(P)dzdydz =0, j > 1 (3.180)
D

Define the space a(D) c ! (D) consisting from all continuously differentiable func-
tions ¢ € C1(D) verifying

(Onp)(P € S) =0, (P)dzdydz = 0 and p(P) = 3 a;U;(P), S |a;|* < oo
@ /é/s@ y o ; ;

(3.181)
The boundary problem ((II),(I1)) has two independent solutions
(see Ty (t) = cosAjt, To(t) = sin;t)
U;j(P)cosA;jt andU;(P)sin\jt, foreachj > 1 (3.182)

and we are looking for a solution of the mixed problem ((I1),(I1,),(II;)) as a con-
vergent series

U(t,P) =Y _[a;U;(P)cos;t + bU;(P)sinA;t] + bot (3.183)
j=1
in Lo(D) with respect to P = (z,y,2) and uniformly with respect to ¢ € [0,7].
Here {a;};>1 must be determined as the Fourier coeflicients associated with initial
condition ¢y € Co(D)

©o(P) = u(0, P) = Z aju;(P) (3.184)

and {b;};>0 are found such that the second initial conditions d;u(0,P) = ¢1(P)
(see(II,)andpy € C(D)) are satisfied

@1(P) = f B;U;(P) + Bo, with § (Bj)* < o0

= =t (3.185)

8,5U(0,P) = Zl /\JbJUJ(P) + b() = gﬁl(P)
=
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Here C(D) = C!(D) is consisting from all continuously differentiable functions o1 (P) €
CY(D) satisfying

(8np1)(P € S) =0 and 1 (P) = ZﬁjUj(P) + B0, 187 < o0 (3.186)

J=1

We get
bo = 60 and )\j bj = ﬁj s ] > 1 (3187)

In conclusion,the mixed hyperbolic problem (I7), (I1,), (I1;) has a generalized (weak)
solution

u(t,.) : [0,T] = L2(D)

oo

u(t, P) = Z[ajcos/\jt + bjsin\;t)U; (P) + bot
j=1
such that
N
Un(t,P) = _[ajcos\;t + bjsin\;t]U;(P) + bot
j=1

satisfies (IT) and (I1,) and (1) is fulfilled in a "weak sense”
N (0, P) = ¢y (P), dun (0, P) = o1’ (P)
Here the "weak sense” means

lim @) = ¢o in La(D)
N—o00

and
lim @ = @1 in Ly(D)
N—o00

3.8.3 Fourier Method, Exercises

Exercise 1
Solve the following mixed problem for a PDE of a parabolic type using Fourier
method
(I) Z0pu(t,z) = (t,x), te0,T], z€l0,1]
(La) u(0,2) = p(x ), €[0,1], ¢ €C([0,1;R)
(Ip) u(t,0) = u(t,1) =0, t €[0,T]
where C,([0, 1;R) = {» € C([0, 15 R) : (0) = (1) = 0}.
Hint. We must notice from the very beginning that the space C,([0, 1]; R) is too large

for taking Cauchy condition(1,) and from the way of solving we are forced to accept
only ¢ € with the following structure
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o(z) = Z a;U;(z) , = €[0,1] (3.188)
where

1
Uj(x = —=sinjrx, j =1, z €[0,1], (orthogonal in Ls[0,T7) (3.189)

V2

1
. I 1=k
satisfy /Uj(x)Uk(:C)d:v —{ 04k

and the following series

D ayl? < o0 (3.190)
j=1

is a convergent one. The Fourier method involves solutions as function of the following

form
o0

u(t,x) =Y Ti(t)Uj(x) + ao, t € 0,T), z € [0,1] (3.191)
j=1

where each term U;(t,z) = T;(t)U;(x) satisfies the parabolic equation (I) and the
boundary conditions(f;). In this respect, from the PDE (I) we get the following

QU (x) 1 9,Ty(t) .
ZxZ I\ . ] . .
Uj(z) — a® Ty(t) pjs iy 70, £ € [0,T], 2 €[0,1], j > 1 (3.192)

which are into a system

YW 4 2 Ty(t) = 0 t € [0,7) (3.193)
277 .
Tt () + nUy(@) =0, z € [0.1]
On the other hand, to fulfil the boundary conditions (I)we need to impose
U50) = Us(1) =0, j>1 (3.194)

and to get a solution {U;(z) : « € [0,1]} satisfying the second order differential
equation in (3I33) and the boundary conditions ([B194) we need to make the choice

wi = (jm)?>0,Ujx)=c;sinjra, v €[0,1],5 > 1 (3.195)
In addition, we get the general solution T (¢) satisfying the first equation in ([BI93)
T;(t) = ajlexp — (jma)*t], t € [0,T], 5 = 1, a; € R (3.196)

Now the constants ¢; inU;(z) (see (3.193))) are taken such that

&

i(z) =¢jsinjra, x€[0,1],j>1 (3.197)
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is an orthonorma system in Ls([0,1]; R) and it can be satisfied noticing that

(sinjmx)(sinknr)de = (cos jmax)(cos k mx)dx

o —-

[cos(j + k)x]dx

(cos jmx)(cos k mx)dx

Il
— o\»—l O\)—A O\)—A
O =

\2 j=k
= ) 3.198
j#k (3.198)
Here
1
/(cosmmc)dx =0 for any m > 1
0
and
cosacosf3 = %;ﬂ)
are used. From (B.I98) we get
=V2j>1
As a consequence R
Uj(x) =V2sinjra, z€[0,T],5>1 (3.199)
is an orthonormal system in Lo ([0, 1]; R) and the series in (BI91]) becomes
Z a;U;(z)[exp — (jma)*t] + ao (3.200)
Now we are looking for the constants aj,j > 0 such that the series in (B.200) is

uniformly convergent on (¢, z) € [0,7T] x [0, 1] and in addition the initial condition(Z,)
must be satisfied

Za] 2) +ap = p(x) = U(0,2) = Za] (3.201)

o0

where > |a;|* < oo is assumed (see(@I00)). As a consequence ap = 0 and a; =
j=1

aj,j = 1, are the corresponding Fourier coeflicients associated with ¢ satisfying

EIRR) and EI90).
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In conclusion, the uniformly convergent series given in ([3200) has the form
u(t, x Z a;U;(z)[exp — (jma)?t], t € [0,T),z € [0,1] (3.202)

It is the weak solution of the problem {(I),(I1,),(II;)} in a sense that

N

Un(t, ) = o;U;(@)[exp — (jm a)*t] (3.203)
j=1
satisfies the following properties
Zézln Un(t,x) = U(t,z) uniformly of t € [0,1] (3.204)
each {Uy(t,x) : (t,z) € [0,T] x [0,1]} fulfills (I)and (Iy) (3.205)
U0,z) = p(z), x € [0,1], ((I,) is satisfied for ) (3.206)

provided ¢ € Cy(]0, 1]; R) fulfil (BI8Y) and (BI190).
Exercise 2
Solve the following mixed problem for a PDFE of hyperbolic type using Fourier method

(I) O2u(t,z) = O2u(t,z), t€[0,T], = € [0,1]
(La) u(0,2) = @o(x), Oru(0,2) = ¢1(x), € [0,1], @0, 1 € C([0,1];R)
(1) Opu(t,0) = dpu(t,1) =0, ¢t €[0,T]

Hint. As in the previous exercise treating a mixed problem for parabolic equation
we must notice that the space of continuous C([0,1];R) is too large for the initial
conditions (II,)considered here. From the way of solving we are forced to accept
only g, p1 € C([0,1]; R) satisfying the following conditions

Za] () + oo, o1 (x Zﬁj () + Bo, = € [0,1] (3.207)
where
{Vi(z) = V2cosjma, x€[0,1]}51 (3.208)

is an orthonormal system in L5[0, 1], and the corresponding Fourier coefficients
{aj, Bj};j>1 define convergent series

D s <00, Y 1B < o0 (3.200)
Jj=1 j=1

The Fourier method involves solutions u(t,z) : [0,7] x [0,1] — R possessing partial
derivative 0;u (0, z) : [0,1] — Rand it must be of the following form

o0

ZTJ ) +ag+bot, t €[0,T], = €[0,1] (3.210)



136 CHAPTER 3. SECOND ORDER PDE

Each term w;(t,z) = T;(t)V;(x) must satisfy the hyperbolic equation (II) and the
boundary conditions(I1p). It implies the following system of ODFE

PLO ) Ti(4)=0,t€[0,T],§>1
2, ’ v (3.211)
dzJZ _Nj‘/}(t):07$€[o,T], 21

and, in addition, the boundary conditions

d j d .
v Vi >1 212
dz 0) = dz (=07 (3 )

are fulfilled. The conditions (3212 implies

==\ = —(jm)?and{V;(z) = V2cos jma : x € [0,1]};1 (3.213)

is an orthonormal system in L5[0,1]. On the other hand, using p; = —(jm)?, j > 1
(see(@213)), from the first equation in [B2T1]) we get

T;(t) = a;(cosjmt) + bj(singmt), t € [0,T], 5 > 1 (3.214)

Using (3:213) and [B214), we are looking for (a;,b;);>0 such that {u(t,z) : (t,z) €
[0,¢] x [0,1]} defined in (B2I0)) is a function satisfying initial condition

Zaj (@) + a0 = ¢o —Zaj i(x) + ap, x € ]0,1] (3.215)

=1

In addition ,the function {Qyu(t,z) : (t,x) € [0,T] x [0,1]}is a continuous one satis-
fying initial condition

Opu(0,x) = > (i mb;V;(x) + bo = 1 (x Zﬁj z)+ Bo, z €[0,1]  (3.216)
j=1

From the condition (3.215)) and (8:210) and assuming (3.209) we get (a;,b;);>1 of the
following form

a; = Qy, (jﬂ)bj:ﬂj,j>1,anda0:ao b():ﬂo (3217)

As a consequence, the series

u(t,z) = Z[aj(cosj mt) + bj(sin j mt)|V;(x) + ao + bot (3.218)

j=1

with the coefficients (a;,b;);>1 determined in [B2I7) as a function for which each
term wu(t,z) = aj(cosjmx) + b;(sun jmx)V;(x) satisfies the hyperbolic equation (II)
and the boundary conditions (I1;). As a consequence, the uniformly convergent series
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(B2I]) satisfies the mixed problem (I7), (I1,) and (I1,) in the weak sense, i.e

N
un(t,x) = Zuj(t,:v) + ag + bot, (t,x) € [0,T] x [0,1]

j=1
verifies (IT) and (1) for each N > 1 and

lim un(0,2) = @o(x), 1\%@0 Oun(0,2) = ¢1(x), z € [0,1] (3.219)

N—o0

stand for the initial conditions (I1,).

3.9 Some Nonlinear Elliptic and Parabolic PDFE

3.9.1 Nonlinear Parabolic Equation

We consider the following nonlinear parabolic PDE

{ (0r — A)(u)(t, ) = F(z,u(t,x),0,ult,z)), t € (0,T], z € R (3.220)

limu(t,z) =0, z € R
t—0

n

where 0, u(t, x) = (O1u, ..., Opu)(t, z), Ou = g—w“i, Opu =2 Ay = Zlafu Here
1=

F(x,u,p) : R*"*! — Ris a continuous function satisfying

|F(x7u07p0)| < Cu |F(557U27p2) - F(xauhpl)' < L(|U2 - ull + |p2 _p1|) (3221)

for any @ € R™, |u;l, |pi] < 9,1 =0,1,2,where L,C,§ > 0 are some fixed constants.
A standard solution for (220)) means a continuous function wu(t,z) : [0,a] x R" —
R which is first order continuously derivable of ¢ € (0, a) second order continuously
derivable with respect to © = (z1,...z,) € R™ such that (3220) is satisfied for any
t € (0,a),z € R? a weak solution for (3220) means a pair of continuous functions
(u(t, ), Ozu(t,x);[0,a] x R* — R"! which are bounded such that the following
system of integral equations is satisfied

u(t,z) = }[ F(y,u(s,y),0y)u(s,y)P(t — s,x,y)dy|ds
0 R (3.222)

Ou(t,z) = z[ F(y,u(s,y),0yu(s,y))0: P(t — s, x,y)dylds
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for any ¢t € [0,a],z € R", where P(o,z,y),c > 0,2,y € R™ is the fundamental
solution of the parabolic equation (9, — A, )P = 0,0 > 0,2,y € R™

S ly — x|

P(o,z,y) = (4m0) 2 exp — o 7> 0 (3.223)
o

A direct computation shows that P(c,x,y) satisfy the following properties
[ Plosiy = 1,0,P0.5.0)A.P(o.2.9) (3.224)
Rn
for any o > 0, z,y € R"and
limP(o,z,y) =0if x £y
al0
The unique solution for theintegral equation [3.222) is found using the standard ap-
proximations sequence defined recurrently by

(u, P)o(t,z) = (0,0) € R"* and

wrin(t) = [1f Fly,un(s,9),pu(s, 9) P(E — 5,2, y)dglds

0 R»
t
Prri(t, @) = Qo (t, @) = [1 [ Fly,ue(s,y),pe(s,9))0: P(t — s, 2, y)dylds
0 R»
(3.225)
for any k > 0, (t,z) € [0,a] x R™ where a > 0is sufficiently small such that
aC <94, 2v/aCC; <6 (3.226)

Here the constants C,§ > 0 are given in the hypothesis (822])) and C; > 0 fixed
satisfies

(m)"\? / |z|(exp — |2%))dz < C) (3.227)
]Rn

A constant a > 0 verifying ([3:226]) allows one to get the boundedness of the sequence
{(uk, pr) } =1 as in the following lemma

Lemma 3.9.1. Let F € C(R*T1 R) be given such that the hypothesis [B22I) is
verified. Fixz a > 0 such that 3220) are satisfied. Then the sequence {(uk, pr)}r>0
of continuous functions constructed in [B228) has the following properties

lug(t, 2)| <0, |pr(t,x)] <6, V(t,z) € [0,a] xR, k>0 (3.228)
| (w1 P41 (t) = (urspr) () || = Seuﬂgﬂukﬂ(t,ﬂ?) —ug(t, z)| (3.229)

tk
- |pk+l(t7x) _pk(t,fﬂ)l] < 2605(@)1\3
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for any t € [0,a], k = 0 where C, = L(C1v/a + a®\?).

Remark 3.9.2. Using the conclusion B.229) of Lemma B91) and Lipschitz con-

tinuity of F in B.221]) we get that the sequence {(u, p)k k>0 is uniformly convergent of

(t,x) € [0,a]xR", klim (u, p)k(t,x) = (u,p)(t, z) there the continuous function(u,p),t €
—00

[0,a],z € R™ satisfies the integral equation ([3222)), provided the constant a > 0 is

fixed such that

as
(5 )-Ca=p<1 (3.230)
where C5 is giwven in (3:229). In this respect, > (t,x) = Y [(u,p)k+1 — (u, p)k](t, x) is
k=0

bounded by a numerical convergent series | Y. (t,x)] < 26(1+ p+, ... +pF+...) = 2
which alow us to obtain the following

Lemma 3.9.3. Let F' € C(R?*"T1 R) be given such that the hypothesis [B221)) is sat-
isfied. Then there exists a unique solution (u(t,x),ptt,x),t € [0,a], x € R™, verifying
the integral equations B222) and

[u(t, )|, [p(t, z)| < p(forall)t € [0,a], x € R™ (3.231)

O, u(t, x) = p(t,x)vt € [0,a],z € R" (3.232)

In addition, ((u(t,z), 0zu(t,))) is the unique weak solution of the nonlinear equation
liirét(at — AYug(t,z) = F(z,u(t, z), d,u(t, x)) (3.233)
€.

for each 0 < t < a,x € R™ where

t

Tt ) / [ / F(y, @, 5,1),0,(s,9) P(t — 5,2, y)dy]ds

0 Rn»

if0<t=aand x € R™ are fized.

