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Introduction

This book is encompassing those mathematical methods used in describing and solving
second order partial differential equation (PDE) of elliptic, hyperbolic and parabolic
type.

Our priority is to make this difficult subject accessible to those interested in applying
mathematics using differential equations as models. It is accomplished by adding some
fundamental results from ordinary differential equations (ODE) regarding flows and
their differentiability properties which are useful in constructing solution of Hamilton
Jacobi equations.
The analysis of first order Cauchy-Kowalevska system is limited to their application
in constructing analytical solution for hyperbolic and elliptic equations which are fre-
quently used in Physics and Mechanics.
The exposition is subjected to a gradually presentations and the classical methods
called as Fourier, Riemann, Fredholm integral equations and the corresponding Green
functions are analyzed by solving significant examples.
The analysis is not restricted to the linear equations. Non linear parabolic equation
or elliptic equations are included enlarging the meaning of the weak solution.
This university text includes a Lie-geometric analysis of gradient systems of vector
fields and their algebraic representation with a direct implication in treating both first
order overdetermined systems with singularities and solutions for first order PDE.
We are aware that a scientific presentation of PDE must contain an additional text
introducing several results from multidimensional analysis and it is accomplished in-
cluding Gauss-Ostrogadsky formula, variational methods of deriving PDE and recov-
ering harmonic functions from its boundary values (see appendices I,II,III of chapter
III).
Each chapter of this book includes exercises and problems which can be solved pro-
vided the given hints are used.
Partially, some subjects of this university-text have been lectured at Abdus Salam
School of Mathematical Sciences (ASSMS), Lahore and it is our belief that this pre-
sentation deserve a wider distribution among universities having graduate program
in mathematics.
The authors express their gratitude to Abdus Salam School of Mathematical Sciences
(ASSMS) of GC University Lahore for their encouragements and assistance in writing
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2 Introduction

this book.
This book also includes two subjects that encompass good connection of PDE with
differential geometry and stochastic analysis. The first subject is represented by gra-
dient systems of vector fields and their influence in solving first order overdetermined
systems. The second subject introduces approximations of SDE by ODE which can
be meaningful in deriving significant results of stochastic partial differential equa-
tions(SPDE) represented here by stochastic rule of derivation.Our belief is that such
subjects must be presented in any introductory monography treating PDE.



Chapter 1

Ordinary Differential
Equations(ODE)

1.1 Linear System of Differential Equations

A linear system of differential equations is described by the following scalar differential
equations

dyi

dx
=

n∑

j=1

aij(x)yj + bi(x), x ∈ I ⊆ R, i = 1, 2, ..., n (1.1)

where the scalar functions aij and bi are continuous on the interval I ⊆ R (aij , bi ∈
C(I;R)). Denote z = col(y1, . . . , yn) ∈ Rn as the column vector of the unknown
functions and rewrite (1.1) as a linear vector system

dz

dx
= A(x)z + b(x), x ∈ I ⊆ R, z ∈ R

n (1.2)

where A = (aij), (i, j) ∈ {1, . . . , n} stands for the corresponding n × n continuous
matrix valued function and b = col(b1, . . . , bn) ∈ Rn is a continuous function on I
valued in Rn. A solution of the system (1.2) means a continuous function z(x) :
I → Rn which is continuously differentiable (z ∈ C1(I;Rn)) and satisfies (1.2) for any
x ∈ I, i.e dz

dx (x) = A(x)z(x) + b(x), for all x ∈ I. The computation of a solution as a
combination of elementary functions and integration is not possible without assuming
some particular structures regarding the involved matrix A. As far as some qualitative
results are concerned (existence and uniqueness of a solution ) we do not need to add
new assumptions on the A and a Cauchy problem solution receives a positive answer.

3



4 CHAPTER 1. ORDINARY DIFFERENTIAL EQUATIONS(ODE)

For a fixed pair (x0, z0) ∈ I × Rn we define {z(x) : x ∈ I} as the solution of the
system (1.2) satisfying z(x0) = z0 (Cauchy problem solution). To prove uniqueness
of a Cauchy problem solution we recall a standard lemma.

Lemma 1.1.1. (Gronwall) Let ϕ(x), α(x) : [a, b] → [0,∞) and a constant M > 0 be
given such that the following integral inequality is valid

ϕ(x) 6M +

∫ x

a

α(t)ϕ(t)dt, x ∈ [a, b]

where α and ϕ are continuous scalar functions. Then

ϕ(x) 6Mexp

∫ b

a

α(t)dt, ∀x ∈ [a, b]

Proof. Denote ψ(x) = M +
∫ b
a
α(x)ϕ(t)dt and a straight computation lead us to

ϕ(x) 6 ψ(x), α ∈ [a, b] and

{
dψ(x)
dx = α(x)ϕ(x) 6 α(x)ψ(x), x ∈ [a, b]

ψ(a) = M
(1.3)

The differential inequality in (1.3) can be written as a scalar equation

{
dψ(x)
dx = α(x)ψ(x) + δ(x), x ∈ [a, b]

ψ(a) = M
(1.4)

where δ(x) 6 0, ∀x ∈ [a, b]. Using the integral representation of of the scalar equation
solution we get

ψ(x) = [exp

∫ x

a

α(t)dt]{M +

∫ x

a

(exp −
∫ t

a

α(s)ds)δ(t)dt}

and as consequence(see δ(x) 6 0, x ∈ [a, b])we obtain

ϕ(x) 6 ψ(x) 6M [exp

∫ b

a

α(t)dt], ∀x ∈ [a, b]

Theorem 1.1.2. (Existence and uniqueness of Cauchy problem solution)
Let A(x) : I → Mn×n(n × n matrices) and b(x) : I → Rn be continuous functions
and x0 ∈ I ⊆ Rn be fixed. Then there exists a unique solution z(x) : I → Rn of the
system satisfying the initial condition z(x0) = z0 (Cauchy condition).

Proof. We notice that a solution {z(x) : x ∈ I} of (1.2) satisfying z(x0) = z0 fulfils
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the following integral equation

z(x) = z0 +

∫ x

x0

[A(t)z(t) + b(t)]dt, ∀x ∈ I (1.5)

and conversely any continuous function z(x) : I → Rn which satisfies (1.5) is contin-
uously differentiable
and

dz

dx
= A(x)z + b(x), ∀x ∈ I, z(x0) = z0

We suggest to look for a continuous function satisfying integral equation (1.5) and it
is accomplished using Picard’s iteration method which involves the following sequence
of continuous functions {zk(x) : x ∈ I}k>o

z0(x) = z0, zk+1(x) = z0 +

∫ x

x0

[A(t)zk(t) + b(t)]dt (1.6)

For each compact interval J ⊆ I, x0 ∈ J , the sequence {zk(x) : x ∈ J}k>o ⊆ C(J ;Rn)
(Banach space) is a Cauchy sequence in a Banach space, where

zk+1(x) = z0 + u1 + u2...+ uk+1, uj+1(x) = zj+1(x) − zj(x), j > 0 (1.7)

In this respect, {zk(x) : x ∈ J} rewritten as in (1.7) coincides with a partial sum of
the following series

∑
(x) = z0 + u1 + u2...+ uk + ..., x ∈ J (1.8)

and the convergence of {∑(x) : x ∈ J} ⊆ C(J ;Rn) can be obtained using a convergent
numerical series as an upper bound for it. The corresponding convergent numerical
series is of exponential type and it is contained in the following estimate. Using
standard induction argument we prove

| uj+1(x) |6 (1+ | z0 |)k
j+1|x− x0|j+1

(j + 1)!
, ∀j > 0, x ∈ J (1.9)

where
k = max(maxt∈J | A(t) |,maxt∈J | b(t) |)

For j = 0 we see easily that | u1 |6 (1+ | z0 |)k | (x− x0) |, x ∈ J , and using

uj+2(x) = zj+2(x) − zj+1(x) =

∫ x

x0

A(t)uj+1(t)dt

we get

| uj+2(x) |6 k

∫ |(x−x0)|

x0

| uj+1(t) | dt 6 (1+ | z0 |)k
j+2|(x− x0)|j+2

(j + 2)!
, x ∈ J (1.10)

provided {uj+1(x) : x ∈ J} satisfies (1.9). As a consequence, the inequality (1.9)
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show us that

| uj+1(x) |6 (1+ | z0 |)k
j+1 | J |j+1

(j + 1)
, ∀j > 0, x ∈ J (1.11)

where | J |= maxx∈J | x − x0 |and the corresponding convergent numerical series is
given by (1+ | z0 |)expk | J |, where the constant k > 0 is defined in (1.9). Using(1.11)
into (1.8) we obtain that sequence{zk(x) : x ∈ I}k>o defined in (1.6) is uniformly
convergent to a continuous function {zj(x) : x ∈ J} and by passing k → ∞ in (1.6)
we get

zj(x) = z0 +

∫ x

x0

[A(t)zj(t) + b(t)]dt, ∀x ∈ J (1.12)

It shows that {zj(x) : x ∈ J} is continuously differentiable, zj(x0) = z0 and satisfies
(1.2) for any x ∈ J ⊆ I. Define {ẑ(x) : x ∈ I} as a ”inductive limit” of the sequence
{zm(x) = zjm(x) : x ∈ Jm}m>1

where

I =

∞⋃

m=1

Jm, Jm+1 ⊇ Jm, x0 ∈ Jm

Then ẑ(x) = zm(x), x ∈ Jm,m > 1 is continuously differentiable function satisfying
integral equation (1.5).
Uniqueness
It will be proved by contradiction and assuming another solution {z1(x) : x ∈ I}
of (2)exits such that z1(x0) = z0 and z1(x∗) 6= z̃(x∗) for some x∗ ∈ I then u(x) =
ẑ(x) − z1(x), x ∈ I, verifies the following linear system

u(x) =

∫ x

x0

A(t)u(t)dt, x ∈ I,where{ẑ(x), x ∈ I} is defined above . (1.13)

Let J ⊆ I be a compact interval such that x0, x
∗ ∈ I and assuming that x0 6 x∗ we

get

ϕ(x) =| u(x) |6
∫ x0+|x−x0|

x0

α(t)ϕ(t)dt, ∀x ∈ [x0, x
∗] (1.14)

whereα(t) =| A(t) |> 0 and ϕ(t) =| u(t) | are continuous scalar functions. Using
Lemma 1.1.1 withM = 0 we obtain ϕ(x) = 0 for any x ∈ [x0, x

∗] contradicting
ϕ(x∗) > 0. The proof for x0 > x∗ is similar. The proof is complete.
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1.2 Fundamental Matrix of Solution

A linear homogenous system is described by

dz

dx
= A(x)z, z ∈ R

n (1.15)

where the (n × n) matrix A(x), x ∈ I is a continuous mapping valued in Mn×n. Let
x0 ∈ I be fixed and denote {zi(x) : x ∈ I} the unique solution of (1.15) satisfying the
Cauchy condition zi(x0) = ei ∈ Rn, i ∈ {1, 2, ..., n}
where {e1, ..., en} ⊆ Rn is the canonical basis. Denote

C(x;x0) =‖ z1(x)....zn(x) ‖, x ∈ I (1.16)

where zi(x) ∈ Rn is a column vector. The matrix C(x;x0), x ∈ I defined in (1.16),
is called the fundamental matrix of solutions associated with linear system (1.15).
Let S ⊆ C(I;Rn) be the real linear space consisting of all solutions verifying (1.15).
The following properties of the fundamental matrix {C(x;x0), x ∈ I} are obtained by
straight computation.

1.2.1 Properties

Lemma 1.2.1. Let x0 ∈ I be fixed and consider the fundamental matrix {C(x;x0), x ∈
I} defined in(1.16)

Let{z(x) : x ∈ I} be an arbitrary solution of (1.15) (1.17)

Then
z(x) = C(x;x0)z0, x ∈ I,where z(x0) = z0

{C(x;x0), x ∈ I} is continuously differentiable (1.18)

{
dC(x;x0)

dx = A(x)C(x;x0), x ∈ I
C(x0;x0) = In (unit matrix)

(1.19)

detC(x;x0) 6= 0, ∀x ∈ I andD(x;x0) = [C(x;x0)]−1 satisfies (1.20)

{
dD(x;x0)

dx = −D(x;x0)A(x), x ∈ I
D(x0;x0) = In (unit matrix)

(1.21)

dimS = n (1.22)
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Proof. For z(.) ∈ S, let z0 = z(x0) ∈ Rn be column vector and consider ẑ(x) =
C(x;x0)z0, x ∈ I. Notice that each column of C(x;x0) is a solution of (1.15). As far
as S is a linear space then {ẑ(x) : x ∈ I} is a solution of (1.15) fulfilling the Cauchy
condition

ẑ(x0) = C(x0;x0)z0

Therefore
{z(x) : x ∈ I}and{ẑ(x) : x ∈ I}

are solutions for the linear system (1.15) satisfying the same Cauchy condition z(x0) =
z0 = ẑ(x0) and using the uniqueness of the Cauchy problem solution (see Theorem
1.1.2) we get

z(x) = ẑ(x) = C(x;x0)z0for anyx ∈ I

The conclusion (1.17) is proved. To get (1.19) we notice that each component {zi(x) :
x ∈ I} of {C(x;x0), x ∈ I}, satisfies (1.15) and it shows directly that

dC(x;x0)

dx
=‖ dz1

dx
...
dzn
dx

‖= A(x)C(x;x0), x ∈ I (1.23)

and

C(x0;x0) =‖ e1...en ‖= In (1.24)

The property (1.20) can be proved by contradiction. Assuming that C(x∗;x0)z0 = 0
for some x∗ ∈ I and z0 ∈ Rn, z0 6= 0, we get that the solution z∗(x) = C(x;x0)z0, x ∈
I of (1.15) satisfies z∗(x∗) = 0 which implies (see uniqueness) z∗(x) = 0, ∀x ∈ I
contradicting z∗(x0) = z0 6= 0.Therefore detC(x, x0) 6= 0 for any x ∈ I and denote
D(x;x0) = [C(x;x0)]−1. On the other hand, consider {D1(x;x0) : x ∈ I} as the
unique solution of the linear matrix system

{
dD1(x;x0)

dx = −D1(x;x0)A(x), x ∈ I
D1(x0;x0) = In(unit matrix)

(1.25)

and by straight derivation we get

D1(x;x0C(x;x0) = In, ∀x ∈ I (1.26)

The equation (1.25) shows that D(x;x0) = [C(x;x0)]−1, x ∈ I. The last property
(1.22) is a direct consequence of (1.17) and (1.20). Using (1.17), we see easily that
dimS 6 n and from (1.20) we obtain that {z1(x), ...zn(x) : x ∈ I} are n linearly
independent solutions of (1.15). The proof is complete.

Any basis of S will be called a fundamental system of solutions satisfying (1.15)
and we shall conclude this section recalling Liouville’theorem.

Theorem 1.2.2. Let the (n × n) continuous matrix A(x) = [aij(x)]i,j be given and
consider n solutions {ẑ1(x), ..., ẑn(x) : x ∈ I} satisfying the linear system (1.15).
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Then {W (x) : x ∈ I} is the solution of the following linear scalar equation

dW (x)

dx
= (TrA(x))W (x), x ∈ I , W (x) = det ‖ ẑ1(x), ..., ẑn(x) ‖ (1.27)

where

TrA(x) =

n∑

i=1

aii(x) and W (x) = W (x0)exp

∫ x

x0

[TrA(t)]dt, x ∈ I

for some fixed x0 ∈ I.

Proof. By definition dz̃i(x)
dx = A(x)z̃i(x), x ∈ I, i ∈ {1, ..., n} and the matrix Z(x) =‖

z̃1(x)...z̃n(x) ‖ satisfies

dZ(x)

dx
= A(x)Z(x), x ∈ I (1.28)

Rewrite Z(x) using row vectors

Z(x) =




ϕ1(x)
.
.
.

ϕn(x)



, α ∈ I (1.29)

and from (1.27) we get easily

dϕi(x)

dx
=

n∑

j=1

aij(x)ϕj(x), i ∈ {1, ..., n}, x ∈ I (1.30)

where (ai1(x), ...ain(x)) stands for the row ”i” of the involved matrix
A(x) = (aij(x))i,j∈{1,...,n}.. On the other hand, the standard rule of derivation for a
detZ(x) = W (x) gives us

dW (x)

dx
=

n∑

i=1

Wi(x), where Wi(x) = det




ϕ1(x)
.
.
.

ϕi−1(x)
dϕi(x)
dx

ϕi+1(x)
.
.
.

ϕn(x)




(1.31)
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and using (1.29) we obtain

Wi(x) = aii(x)W (x) , i ∈ {1, ..., n} (1.32)

Combining (1.30) and (1.32) we get the scalar equation

dW (x)

dx
= (

n∑

i=1

aii(x))W (x), x ∈ I (1.33)

which is the conclusion of theorem.The proof is complete.

We shall conclude by recalling the constant variation formula used for integral
representation of a solution satisfying a linear system.

1.2.2 Constant Variation Formula

Theorem 1.2.3. (Constant variation formula) We are given continuous mappings

A(x) : I → Mn×n and b(x) : I → R
n

Let {C(x;x0), x ∈ I} be the fundamental matrix of solutions associated with the linear
homogenous system

dz

dx
= A(x)z, x ∈ I, z ∈ R

n (1.34)

Let {z(x), x ∈ I}be the unique solution of the linear system with a Cauchy condition
z(x0) = z0 {

dz
dx = A(x)z + b(x), x ∈ I
z(x0) = z0

(1.35)

Then

z(x) = C(x;x0)[z0 +

∫ x

x0

C−1(t;x0)b(t)dt], x ∈ I (1.36)

Proof. By definition {z(x), x ∈ I} fulfilling (1.36) is a solution of the linear system
(1.35) provided a straight derivation calculus is used. In addition using z(x) = z0 and
uniqueness of the Cauchy problem solution (see Theorem 1.1.2) we get the conclusion.

Remark 1.2.4. The constant variation formula expressed in (1.36) suggest that the
general solution of the linear system (1.35) can be written as a sum of the general
solution C(x;x0)z0, x ∈ I fulfilling linear homogeneous system (1.34) and a particular
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solution (1.35) (see z0 = 0) given by

C(x;x0)

∫ x

x0

C−1(t;x0)b(t)dt, x ∈ I (1.37)

Remark 1.2.5. There is no real obstruction for defining solution of a linear system
of integral equation

z(x) = z0 +

∫ x

a

[A(t)z(t) + b(t)]dt, x ∈ [a, b] ⊆ R, z ∈ R
n (1.38)

where the matrix A(x) ∈ Mn×n and the vector b(x) ∈ Rn are piecewise continuous
mappings of x ∈ [a, b] such that A(x) and b(x) are continuous functions on [xi, xi+1)
admitting bounded left limits

A(xi+1 − 0) = lim
x→xi+1

A(x), b(xi+1 − 0) = lim
x→xi+1

b(x)for eachi ∈ {1, 2, ..., N − 1}
(1.39)

Here a = x0 < x1 < ... < xN = b is an increasing sequence such that [a, b] = [x0, xN ].
Starting with an arbitrary Cauchy condition z(x0) = z0 ∈ Rn , we construct the cor-
responding solution z(x), x ∈ [a, b], as a continuous mapping which is continuously
differentiable on each open interval (xi, xi+1), i ∈ {1, 2, ..., N − 1} such that the con-
clusions of the above given result are preserved. We have to take the case of these

equations implying derivation dz(x;x0,z0)
dx of the solution and to mention that they are

valid on each open interval (xi, xi+1), i ∈ {1, 2, ..., N − 1} where the matrix A(x) and
the vector b(x) are continuous functions. Even more, admitting that the components
of the matrix {A(x) : x ∈ [a, b]} and vector {b(x) : x ∈ [a, b]}are complex valued func-
tions then the unique Cauchy problem solution of the linear system (1.38) is defined
as {z(x) ∈ Cn : x ∈ [a, b], z(a) = z0 ∈ Cn} satisfying (1.38) ∀x ∈ [a, b].

1.3 Exercises and Some Problem Solutions

1.3.1 Linear Constant Coefficients Equations(Fundamental Sys-
tem of Solutions

(P1). Compute the fundamental matrix of solutions C(x, 0) for a linear constant
coefficients system

dz(x)

dx
= Az, x ∈ R, z ∈ R

n, A ∈Mn×n (1.40)

Solution Since A is a constant matrix we are looking for the fundamental matrix
of solutions C(x) = C(x, 0), where x0 = 0 is fixed and as it is mentioned in Lemma
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(1.2.1) (see equation (1.18)). We need to solve the following matrix equation

{
dC(x)
dx = AC(x), x ∈ R

C(0) = In
(1.41)

The computation of {C(x) : x ∈ R} relies on the fact that the unique matrix solution
of (1.40) is given by the following matrix exponential series

expAx = In +
x

1!
A+ ...+

xk

k!
Ak + ... (1.42)

where the uniform convergence of the matrix series on compact intervals is a direct
consequence of comparing it with a numerical convergent series. By direct derivation
we get

{
d(expAx)

dx = A+ x
1!A

2 + ...+ xk

k! A
k+1 + ... = A(expAx), ∀x ∈ R

(expAx)x=0 = In
(1.43)

and it shows that C(x) = expAx, ∀x ∈ R. It suggest the first method of computing
C(x) by using partial sum of the series (1.42)
(P2). Find a fundamental system of solutions(basis of S) for the linear constant
coefficients system

dz

dx
= Az, x ∈ R, z ∈ R

n, A ∈Mn×n (1.44)

using the eigenvalues λ ∈ σ(A)(spectrum of A).
Case I
The characteristic polynomial det(A−λIn) = P (λ) has n real distinct roots {λ1, ...λn} ⊆
R, i.e σ(A) = {λ1, ...λn}, λi 6= λj , i 6= j. Let vi 6= 0, vi ∈ Rn be an eigenvector corre-
sponding to the eigenvalue λi ∈ σ(A), i.e

Avi = λivi, i ∈ {1, ..., n} (1.45)

By definition ,{v1, .., vn} ⊆ Rnis a basis in Rn and define the vector functions

ẑi(x) = (expλix)vi, x ∈ R, i ∈ {1, ..., n} (1.46)

Each {ẑi(x) : x ∈ R} satisfies (1.43) and {ẑ1(x), ..., ẑn(x)} is a basis of the linear
space S consisting of all solutions satisfying (1.43). Therefore,any solution{z(x) : x ∈
I} of the system (1.43) can be found as a linear combination of ẑ1(.), ..., ẑn(.) and
{α1, ..., αn} from z(x) =

∑n
i=i αiz̃i(x), x ∈ R will be determined by imposing Cauchy

condition z(0) = z0 ⊆ Rn.
Case II
The characteristic polynomial P (λ) = det(A− λIn) has n complex numbers as roots
{λ1, ..., λn} = σ(A), λi 6= λj , i 6= j. As in the real case we define n complex valued
solutions satisfying (1.43)

ẑj(x) = (expλjx)vj , j ∈ {1, ..., n} (1.47)
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where vj ⊆ Rn is an eigenvector corresponding to a real eigenvalue λj ∈ σ(A) and
vj ∈ Cn is a complex eigenvector corresponding to the complex eigenvalue λj ∈ σ(A)
such that v̄j = aj − ibj, (vj = aj + ibj) is the eigenvector corresponding to the eigen
value λj = αj − iβj, (λj = αj + iβj , βj 6= 0). From {ẑ1(x), ..., ẑn(x);x ∈ R} defined
in (1.47) we construct another n real solutions {ẑ1(x), ..., ẑn(x);x ∈ R} as follows
(n = m+ 2k). The first m real solutions

ẑi(x) = (expλix)vi, i ∈ {1, ...,m} (1.48)

when {λ1, ..., λm} ⊆ σ(A) are the real eigenvalues of A and another 2k real solutions

{
ẑm+j(x) = Re ẑm+j(x) =

ẑm+j(x)+ẑm+j+k(x)
2

ẑm+k+j(x) = Im ẑm+j(x) =
ẑm+j(x)−ẑm+k+j(x)

2i

(1.49)

for any j ∈ {1, ..., k}. Here {λm+1, ..., λm+2k} ⊆ σ(A) are the complex eigenvalues
such that λm+j+k = λ̄m+j for any j ∈ {1, ..., k}. Since {ẑ1(x), ..., ẑn(x);x ∈ R} are
linearly independent over reals and the linear transformation used in (1.47) and (1.48)
is a nonsingular one, we get {ẑ1(x), ..., ẑn(x);x ∈ R}as a basis of S.
Case III: General Case
σ(A) = {λ1, ...λd} ⊆ R, where the eigenvalue λj has a multiplicity nj and n =
n1 + ...+ nd.In this case the canonical Jordan form of the matrix A is involved which
allows to construct a basis of S using an adequate transformation T : Rn → Rn. It
relies on the factors decomposition of the characteristic polynomial det(A − λIn) =
P (λ) = (λ− λ1)n1 ...(λ − λd)

nd and using Caylay-Hamilton theorem we get

{
P (A) = 0(null matrix)
(A− λ1In)n1 ...(A− λdIn)nd = 0(null mapping : Cn → Cn)

(1.50)

The equations (1.49) are essential for finding a n × n nonsingular matrix Q =‖
v1...vn ‖ such that the linear transformation z = Qy leads us to a similar matrix
B = Q−1AQ(B ∼ A) for which the corresponding linear system

dy

dx
= By,B = diag(B1, ..., Bd), dimBj = nj , j ∈ {1, ..., d} (1.51)

has a fundamental matrix of solution.

Y (x) = expBx = diag(expB1x, ..., expBdx)

Here

Bj = λjInj
+ Cnj

, and




0 0 0 . . 0
1 0 0 . . 0
0 1 0 . . o
. . . . . .
0 0 0 . 1 0




= Cnj

has the nilpotent property (Cnj
)nj = 0 (null matrix). The general case can be com-

puted in a more attractive way when the linear constant coefficients system comes
from n-th order scalar differential equation . In this respect consider a linear n-th
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order scalar differential equation

yn(x) + a1y
(n−1)(x) + ...+ any(x) = 0, x ∈ R (1.52)

Denote z(x) = (y(x), y(1)(x), ..., y(n−1)(x)) ∈ Rn and (1.51) can be written as a linear
system for the unknown z.

dz

dx
= A0z, z ∈ R

n, x ∈ R (1.53)

where

A0 =




b1
.
.
.
bn




b1 = (0, 1, 0, ..., 0), ...bn−1 = (0, ..., o, 1)and bn = (−an, ...,−a1)

The characteristic polynomial associated with A0 is given by

P0(λ) = det(A0 − λIn) = λn + a1λ
n−1 + ...+ an−1λ+ an (1.54)

whereai ∈ R, i ∈ {1, ..., n} are given in (1.52). In this case, a fundamental sys-
tem of solutions (basis) {y1(x), ..., yn(x) : x ∈ R} for (1.51) determines a basis
{z1(x), ..., zn(x) : x ∈ R}) for (1.52), where

zi(x) = column{yi(x), y
(1)
i (x)..., y

(n−1)
i (x)}, i ∈ {1, ..., n}

In addition, a basis {y1(x), y2(x)..., yn(x)} for the scalar equation (1.51) is given by

F =
⋃d
j=1 Fj where

Fj = {(expλjx), x(expλjx), ..., xnj−1(expλjx)} (1.55)

if the real λj ∈ σ(A0) has the multiplicity degree nj, and

Fj = Fj(cos)
⋃

Fj(sin), if the complexλj ∈ σ(A0) , λj = αj + iβj (1.56)

has the multiplicity degree nj , where

Fj(cos) = {(expαjx), x(expαjx), ..., xnj−1(expαjx)}(cosβjx), x ∈ R

Fj(sin) = {(expαjx), x(expαjx), ..., xnj−1(expαjx)}(sinβjx), x ∈ R
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1.3.2 Some Stability Problems and Their Solution

(P1). ẑ(x; z0) = [expAx]z0, x ∈ [0,∞), be the solution of the

dz

dx
= Az, x ∈ [0,∞), z(0) = z0 ∈ R

n (1.57)

We say that {ẑ(x, z0) : x > 0}is exponentially stable if

| ẑ(x, z0) |6| z0 | (exp − γx), ∀x ∈ [0,∞), z0 ∈ R
n (1.58)

where the constant γ > 0 does not depend on z0. Assume that

σ(A +At) = {λ1, ..., λd} satisfiesλi < 0 for any i ∈ {1, ..., d} (1.59)

Then {ẑ(x, z0) : x ∈ [0.∞)}is exponentially stable
Solution of P1

For each z0 ∈ Rn, the corresponding Cauchy problem solution ẑ(x, z0) = (expAx)
z0, x > 0, satisfies (1.56) and in addition,the scalar function {ϕ(x) =| ẑ(x, z0) |2, x >
0} fulfils the following differential inequality

dϕ(x)

dx
= 〈(A+At)ẑ(x, z0), ẑ(x, z0)〉 6 2wϕ(x), ∀x > 0 (1.60)

where
2w = max{λ1, ..., λd} < o

provided the condition (1.58) is assumed. A simple explanation of this statement
comes from the diagonal representation of the symmetric matrix (A + At) when an
orthogonal transformation T : Rn → Rn, z = Ty(T = T−1)is performed.We get

〈(A+At)ẑ(x, z0), ẑ(x, z0)〉 = 〈[T−1(A+At)T ]ŷ(x; z0), ŷ(x; z0)〉 (1.61)

where
T−1(A+At)T = diag(ν1, ..., νn)

and
νi ∈ σ(A +At) for each {1, ..., n}

Using (1.60)we see easily that

〈(A+At)ẑ(x, z0), ẑ(x, z0)〉 6 [max{λ1, ...λd}] | ẑ(x, z0) |2= 2wϕ(x) (1.62)

where
2w = max{λ1, ..., λd} < o

and

ϕ(x) =| ẑ(x; , z0) |2= 〈T ŷ(x; z0), T ŷ(x; z0)〉 = 〈ŷ(x; z0), T tT ŷ(x; z0)〉 =| ŷ(x; z0) |2
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are used. The inequality (1.61) shows that (1.59) is valid and denoting

0 > β(x) =
dϕ(x)

dx
− 2wϕ(x), x > 0

we rewrite (1.59) as a scalar differential equation

{
dϕ(x)
dx = 2wϕ(x) + β(x), x > 0

ϕ(0) = | z0 | (1.63)

where β(x) 6 0, x ∈ [0,∞), is a continuous function.The unique solution of (1.62)
can be represented by

ϕ(x) = [exp2wx][| z0 |2 +

∫ x

0

(exp − 2wt)β(t)dt] (1.64)

and using (exp − 2wt)β(x) 6 0 for any t > 0 we get

{
ϕ(x) 6 [exp2wx] | z0 |2
| ẑ(x, z0) = [ϕ(x)]

1
2 6 [expwx] | z0 | (1.65)

for any x > 0. It shows that the exponential stability expressed in (1.57) is valid
when the condition (1.58) is assumed.
(P2) (Lyapunov exponent associated with linear system and piecewise continuous
solutions) Let {y(t, x) ∈ Rn : t > 0} be the unique solution of the following linear
system of differential equations

{
dy(t)
dt = f(y(t), σ̂(t)), t > 0, y(t) ∈ Rn

y(0) = x ∈ Rn
(1.66)

where the vector field f(y, σ) : Rn ×∑ → Rn is a continuous mapping of (y, σ) ∈
Rn ×∑ and linear with respect to y ∈ Rn

f(y, σ) = A(σ)y + a(σ), A(σ) ∈Mn×n, a(σ) ∈ R
n . (1.67)

Here σ̂(t) : [0,∞) → ∑
(bounded set) ⊆ Rd is an arbitrary piecewise continuous

function satisfying
σ̂(t) = σ̂(t̂k), t ∈ [t̂k, t̂k+1), k > 0 (1.68)

where 0 = t̂0 6 t̂1... 6 t̂k is an increasing sequence with lim
k→∞

t̂k = ∞. The analysis will

be done around a piecewise constant trajectory ŷ(t) : [0,∞) → Y (bounded set) ⊆ Rn

such that
λ̂(t) = (ŷ(t), σ̂(t)) : [o,∞) → Y ×

∑
= Λ ⊆ R

n × R
d (1.69)

satisfies λ̂(t) = λ̂(t̂k), t ∈ [t̂k, t̂k+1), k > 0, where the increasing sequence {t̂k}k>0 is
fixed in (1.68). Define a linear vector field g(z, λ) by

g(z, λ) = f(z + ν;σ) = A(σ)z + f(λ), λ = (ν, σ) ∈ Λ, z ∈ R
n where f(y;σ) (1.70)
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is given in (1.66). Let the continuous mapping {z(t, x) : t > 0} be the unique solution
of the following differential equation

{
dz(t)
dt = g(z(t); λ̂(t)), t > 0
z(0) = x

(1.71)

where the piecewise continuous function {λ̂(t), t > 0} is given in (1.68). We may and
do associate the following piecewise continuous mapping {z(t, x) : t > 0} satisfying
the following linear system with jumps

{
dẑ(t)
dt = f(ẑ(t), σ̂(t)), t ∈ [t̂k, t̂k+1), ẑ(t) ∈ Rn

ẑ(t̂k) = z(t̂k, x) + ŷ(tk), k > 0
(1.72)

where {z(t, x) : t > 0}is the continuous mapping satisfying (1.70). It is easily seen
that the piecewise continuous mapping {ẑ(t, x) : t > 0} can be decomposed as follows

ẑ(t, x) = z(t, x) + ŷ(t, x), t > 0, x ∈ R
n (1.73)

and the asymptotic behavior
lim
t→∞

ẑ(t, x) = lim
t→∞

ŷ(t), x ∈ Rn, is valid provided lim
t→∞

ŷ(t) exists and

lim
t→∞

| z(t, x) |2= 0 (1.74)

for x ∈ Rn. We say that{z(t, x) : t > 0} satisfying (1.70) is asymptotically stable if
(1.73) is valid.

Definition 1.3.1. A constant γ < 0 is a Lypounov exponent for {z(t, x) : t > 0} if
{ẑ(t, x) = (expγt)z(t, x) : t > 0}is asymptotically stable.

Remark 1.3.2. Notice that if {ẑ(t, x) : t > 0} satisfies (1.70) then {zγ(t, x) =
(expγt)z(t, x) : t > 0}, satisfies the following augmented linear system

{
dzγ(t)
dt = γzγ(t) + (expγt)g(z(t), λ̂(t)), t > 0

zγ(0) = x
(1.75)

In addition, the piecewise continuous mapping

ẑγ(t, x) = zγ(t, x) + ŷ(t), t > 0 (1.76)

satisfies the following system with jumps

{ dẑγ(t)
dt = γ[ẑγ(t) − ŷ(t)] + (expγt)f(ẑγ(t), λ̂(t)), t > 0

ẑγ(t̂k) = zγ(t̂k, x) + ŷ(t̂k) .
(1.77)

It shows that the Lyapunov exponent γ < 0 found for the continuous mapping {z(t, x) :
t > 0} satisfying (1.70) gives the answer for the following asymptotic behavior asso-
ciated with {ẑ(t, x)}

lim
t→∞

| ẑγ(t, x) − ŷ(t) |2= lim
t→∞

| zγ(t, x) |= 0 , for eachx ∈ R
n (1.78)
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and the analysis will be focussed on getting Lyapunov exponents for the continuous
mapping {z(t, x) : t > 0}

A description of the Lyapunov exponent associated with the continuous mapping
{z(t, x) : t > 0} can be associated using the corresponding integral equation satisfied
by a scalar continuous function

hγ(t, x) = (exp2γt)h(z(t, x)), t > 0, whereh(z) =| z |2 (1.79)

In this respect,applying standard rule of derivation we get

{
dẑγ(t,x)

dt = (exp2γt)[2γh+ Lg(h)](ẑγ(t, x), λ̂(t), t > 0
hγ(0, x) = | x |2 (1.80)

where the first order differential operator Lg : P2(z, λ) → P2(z, λ) is given by

Lg(ϕ)(z, λ) =< ∂zϕ(z, λ)), g(z, λ) > (1.81)

Here P2(z, λ) consist of all polynomial scalar functions of second degree with respect
to the variables z = (z1, ..., zn) and with continuous coefficients as functions of λ ∈ Λ.
In particular, for h ∈ P2(z, λ), h(z) =| z |2, we obtain

Lg(ϕ)(z, λ) = < ∂zh(z), g(z, λ) >=< [A(σ) +A∗(σ)z, z] > +2 < f(λ), z >

= < B(σ)z, z > +2 < f(λ), z > (1.82)

where the matrix B(σ) = A(σ) + A∗(σ)is symmetric for each σ ∈ ∑ ⊆ Rd and
for f(λ) = A(σ)v + a(σ), λ = (v, σ) ∈ Λ = Y ×∑, given in (1.66). Rewrite (1.79) as
follows (see(1.71))

dhγ(t, x)

dt
= − | γ | hγ(t, x) − (exp2γt) < [| γ | In −B(σ̂(t))]z(t, x) >

+ 2(exp2γt) < f(λ̂(t)), z(t, x) >, t > 0 . (1.83)

Regarding the symmetric matrix

Qγ(σ) =| γ | In −B(σ), σ ∈
∑

⊆ R
d

we notice that it can be defined as positively defined matrix uniformly with respect
to σ ∈∑

< Qγ(σ)z, z >> c | z |2, ∀z ∈ R
n, σ ∈

∑
, for some c > 0 (1.84)

provided, | γ |>‖ B ‖, where

‖ B ‖= sup
σ∈

∑ ‖ B(σ) ‖

In this respect, let T (σ) : Rn → Rn be an orthogonal matrix (T ∗(σ) = T−1(σ)) such
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that {
T−1(σ)B(σ)T (σ) = diag(ν1(σ), ..., νn(σ)) = Γγ(σ)
B(σ)ej(σ) = νj(σ)ej(σ), j ∈ {1, 2, ..., n} (1.85)

where T (σ) =‖ e1(σ), ..., en(σ) ‖. On the other hand ,using the same matrix T (σ) we
get

T−1(σ)Qγ(σ)T (σ) = diag(νγ1 (σ), ..., νγn(σ)) = Γγ(σ) (1.86)

where νγi (γ) =| γ | −νi(σ) > c > 0 for any σ ∈ ∑
, i ∈ {1, ..., n}, provided

| γ |>‖ B ‖ and we get

| γ |>‖ B ‖> sup
σ∈∑ ‖ B(σ) ‖>‖ B(σ)ej(σ) ‖= sup

σ∈∑ | νj(σ) |, ∀j ∈ {1, ..., n} (1.87)

Using (1.85), it makes sense to consider the square root of the positively defined
matrix Qγ(σ)

√
[Qγ(σ)] = T (σ)[Γγ(σ)]

1
2 .T−1(σ) = Pγ(σ), σ ∈

∑
⊆ R

d (1.88)

and rewrite < Qγ(σ)z, z > −2 < f(λ), z >= ϕγ(z, λ) as follows

ϕ(z, λ) =| Pγ(σ)z −Rγ(σ)f(λ) |2 − | Rγ(σ)f(λ) |2 (1.89)

where

Rγ(σ) =

√
Q−1
γ (σ) = T (σ)[Γγ(σ)]−1/2T−1(σ) .

Using (1.88) we get the following differential equation

dhγ(t;x)

dt
= − | γ | hγ(t;x) − (exp2γt) | Pγ(σ̂(t)z(t;x) −Rγ(σ̂, t)f(λ̂(t))) |2

+ (exp2γt) | Rγ(σ̂(t))f(λ̂)(t) |2, t > 0 (1.90)

The integral representation of the solution {hγ(t;x) : t > 0} fulfilling (1.90) leads us
directly to

hγ(t;x) = (expγt)[| x |2 +

∫ t

0

(expγs) | Rγ(σ̂)(s)f(λ̂(s)) |2 ds] (1.91)

− (expγt)

∫ t

0

(expγs) | Pγ(σ̂(t)z(s;x) −Rγ(σ̂)(s)f(λ̂(s))) |2 ds

for any t > 0andx ∈ Rn. As far as {Rγ(σ̂)(t)f(λ̂(t)) : t > 0} is a continuous and
bounded function on [0,∞) we obtain that

∫ t

0

(expγs) | Rγ(σ̂)(s)f(λ̂(s)) |2 ds 6 Cγ , ∀t > 0 (1.92)

and
hγ(t, x) 6 (expγt)[| x |2 +Cγ ], ∀t > 0 (1.93)



20 CHAPTER 1. ORDINARY DIFFERENTIAL EQUATIONS(ODE)

where Cγ is a constant. In conclusion, for each γ < 0, | γ |> supσ∈∑ | A(σ) +A∗(σ) |,
we obtain

lim
t→∞

| zγ(t, x) |2= lim
t→∞

hγ(t, x) = 0

for each x ∈ R. The above given computations can be stated as

Theorem 1.3.3. Let the vector field f(y, σ) : Rn ×∑ → Rn be given such that
(1.66) is satisfied. Then any γ < 0 satisfying | γ |> supσ∈∑ | A(σ) + A(σ∗) | is a
Lyapunov exponent for the continuous mapping {z(t, x) : t > 0}verifying (1.70), where

λ̂(t) = (ŷ(t), σ̂(t)) : [0,∞) → Λ is fixed arbitrarily. In addition, let {ẑ(t, x) : t > 0}
be the piecewise continuous solution fulfilling the corresponding system with jumps
(1.76). Then lim

t→∞
| ẑγ(t, x) − ŷ(t) |= lim

t→∞
| zγ(t, x) |= 0 for each x ∈ Rn

Remark 1.3.4. The result stated in Theorem 1.3.3 make use of some bounds supσ∈Σ |
A(σ)+A(σ∗) |=‖ B ‖ associated with the unknown matrix A(σ), σ ∈ Σ (bounded set) ⊆
Rd. In the particular case Σ = {σ1, ..., σm}, we get a finite set of matrices A(σ1), ...A(σm)
for which ‖ B ‖= max{| A1 +A∗

1 |, ..., | Am +A∗
m |} where Ai = A(σi).

An estimate of the the Theorem 1.3.3 stating that limt→∞(expγt) | z(t, x) |= 0
provided | γ |= −γ >‖ B ‖ and in addition z(t, x), t > 0 can be measured as contin-
uous solution of the system (1.70). This information can be used for estimating the
bounds ‖ B ‖and as far as we get limt→∞(expγt̂) | z(t, x) |= 0
for some γ̂ < 0. We may predict that ‖ B ‖<| γ̂ |. On the other hand ,if we are able
to measure only some projections
νi(t, x) =< bi, z(t, x) >, i ∈ {1, 2, ..,m} of the solution z(t, x) : t > 0 satisfying (1.70)
then ν(t, x) = (ν1(t, x), ...νm(t, x)) fulfils the following linear equation





dν(t,x)
dt = D(γ̂(t))ν(t, x) + d(λ̂(t)), t > 0

ν(0, x) = ν0(x) = (b1, x >, ..., bm, x >)

(1.94)

where D(σ) is an (m×m) continuous matrix and
d(σ) = column(< b1, f(λ) >, ..., < bm, f(λ) >)
Here we have assumed that A∗(σ)[b1, ..., bm] = [b1, ..., bm]D∗(σ) and (1.3.3) gets the
corresponding version when (1.93) replaces the original system (1.70)

1.4 Nonlinear Systems of Differential Equations

Let f(x, λ, y) : I × Λ ×G → Rnbe a continuous function,where I(interval) ⊆ R and
Λ ⊆ Rm are some open sets. Consider a system of differential equations(normal form)

dy

dx
= f(x, λ, y) (1.95)
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By a solution of (1.94) we mean a continuous function y(x, λ) : J × Σ → G which is
continuously derivable with respect to x ∈ J such that

dy(x, λ)

dx
= f(x, λ, y(x, λ)), ∀x ∈ J, λ ∈ Σ

where J ⊆ I is an interval and Σ ⊆ Λ is a compact set. The Cauchy problem for
the nonlinear system (1.94) C.P (f ;x0, y0), has the meaning that we must determine
a solution of (1)y(x, λ) : J × Σ → G which satisfies y(x0, λ) = y0, λ ∈ Σ,where
x0 ∈ Iand y0 ∈ G are fixed. To get a unique C.P (f ;x0, y0) solution we need to
replace the continuity property of f by a Lipschitz condition with respect to y ∈ G

Definition 1.4.1. We say that a continuous function f(x, λ, y) : I × Λ × G → Rn

is locally Lipschitz continuous with respect to y ∈ G if for each compact set W =
J ×∑×K ⊆ I × Λ × G there exists a constant L(W ) > 0 such that| f(x, λ, y′′) −
f(x, λ, y′) 6 L | y′′ − y′ |, ∀ y′, y′′ ∈ K,x ∈ J, λ ∈ Λ

Definition 1.4.2. We say that a C.P (f ;x0, y0) solution {y(x;λ) : x ∈ J, λ ∈ ∑}is
unique if for any other solution {y1(x;λ) : x ∈ J1, λ ∈ ∑1} of (1.95) which verifies
y1(x0) = y0,we get y(x, λ) = y1(x, λ), ∀ (x, λ) ∈ (J×∑)

⋂
(J1×

∑
1).Denote B(y0, b) ⊆

Rn the ball centered at y0 ∈ Rn whose radius is b > 0

Remark 1.4.3. By a straight computation we get that if the right hand side of (1.94)
is continuously differentiable function with respect to y ∈ G, i.e

∂f

∂yi
(x, λ, y) : I × Λ ×G→ R

n, i ∈ {1, ..., n}

are continuous functions and G is a convex domain then f is locally Lipschitz with
respect to y ∈ G

1.4.1 Existence and Uniqueness of C.P(f, x0, y0)

Theorem 1.4.4. (Cauchy Lipschitz) Let the continuous function f(x;λ, y) : I ×Λ×
G → Rn be locally Lipschitz continuous with respect to y ∈ G, where I ⊆ R,Λ ⊆
Rm, G ⊆ Rn are open sets.For some x0 ∈ I, y0 ∈ G and Σ(compact) ⊆ Λ fixed, we
take a, b > 0 such that Ia(x0) = [x0 − a, x0 + a] ⊆ Iand B(y0, b) ⊆ G. Let M = max{|
f(x, λ, y) |: x ∈ Ia(x0), λ ∈ Σ, y ∈ B(y0, b)}. Then there exist α > 0, α = min(a, bM )
and a unique C.P (f ;x0, y0) solution y(x, λ) : Iα(x0) × Σ → B(y0, b) of (1.95).