3.9.2 Some Nonlinear Elliptic Equations

We consider the following nonlinear elliptic equation
Au(z) = f(z,u(z)),z € R*,n > 3 where f(z,u) : R"™ - R (3.234)
is first order continuously differentiable satisfying

f(z,u) =0for x € B(0,b),u € R, where B(0,b) C R" is fixed (3.235)

)\:{max|?|;x€B(O,b),|u| <2K4} (3.236)
u
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satisfies AKo = p € (0, 3) where

2
Ky = %,Kl = CyoKoandCy = {max|f(x,0);z € B(0,b)}

n —

Lemma 3.9.4. Assume that f(x,u); (z,u) € R""1 is given satisfying the hypothesis
B238) and B230). Then there exits a unique bounded solution of the nonlinear
equation B234) u(x); R™ — R. which satisfies the following integral equation

() = / Fw.ay)ly — 2P "dy = / Fwa)ly— =P "dy  (3.237)

R~ B(o,b)

where f(z,u) = Cf(z,u)andC = m, |Q| = measS(0,1).

Remark 3.9.5. The proof of this result usees the standard computation performed
for the Poisson equation in the first section of this chapter. More precisely, letQq =
S(0,1) C R™ be the sphere centered at origin and with radius p = 1. Denote |Q| =

measQy and f(a:,u) = Cf(z,u), (z,u) € R" x R where ¢ = m Associate the
integral equation [B23T)) which can be rewritten as

u(z) = /f(x + z,u(z + 2)).|2|* "dz, forxz € B(o,b) (3.238)
D

whereD = B(0, L), L = 2b. Define a sequence ug(z);x € B(0,b)k > Oug(x) = 0,z €
B(0,b)

Uiy (2) = /f(x 2 up(@ 4 2) |22 dz k> 0%, @ € B(0,b) (3.239)
D

The sequence {uy}r>o is bounded and uniformly convergent to a continuous function
as following estimates show

L
_ Co L2 G
lur ()] < cC’o/rdr/dw - n_027 - n_022b2 =K (3.240)
0 Q()

for any x € B(0,b) and

~

|ua(z) — u, (2)] < /1 + f((x +2),(x+2)) — f(z+2,0)2]*"dz < (3.241)
D

07
< Klmax|a—£(y,u)| / |2|* "dz < K1(\.Ko) = Kip foranyxz € B(0,b)
s

An induction argument leads us to

|ups1(z) — up(x)| < K1pF, z € B(0,b), k>0 (3.242)
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where p € (0,1\ 2) and k1 > 0 are defined in (3.230). Rewrite

Ugt1 = ur(x) +ug(x) —ur(x) + -+ + upgr(z) — ug(x) (3.243)
and consider the following series of continuous functions
Z(:v) =ux) +vo(x) + -+ vpga(z) + ... (3.244)

z € B(0,b), vjt1(z) = ujp1(x) — u;(x)

The series in [B244) is dominated by a convergent numerical series

1
<K (1 kL )=K < 2K 3.245
> @I <EKi(+p+p>+-+p"+..) T ! (3.245)

and the sequence defined in [B239) is uniformly convergent to a continuous and
bounded function

lim ug(x) = u(x), |u(z)| < 2K1, 2 € B(0,b) (3.246)

k— o0

In addition{u(x), x € B(0,b)} verifies

/f Y, u(y))ly — =*"dy = / Fly, a(y))ly — =>"dy (3.247)

B(0,b)

The solution {u(x), v € B(0,b)} is extended as a continuous function on R™ using
the same as integral equation (see B247)) and the proof of [B237) is complete.

3.10 Exercises

Weak solutions for parabolic and hyperbolic boundary problems by Fourier’s method
(Py). Using Fourier method, solve the following mixed problem for a scalar parabolic
equation

(a) Opu(t, z) = O2u(t, ), €1[0,7), z € [A,B]
(b) u(0.2) = po(x), v € [4,B]. ¢ € C([A, B) (3.248)
(c) ult, )—uA, (t B)=up,t€[0,T], ua,up € R given

Hint. Make a function transformation

{CE—A +B—x
B-—A""TB_4

v(t,x) = u(t,z) — ua} (3.249)

which preserve the equation (a) but the boundary condition (c¢) becomes
v(t,A) = 0,v(t,B) = 0,t € [0,T]. The interval [A, B] is shifted into [0,1] by the
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following transformations

The new function {w(t,y) : y € [0,T],y € [0, 1]} fulfils a standard mixed problem for
a scalar parabolic equation

(a) Orw(t,y) = F=az A z0w(t,y), t €[0,7], y € 0,1]

[0
() w(0,y) = p1(y) < @o(A+ (B — A)y) — {upy + ua(l — )} (3.251)
(¢) w(t,0) =0, w(t,1)=0,t € [0,7]

o0

= Ti(t)W;(t) (3.252)
j=1
where T W)
j i\ 1 ,

= ==X, A >0,7=1,2,.. 3.253
Lo Wi Boap N (825

The boundary condition ((248), ¢) must be satisfied by the general solution
W;(y) = Cicos (B — A)\/Ajy+ Casin (B — A)\/ Ay (3.254)

of [B253) which implies C; = 0and \; = (B — A)~%(7j)?
(P2). Using Fourier method, solve the following mixed problem for a scalar parabolic
equation

(a) OFu(t,x) = Q2u(t,x), t € [0,T], = [A,B]
(b) u(0,2) = @o(x), Opu(0,x) = ¢1(2) , = € [A, B, o, 1 € C([A, B])
(c) u(t,A) = ua, u(t,B) =up, t elo, T] ua,up € R given

Hint. Make a function transformation

z— A B—-=z

v(t,z) = u(t,x) — {muB + 54

ua} (3.255)

which preserve the hyperbolic equation (a) but the boundary condition (c¢) becomes
(3.256)

The interval [A, B]is shifted into [0, 1] with preserving the boundary (B256)) if the
following transformation are done

x=By+(1—-yA wlt,y)=vt,By+(1—-y)A),ye€0,1],t€[0,7] (3.257)
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The new function {w(t,y) : y € [0,T],y € [0, 1]} fulfils a standard mixed problem for
a scalar parabolic equation

(@ P u(t.s) = grapdfu(t.o). t < 0.T) y € 0.1

\ { w(0.) = Uo(3) = ¢o(A + (B — ) ~{upy +ua(l =9}y € 0.1
0w (0,) = 1 (y) < p1(A+ (B~ A)y), y € 0,1]
() w(t,0) = 0, w(t, 1) = 0, t € [0,T]
(3.258)
Solution of ([3258) has the form

oo

Z T;(t)W;(t) + Co + Cit (3.259)

and the algorithm of solving repeats the standard computation given (Py).

3.11 Appendix I Multiple Riemann Integral and Gauss
-Ostrogradsky Formula

(A1) We shall recall the definition of the simple Riemann integral {f(x) : « € [a,b]}.
Denote by II a partition of the interval [a, b] C R:

I={a=2 <21 <... <2 <241 < .. <ay =>b}and for Aw; = z;y1 —
25,0 € {0,1,..., N — 1}, define the norm d(II) = max;Az; of the partition II. For
& € [xi, xiqn],i € {0,1,..., N — 1} (marked points of II) associate the integral sum

Su(f) =) f(&)Ax;

i

2

Il
=]

Definition 3.11.1. A number I(f) is called Riemann integral of the function {f(x) :
x € [a,b]} on the interval [a,b] if for any € > 0 there is a 6 > 0 such that

[Su(f) —I(f)| <e ¥ Il satisfying d(II) <.

Remark 3.11.2. An equivalent definition can be expressed using sequences of parti-
tions {Ily}r>1 for which
lim S, (f) = I(f),

k— o0

where the number I(f) does not depend on the sequence {Il}r>1 and its marked
points. If it is the case we call the number I(f) as the integral of the function f(x)
on the interval [a,b] and write

b
[ fade = tim su, (1)
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Finally, there is a third equivalent definition of the integral which uses a “limit fol-
lowing a direction”. Let E be consisting of the all partitions I1 associated with their
marked points, for a fized 6 > 0, denote Es C E the subset satisfying d(IT) < 0,
Il € E5. The subsets Es C E, for different 6 > 0, are directed using d(II) — 0. The
integral of the function {f(x) : x € [a,b]} is the limit J(f) of the integral sums fol-
lowing this direction; the three integrals J(f), f; f(z)dx and I(f) exist and are equal
iff one of them exists. It lead us to the conclusion that an integral of a continuous
function {f(z) : x € [a,b]} exists.

(A2) Following the above given steps we may and do define the general meaning of
a Riemann integral when the interval [a,b] C R is replaced by some metric space
(X,d). Consider that a family of subsets U C X of X are given verifying the following
conditions:

1. The set X and the empty set () belong to U
2. f Ay, As € U then their intersection A; As belongs to U.

3. If A1,A € U and A; C A then there exist As,...,A4, € U such that A =
A1 U...UA, and Ay, ..., A, € U are mutually disjoints. A system of subsets
u C X fulfilling (1), (2) and (3) is called demi-ring . In order to define a
Riemann integral on the metric space X associated with a demi-ring M we need
to assume another two conditions.

4. For any 6 > 0, there is a partition of the set X = A, U...UA,, with 4; € U,
AijA; =9 ifi#jand d(A;)) = sup p(x,y) <J,i€{1,...,p} (This condition
(z,y)€A;
remind us the property that X is a precompact metric space). The last condition
imposed on the demi-ring U gives the possibility to measure each individual of
U.

5. For each A € U, there is positive number m(A) > 0 such that m : & — [0, 00)
is additive, i.e m(A) = m(A1) + m(A2) + ...+ m(4,), f A=A, U...UA, and
A, ..., Ap are mutually disjoints.

The additive mapping m : U — [0,00) satisfying (5) is called measure on the cells
composing Y. The metric space X associated with a demi-ring of cells U and a finite
additive measure m : u — [0, 00) satisfying (1)-(5) will be called a measured space
(X,U,m). Let f(z) : X — R be areal function defined on a measured space (X,U, m)
and for an arbitrary partition IT = {Aq, ..., 4,} of x = A U...UA, (A;4; = ¢1 1 # §)
define an integral sum.

Su(f) =Y f(&)mA;, where& € A; is fized (3.260)

i=1
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The number

() = [ 1)z (3.261)
X

is called the integral of the function f on the measured space (X,U, m) if for any
€ > 0, there is a § > 0 such that

Hn(f) = Su(f) <e (3.262)

is verified for any partition IT satisfying d(II) < ¢, where d(II) = max(d(41), ...,d(4,))

and d(A4;) = sup p(z,y). It is easily seen that this definition of an integral on a
(z,y)€A;

measured space (X,U,m) coincides with the first definition of the Riemann integral

given on a closed interval [a,b] C R.

The other two equivalent definitions using sequence of partitions {7y }x>1, d(7r) — 0,

and a ”limit following a direction” will replicate the corresponding definitions in the

one dimensional case x € [a, b].

A function f(x) : {X,U, m} — Rdefined on a measured space and admitting Riemann

integral is called integrable on X, f € J(X). The following elementary properties of

the integral are direct consequence of the definition using sequence of partitions and

their integral sums

/X f@)de = em(X), if f(z)=c(const), x € X (3.263)
/ cf (x)dx = c/ f(x)dz, f € J(X) andc = const (3.264)
X X
/ [ (@) + g())de :/f(:z:)d:z:+/ g(x)dz, if f,g € J(X) (3.265)
X x X
Any f € J(X) is bounded onX, |f(x)] < ¢, x € X (3.266)

if f,ge J(X)and f(z) < g(z), z € X then
/X f(@)dx < /X o(z)d( /X f(a)dz < /X F@)ldzif flfl € J(X)  (3.:267)

Cm(x) < /Xf(x)dx <Cm(x),if fe J(X)andec < f(z) < CVzxe X. (3.268)

Theorem 3.11.3. If a sequence {fi(x) : x € X }i>1 C J(X) converges uniformly on
{X,U,m} to a function f(z): X — R then f € J(X) and

/ f(z)dx = lim fn(x)dz
X X

n—roo

Hint The proof replicates step by step the standard proof used for X = [a,b] C R

Example 3.11.1. (e;) X = [a,b] C R and for a cell of [a,b] can be taken any
subinterval containing or not including its boundary points. The measure m(A) =
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B—a, (A=|a/p], A= (a,B)) of a cell is the standard length of it and the corre-
sponding measured space (X,U,m) satisfy the necessary conditions (1)-(5). Notice
that the first definition of the integral given in (3.262) coincides with that definition
used in the definition [BILT)

(e2) Let X be a rectangle in R?, X = {x € R? : a; < 21 < by,az < 22 < b}

and as a cell of X we take any subset A C X, A={zr e X : a1 < a1 < f1,02 <
x9 < P2} where the sign 7 < 7 means the standard 7 < 7 or” < 7 among real
numbers. The measure m(A) associated with the cell Ais given by its area m(A) =
(81— a1).(B2 — az2). The necessary condition (1)-(5) are satisfied by a direct inspection
and the Riemann integral on X will be denoted by

by ba
/ f(x)dx = / f(x1,x2)dxy dxo (double Riemann integral)
X ai az

n
Replacing R? byR™ , n > 2 and choosing X = [[ I; as a direct product of some inter-
i=1

vals I; = {x € R:a; < x < b;} we define a cell A= [[{a; < x < B;} and its volume
i=1

n

m(A) = [[(8i — ai) as the associated measure.In this case the Riemann integral is
i=1
denoted by

bl bn
/ f(ac)d:v:/ fx1,. .. zp)dey .. day,
X ay An

and call it as the n-multiple integral of f.

Theorem 3.11.4. Let {X,U,m} be a measured space and p(x) : X — Ris a uni-
formly continuous function. Then fis integrable, f € J(X).

Proof. By hypothesis the oscillation of the function fon X

wi X, 0= swp|f@)— ") (3.269)

pla’,x")<d,z’ x'"eX

satisfies wy(X,d) < efor some € > 0arbitrarily fixed provided § > 0 is sufficiently
small. In particular,this property is valid on any elementary subset P C X, P =
P

U Ai, {A1,..., A} are mutually disjoint cells.Denote wy (P, §) the corresponding os-

i=1
cillation of frestricted to P and notice

S (f, P) = Sp(f, P)| < wy (P, 6)m(P) (3.270)

for any partition 7/ of P containing the given partition = = {Aq,...,A,} of the
elementary subset P C X (7' D 7).

The property @' D 7 is described by “z’is following 7” (7’ is more refine). Using
B270) for P = z noticing that ws(X,d) < ¢ for ¢ > 0, arbitrarily fixed provided
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0 > 0is sufficiently small, we get that

6(173)7205}00) = I(f) ewists

as a consequence of the Cauchy criteria applied to integral sums. O

Consequence Any continuous function defined on a compact measured space (X, U, m)
is integrable(see f(x): X — R is uniformly continuous).

Theorem 3.11.5. Let (X,U,m) be a measured space and Z O X is a negligible
set. Assume that the bounded function f(x) is uniformly continuous outside of any
arbitrary neighborhood of Z,U,(Z) ={x € X : p(x,Z) < 6}. Then f is integrable on
X.

Proof. By hypothesis Z is a negligible set and for any € > 0 there is an elementary
P

set P = |J A; such that intP O Z and m(P) < e. Let M = sup |f(z)| and for £ > 0
i=1

1= rzeX
define
3

P
P = U A; such that int P 2 Z and m(P) < v

i=1
Denote B = X — P and we get d(Z, B) = 2p > 0 where d(Z, B) = inf{d(z,b) : z €
Z,b € B}. By hypothesis,the function f is uniformly continuous outside of a neigh-
borhood U,(Z) ,of the negligible set Z, i.e f(x) : @ — R is uniformly continuous,
where Q@ = X \U,(Z). Using Theorem BIT.4 we get that frestricted to (Q,UQ,m)
is integrable and any integral sum of f on X restricted to P is bounded by e(see

(3.271)

intP 2 Z, m(P) < 157)-

For an arbitrary partition # = {Ci,...,C,} of X we divide it into two classes;
p

the first class contains all cells of 7 which are included in P = |J A; 2 Z; and

the second class is composed by the cells of 7 which have comzrnén points with
the set B = X \ P and are entirely contained in B. In particular, take a par-
tition 7 with d(w) < ¢ = min(o, p) where o > 0 is sufficiently small such that
If(z") = f(2")] < e\2m(X) if p(a”,2") < 20, 2',2" € B. Let 7’ O 7 be a follow-
ing partition (s’ is more refined than 7). A straight computation allows one to see that

157 (f) = Sz (N 1S (f, P) + S (f, P)| + 15 (f, Q) — S (£, Q) (3.272)
Q = X \U,(Z) the first two terms in (B272) fulfil

1S+ (f, P)l < M

Sz (f, P)|

> m(Ai) = Mm(P) < Me\4M =\ 4

3

M

(3.273)

M*@,U.M“

<
< m(A;)) = Mm(P)=¢e\4
i=1

For the last term in B272) we use (B270) in the proof of Theorem BITH and Q =

-
Il
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X\U,(Z) D X\ P=B. As far as 0 > d(m) > d(n’) and ¢ = min(c, p) we obtain

{ |5x(f) = Sw(f)l < e ! ’ : (3.274)

and the Cauchy criteria used for integral sums {S.(f) : d(w) — 0} lead us to the
conclusion.The proof is complete. O

Definition 3.11.6. Let {X,U, m} be a measured space and G C X a subset. We say
that G is a jordanian set with respect to (U, m) if its boundary 0G = G N {X \ G},
is a negligible set. A jordanian closed set A with the property int A = A is called a
jordanian body.

Remark 3.11.7. The characteristic function of a jordanian set G C X

)= 1 z2eqG
Xal®) =10 zex\ G

is an integrable function if the measured space {X,U, m} is compact; fX xa(x)dx =
|G| is called volume of G.

Definition 3.11.8. A measured space { X, U, m} for which all cells are jordanian sets
is called normally measured;each cell A € U has a volume and m(A) = vol A = |A|

Let f(z) : X — R be a bounded function on a compact measured space {X,U, m}
and G C X is a jordanian set with the boundary I' = 0G. By definition, the integral
of the function f on the set G is given by

/f(:b)d:v:/ f(@)xe(x)dx (3.275)
G X

If f is a continuous function on G except a negligible Z then f(x)x¢(x) is continuous
on X except the negligible set Z U 0G and (B275]) exists.

(A3) Integration and derivation in R"; Gauss-Ostrogradsky formula
Consider a domain G C R™ (a jordanian body)for which the boundary 0G is piecewise

q

smooth surface. By “piecewise smooth 0G "we mean that S = G = || S, where
p=1

(int S;) N (int S;) = ¢ for any ¢ # j € {1,...,¢} and for each z € int S, there is a

neighborhood V' C R™ and a first order continuously differentiable mapping

y=p(u) = H (—ai,a;) = Dp—1 — Sp, NV, ¢(0) = x such that

ogtul- =

rank || — 1. Denote ¢ = (¢1, .. ,gpn) u = (U1, ...,un—1) and define the

vectorial product of the vectors [8 =~ (), .. (u)] € R™ as a vector of R™ given

by the following formula

76ul 1



3.11. APPENDIX I 149

€1
524 (u) gou (u) ) )
B . . _ 90 ©
N = det . ' = [8u1 (), .ony I (u)] (3.276)
e OB el 1)

where {€7, ..., &, } C R™ is the canonical basis of R” and the formal writing of (Z270)
stands for a simple rule of computation, when the components of [%(u) vy 6u‘9—*’71(u)]

C R™ are involved. In addition, (B2276) allows one to se easily that N is orthogonal
to any vector %(u) € R", i€ {l,..,n— 1} and as a consequence N is orthogonal
to the point ¢(u) € Sp. In this respect, the scalar product < N, %(u) > coincides
with the computation of the following expression

%(u)
) 7 (u)
<N, 8_@@) S— det : =0 for each i€ {1,..,n—1} (3.277)
(7 .
T2 (u)

If it is the case then the computation of the oriented surface integral [ 5 f(x)dS on the
surface S = {51, ..., Sy} will be defined by the following formula

/ f(2)dS = / £ () [ N|du (3.278)
S D,

where |N| stands for the length of the vector N defined in (B2276). On the other
hand, the normalized vector
m(u) = N/|N]| (3.279)

can be oriented in two opposite directions with respect to the domain G and for the
Gauss-Ostrogradsky formula we need to consider that m(u) is oriented outside of the
domain G. Rewrite m(u) in ([B279) as

m(u) = €1008 W1 + ... + Er008 Wy, (3.280)

where w; is the angle of the unitary vector m(u) and the axis z;, i € {1,...,n}. Let
P(z) = P(x1, ..., z,) be a first order continuously differentiable function in the domain
G. Assume that G C R" is simple with respect to each axis z, k € {1,...,n}. Then
the following formula is valid

OP(x)

——dr = 7{(005 wi)P(x)dS, foreach k € {1,...,n} (3.281)
G 8$k S

where S = 0G and the surface integral fs is oriented outside of the domain G.

Theorem 3.11.9. (Gauss(1813)-Ostrogradsky(1828-1834)formula)
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Let Py(xz) : G C R" — R, be a continuously differentiable function for each k €
{1,...,n} and assume that the jordanian domain G is simple with respect to each axis
2k, k € {1,....,n}. Then the following formula is valid

0P oP, -
/G[axl () +...+ 6—%( x)]dx = %S[(cos w1) P (z) + ... + (coswp) P (x)]dS  (3.282)

where the surface integral fS is oriented outside of the domain G and S = 0G

Proof. The meaning that G is simple with respect to each axis zx , k € {1,...,n} will
be explained for k = n and let Q € R™! be the projection of the domain G on the
hyperplane determined by coordinates 1, ..., z,—1 = 2. It is assumed that @ C R"!
is jordanian domain(see jordanian body given in definition of (A1))and the
jordanian domain G C R"™ can be described by the following inequalities

(X1 ey 1) < Ty K P(X1, ey Tp—1), (L1, 00y Tp—1) =T € Q (3.283)

where ¢(Z) < ¥(Z), ¥ € Q are continuously differentiable functions. The surface
xn = (), (Z,2,) € G is denoted by S, (upper surface)and z,, = (), (Z,z,) € G
will be denoted by Sp(lower surface). Notice that the unitary vector m defined in
B279) must be oriented outside of G at each point p € S,,. It implies< m, e, >> 0,
similarly < m, e, >< 0 for eachp € Sp. A direct computation of the orthogonal vector
N at each point of the surfaces S, = {x, — ¢¥(Z) = 0}and S, = {z, — ¢(T) = 0} will
lead us to

_ _ [ INAH[9(@))N xSy
<m,e, >=< N\ |N|, e, >= { 1\ (1 + [0sp(3) )12 5 € S, (3.284)

Using the standard decomposition method of a multiple integral into its iterated parts

we get
/M = // 7 o, (Z, xp)dx,]dT
el 6(En Tn=p(T) al'n

/ Po(@,(@))d7 - /Q Pu(3, 9(2))d7

/ Ful ) <muen > (L+|00(2) )\ da
/ P,(Z, (7)) <m,e, > (1 + |85<P(5)|2)1\2d§?
Q

= / P,(x) <m,e, > dS—I—/ P,(z) < m,ey, > dS
Su Sy

j{ P, (z)(cos wy,)d D (3.285)
S
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Here we have used the definition of the unoriented integral given in ([B278) and
the proof of (B:282) is complete. O
Remark 3.11.10. Assuming that G = ‘L_Zjl Gi, with (int G;) N (intG;) = ¢ if i #j

and each G; is a jordanian domain, simple with respect to any azis xy , k € {1,...,n},

then the Gauss-Ostrogradsky formula B.282) is still valid.

3.12 Appendix II Variational Method Involving PDE

3.12.1 Introduction

A variational method uses multiple integrals and their extremum values for deriving
some PDFE as first order necessary conditions. Consider a functional

m

J(z) = / L(z,z(z), 0z2(x))dx , Dy, = H[ai,bi] (3.286)

m i=1

where L(z,z,u) : V x R x R® — R, V(open) 2 D,, is a first order continuously
differentiable function. We are looking for a continuously differentiable function z(z) :
V xR z € CY(V) such that

minJ(z)=J(Z) z€ A (3.287)
where A C C!(V) is the admissible set of functions satisfying the following boundary

conditions

2(a1, @2, ey Trn) = 28(T25 ey Ty (T2 ey ) € Hﬁl[ai,bi]
2(b1, T2, ooy Trn) = 21 (T2 ey Ty

{ 2(T1, oy Te1, @) = 258 (X1 ooy Tm—1), (@1, ey Tm—1) € Hﬁ;l[ai,bi]
2(X1y ey Tone1, b)) = 27 (21, ooy T 1)

. (3.288)
Here the functions 2] , i € {0,1}, j € {1,...,m}, describing boundary conditions,are
some given continuous functions. This problem belongs to the classical calculus of
variations which has a long tradition with significant contributions of Euler(1739)and
Lagrange(1736). The admissible class A C C}(V) is too restrictive and the exis-
tence of an optimal solution z € € is under question even if we assume additional
regularity conditions on the Lagrange function L. A more appropriate class of admis-
sible function is defined as follows. Denote 0D,, = I';, the boundary of the domain
D,, = H;i_ll[ai,bi] and let La(D,,; R™) be Hilbert space of measurable functions
p(x) : Dy — R™ admitting a finite norm || p [|= ([, Ip(2)|?dx)"\? < co. Define the
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admissible class A C C(V) as follows

A={z€C(Dp):0pz € La(Dm; R™), 2|1, = 20} (3.289)

where zg € C(T'y,) is fixed. In addition,the Euler-Lagrange equation(first order neces-
sary conditions)for the problem

min J(z) = J(2) (3.290)

z€e A

where J is given in (3:280]), and A in (3:2289)) can be rewritten as a second order PDE
provided
Lagrange function L(z,z,u) : V x R x R™ — R (3.291)

is second order continuously differentiable and |9, L(x,z,u)] < Cy(1 + |u|) Vu €
R™, x € Dy, and |z| < N ,where Cy > 0is a constant for each N > 0.

3.12.2 Euler-Lagrange Equation for Distributed Parameters
Functionals

A functional of the type (B:280) is defined by a Lagrange function L containing a
multidimensional variable x € D,, (distributed parameter). Assume that L in (3:280])
fulfils conditions B291]) and let Z € A (defined in ([B:289)) be the optimal element
satisfying ([3:290)(locally), i.e there is a ball B(Z, p) C C(D,,) such that

J(2) = JE)Y z€ B(Z,p)NA (3.292)

Denote
w2 = {z € C(Dy,) : their exists 0yz € La(Dpy; R™)} (3.293)

and define a linear subspace Y C W\2
Y ={ye W' ylr, =0} (3.204)

An admissible variation of Zis given by
ze(x) =Z2(x) +ey(x), x € Dpy (3.295)

where € € [0,1]andy € Y. By definition z. € A, ¢ € [0,1],and using (3292)) we get
the corresponding first order necessary condition of optimality using Frechét differen-
tial

0= dJ(zg) = lim 22 =JC)

in, - VG EY (3.296)

where d J(Z;7) is the Frechét differential of .J at Z computed for the argument 7. The
first form of the E-L equation is deduced from (B:296) using the following subspace
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YCY
Y = sp{y € C(Dp) : Ylz) = H yi(zi),yi € Dg([as, bi])} (3.297)
=1

Here the linear space D}([c, 8])is consisting of all continuous functions ¢ which are

derivable satisfying ¢(a) = ¢(8) = 0and its derivative {Z—f .t € o, B]} is a piecewise

continuous function. A direct computation allows us to rewrite
0=dJ(z7)(see (11)) for anyy €Y (3.298)

as follows

0= /D [0.L(z;2(x); 0,2(x))y(z) + Z Ou; L(x;2(2); 0:2(2))0x, y(x)]dx (3.299)
i=1

m

for any 7 € Y, where u = (U1, ..., U ), & = (1, ..., Tpn)
Denote

1/}1(37) = f;ll azL(tl, T2y ey Toms 2(151, T2,y .eny :Em); (91/2:\(151, T2, ey :L’m))dtl,

Ym (x) = faz: O L(x1, T2, ey, T 1bm; Z((T1, T2, ooy Ton—1, tm ); 02 2(T1, T2, ooy Tn—1, tm ) )dbm
(3.300)
and integrating by parts in ([3:299) we get (see 0,L = 04,1;)
m 1 R .
0 :/ {3 [ i) + O L 2(2); 0,2(2)))00, 7)o (3.301)
D=1

for any
yeWh gx) = Hyi(xi)u yi € Dy ([ai, b)) i € {1,...,;m}
i=1

where 91 (), ..., ¥ (z) are defined in 3300). The integral equation F30I) stands for
the first form of the Euler-Lagrange equation associated with the variational problem
defined in ([3:296). To get a pointwise form of the E-L equation ([B301]) we need to
assume that

The optimal element z € C*(§ C D,,,) (3.302)

is second order continuously differentiable on some open subset 8 C D,,.

Theorem 3.12.1. (E-L) Let L(z,z,u) : Dy X R X R™ — R be a second order
continuously differentiable function and consider that the local optimal element Z fulfils
B302). Then the following pointwise E — L equation

m

0. Lz, 2(2),0,2(x)) = 3 95,04, L, 2(x), 0,2(x))] (3.303)

i=1

for any x € 0 C Dy, is valid and Z|r,, = zo € C(T',)
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Proof. By hypothesis, the E — L equation (3301)) is verified where ;(z) and
Ou, L(z,Z(x),0,2(x)) are first order continuously differentiable functions of x € § C
D, for any i € {1,...,m}. The integral in (B301I]) can be rewritten as follows

m

S (o) + 0, Lo 5a); 0. 5@)]0n, 5le) = Fa(a) — Balw)  (3.304)

i=1

——1/% ) + Ou, L(w; 2(x); 022(2))]y () } —

\Ms &MS

——wz ) + Ou; L(w; 2(2); 0, 2(x)) |7 ()

for any x € § C Dm. For each z¢ € 0 arbitrarily fixed, let D,, C 0be a cube centered
at xo and using ([3.304]) for

€y, gl Hyz i), J € C(Day), Ylop,, =0 (3.305)
we rewrite (3301) restricted to the cube D, C 6

- Ey(z)Dx :/ Es(z)dx (3.306)

On the other hand,applying Gauss-Ostrogradsky formula to the first integral in ([B.306])
we get

J,

and using (B308) we obtain

-,

for any 7 € Y satisfying ([3.305) where

m

Ey(x)dx = y{m y(az){Z[—%wl(x) +0u, L(x; Z2(x), 0,2 (x))]cos w; }dS (3.307)

o =1

El(x)d:z:/d Es(z)dx (3.308)

z0 0

E2 (JJ)

{Z ——wz ) + Ou; L(w; 2(x), ,2(2)) 1}y (2)

{—('LL(Q:,Z( ), 82 (x))

+ Y Ou Ll 2(x), 8:2(2))}y(2) (3.309)
i=1

Assimilating (3:308) as an equation for a linear functional on the space Y,, = {7 €
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C(Dx,) : Ylop,, = 0}
0= / Ey(z)dx = / h(z)y(z)dz, VT €Y 4, (3.310)
Doy Day

a standard argument used in the scalar case can be applied here and it shows that
h(z) =0 YV x € Dy, (3.311)

where
m

h(z) = On,[0u, L(x; 2(2), 0,2(2))] — 0. L(w; 2(x), 022(x))

i=1

In particular h(xzg) = 0 where zy € 0 is arbitrarily fixed and the proof is complete. [

Remark 3.12.2. The equation B31I0) is contradicted if we assume that h(x) > 0.1t
is acomplished by constructing an auziliary function y,(z) = 0% — |z — z0|? on the ball
x € B(xg,0) C Dy, which satisfy

1. Go(x) =0, ¥V x € 'y, = boundary of B(xg,0)
2. Jo(x) >0, V x € int B(xg,0)

3. h(z) >0, Vx €int B(xg,0)if o> 0 is sufficiently small

Define Go(z) = 0 for any x € Dy, \ B(zo,0) and

/ h(z)yo(x)dx > 0 contradicting
D

0o

3.12.3 Examples of PDE Involving E-L Equation

(E1) Elliptic Equations

Example 3.12.1. Consider Laplace equation

m

Az(z) = Z@fz(m) =0

=1
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m m

on a bounded domain z € DO, = T] (ai,b;), Dim = . [ai, bi], associated with a Drichlet
i=1 i=1

boundary condition z \ 0Dy, = zo(x) where zg € C(OD,y,).