Proof. We associate the corresponding integral equation (as in the linear case)

y(x, λ) = y0 +

∫ x

x0

f(t, λ, y(t, λ))dt, x ∈ Ia(x0), λ ∈ Σ (1.96)

where Ia(x0) ⊆ I and Σ(compact) ⊆ Λ are fixed. By a direct inspection, we see
that the two systems (1.94) and (1.95) are equivalent using their solutions and the
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existence of solution for (1.94) with y(x0) = y0 will be obtained proving that (1.95)
has a solution.In this respect, a sequence of continuous functions {yk(x, λ) : (x, λ) ∈
Iα(t0) × Σ}k>0 is constructed such that

y0(x, λ) = y0, yk+1(x, λ) = y0 +

∫ x

x0

f(t, λ, yk(t, λ))dt, k > 0 (1.97)

Consider α = min(a, bM ) and Iα(x0) = [x0−α, x0+α]. We see easily that the sequence
{yk(.)}k>0 constructed in (1.96) is uniformly bounded if the variable x is restricted
to x ∈ Iα(x0) ⊆ Ia(x0). More precisely

yk(x, λ) ∈ B(y0, b), ∀(x, λ) ∈ Iα(x0) × Σ, k > 0 (1.98)

It will be proved by induction and assuming that (1.97) is satisfied for k > 0 we
compute

| yk+1(x, λ) − y0 |6
∫ x0+|x−x0|

x0

f(t, λ, yk(t, λ))dt 6Mα 6 b (1.99)

for any {(x, λ) ∈ Iα(x0)×Σ}. Next step is to notice that {yk(x, λ) : (x, λ) ∈ Iα(x0)×
Σ}k>0 is a Cauchy sequence in a Banach space C(Iα(x0))×σjR

n and it is implied by
the following estimates

| yk+1(x, λ) − yk(x, λ) |6 bLk
| x− x0 |k

k!
, ∀(x, λ) ∈ Iα(x0) × Σ, k > 0 (1.100)

where L = L(W ) > 0 is a Lipschitz constant associated with f and W = Iα(x0)×Σ×
B(y0, b), a compact set of I×Λ×G. A verification of (1.99) uses the standard induction
argument and for k = 0 they are proved in (1.98). Assuming (1.99) for k we compute

| yk+2(x, λ) − yk+1(x, λ) |6
∫ x0+|x−x0|
x0

| f(t, λ, yk+1(t, λ)) − f(t, λ, yk(t, λ)) | dt 6

L
∫ x0+|x−x0|
x0

| yk+1(t, λ) − yk(t, λ) | dt 6 Lk+1 |x−x0|k+1

k+1! and (1.99) is verified.Rewrite

(1.99)
yk+1(x, λ) = y0 + (y1(x, λ) − y0) + ...,+yk+1(x, λ) − yk(x, λ) =
= y0 + Σk+1

j=0uj(x, λ), where uj = yj+1 − yj
and consider the following series of continuous functions

S(x, λ) = y0 + Σ∞
j=0uj(x, λ) (1.101)

The series (1.100) is convergent in the Banach space C(Iα(x0)×Σ;Rn) if it is bounded
by a numerical convergent series and notice that each {uj(x, λ) : (x, λ) ∈ Iα(x0)×Σ}
of (1.100) satisfies (see(1.99))

| uj(x, λ) |6 b
Lj | x− x0 |j

j!
6 b

L.αj

j!
, j > 0 (1.102)

In conclusion, the series S(x, λ) given in 1.101 is bounded by the following series

u =| y0 | +b(1 +
Lα

1
+ ...+

Lαk

k!
+ ...) =| y0 | +b expLα
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and the sequence of continuous functions

{yk(x, λ) : (x, λ) ∈ Iα(x0) × Σ}k>0

constructed in (1.96) is uniformly convergent to a continuous function

y(x, λ) = lim
k→∞

yk(x, λ) uniformly on (x, λ) ∈ Iα(x0) × Σ (1.103)

It allows to pass k → ∞ into integral equation (1.96) and we get

y(x, λ) = y0 +

∫ x

x0

f(t, λ, y(t, λ))dt, ∀(x, λ) ∈ Iα(x0) × Σ (1.104)

which proves the existence of theC.P (f ;x0, y0) solution.
Uniqueness. Let y1(x, λ) : J1×Σ1 → G another solution of (1.94) satisfying y1(x0) =
y0, where J1(compact set)⊆ I and Σ1(compact) ⊆ Λ. Define a compact set K1 ⊆ G
such that it contains all values of the continuous function

{y1(x, λ) : (x, λ) ∈ J1 × Σ1} ⊆ K1

Denote
K̃ = B(y0, b) ∩K1, J̃ = Iα(x0) ∩ J1, Σ̂ = Σ ∩ Σ1

and let
L̃ = L(J̃ × Σ̃ × K̃) > 0

be the corresponding Lipschitz constant associated with f and compact set W̃ =
J̃ × Σ̃ × K̃.We have J̃ = [x0 − δ1, x0 + δ2] for some δi > 0 and

| y(x, λ) − y1(x, λ) |6 L̃

∫ x0+|x−x0|

x0

| y(t, λ) − y1(t, λ) | dt, ∀(x, λ) ∈ J̃ × Σ̃ (1.105)

For λ ∈ Σ̃ fixed,denote ϕ(x) =| y(x, λ) − y1(x, λ) | and inequality (1.105) becomes

ϕ 6 L̃

∫ t

x0

ϕ(s)ds, t ∈ [x0, x0 + δ2] (1.106)

which shows that ϕ(t) = 0, ∀t ∈ [x0, x0 + δ2](see Gronwall Lemma in (1.1.1))
Similarly we get ϕ(t) = 0, t ∈ [x0 − δ1, x0]

and ϕ(t) = 0 ∀ t ∈ J̃ , lead us to the conclusion y(x, λ) = y1(x, λ), ∀x ∈ J̃ and for an

arbitrary fixed λ ∈ Σ̃. The proof is complete.

Remark 1.4.5. The local Lipschitz continuity of the function f is essential for getting
uniqueness of a C.P solution. Assuming that f is only a continuous function of
y ∈ G,we can construct examples supporting the idea that a C.P solution is not
unique. In this respect, consider the scalar function f(y) = 2

√
| y |, y ∈ R and the

equation dy(t)
dt = 2

√
| y(t) | with y(0) = 0. There are two C.P solution.y1(t) = 0, t > 0

and y2(t) = t2, t > 0 where a continuous but not a Lipschitz continuous function was
used.
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Comment. There is a general fixed point theorem which can be used for proving
the existence and uniqueness of a Cauchy problem solution .In this respect we shall
recall so called fixed point theorem associated with contractive mappings. Let T :
X → Xbe a continuous mapping satisfying

ρ(Tx, T y) 6 αρ(x, y) for anyx, y ∈ X

where 0 < α < 1 is a constant and (X, ρ) is a complete metric space. A fixed point
for the mapping T satisfies T x̂ = x̂ and it can be obtained as a limit point of the
following Cauchy sequence {xn}n>0 defined by xn+1 = Txn, n > 0. By definition we
get ρ(xk+1, xk) = ρ(Txk, T xk−1) 6 αρ(xk, xk−1) 6 αkρ(x1, x0) for any k > 1 and
ρ(Txk+m, T xk) 6 Σmj=1ρ(xk+j , xk+j−1) 6 (Σmj=1α

k+j−1)ρ(x1, x0), where Σ∞
k=0α

k =
1

1−α and {xn}n>1 is Cauchy sequence.

1.4.2 Differentiability of Solutions with Respect to
Parameters

In Theorem 1.4.4we have obtained the continuity property of the C.P (f, x0, y0) solu-
tion with respect to parameters λ ∈ Λ satisfying a differential system. Assume that
the continuous function f(x, λ, y) : I×Λ×G→ Rn is continuously differentiable with
respect y ∈ G and λ ∈ Λ i.e there exist continuous partial derivatives

∂f(x, λ, y)

∂y
,
∂f(x, λ, y)

∂λj
: I × Λ ×G→ R

n, i ∈ {1, ..., n}, j ∈ {1, ...,m} (1.107)

where Λ ⊆ Rm, G ⊆ Rn are open sets.

Remark 1.4.6. The assumption (1.107) leads us directly to the local Lipschitz prop-
erty of f with respect to y ∈ G. In addition, let y(x, λ) : Iα(x0)×Σ → B(y0, b) be the
C.P (f ;x0, y0) solution and define
F (x, z(x)) = f(x, λ, y(x, λ)), z(x) = (λ, y(x, λ)) for each x ∈ Iα(x0). Using (1.107)
we get that F (x, z(x)) satisfies the following differentiability property

F (x, z′′(x) − F (x, z′(x))) =
∂f(x, λ′, y(x, λ′))

∂y
[y(x, λ′′) − y(x, λ′)]

+

m∑

j=1

∂f(x, λ′, y(x, λ′))(λ′′j − λ′j)

∂λj
+ θ(x, λ′, λ′′)(| y(x, λ′′)

− y(x, λ′) | + | λ′′ − λ′ |) (1.108)

where
lim
λ′′→λ′

θ(x, λ′, λ′′) = 0

uniformly with respect to x ∈ Iα(x0). To get (1.108) we rewrite F (x, z′′(x)) −
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F (x, z′(x)) as follows

F (x, z′′(x)) − F (x, z′(x)) =

∫ 1

0

[
dh

dθ
(x, θ)]dθ

where
h(x, θ) = F (x, z′(x) + θ(z′′(x) − z′(x)), θ ∈ [0, 1], x ∈ Iα(x0)

The computation of the derivatives allows to see easily that (1.108) is valid. In ad-
dition using the assumption (1.107)we obtain the Lipschitz continuity of the solution
{y(t, λ) : λ ∈∑} and

| y(x, λ′′) − y(x, λ′) |6 C | λ′′ − λ′ |, ∀x ∈ Iα(x0), λ′, λ′′ ∈ B(λ0, β) = Σ (1.109)

where C > 0 is a constant. The property (1.109) is obtained applying lemma Gronwall
for the integral inequality associated with the equation

y(x, λ′′) − y(x, λ′) =

∫ x

0

[F (t, z′′(t)) − F (t, z′(t))]dt, x ∈ Iα(x0)

where F (x, z(x)) fulfils (1.108).

Theorem 1.4.7. (differentiability of a solution)
Let f(x, λ, y) : I × Λ×G→ Rn be given such that (1.107)is satisfied. Letx0 ∈ I, y0 ∈
G, λ0 ∈ Λ be fixed and define a, b, β > 0 such that Ia(x0) ⊆ I, B(y0, b) ⊆ G,

∑
=

B(λ0, β) ⊆ Λ. Then there exist α > 0 and y(x, λ) : Iα(x0) × ∑ → B(y0, b) as

a unique C.P (f, x0, y0) solution for (1.94) such that for each λ̂ ∈ intΣ there exist
∂y(x,λ̂)
∂λj

= ŷj(x), x ∈ Iα(x0), j ∈ 1, ...,m,satisfying the following linear system

dz

dx
=
∂f(x, λ̂, y(x, λ̂))

∂y
z +

∂f(x, λ̂, y(x, λ̂))

∂λj
, z(x0) = 0 (1.110)

x ∈ Iα(x0) = [x0 − α, x0 + α] for each j ∈ {1, ...,m}.

Proof. By hypothesis, the conditions of Theorem 1.4.4 are fulfilled and let y(x, λ) :
Iα(x0)×Σ → B(y0, b) be the unique solution of (1.94) satisfying y(x0, λ) = y0, λ ∈ Σ.

Consider λ̂ ∈ intΣ and notice that differentiability of the solution with respect to
parameters at λ = λ̂ is equivalent to showing

lim
τ→0

Ejτ (x) = 0, ∀x ∈ Iα(x0), j ∈ 1, ...,m (1.111)

whereEjτ (x) is defined by (e1, ..., em is canonical basis for Rm)

Ejτ (x) =
1

τ
[y(x, λ̂+ τej) − y(x, λ̂) − τ ŷj(x)], τ 6= 0 (1.112)

and ŷj(x), x ∈ Iα(x0), is the unique solution of (1.110). Using remark 1.4.6 for
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λ′′ = λ̂+ τeg, λ
′ = λ̂ we get

Ejτ (x) =

∫ x

x0

∂f

∂y
(t, λ̂, y(t, λ̂))Ejτ (x)dt+

+

∫ x

x0

(θ(t, λ̂ + τej λ̂)
1

τ
| y(t, λ̂+ τej − y(t, λ̂) | +1}dt (1.113)

Denote M1 = C + 1, where 1
τ | y(t, λ̂+ τej)− y(t, λ̂)) |6 C and let L > 0 be such that

| ∂f(t,λ̂,y(t,λ̂))∂y |6 L ∀t ∈ Iα(x0). Then the following integral inequality is valid

| Ejτ (x) |6 L

∫ x0+|x−x0|

x0

Ejτ (x) | dt+M1

∫ x0+α

x0

| θ(t, λ̂ + τej , λ̂) | dt, x ∈ Iα(x0)

(1.114)
Applying Lemma Gronwall, from (1.114) we obtain

| Ejr(x) |6M1(

∫ x0+α

x0

| θ(t, λ̂+ τej , λ̂) | dt)expLα (1.115)

Using lim
τ→0

θ(t, λ̂+ τej , λ̂) = 0 uniformly of t ∈ Iα(x0) (see(1.108)) and passing τ → 0

into (1.115) we obtain

lim
r→0

Ejτ (x) = 0, ∀x ∈ Iα(x0), j ∈ 1, ...,m (1.116)

The proof is complete.

1.4.3 The Local Flow(Differentiability Properties)

Consider a continuous function g(x, z) : I × G → Rn, where I ⊆ R and G ⊆ Rn are
open sets. Define a new nonlinear system of differential equations

dz

dx
= g(x, z), z(x0) = λ ∈ B(z0, ρ) ⊆ G , wherex0 ∈ I, z0 ∈ G (1.117)

are fixed and λ ∈ B(z0, ρ) is a variable Cauchy condition. Assume

there exist continuous partial derivatives
∂g(x, z)

∂zi
: I ×G→ R

n i ∈ 1, ..., n (1.118)

The unique solution of (1.117), z(x, λ) : Iα(x0) × B(z0, ρ) → G satisfying z(x0, λ) =
λ ∈ B(z0, ρ) ⊆ Rn will be called the local flow associated with the vector field g
satisfying (1.118).

Theorem 1.4.8. (differentiability of local flow) Consider that the vector field g ∈
C(I × G;Rn) satisfies the assumption (1.118). Then there exist α > 0 and a con-
tinuously differentiable local flow z(x, λ) : Iα(x0) × B(z0, ρ) → G of g fulfilling the
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following properties

for each λ̂ ∈ intB(z0, ρ) there exists a nonsingular (n× n)matrix (1.119)

Ẑ(x) = ∂z(x,λ̂)
∂λ , x ∈ Iα(x0), satisfying

{
dẐ(x)
dx = ∂g(x,z(x,λ̂))

∂z Ẑ(x), ∀x ∈ Iα(x0)

Ẑ(x0) = In

Proof. For z0 ∈ G fixed define Λ = {z ∈ G :| z − z0 |< ρ+ ǫ} = intB(z0, ρ+ ǫ), where
ǫ > 0 is sufficiently small such that Λ ⊆ G. Associate a new vector field depending
on parameter λ ∈ Λ

f(x, λ, y) = g(x, y + λ), x ∈ I, λ ∈ Λ, y ∈ Ĝ = G−B(z0, ρ+ ǫ) (1.120)

Let b > 0 be such that B(0, b) ⊆ Ĝ and B(z0, ρ+ ǫ+ b) ⊆ G. Notice that according to

(1.118) we get a smooth vector field f with respect to (λ, y) ∈ Λ×Ĝ and the following
system of differential equation with parameters λ = (λ1, ..., λn) ⊆ Λ

dy

dx
= f(x, λ, y), y(x0) = 0, y ∈ Ĝ ⊆ R

n (1.121)

satisfies the differentiability conditions of the Theorem 1.4.7. Let y(x, λ) : Iα(x0) ×
B(z0, ρ) → B(0, b) ⊆ Ĝ be the unique solution of (1.121) which is continuously

differentiable on (x, λ) ∈ Iα(x0) × intB(z0, ρ) and yĵ(x) = ∂y(x,λ̂)
∂y , x ∈ Iα(x0), λ̂ ∈

intB(z0, ρ),fulfils

{
du
dx = ∂f(x,λ̂,y(x,λ̂))

∂y u+ ∂f(x,λ̂,y(x,λ̂))

∂λ̃j

, u ∈ Rn, x ∈ Iα(x0)

u(x0) = 0
(1.122)

for each j ∈ 1, .., n. Then z(x, λ) = y(x, λ) +λ, x ∈ Iα(x0), λ ∈ B(z0, ρ), is the unique
continuously differentiable solution of the nonlinear system (1.117) with z(x0, λ) = λ
and

Ẑ(x) =
∂z(x, λ̂)

∂λ
=
∂y(x, λ̂)

∂λ
+ In, x ∈ Iα(x0), λ̂ ∈ intB(z0, ρ) (1.123)

where Ŷ (x) = ∂y(x,λ̂)
∂λ verifies the following system

{
dŶ (x)
dx = ∂f(x,λ̂,y(x,λ̂))

∂y Ŷ (x) + ∂f(x,λ̂,y(x,λ̂))
∂λ , x ∈ Iα(x0)

Ŷ (x0) = null matrix
(1.124)
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Using (1.123) and (1.124) we see easily that Ẑ(x0) = In and

dẐ(x)

dx
=

d[Ŷ (x)]

dx
=
∂g(x, z(x, λ̂))

∂z
[Ẑ(x) − In] +

∂g(x, z(x, λ̂))

∂z

=
∂g(x, z(x, λ̂))

∂z
Ẑ(x), x ∈ Iα(x0) (1.125)

The matrix satisfying (1.125) is a nonsingular one(see Liouville theorem) and the
proof is complete.

Remark 1.4.9. Consider the nonsingular matrix Ẑ(x), x ∈ Iα(x0) given in the above

theorem and define Ĥ(x) = [Ẑ(x)]−1, x ∈ Iα(x0). Then Ĥ(x), x ∈ Iα(x0) satisfies the
following linear matrix system

{
dĤ(x)
dx = −Ĥ(x)∂g(x,z(x,λ̂))∂z , x ∈ Iα(x0)

H(x0) = In
(1.126)

It can be proved by computing the derivative

d[Ĥ(x)Ẑ(x)]

dx
= [

dĤ(x)

dx
]Ẑ(x) + Ĥ(x)[

dZ

dx
] = 0, x ∈ Iα(x0)

Exercise(differentiability with respect to x0 ∈ I)
Let g(x, z) : I × G → Rn be continuously differentiable mapping with respect to
z ∈ G.Let x0 ∈ I, z0 ∈ G and β > 0 be fixed such that Iβ(x0) = [x0 − β, x0 + β] ⊆ I.
Then there exist α > 0 and a continuously differentiable mapping z(x; s) : Iα(s) ×
Iβ(x0) → G satisfying

{
dz(x;s)
dx = g(x, z(x; s)), x ∈ Iα(s) = [s− α, s+ α]

z(s; s) = z0, for each s ∈ Iβ(x0)
(1.127)

and ẑ(x) = ∂z(x,ŝ)
∂s , x ∈ Iα(ŝ) (for ŝ ∈ intIβ(x0)) fulfills the following linear system

dẑ(x)

dx
=
∂g(x, z(x, ŝ))

∂s
ẑ(x), x ∈ Iα(ŝ), ẑ(ŝ) = −g(ŝ, z0) (1.128)

Hint. A system with parameters is associated as in Theorem 1.4.8 and it lead us to
a solution

z(x, s) : Iα(s) × Iβ(x0) → B(z0, b) ⊆ G

of the following integral equation

z(x, s) = z0 +

∫ x

s

g(t, z(t, s))dt, x ∈ Iα(s), s ∈ Iβ(x0)

Take ŝ ∈ intIβ(x0) and using a similar computation given in Theorem 1.4.7 we get
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lim
τ→0

Eτ (x) = 0, x ∈ Iα(ŝ), where

Eτ (x) =
1

τ
[z(x, ŝ+ τ) − z(x, ŝ) − τ ẑ(x)], τ 6= 0

1.4.4 Applications(Using Differentiability of a Flow)

(a) The local flow z(x, λ) : Iα(x0)×B(z0, ρ) → Rn defined in Theorem 1.4.7 preserve

the volume of any bounded domain D ⊆ B(z0, ρ) for λ̂ ∈ D provided Tr ∂g(x,z(x,λ̂))∂z =

Σni=1
∂gi(x,z(x,λ̂))

∂zi
= 0, x ∈ Iα(x0), λ̂ ∈ D. In this respect, denote D(x) = {y ∈ Rn, y =

z(x, λ̂), λ̂ ∈ D}, x ∈ Iα(x0) and notice that D(x0) = D. Using multiple integrals we
compute volD(x) =

∫
...
∫
dy1...dyn which reduces to

D(x) =

∫
...

∫
| det∂z(x, λ̂)

∂λ
| dλ1...dλn

Using Liouville theorem and Tr ∂g(x,z(x,λ̂))∂z = 0, ∀x ∈ Iα(x0), λ̂ ∈ D, we obtain

det∂z(x,λ̂)∂λ = 1 for any x ∈ Iα(x0), λ̂ ∈ D, where

∂z(x, λ̂)

∂λ
, x ∈ Iα(x0)

satisfies the linear system (1.119). As a result,det]∂z(x,λ̂)∂λ ] = 1, ∀x ∈ Iα(x0) and λ̂ ∈ D,
which proves that volD(x) = volD, x ∈ Iα(x0)
(b) The linear system (1.119) given in Theorem 1.4.8 is called the linearized system
associated with (1.117).
If g(x, z) = g(z) such that g(z) satisfies a linear growth condition

| g(z) |6 C(1+ | z |), ∀z ∈ R
n (1.129)

where C > 0 is a constant ,then the unique solution z(x, λ), λ ∈ B(z0, ρ) verifying

dz

dx
(x, λ) = g(z(x, λ)), z(0) = λ (1.130)

can be extended to the entire half line x ∈ [0,∞).
In addition, if g(z0) = 0(z0 is a stationary point)then the asymptotic behaviour of
z(x, λ) for x → ∞ and λ ∈ B(z0, ρ) can be obtained analyzing the corresponding
linear constant coefficients system

dz

dx
=
∂g(z0)

∂z
z, z(0) = λ (1.131)
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It will be assuming that

A =
∂g(z0)

∂z
is a Hurwitz matrix i.e (1.132)

anyλ ∈ σ(A)(P (λ) = det(A − λIn) = 0) satisfies Reλ < 0, which implies | expAx |6
M [exp − wx] for some M > 0, w > 0.
We say that the nonlinear system (1.130) is locally asymptotically stable around the
stationary solution z0(or z0 is locally asymptotically stable)if there exist ρ > 0 such
that

lim
x→∞

z(x, λ) = 0, ∀λ ∈ B(z0, ρ) (1.133)

There is a classical result connecting (1.132) and (1.133).

Theorem 1.4.10. (Poincare-Lyapunov) Assume that the n× n matrix A is Hurwitz
such that

| expAx |6M(exp− wx), ∀x ∈ [0,∞)

for some constant M > 0, w > 0. Let f(y) : Ω ⊆ Rn × Rn be a local Lipschitz
continuous function such that Ω is an open set and | f(y) |6 L | y |, y ∈ Ω(0 ∈ Ω),
where L > 0 is a constant. If LM −w < 0,then y = 0 is asymptotically stable for the
perturbed system

dy

dx
= Ay + f(y), y ∈ Ω, y(0) = λ ∈ B(0, ρ) ⊆ Ω (1.134)

Here the unique solution {y(x, λ) : x > 0} of(40) fulfils lim
x→∞

y(x, λ) = 0 for each

λ ∈ B(0, ρ) provided ρ = δ
2M and B(0, ρ) ⊆ Ω.

Proof. Letλ ∈ Ω be fixed and consider the unique solution {y(x, λ) : x ∈ [0, T ]}
satisfying (1.134). Notice that if λ is sufficiently small then y(x, λ) : x ∈ [0, T ],can
be extended to the entire half line x ∈ [0,∞). In this respect, using the constant
variation formula for x ∈ [0, T ] and b(x) = f(y(x, λ)) we get y(x, λ) = (expAx)λ +∫ x
0 (exp(x − t)A)f(y(t, λ))dt,for any x ∈ [0, T ]. Using the above given representation

we see easily the following estimation

| y(x, λ) |6| expAx || λ | +

∫ x

0

| exp(x− t)A || f(y(t, λ)) | dt 6

6| λ |M(exp − wx) +

∫ x

0

LM(exp − w(x − t)) | y(t, λ) | dtfor anyx ∈ [0, T ]

Multiplying by (expwx) > 0, we obtain

(expwx) | y(x, λ |) 6| λ |M +

∫ x

0

LM(expwt) | y(t, λ |)dt, x ∈ [0, T ]

and applying Gronwall Lemma for ϕ(x) = (expwx) | y(x, λ) | we get ϕ(x) 6| λ |
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M(expLMx) for any x ∈ [0, T ]. Take δ > 0 and ρ = δ
2M such that B(0, δ) ⊆ Ω.

It implies | y(x, λ) |6 δ
2 for anyx ∈ [0, T ] if | λ |6 ρ. In addition, | y(T, λ) |6

δ
2exp(−αT ), where α = w − LM > 0 and choosing T > 0 sufficiently large such that
Mexp − αT 6 1 we may extend the solution y(x, λ), x ∈ [0, T ] for x ∈ [0, 2T ] such
that

| y(2T, λ) |=| y(2T, y(T, λ)) |6M | y(T, λ) | exp − αT 6 (
δ

2
)

and

| y(x, y(T, λ)) |6M | y(T, λ) | exp(LM − w)x 6
δ

2

for any x ∈ [T, 2T ]. It shows that y(x, λ) can be extended to the entire half line
x ∈ [0,∞) if | λ |6 ρ = δ

2M and δ > 0 satisfies B(0, δ) ⊆ Ω
In addition the inequality established for x ∈ [0, T ] is preserved for the extended
solution and | y(x, λ) |6| λ |Mexp(LM −w)x 6 δ

2exp(LM −w)x, for any x ∈ [0,∞),

if | λ |6 ρ = δ
2 . Passing to the limit x → ∞, from the last inequality we get

lim
x→∞

| y(x, λ) |= 0 uniformly with respect to λ |6 ρ and the proof is complete.

The following is a direct consequence of the above theorem.

Remark 1.4.11. Let A be n× n Hurwitz matrix and f(y) : Ω(open) ⊆ Rn → Rn is
a local Lipschitz continuous function where 0 ∈ Ω. If | f(y) |6 α(| y |), ∀y ∈ Ω,where

α(| y |) : [0,∞) → [0,∞) satisfies lim
γ→0

α(γ)
γ = 0. Then the unique solution of the

system
dy

dx
= Ay + f(y), y(0) = λ ∈ B(0, ρ), x > 0

is a asymptotically stable( lim
x→∞

| y(x, λ |= 0)) if ρ > 0 is sufficiently small.

Proof. Let M > 1 and w > 0 such that | expAx |6M(exp−wx). Consider L > 0 such
that LM − w < 0 and η > 0 with the property α(r) 6 Lr for any r ∈ [0, η]. Define

Ω̃ = y ∈ Ω; | y |< η. Notice that g(y) = Ay + f(y), y ∈ Ω̃, satisfies the assumption of
Poincare-Lyapunov theorem which allows to get the conclusion.

We are in position to mention those sufficient conditions which implies that the
stationary solution z0 ∈ Rn of the system

dz

dx
= g(z), g(z0) = 0 (1.135)

is asymptotically stable.Let g(z) : D(open) ⊆ Rn → Rn be given such that g(z0) = 0
and
(i) g(z) : D → Rn is continuously differentiable.

(ii) The matrix ∂g(z0)
∂z = A is Hurwitz.
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Under the hypothesis (i) and (ii) we rewrite

g(y) = Ay + f(y),wherey = z − z0andf(y) = g(z0 + y) − g(z0)

Consider the linear system

dy

dx
= Ay + f(y), y ∈ {y ∈ R

n :| y |< µ} = Ω

where µ > 0 is taken such that z0+Ω ⊆ D. Using (i) we get that f is locally Lipschitz
continuous on Ω and the assumptions of the above given remark are satisfied. We see
easily that

f(y) =

∫ 1

0

[
∂g(z0 + θy)

∂z
− ∂g(z0)

∂z
]ydθ, y ∈ Ω

and

| f(y) |6 α(| y |) = (

∫ 1

0

h(θ, | y |)dθ) | y |, y ∈ Ω

Here h(θ, | y |) = max|w|6|y| | ∂g(z0+θw)
∂z − g(z0)

∂z | satisfies

lim
|y|→0

h(θ, | y |) = 0 uniformly on θ ∈ [0, 1] and lim
γ→0

α(γ)
γ = 0 therefore, the assumptions

of the above given remark are satisfied when considering the nonlinear system (1.135)
and the conclusion will be stated as

Proposition 1.4.12. Let g(z) : D ⊆ Rn → Rn be a continuous function and z0 ∈ D
fixed such that g(z0) = 0. Assume that the condition (i) and (ii) are fulfilled. Then
the stationary solution z = z0 of the system (1.135) is asymptotically stable, i.e
lim
x→∞

| z(x, λ) − z0 |= 0 for any | λ − z0 |6 ρ, ifρ > 0 is sufficiently small,where

z(x, λ) : x > 0 is the unique solution of (1.135) with z(0, λ) = λ
Problem. Prove Poincare-Lyapunov theorem replacing Hurwitz property of the ma-
trix A with σ(A+A∗) = {λ1, ...λd} where λi < 0, i ∈ 1, ..., d.

Comment(on global existence of a solution)

Theorem 1.4.13. (global existence)Let g(x, z) : [0,∞) × Rn → Rn be a continuous
function which is locally Lipschitz continuous with respect to z ∈ Rn. Assume that
for each T > 0 there exists CT > 0 such that

| g(x, z) |6 CT (1+ | z |), ∀x ∈ [0, T ], z ∈ R
n

Then the unique C.P (g; 0, z0) solution z(x, z0) satisfying
dz(x;z0)
dx = g(x, z(x, z0)), z(0, z0) = z0, is defined for any x ∈ [0,∞).

Proof. (sketch)It is used the associated integral equation

z(x, z0) = z0 +

∫ x

0

g(t, z(t, z0))dt, x ∈ [0,KT ]
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and the corresponding Cauchy sequence allows to get a unique solution
zk(x, z0) : x ∈ [0,KT ] for each K > 1. The global solution will be defined as an

inductive limit Z̃(z, z0) : [0,∞) → Rn, Z̃(z, z0) = Zk(x, z0), if x ∈ [0,KT ], for each
k > 0.

1.5 Gradient Systems of Vector Fields and their So-
lutions; Frobenius Theorem

Definition 1.5.1. Let Xj(p; y) ∈ Rn for p = (t1, ..., tm) ∈ Dm =
∏m

1 (−ai, ai), y ∈
V ⊆ Rn be continuously differentiable (Xj ∈ C1(Dm × V ;Rn)) for j ∈ {1, ...,m}.
We say that {X1(p; y), ..., Xm(p; y)} defines a gradient system of vector fields(or fulfils
the Frobenius integrability condition) if
∂Xj

∂ ti
(p; y) − ∂ Xi

∂ tj
(p; y) = [Xi(p; .), Xj(p; .)](y)∀i, j ∈ {1, ...,m}, where [Z1, Z2](y) =

∂Z1(y)
∂y Z2(y) − ∂Z2(y)

∂y Z1(y)(Lie bracket).

1.5.1 The Gradient System Associated with a Finite Set of
Vector Fields

Theorem 1.5.2. Let Yj ∈ C2(Rn,Rn), x0 ∈ Rn, j ∈ {1, ...,m} be fixed .Then there
exist Dm =

∏m
1 (−ai, ai), V (x0) ⊆ Rn and Xj(p; y) ∈ Rn

Xj ∈ C1(Dj−1 × V ;Rn), j ∈ {1, ...,m}, X1(p1; y) = Y1(y),such that

∂y

∂t1
= Y1(y),

∂y

∂t2
= X2(t1; y), ...,

∂y

∂tm
= Xm(t1, ..., tm−1; y) (1.136)

is a gradient system (
∂Xj(pj ;y)

∂ti
= [Xi(pi; .), Xj(pj , .)](y), i < j) and

G(p;x) = G1(t) ◦ ... ◦Gm(tm(x)), p = (t1, ..., tm) ∈ Dm, x ∈ V (x0) (1.137)

is the solution for (1.136) satisfying Cauchy condition y(0) = x ∈ V (x0). Here
Gj(t;x) is the local flow generated by the vector field Yj , j ∈ {1, ...,m}.

Proof. We shall use the standard induction argument and for m = 1 we notice that
the equations (1.136) and (1.137) express the existence and uniqueness of a local
flow associated with a nonlinear system of differential equation (see Theorem 1.4.8).
Assume that for (m − 1) given vector fields Yj ∈ C2(Rn,Rn) the conclusions (1.136)
and (1.137) are satisfied,i.e there exist

X̂2(ŷ) = Y2, X̂3(t2, y), ..., X̂m(t2, ..., tm−1; y) (1.138)
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continuously differentiable with respect to
p̂ = (t2, ..., tm) ∈ ∏m

2 (−ai, ai) and y ∈ V̂ (x0) ⊆ Rn such that

∂y

∂t2
= Y2(y),

∂y

∂t3
= X̂3(t2; y), ...,

∂y

∂tm
= X̂m(t2, ..., tm−1; y) (1.139)

satisfying Cauchy condition y(0) = x ∈ V̂ (x0). Recalling that (1.139) is a gradient
system we notice

∂X̂j(p̂; y)

∂ti
= [X̂i(p̂i, .), X̂j(p̂j ; .)](y), 2 6 i < j = 3, ...,m (1.140)

where p̂i = (t2, ..., ti−1) Let vector fields Yj ∈ C2(Rn,Rn), j ∈ {1, ...,m} and denote

y = G(p;x) = G1(t1) ◦ Ĝ(p̂;x), p = (t1, p̂) ∈
m∏

1

(−ai, ai), x ∈ V (x0) ⊆ V̂ (x0) (1.141)

where G1(t)(x) is the local flow generated by Y1 and Ĝ(p̂, x) is defined in (1.138).

By definition ∂G(p;y)
∂t1

= Y1(G(p;x)) and to prove that y = G(p;x) defined in (1.141)

fulfils a gradient system we write G1(−t1; y) = Ĝ(p̂;x) for y = G(p;x).A straight
computation shows

∂G1(−t1; y)

∂y

∂y

∂tj
=
∂Ĝ(p̂; y)

∂tj
, forj = 2, ...,m (1.142)

which is equivalent with writing
∂y
∂tj

= H1(−t1; y)X̂j(p̂j ;G1(−t1; y)), j = 2, ...,m.

Here the matrix H1(σ; y) = [∂G1(σ;y)
∂y ]−1 satisfies

dH1

dσ = −H1
∂Y1

∂x (G1(σ; y)), H1(0; y) = In(see Theorem 1.4.8). Denote

X2(t1; y) = H1(−t1; y)Y2(G1(−t1; y))

Xj(t1, ...jj−1; y) = H1(−t1; y)X̂j(t2, ..., tj−1;G1(−t1; y)), j = 3, ...,m

for y ∈ V (x0) ⊆ V̂ (x0) and p = (t1, ..., tm) ∈ ∏m
1 (−ai, ai). With these notations, the

system (1.142) is written as follows

∂y

∂t1
= Y1(y),

∂y

∂t2
= X2(t1; y), ...

∂y

∂tm
= Xm(t1, ..., tm−1; y) (1.143)

and to prove that (1.143) stands for a gradient system we need to show that

∂Xj

∂ti
(pj ; y) = [Xi(pi, .), Xj(pj , .)](y), 1 6 i < j = 2, ...,m (1.144)
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For j = 2 by direct computation we obtain

∂X2

∂t1
(t1; y) = H1(−t1; y)[Y1, Y2](G(−t1; y)) (1.145)

and assuming that we know (see the exercise which follows)

H1(−t1; y)[Y1, Y2](G1(t1, y)) = [H1(−t1; .)Y1(G1(t1; .)), H1(−t1; .)Y2(G1(t1; .))](y)

= [Y1(.), X2(t1; .)](y) (1.146)

we get
∂X2

∂t1
(t1; y) = [Y1(.), X2(t1; .)](y) (1.147)

The equation (1.147) stands for (1.144) when i = 1and j = 2, 3, ...m. It remains to
show (1.144) for j = 3, ...,m and 2 6 i < j. Using (1.140) and
∂Xj

∂ti
(pj ; y) = H1(−t1; y)

∂X̂j

∂ti
(p̂j ;G1(−t1; y)),

we obtain
∂Xj

∂ti
(pj ; y) = H1(−t1; y)[X̂i(p̂i; .), X̂j(p̂j ; .)](G1(−t1; y)) (1.148)

if 2 6 i < i < j = 3, ...,m. The right side in (1.148) is similar to that in (1.144) and
the same argument used above applied to (1.148) allow one to write

∂Xj

∂ti
(pj ; y) = [Xi(pi; .), Xj(pj ; .)](y) (1.149)

for any 2 6 i < j = 3, ...,m, and the proof is complete.

Exercise 1. Let X,Y1, Y2 ∈ C2(Rn,Rn) and consider the local flow G(σ;x), σ ∈
(−a, a), x ∈ V (x0) ⊆ Rn,and the matrix H(σ;x) = [∂G∂x (σ;x)]−1 determined by the
vector field X(see Theorem 1.4.8). Then

H(−t;x)[Y1, Y2](G(−t;x)) == [H(−t; .)Y1(G(−t; .)), H(−t; .)Y2(g(−t; .))](x)

for any t ∈ (−a, a), x ∈ V (x0) ⊆ Rn.
Solution. The Lie bracket in the right hand side of the conclusion is computed using
H(−t; y) = ∂G

∂x (t;G(−t; y)) and using the symmetry of the matrices ∂Gi

∂x2 (t;x), i ∈
{1, ..., n},
we get the conclusion, where G = (G1, ..., Gn).
Exercise 2. Under the same conditions as in Exercise 1, prove that

H(−t; y)Y1(G(−t; y)) = Y1(y), providedX = Y1

Solution. By definition H(0; y) = In and

X1(t; y) = H(−t; y)Y1(G(−t; y))

satisfies X1(0; y) = Y1(y). In addition, applying the standard derivation of X1(t; y)
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we get d
dtX1(t; y) = 0 which shows X1(t; y) = Y1(y), t ∈ (−a, a) and the verification

is complete.

1.5.2 Frobenius Theorem

Let Xj ∈ C2(Rn,Rn), j ∈ {1, ...,m} be given and consider the following system of
differential equations

∂y

∂tj
= Xj(y), j = 1, ...,m, y(0) = x ∈ V ⊆ R

n (1.150)

Definition 1.5.3. A solution for (1.150) means a function
G(p;x) : Dm × V → Rn of class C2(G ∈ C2(Dm × V ;Rn)) fulfilling (1.136) for
any p = (t1, ..., tm) ∈ Dm =

∏m
1 (−ai, ai) and x ∈ V (openset) ⊆ Rn. The system

(1.150) is completely integrable on θ(openset) ⊆ Rn if for any x0 ∈ θ there exists a
neighborhood V (x0) ⊆ θ and a unique solution G(p;x), (p;x) ∈ Dm×V (x0) of (1.150)
fulfilling G(0;x) = x ∈ V (x0)

Theorem 1.5.4. (Frobenius theorem) Let Xj ∈ C2(Rn, n), j ∈ {1, ...,m} be given.
Then the system (1.150) is completely integrable on

θ (open set) ⊆ R
niff [Yi, Yj ](x) = 0

for any i, j ∈ {1, ...,m}, x ∈ θ, where [Yi, Yj ] = Lie bracket. In addition, any local
solution y = G(p;x), (p, x) ∈ Dm × V (x0) is given by
G(p;x) = G1(t1)◦...◦Gm(tm)(x),where Gj(σ)(x) is the local flow generated by Xj , j ∈
{1, ...,m}.

Proof. For given {Y1, ..., Ym} ⊆ C2(Rn;Rn) and x0 ∈ θ ⊆ Rn fixed we associate the
corresponding gradient system

∂y

∂t1
= Y1(y),

∂y

∂t2
= X̂2(t1; y), ...,

∂y

∂tm
= X̂m(t2, ..., tm−1; y) (1.151)

and its solution

y = G(p;x) = G1(t1) ◦ ... ◦Gm(tm)(x), p ∈ Dm =

m∏

1

(−aj , aj) (1.152)

satisfying G(0;x0) = x0 ∈ V (x0)(see Theorem 1.5.2) and G(p;x) ∈ θ. By definition
∂y
∂tj

= Xj(t1, ...tj−1; y), j ∈ {1, ...,m}, if y = G(p;x0) and the orbit given in (1.152) is

a solution of the system (1.150)iff

Xj(t1, ...tj−1; y) = Yj(y), j ∈ {2, ...,m}, y ∈ V (x0) ⊆ θ (1.153)
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To prove (1.153) we notice that

X2(t1; y) = H1(−t1; y)Y2(G1(−t1; y)), for any y ∈ V (x0) (1.154)

where H1(−t1; y) = [∂G1

∂y (−t1; y)]−1 satisfies linear equation

{
dH1

dσ (σ; y) = −H1(σ; y)∂Y1

∂y (G1(σ; y)), σ ∈ (−a1, a1)

H1(0; y) = In
(1.155)

(see Remark (1.4.9) ). Using (1.154) and (1.155), by a direct computation we get

{
X2(0; y) = Y2(y), y ∈ V (x0)
dX2(t1;y)

dt1
= H1(−t1; y)[Y1, Y2](G1(−t1; y))

for any y ∈ V (x0) ⊆ θ, t1 ∈ (−a1, a1). In particular

X2(t1; y) = Y2 for any y ∈ V (x0)iff[Y1, Y2](y) = 0 for any y ∈ V (x0) (1.156)

A similar argument can be used for proving that

Xj(t1, ..., tj−1; y) = Yj(y), for any y ∈ V (x0), j > 2 iff [Yi, Yj ](y) = 0

for any 1 6 i 6 j − 1, y ∈ V (x0) (1.157)

and the conclusion of the system (1.150) implies

[Yi, Yj ](y) = 0, ∀y ∈ V (x0) ⊆ θ, i, j ∈ {1, ...,m} (1.158)

The reverse implication, {Y1, ...Ym} ⊆ C2(Rn,Rn) are commuting on θ(open) ⊆ Rn

implies that the system is completely integrable on θ will be proved noticing t(1.150)
hat

Gi(ti) ◦Gj(tj)(y) = Gj(tj) ◦Gi(ti)(y), for any i, j ∈ {1, ...,m}, y ∈ V (x0) (1.159)

if (1.155)is assumed. Here Gj(σ)(y) is the local flow generated by the vector field
Yj , j ∈ {1, ...,m}. It remains to check that the orbit (1.152) is the unique solution of
the system (1.150) and in this respect we notice that

ϕ(θ;x) = G(θp;x), θ ∈ [0, 1] (1.160)

satisfies the following system of ordinary differential equations

{
dϕ
dθ (θ;x) = Σmj=1tjYj(ϕ(θ;x)) = g(p, ϕ(θ;x))
ϕ(0;x) = x, p = (t1, ..., tm) ∈ Dm

(1.161)

Here g(p, y) is a locally Lipschitz continuous function with respect to y ∈ θ and
{ϕ(θ;x) : θ ∈ [0, 1]} is unique. The proof is complete.
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Comment(total differential equation and gradient system)
For a continuously differentiable function y(p) : Dm =

∏m
1 (−ak, ak) → Rn define the

corresponding differential as follows

dy(p) = Σmj=1

∂y(p)

∂tj
dtj

where
p = (t1, ..., tm) ∈ Dm

Let{Y1, ..., Ym} ⊆ C2(Rn,Rn) be given and consider the following equation (using
differentials)
dy(p) = Σmj=1Yj(y(p))dtj , p ∈ Dm, y(0) = x ∈ V (x0) ⊆ Rn.θ solution for the last
equation implies that
∂y
∂y = Yj(y), j ∈ {1, ...,m}, p = (t1, ..., tm) ∈ Dm is a gradient system for y ∈ V (x0)

and it can be solved using Frobenius theorem((1.5.4)). In addition, for an analytic
function of z ∈ D ⊆ C,
w(z) : D → Cn defines the corresponding differential
dw(z) = dw1(x, y) + idw2(x, y), z = a+ iy ∈ D
where w(z) = w1(x, y) + iw2(x, y)and

v(x, y) =

(
w1

w2

)
(x, y) : D2 =

∏2
1(−ak, ak) → R2n is an analytic function.Let

f(w) : Ω ⊆ Cn → Cn be given analytic function and associate the following equation
(using differentials)
dw(z) = f(w(z))dz = [f1(v(x, y))dx − f2(v(x, y))dy] +
+ i[f2(v(x, y))dx + f2(v(x, y))dy] where

f(w) = f1(v) + if2(v) and f1, f2 are real analytic functions of v =

(
w1

w2

)
∈ D2n =

∏2n
k=1(−ak, ak). To solve the last complex equation we need to show that Y1(v) =(
f1
f2

)
(v) and Y2(v) =

(
−f1
f2

)
(v)are commuting on v ∈ D2n which shows the

system ∂v
∂x = Y1(v), ∂v∂y = Y2(v) is completely integrable on D2.