Define Dirichlet integral

1

D(z) = 3 /D |0, 2(2)[2dx , Opz(x) = (012(2), ..., Omz(x)),

and notice that the corresponding Lagrange function is given by

1
L(z,z,u) = §|u|2 , ueR™

If it is the case then compute 0L = 0 and Y, Oy, [0, L(x; 2(x), 0:2(2))] = AZ(x)
i=1

which allows one to see that (E-L) equation B303) coincides with the above given

Dirichlet problem provided {Z(x) : © € int Dy, } is second order continuously differen-

tiable

Example 3.12.2. Consider Piosson rquation Az(z) = f(z0, © € Dom assoctated
with a boundary condition z|op,, = zo, where zo € C(ODy,).

This Dirichlet problem for Poisson equation can be deduced from (E-L) equation
B303) (see theorem (E-L))and in this respect associated the following functional

36 = [\ 20t + f)s(a)
D,
where L(z,z,u) = 1\ 2[ul?> + f(2)z, u € R™, z € R, is the corresponding Lagrange

function.Notice that 9.L = f(x) and

m

Y 00,0 Lw: 2(2), 0,2(x))] = AZ(x)

i=1

allows one to write (E-L) equation B303) as
0
AZ(z) = f(z), =€ Dy Zlop,, = 2)(x), for 2o € C(ODy,).

0
Example 3.12.3. A semilinear Poisson equation Az(x) = f(x), x € D,,, associated
with a Dirichlet boundary condition z|ap,, = z)(x), for zo € C(ODy,) can be deduced
from (E-L)equation B303) provided we associate the following functional

J(z) = /D {1\ 21052(2)” + g(2(2))}dz

where g(z) : R — R is a primitive of f(z), d"g]l‘zz‘ =f(z),z€R

Similarly, the standard argument used in examples [T121 and [F12.2 lead us to the
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following non linear elliptic equation

0
M%) = 2@ E P + FE@), 7€ Dn
provided L(z,z,u) = {|ul* — p+1| z|PT — g(2)}, p = 1 where g(2) : R — R is a
primitive of f(z). Assuming that f(z) satisfy f(0) =0, lzm 1G) forp=3

|2[P

we take g(z) = $A|z|* and the corresponding (E-L) equatzon coincides with so called
Yang-Milles equation which is significant in Physics.

(F2) Wave equation
(1) Consider (z,t) € R? x R = R* and a bounded interval Dy C R*. Associated the
following functional
J(z) = / 1\ 2{0210, 2(t, 2)[2}dadt
Dy

Notice that the corresponding (E-L) equation (3303) can be written as a wave equa-
tion .
O2(t, x) = 022(t,x) — Ay2(t,x) =0, (t,x) € Dy

(“0"d’Alembert operator)
(2) With the same notations as above we get Klein-Gordan equation(mentioned in
math.Physics equation)

0
O2(t,z) + k*3(t,2) = 0, (t,x) € Dy

which agrees with the following Lagrange Function

3

1
L(z,z,u) = 5{(u0)2 — Z(ul)2 By 22}, u = (ug, u1, Uz, ug)
i=1

Adding %z‘l + j z to the above L we get another Klein-Gordon equation

0
O2(t,z) + k*2(t, x) = MZ(t, 2))® + 4, (t,x) € D4

(E3) PDE involving mimimal-area surface
Looking for a minimal-area surface z = z(x),x € D,, satisfying
Zlop,, = z0 € C(OD,;,) we associate the functional

_ /D 15 100z (@) 2da

0
The correspondmg (E L) equation (B303) is div(T(2))(x) =0, z € Dy

where T'(z)(z) )\ 1+ |0z2(x)?
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(E4) ODE as (E-L)equation for m=1

A functional .

) = [ VIT @R
stands for the length of the curve {y(z) : € [a,b]} and the corresponding (E-L)
equation ([B303)) is

@ 1@ @)

y(a) = Ya, Y(b) = ys
The solutions are expressed by linear y(x) = ez + 5, = € R, where a, 8 € R are
determined such that the boundary conditions §(a) = y,, y(b) = y» are satisfied.

{ d U@ __g ge (a,b)

3.13 Appendix IIT Harmonic Functions;
Recovering a Harmonic Function from its Bound-
ary Values

3.13.1 Harmonic Functions

A vector field H(z) = (Hi(x),...,Hp(z)) : V. C R” — R” is called harmonic in a
domain V C R™ if H € C*(V;R") and

divH (x) = Ow;H;(z) =0, (0x;H; — 0x;H;)(x) = 0,4,j € {i,...,n}  (3.312)
i=1

for any x € V. In what follows we restrict ourselves to simple convex domain V' and
notice that the second condition in (B3312) implies that H(z) = gradg(z) = 0,¢(x)
of some scalar function ¢ (H has a potential) where ¢ is second order continuously
differentiable. Under these conditions, the first constraint in ([B.312)) can be viewed
as an equation for the scalar function ¢

n

0 = divH (z) = div(grade)(x) = Z D2¢(x) = Ag(x) (3.313)

i=1

Any scalar function ¢(z) : VC R” — R which is second order continuously differen-
tiable and satisfies the Laplace equation (B313) for x € V will be called a harmonic
function on V.
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3.13.2 Green Formulas

Let V. C R™ be a bounded domain with a piecewise smooth boundary S = 9V;
consider a continuously derivable scalar field ¢(z) : V' — R™. By a direct computation

we get (0 = (01,...,0))
diviyR =< 0,9 R >=19 < 0, R > 4+ < R,0¢ >= Y A¢p+ < 0¢, 0 > (3.314)

Applying Gauss-Ostrigradsky formula and integrating both terms of equality we get

/Vz/JA¢d:v —|—/V < 0¢,0¢ > dx /V(dinR)dx

f<um¢R>ds
\%4

f¢<m3>w
S

fs H(D)dS

which stands for
(/ <a¢a¢:>mp+/“wA@m::fﬁmDm¢ms (3.315)
\% \% S

Here D,,¢ =< m,0¢ > is the derivative of the scalar function ¢ in the normal
direction represented by the unitary orthogonal vector m at the surface S = OV
oriented outside of V. The expression in is the first Green formula and by
permutation and subtracting we get the second Green formula

| a0 —6au)ds =  [6(D0) - 9D, )]as (3.316)

v

Theorem 3.13.1. (a) If a harmonic function h vanishes on the boundary S = 0V
then h(x) =0 for any x € intV

(b) If ha and hy are two harmonic functions satisfying hi(x) = ha(x), v € S = IV,
then hi(z) = ha(x) for all x € intV.

(¢) If a harmonic vector field H(x) satisfies < m,H >= 0 on the boundary S = 0V
then H(z) =0 for any x € int V.

(d) If Hy and Hsy are two harmonic vector fields satisfying < m, Hy >=< m, Hy >
on the boundary S = OV then Hy(x) = Ha(x) for any x € int V.

Proof. (a): Using the first Green formula for ¢ = ¢ = h and Ah = 0 we
get [i, |0h[?dz = 0 and therefore Oh = gradh(z) = 0 for any = € V which implies
h(z) = const, x € V. Using h(z) =0, z € S = 0V. We conclude h(z) = 0 for any
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zeV.

(b): For h(x) = hi(x) — ha(x) use the conclusion of (a).

(¢): By hypothesis H(z) = 0h(x), © € V, where the potential function h(z), x € V, is
harmonic, Ah = 0. Using the first Green formula ([3.313) for ¢ = ¢ = h with A¢ =0
and Dy, =<m,H > (z) =0 for z € S = V.. We get

/ |Oh|*dx = / |H(x)|*dz =0 and H(x) = 0 for allz € V.
% %

(d): Follows from (c) using the same argument as in (b). The proof is complete. O

Theorem 3.13.2. (a) If h(z) is harmonic on the domain V- C R™ then
$5(Dmh)(x)dS = 0, where Dyp,h =< m,d0h > .

(b) Let B(y,r) CV be a ball centered at y € intV, and h is a harmonic function on
V C R™. Then the arithmetic mean value on Y, = dB(y,r) equals the value

h(y) at the centery,
1
h) = 7( h(z)ds.
=

(c) A harmonic function h(x) : R" — R which satisfies lim|y|_, h(x) = 0 is vanish-
ing everywhere, h(x) = 0, for all x € R™

Proof. (a): Use 3310) for ¢ = h, ¢ = 1.

(b): Let B(y,p) C B(y,r) be another ball, p < r, and denote ) = 0B(y,p) the
corresponding boundaries. Define V,, = W — @ and notice that the boundary S =
OVip =3, 11>2,, where W = B(y,r), @ = B(y,p). The normal derivative D, =<
m,d > is oriented outside of the domain V;., and it implies

sz&onz

D,, = —0, on Z
P
Take V =1V,

s P =h, Y= W in the second Green formula ((B316))). It is known

that ¢ (z), € V, is a harmonic function on V' (see x # y) and as a consequence the
left hand side in ((3316])) vanishes. The corresponding right hand side in ((3310))
can be written as a difference on 37 and »_  and the equation ((3.31€]))lead us to

7{ 1 0h 0, 1 1 0h 0, 1 s,
Z’V‘

g ~ o S = § iy ~ M )

Performing the elementary derivatives we get

1 oh —2 1 oh —2
o 3—ds+%]{ hdS:ﬁj{ 3—d5+%j{ hdS.
T Zr s T ZT P Zp T P Zp
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The first term in both sides of the last equality vanishes (see (a)). Let |S1| be the
area of the sphere S(0,1) C R™ and dividing by [S1]|. We get 7‘n+‘51| fz‘hds =
p”+\51\ fzp hdS, where r"~1Sy| = |3 |, p" Y S| = |>_,|. Using the continuity
property of h and letting p — 0 from the last equality we get the conclusion (b). (¢) :
Using the conclusion of (b) for » — 0o, we get conclusion (c). O

3.13.3 Recovering a Harmonic Function Inside a Ball 1
By Using its Boundary Values

The arguments for this conclusion are based on the second Green formula written on
a domain V =W — @, where W = B(0,r), @ = B(y, p) € B(0,r). This time, we use
the following harmonic functions on V(9V =S =3 [>"))

p=h@), b= = — T 1 (3.317)
’ lz —y["=2 fy[n T e -y |2 '
where yx = ﬁy, P(x) =0,z € Y = 0B(0,r) and o(x) = ‘TJ%W is
harmonic on W. The second Green formula becomes
o oh o
— h(z)—dS = — — h— d 31
$. rogas =4 T, )~ @S (3313)

where Z stands for the derivative following the direction of the radius [y, 2], z € 3 o
A direct computation lead us to

| fz ‘/’g_Z(I)dS| <G pn172 Czpnf1 — Oforp — 0
’ 3.319
|fzphaw+,@d5|<0p"*1—>0forp—>o ( )
and 5 1 1 s
% h_ n—2ds = (TL— 2)% h n—lds = (n — ) | 1 | (3320)
P 6pp Zp P |Zp |

fz hds — (n—2) |51 | h(y), forp — 0

P

Letting p — 0 from B3I8) we get

ho) = gy 5T § M@ G d (3.321)
>
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It remains to compute aqg_im) onz € ) and it is easily seen that see)(x) = constx €

ZT

N
E(m) =—| gradiy(z) | (3.322)
By definition, y* is taken such that
|z —y 7“2—2<96y>+|y|2 _lyl?
o |2 BT Y— n 5= const (3.323)
V> et e

for any « € > and the direct computation of | gradi(x) | shows that

(n—2)(r*— |y *)

rlz—yl"

provided (B323) is used. Using 3322) and B324) int B32I]) we get the following

Poisson formula

| grad(a) |= Jal=r (3.324)

r’— |y [? j{ j{
h(y) = P(x,y) h(x)ds, 3.325
)= "5 E § s = f P i) (3.325)
>
where Poisson kernel

rP—ly? 1

P =
@0 = T8 Ta—y

>0 for any y € B(0,r) (3.326)

Theorem 3.13.3. Let A\(x) : ¥ C R™ — R be a continuous function where & = OW is
the boundary of a fixed ball W C R™. Then there exists a unique continuous function
h(y) : W — Rwhich is harmonic for y € intW and coincides withA(z) on the
boundary X.

Proof. Let » > 0 be the radius of the balllW and for any y € int W define h(y) as
follows.

hy) = § Plo,y)\a)ds (3.327)
>
where P(x,y) = WP 1 5 the Poisson kernel (see(@326)) We know that both

[Silr Jez—y|"

o(y) = W, y € intW and its derivatives 6;’—751”), y € intW,i € 1,2...,n are
harmonic function. As a consequence the following linear combination
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2 - 9p(y) _ ‘szz_i
& ”‘2;% dyi  la—y |“+ Z

|z —y "

n

163

= O DCEIE) SEVEE) g
=1 =1 =1

Yy
1 n

= o W
y =1

|y* | =

= — Sl P:E,
e B

(3.328)

is a harmonic function. In conclusion, h(y), y € int W, defined in (([B327)is a har-
monic function. On the other hand, for a sequence {ym,}m>1 C intW, lim y, =
m—>00

Xo € 2. We get
7{ P(z,ym)dS = 1(see@323), forh = 1)

P

lim P(z,ym)dS = 0,whereX’ = 9B(x¢,6) N%,6 > 0,

m—r00 b

and |  — ym |= ¢ > 0,m > 1, are used.

Using 3329) and B330) we see easily that

li_r}n P(z,ym)AN(x)ds = A(xo)

=

and {h(y) : y € W} is a continuous function satisfying

h(z) = ANz),z € Z

Ah(y) =0, (forall)y € intW

(3.329)

(3.330)

O

(3.331)

(3.332)

(3.333)

A continuous function satisfying (:332) and [B:333)) is unique provided the maximum

principle for laplace equation is used.
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3.13.4 Recovering a Harmonic Function Inside a Ball II

By Using its Normal Derivative on the Boundary

Let h(y) : W C R™ — R be a harmonic function and W = B(z,r) C R” is a ball.
Then

— Oh(y)  Oh(y) .
o(y) = ;yz i and 6—%,1 €1,2,..,n (3.334)
are harmonic functions on the ball W;
h
o(z) = waa—(px), for any x in ¥ = oW (3.335)

where 8%—(;) is the normal derivative of h on X. The property (B334) is obtained
by a direct computation the property ([B.335]) uses the following argument. Without
restricting generality, take z = 0,7 = 1, and for y = p.z,|z| = 1,0 < p < 1, rewrite

h(y) in B337) as follows

Theorem 3.13.4. Let A(z) : >, € R" — R be a continuous function satisfying
§ ANx)dS = 0, where Y = OW s the boundary of a ball W = B(z,r) C R™ .Then
>

there exists a continuous function h(y) : W — R which is harmonic on y € intW

and admitting the normal derivative %Zx) (x €>,0 < p< 1) which equals N(z) for

p = 1. Any other function ¢ with these properties verifies

o(y) — h(y) = const (V) y € W. (3.336)

Proof. The existence of a function h uses the Poisson kernel P(x,y) given in (§3.10),

oly) = %P(m,y))\(x)ds. (3.337)
=

Using (§3.16, §3.17) we know that the function {¢(y),y € W} is continuous and

Ap(y) =0, y in int W (varphi is harmonic on int W)

In addition, using ¢ A(x)dS =0 we get
>

0(0) = f{ A(@)dS = 0 (3.339)
5



3.13. APPENDIX III HARMONIC FUNCTIONS 165

Define
h(y) = h(pz) = /O ) 4 1 h(o) (3.340)

T

where ¢(y) is continuously derivable at y = 0, ¢(0) = 0 and h(0) = const (arbitrarily
fixed). We shall show that h(y) : W — R is a continuous function satisfying

Ah(y) =0, y € int W (h is harmonic in int W) (3.341)
Oh(pzx) Oh(x)

= =p(r) =Az), © € 3.342

| =T = et =), v Y (3342

For simplicity, take h(0) = 0, and using (B340) for p = 1 we compute
1 1
%P(s,y)h(s)dé‘: %P(s,y){/ @dT}ds/ {%P(s,y)@dS}dT (3.343)
0 o 0 T
> > >

By the definition @, T € [0, 1] fixed, is a harmonic function satisfying (8:338) and

B343)) is rewritten as
1 P T
%P(s,y)h(s)ds - /O @m ~ /0 %)dg ~ h(y). (3.344)
=

where

{@,76[0,1]}%{@,56[0&]} (3.345)

and & = p7 are used. The equation [B:344)) stands for (B340 and 3342 is obtained
from (B340) by a direct derivation. O

Bibliographical Comments

Mainly, it was written using the references [5] and [I0]. The last section 3.9 follows
the same presentation as in the reference [12]. In the appendices are are used the
presentation contained in the references [4] and [9].
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Chapter 4

Stochastic Differential
Equations; Approximation
and Stochastic Rule of
Derivations

4.1 Properties of continuous semimartingales and
stochastic integrals

Let a complete probability space {2, F, P} be given. Assume that a family of sub
o-fields F; C F,t € [0,T], is given such that the following properties are fulfilled:

i) Each F; contains all null sets of F.
ii) (Fy) is increasing, i.e. Fy C Fy if ¢t > s.

iii) (F}) is right continuous, i.e. () Fipe = F; for any ¢ < T. Let X (t),t € [0, T
e>0
be a measurable stochastic process with values in R. We will assume, unless other-

wise mentioned, that it is Fy-adapted, i.e., X (t) is Fy-measurable for any t € [0, T7.