1.6 Appendix

(a1)Assuming that f(x, y) : I × G ⊆ R × Rn → Rn is a continuous function, Peano
proved the following existence theorem

Theorem 1.6.1. (Peano) Consider the following system of ODE

dy

dx
= f(x, y), y(x0) = y0 where (x0, y0) ∈ I ×G

is fixed and {f(x, y) : (x, y) ∈ I × G} is a continuous function. Then there exist
an interval J ⊆ I and a continuously derivable function y(x) : J → G satisfying
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y(x0) = y0 and dy
dx(x) = f(x, y(x)), x ∈ J .

Proof. It relies on Arzela-Ascoli theorem which is refering to so called compact se-
quence
{yk(x), x ∈ D}k>1 ⊆ C(D;Rn)
satisfying

(i) A boundedness condition | yk(x) |6M, ∀x ∈ D, k > 0

(ii) they are equally uniformly continuous, i.e for any ǫ > 0 there exists δ(ǫ) > 0

such that | x′′ − x′ |< δ(ǫ) implies | yk(x′′) − yk(x′) |< ǫ ∀x′, x′′ ∈ D, k > 1

If a sequence {yk(x) : x ∈ D}k>1 satisfy (i) and (ii) then Arzela-Ascoli theorem
allows to find a subsequence {ykj (x) : x ∈ D}j>1 which is uniformly convergent on
the compact set D. Let a > 0 and b > 0 such that Ia = [x0 − a, x0 + a] ⊆ I
and B(y0, b) ⊆ G. Define M = max{| f(x, y) |: (x, y) ∈ Ia × B(y0, b)} and let
α = min(a, bM ). Construct the following sequence of continuous functions

yk(x) = [x0, x0 + α] → G, yk(x) = y0, forx ∈ [x0, x0 +
α

k
]

(iii)

yk(x) = y0 +

∫ x

x0+
α
k

f(t, yk(t− α

k
)), if x ∈ [x0 +

α

k
, x0 + α]for each k > 1

{yk(x) : x ∈ [x0, x0 + α]} is well defined because it is constructed on the interval
[x0 + mα

k , x0 + (m + 1)αk ] using its definition on the preceding interval [x0 + (m −
1)αk , x0 +mα

k ]. It is easily seen that{yk(x) : x ∈ [x0, α]}k>1 is uniformly bounded and
| yk(x) − y0 |6Mα 6 b.
In addition, | yk(x′′)− yk(x′) |= 0, if x′, x′′ ∈ [x0, x0 + α

k ] and | yk(x′′)− yk(x′) |6M |
x′′ − x′ | if x′, x′′ ∈ [x0 + α

k , x0 + α] which implies | yk(x′′) − yk(x′) |6 M | x′′ − x′ |
for any x′, x′′ ∈ [x0, x0 + α], k > 1.
Let ŷ(x) : [x0, x0 + α] → B(y0, b) ⊆ G be the continuous function obtained using a
subsequence{ykj(x) : x ∈ [x0, x0 + α]}j>1, ŷ(x) = lim

j→∞
ykj (x) uniformly with respect

to x ∈ [x0, x0 + α]. By passing j → ∞ into the equation (iii) written for k = kj we
get

ŷ(x) = y0 +

∫ x

x0

f(t, ŷ(t))dt, ∀x ∈ [x0, x0 + α]

and the proof is complete.

(a2). Ordinary differential equations with delay
Let σ > 0 be fixed and consider the following system of ODE

{
dy
dx(x) = f(x, y(x), y(x− σ)), x ∈ [0, a]
y(σ) = ϕ(σ), σ ∈ [−σ, σ]

(1.162)
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where ϕ ∈ C([−σ, 0];Rn) is fixed as a continuous function(Cauchy condition),and
f(x, y, z) : I×Rn×Rn → Rn is a continuous function admitting first order continuous
partial derivatives ∂yif(x, y, z) : I × Rn × Rn → Rn, i ∈ {1, ..., n}.
The above given assumptions allow us to construct a unique local solution satisfying
(1.162) and it is done starting with the system (1.162) on the fixed interval x ∈ [o, σ]

{
dy
dx = f(x, y(x), ϕ(x − σ)), x ∈ [0, σ]
y(0) = ϕ(0)

(1.163)

which satisfies the condition of Cauchy-Lipschitz theorem. In order to make sure that
the solution of (1.163) exists for any x ∈ [0, σ] we need to assume a linear growth of
f with respect to the variable y uniformity of (x, z) in compact sets,i.e
(*)| f(x, y, z) |6 C(1+ | y |)∀ ∈ Rn and (x, z) ∈ J ×K(compact) ⊆ I ×Rn,where the
constant C > 0 depends on the arbitrary fixed compact J ×K.
Any function f satisfying
(**)f(x, y, z) = A(x, z)y + b(x, z), (x, z) ∈ I × Rn where the matrix A(x, z) ∈ Mn×n
and the vector b(x, z) ∈ Rn are continuous functions will satisfy the necessary condi-
tions to extend the solution of (1.163) on any interval [mσ, (m + 1)σ],m > 0
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Exercises(Linear integrable system)
(1) Formulate Frobenius theorem ((1.5.4)). Rewrite the content of Frobenius theorem
using linear vector fields Yi(y) = Aiy, where Ai ∈Mn×n(R), i ∈ {1, ..., n}.
(2) For any matrices A,B ∈Mn×n(R) define the meaning of the exponential mapping
(exptadA)(B), where adA(adjoint mapping associated with A)is the linear mapping
adA : Mn×n(R) →Mn×n(R), defined by adA(B) = AB −BA = [A,B](Lie bracket of
(A,B)).
(3) Show that (exptA)B(exp − tA) = (exptadA)(B), for any A,B ∈Mn×n(R),
t ∈ R where (exptadA) is the linear mapping defined in (2).
(4)Rewrite the gradient system ((1.5.2))when the vector fields Yi(y) = Aiy, i ∈
{1, ...,m},are linear. Show that,in this case the vector fields with parameters are
the following
Y1(y) = A1y,X2(t1; y) = (expt1adA1)(A2)y, ..., Xm(t1, ..., tm−1; y) = [expt1adA1 ◦
(expt2adA2)... ◦ (exptm−1adAm−1)(Am)]y,such that the corresponding gradient sys-
tem
∂y
∂t1

= Y1(y), ∂y∂t2 = X2(t1, y), ..., ∂y
∂tm

= Xm(t1, ..., tm−1; y) has the unique solution
y(t1, ..., tm; y0) = (expt1A1)...(exptmAm)y0.

Bibliographical Comments

The entire Chapter 1 is presented with minor changes as in the [12].
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Chapter 2

First Order Partial
Differential Equation

Let D ⊆ Rn be an open set and f(y) : D → Rn is a continuous function.Consider the
following nonlinear ODE

dy

dt
= f(y) (2.1)

Definition 2.0.2. Let D0 ⊆ D be an open set. A function u(y) : D0 → R is called
first integral for (2.1) on D0 if

1. u is nonconstant on D0,

2. u is continuously differentiable on D0(u ∈ C1(D0;R)),

3. for each solution y(t) : I ⊆ R → D0 of the system (2.1) there exists a constant
c ∈ R such that U(y(t)) = c, ∀ t ∈ I.

Example 2.0.1. A Hamilton system is described by the following system ofODE

dp

dt
=
∂H

∂q
(p, q),

dq

dt
= −∂H

∂p
(p, q), p(0) = p0, q(0) = q0 (2.2)

where H(p, q) : G1 × G2 ⊆ Rn × Rn → R is continuously differentiable and Gi ⊆
Rn, i ∈ {1, 2}, are open sets. Let {(p(t), q(t)) : t ∈ [0, T ]} be solution of the Hamilton
system (2.1) and by a direct computation, we get

d

dt
[H(p(t), q(t))] = 0 for any t ∈ [0, T ]

43
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It implies H(p(t), q(t)) = H(p0, q0)∀ t ∈ [0, T ] and {H(p, q) : (p, q) ∈ G1 × G2} is a
first integral for (2.2)

Theorem 2.0.3. Let f(y) : D → Rn be a continuous function,D0 ⊆ D an open subset
and consider a nonconstant continuously differentiable function U ∈ C1(D0,R). Then
{U(y) : y ∈ D0} is first integral on D0 of ODE iff the following differential equality

<
∂u(y)

∂y
, f(y) >= Σni=1

∂u

∂yi
(y)fi(y) = 0, ∀y ∈ D0 (2.3)

is satisfied, where

f = (f1, ..., fn),
∂u

∂y
= (

∂u

∂y1
, ...,

∂u

∂yn
)

Proof. Let {u(y) : y ∈ D0} be a continuously differentiable first integral ofODE(2.1)
and consider that y(t, y0) : (−α, α) → D0 is a solution of (2.1) verifying y(0, y0) = y0 ∈
D0. By hypothesis, u(y(t, y0)) = c = u(y0), for any t ∈ (−α, α) and by derivation, we
get

0 =
d

dt
[u(y(t, y0))] =<

∂u

∂y
(y(t, y0)), f(y(t, y0)) >, for any t ∈ (−α, α) (2.4)

In particular, for t = 0 we obtain the conclusion (2.3) for an arbitrary fixed y0 ∈ D0.
The reverse implication uses the equality(2.3) and define ϕ(t) = u(y(t)), t ∈ (−α, α)
where u ∈ C1(D0,R) fulfils (2.3) and {y(t) : t ∈ (−α, α)} is a solution of (2.1). It
follows that

dϕ

dt
(t) =<

∂u

∂y
(y(t)), f(y(t)) >= 0, t ∈ (−α, α)

and
ϕ(t) = constant, t ∈ (−α, α)

The proof is complete.

Let Ω ⊆ Rn+1 be an open set and consider that

f(x, u) : Ω → R
n, L(x, u) : Ω → R (2.5)

are given continuously differentiable function, f ∈ C1(Ω;Rn), L ∈ C1(Ω;R).

Definition 2.0.4. A causilinear first order PDE is defined by the following differ-
ential equality

<
∂u(x)

∂x
, f(x, u(x)) >= L(x, u(x)), x ∈ D(open) ⊆ R

n (2.6)

where f ∈ C1(Ω;Rn), L ∈ C1(Ω;R) are fixed and u(x) : D → R is an unknown
continuously differentiable function such that (x, u(x)) ∈ Ω, ∀x ∈ D
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A solution for (2.6) means a function u ∈ C1(D;R) such that (x, u(x) ∈ Ω) and
(2.6)is satisfied for any x ∈ D

Remark 2.0.5. Assuming that L(x, u) = 0 and f(x, u) = f(x) for any (x, u) ∈
D × R = Ω then PDE defined in (2.6) stands for the differential equality(2.3) in
Theorem 2.0.3 defining first integral for ODE (2.1). In this case, the differential
system (2.1)is called Cauchy characteristic system associated with linear PDE

<
∂u(x)

∂x
, f(x) >= 0, x ∈ D ⊆ R

n (2.7)

Proposition 2.0.6. Let D0 ⊆ D be an open subset and consider a nonconstant
continuously differentiable scalar function u(x) : D0 → R. Then {u(x) : x ∈ D0} is
a solution for the linear PDE (2.7) iff {u(x) : x ∈ D0} is a first integral for ODE
(2.1) on D0.

Definition 2.0.7. Let a ∈ D ⊆ Rn be fixed and consider m first integrals
{u1(y), ..., um(y) : y ∈ V (a) ⊆ D} for ODE (2.1) which are continuously differentiable
where V (a) is a neighborhood of a.We say that ui ∈ C1(V (a);R), i ∈ {1, ...,m} are
independent first integrals of (2.1) if rank(∂u1

∂y (a), ..., ∂um

∂y (a)) = m

Remark 2.0.8. Let f ∈ C1(D;Rn) and a ∈ D be fixed such that f(a) 6= 0. Then there
exist a neighborhood V (a) ⊆ D and (n−1) independent first integrals {u1(y), ..., un−1(y) :
y ∈ V (a)} of the system (2.1).

Proof. Using a permutation of the coordinates (f1, ..., fn) = f we say that fn(a) 6= 0
(see f(a) 6= 0). Denote Λ = {(λ1, ..., λn−1) ∈ Rn−1 : (λ1, ..., λn−1, an) ∈ D} and
consider {F (t, λ) : (t, λ) ∈ [0, T ] × Σ} as the local flow associated with ODE (2.1)

{
dF
dt (t, λ) = f(F (t, λ)), t ∈ [−α, α], λ ∈ Σ ⊆ Λ
F (0, λ) = (λ1, ..., λn−1, an)

(2.8)

where Σ ⊆ Λ is a compact subset and (a1, ..., an−1) ∈ intΣ. Using the differentiability
properties of the local flow {F (t, λ) : (t, λ) ∈ [−α, α] × Σ}, we get

det
(

∂F
∂t

∂F
∂λ1

. . . ∂F
∂λn−1

)
.(0, a1, ..., an−1) =

= det




f1(a) 1 0 . . . 0
0 1 .
. 0 .

. . . .

. . . 0

. . 1
fn(a) 0 0 . . . 0




= (−1)n+1fn(a) 6= 0

and the conditions for applying an implicit functions theorem are fulfilled when the
algebraic equations

F (t, λ) = y, y ∈ V (a) ⊆ D,F (0, a1, ..., an−1) = a (2.9)
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are considered. It implies that there exist t = u0(y), λi = ui(y), i ∈ {1, ..., n− 1}, y ∈
V (a), which are continuously differentiable such that

F (u0(y), u1(y), ..., un−1(y)) = y, ∀y ∈ V (a) (2.10)

where u0(y) ∈ (−α, α) and λ(y) = (u1(y), ..., un−1(y)), λ ∈ Σ, for any y ∈ V (a).
In addition, {u0(y), ..., un−1(y) : y ∈ V (a)} is the unique solution satisfying (2.10)
and

u0(F (t, λ)) = t, ui(F (t.λ)) = λi, i ∈ {1, ..., n− 1} (2.11)

Using (2.11) we get easily that {u1(y), ..., un−1(y) : y ∈ V (a)} are (n−1) first integrals
for ODE (2.1) which are independent noticing that

<
∂ui
∂y

(a),
∂F

∂λj
(0, λ) >= δij

where
∂F

∂λj
(0, λ) = ej ∈ R

n, δij =

{
1, i = j
0, i 6= 0, j ∈ {1, ..., n− 1}

and {e1, ..., en} ⊆ Rn is the canonical basis. In conclusion,

<
∂ui
∂y

(a), ej >= δij

for any
i, j ∈ {1, ..., n− 1}

and
rank

(
∂u1

∂y (a) . . . ∂un−1

∂y (a)
)

= n− 1

The proof is complete.

Theorem 2.0.9. Let f(y) : D → Rn be a continuously differentiable function such
that f(a) 6= 0 for fixed a ∈ D. Let {u1(y), ..., un−1(y) : y ∈ V (a) ⊆ D} be the
(n−1) first integrals constructed in Theorem 2.0.8. Then for any first integral of (2.1)
{u(y) : y ∈ V (a)}, u ∈ C1(V,R), there exists an open set θ ⊆ Rn−1and h ∈ C1(θ,R)
such that u(y) = h(u1(y), ..., un−1(y)), y ∈ V1(a) ⊆ V (a).

Proof. By hypothesis {u(y) : y ∈ V (a)} is a continuously differentiable first integral
of ODE (2.1) and we get

u(F (t, λ1, ..., λn−1)) = h(λ1, ..., λn−1), ∀t ∈ [−α, α] (2.12)

provided that {F (t, λ) : t ∈ [−α, α], λ ∈ Σ} is the local flow associated with ODE
(2.1) satisfying F (0, λ1, ..., λn−1) = h(λ1, ..., λn−1, an)(see (2.8) of Theorem 2.0.8).
As far as F ∈ C1((−α, α) × Σ;Rn) and u ∈ C1(V (a),R) we get h ∈ C1(θ,R) fulfilling
(2.12) where (a1, ..., an−1) ∈ θ(openset) ⊆ Σ. Using (2.10) in Theorem 2.0.8 we obtain
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F (u0(y), ..., un−1(y)) = y ∈ V (a)

and rewrite (2.12) for

t = u0(y), λi = ui(y).i ∈ {1, ..., n− 1}

we get
u(y) = h(u1(y), ..., un−1(y)) for some y ∈ V1(a) ⊆ V (a) (2.13)

where (u1(y), ..., un−1(y)) ∈ θ, y ∈ V1. The proof is complete.

Remark 2.0.10. The above given consideration can be extended to non autonomous
ODE

dy

dt
= f(t, y), t ∈∈ I ⊆ R, y ∈ G ⊆ R

n (2.14)

where f(t, y) : I ×G→ Rn is a continuous function.
In this respect, denote

z = (t, y) ∈ R
n+1, D = I ×G ⊆ R

n+1

and consider
g(z) : D → R

n+1

defined by
g(z) = coloumn(1, f(t, y)) (2.15)

With these notations, the system (2.14) can be written as an autonomous ODE

dz

dt
= g(z) (2.16)

where g ∈ C1(D;Rn+1) provided f is continuously differentiable on (t, y) ∈ I ×G.
Using Proposition 2.0.6 we restate the conclusion of Theorem 2.0.9 as a result for
linear PDE (2.7).

Proposition 2.0.11. Let a ∈ D ⊆ Rn be fixed such that f(a) 6= 0, where f ∈
C1(D;Rn) defines the characteristic system (2.1). Let {ui(y) : y ∈ V (a) ⊆ D}, i ∈
{1, ..., n − 1} be the (n − 1) first integral for (2.1) constructed in Theorem 2.0.8.
Then an arbitrary solution {u(x) : x ∈ V (a) ⊆ D} of the linear PDE (2.7) can
berepresented

u(x) = h(u1(x), ..., un−1(x)), x ∈ V1(a) ⊆ V (a)

where h ∈ C1(θ,R) and θ ⊆ Rn−1 is open set. In particular, each {ui : x ∈ V (a) ⊆ D}
is a solution for the linear PDE (2.7), i ∈ {1, ..., n− 1}

Remark 2.0.12. A strategy based on the corresponding Cauchy characteristic system
of ODE can be used for solving the qausilinear PDE given in (2.6).
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2.1 Cauchy Problem for the Hamilton-Jacobi
Equations

A linear Hamiltonion-Jacobi (H-J) is defined by the following first order PDE

∂tS(t, x)+ < ∂xS(t, x), g(t, x) >= L(t, x), t ∈ I ⊆ R, x ∈ G ⊆ R
n (2.17)

where S ∈ C1(I ×G;R) is the unknown function

∂tS =
∂S

∂t
, ∂xS =

∂S

∂x

and
g(t, x) : I ×G→ R

n, L(t, x) : I ×G→ R

are given continuously differentiable functions. Here I ⊆ R and G ⊆ Rn are open
sets and for each t0 ∈ I, h ∈ C1(G;R) fixed. The following Cauchy problem can be
defined. Find a solution S(t, x) : (t0 − α, t0 + α) ×D → R verifying (H-J) equation
(2.17) (t, x) ∈ (t0 − α, t0 + α) × D,D(open) ⊆ G such that S(t0, x) = h(x), x ∈ D,
where t0 ∈ I and h ∈ C1(G;R) are fixed, and (t0 − α, t0 + α) ⊆ I. A causilinear
Hamiltonion-Jacobi (H-J) equation is defined by the following first order PDE

∂tS(t, x)+ < ∂xS(t, x), g(t, x, S(t, x)) >= L(t, x, S(t, x)), t ∈ I ⊆ R, x ∈ G ⊆ R
n (2.18)

where g ∈ C1(I × G × R;Rn), L ∈ C1(I × G × R;R) are fixed and I ⊆ R, G ∈ Rn

are open sets. A Cauchy problem for causilinear (H-J)(2.18)is defined as follows:let
t0 ∈ Iand h ∈ C1(G;R) be given and find a solution S(t, x) : (t0 − α, t0 + α) ×
D → R verifying (2.18)for any t ∈ (t0 − α, t0 + α) ⊆ I and x ∈ D(open) ⊆ G
such that S(t0, x) = h(x), x ∈ D. A unique Cauchy problem solution of (2.17) and
(2.18) are constructed using the Cauchy method of characteristics which relies on
the corresponding Cauchy characteristic system of ODE. In this respect, we present
this algorithm for (2.18) and let {F (t, λ) : t ∈ (t0 − α, t0 + α), λ ∈ Σ ⊆ G} be
the local flow generated by the following characteristic system associated with(2.18),
F (t, λ) = (ϕ(t, λ), u(t, λ)) ∈ Rn+1

{
dF
dt (t, λ) = f(t, F (t, λ)), (t, λ) ∈ (t0 − α, t0 + α) × Σ
F (t0, λ) = (λ, u(t0, λ)) = (, λ, h(λ)) , λ ∈ Σ ⊆ G

(2.19)

where f(t, x, u) = (g(t, x, u), L(t, x, u)) ∈ Rn+1 and h ∈ C1(G;R) is fixed. Using
det
(

∂ϕ
∂λ (t, λ)

)
6= 0 for any t ∈ (t0 − α, t0 + α) and λ ∈ Σ(compact) ⊆ G (see

∂ϕ
∂λ (t0, λ) = In and we may assume that α > 0 is sufficiently small) an implicit
function theorem can be applied to the algebraic equation

ϕ(t, λ) = x ∈ V (x0) ⊆ G (2.20)

We find the unique solution of (2.20)

λ = (ψ1(t, x), ..., ψn(t, x)) : (t0 − α, t0 + α) × V (x0) → Σ (2.21)
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such that
ψi ∈ C1(t0 − α, t0 + α) × V (x0);R), i ∈ {1, ..., n}

fulfills
ϕ(t, ψ1(t, x), ..., ψn(t, x)) = x ∈ V (x0) ⊆ G (2.22)

for any t ∈ (t0 − α, t0 + α) and x ∈ V (x0)

ψi(t0, x) = xi, i = 1, ..., n, ψ = (ψ1, ..., ψn) (2.23)

w Define S(t, x) = u(t, ψ(t, x)) and it will be a continuously differentiable function on
(t0 − α, t0 + α) × V (x0) satisfying

S(t0, x) = u(t0, ψ(t0, x)) = u(t0, x) = h(x), x ∈ V (x0) (2.24)

In addition using ψ(t, ϕ(t, λ)) = λ, t ∈ (t0 −α, t0 +α), and taking the derivative with
respect to the variable t, we get S(t, ϕ(t, λ)) = u(t, λ) and

∂tS(t, ϕ(t, λ))+ < ∂xS(t, ϕ(t, λ)), g(t, ϕ(t, λ), u(t, λ)) >= L(t, ϕ(t, λ), u(t, λ)) (2.25)

∀t ∈ (t0 − α, t0 + α), λ ∈ V1(x0) where V1(x0) ⊆ V (x0) is taken such that ϕ(t, λ) ∈
V (x0) if (t, λ) ∈ (t0 − α, t0 + α) × V1(x0). In particular, for λ = ψ(t, x) into (1.25),
we obtain

∂tS(t, x)+ < ∂xS(t, x), g(t, x, S(t, x)) >= L(t, x, S(t, x)) (2.26)

where ϕ(t, ψ(t, x)) = x and u(t, ψ(t, x)) = S(t, x) are used. In addition,the Cauchy
problem solution for (2.18) is unique and assuming that another solution {v(t, x)} of
(2.18) satisfies v(t0, x) = h(x)for x ∈ D ⊆ G then v(t, x) = S(t, x), ∀t ∈ (t0 − α̃, t0 +
α̃), x ∈ V (x0)

⋂
D where α̃ > 0. It relies on the unique Cauchy problem associated

withODE (2.19). The proof is complete.

2.2 Nonlinear First Order PDE

2.2.1 Examples of Scalar NonlinearODE

We consider a simple scalar equation given implicitly by

F (x, y(x), y′(x)) = 0, y′(x) =
dy

dx
(x) (2.27)

where F (x, y, z) : D(open) ⊆ R3 → R be second order continuously differentiable
satisfying

F (x0, y0, z0) = 0, ∂zF (x0, y0, z0) 6= 0 (2.28)
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for some (x0, y0, z0) ∈ D fixed. Notice that for a smooth curve

{γ(t) = (x(t), y(t), z(t))) ∈ D : t ∈ [0, a]}

with
x(0) = x0, y(0) = y0, z(0) = z0

we get

F (γ(t)) = 0, t ∈ [0, a] (2.29)

provided

0 =
d

dt
[F (γ(t))] = ∂xF (γ(t))

dx

dt
(t) + ∂yF (γ(t))

dy

dt
(t) + ∂zF (γ(t))

dz

dt
(t), t ∈ [0, a] (2.30)

Using (2.30) we may and do define a corresponding characteristic system associated
with (2.27)

{
dx
dt = ∂F

∂z (x, y, z), dydt = z ∂F∂z (x, y, z)
dz
dt = −[∂F∂x (x, y, z) + ∂F

∂y (x, y, z)z], x(0) = x0, y(0) = y0, z(0) = z0
(2.31)

Notice that each solution of (2.31) satisfies (2.29). Define x = x(t), y = y(t), z =
z(t), t ∈ [−a, a], the unique Cauchy problem solution of (2.31) and by definition
dx
dt (0) = ∂zF (x0, y0, z0) 6= 0 allows to apply an implicit function theorem for solving
the following scalar equation

x(t) = x ∈ V (x0) ⊆ I(interval) (2.32)

We find a unique continuously derivable function t = τ̃(x) : V (x0) → (−a, a)

x(τ̃ (x)) = x and τ̃(x(t)) = t(
dτ̃

dx
(x)

dx

dt
(τ̃ (x)) = 1) (2.33)

Denote
ŷ(x) = y(τ̂(x)), ẑ(x) = z(τ̂(x)), x ∈ V (x0) ⊆ I

and it is easily seen that

dŷ

dx
=
dy

dt
(τ̂ (x)).

dτ̂

dx
(x) = ẑ(x)

It implies that
F (x, ŷ(x), ŷ′(x)) = 0, ∀x ∈ V (x0)

provided
F (x(t), y(y), z(t)) = 0, t ∈ (−a, a)

is used. It shows that {ŷ(x) : x ∈ V (x0)} is a solution of the scalar nonlinear
differential equation (2.27).

Remark 2.2.1. In getting the characteristic system (2.31)we must confine ourselves
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to the following constraints y(t) = ŷ(x(t)), dydt (t) = dŷ
dx(x(t)).dxdt (t) = z(t)dxdt where

z(t) = dŷ
dx(x(t)) and {ŷ(x), x ∈ I ⊆ R} is a solution of (2.27). The following two

examples can be solved using the algorithm of the characteristic system used for the
scalar equation(2.27).

Example 2.2.1. (Clairant and Lagrange equations)

{
y = xa(y′) + b(y′) (Clairaut equation)
y = xy′ + b(y′) (Lagrange equation,a(z)=z)

(2.34)

Here F (x, y, z) = xa(z)+b(z)−y and the corresponding characteristic system is given
by

{
dx
dt = xa′(z) + b′(z), dzdt = −a(z) + z, dzdt = z(xa′(z) + b′(z))
x(0) = x0z(0) = z0y(0) = y0

(2.35)

where
x0a(z0) + b(z0) − y0

and
x0a

′(z0) + b′(z0) 6= 0

Example 2.2.2. (Total differential equations)

dy

dx
=
g(x, y)

h(x, y)
(2.36)

where g, h : D ⊆ R2 → R are continuously differentiable functions and h(x, y) 6=
0, ∀(x, y) ∈ D. Formally, (2.36) can be written as

− g(x, y)dx+ h(x, y)dy = 0 (2.37)

and (2.36) is a total differential equation if a second order continuously differentiable
function F : D → R exists such that

∂F

∂x
(x, y) = −g(x, y),

∂F

∂y
(x, y) = h(x, y) 6= 0 (2.38)

If y = y(x), x ∈ I, is a solution of (2.36) then F (x, y(x)) = constant, x ∈ I, pro-
vided F fulfils (2.38). In conclusion,assuming(2.38), the nonlinear first order equation
(2.36) is solved provided the corresponding algebraic equation

F (x, y(x)) = c (2.39)

is satisfied, where the constant c is parameter.
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2.2.2 Nonlinear Hamilton-Jacobi E quations

A Hamilton-Jacobi equation is a first order PDE of the following form

∂tu(t, x) +H(t, x, u(t, x), ∂xu(t, x)) = 0, t ∈ I ⊆ R, x ∈ D ⊆ R
n (2.40)

where H(t, x, u, p) : I ×D×R×Rn → R is a second order continuously differentiable
function.

Definition 2.2.2. A solution for H-J equation (2.40) means a first order continuously
differentiable function u(t, x) : Ia(x0) × B(x0, ρ) where B(x0, ρ) ⊆ Iis a ball centered
at x0 ∈ D and Ia(x0) = (x0 − a, x0 + a) ⊆ I. A Cauchy problem for the H-J
equation(2.40) means to find a solution u ∈ C1(Ia(x0)×B(x0, ρ)) of (2.40) such that
u(t0, x) = u0(x), x ∈ B(x0, ρ) where t0 ∈ I and u0 ∈ C1(D;R) are fixed.

solution for Cauchy problem associated with H-J equation (2.40) is found using the
corresponding characteristic system





dx
dt = ∂pH(t, x, u, p), x(t0) = ξ ∈ B(x0, ρ) ⊆ D
dp
dt = −[∂xH(t, x, u, p) + p∂uH(t, x, u, p)], p(t0) = p0(ξ)
du
dt = −H(t, x, u, p)+ < p, ∂pH(t, x, u, p) >, u(t0) = u0(ξ)

(2.41)

where p0(ξ) = ∂ξu0(ξ) and u0 ∈ C1(D;R) are fixed. Consider that

{(x̂(t, ξ)), p̂(t, ξ), û(t, ξ) : t ∈ Ia(x0), ξ ∈ B(x0, ρ)} (2.42)

is the unique solution fulfilling ODE (2.40). By definition ∂ξx̂(0, ξ) = In and assuming
that a > 0 is sufficiently small, we admit

∂ξx̂(t, ξ) is nonsingular for any(t, x) ∈ Ia(x0) ×B(x0, ρ) (2.43)

Using (2.47) we may and do apply the standard implicit functions theorem for solving
the algebraic equation

x̂(t, ξ) = x ∈ B(x0, ρ1), t ∈ Iα(x0) (2.44)

We get a continuously differentiable mapping

ξ = ψ(t, x) : Iα(x0) ×B(x0, ρ1) → B(x0, ρ)

such that

x̂(t, ψ(t, x)) = x, ψ(t0, x) = x and

ψ(t, x̂(t, ξ)) = ξ for any

t ∈ Iα(x0), x ∈ B(x0, ρ1) (2.45)
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Define the following continuously differentiable function

u ∈ C1(Iα(x0) ×B(x0, ρ1);R), p ∈ C1(Iα(x0) ×B(x0, ρ1);Rn)

u(t, x) = û(t, ψ(t, x)), p(t, x) = p̂(t, ψ(t, x)) (2.46)

By definition u(t0, x) = u0(x), x ∈ B(x0, ρ1) ⊆ D and to show that {u(t, x) :
t ∈ Iα(x0), x ∈ B(x0, ρ1)} is a solution for (2.40) satisfying u(t0, x) = u0(x), x ∈
B(x0, ρ1) ⊆ D, we need to show

{
∂tu(t, x) = −H(t, x, u(t, x), p(t, x))
p(t, x) = ∂xu(t, x), (t, x) ∈ Iα(x0) ×B(x0, ρ1)

(2.47)

The second equation of (2.47)is valid if

∂ξû(t, ξ) = p̂(t, ξ)∂ξx̂(t, ξ), (p̂ ∈ R
n)

is a row vector holds for each

t ∈ Iα(x0), ξ ∈ B(x0, ρ) (2.48)

which will be proved in the second form

∂kû(t, ξ) =< p̂(t, ξ), ∂kx̂(t, ξ) >, k ∈ {1, ..., n} (2.49)

where

∂kϕ(y, ξ) =
∂ϕ(t, ξ)

∂ξk
, ξ = (ξ1, ..., ξn)

Using the characteristic system (2.40) we notice that

λk(t, ξ) = ∂kû(t, ξ)− < p̂(t, ξ), ∂kx̂(t, ξ) >

fulfils
∂k(t0, ξ) = ∂ku0(ξ)− < ∂ξu0(ξ), ek >= 0, k ∈ {1, ..., n} (2.50)

where
{e1, ..., en} ⊆ R

n

is the canonical basis. In addition, by a direct computation, we obtain

dλk
dt

(t, ξ) = ∂k[
dû

dt
(t, ξ)]− <

dp̂(t, ξ)

dt

∂kx̂(t, ξ) > − < p̂(t, ξ), ∂k[
dx̂

dt
(t, ξ)] >, t ∈ Iα(x0) (2.51)
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Notice that

∂k[
dû

dt
(t, ξ)] = −∂k[H(t, x̂(t, ξ), û(t, ξ), p̂(t, ξ))]+ < ∂kp̂(t, ξ)

x̂

dt
(t, ξ) > + < p̂(t, ξ), ∂k[

dx̂

dt
(t, ξ)] > (2.52)

and

dp̂

dt
(t, ξ) = −[∂xH(t, x̂(t, ξ)), û(t, ξ), p̂(t, ξ1) + p̂(t, ξ)∂uH(t, x̂(t, ξ)), û(t, ξ), p̂(t, ξ)] (2.53)

Combining (2.52)and (2.53) we obtain

dλk
dt

(t, ξ) = −∂uH(t, x̂(t, ξ), û(t, ξ), p̂(t, ξ)).∂kû(t, ξ) + ∂uH(t, x̂(t, ξ), û(t, ξ), p̂(t, ξ))

< p̂(t, ξ), ∂kx̂(t, ξ) >= −∂uH(t, x̂(t, ξ), û(t, ξ), p̂(t, ξ)).λk(t, ξ) (2.54)

which is a linear scalar equation for the unknown{λk} satisfying λk(t0, ξ) = 0, k ∈
{1, ..., n}(see(2.51)). It follows λk(t, ξ) = 0, ∀(t, ξ) ∈ Iα(x0) × B(x0, ρ1) and for any
k ∈ {1, ..., n}, which proves

p(t, x) = ∂xu(t, x), (t, x) ∈ Iα(x0) ×B(x0, ρ1) (2.55)

standing for the second equation in(2.47). Using(2.55), û(t, ξ) = u(t, x̂(t, ξ))and the
third equation of the characteristic system (2.40) we see easily that

∂tu(t, x̂(t, ξ))+ < p̂(t, ξ),
dx̂

dt
(t, ξ) >= − H(t, x̂(t, ξ), û(t, ξ), p̂(t, ξ))

+ < p̂(t, ξ),
dx̂

dt
(t, ξ) > (2.56)

which lead us to the first equation of (2.47)

∂tu(t, x̂(t, ξ)) = −H(t, x̂(t, ξ), û(t, ξ), p̂(t, ξ)) (2.57)

for any (t, ξ) ∈ Iα(x0) ×B(x0, ρ). In particular ,taking ξ = ψ(t, x) in (2.58), we get

∂tu(t, x) = −H(t, x, u(t, x), ∂xu(t, x)), u(t0, x) = u0(x) (2.58)

∀(t, x) ∈ (t0 − α, t0 + α) ×B(x0, ρ1)

which stands for the existence of a Cauchy problem solution. The uniqueness of
the Cauchy problem solution for H-J equation(2.40) can be easily proved using the
fact that any other solution û(t, x), (t, x) ∈ Iα(x0) × B(x0, ρ2) satisfying (2.49) and
û(t0, x) = u0(x), x ∈ B(x0, ρ2) induces a solution of the same ODE (2.40). The
conclusion is that the uniqueness property for the Cauchy problem solution of ODE
(2.41) implies that the H-J equation (2.40) has a unique Cauchy problem solution.
The above given computations and considerations regarding the H-J equation (2.40)
will be stated as

Proposition 2.2.3. Let H(t, x, u, p) : I × D × R × Rn → R be a second order
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continuously differentiable scalar function, where I ⊆ R, D ⊆ Rn are open sets. Let
(t0, x0) ∈ I × Dand u0 ∈ C1(D;R) are fixed. Then the following nonlinear H-J
equation

∂tu(t, x) +H(t, x, u(t, x), ∂xu(t, x)) = 0 (2.59)

This has a unique Cauchy problem solution satisfying

u(t0, x) − u0(x), x ∈ B(x0, ρ0) ⊆ D

In addition,the unique Cauchy problem solution

{u(t, x) : t ∈ (t0 − α, t0 + α), x ∈ B(x0, ρ0)}

of (2.59) is defined by u(t, x) = û(t, ψ(t, x))where {ϕ(t, x) : t ∈ Iα(x0), x ∈ B(x0, ρ0)}
is the unique solution of the algebraic (2.44) and

{(x̂(t, ξ), p̂(t, ξ), û(t, ξ)) : t ∈ Iα(x0), ξ ∈ B(x0, ρ)}

is the unique solution of the characteristic system (2.41)

Starting with the H-J equation (2.59) (see(2.40)) we may associate the following
system of H-J equation for the unknown p(t, x) = ∂xu(t, x) ∈ Rn

∂tp(t, x) + < ∂pH(t, x, u(t, x), p(t, x))∂xp(t, x) > (2.60)

= − [∂xH(t, x, u(t, x), p(t, x)) + p(t, x)∂uH(t, x, u(t, x), p(t, x))]

where p = (p1, ..., pn), ∂pH and ∂xH are row vectors. Using ∂xi
p(t, x) = ∂xpi(t, x), i ∈

{1, ..., n} we notice that (2.60) can be written as follows

∂tpi(t, x) + < ∂xpi(t, x), ∂pH(t, x, u(t.x), p(t, x)) > (2.61)

= − [∂xi
H(t, x, u(t, x), p(t, x)) + pi(t, x)∂uH(t, x, u(t, x), p(t, x))]

for each i ∈ {1, ..., n}, and

{(∂x(t, ξ)), ∂p(t, ξ) = p(t, ∂x(t, ξ)), ∂u(t, ξ) = u(t, ∂x(t, ξ) : t ∈ Iα(x0))} (2.62)

satisfies the characteristic system (2.42) provided

{
dx̂(t,ξ)
dt = ∂pH(t, x̂(t, ξ), û(t, ξ), p̂(t, ξ)), t ∈ Iα(x0)

x̂(t0, ξ) = ξ
(2.63)

The additional system of H-J equation (2.61) stands for a causilinear system of evo-
lution equations

{
∂tvi(t, x)+ < ∂xvi(t, x), X(t, x, v(t, x)) >= Li(t, x, v(t, x))
vi(t0, x) = v06 , i ∈ {1, ...n} (2.64)

Which allows to use the corresponding characteristic system suitable for a scalar
equation. It relies on the unique vector field X(t, x, v) deriving each scalar equation
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in the system (2.64).

Remark 2.2.4. In the case that the unique vector field X(t, x, v) is replaced by some
Xi(t, x, v), for each i ∈ {1, ..., n}, which are not commuting with respect to the Lie
bracket [Xi(t, x, .), Xi(t, x, .)](v) 6= o, for some i 6= j, then the integration of the system
(2.64)changes drastically.

2.2.3 Exercises

(E1).Using the characteristic system method, solve the following Cauchy problems

∂tu(t, x) = (∂xu(t, x))2, u(0, x) = cosx, x ∈ R, u ∈ R (2.65)

{
∂tu(t, x1, x2) = x1∂x1u(t, x1, x2) + (∂x2u(t, x1, x2))2

u(0, x1, x2) = x1 + x2, (x1, x2) ∈ R2, u ∈ R
(2.66)

(E2). Let f(t, x) : R × Rn → R and ϕ(x) : R → R be some first order continuously
differentiable functions. Find the Cauchy problem solution of the following linear H-J
equations {

∂tu(t, x)+ Σni=1ai(t)∂xi
u(t, x) = f(t, x)

u(0, x) = ϕ(x)
(2.67)

where a(t) = (a1(t), ..., an(t)) : R → Rn is a continuous function.

{
∂tu(t, x)+ < A(t)x.∂xu(t, x) >= f(t, x)
u(0, x) = ϕ(x)

(2.68)

where A(t) : R →Mn×n is a continuous mapping.

2.3 Stationary Solutions for Nonlinear First

Order PDE

2.3.1 Introduction

We consider a nonlinear equation

H0(x, ∂xu(x), u(x)) = constant ∀x ∈ D ⊆ R
n (2.69)

where
H0(x, p, u) : Rn × R

n × R → R
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is a scalar continuously differentiable function

H0 ∈ C1(Rn × R
n × R)

and ∂xu = (∂1u, ..., ∂nu) stands for the gradient of a scalar function. A standard
solution for (2.69) means to find u(x) : B(x0, ρ) ⊆ D → R, u ∈ C1(B(x0, ρ)) such
that H0(x, ∂xu(x), u(x)) = constant∀x ∈ B(x0, ρ) ⊆ D. The usual method of solving
(2.69) uses the associated characteristic system

dẑ

dt
= Z0(ẑ), ẑ(0, λ) = ẑ(λ), λ ∈ Λ ⊆ R

n−1, t ∈ (−a, a) (2.70)

where Z0(z) : R2n+1 → R2n+1, z = (x, p, u), is the characteristic vector field corre-
sponding to H0(z)

Z0(z) = (X0(z), P0(z), U0(z)), X0(z) = ∂pH0(z) ∈ R
n (2.71)

U0(z) =< p,X0(z) >,P0(z) = −(∂xH0(z) + p∂uH0(z)) ∈ R
n

For a fixed Cauchy condition ẑ(λ) = (x̂(λ), p̂(λ), û(λ)) given on a domain λ ∈ Λ ⊆
Rn−1, a compatibility condition

∂iû(λ) =< p̂(λ), ∂ix̂(λ) >, i ∈ {1, ..., n− 1} (2.72)

is necessary. In addition, both vector fields Z0(z) and the parametrization {ẑ(λ) :
λ ∈ Λ} must satisfy a nonsingularity condition

the vectors in R
n, X0(ẑ(λ)), ∂1x̂(λ), ..., ∂n−1x̂(λ) (2.73)

are linearly independent for anyλ ∈ Λ ∈ R
n−1

By definition, the characteristic vector field {∂zH0(z) : z ∈ R2n+ 1} and we get

0 =

{
< ∂zH0(z), Z0(z) >
< ∂xH0(z), X0(z) > + < ∂pH0(z), P0(z) > +∂uH0(z)U0(z)

(2.74)

for any z = (x, p, u) ∈ R2n+1. Using (2.74) for the local solution {ẑ(t, λ) : t ∈ (−a, a)}
of the characteristic system (2.70) we obtain H0(ẑ(t, λ)) = H0(ẑ(λ)), t ∈ (−a, a), for
each λ ∈ Λ ⊆ Rn−1. Looking for a stationary solution of the equation (2.69) we need
to impose the following constaint

H0(ẑ(t, λ)) = H0(z0)for any(t, λ) ∈ (−a, a) × Λ (2.75)

where z0 = ẑ(0) = (x0, p0, u0)(0 ∈ intΛ for simplicity). The condition (2.73) allows
to apply the standard implicit function theorem and to solve the algebraic equation

x̂(t, λ) = λ ∈ B(x0, ρ) ⊆ D (2.76)

We get smooth functions t = τ(x) ∈ (−a, a) and λ = ψ(x) ∈ Λ such that

x̂(τ(x), ψ(x)) = x ∈ B(x0, ρ) ⊆ D, τ(x0) = 0, ψ(x0) = 0 ∈ Λ (2.77)
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A solution for the nonlinear equation (2.69) is obtained as follows

u(x) = û(τ(x), ψ(x)), p(x) = p̂(τ(x), ψ(x)), x ∈ B(x0, ρ) ⊆ R
n (2.78)

where p(x) fulfils
p(x) = ∂xu(x)

Obstruction. We need explicit condition to compute {ẑ(λ) : λ ∈ Λ} such that (2.72),
(2.73) and (2.75) are verified.

2.3.2 The Lie Algebra of Characteristic Fields

Denote H = C∞(R2n+1;R) the space consisting of the scalar functions H(x, p, u) :
Rn×Rn×R → R which are differentiable of any order. For each pair H1, H2 ∈ define
the Poisson bracket

{H1, H2}(z) =< ∂zH2(z), Z1(z) >, z = (x, p, u) ∈ R
2n+1 (2.79)

where ∂zH2(z) stands for the gradient of a scalar function H2 ∈ H and Z1(z) =
(X1(z), P1(z), U1(z)) ∈ R2n+1 is the characteristic field corresponding to H1 ∈ H.
We recall that Z1 is obtained from H1 ∈ H such that the following equations

X1(z) = ∂pH1(z), P1(z) = −(∂xH1(z) + p∂uH1(z)), U1(z) =< p, ∂pH1(z) > (2.80)

are satisfied. The linear mapping connecting an arbitraryH ∈ H and its characteristic
field can be represented by

ZH(z) = T (p)(∂zH)(z), z = (x, p, u) ∈ R
2n+1 (2.81)

where the real (2n+ 1) × (2n+ 1) matrix T (p) is defined by

T (p) =




O In θ
−In O −p
θ∗ p∗ 0


 (2.82)

where O-zero matrix of Mn×n, Inunity matrix of Mn×nand θ ∈ Rn is the null column
vector. We notice that T (p) is a skew symmetric matrix

[T (p)]∗ = −T (p) (2.83)

and as a consequence, the Poisson bracket satisfies a skew symmetric property

{H1, H2}(z) =





< ∂zH1(z), Z2(z) >
< ∂zH1(z), T (p)∂zH2(z) >
< [T (p)]∗∂zH1(z), ∂zH2(z) >
−{H2, H1}

(2.84)
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In addition, the linear space of characteristic fields K ⊆ C∞(R2n+1,R2n+1) is the
image of a linear mapping S : DH → K where DH = {∂zH : H ∈ H}. In this
respect, using (2.81) we define

S(∂zH)(z) = T (p)(∂zH)(z), z ∈ R
2n+1 (2.85)

where the matrix T (p) is given in (2.82). The linear space of characteristic fields
K = S(dH) is extended to a Lie algebra

Lk ⊆ C∞(R2n+1,R2n+1)

using the standard Lie bracket of vector fields

[Z1, Z2] = [∂zZ2(z)]Z1 − [∂zZ1]Z2(z), Zi ∈ K, i = 1, 2 (2.86)

On the other hand, each H ∈ H is associated with a linear mapping

−→
H (ϕ)(z) = {H1ϕ}(z) =< ∂zϕ(z), ZH(z)) >, z ∈ R

2n+1 (2.87)

for each ϕ ∈ H, where ZH ∈ K is the characteristic vector field corresponding to
H ∈ H obtained from ∂zH by ZH(z) = T (p)(∂zH)(z) (see (2.81)). Define a linear
space consisting of linear mappings

−→H = {−→H : H ∈ H} (2.88)

and extend
−→H to a Lie algebra LH using the Lie bracket of linear mappings

[
−→
H1,

−→
H2] =

−→
H1 ◦

−→
H2 −

−→
H2 ◦

−→
H1 (2.89)

The link between the two Lie algebras LK(extending K) and LH(extending
−→H) is

given by a homomorphism of Lie algebras

A : LH → LK satisfyingA(
−→H) = K (2.90)

and
A([

−→
H1,

−→
H2]) = [Z1, Z2] ∈ LKwhereZi = A(

−→
Hi), i ∈ {1, 2} (2.91)

Remark 2.3.1. The Lie algebra LH(⊇ −→H) does not coincide with the linear space−→H and as a consequence,the linear space K ⊆ Lk. It relies upon the fact the linear

mapping {−−−−→H1, H2} generated by the Poisson bracket {H1, H2} ∈ H does not coincide

with the Lie bracket [
−→
H1,

−→
H1] defined in (2.89).

Remark 2.3.2. In the particular case when the equation (2.69) is replaced by H0(x, p) :
R2n → R is continuously differentiable then the above given analysis will be restricted
to the space H = C∞(R2n;R). If it is the case then the corresponding linear mapping
S : DH → K is determined by a simplectic matrix T ∈M2n×2n

T =

(
O In
−In O

)
, DH = {∂zH : H ∈ C∞(R2n;R)} (2.92)
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In addition, the linear spaces
−→
H and K ⊆ C∞(R2n;R2n) coincide with their Lie algebra

LH and correspondingly LK as the following direct computation shows

[Z1, Z2](z) = T∂zH12, z ∈ R
2n (2.93)

where
Zi = T∂zHi, i ∈ {1, 2}

and
H12 = {H1, H2}(z) =< ∂zH2(z), Z1(z) >

is the Poisson bracket associated with two scalar functions H1, H2 ∈ H. We get

T∂zH12(z) =





T [∂2zH2(z)]Z1(z) + T (∂zZ
∗
1 (z))∂zH2

[∂zZ2(z)]Z1(z) + T [∂z(∂
∗
zH

∗
1T

∗)]∂zH2(z)
[∂z2(z)]Z1(z) − T (∂2zH1(z))T∂zH2(z)
[∂zZ2(z)]Z1(z) − [∂zZ1(z)]Z2(z)

(2.94)

and the conclusion {LH =
−→
H,LK = K} is proved.

2.3.3 Parameterized Stationary Solutions

Consider a nonlinear first order equation

H0(x, p(x), u(x)) = const ∀x ∈ D ⊆ R
n (2.95)

With the same notations as in section 2.4.2, let H = C∞(R2n+1;R)}, z = (x, p, u) ∈
R2n+1 and define the skew-symmetric matrix

T (p) =




O In θ
−In O −p
θ∗ p∗ 0


 , p ∈ R

n (2.96)

By definition, the linear spaces K and DH are

K = S(DH), DC = {∂zH : H ∈ H} (2.97)

where the mapping S : DH → K satisfies

S(∂zH)(z) = T (p)∂zH(z), z ∈ R
2n+1 (2.98)

Let z0 = (x0, p0, u0) ∈ R2n+1 and the ball B(x0, 2ρ) ⊆ R2n+1 be fixed. Assume that

there exist {Z1, ..., Zm} ⊆ K (2.99)

such that the smooth vector fields

{Z1(z), ..., Zm(z) : z ∈ B(z0, 2ρ)}
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are in involution over C∞(B(z0, 2ρ))

(the Lie bracket)[Zi, Zj](z) =

m∑

k=1

αkij(z)Zk(z), i, j ∈ {1, ...,m}

where
αkij ∈ C∞(B(z0, 2ρ))

A parameterized solution of the equation (2.95) is given by the following orbit

ẑ(λ, z0) = G1(t1) ◦ ... ◦Gm(tm)(z0), λ = (t1, ..., tm) ∈ Λ =

m∏

1

[−ai, ai] (2.100)

where
Gi(τ)(y), y ∈ B(z0, ρ), τ ∈ [−ai, ai]

is the local flow generated by Zi. Notice that

Nz0 = {z ∈ B(z0, 2ρ) : z = ẑ(λ, z0), λ ∈ Λ} (2.101)

is a smooth manifold and

dimMz0 = dimL(Z1, ..., Zm)(z0) = m 6 n if Z1(z0), ..., Zm(z0) ∈ R
2n+1 (2.102)

are linearly independent.

Remark 2.3.3. Under the conditions of the hypothesis (2.99) and using the alge-
braic representation of a gradient system associated with {Z1, ..., Zm} ⊆ K a system
{q1, ..., qm} ⊆ C∞(Λ,Rm) exists such that

q1(λ), ..., qm(λ) ∈ R
marelinearlyindependent (2.103)

and ∂λẑ(λ, z0)qi(λ) = Zi(ẑ(λ, z0)) for any λ ∈ Λ, i ∈ {1, ...,m}
Definition 2.3.4. A parameterized solution associated with (2.95)is defined by orbit
(2.100)provided the equality H0(ẑ(λ, z0)) = H0(z0), ∀λ ∈ Λ, is satisfied.

Remark 2.3.5. The conclusion (2.103) does not depend on the manifold structure
given in (2.101). Using (2.104), we rewrite the equation H0(ẑ(λ, z0)) = H0(z0), ∀λ ∈
Λ, in the following equivalent form

0 = {Hi, H0}(ẑ(λ.z0)) =< ∂zH0(ẑ(λ, z0)), Zi(ẑ(λ, z0)) >, λ ∈ Λ (2.104)

for each i ∈ {1, ...,m}, where {Hi, H0} is the Poisson bracket associated with Hi, H0 ∈
C1(R2n+1,R), and Zi = S(∂zHi), i ∈ {1, ...,m}. The equations (2.104) are directly
computed from the scalar equation H0(ẑ(λ, z0)) = H0(z0), ∀λ ∈ Λ, by taking the cor-
responding Lie derivatives where {q1, ..., qm} from (2.103) are used. As a consequence,
the orbit defined in (2.100), under the conditions (2.103) and (2.102), will determine
a parameterized solution of (2.104).

Remark 2.3.6. A classical solution for (2.95) can be deduced from a parameterized
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solution {ẑ(λ, z0) : λ ∈ Λ} if we take m = n and assume

the matrix [∂λx̂(0, z0)] ∈Mn×n is nonsingular (2.105)

where the components (x̂(λ, z0), p̂(λ, z0), û(λ, z0)) = ẑ(λ, z0) define the parameterized
solution {ẑ(λ, z0)}.

Proposition 2.3.7. Assume the orbit{ẑ(λ, z0) : λ ∈ Λ} given in (2.100) is a param-
eterized solution of (2.95) such that the condition (2.105) is satisfied.Let λ = ψ(x) :
S(x0, ρ) → intΛ be the smooth mapping satisfying x̂(ψ(x), z0) = x ∈ B(x0, ρ), ψ(x0) =
0. Denote u(x) = û(ψ(x), z0) and p(x) = p̂(ψ(x), z0).Then

p(x) = ∂xu(x)andH0(x, p(x), u(x)) = H0(z0), for any x ∈ B(x0, ρ) ⊆ R
n (2.106)

where p(x) , x ∈ B(x0, ρ)) verifies the following cuasilinear system of first order equa-
tions

[∂xH0(x, p(x), u(x)) + p(x)∂uH0(x, p(x), u(x))]

+[∂xp(x)]∗∂pH0(x, p(x), u(x)) = 0, x ∈ B(x0, ρ) (2.107)

Proof. The component {x̂(λ, z0) : λ ∈ Λ} fulfills the condition of the standard implicit
functions theorem (see (2.105)) and, by definition, the matrix

∂λx̂(0.z0) =‖ X1(z0, ..., Xn(z0)) ‖

is composed by first vector-component of Zi(z) = (Xi(z), Pi(z), Ui(z)) i ∈ {1, ..., n},
where {Z1(z), ..., Zn(z)} define the orbit {ẑ(λ, z0)}. Let λ = ψ(x) : B(x0, ρ) ⊆
Rn → intΛ ⊆ Rn be such that ψ(x0) = 0 and x̂(ψ(x), z0) = x. Denote p(x) =
p̂(ψ(x), z0), u(x) = û(ψ(x), z0) and using the equation

H0(ẑ(λ, z0)) = H0(z0), λ ∈ Λ

we get
H0(z(x)) = H0(z0), ∀x ∈ B(x0, ρ) ⊆ R

n

where z(x) = (x, p(x), u(x)). Using (2.103) written on corresponding components we
find that ∂λû(λ, z0)qi(λ) = p̂(λ, z0)∂λx̂(λ, z0)qi(λ)), i ∈ {1, ..., n} and

∂λu(λ, z0) = p̂(λ, z0)∂λx̂(λ, z0), λ ∈ Λ (2.108)

is satisfied, where p̂(λ) ∈ Rn is a row vector. On the other hand, a direct computation
applied to u(x̂(λ, z0)) = û(λ, z0) leads us to

∂xu(x̂(λ, z0)).∂λx̂(λ, z0) = ∂λû(λ, z0) (2.109)

and using (2.105) we may and do multiply by the inverse matrix [∂λx̂(λ, z0)]−1

in both equations (2.108) and (2.109). We get p̂(λ, z0) = ∂xu(x̂(λ, z0)), for any
λ ∈ B(z0, 2ρ) (ρ > 0 sufficiently small) which stands for
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∂xu(x) = p(x), x ∈ B(z0, ρ) ⊆ R
n

provided λ = ψ(x) is used. The conclusions (2.107) tell us that the gradient ∂x[H0(x, p(x), u(x))]
is vanishing and the proof is complete.

Remark 2.3.8. Taking {Z1, ..., Zm} ⊆ K is involution we get the property (2.103)
fulfilled (see §5 of ch II)

0 =





{Hi, H0}(ẑ(z, z0))
< ∂zH0(ẑ(λ, z0)), Zi(ẑ(λ, z0)) >
− < T (p)∂zH0(ẑ(λ, z0)), ∂zHi(ẑ(λ, z0)) >
− < ∂zHi,(ẑ(λ, z0)), Z0(ẑ(λ, z0)) >, i ∈ {1, ...,m}

(2.110)

It shows that {H1, ..., Hm} ⊆ H = C∞(R2n+1,R) defining {Z1, ..., Zm} ⊆ K can be
found as first integrals for a system of ODE

dz

dt
= Z0(z), Z0(z) = T (p)∂zH0(z) ∈ K

corresponding to H0(z).

2.3.4 The linear Case:H0(x, p) =< p, f0(x) >

With the same notations as in §4.3 we define z = (x, p) ∈ R2n and H = {H(z) =<
p, f(x) >, p ∈ R2n, f ∈ C∞(R2n,R2n)}. The linear space of characteristic fields
K ⊆ C∞(R2n,R2n) is the image of a linear mapping S : DH → K, where

DH = {∂zH : H ∈ H}, S(∂zH)(z) = T∂zH(z), z ∈ R
2n (2.111)

T =

(
O In
−In O

)
for eachZ ∈ K (2.112)

is given by

Z(z) =

(
∂pH(z)
−∂xH(z)

)
=

(
f(x)

−∂x < p, f(x) >

)
(2.113)

Let z0 = (p0, x0) ∈ R2n and B(z0, 2ρ) ⊆ R2n be fixed and consider the following linear
equation of p ∈ Rn

H0(x, p) =< p, f0(x) >= H0(z0)for any z ∈ D ⊆ B(z0, 2ρ) (2.114)

where f0 ∈ C1(R2n,R2n). We are looking for D ⊆ B(z0, 2ρ) ⊆ R2n as an orbit.

ẑ(λ, z0) = G1(t1) ◦ ... ◦Gm(tm)(z0), λ = {t1, ..., tm} ∈ Λ =

m∏

1

[−ai, ai] (2.115)
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where Gi(τ)(y), y ∈ B(z0, ρ), τ ∈ [−ai, ai], is the local flow generated by some Zi ∈
K, i ∈ {1, ...,m}, m 6 n. Assuming that

{Z1, ..., zm} ⊆ K are in involution over C∞(B(z0, 2ρ),R) (2.116)

where

Zi(z) =

(
fi(x)

−∂x < p, fi(x) >

)
and{f1, ..., fm} ⊆ C∞(R2n,R2n)

are in involution over C∞(B(x0),R) we define

D = {z ∈ B(z0, 2ρ) : z = ẑ(λ, z0), λ ∈ Λ} ⊆ R2n (2.117)

where the orbit {ẑ(λ, z0) : λ ∈ Λ} is given in (2.115). Notice that the orbit (2.115) is
represented by

ẑ(λ, z0) = (x̂(λ, z0), p̂(λ, z0)), λ ∈ Λ, z0 = (x0, p0) ⊆ R2n (2.118)

where the orbit x̂(λ, z0), λ ∈ Λ, inRn verifies

x̂(λ, x0) = F1(t1) ◦ ... ◦ Fm(tm)(x0), λ = {t1, ..., tm} ∈ Λ (2.119)

Here Fi(τ)(x), x ∈ B(x0, ρ) ⊆ Rn, τ ∈ [−ai, ai], is the local flowgenerated by the
vector field fi ∈ C∞(Rn,Rn) and {f1, ..., fm} ⊆ C∞(Rn,Rn) are in involution over
C∞(B(x0, ρ)).

Remark 2.3.9. Denote by Nx0 ⊆ Rn the set consisting of all points {x̂(λ, x0) : λ ∈
Λ} using the orbit defined in (2.119). Assuming that{f1(x0), ..., fm(x0)} ⊆ Rn are
linearly independent then {f(x0), ..., fm(x)} ⊆ Rn are linearly independent for any
x ∈ B(x0, ρ)(ρ sufficiently small) and the subset Nx0 ⊆ Rn can be structured as an
m-dimensional smooth manifold. In addition,the set D ⊆ R2n defined in (2.117)
can be verified as an image of smooth mapping z(x) = (x, p(x)) : Nx0 → D, if
p(x) = p̂(ψ(x), z0) and λ = ψ(x) : B(x0, ρ) → Λ is unique solution of the algebraic
equation x̂(λ, x0) = x ∈ B(x0, ρ).

Definition 2.3.10. The orbit {ẑ(λ, z0) : λ ∈ Λ} defined in (2.115) is a parameterized
solution of the linear equation (2.114) if H0(ẑ(λ, z0)) = H(z0) , ∀λ ∈ Λ.

Proposition 2.3.11. Let z0 = (x0, p0) ⊆ R2n and B(z0, 2ρ) ⊆ R2n be fixed such that
the hypothesis (2.116) is fulfilled.For {Z1, ..., Zm} ⊆ K given in (2.116) assume in ad-
dition, that {f1, ..., fm} are commuting with {f0} i.e [fi, f0](x) = 0, x ∈ B(x0, 2ρ), i ∈
{1, ...,m}. Then the orbit {ẑ(λ, z0) : λ ∈ Λ} defined in (2.115) is a parameterized so-
lution of equation (2.114), where D ∈ R2n is given in (2.117).

Proof. By hypothesis ,the Lie algebra L(Z1, ..., Zm) ⊆ C∞(R2n,R2n) is of finite type
(locally) and {Z1, ..., Zm} is a system of generators in L(Z1, ..., Zm). As a consequence
L(Z1, ..., Zm) is (f.g.◦; z0) and using the algebraic representation of the gradient sys-
tem associated with {Z1, ..., Zm} we get {q1, ..., qm} ⊆ C∞(Λ;Rn) such that

∂λẑ(λ, z0).qi(λ) = Zi(ẑ(λ, z0)), λ ∈ Λ, i ∈ {1, ...,m}, q1(λ), ..., qm(λ) ∈ R
m (2.120)
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are linearly independent for any λ ∈ Λ.
The meaning of (f.g.θ; z0) Lie algebra and the conclusion (2.120) are explained in
the next section. For the time being we use (2.120) and taking Lie derivatives of the
scalar equation H0(ẑ(λ, z0)) = H0(z0), λ ∈ Λ, we get

0 = ∂λH(ẑ(λ, z0)).qi(λ) =< ∂zH(ẑ(λ, z0)), Zi(ẑ(λ, z0)) >, for any i ∈ {1, ..., m} (2.121)

and λ ∈ Λ. By definition

∂zH0 =

(
∂x < p, f0(x) >

f0(x)

)
, andZi(z) =

(
fi(x)

−∂x < p, f0(x) >

)
, i ∈ {1, ...,m}

which allows us to rewrite (2.121) as follows

< p̂(λ, z0), [fi, f0](x̂(λ, x0)) >= 0, i ∈ {1, ...,m}, λ ∈ Λ (2.122)

Using [fi, f0](x) = 0, x ∈ B(x0, 2ρ), i ∈ {1, ...,m} we obtain that (2.121) is fulfilled
and it implies

∂λH0(ẑ(λ, z0)) = 0, ∀λ ∈ Λ (2.123)

provided (2.120) is used. In conclusion, the scalar equation H0(z) = H0(z0) for any
z ∈ D ⊆ R2n, is satisfied, where D is defined in(2.117) and the proof is complete.

Remark 2.3.12. The involution condition of {Z1, ..., Zm} ⊆ K is satisfied if

{f1, ..., fm} ⊆ C∞(B(x0, 2ρ);Rn)

are in involution over R. In this respect, using the particular form of

Zi(z) =

(
fi(x)
Ai(x)p

)
, Ai(x) = −[∂xfi(x)]∗ i ∈ {1, ...,m}

we compute a Lie bracket [Zi, Zj ] as follows

[Zi, Zj ](z) =

(
[fi, fj ](x)
Pij(z)

)
, i, j ∈ {1, ...,m} (2.124)

Here [fi, fj ] is the Lie bracket from C∞(R2n,R2n) and

Pij(z)





= [∂x(Aj(x)p)].fi(x) +Aj(x)Ai(x)p− [∂x(Ai(x)p)]fj(x)
= −Ai(x)Aj(x)p
= ∂x[< Aj(x)p, fi(x) > − < Ai(x)p, fj(x) >]
= −∂x < p, [fi, fj](x) >

(2.125)

where

Pij(z) = [∂z(Aj(x)p)]Zi(z) − [∂z(Ai(x)p)]Zj(x), z ∈ R
2n (2.126)

is used. Notice that (2.125) allows one to write (2.3.12) as a vector field from K

[Zi, Zj ](z) = T∂zHij(z), z = (x, p) ∈ R
2n (2.127)
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where Hij =< p, [fi, fj](x) >, i, j ∈ {1, ...,m}. As a consequence, assuming that
{f1, ..., fm} are in involution over R we get that L(f1, ..., fm) and L(Z1, ..., Zm) are
finite dimensional with {Z1, ..., Zm} in involution over R.

2.3.5 The Case H0(x, p, u) = H0(x, p); Stationary Solutions

Denote C∞(R2n,Rn) , z = (x, p) ∈ R2n and define the linear space of characteristic
fields K ⊆ C∞(R2n,Rn) , z = (x, p) ∈ R2n by

K = S(DH), DH = {∂zH : H ∈ H} (2.128)

Here the linear mapping : DH → K is given by

S(∂zH)(z) = T∂zH(z), H ∈ H, z ∈ R
2n (2.129)

and T is the simplectic matrix

T =

(
O In
−In O

)
, T 2 =

(
−In O
O −In

)
(2.130)

Let z0 = (x0, p0) ∈ R2n and B(z0, 2ρ) ⊆ R2n be fixed and consider the following
nonlinear equation

H0(z) = H0(z0), ∀ z ∈ D ⊆ B(z0, 2ρ) (2.131)

where H0 ∈ C1(B(z0, 2ρ);R) is given and D ⊆ B(z0, 2ρ) has to be found. A solution
for (2.131) uses the following assumption

there exist Z1, ..., Zm ∈ K such that {Z1(z), ..., zm(z) : z ∈ B(z0, 2ρ)} (2.132)

in involution over C∞(B(z0, 2ρ);R). Assuming that (2.132) is fulfilled then a param-
eterized solution for (2.131) uses the following orbit

ẑ(λ, z0) = G1(t1) ◦ ... ◦Gm(tm)(z0), λ = (t1, ..., tm) ∈ Λ =

m∏

1

[−ai, ai] (2.133)

where
Gi(τ)(y), y ∈ B(z0, ρ), τ ∈ [−ai, ai]

is the local flow generated by Zi ∈ K given in (2.132). By definition

Zi(z) = T∂zHi(z) =

(
∂pHi(x, p)
−∂xHi(x, p)

)
, i ∈ {1, ...,m} (2.134)

and we recall that, in this case, the linear space of characteristic fields K is closed
under the lie bracket. As a consequence, each Lie product [Zi, Zj] can be computed
by

[Zi, Zj ](z) = T∂zHij(z), i, j ∈ {1, ...,m}, z ∈ R
2n (2.135)
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where Hij(z) = {Hi, Hj}(z) =< ∂zHij(z), Zi(z) >= − < ∂zHi, Zj(z) >
stands for Poisson bracket associated with two C1 scalar functions. In addition, as-
suming (2.132) we get that the Lie algebra L(Z1, ..., Zm) ⊆ C∞(B(z0, 2ρ),Rn) is of
the finite type (see in next section) allowing one to use the algebraic representation
of the corresponding gradient system. We get that{q1, ..., qm} ⊆ C∞(Λ,Rm) will exist
such that

∂λẑ(λ, z0)qi(λ) = Zi(ẑ(λ, z0)), i ∈ {1, ...,m} , λ ∈ Λ, q1(λ), ..., qm(λ) ∈ R
m (2.136)

are linearly independent, λ ∈ Λ, where {ẑ(λ, z0) : λ ∈ Λ} is the fixed orbit given in
(2.133). Denote D = {z ∈ B(z0, 2ρ) : z = ẑ(λ, z0), λ ∈ Λ} and the orbit given in
(2.133) is a parameterized solution of the equation (2.131) iff

∂λ[H0(ẑ(λ, z0))]qi(λ) = 0, i ∈ {1, ...,m} (2.137)

Using (2.136) we rewrite (2.137)as follows

0 =< ∂λH0(ẑ(λ, z0)), Zi(ẑ(λ, z0)) >= {Hi,H0}(ẑ(λ, z0)), λ ∈ Λ,∀ i ∈ {1, ..., m} (2.138)

It is easily seen that (2.138) is fulfilled provided

H1, ..., Hm ∈ C∞(B(z0, 2ρ),Rn)

can be found such that

0 = {Hi, H0}(z) =< ∂zH0(z), T ∂zHi(z) >=< Z0(z), ∂zHi(z) > (2.139)

for each i ∈ {1, ...,m} z ∈ B(z0, 2ρ) and Zi(z) = T∂zHi(z) , i ∈ {1, ...,m} are in
involution for z ∈ B(z0, 2ρ). In particular ,the equations in (2.139) tell us that
{H1, ..., Hm} are first integrals for the vector field Z0(z) = T∂zH0(z).

Remark 2.3.13. Taking H0 ∈ C2(B(z0, 2ρ;R))(instead of H0 ∈ C1) we are in posi-
tion to rewrite the equation (2.139) using Lie product [Z0, Zj] (see (2.135)) as follows

0 =

{
[Z0, Zj ](z), ∀ j ∈ {1, ...,m}, z ∈ B(z0, 2ρ)
{Hi, H0}(z0) =< Z0(z0), ∂zHi(z0) >, i ∈ {1, ...,m} (2.140)

We conclude these considerations.

Proposition 2.3.14. Let z0 = (x0, p0) ∈ R2n and B(z0, 2ρ) ⊆ R2n be fixed such that
the hypothesis (2.151) and (2.138) are fulfilled. Then {ẑ(λ, zo) : λ ∈ Λ} defined in
(2.133)is a parameterized stationary solution of the nonlinear equation (2.131).

Remark 2.3.15. A standard solution for the nonlinear equation

H0(x, p(x)) = const, ∀x ∈ D ⊆ R
n

can be found from a parameterized solution provided the hypothesis (2.132) is stated
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with m = n and assuming, in addition, that X1(z0), ..., Xn(z0) ∈ Rn from

Zi(z) =

(
Xi(z)
Pi(z)

)
, i ∈ {1, ..., n}

are linearly independent. It leads us to the equations

H0(x̂(λ, z0), p̂(λ, z0)) = 0 ∀λ ∈ Λ =
n∏

1

[−ai, ai] (2.141)

where the orbit ẑ(λ, z0) = (x̂(λ, z0), p̂(λ, z0)) satisfies the implicit functions theorem
when the algebraic equations

x̂(λ, z0) = x ∈ B(x0, ρ) ⊆ R
n

are involved,Find a smooth mapping

λ = ψ(x) : B(z0, 2ρ) → λ

such that
x̂(ψ(x), z0) = x

and define
p(x) = p̂(ψ(x), z0), x ∈ B(x0, ρ) ⊆ R

n

Then (2.141) written for λ = ψ(x) becomes

H0(x, p(x)) = const = H0(x0, p0), ∀x ∈ B(x0, ρ) (2.142)

and p(x) : B(x0, ρ) → Rn is the standard solution. Assuming that (2.142)is established
it implies that {p(x) : x ∈ B(x0, ρ)} is a smooth solution of the following system of
the first order causilinear equations

∂xH0(x, p(x)) + [∂xp
∗(x)]∗.∂pH0(x, p(x)) = 0, x ∈ B(x0, ρ) (2.143)

whose solution is difficult to be obtained using characteristic system method. In ad-
dition,if [∂xp(x)] is a symmetric matrix (p(x) = ∂xu(x), u ∈ C2(D;R)) then the first
order system (2.143) becomes




∂x1H0(x, p(x))
.
.
.

∂xn
H0(x, p(x))




+




< ∂xp1(x)∂pH0(x, p(x)) >
.
.
.

< ∂xpn(x)∂pH0(x, p(x)) >




= 0 (2.144)

for any x ∈ B(x0, ρ) ⊆ Rn, where p(x) = (p1(x), ..., pn(x)). In this case, the smooth
mapping y = p(x), x ∈ B(x0, ρ), can be viewed as a coordinate transformation in Rn

such that any local solution (x̂(t, λ), p̂(t, λ)) of the Hamilton system

{
dx
dt = ∂pH0(x, p) x(0) = λ ∈ B(x0, a) ⊆ B(x0, ρ)
dp
dt = −∂xH0(x, p) p(0) = p(λ); t ∈ (−α, α) = Iα

(2.145)
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has the property p̂(t, λ) = p(x̂(t, λ)), (t, λ) ∈ Iα ×B(x0, a).

2.3.6 Some Problems

Problem 1. For the linear equation H0(x, p) =< p, f0(x) >= c define an extended
parameterized solution

Ẑe(λ, z0) = (x̂(λ, z0), p̂(λ, z0), û(λ, z0)) ∈ R
2n+1, λ ∈ Λ =

m∏

1

[−ai, ai]

such that
∂λû(λ, z0) = [p̂(λ, z0)]∗∂λx̂(λ, z0) (2.146)

where z0 = (x0, p0, u0).
Hint. Define the extended vector fields

Zei ∈ C∞(R2n+1,R2n+1)Zei (ze) =

(
Zi(x, p)
Hi(x, p)

)
, ze = (x, p, u) = (z, u)

where Hi(x, p) =< p, fi(x) > and Zi(x, p) = T∂zHi(x, p), z = (x, p), i ∈ {1, ...,m},
where the matrix T is defined in (2.112). Assume the hypothesis (2.116) of section
2.4.4 fulfilled and define the orbit

Ẑe(λ, z0) = Ge1(t1) ◦ ... ◦Gem(tm)(z0), λ = (t1, ..., tm) ∈ Λ =
m∏

1

[−ai, ai] (2.147)

where Gei (τ)(ye) is the flow generated by Zei . Prove that under the hypothesis as-
sumed in proposition (2.3.11) we get {ẑe(λ, z0) : λ ∈ Λ} as a parameterized solution
of the linear equation H0(x, p) = const satisfied the conclusion (2.146)
Problem 2. For the nonlinear equation H0(x, p) = const define an extended param-
eterized solution

ẑe(λ, ze0) = (x̂(λ, ze0), p̂(λ, ze0)), û(λ, ze0) ∈ R
2n+1, λ ∈ Λ =

m∏

1

[−ai, ai]

such that

∂λû(λ, z0) = [p̂(λ, z0)]∗∂λx̂(λ, z0), λ ∈ Λ whereZe0 = (x0, p0, u0) ∈ R
2n+1 (2.148)

is fixed.
Hint

Zei (ze) =

(
Zi(z)

< p,Xi(z) >

)
whereZi(z)

(
Xi(z)
Pi(z)

)
(2.149)
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is obtained from a smooth Hi ∈ C∞(R2n,R) as follows

Zi(z) = T∂zHi(z), i ∈ {1, ...,m}

given in (2.130) defined the extended orbit

ẑe(λ, ze0) = Ge1(t1) ◦ ... ◦Gem(tm)(ze0), λ = (t1, ..., tm) ∈ Λ =
m∏

1

[−ai, ai] (2.150)

where Gei (τ)(ye) is the local flow {Zei }. Assume that

{Ze1(ze), ..., Zem(ze) : ze ∈ B(z0, 2ρ) ⊆ R
2n+1} (2.151)

are in involution over C∞(B(z0, 2ρ);R) and then prove the corresponding proposition
(2.3.14) of assuming that replaces the condition (2.132).

2.4 Overdetermined system of First Order PDE and

Lie Algebras of Vector Fields

As one may expect, a system of first order partial differential equations

< ∂xS(x), gi(x) >= 0, i ∈ {1, ...,m} gi ∈ C∞(Rn,Rn) (2.152)

has a nontrivial solution S ∈ C2(B(z0, ρ) ⊆ R2n) provided S is nonconstant on the
ball B(z0, ρ) ⊆ R2n+1 and

dimL(g1, ..., gm(x0)) = k < n (2.153)

Here L(g1, ..., gm) ⊆ C∞(Rn,Rn) is the Lie algebra determined by the given vector
fields {g1, ..., gm} ⊆ C∞(Rn,Rn), it can be viewed as the smallest Lie algebra Λ ⊆
C∞(Rn,Rn) containing {g1, ..., gm}.

Definition 2.4.1. A real algebra Λ ⊆ C∞(Rn,Rn) is Lie algebra if the multiplication
operation among vector fields X,Y ⊆ C∞(Rn,Rn) is given by the corresponding Lie
bracket [X,Y ](x) = ∂Y

∂x (x)X(x) − ∂X
∂x (x)Y (x), x ∈ Rn. By a direct computation we

may convince ourselves that the following two properties are valid

[X,Y ] = −[Y,X ], ∀X,Y ∈ Λ

and
[X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X ]] = 0, ∀X,Y, Z ∈ Λ

(Jacobi s’ identity)

Remark 2.4.2. The system (2.152) is overdetermined when m > 1. Usually a non-
trivial solution {S(x), x ∈ B(x0, ρ)} satisfies the system (2.152) only on a subset
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Mx0 ⊆ B(x0, ρ) ⊆ Rn, which can be structured as a smooth manifold satisfying
dimMx0 = k (see (2.153)); it will be deduced from an orbit of local flows.

Definition 2.4.3. Let Λ ⊆ C∞(Rn,Rn) be a Lie algebra and x0 ∈ Rn fixed. By an
orbit of the origin x0 of Λ we mean a mapping (finite composition of flows)

G(p, x0) = G1(t1) ◦ .... ◦G(tk)(x0) , p = (t1, tk) ∈ Dk =

k∏

1

[−ai, ai] (2.154)

where Gi(t)(x), t ∈ (−ai, ai), x ∈ V (x0), is the local flow generated by some gi ∈ Λ, i ∈
{1...k}.

Definition 2.4.4. We say that Λ ⊆ C∞(Rn,Rn)is finitely generated with respect to
the orbits of the origin x0 ∈ Rn, (f, g, 0, x0) if {Yi, ..., Ym} ⊆ Λ will exist such that
any Y ∈ Λ along on arbitrary orbit G(p, x0), p ∈ Dk can be written

Y (G(p, x0)) = ΣMj=1aj(p)Yj(G(p, x0)) (2.155)

with aj ∈ C∞(Dk,R)depending on Y and G(p, x0), p ∈ Dk; {YI , ...YM} ⊆ Λ will be
called a system of generators.

Remark 2.4.5. It is easily seen that {g1, ..gm} ⊆ C∞(Rn),Rn) in involution de-
termine a Lie algebra L(gI , ..gm) which is (f.g.o.x0) for any xo ∈ Rn, where the

involution properly means [gi, ..., gj](x) =
m∑
k=1

akij(x)gk(x)∀, i, j ∈ {1, ...m} for some,

akij inC∞(Rn), {g1, ..., gm} will be a system of generators. A nontrivial solution of the
system (1) will be constructed assuming that

L(g1, ...gm) is a (f, g, o;xo)Lie algebra (2.156)

dimL(g1, ...gm)(x0) = k < n (2.157)

In addition, the domain V (x0) ⊆ Rn on which a non trivial solution satisfies(2.152)
will be defined as an orbit starting the origin xo ∈ Rn

y(p) = G1(t1 ◦ ... ◦GM (tM )(x0), p = (t1, ..., tM ) ∈ DM =
M∏

1

(−ai, ai) (2.158)

where Gi(t)(x), t ∈ (−ai, ai) , x ∈ B(x0, ρ) ⊆ Rn is the local flow generated by
Yi ∈ L(g1, ..., gm), i ∈ {1, ...,M}.Here {Y1, ..., YM} ⊆ L(g1, ..., gm) is fixed system
of generators such that

{Y1(x0), ..., Yk(x0)} ⊆ R
n (2.159)

are linearly independent and Yj(x0) = 0, j ∈ {1, ...,M}
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2.4.1 Solution for Linear Homogeneous Over Determined Sys-
tem.

Theorem 2.4.6. Assume that g1, ...gm ⊆ C∞(Rn),Rn) are given such that the hy-
potheses (2.156) and (2.157) are satisfied. Let {Y1, .., YM} ⊆ L(g1, ..gm) be a system
of generators fulfilling(2.159) and define

V (xo) = {x ∈ B(x0, ρ) ⊆ R
n : x = y(p), p ∈ DM} ⊆ R

n (2.160)

where {y(p) :∈ Dm} is the orbit define in(2.158). Then there exists a smooth non-
trivial function
S(x) : B(xo, ρ) → R such that the system (2.152) is satisfied for any x ∈ V (x0)given
in (2.160),i.e

< ∂xS(x), gi(x) >= 0 ∀x ∈ V (x0) i ∈ {1, ...m} (2.161)

Proof. To prove the conclusion (2.161) we need to show the gradient system associ-
ated with the orbit {y(p) : p ∈ DM} defined in (2.158) has a nonsingular algebraic
representation

∂y(p)

∂p
= {Y1(.), X2(t1, .), ..., XM (t1, ..., tM−i; .)}(y(p))

= {Y1(.), Y2(.), ..., YM}(y(p))A(p)p ∈ DM (2.162)

where the smooth matrix A(p) = (aij(p))i,j∈{1,M} satisfies

A(0) = IM , aij ∈ C∞(DM ) (2.163)

(seem next theorem). On the other hand, we notice that according to the fixed
system of generators {Y1, ..., YM} ⊂ L(g1, ..., gm) (see (2.159)), we may and rewrite
the orbit(2.158) as follows

{y(p) : p ∈ DM} = {y(p̂) = G1(t1), ..., Gk(tk)(x0) : p̂ = (t1, ..., tk) ∈ Dk} (2.164)

Using a standard procedure we redefine

Mx0 = {y(p) : p ∈ B(0, α)} ⊆ B(x0, ̺) ⊆ R
n, whereB(0, ρ) ⊆ Dk} (2.165)

as a smooth manifold satisfying dimMx0 = k < n for which there exist n− k smooth
functions ϕj ∈ C∞(B(x0, ̺)) fulfilling

{
ϕj(x) = 0, j ∈ {k + 1, ..., n}, x ∈Mx0

{∂xϕk+1(x0), ..., ∂xϕn(x0)} ⊆ Rn are linearly independent
(2.166)

Using (2.163) and detA(p) 6= 0 for p in a ball B(0, α) ⊆ DM we find smooth qj ∈
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C∞(B(0, α);RM ), j ∈ {1, ..,M}, such that

{
A(p)qj(p) = ej , p ∈ B(0, α), {l1, ..., lM} ⊆ RM is the canonical basis
∂y(p)
∂p qj(p) = Yj(y(p)), p ∈ B(0, α), j ∈ {1, ...,M} (2.167)

Using (2.166) and (2.167) we get ϕj(y(p)) = 0, p ∈ B(0, α) ⊆ DM , j ∈ {k + 1, ..., n}
and taking the Lie derivatives in the directions q1(p), ..., qM (p) we obtain

< ∂xϕj(y(p̂)), Yi(y(p̂)) >= 0 p̂ ∈ B(0, α) ⊆ Dk, i ∈ {1, ...,M} ∀ j ∈ {k + 1, ..., n} (2.168)

By hypothesis, L(g1, ..., gm) is a (f · g · o;x0) Lie Algebra and each g ∈ L{g1, ..., gm}
can be written

g(y(p̂)) =
M∑

i=1

αi(p̂)Yi(y(p̂)), p̂ ∈ B(0, α) ⊆ R
k, αi ∈ C∞(B(0, α)) (2.169)

Using (2.168) and (2.169) we get

< ∂xϕj(x), gi(x) > = 0 ∀x ∈Mx0 ⊆ B(0, ̺) for each

i ∈ {1, ...,m} and j ∈ {k + 1, ..., n} (2.170)

Here {ϕk+1(x), ..., ϕn(x) : x ∈ B(0, ̺)} are (n − k) smooth solutions satisfying the
overdetermined system (2.152) along the k-dimensional manifold Mx0 in (2.165). The
proof is complete.

Remark 2.4.7. The nonsingular algebraic representation of a gradient system

∂y

∂t1
= Y1(y),

∂y

∂t2
= X2(t1; y), ...,

∂y

∂tM
= XM (t1, ..., tM−1; y) (2.171)

associated with the system of generators {Y1, ..., YM} ⊆ L(g1, ..., gM ) relies on the
assumption that L(g1, ..., gM ) is a (f · g · o;x0) Lie algebra and the orbit (2.158) is a
solution of (2.171) satisfying y(0) = x0. The algorithm of defining a gradient system
for which a given orbit is its solution was initiated in Chapter I of these lectures.
Here we shall use the following formal power series





X2(t1; y) = (expt1adY1)(Y2)(y)
X3(t1, t2; y) = (expt1adY1) · (expt2adY2)(Y3)(y)
·
·
·
XM (t1, t2, ..., tM−1; y) = (expt1adY1) · ... · (exptM−1adYM−1)(YM )(y)

(2.172)

where the linear mapping adY : L(g1, ..., gM ) → L(g1, ..., gM ) is defined by

(adY )(Z)(y) =
∂Z

∂y
(y) · Y (y)−

∂Y

∂y
Z(y), y ∈ R

n
for each Y, Z ∈ L(g1, ..., gM ) (2.173)

Actually, the vector fields in the left hand side of (2.172) are well defined by the
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following mappings





X2(t1; y) = H1(−t1; y1)(Y2)(G1(−t1; y1)), y1 = y,
X3(t1, t2; y) = H1(−t1; y1) ·H2(−t2; y2)(Y3)(G2(−t2; y2))
·
·
·
XM (t1, t2, ..., tM−1; y) = H1(−t1; y1) ·H2(−t2; y2) · ... ·HM−1(−tM−1; yM−1)(YM )(yM )

(2.174)
where

Gi(−ti; yi), t ∈ (−ai, ai), x ∈ V (x0)

is the local flow generated by

Yi, Hi(t, y) = [
∂Gi
∂y

(t; y)]−1

and
yi+1 = Gi(−ti; yi), ∈ {1, ...,M − 1}, where y1 = y.

The formal writing (2.172) is motivated by the explicit computation we can perform
using exponential formal series and noticing that the Taylor series associated with
(2.172) and (2.174) coincide.