The process X (t) is called continuous if X (¢;w) is a continuous function of ¢ for

almost all w € Q. Let L. be the linear space consisting of all continuous stochas-

tic processes. We introduce the metric p by | X — Y| = p(X,Y) = (Elsup|X(t) —
t

167
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Y (1))2/(1 +sup | X (t) — Y ()|?])'/2. It is equivalent to the topology of the uniform
t

convergence in probability. A sequence {X"} of L. is a Cauchy sequence iff for any
e >0, P(sup | X"(t) — X™(t)| > ) — 0 if n,m — oo. Obviously L. is a complete
t

metric space. We introduce the norm || - || by ||X|| = (E[sup | X (t)[?])*/? and denote
¢

by L? the set of all elements in L. with finite norms. We may say that the topology
of L? is the uniform convergence in L?. Since p(X,0) < ||X||, the topology by || || is
stronger than that by p and it is easy to see that L? is a dense subset of L.

Definition 4.1.1. Let X(¢),t € [0,T], be a continuous Fy-adapted process. (i) It is
called a martingale if E|X(t)] < oo for any t and satisfies E[X (t)/Fs] = X(s) for
any t > s.

(i) It is called a local martingale if there exists an increasing sequence of stopping
times (T,,) such that T,, T T and each stopped process X(:';’)"” = X (tATy,) is a martingale
(iii) It is called an increasing process if X (t;w) is an increasing function of t almost
surely (a.s.) with respect tow € Q, i.e. there is a P-null set N C Q such that X (t,w),
t € [0,T] is an increasing function for any w € Q\ N.

(iv) It is called a process of bounded variation if it is written as the difference of
two increasing processes.

(v) It is called a semi-martingale if it is written as the sum of a local martingale
and a process of bounded variation.

We will quote two classical results of Doob concerning martingales without giving
proofs.(see A. Friedmann)

Theorem 4.1.2. Let X (t),t € [0,T] be a martingale.

(i) Optional sampling theorem. Let S and U be stopping times with values
in [0,T]. Then X(S) is integrable and satisfies E[X(S)/FU)] = X(S ANU), where
FU)={Ae Fr: An{U <t}} € F(t) for any t € [0,T]}

(i) Inequality. Suppose E|X (T)|P < oo with p > 1. Then

Esup [X(1)[” < ¢"E[X(T)|
t

where
1
-+
p

=1

| =

Remark 4.1.3. Let S be a stopping time. If X (t) is a martingale the stopped process
XS5(t) = X(tAS) is also a martingale. In fact, by Doob’s optional sampling theorem
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we have (for t > s) E[X®(t)|F(s)] = X(t ASAs) = X(SAs)=X%(s). Similarly,
if X is a local martingale the stopped process X° is a local martingale. Let X be
a local martingale. Then there is an increasing sequence of stopping times S T T
such that each stopped process X% is a bounded martingale. In fact, define Sy by
Sy =inf{t >0 :|X®)| =2 k}(=T i {--} = ¢). Then Sy T T and it holds
sup | X% (t)| < k, so that each X ¢ is a bounded martingale.

t

Remark 4.1.4. Let M, be the set of all square integrable martingale, X (t) with
X(0) = 0. Because of Doob’s inequality the norm ||X|| is finite for any X € M..
Hence M. is a subset of L2. We denote MCZOC the set of all continuous local martingales
X (t) such that X(0) =0 ; it is a subset of L.

Theorem 4.1.5. M, is a closed subspace of L? - M!° is a closed subspace of Le.
Further more, M, is dense in M!°°.

Remark 4.1.6. Denote by H? the set consisting of all random variables h : Q —
R which are Fy-measurable and E|h|?> < oco. Then for each X € L? there holds
E[X(T)/F;] = h where h € H? is the optional solution for

min E|X(T) — h|?> = E|X(T) — h?
heH}

Definition Let X (t) be a continuous stochastic process and A a partition of the

interval [0,T] : A ={0=tg <...<t, =T, and let |A| = max(ti11 —t;). Associated
with the partition A, we define a continuous process <X>A(t) as

k—

(X)) =Y (X (tigr — X(8:)? + (X (1) — X (t))?
1=0

=

where k is the number such that t, <t < ti11. We call it the quadratic variation of
X (t) associated with the partition A Now let {A},, be a sequence of partitions such
that |Am| — 0. If the limit of (X)*™(t) exists in probability and it is independent
of the choice of sequence {Ay,} a.s., it is called the quadratic variation of X (t) and
is denoted by (X)(t). We will see that a natural class of processes where quadratic
variations are well defined is that of continuous semimartingales.

Lemma 4.1.7. Let X be a continuous process of bounded variation. Then the
quadratic variation exists and it equals zero a.s.

Proof. Let |X|(t;w) be the total variation of the function X (s,w),0 < s < ¢t. Then
there holds

k—1

| X|(t) = SIAIP[IX(to)I + > IX (1) = X (8)] + X (8) = X ()]
j=0

and (X)2(t) < (520 1X (t1) = X ()] + X (8) = X (1)) max | X (tis1) = X(t)]
< IX|(8) max | X (ti31) = X (8)
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The right hand side converges to 0 for |[A| — 0 a.s. O

Theorem 4.1.8. Let M(t)t € [0,T], be a bounded continuous martingale. Let {A,}
be a sequence of partitions such that |A,| — 0. Then (M)~ (t), t € [0,T], converges
uniformly to a continuous increasing process (M) (t) in L* sense, i.e.,

lim Efsup [(M)2" (1) — (M) (t)[*] = 0;

n—oo t

in addition M?(t) — (M)(t),t € [0,T)] is a martingale.

The proof is based on the following two lemmas.
Lemma 4.1.9. For any t > s, there holds,
E[(M)2(t)/F(s)] — (M)®(s) = E[(M(t) — M(s))*|F(s)]

In particular, M?(t) — (M)A (t) is a continuous martingale.

Hint. Rewrite M (t) and M(s) as follows (s < t)

k—1
M(t) = M(t) — M(t) + Z[M(tm — M(t;)] + M(0), wheret), <t < tg41
i=0
-1
M(s) = M(s) — M(s;) + Z[M(Sl_l,_l) — M(s;)] + M(0), wheres; < s < s41
i=0
and ANJ[0,s] ={0=s9p < s1 <...<s}. On the other hand

k—1
E[(M(t) = M())*/F(s)] = BE[(M(t) = M(tx))* + Y (M(tiy1) — M(t:))?
i=l+1
+ (M(s111) = M(s))?/F(s)] (4.1)

where t;41 = s;41 and

E[(M(tiy1) — M(t:)(M(tj1) — M(t;)]/F(s)]
= E{E[(M(tis1) — M(t:)|(M(tj41) — M(t;))/F(tj+1)]/F(s)} = 0(ifi > {}.2)

are used. Adding and subtracting M2 (s) = M(s) — M(s;))? + Zi;é(M(sHl) -
M (s;))? we get the first conclusion which can be written as a martingale property.

Lemma 4.1.10. It holds

lim _E[[(M)2(T) — (M)2(T)[?] = 0.

n,m—00
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Theorem 4.1.11. M(t) be a continuous local martingale. Then there is a contin-
uous increasing process (M) (t) such that (M)2(t) converges uniformly to (M)(t) in
probability.

Corollary 4.1.12. M?(t)— (M)(t) is a local martingale if M(t) is a continuous local
martingale.

Theorem 4.1.13. Let X (t) be a continuous semi-martingale. Then (X)2(t) con-
verges, uniformly to (M)(t) in probability as |A| — 0, where M(t) is the local mar-
tingale part of X (t)

Stochastic integrals Let M (¢) be a continuous local martingale and let f(t) be a
continuous F'(t) adapted process. We will define the stochastic integral of f(¢) by the
differential dM (t) using the properties of martingales, especially those of quadratic
variations. Let A = (0 =t9 < ... <t, =T) be a partition of [0, 7. For any ¢ € [0, 7]
choose t; of A such that ¢t <t < tgy1 and define

k—1

LA() =Y F(t) (M (tiea) = M) + f (1)) (M (1) = M(tr) (4.3)

=0

It is easily seen that L (t) is a continuous local martingale. The quadratic variation
is computed directly as

(L) = Z P2t (M) (tiv1)

- <M>(ti))+f2(tk)(<M>(t)_<M>(tk))/0 [F2 () Pd(M)(s)  (4.4)

where f2(s) is a step process defined from f(s) by f2(s) = f(tx) if tx < 5 < tpy1.
Let A’ be another partition of [0, 7]. We define L2 (t) similarly, using the same f(s)
and M(s). Then there holds

A ANy ! A A2 s).
(8 — L)1) / 13, — FA12d(M) (5)

Now let {A,,} be a sequence of partitions of [0, 7] such that |A,| — 0. Then (LA —
LAm)(T) converges to 0 in probability as n,m — oco. Hence {L”"} is a Cauchy
sequence in M!°¢. We denote the limit as L(t).

Definition 4.1.14. The above L(t) is called the Ité integral of f(t) by dM(t) and is
denoted by L(t) = fg f(s)dM(s).
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Definition 4.1.15. Let X (t) be a continuous semimartingale decomposed to the sum
of a continuous local martingale M (t) and a continuous process of bounded variation

A(t)

Let f be an F(t)-adapted process such that f € L?((M)) and
fOT |7 (s)|d|A](s)(c0. Then the Ito integral of f(t) by dX (¢) is defined as

/de /fdM /fdA

Remark 4.1.16. If f is a continuous semimartingale then fo $)dX (s) exists. We
will define another stochastic integral by the differential "odX (s) s € [0,t] fot f(s)o

dX (s) = limja |0 | X5g 2(F(tir1) + F(E:) (X (tisr) — X (t))
+ 300 + ) (X () = X ()]

Definition 4.1.17. If the above limit exists, it is called the Fisk-Stratonovich integral
of f(s) by dX(s).

Remark 4.1.18. If f is a contmuous semzmartmgale the Fzsk Stratonowvitch integral
is well defined and satisfies fo )odX(s fo 2, X)(t)

Proof. Is easily seen from the relation

E
—

N~

(f(tir) + FE)) (X (tirr) — X(8)) + %(f(t) + () (X (t) — X (tx))

RN
[
= O

= Y X () - X(0) + SR - X(0) + 30N (49)

-
Il
=]

where the joint quadratic variation

N
[u

(X)) =Y (ftirr = f(t) (X (tirr — X (t)) + (F(8) — (1)) (X (1) — X (tk))

%

Il
=)

and k is the number such that ¢, <t <tp41. O

Theorem 4.1.19. Let X andY be continuous semi-martingales. The joint quadratic
variation associated with the partition A is defined as before and is written (X,Y )4
Then (X,Y)2 converges uniformly in probability to a continuous process of bounded
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variation (X,Y)(t). If M and N are local martingale parts of X and Y, respectively,
then (X,Y) coincides with (M, N)

Remark 4.1.20. Let w(t) = (w'(¢),...,w™(t)) be an m-dimensional (Fy))-adapted
continuous stochastic process. It is an (Fy))- Wiener process iff each w'(t) is a scalar
Wiener process with the joint quadratic variation fulfilling (w;,w;)(t) = 6;;t where
dit=1and dy, =0 i #j

4.2 Approximations of the diffusion equations by
smooth ordinary differential equations

The m-dimensional Wiener process is approximated by a smooth process and it allows
one to use non anticipative smooth solutions of ordinary differential equations as ap-
proximations for solutions of a diffusion equation. It comes from Langevin’s classical
procedure of defining a stochastic differential equation. By a standard m-dimensional
Wiener process we mean a measurable function w(t,w) € R™, (t;w) € [0,00) x Q
with continuous trajectories w(t,w) for each w € Q2 such that w(0,w) = 0, and 7 )
E(w(2)) —w(t1)/Fy,) = 0, i2) E([w(tz) — w(ty)|[w(tz) — w(t1)]” /Fe,) = In(t2 — t1)
for any 0 < t1 < to, where (Q, F, P) is a given complete probability space and F; C F
is the o-algebra generated by (w(s), s < t). The quoted Langevin procedure replaces
a standard m-dimensional Wiener process by a C! non-anticipative process v.(t) (see
v:(t) is F; measurable) as follows

t
1
va(t) = w(t) - / (exp — Bt — $))du(s), = 1,2 10 (4.6)
0
where the integral in the right hand side is computed as

t

w(t) — B/ w(s)(exp — B(t — s))ds (the integration by parts formula) (4.7)
0

Actually, v.(t), t € [0,T], is the solution of the following equations

dv.(t)
dt

= —Pue(t) + Bw(t) = Blw(t) — ve(t), v=(0) =0 (4.8)
and by a direct computation we obtain
Ellv-(t) —w(t)||* <e, t €10,T] (4.9)

Rewrite v.(t) in [0) as
ve(t) = w(t) —n=(1),
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where .
0 = [ exp— it~ s)du(s) (4.10)
0
fulfills dn' = —Bnidt + dw'(t), i =1,...,m, and
dv, 1
t) = Bn.(t), B ==, ) 4.11
Yty = Bne), B= 1.2 10 (a.11)

Now, we are given continuous functions
ftx),g;(tx) [0, T) x R" = R", j=1,...,m,
such that

(@) i) f,g; are bounded, j=1,...,m
it) ||h(t, 2") — h(t,2'|| < Ll|a" — 2'|| (V)2', 2" € R™,t € [0, T

where L > 0 is a constant,h = f, g;. In addition, we assume that (g; € C’Z}’Q([O,T] X
R™)
B) dg‘(t]] , dg;“ , %%q; , dgng .5 =1,...,m, are continuous and bounded functions. Let

xo(t) and z.(t),t € [0,T], be the solution in

de = [f(t,x) + %Z gi; (t,2)g;(t, x)|dt (4.12)
i=1
+ Z 9i (tv .I)dU)(t), :E(O) = Zo
=1

and

de dvit(t), 2(0) = o (4.13)

dt :f(tv'r)+;gi(tax) 4

correspondingly, where v (t) is associated with w(t) in ([&6) and fulfills (Z38)-(@EII).