2.5 Nonsingular Algebraic Representation of a
Gradient System

Theorem 2.5.1. Assume that L(g1, ..., gm) ⊆ C∞(Rn;Rn) is a (f ·g ·o;x0) Lie algebra
and consider {Y1, ..., YM} ⊆ L(g1, ..., gM ) as a fixed system of generators. Define
the orbit {yp : p ∈ DM} as in (2.158) and associate the gradient system (2.171)
where {X2(t1; y), ..., XM (t1, t2, ..., tM−1; y)} are defined in (2.174). Then there exist
an (M ×M) nonsingular matrix A(p) = (aij(p))i,j∈{1,...,M}, aij ∈ C∞(B(0, α) ⊆ Rn)
such that

{Y1(·)X2(t1; ·), ..., XM (t1, ..., tM−1; ·)}(y(p)) = {Y1(·), Y2(·), ..., YM (·)}(y(p))A(p) (2.175)

for any p ∈ B(0, α) ⊆ Rn, and A(0) = IM

Proof. Using the (f · g · o;x0) property of Lie algebra L(g1, ..., gM we fix the following
(M ×M) smooth matrices Bi(p), p ∈ DM , such that

adYi{Y1, ..., YM}(y(p)) = {Y1, ..., YM}(y(p)) ·Bi(p), i ∈ {1, ...,M} (2.176)

where {Y1, ..., YM} ⊆ L(g1, ..., gm) is a fixed system of generators. Let {Z1(t1, ..., tM ) :
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t ∈ [0, t1]} be the matrix solution

dZ1

dt
= Z1B1(t1 − t, t2, ..., tM ), Z1(0) = IM (identity) (2.177)

The standard Picard’s method of approximations applied in (2.177) allows one to
write the solution {z, (t1, ..., tM ) : t ∈ [0, t1]} as a convergent Volterra series, and by
a direct computation we obtain

X2(t1; y(p)) = {Y1, ..., YM}(y(p))z1(t1, t2, ..., tM )e2 (2.178)

where X2(t1; y) is defined in (2.174) and {e1, ..., eM} ⊂ Rn is the canonical basis.
More precisely, denote

N1(t; y) = H1(−t; y){Y1, ..., YM}(G1(−t; y))andX2(t1; y) (2.179)

can be written
X2(t1; y) = N1(t1; y)e2 (2.180)

Then we noticed that N1(t; y(p)), t ∈ [0, t1] satisfies

dN1

dt
= N1B1(t1 − t, t2, ..., tM ), N1(0) = {Y1, ..., YM}(y(p)) (2.181)

where the matrix B1(p) is fixed in (2.121) and satisfies

adYi{Y1, ..., YM}(G1(−t; y)) = {Y1, ..., YM}(G1(−t; y)) · B1(t1 − t, t2, ..., tM ) (2.182)

for y = y(p). The same method of Approximation shows that a convergent sequence
{Nk

1 (t) : t ∈ [0, t1]}k>0 can be constructed such that





N0
1 (t) = {Y1, ..., YM}(y(p)) = N1(0)

Nk+1
1 (t) = N1(0)+,

t∫
0

Nk
1 (s)B1(t1 − s, t2, ..., tM )ds, k = 0, 1, 2, ...

(2.183)

It is easily seen that

Nk+1
1 (t) = N1(o)Zk+1

1 (t; t1, ..., tM ), t ∈ [0, t1] (2.184)

where {Zk1 (t; t1, ..., tM ) : t ∈ [0, t1]}k>0 defines a solution in (2.177) and

lim
k→∞

Zk1 (t; t1, ..., tM ) = Z1(t; t1, ..., tM ) (2.185)

uniformly int ∈ [0, t1]. Therefore using (2.184) and (2.185) we get that

N1(t) = lim
k→∞

Nk
1 (t) , t ∈ [0, t1] (2.186)

is the solution in (2.181) fulfilling

N1(t; y) = {Y1, ..., YM}(y)Z1(t; t1, ..., tM ), t ∈ [0, t1] (2.187)
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if y = y(p), and (2.178) holds. The next vector field X3(t1, t2; y) in (2.119) can be
represented similarly and rewriting it as

X3(t1, t2; y) = H1(−t1; y)X̂3(t2; y2), for y1 = y(p) = y (2.188)

y2 = G1(−t1; y1) = G2(t2) ◦ ... ◦GM (tM )

and
X̂3(t2; y2) = H2(−t2; y2)Y3(G2(−t2, y2)) (2.189)

can be represented using the same algorithm as in (2.178) and we get

X̂3(t2; y2) = {Y1, ..., YM}(y2)Z2(t2; t2, ..., tM )e3 (2.190)

Here the nonsingular and smooth M ×M {Z2(t; t2, ..., tM : t ∈ [0, t2]} is the unique
solution of the following linear matrix system

dZ2

dt
= Z2B2(t2 − t, t3, ..., tM ), Z2(0) = IM (2.191)

where B2(t2, ..., tM ) p ∈ DM is fixed such that

adY2{Y1, ..., YM}(y2) = {Y1, ..., YM}(y2)B2(t2, ..., tM ), p ∈ DM (2.192)

Denote
N2(t, y2) = H(−t,y2){Y1, ..., YM}G2(−t; y2), t ∈ [0, t2] (2.193)

and we obtain

x̂3(t2; y2) = N2(t2; y2)e3 = {Y1, ..., YM}(y2)Z2(t2; t2, ..., tM )e3 (2.194)

That is to say, {N2(t; y2) : t ∈ [0, t2]} as a solution of

dN2

dt
= N2B2(t2 − t, t3, ..., tM ), N2(0) = {Y1, ..., YM}(y2) (2.195)

can be represented using a standard iterative procedure and we get

N2(t; y2) = {Y1, ..., YM}(y2)Z2(t; t2, ..., tM ) , t ∈ [0, t2] (2.196)

where the matrix Z2 is the solution in(2.191). Now we use (2.194) into (2.188) and
taking into account that y2 = G1(−t1, y1) we rewrite

H1(−t1; y1){Y1, ..., YM}(G1(−t1, y1)) = N1(t1; y1) for y1 = y(p) (2.197)

where {N1(t; y(p)) : t ∈ [0, t1]} fulfills(2.187). Therefore the vector field X3(t1, t2; y)
in (2.174) satisfies

X3(t1, t2; y) = {Y1, ..., YM}(y)Z(t1, t1, ..., tM ) × Z2(t2; t2, ..., tM )e3 (2.198)

for y = y(p). An induction argument will complete the proof and each Xj(pj ; y) in
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(2.174) gets the corresponding representation

Xj+1(pj+1; y) = {Y1, ..., YM}(y)Z(t1, t1, ..., tM ) × ...× Zj(tj ; tj , ..., tM )ej+1 (2.199)

if y = y(p) and {Zj(t, tj , ..., tM : t ∈ [0, tj ])} j ∈ {2, ...,M − 1} is the solution of the
linear matrix equation

dZj
dt

= ZjBj(tj − t, tj+1, ..., tM ), Zj(0) = IM (2.200)

Here the smooth matrix Bj(tj , ...., tM ) , p ∈ DM , is fixed such that

adYj{Y1, ..., YM}(yj) = {Y1, ..., YM}(yj)Bj(tj , ..., tM ) (2.201)

where yj = Gj(tj) ◦ ... ◦ GM (tM )(x0) , j = 1, ...,M . Now, for simplicity, denote the
M ×M smooth matrix

Zj(p) = Z1(t1; t1, ..., tM ) × ...× Zj(tj ; tj , ..., tM ), p = (t1, ..., tM ) ∈ DM (2.202)

j ∈ {1, ...,M − 1} andXj+1(pj+1; y)

in (2.199) is written as

Xj+1(pj+1; y) = {Y1, ..., YM}(y)Zj(p)ej+1 , if y = y(p), p ∈ DM (2.203)

In addition, define the smooth (M ×M)

A(p) = (e1, Z1(p)e2, ..., ZM−1(p)eM ), p ∈ DM (2.204)

which fulfills A(0) = IM and represent the gradient system (2.171) as follows

{Y1(.), X2(t1, .), ..., XM (t1, ..., tM−1, .)}(y) = {Y1, ..., YM}(y)A(p) (2.205)

if y = y(p), and the smooth (M ×M) matrix A(p) is defined in (2.204). The proof is
complete.

2.6 First Order Evolution System of PDE and Cauchy-
Kowalevska Theorem

We consider an evolution system of PDE of the following form





∂tuj =
n∑
i=1

N∑
k=1

aijk(t, x, u)∂iuk + bj(t, x, u), j = 1, ..., N

u(0, x) = u0(x)

(2.206)

where u = (u1, ..., uN ) is an unknown vector function depending on the time variable
t ∈ R and x ∈ Rn. The system (2.206) will be called first order evolution system of



78 CHAPTER 2. FIRST ORDER PDE

PDE and without losing generality we may assume u0 = 0 (see the transformation
ũ = u − u0) and the coefficients akij , bj not depend on the variable t(see uN+1 =

t, ∂tuN+1 = 1). The notations used in (2.206) are the usual ones ∂tu = ∂u
∂t , ∂iu =

∂u
∂xi

, i ∈ {1, ..., n}. Introducing a new variable z = (x, u) ∈ B(0, ρ) ⊆ Rn+N , we
rewrite the system (2.206) as follows





∂tuj =
n∑
i=1

N∑
k=1

aijk(z)∂iuk + bj(z), j = 1, ..., N

u(0) = 0

(2.207)

Everywhere in this section we assume that the coefficients aijk, bj ∈ Cw(B(0, ρ) ⊆
Rn+N ) are analytic functions, i.e the corresponding Taylor’s series at z = 0 is conver-
gent in the ball B(0, ρ) ⊆ Rn+N (Brook Taylor 1685-1731)

2.6.1 Cauchy-Kowalevska Theorem

Theorem 2.6.1. Assume that

aijk, bj ∈ Cw(B(o, ρ)) ⊆ R
n+N

for any
i ∈ {1, ..., n}, k, j ∈ {1, ..., n+N}

Then the evolution system (2.207) has an analytical solution u ∈ Cw(B(o, a)) ⊆ Rn+1

and it is unique with respect to analytic functions.

Proof. Without restricting generality we assume n = 1 and write ajk = a1jk. The main

argument of the proof uses the property that the coefficients cilk from the associated
Taylor’s series

ui(t, x) =

∞∑

l,k=0

cilkt
lxk =

∞∑

l.k=0

tlxk

l!k!
[
∂k+l

∂tl∂xk
ui(t, x)]t=0,x=0 (2.208)

are uniquely determined by the evolution system(2.207) and its analytic coefficients.
Then using an upper bound for the coefficients cilk, we prove that the series (2.208)
is convergent. In this respect we notice that

[
∂m

∂xm

ui(t, x)]t=0 = 0 for anym > 0 (2.209)
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(see uo(x) = 0) using (2.207) we find the partial derivatives

∂ui
∂t

(o, x),
∂2ui
∂t∂x

(o, x),
∂2ui
∂t2

(o, x),
∂3ui
∂t2∂x

(o, x),
∂3ui
∂x2

(o, x) (2.210)

and so on which are entering in (2.208), for each i ∈ {i, ...N}. If

ajk(z) =

∞∑

|α|=0

gjkα z
α and bj | z |=

∞∑

|α|=0

hjxz
α (2.211)

for | z |6 ρ , α = (αi, ..αN+1), | α |= αi + ....αN+1, and αi > 0, αi integer, the

cilk = P ilk[(gjmα )α,j,m, (h
j
α)α,j ] (2.212)

when P ilk is a polynomial with positive coefficient(> 0). It uses the coefficients
eilk((2.208)) and noticing that by derivation of a product we get only positive co-
efficient. Now we are constructing the upper bound coefficient Cilk for Cilk given in
(2.212) such that

νi(t, x) =
∞∑

l,k=0

Cilkt
lxk, i = 1, 2, ..., N (2.213)

is a local solution of the Cauchy problem.

∂tνj =
∑

k=1

NAjk(z)
∂

∂x
ν(k) +Bj(z), νj(0, x) = 0, j ∈ {1, ..., N} (2.214)

Here Ajk and Bj must be determined such that

Ajk(z) =

∞∑

|α|=0

Gjkα z
α, Bj(z) =

∞∑

|α|=0

Hj
αz

α (2.215)

where | gjkα |6 Gjkα , | hjα |6 Hj
α

Using (2.215), we get

Cilk = P ilk[(Gjmα )α,j,m, | Hj
α |α,j ] >| P ilk[| gjmα |α,j,m, (| hjα)α,j ] |>| cilk | (2.216)

and the upper bound coefficients {Cilk} are found provided Ajk and Bj are deter-
mined such that the system(2.214) is satisfied by the analytic solution v(t, x) given
in (2.215). In this respect, we define the constants Gjkα and Hjk

α andHj
α using the

following estimates

M1 = max | ajk(z) |,M = max | bj(z) | j, k = 1, ...N | Z |6 ρ (2.217)

we get {
| gjkα |6 M1

ρ|α| 6
M1

ρ|α|

|α|!
α! = Gjkα

| hjα |6 M2

ρ|α| 6
M2

ρ|α|

|α|!
α! = Hj

α

(2.218)
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Ajk(z) =

∞∑

|α|=0

M
| α |!
α!

(
z

ρ
)α = M

∞∑

|α|=0

1

ρ|α|
| α |!
α!

zα

= M [1 − z1 + ...+ zN+1

ρ
]−1, for | z1 | +...+ | zN+1 |< ρ (2.219)

Bj(z) =
∞∑

|α|=0

Hjk
α zα = M [1−z1 + ...+ zN+1

ρ
]−1, for | z1 | +...+ | zN+1 |< ρ (2.220)

Here we have used

∑

|α|=k

k!

α!
Zα = (

N+1∑

i=1

zi)
k, α! = (α1!)...(αN+1!), zα = zα1

1 ...Z
αN+1

N+1 (2.221)

Notice that the coefficients Ajk, Bj do not depend on (j, k) and each component
νi(t, x) can be taken equals to w(t, x) , i ∈ {1, ..., N}, where {w(t, x)} satisfies the
following scalar equation

∂tw =
Mρ

ρ− x−Nw
(1 +N∂xw), w(0, x) = 0 for | x | +N | w |< ρ (2.222)

by a direct inspection we notice that for x ∈ Rn we need to replace x ∈ R in (2.222)

by x → y =
n∑
1
xi where x = (x1, ...xn) and w(t, x) → w(t,

n∑
1
xi) The solution of

(2.222) can be represented by

W (t, x) =
1

2N
[ρ− x−

√
(ρ− x)2 − 4MNρt], if | x |< √

ρ (2.223)

and
t <

ρ

16MN
= T (M,ρ)

In the case x ∈ Rn we use y = (
n∑
1
xi) instead of x ∈ R and w(t, y) satisfy both the

equation (2.222) and the representation formula(2.223).

2.6.2 1st Order Evolution System of Hyperbolic & Elliptic
Equations

In the following we shall rewrite some hyperbolic and elliptic equation appearing in
Mathematical Physics as an evolution system of first order equation. It suggest that
assuming only analytic cofficients we may and do solve these equations applying the
Cauchy-Kowalevska theorem (C-K)
(E1). Klein-Gordon equations(D.B Klein 1894-1977, W.Gordon 1893-1939)
They are describing the evolution of a wave function y associated with a vanishinq
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“spin”particle and in differential form is expressed using standard notations, as follows

{
∂2t y = ∆y −my + f(y, ∂ty, ∂xy), m > 0, t > 0, y ∈ R

y(0, x) = y0(x) = ∂ty(0, x) = y1(x), x ∈ Rn
(2.224)

where ∂ty = ∂y
∂t , ∂xy = (∂1y, ..., ∂ny), ∂iy = ∂y

∂xi
and

the laplacian ∆y =
n∑
1
∂2i y. Denote

u = (∂xy, ∂ty, y) ∈ R
n+2, u0(x) = (∂xy0(x), y1(x), y0(x))

andF (u) = f(y, ∂ty, ∂xy). Then (2.224) is written as an evolution system




∂tuj = ∂jun+1, j ∈ {1, ..., n}
∂tun+1

n∑
i=1

∂iui + F (u)

∂tun+2 = un+1

u(0, x) = u0(x)




(2.225)

(E2). Maxwell equations(J.C.Maxwell 1831-1879)
Denote the electric field E(t, x) ∈ R3, x ∈ R3, t ∈ R, the magnetic field H(t, x) ∈
R3, x ∈ R3, t ∈ R and the Maxwell equations are the following

(
∂ǫ(E)
∂E ∂tE − ∆ ×H = 0, E(0, x) = E0(xs)
∂µ(H)
∂H ∂tH + ∆ × E = 0, H(0, x) = H0(x)

)
(2.226)

where D = ǫ(E) and B = µ(H) are some nonlinear mappings satisfying

ǫ(E), µ(H) : R3 → R (2.227)

are analytic functions with uniformly positive definite matrices ∂ǫ(E)
∂E , ∂µ(H)

∂H for E,H
in bounded sets. In addition, we assume

ǫ(E) = ǫ0E +O(| E |3), µ(H)

= µ0H +O(| H |3)with ǫ0 > 0, µ0 > 0 (2.228)

ǫ(E) = ǫ0E + O(| E |3), µ(H) = µ0H +O(| H |3) with ǫ0 > 0, µ0 > 0 (2.229)

divD(t, x) = 0, divB(t, x) = 0, D(0, x) = D0(x), B(0, x) = B0(x) (2.230)

where D(t, x) = ǫ(E(t, x)) and B(t, x) = µ(H(t, x)). The vectorial products ∆ ×H
and ∆ × E are given formally by the corresponding determinant

∆×E = det




i j k
∂1 ∂2 ∂3
H1 H2 H3


 = i(∂2H3−∂3H2)+j(∂3H1−∂1H3)+k(∂1H2−∂2H1)

(2.231)
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∆×E = det




i j k
∂1 ∂2 ∂3
E1 E2 E3


 = i(∂2E3−∂3E2)+ j(∂3E1−∂1E3)+k(∂1E2−∂2E1)

(2.232)
where (i, j, k) ∈ R3 is the canonical basis. Denote u = (E,H) ∈ R6 and the system
(2.226) for which the assumptions (2.227), (2.229) and (2.230) are valid will be written
as an evolution system

∂tu =
3∑

j=1

[A0(u)]−1Aj∂ju, u(0, x) = u0(x) = (E0(x), H0(x)) (2.233)

where (6 × 6) matrices Ai are given by

A0(u) =

(
∂ǫ(E)
∂E O3

O3
∂µ(H)
∂H

)
, A1 =




0 0 0
O3 0 0 −1

0 1 0
0 0 0
0 0 1 O3

0 −1 0




A2 =




0 0 1
O3 0 0 −0

−1 0 0
0 0 −1
0 0 1 O3

1 0 0



, A3 =




0 −1 0
O3 1 0 0

0 0 0
0 1 0
−1 0 1 O3

0 0 0




where O3 is (3× 3) zero matrix, A0(u) is strictly positive definite matrix and each Ai

is a symmetric matrix. Recalling that Maxwell equation means the evolution system
with analytic coefficients (2.233) and, in addition the constraints (2.230), we notice
that (2.230) are satisfied, provide

divD0(x) = 0 and divB0(x) = 0 (2.234)

In this respect, we rewrite the original system (2.226) as

∂tD∆ ×H = 0, ∂tB + ∆ × E0, D(0, x) = D0(x), B(0, x) = B0(x) (2.235)

and by a direct computation we get

{
∂t[divD(t, x)] = div[∂tD](t, x) = div(∆ ×H)(t, x) = 0
∂t[divB(t, x)] = div[∂tB](t, x) = div(∆ × E)(t, x)

(2.236)

which show that (2.234) implies the constraints (2.230)
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2.7 (E3) Plate Equations

(they cannot be solved by (C-K) theorem). They are described by the following
equation

∂2t y + ∆2y = f(∂ty, ∂
2
xy) +

n∑

i=1

bi(∂ty, ∂
2
xy)∂i(∂ty), x ∈ R

n (2.237)

where f and bi are analytic functions, and y(t, x) ∈ R satisfies Cauchy conditions.

y(0, x) = y0(x), ∂ty(0, x) = y1(x) (2.238)

Here “∆”is the standard laplacian operator, “∂x”is the gradient acting as linear map-
pings for which “∆2”and “∂2x”have the usual meaning. Denote

u = (∂2xy, ∂x(∂ty), ∂ty) = (u1, . . . , un2 , un2+1, . . . , un2+n, un2+n+1)

= (y11, y12, . . . , yn1, . . . , y1n, y2n, . . . , ynn, un2+1, . . . , un2+n, un2+n+1) ∈ Rn
2+n+1

as the unknown vector function, where (n×n) matrix ∂2xy is denoted as a rowvec-

tor (y11, . . . , ynn) ∈ Rn
2

. By a direct inspection we see that





∂tyij = ∂i∂jun
2 + n+ 1 = ∂iun2+j , i, j ∈ {1, . . . , n}

∂tun2+n+1 = −
n∑
i=1

△(yii) + F (u)

∂t∂tun2+j = ∂j(∂tun2+n+1) = −
n∑
i=1

∂j△(yii) +
n2+n+1∑
k=1

∂
∂uk

F (u)∂juk

u(0, x) = (∂2xy0(x), ∂x, y1(x), y1(x)) = u0(x)

(2.239)

where F (u) = f(un2+n+1, ∂
2
xy) +

n∑
i=1

bi(un2+n+1, ∂
2
xy)un2+i. As far as the system

(2.239) contains laplacian “∆”in the right hand side it cannot be asimilated with a
first order evolution system. Actually, it is well known that a parabolic equation
has no rewriting as a first order evolution system and show that the simplest plate
equations.

∂2t y + ∆2y = 0 y(0, x) = y0(x), ∂ty(0, x = y1(x)) (2.240)

are equivalent with a parabolic type equation (Schrödinger)

{
∂tw = i∆w(or − i∂tw(t, x) = ∆xw(t, x))
w(o, x) = y1(x) + i∆y0(x) = w0(x)

(2.241)

Remark 2.7.1. Let {y(t, x)} be the analytic solution of the plate equation (4). Define
the analytic function w(t, x) = ∂ty(t, x) + i∆xy(t, x) ∈ C. Then {w(t, x) : (t, x) ∈
D ⊆ Rn+1} satisfies Schrödinger (S) equation (2.241) and initial condition w(o, x) =
y1(x) + i∆y0(x) = w0(x). Conversely, if w(t, x) = y(t, x) + iz(t, x) satisfies (2.241)
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then Rew(t, x) 4 = y(t, x) and Imw(t, x) = z(t, x) are real analytic solution for the
homogeneous equation of the plate(2.240) with Cauchy conditions y(0, x) = y0(x) and
z(0, x) = z0(x) correspondingly. Moreover, the solution of the Schrödinger equation
(2.241) agrees with the following representation w(t, x) = u(it, x) where u(τ, x) =
(4πτ)

n
2

∫
Rn [exp(−)]u0(y)dy and we get −i∂tw(t, x) = ∂τu(it, x) = ∆xu(it, x) =

∆xw(t, x) (S-equation).

2.7.1 Exercises

(1) Using the algorithm for Klein-Gordon equation, write the evolution system cor-
responding to the following system of hperbolic equations

∂2t yi =

n∑

m,j,k=1

Cimjk(∂xy)∂m∂kyj, i = 1, ..., n , y = (y1, ..., yn)

yi(0, x) = y0i (x) , ∂tyi(0, x) = y1i (x) , i = 1, ..., n , x ∈ R
n

(it appears in elasticity field)
Hint. ∂xy = (∂xy1, ..., ∂xyn) , ∂xyi = (∂1yi, ..., ∂nyi) , j ∈ {1, ..., n}
Denote uiky = ∂kyi(t, x) , k ∈ {1, ..., n} , i ∈ {1, ..., n}

un2+i = ∂tyi , i ∈ {1, ..., n}

un2+n+i = yi , i ∈ {1, ..., n}
we get





∂t uik = ∂k∂t yi = ∂xk
un2+i i ∈ {1, ..., n}

∂t un2+i = ∂2t =
n∑

m,j,k=1

Cimjk(u11, ..., unn)∂xm
(ukk) , i ∈ {1, ..., n}

∂tun2+n+i = ∂t yi = un2+i , i ∈ {1, ..., n}
(2) Using (C-K) theorem solve the following elliptic equation

∂2x + ∂2y = x2 + y2 , u(0, y) = ∂x u(0, y) = 0

Hint. Denote t = x, ∂yu = u1, ∂xu = u2 , u = u3 and we get

{
∂tu1 = ∂y(∂tu) = ∂yu2
u1(0, y) = 0

,

{
∂tu2 = ∂2xu = −∂yu1 + t2 + y2

u2(0, y) = 0
,

{
∂tu3 = u2
u3(0, y) = 0

We are looking for

u3(t, y) = u3(0, y) +
t

1!
∂tu3(0, y) +

t2

2!
∂2t u3(0, y) + ...
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Now compute

u3(0, y) = 0 , ∂tu3|t=0 = u2|t=0 = 0 , ∂2t u3|t=0 = ∂tu2|t=0 = y2 , ∂kt u3|t=0

for k > 3. We obtain u(x, y) = u3(x, y) = 1
2x

2y2

(3) by the same method solve

∂2x + ∂2y = y2 , u(0, y) = ∂x u(0, y) = 0

and get

u(x, y) =
x2y2

2
− x4

12

2.7.2 The Abstract Cauchy-Kawalewska Theorem

(L.Nirenberg, J.Diff.Geometry 6(1972)pp 561-576)
For 0 < s < 1, let Xs be the space of vectorial functions ν(x) ∈ Cn which are
holomorphic and bounded on Ds =

∏α
j=1{| xj |< sR} ⊆ Cd. Denote ‖ ν ‖s= supDs

|
ν(x) |. Then Xs is a Banach space and the natural inspection Xs ⊆ Xs′(s

′ 6 s) has
the norm ‖ i ‖6 1. By the standard estimates of the derivatives (see Cauchy formula),
we get ‖ ∂jν ‖s′6 R−1 ‖ ν ‖s (s− s′) for any 0 < s′ < s < 1 and for a linear equation
the following holds true

Theorem 2.7.2. Let A(t) : Xs :→ Xs′ be linear and continuous of | t |< η for any
0 < s′ < 1 fulfilling

(i1) ‖ A(t)v ‖s′6 C ‖ v ‖s−s′ , ∀ 0 < s′ < s < 1

Let f(t) be a continuous mapping of | t |< η with values in Xs, 0 < s < 1 fulfilling

(i2) ‖ f(t) ‖s6
K

a(1 − s)
, for 0 < s < 1

where 0 < a < 1
8K is fixed and K > 0 is given constant. Then there exists a unique

function u(t) which is continuously differentiable of | t |< a(1 − s) with values in Xs

for each 0 < s < 1, fulfilling

(C1)
du

dt
(t) = A(t)u(t), u(0) = 0

(C2) ‖ u(t) ‖s6 2K(a(1−s)|t| − 1)−1 for any | t |< a(1 − s).

Theorem 2.7.3. The nonlinear case is refering to the following Cauchy problem

(α)
du

dt
= F (u(t), t) | t |< η, u(0) = 0



86 CHAPTER 2. FIRST ORDER PDE

Let the condition (α1) and(α5) be fulfilled. Then there exists a > 0 and a unique
function u(t) which is continuously differentiable of | t |< a(1 − s) with values in Xs

fulfilling the equation (α) and ‖ u(t) ‖s< R ∀ | t |< a(1 − s), for each 0 < s < 1.

2.8 Appendix Infinitesimal Invariance

J.R.Olver (Application 0f Lie algebra to Diff.Eq, Springer, 1986, Graduate texts in
mathematics; 107)
1. One can replace the complicated, nonlinear conditions for the invariance of a
subset or function under a group of transformations by an equivalent linear condition
of infinitesimal invariance under the corresponding infinitesimal generators of the
group action. It will provide the key to the explicit determination of the symmetry
groups of systems of differential equations. We begin with the simpler case of an
invariant function under the flow generated by a vector field which can be expressed
as follows

f(G(t;x)) = f(x), t ∈ (−a, a)x ∈ D ⊆ R
n ⇐⇒ (2.242)

g(f)(x) =< ∂xf(x), g(x) >= 0, ∀x ∈ D. (2.243)

where G(0;x) = x, dG(t;x)
dt = g(G(t;x)), t ∈ (−a, a), x ∈ D

Theorem 2.8.1. Let G be a group of transformation acting on a domain D ⊆ Rn.
Let F : D → Rm, m 6 n, define a system of algebraic equations of maximal rank

(Fj(x) = 0, j = 1, ...,m) ; rank
∂F

∂x)
x) = m, ∀x ∈ D,F (x) = 0 (2.244)

Then G is a symmetry group of system iff

g(Fj)(x) = 0, ∀x ∈ {y ∈ D : F (y) = 0}, j = 1, 2, ...,m (2.245)

where g is the infinitesimal generators of G.

Proof. The necessity of (2.245) follows by differentiating the identity F (G(t;x)) =
0, t ∈ (−a, a) in which x is solution of(2.244) and G(t;x) , t ∈ (−a, a), is the flow
generated by the vector field g. To prove the sufficiency, let x0 be a solution of the
system using the maximal rank condition we can choose a coordinate transformation
y = (y1, ..., yn) such that x0 = 0 and F has the simple form F (y) = (y1, ..., ym). Let
g(y) = (g1(y), ..., gn(y)) ∈ Rn be any infinitesimal generators of G expressed in the
new coordinates and rewrite (2.245) as follows

gi(y) = 0 , i = 1, 2, ...,m, ∀ y ∈ R
n, y1 = ... = ym = 0 (2.246)

Now the flow G(t)(x0), t ∈ (−a, a) generated by the vector field g and passing

through x0 = 0 satisfies the system of ordinary differential equations dGi

dt (t)(x0) =
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gi(G(t)(x0)), G(0)(x0) = 0, Gi(t)(x0) = 0, t ∈ (−a, a), i = 1, ...,m which means
F (G(t)(x0)) = 0, t ∈ (−a, a). The proof is complete.

Example 2.8.1. Let G = SO(2) be the rotation group in the plane, with infinitesimal
generator (g = −y∂x + x∂y)
g(x, y) = col(−y, x). The unit circle S1 = {x2 + y2 = 1} is an invariant subset of
SO(2) as it is the solution set of the invariant function f(x, y) = x2 + y2 − 1. Indeed,
g(f)(x, y) = −2xy+2xy = 0, ∀(x, y) ∈ R2 so the equations (4) are satisfied on the unit
circle itself. The maximal rank condition does hold for f since its gradient ∂f(x, y) =
col(2x, 2y) does not vanish on S1. As a less trivial example,consider the function
f(x, y) = (x2 + 1)(x2 + y2 − 1) and notice that g(f)(x, y) = −2xy(x2 + 1)−1f(x, y)
which shows that g(f)(x, y) = 0 whenever f(x, y) = 0. In addition ∂f(x, y) = (4x3 +
2xy2, 2x2y+ 2y) vanishes only when x = y = 0 which is not a solution to f(x, y) = 0.
We conclude that the solution set {(x, y) : (x2 + 1)(x2 + y2− 1) = 0} is a rotationally-
invariant subset of R2.

Remark 2.8.2. For a given one-parameter group of transformations y = G(t)(x), x ∈
D ⊆ Rn, t ∈ (−a, a) generated by the infinitesimal generator

−→g = g1(x)∂x1 + ...+ gn(x)∂xn(see
dG(t)(x)

dt
= g(G(t)(x)), t ∈ (−a, a), G(0)(x) = x

g(x) = col(g1(x), ..., gn(x)). We notice that the corresponding invariant functions are
determined by the standard first integrals associated with the ODE dx

dt = g(x).

2.8.1 Groups and Differential Equations

Suppose we are considering a system S of differential equation involving p independent
variables x = (x1, ..., xp) and q dependent variablesu = (u1, ..., uq). The solution of
the system will be of the form uα = fα(x), α = 1, ..., q. Denote X = Rp, U = Rq and
a symmetry group of the system S will be a local group of transformations,G, acting
on some open subset M ⊆ X ×U in such a way that” G transforms solutions of S to
other solutions of S”. To proceed rigorously, define the graph of u = f(x),

Γf = {(x, f(x)) : x ∈ Ω} ⊆ X × U

where Ω ⊆ X is the domain of definition of f . Note that Γf is a certain p−dimentional
submanifold of X×U . If Γf ⊆MG(domain of definition of the group transformations
G) then the transform of Γf by G is just

G.Γf = {(x̂, û) = G(x, u) : (x, u) ∈ Γf}

The set GΓf is not necessarily the graph of another single valued function û = f̂(x̂)

but if it is the case then we write f̂ = G.f and f̂ the transform of f by G.
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2.8.2 Prolongation

The infinitesimal methods for algebraic equations can be extended for ”systems of
differential equations”. To do this we need to prolong the basic space X×U to a space
which also represents the various partial derivatives occurring in the system.If f : X →
U is a smooth function,u = f(x) = (f1(x), ..., f q(x)) there are q.pk numbers uαj =
∂jf

α(x) needed to represent all different k − th order derivatives of the components
of f at point x. We let Uk = Rq.pk be the Euclidean space of this dimension,endowed
with coordinates uαj corresponding to α = 1, ..., q, and all multi-indices J = (j1, ..., jk)

of order k, designed so as to represent ∂Jf
α(x) = ∂kfα(x)

∂
j1
x ∂

xjk

.

Set Un = U × U1 × ... × Un to be the product space.whose coordinates represents
all the derivatives of functions u = f(x) of all orders from 0 to n. Note that Un is
Euclidean space of dimension

q + qp1 + ...+ qpn = qpn

Atypical point in Un will be denoted by un so un has q.pn different components uαj
where α = 1, ..., q has J sums over all unordered multi-indices J = (j1, ..., jk) with
1 6 jk 6 p, j1 + ...+ jk = k and 0 6 k 6 n. (By convention for k = 0 there is just one
such multi-index,denoted by O, and uα0 just replace to the component uα of u itself)

Example 2.8.2. p = 2, q = 1.Then X = R2, (x1, x2) = (x, y) and U = R has
the single coordinate u. The space U1 isomorphic to R2 with coordinates (ux, uy)
since these represents all the first order partial derivatives of u with respect to x and
y. Similarly U2 = R3 has coordinates (uxx, uxy, uyy) representing the second order

partial derivatives of u, namely ∂2u
∂xi∂y2−i

, i = 0, 1, 2. In general, Uk = Rk+1 , since

there are (k+1) k-th order partial derivatives of u, namely
∂ku

∂xi∂yk−i
, i = 0, 1, .., k. Finally, the space U2 = U × U1 × U2 = R6, with coordinates

u2 = (u;ux, uy, uxx, uxy, uyy) represents all derivatives of u with respect tox and y of
order at most 2. Given a smooth function u = f(x) f : X → U there is an induced
function un = pr(n)f(x) called the n − th prolongation of f which is defined by the
equations

uαj = ∂Jf
α(x), J = (j1, ..., jk), 1 6 jk 6 p, j1 + ...+ jk = k, 0 6 k 6 n

for each α = 1, . . . , q (seeX = Rp, U = Rq).
The total space X × Un whose coordinates represents the independent variables,the
dependent variables and the derivatives of the dependent variables up to order n is
called the n− th order jet space of the underlying space X×U (it comes from viewing
pr(n)f as a corresponding polynomial degree n associated with its Taylor series ar the
point x)If the differential equations are defined in some open subset M ⊂ X ×U then
we define the n-jet space M (n) = M × U1×, ,̇× Un of M .
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2.8.3 Systems of Differential Equations

A system S of n − th order differential equation in p independent and q dependent
variables is given as a system of equations

∆ν(x, u(n)) = 0, nu = 1, . . . , b (2.247)

involving x = (x1, . . . , xp), u = (u1, . . . , uq) and the derivatives of u with respect to x
up to order n. The function ∆(x, un) = (∆1(x, un)), . . . ,∆l(x, u

n), will be assumed
to be smooth in their arguments so ∆ can be viewed as a smooth map from the jet
space X × Un to some l− dimensional Euclidean space ∆ : X × Un → Rl.
The differential equations themselves tell where the given map ∆ variables on X×Un
and thus determine a subvariety

S∆ = {(x, un) : ∆(x, un) = 0} ⊆ X × Un (2.248)

0n the total jet space.
From this point of view, a smooth solution of the given system of differential equations
is a smooth function u = f(x) such that

∆ν(x, pr(n)f(x)) = 0, ν = 1, ..., l

whenever x lies in the domain of f . This condition is equivalent to the statement that
the graph of the prolongation pr(n)f(x) must lies entirely within the subvariety S∆

determined by the system

Γ
(n)
f = {(x, pr(n)f(x))} ⊆ S∆ = {∆(x, u(n)) = 0} (2.249)

We can thus take an n− th order system of differential equations to be a subvariety
S∆ in the n = jet space X × Un and a solution to be a function u = f(x) such that
the graph of the n− th prolongation pr(n)f is contained in the subvariety S∆.

Example 2.8.3. Consider Laplace equation in the plane

uxx + uyy = 0 (2.250)

Here p = 2, q = 1, n = 2 coordinates (x, y, u, ux, uy, uxx, uxy, uyy) of X × Un (a
hyperplane)there, and this is the set ∆ for Laplac’s equation.A solution must satisfy

∂2f

∂x2
+
∂2f

∂y2
= o ∀(x, y)

This is clearly the same as requiring that the graph of the second prolongation pr2f
lie in S∆. For example, if

f(x, y) = x3 − 3xy2

then
pr2f(x, y) = (x3 − 3xy2; 3x2 − 3y2,−6xy; 6x,−6y,−6x)
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which lies in
S∆( see 6x+ (−6x) = 0)

2.8.4 Prolongation of Group Action and Vector Fields

We begin by considering a simple first order scalar differential equation

du

dx
= F (x, u), (x, u) ∈ D ⊆ R

2 (2.251)

This condition is invariant under a one-parameter group of transformations
G(ǫ) = expǫg defined on an open subset D ⊆ ×U = R2 where

g = ξ(x, u)∂x + φ(x, u)∂u (2.252)

is the infinitesimal generator.
Let u = u(x;x0, u0) be s solution of (2.251) satisfying u(x;x0, u0) = u0 and (x0, u0) ∈
D arbitrarily fixed. Then u(x̂0(ǫ);x0, u0) = û0(ǫ), ǫ ∈ (−a, a)
where

(x̂0(ǫ), û0(ǫ)) = G(ǫ)(x0, u0)

It leads us to the following equations

du

dx
(x̂0(ǫ)).

dx̂0
dǫ

(ǫ) =
dû0
dǫ

(ǫ) ⇐⇒ F (x0, u0).ξ(x0, u0) = φ(x0, u0) (2.253)

for any (x0, u0) ∈ D ⊆ R2.
On the other hand, the equation (2.251) can be viewed as an algebraic constraint

F (x, u) − ux = 0 (2.254)

on the variables (x, u, ux) ∈ R3 and we may do ask to find a prolonged and parameter
group of transformations G(1)(ǫ) + expǫg(1) acting on a prolonger subvariety M (1) =
X × U × U (1) = R3 such that the set solution (2.254)is invarient. In this respect,
notice that the new vector field g(1) is a prolongation of the vector field g given in
(2.252), pr(1)g = g(1)

g(q)(x, u, ux) = ξ(x, u)∂x + φ(x, u)∂u + η(x, u)∂ux
where(ξ(x, u), φ(x, u), ) (2.255)

satisfies (2.253) ∀ (x, u) ∈ D ⊆ R2. The set solution(2.254) is invariant under the
infinitesimal generator (2.255) iff(f(x, u, ux) = F (x, u) − ux)

(∂xf)ξ + (∂uf)φ+ (∂ux
f)η = 0 (2.256)

for any (x, u, ux) verifying (2.254). An implicit computation of (2.256) show us that
(η(x, u, ux), φ(x, u), ξ(x, u)) must satisfy the following first order partial differential
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equation

η(x, u, ux) = ∂xφ(x, u) + [∂uφ(x, u) − ∂xξ(x, u)]ux − ∂uξ(x, u).u2x (2.257)

Once we found a symmetry group G, the integration of the equation (2.251) may
become a simplex one using elementary operations like integration of a scalar function.

2.8.5 Higher Order Equation

Consider a single n− th order differential equation involving a single dependent vari-
able u

∆(x, u(n)) = ∆(x, u,
du

dx
, . . . ,

dnu

dxn
= 0 x ∈ R (2.258)

If we assume that(2.258) does not depend either of u or x then the order of the
equation can be reduced by one. In this respect consider that ∆ in (2.258) satisfied
∂u∆ = 0i.e the vector field g = ∂u has a trivial prolongation prng = g = ∂u generating
a corresponding prolonged group of symmetry G(n) for the equation

∆̃(x, u1, ...un = 0) ,whereui =
diu

dxi
, i ∈ {1, . . . , n}1, ...n (2.259)

Denote z = du
dx and rewrite (2.259) as

∆̂(x, z,
dz

dx
, . . . ,

dn−1z

dx
) = ∆̃(x, z(n−1)) = 0 (2.260)

Whose solutions provide the general solution for (2.259) and u(x) =
∫ x
0
h(y)dy+c is a

solution for (2.259) provided z = h(x) is a solution for (2.260). The second elementary
group of symmetry for (2.258) is obtained assuming that ∆ does not depend on x and
write(2.258) as

∆̃(u(n)) = ∆̃(u,
du

dx
, . . . ,

dnu

dxn
) = 0 (2.261)

This equation is clearly invariant under the group of transformations in the
x−direction, with infinitesimal generator g = ∂x. In order to change this into the
vector field g = ∂ν , corresponding to translations of the dependent variable,it suffices
to reverse the rules of dependent and independent variable; we set y = u, ν = x.
Then compute du

dy = 1
dν
dy

, using u(ν(y)) = y. Similarly, we get

d2u

dx2
= − ν′′y

(ν′y)3
, . . . ,

dnu

dxn
= δn(ν(1)y , . . . , ν(n)y )

and rewrite (2.261) as follows

∆̃(u(n)) = ∆̃(u,
du

dx
, . . . ,

dnu

dxn
) = ∆̂(y, ν(1)y , . . . , ν(n)y ) = ∆ (2.262)
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where ν
(k)
y = dkν

dyk , k = 1, . . . , n. The equation (2.262) is transformed into a (n−1)−th
order differential equation as above denoting ν

(1)
y = z as the new unknown function.

Bibliographical Comments

The first part till to Section 2.3 is written following the references [8],[12] and [13].
Section 2.3 contained in a ASSMS preprint (2010). Sections 2.4 and 2.5 are written
following the book in the reference [11]. Sections 2.6 and 2.7 are using more or less
the same presentation as in the reference [12].



Chapter 3

Second Order Partial
Differential Equations

3.1 Introduction

PDE of second order are written using symbols ∂t, ∂x, ∂y, ∂z, ∂
2
t , ∂

2
x, ∂

2
y , ∂

2
z where t ∈ R

is standing for the time variable, (x, y, z) ∈ R3 are space coordinates, and a symbol
∂s(∂

2
s ) represent first partial derivative with respect to s ∈ {t, x, y, z} (second partial

derivative). There are three types of second order PDE we are going to analyze here
and they are illustrated by the following examples





∂2xu− ∂2yu = 0 (hyperbolic) (u(x, y) ∈ R, (x, y) ∈ R2)
△u = ∂2xu+ ∂2yu = 0 (elliptic) (u(x, y) ∈ R, (x, y) ∈ R2)
∂tu = ∂2xu+ ∂2yu = △u (parabolic) (u(t, x, y) ∈ R, t ∈ R, (x, y) ∈ R2)

PDE of second order have a long tradition and we recall the Laplace equation (Pierre
Simon Laplace 1749-1827)

∂2xu+ ∂2yu+ ∂2zu = △u = 0 (elliptic, linear, homogeneous) (3.1)

and its nonhomogeneous version

△u = ∂2xu+ ∂2yu+ ∂2t u = f(x, y, z) (Poisson equation) (3.2)

originate in the Newton universal attraction law (Isaac Newton 1642-1727). Intu-
itively, it can be explained as follows. An attractive body induces a field of attraction

93
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where intensity at each point (x, y, z) ∈ R3 is calculated using Newton’s formula

u = γ
µ√

(x − x0)2 + (y − y0)2 + (z − z0)2

where γ is a constant, µ = mass of the body, considering that the attractive body is
reduced to the point (x0, y0, z0) ∈ R3. In the case of several attractive bodies which
are placed at the points (xi, yi, zi), i ∈ {1, . . . , N}, we compute the corresponding
potential function

u = γ

N∑

i=1

µi√
(x− xi)2 + (y − yi)2 + (z − zi)2

= γ

N∑

i=1

µi
r(P, Pi)

where
P = (x, y, z), Pi = (xi, yi, zi)

and
r(P, Pi) =

√
(x− xi)2 + (y − yi)2 + (z − zi)2.

It was Laplace who proposed to study the corresponding PDE satisfied by the po-
tential function u and in this respect denote ui = γ µi

r(P,Pi)
and compute its partial

derivatives. We notice that ∂xr = x−xi

r , ∂yr = y−yi
r = ∂zr = z−zi

r and

∂xui = −γµi
(x− xi)

r3
, ∂yui = −γµi

(y − yi)

r3
, ∂zui = −γµi

(z − zi)

r3
(3.3)

Using (3.3) we see easily that





∂2xui = γµi[− 1
r3 + 3x−xi

2

r5 ]

∂2yui = γµi[− 1
r3 + 3 y−yi

2

r5 ]

∂2zui = γµi[− 1
r3 + 3 z−zi

2

r5 ]

(3.4)

and by adding we obtain

△ui = ∂2xui + ∂2yui + ∂2zui = 0, i = 1, 2, . . . , N (3.5)

which implies

(u =

N∑

i=1

ui)△u = ∂2xu+ ∂2yu+ ∂2zu = 0 (Laplace Equation) (3.6)

3.2 Poisson Equation

It may occur that we need to consider a body with a mass distributed in a volume
having the density ρ = ρ(a, b, c) at the point x = a, y = b, z = c and vanishing outside
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of the ball a2 + b2 + C2 6 R2. In this case the potential function will be computed as
follows

u(P ) =

∫∫∫

a2+b2+C26R2

ρ(a, b, c) da db dc

r(P, P (a, b, c))
(3.7)

where P = (x, y, z), P (a, b, c) = (a, b, c) and the constant γ is included in the function
ρ. By a direct computation we will prove that if ρ(a, b, c), (a, b, c) ∈ B(0, R), is first
order continuously differentiable then the potential defined in (3.7) satisfies Poisson
equation.

△u = ∂2xu+ ∂2yu+ ∂2zu = −4πρ(x, y, z), (x, y, z) ∈ B(0, R) (3.8)

and

△u = 0, (x, y, z) 6∈ B(0, R) (Laplace Equation) (3.9)

We recall that a similar law of interaction between electrical particles is valid and
Coulomb law is described by

µ = γ
m1m2

r2
, (m1,m2) − electric charges of (P1, P2) (3.10)

γ = 1
ǫ a constant,

r2 = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 P1 = (x1, y1, z1)P2 = (x2, y2, z2).

The associated electrostatic field (Ex, Ey, Ez) is defined by

Ex = ∂xu, Ey = ∂yu, Ez = ∂zu

and in this case we get the following Poisson equation

∂xEx + ∂yEy + ∂zEz =
4 π ρ

ǫ
(3.11)

when a density ρ is used and the electrical potential function has the corresponding
integral form.
Proof of the equation (3.8) for u defined in (3.7). Rewrite the potential function on

the whole space

u(x, y, z) =

∫∫∫
ρ(a, b, c)√

(x− a)2 + (y − b)2 + (z − c)2
da db dc (3.12)

and making a translation of coordinates a− x = ξ, b− y = η, c− z = τ , we get

u(x, y, z) =

∫∫∫
ρ(x+ ξ, y + η, z + τ)√

ξ2 + η2 + τ2
dξ dη dτ (3.13)

where the integral is singular and ξ = η = τ = 0 is the singular point. The integral
in (3.13) is uniformly convergent with respect to the parameters (x, y, z) because the
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function under integral has an integrable upper bound ρ∗√
ξ2+η2+τ2

, where ρ∗ = max|ρ|.
In this respect, we notice that if (x, y, z) ∈ B(0, R) ⊆ R3 then B(0, 2R) can be taken
as a domain D where the integration of (3.13) is performed. (see ξ2+η2+τ2 6 (2R)2).
Taking a standard coordinates transformation (spherical coordinates)

ξ = r cosϕ sinψ, η = r sinϕ sinψ, σ = r cosψ, 0 6 ϕ 6 2π, 0 6 ψ 6 π, 0 6 r 6 2R

we rewrite (3.13) on D = B(0, 2R) as follows

∫∫∫

D

ρ∗dξdηdσ√
ξ2 + η2 + σ2

= 4πρ∗
∫ 2R

0

r2dr

r
= 4πρ∗

(2R)2

2
(3.14)

where ∫∫

D

1

r
dξdηdσ = (

∫ 2R

0

r2

r
dr(

∫ π

0

sinψdψ).2π = 4π

∫ 2R

0

rdr

and

det




∂νξ
∂νη
∂νσ


 = −r2sinψ(ν = (r, ϕ, ψ)) are used .

In addition by formal derivation of (3.13) with respect to(x, y, z) we get the following
uniformly convergent integrals

∂xu =

∫∫∫
∂x[ρ(x + ξ, y + eta, z + σ)]√

ξ2 + η2 + σ2
dξdηdσ

==

∫∫∫

D

∂ξ[ρ(x+ ξ, y + eta, z + σ)]√
ξ2 + η2 + σ2

dξdηdσ (3.15)

Using ρ(x + ξ, y + η, z + σ) = 0 on the sphere ξ2 + η2 + σ2 = (2R)2 and

∂ξ[ρ(x+ ξ, y + η, z + σ)]√
ξ2 + η2 + σ2

= ∂ξ[(ρ(x+ ξ, y + η, z + σ))]
√
ξ2 + η2 + σ2 +

ξρ(x+ ξ + η, z + σ)

(ξ2 + η2 + σ2)3\2

we get

∂xu =

∫∫∫

d

ξρ(x+ ξ + η, z + σ)

(ξ2 + η2 + σ2)3\2
dξdη (3.16)

provided

0 =

∫∫

D

[ξφ(ξ, η, σ)]dξdηdσ =

∫∫

D1

[φ(ξ2, η1, σ) − φ(ξ1, η1, σ)]dηdσ

is used where

ξ2 = +
√

(2R2) − η2 − σ2 , ξ1 = −
√

(2R2) − η2 − σ2

and φ(ξi, η, σ) = 0 i ∈ {1, 2}. The integral (3.16)is uniformly convergent with respect
to(x, y, z) ∈ D(0, R) and noticing ξ√

ξ2+η2=σ2
6 1, we get the following integrable
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upper bound

|∂x u| 6
∫∫∫

D

ρ∗dξdηdσ√
ξ2 + η2 + σ2

= 4πρ∗
∫ 2R

0

r2dr

r2
= 4πρ2(2R) (3.17)

which proves that (3.16) is valid. Similar arguments are used to show that ∂yu and
∂zu exist fulfilling





∂yu =
∫∫
D

ηρ(x+ξ1y+η1z+σ)

(ξ2+η2+σ2)3\2
dξdηdσ

∂zu =
∫∫
D

σρ(x+ξ1y+η1z+σ)

(ξ2+η2+σ2)3\2
dξdηdσ

(3.18)

Applying ∂x to (∂xu) in (3.16),∂y to ∂yu and ∂z to (∂zu) in (3.18) we get convergent
integrals 




∂2xu =
∫∫∫
D

ξ
(ξ2+η2+σ2)3\2

∂ξ[ρ(x, ξ, y, η, z + σ)]dξdηdσ

∂2yu =
∫∫∫
D

η
(ξ2+η2+σ2)3\2

∂η[ρ(x, ξ, y, η, z + σ)]dξdηdσ

∂2zu =
∫∫∫
D

σ
(ξ2+η2+σ2)3\2

∂σ[ρ(x, ξ, y, η, z + σ)]dξdηdσ

(3.19)

where ∂s[ρ(x + ξ, y + η, z + σ)](s ∈ ξ, η, σ) is a continuous and bounded function
on D(see ρ is first order continuously differentiable on D) using (3.19) we get the
expression of the laplacian





∆u = ∂2xu+ ∂2yu+ ∂2zu

=
∫∫∫
D

ξ∂ξ+η∂η+σ∂σ [ρ(x+ξ,y+η,z+σ)]
(ξ2+η2+σ2) 3 2 dξdηdσ

=
∫ 2R

0
{
∫∫
Sr

∂r [ρ(x+ξ,y+η,z+σ)]
r2 dSr}dr

(3.20)

where Sr is a sphere with radius

r = (ξ2 + η2 + σ2)
1
2

and

∂rρ =< (∂ξρ, ∂ηρ, ∂σρ), (
ξ

r
,
η

r
,
σ

r
) >

Here each (ξ, η, σ) ∈ Sr can be represented as

(ξ, η, σ) = (rξ0, rη0, rσ0)

where
(ξ0, η0, σ0) ∈ S1
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and using dSr = r2dS1 we rewrite (3.20) as follows

∆u





=
∫ 2R

0
{
∫∫
S1

∂r[ρ(x + ξ0r, y + η0r, z + σ0r)]dr}dS1

=
∫∫
S1

[ρ(x + 2Rξ0, y + 2Rη0, z + 2Rσ0) − ρ(x, y, z)]dS1

−
∫∫
S1

ρ(x, y, z)dS1 = −4πρ(x, y, z)

(3.21)

It shows that the equality (3.8) (Poisson equation) is for any (x, y, z) ∈ B(0, R) where
R > 0 was arbitrarily fixed and the proof is complete. �
We conclude this introduction by showing that the potential function u(x, y, z) defined
in (3.7) satisfied the following asymptotic behaviour

lim
r→∞

u(x, y, z) = 0, or lim
r→∞

√
x2 + y2 + z2u(x, y, z) =

∫∫ ∫

D

ρ(a, b, c)da db dc (3.22)

In this respect ,denote Q = (x, y, z) , P = (a, b, c), dv = da db dc and rewrite equation
(3.22) as follows

u(Q) =

∫∫∫

D

ρ(P )dv

r(P,Q)
(D : r(P,Q) 6 R)

lim
r(0,Q)→∞

r(0, Q)u(Q) = lim
r(0,Q)→∞

∫∫∫

D

ρ(P )dv

[1− r(0,Q)−r(P,Q)
r(0,Q)

]
=

∫∫∫

D

ρ(P )dv (3.23)

Here we notice that a = r(0,Q)−r(P,Q)
r(0,Q) satisfies | a |< 1 , 1( 1 − a) = 1 + a + a2+, . . .

and | r(0, Q)− r(P,Q) |6 r(0, P ) leads us to (3.23) and (3.22) are valid. We conclude
the above given considerations by

Theorem 3.2.1. Let ρ(x, y, z) : R3 → R be a continuously differentiable function
in a open neighborhood V (x0, y0, z0) ⊆ R3 and vanishing outside of the fixed ball
B(0, L) ⊆ R3. Then

u(x, y, z) =

∫∫∫

a2+b2+C26L2

ρ(a, b, c)da db dc

r(P, P (a, b, c))
, P = (x, y, z) ∈ R

3

satisfies the following Poisson equations

∆u(x, y, z) = (∂2x + ∂2y + ∂2z )u(x, y, z) = −4πρ(x, y, z) (3.24)

for any (x, y, z) ∈ V (x0, y0, z0),∆u(x, y, z) = 0 ∀ (x, y, z)not in B(0, L). In addition

lim
r→∞

u(x, y, z) = 0 (or lim
r→∞

ru(x, y, z)) =

∫∫∫

B(0,L)

ρ(a, b, c)da db dc (3.25)

Remark 3.2.2. The result in Theorem 3.2.1 holds true when replacing R3 with
Rn(n > 3) and if it is the case then the corresponding newtonian potential function
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is given by

u(x) =

∫
. . .

∫

n times

ρ(y)dy1 . . . dyn
rn−2

where ρ(y) : Rn → R is a continuously differentiable function vanishing outside of the

ball B(0, L) ⊆ Rn and r =| x − y |= (
n∑
i=1

(xi − yi)
2)

1
2 . The corresponding Poisson

equation is given by

n∑

i=1

∂2i u(x) = ∆u(x) = ρ(x)(−σ1) ∀x ∈ R
n, where σ1 = measS(0, 1)

3.3 Exercises

Using the same algorithm as in Theorem 3.2.1 prove that the corresponding potential
function(logarithm)in R2 is given by

u(x, y) =

∫∫
ρ(a, b){ln 1

((x− a)2 + (y − b)2)
1
2

}da db

and satisfies the following Poisson equation

∆u(x, y) = (∂2x + ∂2y)u(x, y) = −2πρ(x, y), ∀ (x, y) ∈ V (x0, y0)

Here ρ : R2 → R is first order continuously differentiable in the open neighborhood
V (x0, y0) ⊆ R2 and vanishes out side of the disk B(0, L) ⊆ R2. By a direct computa-
tion show that the following Lapace equation

∆u(x) =

n∑

i=1

∂2i u(x) = 0 ∀x ∈ R
n, (n > 3), x 6= 0

is valid, where

u(x) =
1

rn−2
, r = (

n∑

i=1

x2i )
1
2 , x = (x1, ...xn)∂2i u(x) =

∂2u(x)

∂x2i

3.4 Maximum Principle for Harmonic Functions

Any solution of the Lapace equation ∆u(x, y, z) = 0 will be called harmonic function
Maximum principle
A harmonic function u(x, y, z) which is continuous in a bounded closed domain G =
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G⊔Γ and admitting second order continuous partial derivatives in the open setG ⊆ R3

satisfy

max
(x,y,z)∈G

u(x, y, z) = max
(x,y,z)∈Γ

u(x, y, z) and min
(x,y,z)∈G

u(x, y, z) = min
(x,y,z)∈Γ

u(x, y, z)

where Γ = ∂G ( boundary of G )

Proof. Denote m = max{u(x, y, z) : (x, y, z) ∈ Γ} and assume that max{u(x, y, z) :
(x, y, z) ∈ G} = M = u(x0, y0, z0) > m, where (x0, y0, z0) ∈ G. Define the auxiliary
function

ν(x, y, z) = u(x, y, z) +
M −m

2d2
[(x− x0)2 + (y − y0)2 + (z − z0)2]

and
d = max{r(P,Q) : P,Q ∈ G} and r(P,Q) =| P −Q |

(distance between two points). By definition,

r2(P, P0) = (x− x0)2 + (y − y0)2 + (z − z0)2, (P = (x, y, z), P0 = (x0, y0, z0))

and using r2(P, P0) 6 d2

we get

ν(x, y, z) 6 m+
M −m

2
=
M +m

2
, ∀ (x, y, z) ∈ Γ

On the other hand, ν(x0, y0, z0) = u(x0, y0, z0) = M and it implies max{ν(x, y, z) :
(x, y, z) ∈ G} = V (P ) is achieved in the open set P ∈ G. As a consequence

∂xν(x, y, z) = 0, ∂yν(x, y, z) = 0, ∂zν(x, y, z), ∂2xν(x, y, z) 6 0

∂2yν(x, y, z) 6 0 and ∂2zν(x, y, z) 6 0

where P = (x, y, z). In addition

∆ν(P ) 6 0 and ∆ν(P ) = ∆u(P ) +
M −m

2d2
[∆r2(P, P0)]P=P =

M −m

2d2
(2 + 2 + 2) > 0

which is a contradiction. Therefore

u(x, y, z) 6 m = max{u(x, y, z) : (x, y, z) ∈ Γ}, ∀ (x, y, z) ∈ G

To prove the inequality

u(x, y, z) > min{u(x, y, z) : (x, y, z) ∈ Γ}, ∀ (x, y, z) ∈ G

we apply the above given result to {−u(x, y, z)}. The proof is complete.

Remark 3.4.1. With the same proof we get that a harmonic function in the plane

∂2xu(x, y) + ∂2yu(x, y) = 0(x, y) ∈ D ⊆ R
2



3.4. MAXIMUM PRINCIPLE FOR HARMONIC FUNCTIONS 101

which is continuous on
D = DU∂D satisfy

max{u(x, y) : (x, y) ∈ D} = max{u(x, y) : (x, y) ∈ ∂D}
min{u(x, y) : (x, y) ∈ D} = min{u(x, y) : (x, y) ∈ ∂D}

Remark 3.4.2. The Poisson equation

∆u(x, y, z) = −4πρ(x, y, z) (3.26)

has a unique solution under the restriction.

lim
r→∞

u(x, y, z) = 0 where ρ(x, y, z) : R3 → R

is a continuous function. Consider that u1, u2 are solutions of the Poisson equation
(3.26) fulfilling

lim
r→∞

ui(x, y, z) = 0, i ∈ {1, 2}

Then u = u1− u2 satisfies ∆u(x, y, z) = 0 for any (x, y, z) ∈ R3 and lim
r→∞

u(x, y, z) =

0. In particular, {u(x, y, z) : (x, y, z) ∈ B(0, R) ⊆ R3} satisfies, maximum principle,
where B(0, R) = G and Γ = {(x, y, z) ∈ R3 : x2+y2+z2 = R2}. We get u(x0, y0, z0) 6
max{u(x, y, z) : (x, y, z) ∈ Γ} and u(x0, y0, z0) > min{u(x, y, z) : (x, y, z) ∈ Γ} for any
(x0, y0, z0) ∈ intB(0, R). In particular, for (x0, y0, z0) ∈ intB(0, R) fixed and passing
R → ∞ we get u(x0, y0, z0) = 0 and u1(x, y, z) = u2(x, y, z) for any (x, y, z) ∈ R3.

3.4.1 The Wave Equation; Kirchhoff, D’Alembert and
Poisson Formulas

Consider the waves equation

∂2t u(t, x, y, z) = C2
0 (∂2xu+ ∂2yu+ ∂2zu)(t, x, y, z) (3.27)

for (x, y, z) ∈ D(domain) ⊆ R3 and initial condition

u(0, x, y, z) = u0(0, x, y, z), ∂tu(0, x, y, z) = u1(x, y, z) (3.28)

The integral representation of the solution satisfying (3.27) and (3.28)is called Kirch-
hoff formula. In particular, for 1- dimensional case the equation and initial conditions
are described by

∂2t u(t, x) = C2
0∂

2
xu(t, x), u(0, x) = u0(x), ∂tu(0, x) = u1(x) (3.29)

and d’Alembert formula gives the following representation

u(t, x) =
u0(x+ c0t) + u0(x− c0t)

2
+

1

2c0

∫ c0t+x

x−c0t
u1(σ)dσ (3.30)
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In this simplest case, the equation (3.29)is decomposed as follows

(∂t + c0∂x)(∂t − c0∂x)u(t, x) = 0 (3.31)

and find the general solution of the linear first order equation

∂tν(t, x) + c0∂xν(t, x) = 0 (3.32)

By a direct computation we get

ν(t, x) = ν0(x− c0t), (t, x) ∈ R× R (3.33)

where ν0(λ) : R → R is an arbitrary first order continuously differentiable function.
Then solve the following equation

{
∂tu(t, x) − c0∂xu(t, x) = ν0(x− c0t)
u(0, x) = u0(x), ∂tu(0, x) = u1(x)

(3.34)

From the equation u(0, x) = u0(x), ∂tu(0, x) = u1(x) we find ν0 such that

u1(x) − c0∂xu0(x) = ν0(x), x ∈ R (3.35)

and using the characteristic system associated with (3.34) we obtain

u(t, x) = u0(x+ c0t) +

t∫

0

ν0(x+ c0t− 2c0s)ds (3.36)

Using (3.35) into (3.34) we get the corresponding D’Alembert formula

u(t, x) =
u0(x+ x0t) + u0(x − c0t)

2
+

1

2c0

x+c0t∫

x−c0t

u1(σ)dσ (3.37)

given in (3.30) In the two-dimensional case (x, y) ∈ R2 we recall that the Poisson
formula is expressed as follows

u(t, x, y) =
1

2πc0
[∂t(

2π∫

0

c0t∫

0

ρ
u0(x+ ρcosϕ, y + ρsinϕ)√

c20t
2 − ρ2

dρdϕ)

+ (

2π∫

0

c0t∫

0

ρ
u1(x + ρcosϕ, y + ρsinϕ)√

c20t
2 − ρ2

dρdϕ)] (3.38)

The general case ,(x, y, z) ∈ R3, will be treated reducing the equation (3.27) to an
wave equation analyzed in the one-dimensional case provided adequate coordinate
transformations are used. In this respect, for a P0 = (x0, y0, z0) ∈ D fixed and
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B(P0, r) ⊆ D we define (u is the mean value of u on Sr)

u(r, t) =
1

4πr2

∫∫

Sr

u(t, x, y, z)dSr =
1

4π

∫∫

S1

u(t, x, y, z)dS1 (3.39)

where Sr = ∂B(P0, r) is the boundary of the ball B(P0, r), and dSr = r2dS1 is
used.The integral in (3.39) can be computed as a two dimensional integral provided
we notice that each (x, y, z) ∈ Sr can be written as

(x, y, z) = (x0 + αr, y0 + βr, z0 + γr) = P0 + rw (3.40)

where (α, β, γ) = ω are the following





α = sinθcosϕ 0 6 θ 6 π
β = sinθsinϕ 0 6 ϕ 6 π
γ = cosθ

(3.41)

Here dSr = r2sinθdϕdθ and rewrite (3.39) using a two dimensional integral

u(r, t) =
1

4π

2π∫

0

π∫

0

u(t, P0 + rw)sinθdϕdθ (3.42)

assuming w = (α, β, γ) given in (3.42).The explicit expression of u(r, t) in (14) will
be deduced taking into consideration the corresponding wave equation satisfied by
u(r, t) when u(t, x, y, z) is a solution of (3.27). In this respect, integrate in both sides
of (3.27) using the three dimensional domain Dr = B(P0, r), P0 = (x0, y0, z0), and
the spherical transformation of the coordinates (x, y, z)

(x, y, z) = (x0 + ρα, y0 + ρβ + z0 + ργ) = P0 + ρω (3.43)

where 0 6 ρ 6 r and α(θ, ϕ), β(θ, ϕ), γ(θ) satisfy (3.41). We get

∫∫∫

Dr

∂2t u(t, x, y, z)dxdydz =

r∫

0

(

∫∫

S1

∂2t u(t, P0 + ρω)ρ2dS1)dρ (3.44)

where dS1 = sinθdθdϕ and S1 = S(P0, 1) is the sphere centered at P0. Denote ∆ =
∂2x + ∂2y + ∂2z and for the integral in the right hand side we apply Gauss-Ostrogradsky
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formula. We get

C2
0

∫∫∫

Dr

∆u(t, x, y, z)dxdydz = C2
0

∫∫

Sr

[α∂xu(t, P0 + rω)

+ β∂yu(t, P0 + rω) + γ∂zu(t, P0 + rω)]dSr

= C2
0

∫∫

S1

{∂r[u(t, P0 + rω)]r2dS1}

= C2
0r

2∂r[

∫∫

S1

u(t, P0 + rω)dS1] (3.45)

where (α, β, γ) = ω are the coordinates of the unit outside normal vector at Sr. Using
(3.39) we rewrite (3.45) as

C2
0

∫∫∫

Dr

∆u(t, x, y, z)dxdydz = C2
0r

2(4π)∂ru(r, t) (3.46)

In addition, notice that (3.44) can be written as

∫∫∫

Dr

∂2t u(t, P0 + ρω)dxdydz =

∫ r

0

ρ2[∂2t

∫∫∫

S1

u(t, P0 + ρω)dS1]dρ

=

∫ r

0

4πρ2∂2t u(ρ, t)dρ (3.47)

and deriving with respect to r in (3.46)and (3.47) we obtain

∂2t u(r, t) =
C2

0

r2
∂r[r

2∂ru(r, t)] (3.48)

Denote u(r, t) = ru(r, t) and using (3.48) compute

∂2t u(r, t)





= r∂2t u(r, t)

=
C2

0

r2 ∂r[r
2∂ru(r, t)]

=
C2

0

r2 [2r∂ru(r, t) + r2∂2ru(r, t)]
= C2

0 [2∂ru(r, t) + r∂2ru(r, t)]

(3.49)

Notice that
∂2ru(r, t) = 2∂ru(r, t) + r∂2ru(r, t) (3.50)

and rewrite (3.49) as follows

∂2t u(r, t) = C2
0∂

2
ru(r, t), r > 0 (3.51)

where u satisfies the boundary condition

u(0, t) = 0 (3.52)
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Extend u(r, t) for r < 0 by u(−r, t) = −u(r, t) where r > 0. In addition, the initial
conditions for u(r, t) are the following





u(r, 0) = ru(r, 0) = 1
4πr

∫∫
Sr

u0(x, y, z)dSr

∂tu(r, 0) = 1
4πr

∫∫
Sr

u1(x, y, z)dSr
(3.53)

The solution {u(r, t)} fulfilling (3.51))and (3.53) are expressed using Poisson formula
(see(3.30))

u(r, t) =
ϕ(r + C0t) + ϕ(r − C0t)

2
+

1

2C0

∫ x+C0

x−C0

ψ(σ)dσ (3.54)

where

ϕ(ξ) = u(ξ, 0) =
1

4πξ

∫∫

Sξ

u1(x, y, z)dSξ (3.55)

and

ψ(ξ) = ∂tu(ξ, 0) =
1

4πξ

∫∫

Sξ

u0(x, y, z)dSξ (3.56)

Using (3.55) and (3.56) we get the Kirchhoff formula for the solution of the wave
equation (3.27) satisfying Cauchy conditions (3.28) and it can be expressed as follows

u(t, P0) =
d

dr
[

1

4πr

∫∫

Sr(P0)

u0(x, y, z)dSr]r=C0t + [
1

4πC0

∫∫

Sr(P0)

u1(x, y, z)dSr]r=C0t

=
1

4πC0
[
d

dr
(

1

C0t

∫∫

Sc0t(P0)

u0(x, y, z)dS) +
1

C0t

∫∫

Sc0t(P0)

u1(x, y, z)dS] (3.57)

where

∫∫

Sc0t(P0)

u0(x, y, z)dS =

∫ 2π

0

∫ π

0

u(P0 + (C0t)ω)(C0t)
2sinθdθdϕ

and ω = (α, β, γ) is defined in (3.41). Passing P0 → P = (x, y, z) in the Kirchhoff for-
mula (3.57) we get the integral representation of a Cauchy problem solution satisfying
(3.27) and (3.28)

u(t, x, y, z) =
1

4πC0
[
d

dt
(

1

C0t

∫∫

Sc0t(P0)

u0(x, y, z)dS) +
1

C0t

∫∫

Sc0t(P0)

u1(x, y, z)dS] (3.58)
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where the integral in (3.58) is computed as follows

1

C0t

∫∫

Sc0t(P0)

u(ξ, η, σ)dS = C0t

∫ 2π

0

∫ π

0

u(x+(C0t)α, y+(C0t)β, z+(C0t)γ)sinθdθdϕ (3.59)

and (α, β, γ) are defined in (3.41)





α = sinθcosϕ 0 6 θ 6 π
β = sinθsinϕ 0 6 ϕ 6 2π
γ = cosθ

Proposition 3.4.3. Assume that u0, u1 ∈ C4(R3) are given. Then {u(t, x, y, z) : t ∈
R+, (x, y, z) ∈ R3} defined in (3.58) is a solution of the hyperbolic equation (3.27)
satisfying the Cauchy condition (3.28).

Proof. Notice that if u(t, x, y, z) satisfies the wave equation (3.27) then ν(t, x, y, z) =
∂tu(t, x, y, z) verifies also the wave equation (3.27). It allows us to get the conclusion
and it is enough to prove that

u(t, x, y, z) = C0t

∫ 2π

0

∫ π

0

u(x+ (C0t)α, y + (C0t)β, z + (C0t)γ)sinθdθdϕ (3.60)

fulfils the wave equation (3.27).In this respect, using (3.60), compute the correspond-
ing derivatives involved in equation (3.27) and we get

∂tu =
u

t
+ (C0t)∂t

∫ 2π

0

∫ π

0

u(x+ (C0t)α, y + (C0t)β, z + (C0t)γ)sinθdθdϕ

=
u

t
+

1

t

∫ 2π

0

∫ π

0

(∂ξu)α+ (∂ηu)β + (∂σ)γC2
0 t

2sinθdθdϕ (3.61)

Notice that (α, β, γ) = n represent the unit vector oriented outside of the sphere
SC0 and dS = (C0t)

2sinθ dθ dϕ we rewrite (3.61)

∂tu =
u

t
+
I

t
(3.62)

where

I =

∫ 2π

0

∫ π

0

(∂ξu)α+ (∂ηu)β + (∂σ)γC2
0 t

2sinθdθdϕ

=

∫∫

SC0t

∂u

∂n
dS

=

∫∫∫

B(x,y,z;C0t)

(∂2ξu+ ∂2ηu+ ∂2σu)dξdηdσ (3.63)

is written using Gauss-Ostrogrodsky formula,and B(x, y, z;C0t) is the ball in R3
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centered at P = (x, y, z). From (3.62), deriving again we get

∂2t =
1

t
∂tu− 1

t2
u+

1

t
∂tI −

1

t2
I =

1

t
(
u

t
+
I

t
) − u

t2
− I

t2
+

1

t
∂tI =

1

t
∂tI (3.64)

On the other hand,using (3.63) and applying the spherical coordinate transformation
in the three-dimensional integral we get





I =
∫ C0t

0 [
∫ 2π

0

∫ π
0 (∂2ξu+ ∂2ηu+ ∂2σu)sinθdθdϕ]r2dr

∂tI = C0

∫∫
SC0 t

(x, y, z)(∂2ξu+ ∂2ηu+ ∂2σu)ds (3.65)

and (3.64) becomes

∂2t u =
C0

t

∫∫

SC)t
(x,y,z)

(∆u)(ξ, η, σ)dS (3.66)

Denote ∆u(t, x, y, z) = (∂2xu+ ∂2yu+ ∂2zu)(t, x, y, z) and a direct computation applied
in (3.60) allows to get

∆u(t, x, y, z) =
1

(C0)2
.
C0

t

∫∫

SC)t
(x,y,z)

(∆u)(ξ, η, σ)dS (3.67)

and each term entering in the definition (3.58) will satisfy the wave equation (3.27).
In addition, using (3.59), we see easily that the Cauchy condition given in (3.28) are
satisfied by the function u(t, x, y, z) defined in (3.58). The proof is complete.

3.5 Exercises

(a1) consider the wave equation in plane

∂2t u(t, x, y) = c20[∂2xu(t, x, y) + ∂2yu(t, x, y)], u(0, x, y) = y0(x, y), ∂tu(0, x, y) = u1(x, y)

Find the integral representation of its solution. (Poisson formula see (3.68)).
Hint. It will be deduced from the Kirchhoff formula (see proposition 1) considering
that the variable z does not appear. We get

u(t, x, y) =
1

2πC0

[
∂t

(∫ 2π

0

∫ C0t

0

ρ√
c20t

2 − ρ2
u0(x+ ρcosφ, y + ρsinφ))dρdφ

)

+

∫ 2π

0

∫ C0t

0

ρ√
c20t

2 − ρ2
u1(x+ ρcosφ, y + ρsinφ)dρdφ] (3.68)
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In the Kirchhoff formula (see(3.58)) the function u(ξ, η) does not depend on σ and a
direct computation gives the following

(θ ∈ [0, π], φ ∈ [0, 2π])

E =

∫ 2π

0

∫ π

0

u(x+ (C0t)sinθcosφ, y + (C0t)sinθsinφ)(C2
0 t

2)sinθdθdφ

=

∫ 2π

0

∫ π
2

0

u()(C2
0 t

2)sinθdθdφ +

∫ 2π

0

∫ π

π
2

u()C2
0 t

2sinθdθdφ

= 2

∫ 2π

0

∫ π
2

0

u(x, cotsinθcosφ, y + (cot)sinθsinφ)(C2
0 t

2)sinθdθdφ

Change the coordinate ρ = (C0t)sinθ and get dρ = (C0t)cosθdθ for 0 6 θ 6 π
2 where

cosθ =
√

1 − sin2θ =

√

1 − ρ2

C0t

2

=
1

C0t

√
(C0t)2 − ρ2

We get

E = 2

∫ 2π

0

∫ C0t

0

ρ√
c20t

2 − ρ2
u(x+ ρcosϕ, y + ρsinϕ)dρdφ

and Kirchhoff’s formula becomes Poison formula given in (3.68).
(a2) Prove that the solution of the non homogeneous waves equation.

{
∂2t u− C2

0 (∂2xu+ ∂2yy + ∂2zu) = f(x, y, z, t)
u(0, x, y, z) = 0 ∂tu(0, x, y, z) = 0

(3.69)

is presented by the following formula.

u(t, x, y, z) =
1

4πC2
0

∫∫∫

B(x,y,z;C0t)

f(ξ, η, σ, t−
√

(x−ξ)2+(y−η)2+(z−σ)2
C0

)
√

(x− ξ)2 + (y − η)2 + (z − σ)2
dξdηdσ (3.70)

solution.

Denote p = (x, y, z), q = (ξ, η, σ) and | p− q |= [
3∑
i=1

(pi − qi)
2]

1
2 ;B(p, C0t) is the ball

centered at p with radius C0t. To get(3.70) as a solution of (3.69) we use the solution
of the following homogeneous equation

∂2t ν = c20∆ν, ν|t=σ = ν0(p), ∂tν|t=σ = f(p, σ) = ν1(p) (3.71)

where the initial moment t = σ(replacing t = 0) is a parameter.Recall the Kirchhoff
formula for the solution satisfying (3.71)

ν(t, p) =
1

4πC0
[
d

dt
(

∫∫

Sr(P )

ν0(q)

r
dSr) +

∫∫

Sr(P )

ν1(q)

r
dSr] (3.72)
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where r = C0t and dSr = r2dS1 = r2sinθdθdϕ forθ ∈ [0, 2π], where S1 is the unit
sphere. Making use of the spherical coordinates transformation

q = p+ rω, ω = (sinθcosϕ, sinθsinϕ, cosθ), r = C0t (3.73)

we rewrite (3.72) as follows

ν(t, p) =
1

4π
∂t[t

∫∫

S1(P )

ν0(p+ rω)dS1] +
t

4π

∫∫

S1(P )

ν1(p+ rω)dS1 (3.74)

where dS1 = sinθ dθ dϕ. Using the Cauchy conditions of (3.71) from (3.74) we get

ν(t, p;σ) =
t− σ

4π

∫∫

S1(P )

f(p+ C0(t− σ)ω;σ)dS1, 0 6 σ 6 t (3.75)

where t− σ representing t and ν|t=σ = 0 are used. We shall show that u(t, p) defined
by (Duhamel integral)

u(t, p) =

∫ t

0

ν(t, p;σ) dσ (3.76)

is a solution of the wave equation (3.69). The initial conditions u(0, p) = 0 =
∂tu(0, p) are easily verified by direct inspection. Computing lapacian operator ∆p =
∂2x + ∂2y + ∂2z applied in both sides of (3.76) we obtain

∆pu(t, p) =

∫ t

0

∆pν(t, p;σ) dσ (3.77)

Notice that ”∂t” applied in (3.76) lead us to





∂tu(t, p) = ν(t, p;σ)σ=t +
∫ t
0 ∂tν(t, p;σ) dσ

∂2t u(t, p) = ∂tν(t, p;σ)σ=t +
∫ t
0 ∂

2
t ν(t, p;σ) dσ =

= f(p, t) + C0

∫ t
0 ∆pν(t, p;σ)dσ

= f(p, t) + C2
0∆pu(t, p)

(3.78)

and {u(t, p)}defined in (3.76) verifies the wave equation (3.69). Using (3.75) we
rewrite (3.76) as in conclusion (3.70). In this respect, substituting (3.75) into (3.76)
we get following formula (dS1 = sinθ dθ dϕ)

u(t, p;σ) =
1

4π

∫ t

0

(t− σ)[

∫∫

S1(P )

f(p+ C0(t− σ)ω;σ)dS1]dσ (3.79)

Making a change of variables C0(t− σ) = r, we get

u(t, p) =
1

4πC2
0

∫ C0t

0

∫ 2π

0

∫ π

0

f(p+ rω, t− r

C0
)r sinθ dθ dϕ dr (3.80)
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and noticing that r = r2

r , | ω |2= 1 we rewrite (3.80) as follows

u(t, p) =
1

4πC2
0

∫∫ ∫

B(p,C0t)

f(q, t− | p− q |
C0

)
1

| p− q |dq (3.81)

and the proof is complete. �

3.5.1 System of Hyperbolic and Elliptic Equations(Definition)

Definition 3.5.1. A first order system of n equations

A0∂tu+

m∑

i=1

Ai(x, t)∂iu = f(x, y, u), u ∈ Rn,× ∈ Rm (3.82)

is t-hyperbolic if the corresponding characteristic equation det || σA0(x, t) +∑m
i=1 ξAi(x, t) ||= o has n real distinct roots for the variable σ at each point (t, x) ∈

[0, T ]×D, D ⊆ Rm, for any ξ ∈ Rm, ξ 6= 0. There is a particular first order system
for which a verification of this property is simple

Definition 3.5.2. The first order system (3.82) is symmetric t- hyperbolic (defined by
Friedreich)if all matrices Aj(x, t)j ∈ 0, 1, ...,m are symmetric and A0(x, t) is strictly
positive definite in the domain (t, x) ∈ [0, T ] ×D

Definition 3.5.3. The first order system (3.82) is called elliptic if the corresponding
characteristic equation det ‖ σA0(x, t) +

∑m
i=1 ξAi ‖= 0 has no real solution (σ, ξ) ∈

Rm+1, (σ, ξ) 6= 0, ∀ (x, t) ∈ D × [0, T ].

Example 3.5.1. In the case of a second order PDE

a(x, t)∂2
t u+ 2b(x, t)∂2

(t,x)u+ c(x, t)∂2
xu+ d(x, t)∂tu+ e(x, t)∂xu = f(x, t, u), x ∈ R (3.83)

We get the following characteristic equation

a(x, t)σ2 + 2b(t, x)σξ + c(t, x)ξ2 = 0 (3.84)

Hint Using a standard procedure we rewrite the scalar equation (3.83) as an evolution
system for the unknown vector u1(t, x) = ∂xu(t, x), u2(t, x) = ∂tu(t, x), u3(t, x) =
u(t, x). We get





∂tu1 = ∂xu2
a(x, t)∂tu2 = −2b(x, t)∂xu2 − c(x, t)∂xu1 + f1(x, t, u1, u2, u3)
∂tu3 = u2 , t ∈ R, x ∈ R

(3.85)

wheref1(x, t, u1, u2, u3) = f(x, t, u3)− e(x, t)u1 − d(x, t)u2. The system (3.85) can be
written as (3.82) using the following (3 × 3) matrices
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A0(x, t) =




1 0 0
0 a(x, t) 0
0 0 1


 , A0(x, t) =




0 −1 0
c(x, t) 2b(x, t) 0

0 0 0




Compute

det ‖ σA0(x, t) + ξA1(x, t) ‖ = det




σ −ξ 0
ξ.c σa+ 2bξ 0
0 0 σ




= σ[a(x, t)σ2 + 2b(x, t)σξ + c(x, t)ξ2]

and the characteristic equation (3.84) is obtained.

3.6 Adjoint Second Order Differential Operator; Rie-
mann and Green Formulas

We consider the following linear second order differential operator

Lν =

n∑

i=1

n∑

j=1

Aij∂
2
ijν +

n∑

i=1

Bi∂iν + Cν (3.86)

where the coefficients Aij , Bi, andC are second order continuously differentiable

scalar functions of the variable x = (x1, ..., xn) ∈ Rn and ∂iν = dν
dxi

, ∂2ijν = ∂2ν
∂xi∂xj

.

Without restricting generality we may assume that Aij = Aij(seeAij → 1
2 (Aij+Aij))

and define the adjoint operator associated with L(L∞ = M)

Mν ≡
n∑

i=1

n∑

j=1

∂2ij(Aijν) −
∑

i=1

∂i(Biν) + Cν (3.87)

By a direct computation we convince ourselves that the following formula is valid

νLu − uMν =

n∑

i=1

∂iPi, u, ν ∈ C2(Rn) (3.88)

where

Pi =
n∑

j=i

[νAij∂ju− u∂j(Aijν)] +Biuν



112 CHAPTER 3. SECOND ORDER PDE

In this respect notice that

n∑

i=1

∂iPi =
[ n∑

i=1

n∑

j=1

νAij∂
2
iju+

n∑

i=1

νBi∂iu+ Cuν
]

−
[ n∑

i=1

n∑

j=1

u∂2ij(Aijν) −
n∑

i=1

u∂i(Biν) + Cuν
]

+
n∑

i=1

n∑

j=1

[∂ju∂i(Aijν) − ∂iu∂j(Aijν)]

where the last term is vanishing.

3.6.1 Green Formula and Applications

Consider a bounded domain Ω ⊆ Rnand assume that its boundary S = ∂Ω can be
expressed using piecewise first order continuously differentiable functions. Then using
Gauss-Ostrogradsky formula associated with (3.88) we get

∫

Ω

(νLu− uMν)dx1, ...dxn = +

∫

S

(

n∑

i=1

Picosnxi)dS (3.89)

(Green formula) where cos n xi, i ∈ {1, ..., n}, are the coordinates of the unit orthog-
onal vector−→n at S oriented outside of S.

Example 3.6.1. Assume Lu = ∆u =
3∑
i=1

∂2i u(laplacian) associate the adjoint Mν =

∆ν (laplacian) and P1 = ν∂iu−u∂1ν, P2 = ν∂2u−u∂2ν, P3 = ν∂3u−u∂3u satisfying
(3.88). Applying (3.89) we get the Green formula for Laplace operator.

∫∫∫

Ω

(νδu− uδν)dx1dx2dx3 =

∫∫

S

[P1(cosnx1) + P2(cosnx2) + P (cosnx3)]dS

=

∫∫

S

[ν
∂u

∂n
− u

∂u

∂n
]dS (3.90)

Where ∂u
∂n ( ∂ν∂n ) stands for the derivative in direction of the vector

−→n ∂u
∂n

=

3∑

i=1

(∂iu)cosnxi =< ∂xu,
−→n > n = (cosnx1, (cosnx2, (cosnx3))
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Example 3.6.2. Consider

L ≡ ∂2xyu+ a(x, y)∂xu+ b(x, y)∂yu+ c(x, y)u

and define

Mν ≡ ∂2xyν − ∂x(aν) − ∂y(bν) + cν, P1 =
1

2
(ν∂yu− u∂yν) + a u ν

and

P1 =
1

2
(ν∂xu− u∂xν) + b u ν

The corresponding Green formula lead us to

∫∫

Ω

[ν L u− uM, ν]dx dy =

∫

S

{[
1

2
(ν∂yu− u∂yν) (3.91)

= a u ν]cos(n, x) + [
1

2
(ν∂xu− u∂xν) + a u ν]cos(n, y)}ds

3.6.2 Applications of Riemann Function

Using (3.91) we will find the Cauchy problem solution associated with the equation

Lu = F (3.92)

and the initial conditions

u|y=µ(x) = ϕ0(x), ∂y u|y = µ(x) = ϕ1(x), x ∈ [a, b] (3.93)

Here the curve {y = y(x)} is first order continuously differentiable satisfying dµ(x)
dx <

0 , x ∈ [a, b]. The algorithm belongs to Riemann and using (3.93) we find ∂x u|y=µ(x)
as follows. By direct derivation of u|y=µ(x) = ϕ0(x), we get

{
dϕ0

dx (x) = ∂x u(x, µ(x)) + ∂y u(x, µ(x))dµ(x)dx
∂x u(x, µ(x)) = φ′0(x) − ϕ1(x)µ′(x)

(3.94)

Rewrite the Green formula (3.91) using a domain Ω ⊆ R2 as follows. where A and B
are located on the curve y = µ(x) intersected with the coordinates lines of the fixed
point P = (x0, y0). Applying the corresponding Green formula (3.91) on the domain



114 CHAPTER 3. SECOND ORDER PDE

PAB (triangle) we get

∫∫

Ω

(νLu− uMν)dxdy =

∫ B

A

[
1

2
(ν∂yu− u∂yν) + a u ν]dy

−
∫ B

A

[
1

2
(ν∂xu− u∂xν) + b u ν]dx

+

∫ P

B

[
1

2
(ν∂yu− u∂yν) + a u ν]dy

+

∫ P

A

[
1

2
(ν∂xu− u∂xν) + a u ν]dx (3.95)

Where dy = cos(n, x)dS and dx = −cos(n, y)dS and considering that dS is a
positive measure. Rewrite the last two integrals from (3.95)

∫ P

B

[
1

2
(ν∂yu− u∂yν) + a u ν]dy =

1

2
uν|PB +

∫ P

B

(−u∂yν) + a u ν]dy

=
1

2
uν|PB +

∫ P

B

u(−∂yν) + a ν]dy (3.96)

and

∫ P

A

[
1

2
(ν∂xu− u∂xν) + a u ν]dx =

1

2
uν|PA +

∫ P

A

u(−∂xν) + b ν]dx (3.97)

these formulas lead us to the solution provided the following Riemann function ν(x, y;x0, y0)
is used

Mν = 0, ν|x=x0 = exp

∫ y

y0

a(x0, σ)dσ, ν|y=y0 = exp

∫ x

x0

b(σ, y0)dσ (3.98)

From (3.98) we see easily that

{
ν(x0, y0;x0, y0) = 1 and ∂yν|x=x0 = a(x0, y)ν|x=x0 ,
∂xν|y=y0 = b(x, y0)ν|y=y0

(3.99)

Using (3.98) and (3.99) into (3.95) we get

∫∫

Ω

ν(x, y;x0, y0)F (x, y)dxdy = (uν)(P ) + Γ + I = u(x0, y0) + Γ + I (3.100)

where

Γ = +

∫ B

A

[
1

2
(ν∂yu− u∂yν) + a u ν]dy −

∫ B

A

[
1

2
(ν∂xu− u∂xν) + b u ν]dx (3.101)



3.6. ADJOINT 2ND ORDER OPERATOR;GREEN FORMULAS 115

and

I = −1

2
[(uν)(B) + (uν)(A)] +

∫ P

B

u(−∂yν) + a ν]dy +

∫ P

A

u(−∂xν) + b ν]dx (3.102)

Notice that the integral in (3.102) are vanishing provided that the initial conditions
(3.99) are used for Riemann function ν (see(3.98) and (3.99)) and the equation (3.100)
is written as

u(x0, y0) =
1

2
(uν)(B) + (uν)(A) − Γ +

∫∫

Ω

ν F (x, y)dxdy (3.103)

where Γ is defined in (3.101). The Cauchy problem solution defined in (3.92) and
(3.93) has a more explicit expression if the Cauchy conditions are vanishing and it
can be achieved by modifying the right hand side F as follows

F1(x, y) = F (x, y) − ϕ′
1(x) − a(x, y){ϕ′

0(x) + [y − ν(x)]ϕ′
1(x) − ν′(x)ϕ1(x)}

= b(x, y)ϕ1(x) − c(x, y){ϕ0(x) + (y − µ(x))ϕ1(x)} (3.104)

Theorem 3.6.1. The Cauchy problem solution defined in (3.92) and (3.93) is given
by

u(x0, y0) =

∫∫

Ω

ν(x, y;x0, y0)F1(x, y)dxdy

where ν is the corresponding Riemann function defined in (3.98) and (3.99) and F1

is (3.104).