” "

It is the Fisk-Stratonovich integral (see ”0” below) which allow one to rewrite the

system ({I2) as

dx = f(t,x)dt + Zgi(t, x) o dw'(t), z(0) = zo, (4.14)
i=1

where 10
; def ;i gi

i(t ) o dw' (t) = gi(t, x)dw' (t) + =
gt 2) o dw'(8) " gi(t, 2)duw' (1) + 5 5

(t,z)g;(tx)dt

Theorem 4.2.1. Assume that continuous functions f(t,x), g;(t,x),t € [0,T],z € R™,
are given such that (o) and (8) are fulfilled. Then lim. o E||z-(t) — z0(t)||> =0, t €
[0,T], where x¢(t) and xc(t) are the solutions defined in (I12) and, respectively, @.I3)
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Proof. Using ([@I2]) we rewrite the solution z.(t) as

t) = o —|—/0 f(s),z(s))ds + Zﬂ/o nL(s)gi(s,z-(s))ds, t € [0,T] (4.15)

and from Fj-measurability of n.(t) we obtain that x.(¢) is F;-measurable and non-
anticipative with respect to {F;}, t € [0,7]. Therefore, the stochastic integrals
t

t
/ gi(s,x(s))dw(s) and / gi(s,.(s))dn’(s) are well defined, and using (@I0) we
0 0

obtain

/ gi(s,2e(5))dni(s) = —B [ gils, we ()t (s)ds + / 0i(5, 2 (5, 2 (5))dw' (5).
0 0 0

(4.16)
Step 1
Using (T18)in(@I3) there follows
t mo ot _
ze(t) = —|—/ f(s,zc(s))ds + Z/ gi(s, xe(s))dw' (s)
0 —Jo
m t .
Z/ gi(8s, 2(8))dn(s), t € [0,T] (4.17)
i=170
In what follows it will be proved that (see step 2 and step 3)
t i L[99
= [ gils,2e(s))dnz(s) = 5 | 5(5,22(5))9i(s, 2(5))ds + Oc(e) (4.18)
0 0

where E||O:(e)||* < cie, (V)t € [0,T], for some constant ¢; > 0. Using @IF) in
[ETD) we rewrite (II7) as

z(t) = a0+ [f(s,.%'g(S))

+ 5D B s (Do re(s)]ds Y- [ il o) du'(5) + O1(1.19)
j i=170
where E|O;()||? < cie.

The hypotheses («) and (8) allow one to check that

f(tv‘r) _Z

—_

(L, x)

[\

and g;(t,z) fulfil (a) also but with a new Lipschitz constant L.
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The proof will be complete noticing that

Bllz(t) — 2o(t)|]* < 02/0 E||z.(s) — 2o(s)|[*ds + cze, t € ]0,T) (4.20)

for some constants ¢, c3 > 0 and Gronwall’s lemma applied to ([@20) implies
Bz (t) — 20(t)|]* < ecs(expTL,) = eca (4.21)

which proves the conclusion.
Step 2

To obtain (A1) fulfilled we use an ordinary calculus as integration by parts formula
(see z.(t) is a C' function in t € [0,7]). More precisely

- [t s) = a0+ [ ) (sl

= 3 [ B )
j=1

+ Oi(e) ) Ti;(t) + O} (e), (4.22)
j=1
Here - i
7502 [ 96y (o) 5 ) s amd
0i(6) 2 [ a1(o) [ Gt elo) + G (s (9] s
gt ()
satisfies

E|lONE)? < ke, t € 0,T], (4.23)

(see E||ni(t)|]* < ¢ in EIT) and f,gi, %; %g; are bounded). On the other hand,
J . . . .

d;ta = Bl (t) (see @II)) and using Bnl(t)dt = dw’ (t) — dnl(t) (see ([@I0)) we obtain

that Tij in (m) fulfils

TM&=—A9M&%@W@@M&@+@@7 (4.24)
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Where gij (t, 117) é %(t; I)gj (tvx) and
T

%@ﬁA%@%@M@mw>

satisfies
E||67()||” < ke, t € [0,T] (4.25)

(see gi; bounded and E||ni(t)|]* < e).
Step 3

(a) For i = j we use formulas

@m—@w—mﬁm@m—ﬁwwmmﬂ@

(ni(1))? = (exp — 2Bt)(ut(t))? = (exp — 23t) [/ 2(exp2B3s)n:(s)dw' (s) +/ (exp2ﬁs)d5}

0 0

- 2A%&m¢@+éls

Tii(t) = —/0 gii(s, we (s))nL(s)dnz (s) + 07 (e) (see EZH))

We get,

~+

1) = 5 [ susands =3 [ ulsmdinio)f <o)

~

(s, 7e(9))ds — (b, (0) 1 (1))

{%gii(su xa(s)):| (n%(s))%ds + 62 (<)

~+

NI~ NI~ N~ N -
~+

— S — S—.

gii(s,z<(s))ds + O (e). (4.26)

Here

O3e) £ 63(0) — 5glt, (1) (o (1))?
1 0

+§/0 [&gii(S,xs(S))—F%(S,xs(s))f(s,xs(s))

+6) %g; (5,22(5))9; (5,22 (5))nl ()| (02 (s)) *ds
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fulfils E[|02(e)||> < Kae taking into account that

B|l6F()I* < kee (see @24), E(L(t)* = (exp — 28 E(uc(t))” < e (4.27)

In addition, write (n%(t))? = (exp — 26t)(ut(t))?, where (ui(t))? = a;(t) + b(t) is the
corresponding decomposition using martingale a;(t) = fg 211%(s)(expBs)dw(s) and

b(t) & ‘fot(eprﬁs)ds. Compute (n:(t))* = (exp — 48t)[a;(t))? + (b(t))* + 2ai(t)b(t)]
and (ni(t))8 = (exp — 68t)[(ai(t))® + (b(t))® + 3(ai(t))?b(t) + 3a;(t)(b(t))?]. Noticing
that a;(t), t € [0,T], is a martingale with a;(0) = 0 we can prove (exercise!) that any
(a;i(t))™(m = 2,3) satisfies

Bla®)" = 5 [ m(m =1 Blai(s)"* ((5) 2
where f;(t) £ 2(expft)u’ (t) and a;(t) £ [y fi(s)dw'(s). We get

E(né(t))4 < (const) &2, E(né(t))ﬁ < (const) e3¢ € [0, 7] (4.28)

and the conclusion E||07(g)||? < (const)e used in ([26) follows directly from (27)
and (L23).

(b) For any i # j, there holds

Ty(t) = — / 013 (5, 2 ()7 () (5) + 62 (<) (see (17))

where ‘ ‘ ‘
dnl(s) = —pnl(s)ds + dw’(s) (see EI0)) (4.29)

Using @29) in [@24) for i # j we obtain that n’(t),n(t) are independent random
variables and

7,0 = =3 | au(s.c DAL +00) 0. (430)
where .
01fe) = = [ gyl (i(s)n’ (5
satisfies

E||Oy(e)|[? < (const)e (see g, is bounded and E(n'(s))? < &) (4.31)
Integrating by parts the first term in ([£30) and using
B(nL()*(n2(1)? < (const)e®, B(ni(t)*(nl(1)*(nE(t))* < (const)e® (4.32)
we finally obtain

Ti; (t) = O (e)with E||O?(¢)||> < Ce, t € [0,T) (4.33)
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Using (26, [@33) in (@22) we find [@I]) fulfilled. The proof is complete O

Remark 4.2.2. Under the conditions in theorem (2T it might be useful to notice
that the computations remain unchanged if a stopping time 7 : Q — [0,T], {w: 7 =
t} € Fi, (V)t € 10,1, is used. Namely

liﬁ)lEH:Eg(t/\T) — 2ot AT)|[2 =0(V)t € [0,T],

€.

if the random varieble T : Q — [0,T] is adapted to {F,} i.e. {w:7T >t} € F, for
tel[0,T].

Proof. By definition

dvj
T (EAT) —xo—l—/ f(s,z(s ds—l—Z/ (s, xe(s d;(s),

xo(t AT) =20 —|—/0 ’ f(t,xo(s))ds + Z/ ’ g; (s, zo(s)dw’ (s), t € [0,T7,

Flt.m) 2 5(t,2) + 3 32 2 (1, )g5 0, ).

Using the characteristic function

) 1lifr(w) >t
x(tw) = {O if 7(w) <t

which is a non-anticipative function, we rewrite y.(t) = z.(t A7) and yo(t) = xo(tAT)
as

0 w0 =+ [ O w+2/ (5)g5(5.:(5) 228,

(s5) m@=mﬁé(ﬁsm w+z/ ()95 (5. 40 (5))duw? (5).

Now the computations in Theorem [ Z T repeated for (*) and (**) allow one to obtain
the conclusion. O

Remark 4.2.3. Using Remark 1 we may remove the boundedness assumption of f, g;
in the hypothesis (a) of Theorem[{.2-1] That is to say, the solutions x.(t),zo(t), t €
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[0, T, exist assuming only the hypothesis («, (i1)) and (), and to obtain the conclusion
we multiply f,g; by a C° scalar function 0 < ay(x) < 1 such that an(x) = 1 if
x € Sn(zo),an(x) =0 if x € R" San(xo) where S,(xo) C R™ is the ball of radius p
and centered at xo. We obtain new bounded functions

fN(t,.’L') = f(tv ‘T)aN(x)u gév(t,x) = gj(tv ‘T)aN(‘T)

fulfilling (o) and (B) of Theorem [{.2.1) and therefore lim.jo E|[zY (t) — 2’ (t)||* =0
(V) t € [0,T], where zN(t) and z} (t) are the corresponding solutions. On the other

g
hand, using a stopping time (exit ball time)

T~ (W) =inf{t >0 : xo(t,w) € Sn(x0)}
we obtain xo(t A7n) = 2 (t ATN), t € [0,T] (see Friedmann) where xo(t),t € [0,T)]
is the solution of the equation (LI2) with f,g; fulfilling (o, i) and (5).

Finally we obtain:
) tim Bl (¢ A ) — o(t A )| = 0

for any t € [0,T), and for arbitrarily fired N > 0. The conclusion (c) represents the
approzimation of the solution in [@I2) under the hypotheses («,ii) and (B).

Remark 4.2.4. The nonanticipative process ve(t), t € [0,T], used in Theorem [{-2-]]
is only of the class C* with respect to t € [0,T], but a minor change in the approwi-
mating equations as follows (8 = —, ] 0)
€
dv.
dt

edyr = —yrdt + dw(t), t € [0,T], y;(0) =0, j=1,...k,v-(0) =0

dyr—1
dt

d
)=y, eL =y +y9,..., ¢ = —Yk—1+ Yk

dt

will allow one to obtain a non-anticipative v:(t),t € [0,T] of the class C*, for an
arbitrarily fixed k.

4.3 Stochastic rule of derivation

The results contained in Theorem [£2.T] and in remarks following the theorem give the
possibility to obtain, in a straight manner, the standard rule of stochastic derivation
associated with stochastic differential equations ( SDE.) (65) when the drift vector
field f(t,z) € R™ and diffusion vector fields g;(t,z) € R™, j € {1,...,m} are not
bounded with respect to (¢,2) € [0,T] x R™. More precisely, we are given continuous
functions
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ft,x),g;(t,z): [0,T] x R* - R",j=1,...,m

such that

(1) ||h(t,2") — h(t,2")|| < L||z"” — 2'||, for any 2’, 2" € R",t € [0,T] where L > 0 is
a constant and h stands for f or g;, j € {1,...,m}

(2) g; € CL*([0,T] x R™) ie. digy,0.9;5,0%,9; and 8%g;, j € {1,...,m} are con-
tinuous and bounded functions

Consider the following system of SDE

(3) dx = f(t,x)dt + Z g;(t,z) o dw’ (t),2(0) = wg, t € [0, T] where Fisk-Stratonovich
j=1
integral ”0” is related to It 6 stochatisc integral ”.” by

def

gi(t,z) o du? (t) = gi(t,z) e du’ (t) + %[dmgj (t,x)]g;(t, z)dt

Assuming that {f,g;,7 = 1,...,m}, fulfil the hypotheses (1), (2) then there is a
unique solution z(¢) : [0, 7] — R™ which is a continuous and F;-adapted process
satisfying the corresponding integral equation

(4) z(t) = zo —|—/O f(s,z(s))ds + Z/o g;(s,z(s)) o dw’ (s),t € [0,T]

(see A. Friedman). Here w(t) = (w'(t),...,w™(t) : [0,T] — R™ is the stan-
dard Wiener process over the filtered probability space {Q, {F;} 1C F, P} and
{Fe,t € [0,T]} C F is the corresponding increasing family of o-algebras. Con-
sider the exist ball time

(5) T s inf{t € [0, : z(t) & B(zo,p)} associated with the unique solution of (4)
and the ball centered at g € R™ with radius p > 0.

By definition, each set {w : 7 > t} belongs to Fy, ¢ € [0,T] and the characteristic
function x,(t) : [0,7] — {0,1},x-(t) = 1 for 7 > ¢, x,(t) = 0 for 7 < t, is an
Fi-adapted process

Theorem 4.3.1. (stochastic rule of derivation)

Assume that the hypotheses (1) and (2) are fulfilled and let {x(t) : t € [0,T]} be
the unique solution of (4).

Define a stopping time T : Q — [0,T] as in (5) and consider a smooth scalar
function p € C*3([0,T] x R™). Then the following integral equation is valid
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tAT

(6) p(t AT, x(t AT)) = @(0,20) + [y [Osip(s, 2(5))+ < Dup(s, 2(5)),

Fs,2(9)) >Jds + 70, [§77 < Outols, 2(5))g5 (5, 2(s)) > o du (s),
te€0,7]

where the Fisk-Stratonovich integral 707 is defined by
hj(s,2(s)) o dw (s) = h;(s, 2(s)).dw’ (s) + 5[0ah;(s, 2(s))]g; (s, 2(s))]ds

using Ité stochastic integral ”.”.

Proof. Denote a(t) = ¢(t,x(t)) € R, z(t) = col(a(t),z(t) € R", t € [0,T] where
{z(t),t € [0,T]} is the unique solution of (4) and ¢ € C13([0,T] x R"™) is fixed.
Define new vector fields f(t,z) = col(ho(t, z), f(t,x) € R" T

(7) gj(t,x) = col(hj(t,z),g;(t,x)) € R*, j € {1,...,m},

where

ho(t, ) “ dyp(t, 2)+ < Dop(t, @), f(t, ) >

and

hj(i,lzzr) =< 0yp(t,x),g;(t,x) >, (t,x) € [0,T|xR", j € {1...,m}, z = col(a, ) €
R

Let y(z) : R™ — [0,1] be a smooth function (y € C*°(R")) such that y(z) =1
if € B(zo,p), v(x) = 0if 2 € R™\ B(x0,2p) and 0 < vy(z) < 1 for any
x € B(xo,2p) \ B(xo,p), where p > 0 is fixed arbitrarily. Multiplying f and g;
by v € C*(R"™) we get

®8) fo(t,2) < y() flt, @), ¢ (@) = (2)G(t, ), j = 1,...,m, as smooth func-
tions satisfying the hypothesis of Theorem .21l and denote {z”(¢),t € [0,T]}
the unique solution fulfilling the foloowing system of SDE. (2 (t) = (a”(t), 2" (t))

t mo o
(9) 2°(t) = 2o —|—/0 fP(s,xP(s))ds + Z/o g5 (s,2”(s)) o dw’(s), t € [0,T], where
j=1
20 = col(p(0,z0), z0) € R"*! and
g5 (s,2”(s)) o dw’)(s) = g5 (s,2"(s)) ® dw’ (s) + %[ngf(s, zP(s))]g] (s, 27 (s))ds.
In particular, for ¢ € [0, 7] and using the characteristic function x.(t),

t € 10,7, (see (5)) we rewrite (9) as

(10) 2P(t ANT) = 2o + /Otxf(s) F(s,x(s))ds + Jil /Ot Xa(8)g;(s,z(s)) o dw(s) for any
t €10,T], where 2P(t A7) = (a”(t AT),x(t AT)) and g’}(f) are defined in (7).
Using Remark 23] we get

(11)
lim E||z£(t) — 2Pt AT)|| =0, for each ¢ € [0,T]

e—0
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Here z* = zP(t AT),t € [0,T], verifies the following system of ODE.

LY SN C1()
(12) - ef (tvx)Jr;xr(t)gg(t,w) = e [0,1]

Z(O) = z20 = (<P(Oa IO)) IO)

where the vector fields f*, g7, f € {1,...m} are defined in (8) and fulfil the hypothesis
of Theorem @21l By definition, z2(t) = (a£(t),xL(t),t € [0,T], and (12) can be
rewritten as follows

d@%t(t) = xr(t)v(22(t)) [ho(t, zP(t)) + th 0 t))dv(gl (t)}
(13) ) = )
dxdé“—t(t) = Xr (L‘)V(ch(t)) |:f(f, ,Tg (t)) + j;gj (tv xé’ (t)) d ét(t)}
045(0) - @(0,.%0), .Ig(()) = 1, te [O,T],
where the scalar functions h,,7 € {0,1,...,m}, are given in (7).