Remark 3.6.2. In the case we consider a rectangle PASB = Ω and look for a Cauchy
problem solution

Lu = F (where L and F are defined in (3.92)) (3.105)

u|x=x1 = φ1(y), u|y=y1 = φ2(x), S = (x1, y1) (3.106)

then Green formula lead as to the following solution

u(x0, y0) = u|p = uν|S +

∫ B

B

ν(ϕ′
2 + bϕ2)dx+

∫ A

S

ν(ϕ′
1 + aϕ1)dy+

∫∫

Ω

ν F (x, y)dxdy

(3.107)
where ν(x, y;x0, y0) is associated Riemann function satisfying (3.98) and (3.99). Let
u(x, y;x1, y1) be the Riemann function for the adjoint equation Mν = 0 satisfying

Lu = 0, u|y=y1 = exp

x∫

x1

b(σ1, y1)dσ, u|x = x1 = exp

y∫

y1

a(x1, σ)dσ (3.108)

In this particular case , the corresponding solution u verify (3.105) and (3.106) with
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F = 0, ϕ′
2 + byϕ2 = ϕ′

1aϕ1 = 0, and the representation formula (3.107) becomes

u(x0, y0, x1, y1) = ν(x1, y1, x0, y0)(see u(S) = u(x1, y1;x1, y1) = 1) (3.109)

The equation (3.109) tell us that the Riemann function is symmetric: if u(x0, y0, y1;
x1, y1) is the Riemann function for(x0, y0) ∈ R2 satisfying (Lu)(x0, y0) = 0 and initial
condition given at x = x1, y = y1 then u(x0, y0;x1, y1) as a function of ((x1, y1)
verifies the adjoint equation Mv = 0.

Remark 3.6.3. The equation (3.104) reflects the continuous dependence of a solution
for the Cauchy problem defined in (3.92) and (3.93) with respect to the right hand
side F and initial conditions ϕ0, ϕ1 restricted to the triangle PAB. A solution is
determined inside of this triangle using the fixed F, ϕ0, ϕ1 and the curve y = µ(x)
and outside of this triangle. We may get different solutions according to the modified
initial conditions prescribed outside of this triangle.

Remark 3.6.4. A unique solution (Riemann function) verifying the Cauchy problem
defined in (3.108) can be obtained directly using the standard method of approximation
for a system of integral equations associated with(3.98). In the rectangle
x0 6 x 6 a , y0 6 y 6 b. we are given ν|x=x0 = ϕ1(y), ν|y=y0 = ϕ2(x) with ϕ1(y0) =
ϕ2(x0) and denote ∂xν = λ, ∂yν = w. Rewrite (3.98) as follows

∂λ

∂y
=
∂W

∂x
= a(x, y)λ+ b(x, y)W + C̃(x, y)ν

where C̃(x, y) = −c(x, y) + ∂xa(x, y) + ∂yb(x, y) and we get a system of integral
equations





λ(x, y) = λ(x, y0) +
y∫
y0

[a(x, σ)λ(x, σ) + b(x, σ)ω(x, σ) + C̃(x, σ)v(x, σ)]dσ

w(x, y) = w(x0, y) +
x∫
x0

[a(x, σ)λ(x, σ) + b(x, σ)ω(x, σ) + C̃(x, σ)v(x, σ)]dσ

ν(x, y) = ϕ2(x) +
y∫
y0

ω(x, yσ)dσ

where λ(x, y0) = ϕ′
2(x) , w(x0 , y) = ϕ′

1(y).

Example 3.6.3. (Green functions for Lapace operator)
Let Ω ∈ R3 be a bounded domain whose boundary S = ∂Ω is represented by smooth
functions.We are looking for a smooth function u : Ω → R satisfying Poisson equation

∆u = f(P ), P ∈ Ω( ∆-Laplace operator) (3.110)

and one of the following boundary conditions

u|S = F0(S) (Dirichlet problem) (3.111)

∂u

∂n
|S = F1(S) (Neumann problem) (3.112)
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It is known that Laplace operator is self adjoint and using Green formula

∫∫∫

Ω

(ν∆u − u∆ν)dΩ =

∫∫

S

(u
∂ν

∂n
− ν

∂u

∂n
)dS (3.113)

we see that a vanishing Dirichlet (Neumann) condition is selfadjoint as the Green
formula (3.113) shows.

3.6.3 Green function for Dirichlet problem

Definition 1
Let G(P, P0), P, P0 ∈ Ω, be a scalar function satisfying

1. G(P, P0) is a harmonic function (∆G = 0) with respect to P ∈ Ω, P 6= P0

2. G(P, P0)|P∈S = 0, S = ∂Ω

3. G(P, P0) = 1
4πr + g(P, P0), where r = |P − P0|

and g is a second order continuously differentiable function of P ∈ Ω verifying ∆ g =
0, ∀P ∈ Ω.
A functionG(P, P0) fulfilling 1, 2 and 3 is called a Green function for Dirichlet problem
(3.110), (3.111). The existence of a Green function satisfying 1 , 2 and 3 is analyzed
in [2](see [2] in references)

Theorem 3.6.5. Assume that the Green function G(P, P0) satisfying 1, 2 and 3 is
found such that the normal derivative ∂G

∂n (s) of G at each s ∈ S exists. Then the
solution of Dirichlet problem (3.110)+(3.111) is represented by

u(P0) −
∫∫

S

F0(s)
∂G

∂n
(s)ds−

∫∫∫

Ω

G(P, P0)f(P )dxdydz

Proof. Take δ > 0 sufficiently small such that B(P0, δ) ⊆ Ω and denote σ = ∂B(P0, δ).
Apply Green formula in the domain Ω′ = Ω \B(P0, δ). Let u(P ), P ∈ Ω, be the solu-
tion of the Dirichlet problem (3.110)+(3.111) and denote ν(P ) = G(P, P0), P ∈ Ω′.
Both functions u(P ), ν(P ), P ∈ Ω′, are continuously differentiable and we get

∫∫∫∫

Ω′

G(P, P0)∆udP =

∫∫

S′

(u
∂G

∂n
−G

∂u

∂n
)(s)ds (3.114)

where S′ = S ∪ σ = ∂Ω′

Denote n the orthogonal vector at the surface σ = ∂B(P0, δ), |n| = 1, oriented to the
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center P0 and n′ is the orthogonal vector at σ oriented in the opposite direction of
n.Using G|P∈S = 0 we get

∫∫∫

Ω′

G(P, P0)f(P )dx dy dz =

∫∫

S

F0(s)
∂G

∂n
(s)ds− 1

4π

∫∫

σ

(u
∂

∂n

1

r
− 1

r

∂u

∂n
)dσ

−
∫∫

σ

(u
∂g

∂n
− g

∂u

∂n
)dσ (3.115)

Letting δ → 0 we get that the last integral in (3.115) is vanishing (see u, g are
continuously differentiable with bounded erivatives). In addition, the second integral
in the right hand side of (3.115) will become.

lim
δ→

1

4π

∫∫

σ

(u
∂

∂n
|1
r
− 1

r

∂u

∂n
)dσ = lim

δ→

1

4πδ2

∫∫

σ

udσ − lim
δ→

1

4π2

∫∫

σ

δ
∂u

∂n
dσ = u(p0)

(3.116)

u(p0) =

∫∫

S

F0(s)
∂u

∂n
(s)ds−

∫∫∫

Ω

G(p, p0)f(p)dxdydz (3.117)

and the proof is complete.

Theorem 3.6.6. The function u(p0), p0 ∈ Ω given in Theorem 3.6.5 is the solution
of the Dirichlet problem (3.110)+(3.111).

Proof. It is enough to prove the existence of the Dirichlet problem solution (3.110)+(3.111).
Let ϕ be the newtonian potential with the density functionf(p) on the domain Ω,

ϕ(p0) = − 1

4π

∫∫∫

Ω

1

r
f(p)dxdydz (3.118)

It is known that ϕ satisfies the following Poisson equation δϕ = f . Define ν = u− ϕ
and it has to satisfy

{
ν|S = u|S − ϕ = F0(S) = ν(s)
∆ν(P ) = 0, P ∈ Ω(ν(P0) =

∫∫
S

v0(s)∂G∂n ds)
(3.119)

The existence of the harmonic function ν verifying (3.119) determines the unknown
u as a solution of the Dirichlet problem (3.110)+(3.111).
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3.7 Linear Parabolic Equations

The simplest linear parabolic equation is defined by the following heat equation

∂tu(t, x) = ∂2xu(t, x), t > 0, x ∈ R (3.120)

lim
t→0

u(t, x) = ϕ(x), x ∈ R (3.121)

ϕ ∈ Cb(R) is fixed. A solution is a continuous function u(t, x); [0,∞)×R → R which
is second order continuously differentiable of x ∈ R for each t > o and satisfying
(3.120) + (3.121) for some fixed continuous and bounded function ϕ ∈ Cb(R).

3.7.1 The Unique Solution of the Cauchy Problem (3.120) and
(3.121)

It is expressed as follows.

u(t, x) =
1√
4πt

∞∫

−∞

ϕ(ξ)exp − (x− ξ)2

4t
dξ (3.122)

(Poisson formula for heat equation) Denote

P (σ, x, y)dy = (
√

4πσ)−1exp − (y − x2)

4σ
, for σ > 0, x, y ∈ R (3.123)

By a direct computation we get the following equations

∫

R

P (σ, x, y)dy = 1and∂σP (σ, x, y) − ∂2xP (σ, x, y) = 0 for any σ > 0, x, y ∈ R

(3.124)
The first equation of (3.124) is obtained using a change of variable y−x

2
√
σ

= z and

∫

R

P (σ, x, y)dy =
√

4σ

∫

R

P (σ, x, x + 2
√
σz)dz =

1√
π

∫

R

(exp − |z|2)dt = 1 (3.125)

where
∫
R

(exp − t2)dt =
√
π is used. In addition, the function P (σ, x, y) defined in

(3.123) fulfils the following.

lim
σ→0

∫

R

ϕ(y)P (σ, x, y)dy = ϕ(x), for each x ∈ R (3.126)
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where ϕ ∈ Cb(R) is fixed. Using (3.124) we see easily that {u(t, x) : t > 0, x ∈ R}
defined in (3.122) satisfies heat equation (3.120), provided we notice that

u(t, x) =

∫

R

ϕ(ξ)P (t, x, ξ)dξ, t > 0, x ∈ R (3.127)

and {
∂t u(t, x) =

∫
R
ϕ(ξ)∂tP (t, x, ξ)dξ,

∂2x u(t, x) =
∫
R
ϕ(ξ)∂2xP (t, x, ξ)dξ,

(3.128)

The property (3.126) used for (3.127) allows one to get (3.121).

Remark 3.7.1. The unique solution of the heat equation (3.120) + (3.121) can be
expressed by the formula (3.122) even if the continuous ϕ(x) : R → R satisfies a
polynomial growth condition

|ϕ(x)| 6 c(1 + |x|N ), ∀x ∈ R (3.129)

There is no change in proving that the unique Cauchy problem solution of the heat
equation for x ∈ R.

∂tu(t, x) = ∆x u(t, x), t > 0, x ∈ R (3.130)

lim
t→0

u(t, x) = ϕ(x), x ∈ R
n, ∆x =

n∑

i=1

∂2xi
(3.131)

is expressed by

u(t, x) = (4π t)−
n
2

∫

Rn

ϕ(ξ)exp − |x− ξ|2
4t

dξ (3.132)

where ϕ ∈ Cb(Rn).

3.7.2 Exercises

(a1) Find a continuous and bounded function u(t, x); [0, T ] × R → R fulfilling the
following {

(1) ∂tu(t, u) = a2∂2xu(t, x), t ∈ (0, T ], x ∈ R, a > 0
(2) lim

t→0
u(t, x) = cosx, x ∈ R.

Hint. The equation (1) can be written with the constant a2 = 1 provided we use a
change of variable ξ = x

a and denote

u(t, x) = ν(t,
x

a
), t ∈ [0, T ], x ∈ R

Here ν(t, y) : [0, T ] × R → R satisfies the equation

∂tν(t, y) = ∂2yν(t, y), (t, y) ∈ (0, T ] × R
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and initial condition ν(0, y) = cos(ay) (a2). Find a continuous and bounded function
u(t, x, y) : [0, T ] × R× R → R satisfying the following linear parabolic equation

{
(1) ∂tu(t, x, y) = a2∂2xu(t, x, y) + b2∂2yu(t, x, y), t ∈ (0, T ]
(2) lim

t→0
u(t, x, y) = sinx+ cosy, a > 0, b > 0, x, y ∈ R

Hint. The equation (1) and (2) will be rewritten using the following changes y1 =
x
a , y2 = y

b and
u(t, x, y) = ν(t, xa ,

y
b ) where ν(t, y1, y2) : [0, T ] × R× R → R satisfy (see(3.130)n = 2)

{
∂t ν = ∂2y1ν + ∂2y2ν
lim
t→0

ν(t, y1, y2) = sin(ay1) + cos(by2)

3.7.3 Maximum Principle for Heat Equation

Any continuous solution u(t, x), (t, x) ∈ [0, T ]×[A,B], satisfying heat equation (3.120)
for 0 < t 6 T and x ∈ (A,B) will achieve its extreme values

max(t,x)∈[0,T ]×[A,B] u(t, x) and min(t,x)∈[0,T ]×[A,B] u(t, x) on the boundary ∂̂D of the
domain D = {(t, x) ∈ [o, T ] × [A,B]}, where

∂̂D = ({0} × [A,B])
⋃

([0, T ] × {A})
⋃

([0, T ] × {B})

Proof. Denote M = max(t,x)∈D u(t, x) ,m = max
(t,x)∈∂̂D u(t, x) and assume M > m.

Let (t0, x0) ∈ D, (t0, x0)not in ∂̂D be such that u(t0, x0) = M and consider the
following auxiliary function

ν(t, x) = u(t, x) +
M −m

2(B −A)2
(x− x0)2 (3.133)

We see easily that ν(t, x) satisfies

ν(t, x) 6 u(t, x) +
M −m

2(B −A)2
(B −A)2 6 m+

M −m

2
< M (3.134)

for any

(t, x) ∈ ∂̂D, and ν(t0, x0) = u(t0, x0) = M , consider ν(t1, x1) = max(t,x)∈D ν(t, x) >

M . As a consequence, (t1, x1) not in ∂̂D and

{
∂tν(t1, x1) = 0, ∂xν(t1, x1) = 0, ∂2xν(t1, x1) 6 0, if (t1, x1) ∈ intD
∂tν(t1, x1) > 0, ∂xν(t1, x1) = 0, ∂2xν(t1, x1) 6 0, if (t1, x1) ∈ {T } × (A,B)

(3.135)

In both cases (∂tν−∂2xν)(t1, x1) > 0 and (t1, x1) not in ∂̂D. On the other hand,using
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the heat equation (3.120) satisfied by u(t, x) when (t, x) not in ∂̂D we get (see(3.133))

(∂tν − ∂2xν)(t1, x1) = − M −m

(B −A)2
< 0 (3.136)

contradicting the above given inequality. It proves thatM 6 m. Replacing u with
{−u} and using

max
(t,x)∈D

{−u(t, x)} = max
(t,x)∈∂̂D

{−u(t, x)}

we get the second conclusion

min
(t,x)∈D

{−u(t, x)} = min
(t,x)∈∂̂D

{−u(t, x)}

Remark 3.7.2. In the above given proof we may assume that the heat equation
(3.120) ∂tu(t, x) = ∂2xu(t, x) is satisfied for any (t, x) ∈ (0, T ) × (A,B) (omitting
t = T ) and the result is still valid noticing that u(t, x) 6 m for 0 6 t 6 T − ε will
imply u(t, x) 6 m for any 0 6 t 6 T (see u is continuous). In addition, the conclusion
of the maximum principle allows to extend it for |u(t, x)|, i.e |u(t, x)| 6 max{|u(t, x)| :

(t, x) ∈ ∂̂D}.
Remark 3.7.3. The computation and arguments used for the scalar heat equation
(3.120) can be extended to the case x ∈ Rn replacing the equation (3.120) by (3.130)
and considering a ball B(P∗, ρ) ⊆ Rn instead of [A,B] ⊆ R. If it is the case, the
corresponding maximum principle associated with heat equation ( (3.130) says

max
(t,x)∈D

u(t, x) = max
(t,x)∈∂̂D

u(t, x)

and
min

(t,x)∈D
u(t, x) = min

(t,x)∈∂̂D
u(t, x)

where
D = [0, T ]×B(P∗, ρ), ∂̂D = ({0}×B(P∗, ρ))

⋃
([0, T ]× ∂B), P∗ ∈ Rn, (fixed), ∂B =

boundary of B(P∗, ρ).
Here the heat equation(3.130) is assumed on the domain (t, x) ∈ (0, T ] × intB(P0, ρ)
and the corresponding auxiliary function is given by(see(3.133))

ν(t, x) = u(t, x) +
M −m

8ρ2
|x− x0|2,

where
u(t0, x0) = M = max

(t,x)∈D
u(t, x) = m = max

(t,x)∈∂̂D
u(t, x)

and M = u(t0, x0) > m will lead us to a contradiction.

Remark 3.7.4. Using maximum principle for heat equation we get that the Cauchy
problem solution for (3.120)+(3.121)(or (3.130)+(3.131))) is unique provided the ini-
tial condition ϕ and the solution {u(t, x) : t > 0, x ∈ Rn} are restricted to the bounded
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continuous functions. In this respect,let M > 0 be such that

|u(t, x)| 6M, |ϕ(x)| 6M for any t > 0, x ∈ R(x ∈ R
n)

Consider the following particular solution of (3.120)

ν(t, x) =
2M

L2
(x2 + 2t) satisfying ∂tν = ∂2xν and ν(0, x) =

2M

L2
x2 > 0

ν(+
−
L, t) =

2M

L2
(L2 + 2t) > 2M

If (3.120)+(3.121) has two bounded solutions then their difference u(t, x) = u1(t, x)−
u2(t, x) is a solution of heat equation (3.120), satisfying |u(t, x)| 6 2M, (t, x) ∈
[0,∞) × R ,and u(0, x) = 0.On the other hand h(t, x) = ν(t, x) − u(t, x) satisfies
(3.120) for any (t, x) ∈ intD, D = [−L,L] × [0, T ] and

h(t, x) = ν(t, x) − u(t, x) > 0, ∀ (t, x) ∈ ∂̂D

Using a maximum principle we get

u(t, x) 6
2M

L2
(x2 + 2t)∀ (t, x) ∈ [0, T ] × [−L,L]

and similarly for u(t, x) = −u(t, x)we obtain

−u(t, x) 6
2M

L2
(x2 + 2t)∀ (t, x) ∈ [0, T ] × [−L,L]

Combining the last two inequalities we get

|u(t, x)| 6 2M

L2
(x2 + 2t)∀ (t, x) ∈ [0, T ] × [−L,L]

and for any arbitrary fixed (t, x)(t > 0) letting L ↑ ∞ we obtain u(t, x) = 0 which
proves u1(t, x) = u2(t, x) for each t > 0.

Exercise. Use the above given algorithm(n = 1)for the multidimensional heat equa-
tion (11)(n > 1) and get the conclusion:the Cauchy problem solution of (3.130) +
(3.131) is unique provided initial condition ϕ and the solutions{u(t, x) : t > 0, x ∈
R} are restricted to the bounded continuous functions.
Hint. Let M > 0 be such that |u(t, x)|, |ϕ(x)| 6 M for any t > 0, x ∈ Rn and con-
sider V (t, x = 2M

L2 )(|x|2 + 2t) satisfying (3.130) and (3.131) with V (0, x) = 2M
L2 |x|2 >

0(V (t, x) = 2M
L2 )(|x|2 + 2t) > 2M if x ∈ ∂B(0, L). Proceed as in Remark (3.7.4).

Problem P1(Maximum Principle for Linear Elliptic Equation)
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Consider the following linear elliptic equation

0 =

n∑

i,j=1

aij∂
2
xixj

u(x)

= Trace[A.∂2xu(x)]

= Trace[∂2xu(x)A], x ∈ Ω (bounded domain) ⊆ R
n (3.137)

where the symmetric matrixA = (ai,j∈{1,...,n}) is strictly positive definite(< x,Ax >>
δ ‖ x ‖2, ∀x ∈ Rn, for some δ > 0). Under the above given conditions, using an ade-
quate transformation of coordinates and function, we get a standard Laplace equation
in Rn for which the maximum principle is valid.
(R) Show that for a continuous and bounded function u(x) : Ω → R satisfying (3.137)
for any x ∈ Ω we get the following maximum principle:

max
x∈Ω

u(x) = max
x∈Γ

u(x) (min
x∈Ω

u(x) = min
x∈Γ

u(x)), whereΩ = Ω ⊔ Γ, Γ = ∂Ω

Hint. Let T : Rn → Rn be and orthogonal matrix (T ∗ = T−1) such that

A = T DT−1, whereD = diag(d1, . . . , dn), di > 0 (3.138)

Define A1\2(square root of the matrix A)= T D
1
2T−1 and make the following trans-

formations
x = A1\2y, ν(y) = u(A1\2y) (3.139)

Then notice that{ν(y) : y ∈ Ω1} is a harmonic function satisfying

0 = ∆ν(y) = Trace[∂2yν(y)], ∀ y ∈ Ω1 (3.140)

where
Ω1 = [A1\2]−1ΩandΓ1 = ∂Ω1 = [A1\2]−1Γ

As far as the maximum principle is valid for ν(y) : Ω1 → R satisfying (3.140)we get
that

u(x) = ν([A1\2]−1x), x ∈ Ω

satisfies the maximum principle too.
Problen P2(Maximum Princie for Linear Parabolic Equations)
Consider the following linear parabolic equation

∂tu(t, x) =

n∑

i,j=1

aij∂
2
xixj

u(t, x) = Trace[A.∂2xu(t, x)] = Trace[∂2xu(t, x)A] (3.141)

t ∈ (0, T ] , x ∈ Ω(bounded domain) ⊆ Rn and let u(t, x) : [0, T ] × Ω → R be a
continuous and bounded function satisfying the parabolic equation(3.141). If the
matrix A = (aij)i,j∈{1,...,n} is symmetric and strictly positive(< x,Ax >> δ ‖ x ‖2
, ∀x ∈ Rn, for some δ > 0)then {u(x) : x ∈ Ω} satisfies the following maximum
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principle:

max
(t,x)∈D

u(t, x) = max
(t,x)∈∂̂D

u(t, x) ( min
(t,x)∈D

u(t, x) = min
(t,x)∈∂̂D

u(t, x)) (3.142)

where D = [0, T ] × Ω ⊆ Rn+1 and ∂̂D = ({0} × Ω) ⊔ ([0, T ] × ∂Ω).
Hint. The verification is based on the canonical form we may obtain in the right hand
side of (3.141) provided the following transformations are performed

x = A1\2y, ν(t, y) = u(t, A1\2y), y ∈ Ω1 = [A1\2]−1Ω (3.143)

where the square root of a symmetric and positive matrix A1\2 = T (Γ)
1
2T−1 is used.

Here Γ = diag(γ1, ..., γn), γi > 0 and T : Rn → Rn is an orthogonal matrix (T ∗ = T−1)
such that A = T ΓT−1. Notice that using (3.141) we get that {ν(t, x) : t ∈ [0, T ], y ∈
Ω1} satisfies the standard heat equation

∂tν(t, y) = ∆yν(t, y) = Trace[∂2yν(t, y)], t ∈ [0, t], y ∈ Ω1 (3.144)

and the corresponding maximum principle

max
(t,y)∈D1

ν(t, x) = max
(t,y)∈∂̂D1

ν(t, x) ( min
(t,y)∈D1

ν(t, x) = min
(t,y)∈∂̂D1

ν(t, x)) (3.145)

is valid,where D1 = [0, T ]×D1 and ∂̂D1 = ({0}×Ω1)⊔ ([0, T ]×∂Ω1). Using u(t, x) =
ν(t, [A1\2]−1x), x ∈ Ω, and (3.145) we obtain the conclusion (3.145).

3.8 Weak Solutions(Generalized Solutions)

Separation of Variables(Fourier Method)
Boundary problems for parabolic and hyperbolic PDE can be solved using Fourier
method.We shall confine ourselves to consider the following two types of PDE

(I)
1

a2
∂tu(t, x, z) = ∆u(t, x, y, z), t ∈ [0, T ], (x, y, z) ∈ D ⊆ R

3

(II) ∂2t u(t, x, z) = ∆u(t, x, y, z), t ∈ [0, T ], (x, y, z) ∈ D ⊆ R
3

where the bounded domain D has the boundary S = ∂D. The parabolic equation (I)
is augmented with initial conditions(Cauchy conditions)

(Ia) u(0, x, y, z) = ϕ(x, y, z), (x, y, z) ∈ D
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and the boundary conditions

(Ib) u(t, x, y, z)|(x,y,z)∈S = 0 t ∈ [0, T ]

The hyperbolic equation (II) is augmented with initial conditions

(IIa) u(0, x, y, z) = ϕ0(x, y, z), ∂tu(0, x, y, z) = ϕ1(x, y, z), (x, y, z) ∈ D

and the boundary conditions

(IIb)
∂u

∂n
(t, x, y, z) = (ω1∂xu+ ω2∂yu+ ω3∂zu)|(x, y, z) ∈ S = 0

where n = (ω1, ω2, ω3) is the unit orthogonal vector at S oriented outside of D.

3.8.1 Boundary Parabolic Problem

To solve the mixed problem (I, Ia, Ib) we shall consider the particular solutions satis-
fying (I, Ia, Ib) in the form

u(t, x, y, z) = T (t)U(x, y, z) (3.146)

It lead us directly to the following equations

∆U(x, y, z)

U(x, y, z)
=

1

a2
T ′(t)

T (t)
, t ∈ [0, T ], (x, y, z) ∈ D (3.147)

and it implies that each term in (3.147) equals a constant −λ and we obtain the
following equations

∆U + λU = 0;T ′(t) + a2λT (t) = 0 (3.148)

(see T (t) = Cexp − λa2t, t ∈ [0, T ]). Using (3.148) and the boundary conditions (Ib)
we get

U(x, y, z)|(x,y,z)∈S = 0 (3.149)

The values of the parameter λ for which (3.148)+(3.149) has a solution are called
eigenvalues associated with linear elliptic equation ∆U + λU = 0 and boundary con-
dition (3.149). The corresponding eigenvalues are found provided a Green function is
used which allow us to rewrite the elliptic equation as a Fredholm integral equation.
Recall the definition of a Green function.

Definition 3.8.1. Let S = ∂D be defined by second order continuously differentiable
function.A Green function for the Dirichlet problem ∆U = f(P ), U |S = F0(S) is a
symmetric function G(P, P0) satisfying the following conditions with respect to P ∈ D
(α) ∆G(P, P0) = 0, ∀P ∈ D,P 6= P0 ,where P0 ∈ D is fixed,
(β)G(P, P0)|S = 0, G(P, P0) = G(P0, P ), andG(P, P0) = 1

4πr +g(P, P0), r = |P −P0|
(γ) g(P, P0) is second order continuously differentiable and ∆g(P, P0) = 0, ∀P ∈ D.
(δ)U(P0) =

∫∫
S

F0(s)∂nG(s)ds −
∫∫∫
D

G(P, P0)f(P )dxdydz where f(P ) = −λU(P )
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and F0(s) = 0, s ∈ S

The solution of the Dirichlet problem (3.148)+(3.149) can be expressed as in
Theorem 3.6.5. Under these conditions,the integral representation formula (δ) lead
us to the following Fredholm integral equation

U(P0) = λ

∫∫∫

D

G(P, P0)U(P )dxdydz (3.150)

where G(P, P0) = 1
4πr + g(P, P0) is an unbounded function (see 1

r ) verifying

G(P, P0) 6
1

rα
, 0 < α < 3, for some constant A > 0 (3.151)

Define

G∗(P, P0) = min(G(P, P0),
A

δα
), where δ > 0 is fixed

We get G(P, P0) −G∗(P, P0) > 0 ∀P ∈ D and

0 > G(P, P0) −G∗(P, P0) 6 A(
1

rα
− 1

δα
) if r 6 δ (3.152)

Using (3.152) and δ sufficiently small we obtain

∫∫∫

D

|G(P, P0) −G∗(P, P0)|dP =

∫∫∫

D

[G(P, P0) −G∗(P, P0)]dP

6 A

∫∫∫

{r6δ}

1

rα
dP 6

ε

2
where ε > 0 (3.153)

is arbitrarily fixed.On the other hand, G∗(P, P0) is a continuous and bounded function
for P ∈ D and approximate it by a degenerate kernel

G∗(P, P0) =

N∑

i=1

ϕi(P )ψi(P0) +G2(P, P0) (3.154)

where ∫∫∫

D

|G2(P, P0)|dP 6
ε

2

From (3.153) and (3.154) we get that G(P, P0) in (3.150) can be rewritten as

G(P, P0) =

N∑

i=1

ϕi(P )ψi(P0) +G1(P, P0) (3.155)
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where G1(P, P0) = G2(P, P0) + [G(P, P0) −G∗(P, P0)] satisfies

∫∫∫

D

|G1(P, P0)|dP 6
ε

2
+
ε

2
= ε (3.156)

Using these remarks we replace the equation (3.150) by the following one

U(P0) − λ

∫∫∫

D

G1(P, P0)U(P )dP = [(E − λA1)U ](P0) (3.157)

= λ
N∑

i=1

ψi(P0)

∫∫∫

D

ϕi(P )U(P )dP

where the operator B1ϕ = [E − λA1](ϕ) has an inverse

B−1
1 = [E + λA1 + λ2A2

1 + ...+ λkAk1 + ...], for any |λ| < 1

‖ A1 ‖ , where ‖ A1 ‖6 ε

2
(3.158)

is acting from C(D) to C(D).Denote ξi(P0) = (B−1
1 ψi)(P0) and rewrite (3.157) as the

following equation

U(P0) = λ

N∑

i=1

ξi(P0)

∫∫∫

D

ϕi(P )U(P )dP (3.159)

which has a nontrivial solution for any λ ∈ {λ1, λ2, ...} where the sequence {λj}j>1 of
real numbers satisfies |λ| 6 C only for a finite terms,for each constant C > 0 arbitrarily
fixed. Let{Uj}j>1 be a sequence of solutions associated with equation (3.159) and
eigenvalues {λj}j>1, they are called eigen functions. Notice that (see (β)) G(P, P0)
is a symmetric function which allows one to see that the eigenvalues are positive
numbers, λj > 0, and the corresponding eigenfunctions {Uj}j>1 can be taken such
that ∫∫∫

D

Ui(P )Uj(P )dP =

{
0 i 6= j
1 i = j

(3.160)

{Uj}j>1 is a complete system in Ĉ(D) ⊆ C(D) i.e any ϕ ∈ Ĉ(D) can be represented

ϕ(P ) =

∞∑

j=1

ajUj(P ) (3.161)

where the series is convergent in L2(D)

(see
∞∑
j=1

a2j <∞) and

lim
N→∞

(

∫∫∫

D

|
N∑

j=1

ajUj(P ) − ϕ(P )|2dP )1\2 = 0
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The coefficients {aj}j>1 describing the continuous function ϕ ∈ Ĉ(D) are called
Fourier coefficients and satisfy

∫∫∫

D

ϕ(P )Uj(P )dP = aj , j > 1, ϕ ∈ C(D) (3.162)

is fixed in Ia. Now we are in position to define a weak solution of mixed problem
(I, Ia, Ib) and it will be given as the following series

u(t, x, y, z) =

∞∑

i=1

(exp − λia
2t)aiUi(x, y, z) (3.163)

which is convergent in L2(D), uniformly with respect to t ∈ [0, T ]. Using (3.162) and
(3.161) the initial condition in (Ia) is satisfied in a weak sense, i.e

lim
N→∞

‖ uN(0, P ) − ϕ(.) ‖2= 0, uN(t, x, y, z) =

∞∑

i=1

(exp − λia
2t)aiUi(x, y, z)

Here {uN(t, x, y, z) : t ∈ [0, T ], (x, y, z) ∈ D}N>1 is defined as a sequence of solutions

uN(t, x, y, z) =
N∑

i=1

(exp − λia
2t)aiUi(x, y, z) (3.164)

satisfying the parabolic equation (3.146), the boundary condition (Ib) and

uN(0, x, y, z) = ϕN (x, y, z), (x, y, z) ∈ D (3.165)

such that, lim
N→∞

‖ ϕ− ϕN ‖2= 0 ((Ia) is weakly satisfied).

3.8.2 Boundary Hyperbolic Problem

To solve the mixed problem (II, IIa, IIb) we shall proceed as in the parabolic case
and look for a particular solution

u(t, P ) = T (t)U(P ), u ∈ C2(D), T ∈ C2([0, T ]) (3.166)

satisfying (II) and the boundary condition(IIb). The function (3.166) satisfies (II) if

T (t) ∆U(P ) = U(P )T ′′(t) or
T ′′(t)

T (t)
=

∆U(P )

U(P )
= −λ2(const) (3.167)

which imply the equations
T ′′(t) + λ2 T (t) = 0 (3.168)
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∆U(P ) + λ2U(P ) = 0,
∂U

∂n
|S = 0 (3.169)

For the Neúmann problem solution in (3.169), we use a Green function G1(P, P0)
satisfying {

∆G1 = 1
C (where C = vol D)P 6= P0

∂nG1|S = 0
(3.170)

In this case 1
C stands for the solution of the adjoint equation

∆ψ = 0, ∂nψ|S = 0 (3.171)

The Green function G1 has the structure

G1(P, P0) =
1

4πr
+ g(P ), r = |P, P0|, g(P ) = α|P |2 + g1(P ) (3.172)

where g1 verifies {
∆ g1(P ) = 0, ∀P ∈ D, and
∂n g1|S = −[α∂n|P |2 + 1

4π ∂n(1r )]|S (3.173)

The constant α is found such that
∫∫∫

D

(∆G1)dxdydz =
1

4π

∫∫∫

D

∆(
1

r
)dxdydz + 6αvol(D)

= −1 + 6αvol(D) ⇒ α = 1 \ 3val(D) (3.174)

In addition, using the Green functionG1 we construct a weak solution for the Neúmann
problem

∆U(P ) = f(P ), (∂nU)|S = 0 (3.175)

assuming that

∫∫∫

D

f(P )dxdydz = 0 (3.176)

The Green formula (3.149) used for ν = G1 and {U(P : P ∈ D)} satisfying (3.175)
and (31) will get the form

∫∫∫

D

u(P )∆G1(P, P0))dxdydz =

∫∫∫

D

G1(P, P0)f(P )dxdydz (3.177)

Looking for solution of (3.169) which verify

∫∫∫

D

U(P )dxdydz = 0(see f(P ) = −λ2 U(P ) in (30)) (3.178)
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from (3.170) and (3.177) we obtain an integral equation

U(P0) = λ2
∫∫∫

D

G1(P, P0)U(P )dxdydz, P = (x, y, z) (3.179)

which has a symmetric kernel G1(P, P0). As in the case of the parabolic mixed prob-
lem we get a sequence of eigenvalues and the corresponding eigenfunctions {Uj}j>1.
In this case they are satisfying

Uj ∈ C2(D), ∂nUj|S = 0 and

∫∫∫

D

Uj(P )dxdydz = 0, j > 1 (3.180)

Define the space Ĉ0(D) ⊆ Ĉ1(D) consisting from all continuously differentiable func-
tions ϕ ∈ C1(D) verifying

(∂nϕ)(P ∈ S) = 0,

∫∫∫

D

ϕ(P )dxdydz = 0 andϕ(P ) =
∞∑

j=1

ajUj(P ),
∞∑

j=1

|aj |2 <∞

(3.181)
The boundary problem ((II), (IIb)) has two independent solutions
(see T1(t) = cosλjt, T2(t) = sinλjt)

Uj(P )cosλjt andUj(P )sinλjt, foreach j > 1 (3.182)

and we are looking for a solution of the mixed problem ((II), (IIa), (IIb)) as a con-
vergent series

U(t, P ) =

∞∑

j=1

[ajUj(P )cosλjt+ bjUj(P )sinλjt] + b0t (3.183)

in L2(D) with respect to P = (x, y, z) and uniformly with respect to t ∈ [0, T ].
Here {aj}j>1 must be determined as the Fourier coefficients associated with initial

condition ϕ0 ∈ Ĉ0(D)

ϕ0(P ) = u(0, P ) =

∞∑

j=1

αjuj(P ) (3.184)

and {bj}j>0 are found such that the second initial conditions ∂tu(0, P ) = ϕ1(P )

(see(IIa)andϕ1 ∈ Ĉ(D)) are satisfied





ϕ1(P ) =
∞∑
j=1

βjUj(P ) + β0, with
∞∑
j=1

(βj)
2 <∞

∂tu(0, P ) =
∞∑
j=1

λjbjUj(P ) + b0 = ϕ1(P )
(3.185)
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Here Ĉ(D) = C1(D) is consisting from all continuously differentiable functions ϕ1(P ) ∈
C1(D) satisfying

(∂nϕ1)(P ∈ S) = 0 and ϕ1(P ) =

∞∑

j=1

βjUj(P ) + β0 ,

∞∑

j=1

|βj |2 <∞ (3.186)

We get
b0 = β0 and λj bj = βj , j > 1 (3.187)

In conclusion,the mixed hyperbolic problem (II), (IIa), (IIb) has a generalized (weak)
solution

u(t, .) : [0, T ] → L2(D)

u(t, P ) =

∞∑

j=1

[ajcosλjt+ bjsinλjt]Uj(P ) + b0t

such that

UN (t, P ) =

N∑

j=1

[ajcosλjt+ bjsinλjt]Uj(P ) + b0t

satisfies (II) and (IIa) and (IIb) is fulfilled in a ”weak sense”

uN(0, P ) = ϕN0 (P ), ∂tuN(0, P ) = ϕN1 (P )

Here the ”weak sense” means

lim
N→∞

ϕN0 = ϕ0 inL2(D)

and
lim
N→∞

ϕN1 = ϕ1 inL2(D)

3.8.3 Fourier Method, Exercises

Exercise 1
Solve the following mixed problem for a PDE of a parabolic type using Fourier
method 




(I) 1
a2 ∂tu(t, x) = ∂2xu(t, x), t ∈ [0, T ], x ∈ [0, 1]

(Ia)u(0, x) = ϕ(x), x ∈ [0, 1], ϕ ∈ C′([0, 1];R)
(Ib)u(t, 0) = u(t, 1) = 0, t ∈ [0, T ]

where C′([0, 1];R) = {ϕ ∈ C([0, 1];R) : ϕ(0) = ϕ(1) = 0}.
Hint. We must notice from the very beginning that the space C′([0, 1];R) is too large
for taking Cauchy condition(Ia) and from the way of solving we are forced to accept
only ϕ ∈ with the following structure
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ϕ(x) =
∞∑

j=1

αjÛj(x) , x ∈ [0, 1] (3.188)

where

Ûj(x =
1√
2
sin jπ x, j > 1, x ∈ [0, 1], (orthogonal in L2[0, T ]) (3.189)

satisfy

1∫

0

Ûj(x)Ûk(x)dx =

{
1 j = k
0 j 6= k

and the following series
∞∑

j=1

|αj |2 <∞ (3.190)

is a convergent one. The Fourier method involves solutions as function of the following
form

u(t, x) =
∞∑

j=1

Tj(t)Uj(x) + a0, t ∈ [0, T ], x ∈ [0, 1] (3.191)

where each term Uj(t, x) = Tj(t)Uj(x) satisfies the parabolic equation (I) and the
boundary conditions(Ib). In this respect, from the PDE (I) we get the following

∂2xUj(x)

Uj(x)
=

1

a2
∂tTj(t)

Tj(t)
= −µj, µj 6= 0, t ∈ [0, T ], x ∈ [0, 1], j > 1 (3.192)

which are into a system

{
dTj(t)
dt + a2µTj(t) = 0 t ∈ [0, T ]

d2Uj

dx2 (x) + µUj(x) = 0, x ∈ [0, 1]
(3.193)

On the other hand, to fulfil the boundary conditions (Ib)we need to impose

Uj(0) = Uj(1) = 0 , j > 1 (3.194)

and to get a solution {Uj(x) : x ∈ [0, 1]} satisfying the second order differential
equation in (3.193) and the boundary conditions (3.194) we need to make the choice

µj = (j π)2 > 0, Uj(x) = cj sin jπ x, x ∈ [0, 1], j > 1 (3.195)

In addition, we get the general solution Tj(t) satisfying the first equation in (3.193)

Tj(t) = aj [exp − (jπa)2t], t ∈ [0, T ], j > 1, aj ∈ R (3.196)

Now the constants cj inUj(x) (see (3.195)) are taken such that

Ûj(x) = ĉj sin jπ x, x ∈ [0, 1], j > 1 (3.197)
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is an orthonorma system in L2([0, 1];R) and it can be satisfied noticing that

1∫

0

(sin j πx)(sin k πx)dx =

1∫

0

(cos j πx)(cos k πx)dx

=

1∫

0

[cos(j + k)x]dx

=

1∫

0

(cos j πx)(cos k πx)dx

=

{
1 \ 2 j = k
0 j 6= k

(3.198)

Here
1∫

0

(cosmπx)dx = 0 for any m > 1

and

cosαcosβ =
cos(α + β)

2

are used. From (3.198) we get

ĉj =
√

2 j > 1

As a consequence
Ûj(x) =

√
2sin j π x , x ∈ [0, T ] , j > 1 (3.199)

is an orthonormal system in L2([0, 1];R) and the series in (3.191) becomes

Û(t, x) =

∞∑

j=1

ajÛj(x)[exp − (jπa)2t] + a0 (3.200)

Now we are looking for the constants aj, j > 0 such that the series in (3.200) is
uniformly convergent on (t, x) ∈ [0, T ]× [0, 1] and in addition the initial condition(Ia)
must be satisfied

Û(0, x) =

∞∑

j=1

ajÛj(x) + a0 = ϕ(x) = Û(0, x) =

∞∑

j=1

αjÛj(x) (3.201)

where
∞∑
j=1

|αj |2 < ∞ is assumed (see(3.190)). As a consequence a0 = 0 and aj =

αj , j > 1, are the corresponding Fourier coefficients associated with ϕ satisfying
(3.188) and (3.190).
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In conclusion, the uniformly convergent series given in (3.200) has the form

û(t, x) = Û(t, x) =

∞∑

j=1

αjÛj(x)[exp − (jπ a)2t], t ∈ [0, T ], x ∈ [0, 1] (3.202)

It is the weak solution of the problem {(I), (IIa), (IIb)} in a sense that

ÛN(t, x) =

N∑

j=1

αjÛj(x)[exp − (jπ a)2t] (3.203)

satisfies the following properties

lim
N→∞

ÛN(t, x) = Û(t, x) uniformly of t ∈ [0, 1] (3.204)

each {ÛN (t, x) : (t, x) ∈ [0, T ] × [0, 1]} fulfills (I) and (Ib) (3.205)

Û(0, x) = ϕ(x) , x ∈ [0, 1] , ((Ia) is satisfied for û) (3.206)

provided ϕ ∈ C0([0, 1];R) fulfil (3.188) and (3.190).
Exercise 2
Solve the following mixed problem for a PDE of hyperbolic type using Fourier method





(I) ∂2t u(t, x) = ∂2xu(t, x), t ∈ [0, T ], x ∈ [0, 1]
(Ia)u(0, x) = ϕ0(x), ∂tu(0, x) = ϕ1(x), x ∈ [0, 1], ϕ0, ϕ1 ∈ C([0, 1];R)
(Ib) ∂xu(t, 0) = ∂xu(t, 1) = 0, t ∈ [0, T ]

Hint. As in the previous exercise treating a mixed problem for parabolic equation
we must notice that the space of continuous C([0, 1];R) is too large for the initial
conditions (IIa) considered here. From the way of solving we are forced to accept
only ϕ0, ϕ1 ∈ C([0, 1];R) satisfying the following conditions

ϕ0(x) =
∞∑

j=1

αjVj(x) + α0, ϕ1(x) =
∞∑

j=1

βjVj(x) + β0 , x ∈ [0, 1] (3.207)

where
{Vj(x) =

√
2cos j π x , x ∈ [0, 1]}j>1 (3.208)

is an orthonormal system in L2[0, 1], and the corresponding Fourier coefficients
{αj , βj}j>1 define convergent series

∞∑

j=1

|αj |2 <∞ ,

∞∑

j=1

|βj |2 <∞ (3.209)

The Fourier method involves solutions u(t, x) : [0, T ] × [0, 1] → R possessing partial
derivative ∂tu(0, x) : [0, 1] → R and it must be of the following form

u(t, x) =

∞∑

j=1

Tj(t)Vj(x) + a0 + b0t , t ∈ [0, T ] , x ∈ [0, 1] (3.210)
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Each term uj(t, x) = Tj(t)Vj(x) must satisfy the hyperbolic equation (II) and the
boundary conditions(IIb). It implies the following system of ODE

{
d2Tj(t)
dt2 − µjTj(t) = 0 , t ∈ [0, T ], j > 1

d2Vj(t)
dx2 − µjVj(t) = 0 , x ∈ [0, T ], j > 1

(3.211)

and, in addition, the boundary conditions

dVj
dx

(0) =
dVj
dx

(1) = 0 , j > 1 (3.212)

are fulfilled. The conditions (3.212) implies

µj = −λ2j = −(j π)2 and {Vj(x) =
√

2cos j π x : x ∈ [0, 1]}j>1 (3.213)

is an orthonormal system in L2[0, 1]. On the other hand, using µj = −(jπ)2, j > 1
(see(3.213)), from the first equation in (3.211) we get

Tj(t) = aj(cos j πt) + bj(sin j πt), t ∈ [0, T ], j > 1 (3.214)

Using (3.213) and (3.214), we are looking for (aj , bj)j>0 such that {u(t, x) : (t, x) ∈
[0, t] × [0, 1]} defined in (3.210) is a function satisfying initial condition

u(0, x) =

∞∑

j=1

ajVj(x) + a0 = ϕ0 =

∞∑

j=1

αjVj(x) + α0, x ∈ [0, 1] (3.215)

In addition ,the function {∂tu(t, x) : (t, x) ∈ [0, T ] × [0, 1]} is a continuous one satis-
fying initial condition

∂tu(0, x) =
∞∑

j=1

(j π)bjVj(x) + b0 = ϕ1(x) =
∞∑

j=1

βjVj(x) + β0 , x ∈ [0, 1] (3.216)

From the condition (3.215) and (3.216) and assuming (3.209) we get (aj , bj)j>1 of the
following form

aj = αj , (j π)bj = βj , j > 1 , and a0 = α0 b0 = β0 (3.217)

As a consequence, the series

u(t, x) =

∞∑

j=1

[aj(cos j πt) + bj(sin j πt)]Vj(x) + a0 + b0t (3.218)

with the coefficients (aj , bj)j>1 determined in (3.217) as a function for which each
term u(t, x) = aj(cos j πx) + bj(sun j πx)Vj(x) satisfies the hyperbolic equation (II)
and the boundary conditions (IIb). As a consequence, the uniformly convergent series
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(3.218) satisfies the mixed problem (II), (IIa) and (IIb) in the weak sense, i.e

uN(t, x) =

N∑

j=1

uj(t, x) + a0 + b0t, (t, x) ∈ [0, T ] × [0, 1]

verifies (II) and (IIb) for each N > 1 and

lim
N→∞

uN(0, x) = ϕ0(x), lim
N→∞

∂tuN(0, x) = ϕ1(x), x ∈ [0, 1] (3.219)

stand for the initial conditions (IIa).