In a similar way, write 2°(t) = (a”(t),2”(t)),t € [0, T] and using (10) we get that
af(t A1) =ar(t) and xP(t A7) = ZP(t), t € [0,T] fulfil the following system of SDE.
(14)

af(t) = (0, zo) —1—/0 X+ (8)ho(s,x(s))ds + ;,/0 Xr(8)h; (s, 2(s)) o dw’ (s)
x(tAT)=TP(t) = 20 + /0 X+ (8)f(s,z(s))ds + ;/0 X+ (8)g; (s, 2(s)) o dw’ (s)

Notice that a2(t) = @(t A 7,22(t)) and z2(t),t € [0,T], ¢ > 0, are bounded and
convergent to a”(t),z(t A 7) = z”(t), correspondigly, for each ¢ € [0,T] (see (11)),
when € — 0.

As a consequence

et AT, x(tANT)) = Ehg% et AT, 22(t)) = lim a2 (t) = af(t) =

e—0
(15) tAT m tAT )
= ¢(0,x0) + /0 ho(s,z(s))ds + ;/0 hj(s,x(s)) odw’(s), t € [0,T]

and the proof of the conclusion (6) is complete. O
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Comment on stochastic rule of derivation
The stochastic rule of derivation is based on the hypothesis (2) which involves higher
differentiability properties of the diffusion vector fields

gj € CP2([0,T] x R™; R"),j € {1,...,m}

On the other hand, using a stopping time 7 : Q — [0, 7], the right hand side of the
equation (6) is a semimartingale without imposing any growth condition on the test
function ¢ € C13([0,T] x R™). The standard stochastic rule of derivation does not
contain a stopping time and it can be accomplished assuming the following growth
condition

(16) |0ep(t, @), 10z, 0(t, )], |03 4,0t )| < k(L + [[2|[P), 4,5 € {1,...,n},
x € R", where p > 1 (natural) and k& > 0 are fixed. Adding condition (16) to the
hypotheses (1) and (2) of Theorem L3 and using a sequence of stopping times
T, : Q= [0,T], plLr& 7, =T, we get the following stochastic rule of derivation

p(t,z(t)) = (0, 20) +/O [Os(s, 2(s))+ < Dup(s, 2(s)), [ (s, 2(s)) >|ds+
(17) m t
+ Z/ < Ozp(s,x(9)), g5 (s, z(s)) > odw’(s), t € 0,7
j=1"9

4.4 Appendix

I. Two problems for stochastic flows asociated with
nonlinear parabolic equations

(I. Molnar , C. Varsan, Functionals associated with gradient stochastic flows and
nonlinear parabolic equations, preprint IMAR 12/2009)
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4.4.1 Introduction

Consider that {Z,(t; A) : t € [0,T]} is the unique solution of SDE driven by complete
vector fields f € (C, N CE NC?)(R™;R™) and g € (Cf NC?)(R";R"),

(4.34)

diZ = p(\) f(Z)dt + g(Z) o dw(t), t € [0,T], x € R",
z(0) = A e R",

where ¢ € (C} NC?)(R™) and w(t) € R is a scalar Wiener process over a complete
filtered probability space {Q, F D {F}, P}. We recall that Fisk-Stratonovich integral

“o” in ([@34)) is computed by

() du(t) = g(z) - du(t) + 50ug(z) - gla)d

using Ito stochastic integral “.”.

We are going to introduce some nonlinear SPDE or PDE of parabolic type which
describe the evolution of stochastic functionals u(t,z) = h(y(t,z)), or S(t,z) =
Eh(zy(T;t,)), t € [0,T], z € R", for a fixed h € (C} NC?)(R™). Here {\ = (¢, x) :
t €[0,T],z € R™} is the unique solution satisfying integral equations

To(t;N) =2 € R", t€[0,T]. (4.35)
The evolution of {S(t,z) : ¢ € [0,T],2 € R"} will be defined by some nonlinear

backward parabolic equation considering that {Zy(s;t,x) : s € [t,T],x € R"} is the
unique solution of SDE

0% = p((t,2)) f(@)ds + (@) o du(s), s € [1, T,
A(t) =z € R™.

4.4.2 Some problems and their solutions

Problem (P1). Assume that g and f commute using Lie bracket, i.e.

l9, fl(xz) =0, z € R", (4.36)
where [g, f](z) = [0z9(2)]f (x) — [02.f (x)]g(x),
TVK =pe[0,1), (4.37)

where V' = sup{|0,p(z)| : € R}™ and K = sup{|f(z)|;z € R"}.
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Under the hypotheses [@36]) and ([3T), find the nonlinear SPDE of parabolic
type satisfied by {u(t,z) = h(¥(t,z)) :€ [0,T],z € R"}, h € (C} N C?)(R™), where
{A=¢(t,z) € R" : t € [0,T], € R"} is the unique continuous and Fi-adapted
solution of the integral equation (£.33]).

Problem (P2). Using {A = ¢(¢,2)} found in (P1), describe the evolution of a func-
tional S(t, x) := Eh(Zy(T; ¢, x)) using backward parabolic equations, where {Zy(s; ¢, z) :
s € [t,T]} is the unique solution of SDE

{@f:ﬂMmmﬂ®w+m@NM®weﬁf1 (4.38)

3(t) =z € R™

4.4.3 Solution for the Problem (P1)

Remark 4.4.1. Under the hypotheses (I30) and (3T of (P1), the unique solution
of integral equations ([E3D) will be found as a composition

~

U(t,x) = P(t,2(t, x)), (4.39)

where Z(t,x) = G(—w(t))[z] and A = P(t,2), t € [0,T], z € R", is the unique
deterministic solution satisfying integral equations

A= F(=0(t;\)[z] = V(t,2;:\), t € [0,T], z € R™. (4.40)

Here F(0)[z] and G(7)[z], 0,7 € R, are the global flows generated by complete vector
fields f and g correspondingly, and 0(t; \) = to(\). The unique solution of ([EAQ) is
constructed in the following

Lemma 4.4.2. Assume that [E37) is fulfilled. Then there exists a unique smooth

~

deterministic mapping {\ = ¥(t,z) : t € [0,T],z € R™} solving integral equations

(#4Q) such that

F(0(t;0(t,2)[$(t,2)] = 2 € R", t € [0, T,

r(T, z) (4.41)

z
|zZ(t,z) —z| < R(T,z) := ,t€[0,T], where r(T, z) = TK|p(z)],

L—p
{@wua+amuwﬁ@wwww»—&teWﬂﬁxER“ (4.42)
¥(0,2) =z € R™

Proof. The mapping XA/(t, z;\) (see ([@A0) is a contractive application with respect
to A € R™, uniformly of (¢, z) € [0, 7] x R™ which allows us to get the unique solution
of ([@A0) using a standard procedure (Banach theorem). By a direct computation, we
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get . .
OV (8, 2 M| = [F(V(E, 200N S TVE = p € [0,1), (4.43)

for any t € [0,T], z € R", A € R"™, where 0,0(t; \) is a row vector. The corresponding
convergent sequence {\i(t,2) : t € [0,T],z € R"}1>0 is constructed fulfilling

No(t,2) = 2, Mes(t, 2) = V(t, 23 Mi(t, 2)), t > 0, (4.44)
|)‘k+1(taz) - /\k(t52)| < pk|/\1(taz) - /\0(t,Z)|, k =0, (4 45)
ity 2) = do(t, 2)] < [V(t,2:2) — 2| < TK|p(2)| =: (T, 2). '
Using ([@4H) we obtain that {\;(¢, 2) }x>0 is convergent and
- . i T(T,Z)
P(t,z) = khm Aie(ty 2), [(t,z) — 2| < - = R(T,z),t€]0,T]. (4.46)
—00 —

Passing k — oo into (£44)) and using [£46) we get the first conclusion (Z4I]). On the
other hand, notice that {V(t,z;\) : t € [0,T],z € R"} of ([@A0) fulfils

VG N) = A, £ € [0,T], where §(t, \) = F(0(t; \)[A]. (4.47)

This shows that all the components of 17(1%, z;\) € R™ are first integrals associated
with the vector field fx(z) = p(A\) f(2), z € R™, for each A\ € R", i.e.

OV (1,58, N); ) + [0V (&, (8, M) VIS (@, \)e(N) = 0, ¢ € [0, 7] (4.48)

is valid for each A € R™. In particular, for A = 7,/)/(t-,\z) we get g’j(t,ﬂ)\(t,z)) = z and
([E48)) becomes (H-J)-equation

OV (t, z0(t, 2)) + [0V (t, 2, 0(t, 2)| f(2)p(d(t, 2)) = 0, t € [0,T], = € R".  (4.49)

Combining ([@A0) and [@A9)), by direct computation, we convince ourselves that A =

o~

(¢, z) fulfils the following nonlinear (H-J)-equation (see ([£42))

N (4.50)

{ Bt 2) + [0.0(t, 2)] f(2) (W (¢, 2)) = 0, t € [0,T], 2 € R™,
¥(0,2) =z € R",

and the proof is complete. O

Remark 4.4.3. Under the hypothesis ([A30Q), the {ZT,(t;\) : t € [0,T],A € R"}
generated by SDE [@34)) can be represented as follows

ZTo(t; X)) = G(w(t)) o F(O(t; M) [N = H(t,w(t); A), t €[0,T], A € R" (4.51)
where 0(t; ) = to(N).

Lemma 4.4.4. Assume that [A30) and [@3T7) are satisfied and consider {\ =

~

P(t,z) : t € [0,T],2 € R"} found in Lemma [[-4.2. Then the stochastic flow gen-
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erated by SDE [@34) fulfils

{Zo(t;N) :t €0, T],A € R"} can be represented as in (L.51]), (4.52)
W(t,x) = P(t, 2(t, x)) is the unique solution of integral equations [E35), (4.53)
where Z(t,z) = G(—w(t))[x]. '
Proof. Using the hypothesis ([@30]), we see easily that
y(0,0)[\ :=G(o) o F(O)[N], 0,0 e R, A\ e R" (4.54)
is the unique solution of the gradient system
6.0 = F0.00). Ow(0. 0 = g0,
y(0,0)[A] = A

Applying the standard rule of stochastic derivation associated with the smooth map-

ping p(0,0) := y(0,0)[\] and the continuous process 6 = 6(¢t; \) = tp(N), 0 = w(t),

we get that 7, (t; X) = y(0(¢; A), w(t)), t € [0,T7, fulfils SDE ([@34), i.e.

Ao (5 X) = oA f G (8 2))dt + g(Gp (85 N)) o dw(t), t € [0,T7,

R (4.56)
Uo(0;X) = .

On the other hand, the unicity of the solution satisfying (£34)) lead us to the conclu-
sion that Z,(t; \) = Yy (t; A), t € [0,T], and @352) is proved. The conclusion ([ZE53) is
a direct consequence of ([@5J) combined with {\ = ¢(t,z) : t € [0,T],z € R"} is the
solution defined in Lemma 4.2 The proof is complete. O

Lemma 4.4.5. Under the hypotheses in Lemmal[].4.]], consider the continuous and
Fi-adapted process z(t,x) = G(—w(t))[z], t € [0,T], x € R™. Then the following
SPDE of parabolic type is valid

{ di2(t, ) + 0,2(t, 2)g(x)odw(t) =0, t € [0, T,z 2 € R", (4.57)

zZ(0,2) = x

where the “” is computed by

h(t,z)odw(t) = h(t,x) - dw(t) — %&Ch(t,x)g(x)dt,

using Ito “”.

Proof. The conclusion (@57 is a direct consequence of applying standard rule of
stochastic derivation associated with ¢ = w(t) and smooth deterministic mapping
H(o)[z] := G(—o)[z]. In this respect, using H(o) o G(o)[\] = A € R” for any
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x = G(o)[\], we get

O {H(0)[x]} = =0 {H(0)[z]} - g(2), 0 € R, w € R",

O{H (0)[a]} = 0:{0,{H (0)[z]}} = 0o {~0:{H(0)[2]} - g(x)} (4.58)
= 0:{0:{H (0)[]} - g(x)} - g(2), 0 € R, z € R™.

The standard rule of stochastic derivation lead us to SDE
~ 1
diz(t, x) = 0o { H(0)[2]} o= (t) - dw(t) + 533{1‘1(0) [2]}o—w(nydt, t €0, T,  (4.59)

and rewritting the right hand side of (£50) (see (£ER)) we get SPDE of parabolic
type given in ([57). The proof is complete. O

Lemma 4.4.6. Assume the hypotheses [A30) and @3T) are fulfilled and consider
{AN=9Y(t,z) : t €[0,T],z € R"} defined in Lemma [@TAA). Then u(t,z) := h(y(t, z)),
t €[0,T], z € R", h € (C} NC?)(R"™), satisfies the following nonlinear SPDE of
parabolic type

{ du(t, ) + (Opu(t, x), f(2))p(P(t, 2))dt + (Orult, ), g(x))odw(t) = 0 (4.60)

u(0,z) = h(z), t € 0,T], x € R",

where the “0” is computed by

h(t,z)odw(t) = h(t,x) - dw(t) — %Bwh(t, x)g(x)dt.

Proof. By definition (see Lemma @ZA)), ¢(t,z) = 1(t,2(t,z)), t € [0,T], where
zZ(,x) = G(—w(t))[x] and {@(t, z) € R" : ¢t €]0,T], z € R"} satisfies nonlinear (H-J)-
equations ([L42) of Lemma .42 In addition {Z(¢,xz) € R" : ¢t € [0,T],z € R"} fulfils
SPDE (@57) in Lemma [LZ4H] i.e.

d3(t, ) + 0,2, x)3dw(t) = 0, t € [0,T], z € R™. (4.61)

Applying the standard rule of stochastic derivation associated with the smooth map-
ping {A = (t,z) : t € [0,T], z € R™} and stochastic process z(t, z) := G(—w(t))[z] =:
H(w(t))[z], t € [0,T], we get the following nonlinear SPDE

{ dep(t, ) + 0t (t, ) f(2)p(Y(t, x))dt + 0u9)(t, x)g(x)odw(t) = 0, (4.62)

¥(0,z) ==, t €[0,7T).

In addition, the functional u(t, x) = h(¢(t,z)) can be rewritten u(t, x) = u(t, z(t, x)),
where u(t, z) := h(1(t, z)) is a smooth satisfying nonlinear (H-J)-equations (see (L.42))
of Lemma

{ 8tﬂ(t, Z) + <aza(t7 Z)v f(z))cp(@(t, Z)) = 07 te [07 T]? z € Rn’ (4_63)

u(0, 2) = h(z).
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Using ([EET)and ([{63) we obtain SDPE fulfilled by {u(t,x)},

dru(t, z) + (9:u(t, 2(t, x)), f (2(t, 2))) o (¢ (¢, 2))dt + (Dou(t, x), g(x))odw(t) =0,
u(0,2) = h(z), t € [0,T], z € R™.

(4.64)
The hypothesis [@36]) allows us to write
(0:1(t, 2(t, x)), f(2(t,2))) = 0:(t, 2(t, 2)) [0:2(¢, )][0x2(t, 2)] " f (2(t, @) (4.65)
= (Oyu(t,x), f(z)), t €[0,T], x € R", '
and using (A65) into (Z64) we get the conclusion ([G60),
Opu(t, x) + (Goult, x), f(2)) (¢ (t, 2))dt + (Ozu(t, x), g(x))odw(t) = 0, (4.66)
u(0,z) = h(z), t € [0,T],z € R", '
where the “0” is computed by
h(t,z)odw(t) = —%Bwh(t, x)g(z)dt + h(t,z) - dw(t), (4.67)
using Ito integral “-”. The proof is complete. O

Remark 4.4.7. The complete solution of Problem (P1) is contained in Lemmas

1. 1.2H4. 4.0l We shall rewrite them as a theorem.

Theorem 4.4.8. Assume that the vector fields f € (Cp N CE N C?)(R™;RY), g €
(CENC?)(R™;R™), and scalar function ¢ € (Cf NC?)(R™) fulfil the hypotheses ([E30)
and [@30). Consider the continuous and Fi- {\ = ¢(t,x € R") : ¢t € [0,T],z € R"}
satisfying integral equations (I3D). Then u(t,x) = h(yY(t,x)), t € [0,T], x € R",
fulfils nonlinear SPDE of parabolic type [E6Q0) (see Lemmalf.4.0)), for each h € (C} N
C%)(R™).

4.4.4 Solution for the Problem (P2)

Using the same notations as in subsection 43, we consider the unique solution
{Zy(s;t,x) : s € [t,T)} satisfying SDE ([£.38) for each 0 <t < T and = € R". As far
as SDE ([@.37) is a , the evolution of a functional S(t,z) := Eh(Zy(T;t,x)), t € [0,T],
z € R, h € (C}NC?)(R™), will be described using the pathwise representation of the
conditional mean values functional

v(t,x) = E{h(Zy(T;t,x)) | ¥(t,2)}, 0<t < T, z € R™. (4.68)

Assuming the hypotheses [@36]) and (31) we may and do write the following integral
representation

Zy(Tit,x) = Gw(T) —w(t)) o F[(T — t)p(Y(t,z))][z], 0 <t < T, z € R", (4.69)
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for a solution of SDE ([@3]), where G(o)[z] and F(7)[z], 0,7 € R, z € R", are the
global flows generated by g, f € (C} NC?)(R™;R™). The right side hand of [8J) is a
continuous mapping of the two independent random variables, z; = [w(T) —w(t)] € R
and zo = Y(t,x) € R™ (Fi-measurable) for each 0 < ¢t < T, € R". A direct
consequence of this remark is to use a

y(t5\) = G(T) = w(t) o FI(T —)e(Nial, 0< t < T, (4.70)
and to compute the conditional mean values ([L6])) by
o(t,x) = [Eh(y(t, 23 M)A = ¢(t, 2)). (4.71)
Here the functional
u(t,z; ) := Eh(y(t,z; X)), t € [0,T], x € R", (4.72)

satisfies a backward parabolic equation (Kolmogorov’s equation) for each A € R™ and
rewrite (A7) as follows,

v(t,x) = u(t,z;9(t,z)), 0 <t < T, x € R". (4.73)
In conclusion, the functional {S(¢,z)} can be written as

S(t,x) = E[E{h(Zy(T;t,2)) | Y(t,x)} = Bu(t,z;¢(t,2)), 0 <t < T, z € R",
(4.74)
where {u(t,xz;\) : t € [0,T],2 € R"} satisfies the corresponding backward parabolic
equations with parameter A € R",

Ouu(t, a3 N) + (Drat 5 X), (0, 0) + 5 (0Bu(t, 3 Ng ), (@) = 0,

u(T,250) = h(a), (. 3) 1= o) (&) + 5[0eg (@)l (x).

(4.75)

We conclude these remarks by a theorem.

Theorem 4.4.9. Assume that the vector fields f, g and the scalar function ¢ of SDE

@3]) fulfil the hypotheses [@30) (3T, where the continuous and Fy- {1(t,x) € R™ :
t € [0,T} is defined in Theorem[{.4.8 Then the evolution of the functional

S(t,x) == Eh(zy(T;t,2)), t € [0,T), » € R", h € (C; NC?)(R™) (4.76)

can be described as in (A1), where {u(t,z) : t € [0,T],z € R"} satisfies linear
backward parabolic equations [@TH) for each A € R™.

Remark 4.4.10. Consider the case of several vector fields defining both the drift and
diffusion of SDE [@34), i.e.

dtx - Z 901 dt + Zgz o dwz t € [07 T]7 (4 77)

z(0 ):)\GR".
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We notice that the analysis presented in Theorems[§.4.8 and[{-4-9 can be extended to
this multiple vector fields case (see next section).

4.4.5 Multiple vector fields case

We are given two finite sets of vector fields {fi,..., fm} C (Co N C} N C?)(R™;R™)
and {g1,...,9m} C (CL NC?)(R™;R™) and consider the unique solution {Z,(t,\) : ¢ €
[0,7], A € R"} of SDE

iz = Z% dt—l—ZgZ )odw;(t), t €1[0,T], T € R", (4.78)

z2(0) = )\ eR"
where ¢ = (p1,...,0m) C (CL NC?) are fixed and w = (w1 (t), ..., wy,(t)) € R™ is a

standard Wiener process over a complete filtered probability space {Q, F D {F:}, P}.
Each “o” in ([@T8) is computed by

L Ongi )]s (@), (4.79)

gi(x) o dw;(t) = g;(x) - dw;(t) + 5

using Ito integral “.”.

Assume that {\ = ¢(t,z) e R" : t € [0,T],z € R} is the unique continuous and
Fi-adapted solution satisfying integral equations

To(t;\) =z €eR", t€[0,T]. (4.80)

For each h € (C} N C?)(R™), associate stochastic functionals {u(t,z) = h(y(t,z) :
t € 0,7,z € R")} and {S(t,z) = Eh(Zy(T;t,z)) : t € [0,T],2 € R"}, where
{Zy(s;t,z) s € [t,T],z € R"} satisfies the following SDE

m

ds'/f:[zw(d}(tx fz dS—I—Zgl Odw’L ,SE[t,T],
=1
T(t) ==z

Problem (P1). Assume that

M={f1,..., fm,91,---,9m} are muttualy commuting using Lie bracket i.e.
[X1, Xo](z) = 0 for any pair X1, Xs € M

1
TV,K; = p; € [0, —), 4.82
pi €10, —) (4.82)
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where V; := sup{|9;¢i(x)| : x € R"} and K; = {|fi(x)| :x e R"}, i=1,...,m

Under the hypotheses (@8] and ([@82)), find the nonlinear SPDE of parabolic
type satisfied by {u(t,z) = h(¢(t,z)),t € [0,T],z € R"}, h € (C{ NC?)(R™), where
{A=49(t,z) € R* : ¢ € [0,T],z € R"} is the unique continuous and F;-adapted
solution of integral equations (£.80).

Problem (P2). Using {\ = ¢(t,z) e R" : t € [0,T],z € R"} found in (P1), describe
the evolution of a functional S(¢,z) = Eh(Zy(T';t, x)) using backward parabolic equa-
tions, where {Zy(s;t,x) : s € [t,T]} is the unique solution of SDE

d.% = [ng (V(t,x)) fi(Z ds+Zgz ) o dwi(s), s € [t,T1, (4.83)

4.4.6 Solution for (P1)

Under the hypotheses (L&) and (£82), the unique solution of SPDE ([@LT8]) can be
represented by

Zo(t;N) = G(w(t)) o F(8(t; M) [N =: H(t,w(t); ) (4.84)

G(0)|z] = Gi(o1) 0+ 0 Gu(om)[z], 0 = (01,...,0m) € R™,
(0)[2] = Fi(o1) o -+ 0 Fn(om)[2], 6(;A) = (tp1(A), ..., tom(A)) € R™ and
{(Fi(0i)[z], Gi(i)[2 ]) :0i €R,z€R"}
are the global flows generated by (f;, i), ¢ € {1,...,m}.
The arguments for solving (P1) in the case of one pair (f,g) of vector fields
(see subsection ([{LZ3])) can be used also here and we get the following similar results.

Under the representation ([€84), the unique continuous and F;-adapted solution {\ =
Y(t,z): t €[0,T],2 € R"} solving equations

Zo(t;N\) =2 €eR", t€[0,T] (4.85)
will be found as a composition

P(t,x) = &(t,%\(t,x)), Z(t,x) == G(—w(t))[x]. (4.86)
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Here A = ¢(t, 2), t € [0,T], z € R™ is the unique solution satisfying

A= F(=0(t;\)[z] = V(t,z;\), t € [0,T], z € R". (4.87)

Lemma 4.4.11. Asume that [@8T)) and [@32) is fulfilled. Then there exists a unique
smooth mapping {\ =(t,z) :t € [0,T],z € R"} solving [E8T) such that

F(0(t; 9(t, ) (t, 2)] = 2 € R, t € [0,T],
~ (T, 2) N (4.88)
|¢(t72)_2|<R(T72) = Tpute[ovT]quR )

where p=p1+ -+ pm €[0,1) and r(T,z) = T Y ;" K;|pi(2)].

In addition, the following nonlinear (H-J)-equation is valid

~

8,5121\(15, z) + 8,21];(@ Z)[i ei(P(t, 2)) fi(2)] =0, t € [0,T], 2 € R, (4.89)

o~

¥(0,2) = z.

The proof is based on the arguments of Lemma [£.4.2] in subsection [£.4.3

Lemma 4.4.12. Assume that (A81) and [E32) are satisfied and consider {\ =
P(t,z) € R" : ¢t € [0,T],2z € R"} found in Lemma [EZAII). Then the generated by
SDE [@TR) fulfils

{Z,(t;A) :t € [0,T], A € R"} can be represented as in ([A34), (4.90)

P(t,x) = gZ(t, Z(t,x)), is the unique solution of ([LIH), (4.91)
where Z(t, r) = G(—w(t))[x]. '

The proof follows the arguments used in Lemma 244 of section 43

Lemma 4.4.13. Under the hypothesis [L81), consider the continuous and Fy- Z(t,x) =
G(—w(t))[z], t € [0,T], x € R™. Then the following SPDE of is valid

dtg(tvx) + Zax%\(ta z)gl(x)gdwz(t) = 07 te [Oa T]v r e R"
=1
2(0,z) = z,

(4.92)

where the 7 is computed by

hi(t, x)odw; (t) = hi(t,z) - dw;(t) — %&Chi(t,x)gi(x)dt

using Ito “”.
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Proof. The conclusion ([£.92) is a direct consequence of applying standard rule of asso-

ciated with 0 = w(t) € R™ and smooth deterministic mapping H(o)[x] = G(—0)[z].
In this respect, using H(o) o G(o)[A] = A € R” for any = = G(0)[)], we get

0o, H(0)[x] = —0:{H (0)[z]}gi(z), 0 =

07 {H (0)[x]} = 05, {0, {H (0)[2]}}

= 0:{0:{H (0)[z]}gi(

for each i € {1,...,m}. Recall that the standard rule of lead us to SDE

Oly.eey0m) ER™ € R",

(
= 05:{—0s {H( )al}gi(x)} (4.93)
x)}tgi(z), c € R™, 2 € R"

dtZ t :E Z&UI{H }(U w(t)) d’LUz Z }(U w( t))dt (494)

for any t € [0,7], x € R™. Rewritting the right hand side of (94 (see (£93)) we
get SPDE of parabolic type given in ({.92). O

Lemma 4.4.14. Assume the hypotheses [A81) and [@B2) are fulfilled and consider
{A=9¢(t,z) :t€[0,T],z € R"} defined in Lemmal{-{.18 Then u(t,z) := h(y(t,z)),
t €10,T], x € R, h € (C} NC?)(R"), satisfies the following nonlinear SPDE

dyu(t, ©)+(0ru(t, ), Z pi(Y(t, x) fi(z)))dit

+ Zm: dpult, ), gi(x))odw;(t) = 0, t € [0,T] (4.95)
=1

w(0, ) = h(z)

((\ ”

where the nonstandar is computed by

hi(t, ;U)del(t) = hi(t, ,T) . dwl(t) — %@hi(t, ,T)gi(l')dt.

The proof uses the same arguments as in Lemma [£.4.6] of section

Theorem 4.4.15. Assume that the vector fields { f1,..., fm} C (CNCLNC?)(R™;R™),
{91,--,gm} C (CLNC?)(R™;R™) and scalar functions {p1,...,om} C (CL NC?)(R™)
fulfil the hypotheses [£.81] and [{-82

Consider the continuous and Fi- {\ = ¥(t,x) € R™ : t € [0,T],z € R"} satis-
fying integral equations [@8D) (see Lemmal[f.4.19). Then {u(t,z) = h(¢(t,x)) : t €
[0,T],z € R"} fulfils nonlinear SPDE of parabolic type [L95)) (see Lemma[{-4-14)) for
each h € (CL NC?)(R™).
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4.4.7 Solution for (P2)

As far as SDE ({.83)) is a non-markovian system, the evolution of a functional S(¢, z) :=
En(zy(T;t,2)), t € [0,T], x € R™, for each h € (C} NC?)(R™) will be described using
the pathwise representation of the conditioned mean values functional

v(t,x) = E{h(Zy(T;t, ) | Y(t,x)}, 0<t < T,z €R"™ (4.96)

Here 7, (T';t, ) can be expressed using the following integral representation
Ty (Tst,x) = G(w(T) — w(t) o F[(T' = t)p((t, 2))](z), 0 <t < T, (4.97)
where G(0)[z] and F(0)[z], 0 = (01,...,0m) € R™, z € R", are defined in (P1)
(see @A) for ¢ = (p1,...,9m). The right hand side of ([@97) is a continuous

mapping of the two independent random variables, z; = w(T) — w(t) € R™ and
zo = YP(t,x) € R™ (F-measurable) for each 0 <t < T, x € R™.

Using the parameterized random variable
y(t,x;\) = G(w(T) —w(t)) o F(T — t)p(N)](z), 0 <t < T (4.98)
we may and do compute the functional v(¢, x) in ([£96) by
v(t,x) = [Eh(y(t,z; N)|(A = ¢(t,2)), 0 <t < T, z € R". (4.99)
Here, the functional
u(t,z; \) = Eh(y(t,z; ), t € [0,T], € R™, (4.100)

satisfies a backward parabolic equation (Kolmogorov‘s equation) for each A € R™ and
rewrite ([@L99) as follows,

v(t,x) = u(t,z;9(t,x)), 0 <t < T, x € R™ (4.101)
In conclusion, the functional S(t,z) = Eh(Zy(T;t,z)) can be reprezented by
S(t, ) = EIE{h(Z4(Tst,2)) | ¢(t,)}) = Bult,z: b (t,)) (4.102)

for any 0 < ¢t < T, z € R", where {u(t,z;\) : t € [0,T],z € R"} satisfies the
corresponding backward parabolic equations with parameter A € R™,

Opult, z; N) + (Ozult, x; M), f

N)I)—l

Z ult, @3 N)gi(), gi(x)) = 0,
= (4.103)

T 2) = b)) = Do V) + 5 3 lona
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We conclude these remarks by a theorem.
Theorem 4.4.16. Assume that the vector fields { f1,..., fm} C (C,NCLNC?)(R™; R™),

{g1,..,gm} C (CL NC*(R™R™), and scalar functions ¢ = (p1,...,0m) C (CL N
C%)(R™) of SDE (@33) fulfil the hypotheses [ARI)) and @32). Then the evolution of

the functional
S(t,x) := Eh@y(T;t,z)), t €0,T], z € R, h € (Cf NC?)(R™) (4.104)

can be described as in [II02), where {u(t,z;\) : t € [0,T),x € R"} satisfies linear
backward parabolic equations (EI03)), for each X € R™.

Final remark. One may wonder about the meaning of the martingale representa-
tion associated with the non-markovian functionals h(Zy (T;t,x)), h € (CE NC?)(R™).
In this respect, we may use the parameterized functional {u(t,z; ) : t € [0,T],2 €
R™} fulfilling backward parabolic equations [@I03]). Write

W@y (Tst,2)) = w(T,Zp(T; t,2); X = ¢(t,z)) (4.105)

and apply the standard rule of stochastic derivation associated with smooth mapping
{u(s,z;\) : s € [0,T],z € R"} and stochastic process {Zy(s;t,x) : s € [t,T]}. We get
~ T ~
h(@y (T;t, ) =ult, z; A) +/ (0s + L) (u)(s, Ty (s;t, x); \)ds
o . (4.106)
+ Z/ (Opu(s, Ty (s;t,2); A), gi(z))dw; (s),
i=17t
where L;(u)(s,:v;i) = (Opu(s, m; \), fz,\) + %Z;il(agu(s,:C;A)gi(:v),gi(:v» coin-
cides with parabolic operator in PDE ([@.103). Using (@I03)) for X =t
the following martingale representation

(t,x), we obtain

m T R
h(@y (T;t,x)) ZU(t,I;l/f(t,:r)HZ/t (Ozu(s, Zy(s:t,2); ), gi(2)) - dw;(s), (4.107)

which shows that the standard constant in the markovian case is replaced by a F;-
measurable random variable w(¢, ;¥ (t,x)). In addition, the backward evolution of
stochastic functional {Q(t,z) := h(Zy(T;t,x)) : t € [0,T],2 € R"} given in (I07)
depends essentially on the forward evolution process {¢(¢,z)} for each t € [0,T] and
r e R™

Bibliographical Comments

The writing of this part has much in common with the references [I] and [I1].
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