3.9 Some Nonlinear Elliptic and Parabolic PDE

3.9.1 Nonlinear Parabolic Equation

We consider the following nonlinear parabolic PDE

{
(∂t − ∆)(u)(t, x) = F (x, u(t, x), ∂xu(t, x)), t ∈ (0, T ], x ∈ Rn

lim
t→0

u(t, x) = 0 , x ∈ Rn
(3.220)

where ∂xu(t, x) = (∂1u, ..., ∂nu)(t, x), ∂iu = ∂u
∂xi

, ∂tu = ∂u
∂t , ∆u =

n∑
i=1

∂2i u. Here

F (x, u, p) : R2n+1 → R is a continuous function satisfying

|F (x, u0, p0)| 6 C, |F (x, u2, p2) − F (x, u1, p1)| 6 L(|u2 − u1| + |p2 − p1|) (3.221)

for any x ∈ Rn, |ui|, |pi| 6 δ, i = 0, 1, 2, where L,C, δ > 0 are some fixed constants.
A standard solution for (3.220) means a continuous function u(t, x) : [0, a] × Rn →
Rwhich is first order continuously derivable of t ∈ (0, a) second order continuously
derivable with respect to x = (x1, ...xn) ∈ Rn such that (3.220) is satisfied for any
t ∈ (0, a), x ∈ R2 a weak solution for (3.220) means a pair of continuous functions
(u(t, x), ∂xu(t, x); [0, a] × Rn → Rn+1 which are bounded such that the following
system of integral equations is satisfied





u(t, x) =
t∫
0

[
∫
Rn

F (y, u(s, y), ∂y)u(s, y)P (t− s, x, y)dy]ds

∂xu(t, x) =
t∫
0

[
∫
Rn

F (y, u(s, y), ∂yu(s, y))∂xP (t− s, x, y)dy]ds

(3.222)
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for any t ∈ [0, a], x ∈ Rn, where P (σ, x, y), σ > 0, x, y ∈ Rn is the fundamental
solution of the parabolic equation (∂σ − ∆x)P = 0, σ > 0, x, y ∈ Rn

P (σ, x, y) = (4πσ)
−n
2 exp − |y − x|2

4σ
, σ > 0 (3.223)

A direct computation shows that P (σ, x, y) satisfy the following properties

∫

Rn

P (σ, x, y)dy = 1, ∂σP (σ, x, y)∆xP (σ, x, y) (3.224)

for any σ > 0, x, y ∈ Rn and

lim
σ↓0

P (σ, x, y) = 0 if x 6= y

The unique solution for theintegral equation (3.222) is found using the standard ap-
proximations sequence defined recurrently by

(u, P )0(t, x) = (0, 0) ∈ R
n+1 and





uk+1(t, x) =
t∫
0

[
∫
Rn

F (y, uk(s, y), pk(s, y))P (t− s, x, y)dy]ds

pk+1(t, x) = ∂xuk+1(t, x) =
t∫
0

[
∫
Rn

F (y, uk(s, y), pk(s, y))∂xP (t− s, x, y)dy]ds

(3.225)
for any k > 0, (t, x) ∈ [0, a] × Rn where a > 0 is sufficiently small such that

aC 6 δ, 2
√
aC C1 6 δ (3.226)

Here the constants C, δ > 0 are given in the hypothesis (3.221) and C1 > 0 fixed
satisfies

(π)−n\2
∫

Rn

|z|(exp − |z2|)dz 6 C1 (3.227)

A constant a > 0 verifying (3.226) allows one to get the boundedness of the sequence
{(uk, pk)}k>1 as in the following lemma

Lemma 3.9.1. Let F ∈ C(R2n+1,R) be given such that the hypothesis (3.221) is
verified. Fix a > 0 such that (3.226) are satisfied. Then the sequence {(uk, pk)}k>0

of continuous functions constructed in (3.225) has the following properties

|uk(t, x)| 6 δ, |pk(t, x)| 6 δ, ∀ (t, x) ∈ [0, a] × R
n , k > 0 (3.228)

‖ (u′k+1, pk+1(t) − (uk, pk)(t)) ‖ = sup
x∈Rn

[|uk+1(t, x) − uk(t, x)| (3.229)

− |pk+1(t, x) − pk(t, x)|] 6 2δCka (
tk

k!
)1\3
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for any t ∈ [0, a] , k > 0 where Ca = L(C1
√
a+ a2\3).

Remark 3.9.2. Using the conclusion (3.229) of Lemma (3.9.1) and Lipschitz con-
tinuity of F in (3.221) we get that the sequence {(u, p)k}k>0 is uniformly convergent of
(t, x) ∈ [0, â]×Rn, lim

k→∞
(u, p)k(t, x) = (û, p̂)(t, x) there the continuous function(û, p̂), t ∈

[0, â], x ∈ Rn satisfies the integral equation (3.222), provided the constant â > 0 is
fixed such that

(
â

2

1
3

).Câ = ρ < 1 (3.230)

where Câ is given in (3.229). In this respect,
∑

(t, x) =
∞∑
k=0

[(u, p)k+1− (u, p)k](t, x) is

bounded by a numerical convergent series |∑(t, x)| 6 2δ(1 + ρ+, .....+ ρk + ...) = 2δ

1−ρ
which alow us to obtain the following

Lemma 3.9.3. Let F ∈ C(R2n+1,R) be given such that the hypothesis (3.221) is sat-
isfied. Then there exists a unique solution (û(t, x), p̂tt, x), t ∈ [0, â],× ∈ Rn, verifying
the integral equations (3.222) and

|û(t, x)|, |p̂(t, x)| 6 ρ(forall)t ∈ [0, â],× ∈ R
n (3.231)

∂xû(t, x) = p̂(t, x)∀t ∈ [0, â], x ∈ R
n (3.232)

In addition, ((û(t, x), ∂xû(t, x))) is the unique weak solution of the nonlinear equation
(3.229), i.e

limt
ε↓0

(∂t − ∆)ûε(t, x) = F (x, û(t, x), ∂xû(t, x)) (3.233)

for each 0 < t 6 â, x ∈ Rn where

ûε(t, x)

t∫

0

[

∫

Rn

F (y, û, s, y), ∂yû(s, y)P (t− s, x, y)dy]ds

if 0 < t = â and x ∈ Rn are fixed.

3.9.2 Some Nonlinear Elliptic Equations

We consider the following nonlinear elliptic equation

∆u(x) = f(x, u(x)), x ∈ R2, n > 3 where f(x, u) : Rn+1 → R (3.234)

is first order continuously differentiable satisfying

f(x, u) = 0for x ∈ B(0, b), u ∈ R, where B(0, b) ⊆ R
n is fixed (3.235)

λ = {max| ∂t
∂u

|;x ∈ B(0, b), |u| 6 2K1} (3.236)
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satisfies λK0 = ρ ∈ (0, 12 ) where

K0 =
2b2

n− 2
,K1 = C0K0andC0 = {max|f(x, 0)|;x ∈ B(0, b)}

Lemma 3.9.4. Assume that f(x, u); (x, u) ∈ Rn+1 is given satisfying the hypothesis
(3.235) and (3.236). Then there exits a unique bounded solution of the nonlinear
equation (3.234) û(x);Rn → R. which satisfies the following integral equation

û(x) =

∫

Rn

f̂(y, û(y)|y − x|2−ndy =

∫

B(o,b)

f̂(y, û(y))|y − x|2−ndy (3.237)

where f̂(x, u) = Ĉf(x, u) and Ĉ = 1
(2−n)|Ω0| , |Ω| = measS(0, 1).

Remark 3.9.5. The proof of this result usees the standard computation performed
for the Poisson equation in the first section of this chapter. More precisely, letΩ0 =
S(0, 1) ⊆ Rn be the sphere centered at origin and with radius ρ = 1. Denote |Ω0| =

measΩ0 and f̂(x, u) = Ĉf(x, u), (x, u) ∈ Rn × R where ĉ = 1
(2−n)|Ω0| . Associate the

integral equation (3.237) which can be rewritten as

u(x) =

∫

D

f̂(x+ z, u(x+ z)).|z|2−ndz, forx ∈ B(o, b) (3.238)

whereD = B(0, L), L = 2b. Define a sequence uk(x);x ∈ B(0, b)k > 0u0(x) = 0, x ∈
B(0, b)

uk+1(x) =

∫

D

f̂(x+ z, uk(x + z))|z|2−ndz, k > 0×, x ∈ B(0, b) (3.239)

The sequence {uk}k>0 is bounded and uniformly convergent to a continuous function
as following estimates show

|u1(x)| 6 ĉC0

L∫

0

rdr

∫

Ω0

dw =
C0

n− 2

L2

2
=

C0

n− 2
2b2 = K1 (3.240)

for any x ∈ B(0, b) and

|u2(x) − u, (x)| 6
∫

D

1 + f̂((x + z), (x+ z)) − f̂(x+ z, 0)|z|2−ndz 6 (3.241)

6 K1max|∂f̂
∂u

(y, u)|
∫

S

|z|2−ndz 6 K1(λ.K0) = K1ρ forany x ∈ B(0, b)

An induction argument leads us to

|uk+1(x) − uk(x)| 6 K1ρ
k, x ∈ B(0, b), k > 0 (3.242)
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where ρ ∈ (0, 1 \ 2) and k1 > 0 are defined in (3.236). Rewrite

uk+1 = u1(x) + u2(x) − u1(x) + · · · + uk+1(x) − uk(x) (3.243)

and consider the following series of continuous functions

∑
(x) = u(x) + ν2(x) + · · · + νk+1(x) + . . . (3.244)

x ∈ B(0, b), νj+1(x) = uj+1(x) − uj(x)

The series in (3.244) is dominated by a convergent numerical series

|
∑

(x)| 6 K1(1 + ρ+ ρ2 + · · · + ρk + . . . ) = K1
1

1 − ρ
6 2K1 (3.245)

and the sequence defined in (3.239) is uniformly convergent to a continuous and
bounded function

lim
k→∞

uk(x) = û(x), |û(x)| 6 2K1, x ∈ B(0, b) (3.246)

In addition{û(x), x ∈ B(0, b)} verifies

û(x)

∫

Rn

f̂(y, û(y))|y − x|2−ndy =

∫

B(0,b)

f̂(y, û(y))|y − x|2−ndy (3.247)

The solution {û(x), x ∈ B(0, b)} is extended as a continuous function on Rn using
the same as integral equation (see (3.247)) and the proof of (3.237) is complete.

3.10 Exercises

Weak solutions for parabolic and hyperbolic boundary problems by Fourier’s method
(P1). Using Fourier method, solve the following mixed problem for a scalar parabolic
equation





(a) ∂tu(t, x) = ∂2xu(t, x) , t ∈ [0, T ], x ∈ [A,B]
(b) u(0, x) = ϕ0(x) , x ∈ [A,B] , ϕ0 ∈ C([A,B])
(c) u(t, A) = uA, u(t, B) = uB , t ∈ [0, T ], uA, uB ∈ R given

(3.248)

Hint. Make a function transformation

ν(t, x) = u(t, x) − { x−A

B −A
uB +

B − x

B −A
uA} (3.249)

which preserve the equation (a) but the boundary condition (c) becomes
ν(t, A) = 0, ν(t, B) = 0, t ∈ [0, T ]. The interval [A,B] is shifted into [0, 1] by the
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following transformations

x = B y + (1 − y)A, w(t, y) = ν(t, B y + (1 − y)A), y ∈ [0, 1], t ∈ [0, T ] (3.250)

The new function {w(t, y) : y ∈ [0, T ], y ∈ [0, 1]} fulfils a standard mixed problem for
a scalar parabolic equation





(a) ∂t w(t, y) = 1
(B−A)2 ∂

2
yw(t, y), t ∈ [0, T ], y ∈ [0, 1]

(b) w(0, y) = ϕ1(y)
def
= ϕ0(A+ (B −A)y) − {uBy + uA(1 − y)}

(c) w(t, 0) = 0 , w(t, 1) = 0 , t ∈ [0, T ]

(3.251)

w(t, y) =

∞∑

j=1

Tj(t)Wj(t) (3.252)

where
T ′
j(t)

Tj(t)
=
W ′′
j (y)

Wj(y)

1

(B −A)2
= −λj , λj > 0, j = 1, 2, ... (3.253)

The boundary condition ((3.248), c) must be satisfied by the general solution

Wj(y) = C1 cos (B −A)
√
λjy + C2 sin (B −A)

√
λjy (3.254)

of (3.253) which implies C1 = 0 andλj = (B −A)−2(πj)2

(P2). Using Fourier method, solve the following mixed problem for a scalar parabolic
equation





(a) ∂2t u(t, x) = ∂2xu(t, x) , t ∈ [0, T ], x ∈ [A,B]
(b) u(0, x) = ϕ0(x) , ∂tu(0, x) = ϕ1(x) , x ∈ [A,B] , ϕ0, ϕ1 ∈ C([A,B])
(c) u(t, A) = uA, u(t, B) = uB , t ∈ [0, T ], uA, uB ∈ R given

Hint. Make a function transformation

ν(t, x) = u(t, x) − { x−A

B −A
uB +

B − x

B −A
uA} (3.255)

which preserve the hyperbolic equation (a) but the boundary condition (c) becomes

(3.256)

The interval [A,B] is shifted into [0, 1] with preserving the boundary (3.256) if the
following transformation are done

x = B y + (1 − y)A, w(t, y) = ν(t, B y + (1 − y)A), y ∈ [0, 1], t ∈ [0, T ] (3.257)
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The new function {w(t, y) : y ∈ [0, T ], y ∈ [0, 1]} fulfils a standard mixed problem for
a scalar parabolic equation





(a) ∂2t w(t, y) = 1
(B−A)2 ∂

2
yw(t, y), t ∈ [0, T ], y ∈ [0, 1]

(b)

{
w(0, y) = ψ0(y)

def
= ϕ0(A+ (B −A)y) − {uBy + uA(1 − y)}, y ∈ [0, 1]

∂tw(0, y) = ψ1(y)
def
= ϕ1(A+ (B −A)y), y ∈ [0, 1]

(c) w(t, 0) = 0 , w(t, 1) = 0 , t ∈ [0, T ]
(3.258)

Solution of (3.258) has the form

w(t, y) =
∞∑

j=1

Tj(t)Wj(t) + C0 + C1t (3.259)

and the algorithm of solving repeats the standard computation given (P1).

3.11 Appendix I Multiple Riemann Integral and Gauss
-Ostrogradsky Formula

(A1) We shall recall the definition of the simple Riemann integral {f(x) : x ∈ [a, b]}.
Denote by Π a partition of the interval [a, b] ⊆ R:
Π = {a = x0 6 x1 6 ... 6 xi 6 xi+1 6 ... 6 xN = b} and for ∆xi = xi+1 −
xi, i ∈ {0, 1, ..., N − 1}, define the norm d(Π) = maxi∆xi of the partition Π. For
ξi ∈ [xi, xi+1], i ∈ {0, 1, ..., N − 1} (marked points of Π) associate the integral sum

SΠ(f) =

N−1∑

i=0

f(ξi)∆xi

Definition 3.11.1. A number I(f) is called Riemann integral of the function {f(x) :
x ∈ [a, b]} on the interval [a, b] if for any ǫ > 0 there is a δ > 0 such that

|SΠ(f) − I(f)| < ǫ ∀ Π satisfying d(Π) < δ.

Remark 3.11.2. An equivalent definition can be expressed using sequences of parti-
tions {Πk}k>1 for which

lim
k→∞

SΠk
(f) = I(f),

where the number I(f) does not depend on the sequence {Πk}k>1 and its marked
points. If it is the case we call the number I(f) as the integral of the function f(x)
on the interval [a, b] and write

∫ b

a

f(x)dx = lim
k→∞

SΠk
(f)



144 CHAPTER 3. SECOND ORDER PDE

Finally, there is a third equivalent definition of the integral which uses a ”limit fol-
lowing a direction”. Let E be consisting of the all partitions Π associated with their
marked points, for a fixed δ > 0, denote Eδ ⊆ E the subset satisfying d(Π) < δ,
Π ∈ Eδ. The subsets Eδ ⊆ E, for different δ > 0, are directed using d(Π) → 0. The
integral of the function {f(x) : x ∈ [a, b]} is the limit J(f) of the integral sums fol-

lowing this direction; the three integrals J(f),
∫ b
a
f(x)dx and I(f) exist and are equal

iff one of them exists. It lead us to the conclusion that an integral of a continuous
function {f(x) : x ∈ [a, b]} exists.

(A2) Following the above given steps we may and do define the general meaning of
a Riemann integral when the interval [a, b] ⊆ R is replaced by some metric space
(X,d). Consider that a family of subsets U ⊆ X of X are given verifying the following
conditions:

1. The set X and the empty set ∅ belong to U

2. f A1, A2 ∈ U then their intersection A1A2 belongs to U .

3. If A1, A ∈ U and A1 ⊆ A then there exist A2, ..., Ap ∈ U such that A =
A1 ∪ ... ∪ Ap and A2, ..., Ap ∈ U are mutually disjoints. A system of subsets
u ⊆ X fulfilling (1), (2) and (3) is called demi-ring U . In order to define a
Riemann integral on the metric space X associated with a demi-ring ⊓ we need
to assume another two conditions.

4. For any δ > 0, there is a partition of the set X = A1 ∪ ... ∪ Ap, with Ai ∈ U ,
AiAj = φ if i 6= j and d(Ai) = sup

(x,y)∈Ai

ρ(x, y) < δ, i ∈ {1, ..., p} (This condition

remind us the property that X is a precompact metric space). The last condition
imposed on the demi-ring U gives the possibility to measure each individual of
U .

5. For each A ∈ U , there is positive number m(A) > 0 such that m : U → [0,∞)
is additive, i.e m(A) = m(A1) + m(A2) + ...+ m(Ap), if A = A1 ∪ ... ∪ Ap and
A1, ..., Ap are mutually disjoints.

The additive mapping m : U → [0,∞) satisfying (5) is called measure on the cells
composing U . The metric space X associated with a demi-ring of cells U and a finite
additive measure m : u → [0,∞) satisfying (1)-(5) will be called a measured space
(X,U ,m). Let f(x) : X → R be a real function defined on a measured space (X,U ,m)
and for an arbitrary partition Π = {A1, ..., Ap} of x = A1 ∪ ...∪Ap (AiAj = φ1 i 6= j)
define an integral sum.

SΠ(f) =

∞∑

i=1

f(ξi)mAi, where ξi ∈ Ai is fixed (3.260)
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The number

I⊓(f) =

∫

X

f(x)dx (3.261)

is called the integral of the function f on the measured space (X,U ,m) if for any
ǫ > 0, there is a δ > 0 such that

|I⊓(f) − SΠ(f)| < ǫ (3.262)

is verified for any partition Π satisfying d(Π) < δ, where d(Π) = max(d(A1), ..., d(Ap))
and d(Ai) = sup

(x,y)∈Ai

ρ(x, y). It is easily seen that this definition of an integral on a

measured space (X,U ,m) coincides with the first definition of the Riemann integral
given on a closed interval [a, b] ⊆ R.
The other two equivalent definitions using sequence of partitions {πk}k>1 , d(πk) → 0,
and a ”limit following a direction” will replicate the corresponding definitions in the
one dimensional case x ∈ [a, b].
A function f(x) : {X,U ,m} → Rdefined on a measured space and admitting Riemann
integral is called integrable on X , f ∈ J(X). The following elementary properties of
the integral are direct consequence of the definition using sequence of partitions and
their integral sums

∫

X

f(x)dx = cm(X), if f(x) = c(const), x ∈ X (3.263)

∫

X

cf(x)dx = c

∫

X

f(x)dx, f ∈ J(X) and c = const (3.264)

∫

X

[f(x) + g(x)]dx =

∫

x

f(x)dx +

∫

X

g(x)dx, if f, g ∈ J(X) (3.265)

Any f ∈ J(X) is bounded onX, |f(x)| 6 c, x ∈ X (3.266)

if f, g ∈ J(X) and f(x) 6 g(x), x ∈ X then

∫

X

f(x)dx 6

∫

X

g(x)dx(

∫

X

f(x)dx 6

∫

X

|f(x)|dx if f |f | ∈ J(X)) (3.267)

Cm(x) 6

∫

X

f(x)dx 6 Cm(x), if f ∈ J(X) and c 6 f(x) 6 C ∀x ∈ X . (3.268)

Theorem 3.11.3. If a sequence {fk(x) : x ∈ X}k>1 ⊆ J(X) converges uniformly on
{X,U ,m} to a function f(x) : X → R then f ∈ J(X) and

∫

X

f(x)dx = lim
n→∞

∫

X

fn(x)dx

Hint The proof replicates step by step the standard proof used for X = [a, b] ⊆ R

Example 3.11.1. (e1) X = [a, b] ⊆ R and for a cell of [a, b] can be taken any
subinterval containing or not including its boundary points. The measure m(A) =
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β − α, (A = [α, β], A = (α, β)) of a cell is the standard length of it and the corre-
sponding measured space (X,U ,m) satisfy the necessary conditions (1)-(5). Notice
that the first definition of the integral given in (3.262) coincides with that definition
used in the definition (3.11.1)
(e2) Let X be a rectangle in R2 , X = {x ∈ R2 : a1 6 x1 6 b1, a2 6 x2 6 b2}
and as a cell of X we take any subset A ⊆ X , A = {x ∈ X : α1 ≺ x1 ≺ β1, α2 ≺
x2 ≺ β2} where the sign ” ≺ ”means the standard ” 6 ” or” < ” among real
numbers.The measure m(A) associated with the cell A is given by its area m(A) =
(β1−α1).(β2−α2).The necessary condition (1)-(5) are satisfied by a direct inspection
and the Riemann integral on X will be denoted by

∫

X

f(x)dx =

∫ b1

a1

∫ b2

a2

f(x1, x2)dx1 dx2 ( double Riemann integral)

Replacing R2 byRn , n > 2 and choosing X =
n∏
i=1

Ii as a direct product of some inter-

vals Ii = {x ∈ R : ai ≺ x ≺ bi}we define a cell A =
n∏
i=1

{αi ≺ x ≺ βi} and its volume

m(A) =
n∏
i=1

(βi − αi) as the associated measure.In this case the Riemann integral is

denoted by

∫

X

f(x)dx =

∫ b1

a1

. . .

∫ bn

an

f(x1, . . . , xn)dx1 . . . dxn

and call it as the n-multiple integral of f .

Theorem 3.11.4. Let {X,U ,m} be a measured space and µ(x) : X → R is a uni-
formly continuous function. Then f is integrable, f ∈ J(X).

Proof. By hypothesis the oscillation of the function f on X

wf (X, δ) = sup
ρ(x′,x′′)6δ,x′,x′′∈X

|f(x′) − f(x′′)| (3.269)

satisfies wf (X, δ) 6 ε for some ε > 0 arbitrarily fixed provided δ > 0 is sufficiently
small. In particular,this property is valid on any elementary subset P ⊆ X , P =
p⋃
i=1

Ai , {A1, . . . , Ap} are mutually disjoint cells.Denote wf (P, δ) the corresponding os-

cillation of f restricted to P and notice

|Sπ(f, P ) − S′
π(f, P )| 6 wf (P, δ)m(P ) (3.270)

for any partition π′ of P containing the given partition π = {A1, . . . , Ap} of the
elementary subset P ⊂ X(π′ ⊇ π).
The property π′ ⊇ π is described by “π′is following π”(π′ is more refine). Using
(3.270) for P = x noticing that wf (X, δ) 6 ε for ε > 0, arbitrarily fixed provided
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δ > 0 is sufficiently small, we get that

lim
δ(π)→0

Sπ(f) = I(f) exists

as a consequence of the Cauchy criteria applied to integral sums.

Consequence Any continuous function defined on a compact measured space (X,U ,m)
is integrable(see f(x) : X → R is uniformly continuous).

Theorem 3.11.5. Let (X,U ,m) be a measured space and Z ⊇ X is a negligible
set.Assume that the bounded function f(x) is uniformly continuous outside of any
arbitrary neighborhood of Z,Uσ(Z) = {x ∈ X : ρ(x, Z) < δ}. Then f is integrable on
X.

Proof. By hypothesis Z is a negligible set and for any ε > 0 there is an elementary

set P =
p⋃
i=1

Ai such that intP ⊇ Z and m(P ) < ε. Let M = sup
x∈X

|f(x)| and for ε > 0

define

P =

p⋃

i=1

Ai such that int P ⊇ Z and m(P ) 6
ε

4M
(3.271)

Denote B = X − P and we get d(Z,B) = 2ρ > 0 where d(Z,B) = inf{d(z, b) : z ∈
Z, b ∈ B}. By hypothesis,the function f is uniformly continuous outside of a neigh-
borhood Uρ(Z) ,of the negligible set Z, i.e f(x) : Q → R is uniformly continuous,
where Q = X \ Uρ(Z). Using Theorem 3.11.4 we get that f restricted to (Q,UQ,m)
is integrable and any integral sum of f on X restricted to P is bounded by ε(see
intP ⊇ Z, m(P ) 6 ε

4M ).
For an arbitrary partition π = {C1, . . . , Cn} of X we divide it into two classes;

the first class contains all cells of π which are included in P =
p⋃
i=1

Ai ⊇ Z1 and

the second class is composed by the cells of π which have common points with
the set B = X \ P and are entirely contained in B. In particular, take a par-
tition π with d(π) < σ = min(σ, ρ) where σ > 0 is sufficiently small such that
|f(x′′) − f(x′)| < ε \ 2m(X) if ρ(x′′, x′) < 2σ, x′, x′′ ∈ B. Let π′ ⊇ π be a follow-
ing partition(π′ is more refined than π). A straight computation allows one to see that

|Sπ(f) − Sπ′(f)| 6 |Sπ(f, P )| + |Sπ′(f, P )| + |Sπ(f,Q) − Sπ′(f,Q)| (3.272)

Q = X \ Uρ(Z) the first two terms in (3.272) fulfil





|Sπ(f, P )| 6M
p∑
i=1

m(Ai) = M m(P ) 6M.ε \ 4M = ε \ 4

|Sπ′(f, P )| 6M
p∑
i=1

m(Ai) = Mm(P ) = ε \ 4
(3.273)

For the last term in (3.272) we use (3.270) in the proof of Theorem 3.11.5 and Q =
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X \ Uρ(Z) ⊇ X \ P = B. As far as σ > d(π) > d(π′) and σ = min(σ, ρ) we obtain

{
|Sπ(f,Q) − Sπ′(f,Q)| 6 wf (Q, δ)m(X) 6 [ε \ 2m(X)]m(X) = ε \ 2
|Sπ(f) − Sπ′(f)| 6 ε

(3.274)

and the Cauchy criteria used for integral sums {Sπ(f) : d(π) → 0} lead us to the
conclusion.The proof is complete.

Definition 3.11.6. Let {X,U ,m} be a measured space and G ⊆ X a subset. We say
that G is a jordanian set with respect to (U ,m) if its boundary ∂G = G ∩ {X \ G},
is a negligible set. A jordanian closed set A with the property intA = A is called a
jordanian body.

Remark 3.11.7. The characteristic function of a jordanian set G ⊆ X

χG(x) =

{
1 x ∈ G
0 x ∈ X \G

is an integrable function if the measured space {X,U ,m} is compact;
∫
X
χG(x)dx =

|G| is called volume of G.

Definition 3.11.8. A measured space {X,U ,m} for which all cells are jordanian sets
is called normally measured;each cell A ∈ U has a volume and m(A) = vol A = |A|

Let f(x) : X → R be a bounded function on a compact measured space {X,U ,m}
and G ⊂ X is a jordanian set with the boundary Γ = ∂G. By definition, the integral
of the function f on the set G is given by

∫

G

f(x)dx =

∫

X

f(x)χG(x)dx (3.275)

If f is a continuous function on G except a negligible Z then f(x)χG(x) is continuous
on X except the negligible set Z ∪ ∂G and (3.275) exists.
(A2) Integration and derivation in Rn; Gauss-Ostrogradsky formula
Consider a domain G ⊆ Rn (a jordanian body)for which the boundary ∂G is piecewise

smooth surface. By “piecewise smooth ∂G ”we mean that S = ∂G =
q⊔
p=1

Sp where

(int Si) ∩ (int Sj) = φ for any i 6= j ∈ {1, . . . , q} and for each x ∈ int Sp, there is a
neighborhood V ⊆ Rn and a first order continuously differentiable mapping

y = ϕ(u) =
n−1∏
i=1

(−ai, ai) = Dn−1 → Sp ∩ V, ϕ(0) = x such that

rank ‖ ∂ϕ(u)
∂u ‖= n − 1. Denote ϕ = (ϕ1, ..., ϕn), u = (u1, ..., un−1) and define the

vectorial product of the vectors [ ∂ϕ∂u1
(u), ..., ∂ϕ

∂un−1
(u)] ⊆ Rn as a vector of Rn given

by the following formula
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N = det




−→e1 . . . −→en
∂ϕ1

∂u1
(u) ∂ϕn

∂u1
(u)

. .

. .

. .
∂ϕ1

∂un−1
(u) . . . ∂ϕn

∂un−1
(u)




= [
∂ϕ

∂u1
(u), ...,

∂ϕ

∂un−1
(u)] (3.276)

where {−→e1, ...,−→en} ⊆ Rn is the canonical basis of Rn and the formal writing of (3.276)
stands for a simple rule of computation, when the components of [ ∂ϕ

∂u1
(u), ..., ∂ϕ

∂un−1
(u)]

⊆ R
n are involved. In addition, (3.276) allows one to se easily that N is orthogonal

to any vector ∂ϕ
∂ui

(u) ∈ Rn, i ∈ {1, ..., n − 1} and as a consequence N is orthogonal

to the point ϕ(u) ∈ Sp. In this respect, the scalar product < N, ∂ϕ∂ui
(u) > coincides

with the computation of the following expression

< N,
∂ϕ

∂ui
(u) >= det




∂ϕ
∂ui

(u)
∂ϕ
∂u1

(u)

.

.

.
∂ϕ

∂un−1
(u)




= 0 for each i ∈ {1, .., n− 1} (3.277)

If it is the case then the computation of the oriented surface integral
∫
S
f(x)dS on the

surface S = {S1, ..., Sq}will be defined by the following formula

∫

S

f(x)dS =

∫

Dn−1

f(ϕ(u))|N |du (3.278)

where |N | stands for the length of the vector N defined in (3.276). On the other
hand, the normalized vector

m(u) = N/|N | (3.279)

can be oriented in two opposite directions with respect to the domain G and for the
Gauss-Ostrogradsky formula we need to consider that m(u) is oriented outside of the
domain G. Rewrite m(u) in ((3.279) as

m(u) = −→e1cos ω1 + ...+ −→encos ωn (3.280)

where ωi is the angle of the unitary vector m(u) and the axis xi, i ∈ {1, ..., n}. Let
P (x) = P (x1, ..., xn) be a first order continuously differentiable function in the domain
G. Assume that G ⊆ Rn is simple with respect to each axis xk, k ∈ {1, ..., n}. Then
the following formula is valid

∫

G

∂P (x)

∂xk
dx =

∮

S

(cos ωk)P (x)dS , for each k ∈ {1, ..., n} (3.281)

where S = ∂G and the surface integral
∮
S is oriented outside of the domain G.

Theorem 3.11.9. (Gauss(1813)-Ostrogradsky(1828-1834)formula)
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Let Pk(x) : G ⊆ Rn → R, be a continuously differentiable function for each k ∈
{1, ..., n} and assume that the jordanian domain G is simple with respect to each axis
xk , k ∈ {1, ..., n}. Then the following formula is valid

∫

G

[
∂P1

∂x1
(x) + ...+

∂Pn
∂xn

(x)]dx =

∮

S

[(cos ω1)P1(x) + ...+ (cos ωn)Pn(x)]dS (3.282)

where the surface integral
∮
S
is oriented outside of the domain G and S = ∂G

Proof. The meaning that G is simple with respect to each axis xk , k ∈ {1, ..., n} will
be explained for k = n and let Q ⊆ Rn−1 be the projection of the domain G on the
hyperplane determined by coordinates x1, ..., xn−1 = x̂. It is assumed that Q ⊆ Rn−1

is jordanian domain(see jordanian body given in definition 3.11.6 of (A1))and the
jordanian domain G ⊆ Rn can be described by the following inequalities

ϕ(x1, ..., xn−1) 6 xn 6 ψ(x1, ..., xn−1) , (x1, ..., xn−1) = x̂ ∈ Q (3.283)

where ϕ(x̂) 6 ψ(x̂) , x̂ ∈ Q are continuously differentiable functions. The surface
xn = ψ(x̂), (x̂, xn) ∈ G is denoted by Su(upper surface)and xn = ϕ(x̂), (x̂, xn) ∈ G
will be denoted by Sb(lower surface). Notice that the unitary vector m defined in
(3.279) must be oriented outside of G at each point p ∈ Su. It implies< m, en >> 0,
similarly< m, en >6 0 for each p ∈ Sb. A direct computation of the orthogonal vector
N at each point of the surfaces Su = {xn − ψ(x̂) = 0} andSu = {xn − ϕ(x̂) = 0} will
lead us to

< m, en >=< N \ |N |, en >=

{
1 \ (1 + |∂x̂ψ(x̂)|2)1\2 , x ∈ Su
1 \ (1 + |∂x̂ϕ(x̂)|2)1\2 , x ∈ Sb

(3.284)

Using the standard decomposition method of a multiple integral into its iterated parts
we get

∫

G

∂Pn(x)

∂xn
=

∫

Q

[

∫ xn=ψ(x̂)

xn=ϕ(x̂)

∂Pn
∂xn

(x̂, xn)dxn]dx̂

=

∫

Q

Pn(x̂, ψ(x̂))dx̂−
∫

Q

Pn(x̂, ϕ(x̂))dx̂

=

∫

Q

Pn(x̂, ψ(x̂)) < m, en > (1 + |∂x̂ψ(x̂)|2)1\2dx̂

+

∫

Q

Pn(x̂, ϕ(x̂)) < m, en > (1 + |∂x̂ϕ(x̂)|2)1\2dx̂

=

∫

Su

Pn(x) < m, en > dS +

∫

Sb

Pn(x) < m, en > dS

=

∮

S

Pn(x)(cos ωn)dD (3.285)
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Here we have used the definition of the unoriented integral given in (3.278) and
the proof of (3.282) is complete.

Remark 3.11.10. Assuming that G =
p
∪
i=1

Gi, with (intGi) ∩ (intGj) = φ if i 6= j

and each Gi is a jordanian domain, simple with respect to any axis xk , k ∈ {1, ..., n},
then the Gauss-Ostrogradsky formula (3.282) is still valid.

3.12 Appendix II Variational Method Involving PDE

3.12.1 Introduction

A variational method uses multiple integrals and their extremum values for deriving
some PDE as first order necessary conditions. Consider a functional

J(z) =

∫

Dm

L(x, z(x), ∂xz(x))dx , Dm =

m∏

i=1

[ai, bi] (3.286)

where L(x, z, u) : V × R × Rn → R , V (open) ⊇ Dm is a first order continuously
differentiable function. We are looking for a continuously differentiable function ẑ(x) :
V × R ẑ ∈ C1(V ) such that

minJ(z) = J(ẑ) z ∈ A (3.287)

where A ⊆ C1(V ) is the admissible set of functions satisfying the following boundary
conditions




{
z(a1, x2, ..., xm) = z10(x2, ..., xm) , (x2, ..., xm) ∈∏m

i=1[ai, bi]
z(b1, x2, ..., xm) = z11(x2, ..., xm)

.

.

.{
z(x1, ..., xm−1, am) = zm0 (x1, ..., xm−1) , (x1, ..., xm−1) ∈∏m−1

i=1 [ai, bi]
z(x1, ..., xm−1, bm) = zm1 (x1, ..., xm−1)

(3.288)
Here the functions zji , i ∈ {0, 1}, j ∈ {1, ...,m}, describing boundary conditions,are
some given continuous functions. This problem belongs to the classical calculus of
variations which has a long tradition with significant contributions of Euler(1739)and
Lagrange(1736). The admissible class A ⊆ C1(V ) is too restrictive and the exis-
tence of an optimal solution ẑ ∈ Ω is under question even if we assume additional
regularity conditions on the Lagrange function L. A more appropriate class of admis-
sible function is defined as follows. Denote ∂Dm = Γm the boundary of the domain
Dm =

∏m−1
i=1 [ai, bi] and let L2(Dm;Rm) be Hilbert space of measurable functions

p(x) : Dm → Rm admitting a finite norm ‖ p ‖= (
∫
Dm

|p(x)|2dx)1\2 <∞. Define the
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admissible class A ⊆ C(V ) as follows

A = {z ∈ C(Dm) : ∂xz ∈ L2(Dm;Rm), z|Γm
= z0} (3.289)

where z0 ∈ C(Γm) is fixed. In addition,the Euler-Lagrange equation(first order neces-
sary conditions)for the problem

min
z∈A

J(z) = J(ẑ) (3.290)

where J is given in (3.286), and A in (3.289) can be rewritten as a second order PDE
provided

Lagrange function L(x, z, u) : V × R× R
m → R (3.291)

is second order continuously differentiable and |∂u L(x, z, u)| 6 CN (1 + |u|) ∀u ∈
Rm , x ∈ Dm and |z| 6 N ,where CN > 0 is a constant for each N > 0.

3.12.2 Euler-Lagrange Equation for Distributed Parameters
Functionals

A functional of the type (3.286) is defined by a Lagrange function L containing a
multidimensional variable x ∈ Dm (distributed parameter). Assume that L in (3.286)
fulfils conditions (3.291) and let ẑ ∈ A (defined in (3.289)) be the optimal element
satisfying (3.290)(locally), i.e there is a ball B(ẑ, ρ) ⊆ C(Dm) such that

J(z) > J(ẑ) ∀ z ∈ B(ẑ, ρ) ∩A (3.292)

Denote
W 1\2 = {z ∈ C(Dm) : their exists ∂xz ∈ L2(Dm;Rm)} (3.293)

and define a linear subspace Y ⊆W 1\2

Y = {y ∈ W 1\2, y|Γm
= 0} (3.294)

An admissible variation of ẑ is given by

zε(x) = ẑ(x) + ε y(x) , x ∈ Dm (3.295)

where ε ∈ [0, 1] and y ∈ Y . By definition zε ∈ A , ε ∈ [0, 1], and using (3.292) we get
the corresponding first order necessary condition of optimality using Frechét differen-
tial

0 = d J(ẑ; y) = lim
ε↓0

J(zε) − J(ẑ)

ε
, ∀y ∈ Y (3.296)

where d J(ẑ; y) is the Frechét differential of J at ẑ computed for the argument y. The
first form of the E-L equation is deduced from (3.296) using the following subspace
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Y ⊆ Y

Y = sp{y ∈ C(Dm) : y(x) =

m∏

i=1

yi(xi), yi ∈ D1
0([ai, bi])} (3.297)

Here the linear space D1
0([α, β]) is consisting of all continuous functions ϕwhich are

derivable satisfying ϕ(α) = ϕ(β) = 0 and its derivative { dϕdt , t ∈ [α, β]} is a piecewise
continuous function. A direct computation allows us to rewrite

0 = d J(ẑ, y)(see (11)) for any y ∈ Y (3.298)

as follows

0 =

∫

Dm

[∂zL(x; ẑ(x); ∂xẑ(x))y(x) +

m∑

i=1

∂ui
L(x; ẑ(x); ∂xẑ(x))∂xi

y(x)]dx (3.299)

for any y ∈ Y , where u = (u1, ..., um) , x = (x1, ..., xm)
Denote





ψ1(x) =
∫ x1

a1
∂zL(t1, x2, ..., xm; ẑ(t1, x2, ..., xm); ∂xẑ(t1, x2, ..., xm))dt1,

.

.

.

ψm(x) =
∫ xm

am
∂zL(x1, x2, ..., , xm−1tm; ẑ(tx1, x2, ..., xm−1, tm); ∂xẑ(x1, x2, ..., xm−1, tm))dtm

(3.300)

and integrating by parts in (3.299) we get (see ∂zL = ∂xi
ψi)

0 =

∫

Dm

{
m∑

i=1

[− 1

m
ψi(x) + ∂ui

L(x; ẑ(x); ∂xẑ(x))]∂xi
y(x)}dx (3.301)

for any

y ∈W 1\2, y(x) =
m∏

i=1

yi(xi) , yi ∈ D1
0([ai, bi]) i ∈ {1, ...,m}

where ψ1(x), ..., ψm(x) are defined in (3.300). The integral equation (3.301) stands for
the first form of the Euler-Lagrange equation associated with the variational problem
defined in (3.296). To get a pointwise form of the E-L equation (3.301) we need to
assume that

The optimal element ẑ ∈ C2(θ ⊆ Dm) (3.302)

is second order continuously differentiable on some open subset θ ⊆ Dm.

Theorem 3.12.1. (E-L) Let L(x, z, u) : Dm × R × Rm → R be a second order
continuously differentiable function and consider that the local optimal element ẑ fulfils
(3.302). Then the following pointwise E − L equation

∂z L(x, ẑ(x), ∂xẑ(x)) =

m∑

i=1

∂xi
[∂ui

L(x, ẑ(x), ∂xẑ(x))] (3.303)

for any x ∈ θ ⊆ Dm, is valid and ẑ|Γm
= z0 ∈ C(Γm)
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Proof. By hypothesis, the E − L equation (3.301) is verified where ψi(x) and
∂ui

L(x, ẑ(x), ∂xẑ(x)) are first order continuously differentiable functions of x ∈ θ ⊆
Dm for any i ∈ {1, ...,m}. The integral in (3.301) can be rewritten as follows

m∑

i=1

[− 1

m
ψi(x) + ∂ui

L(x; ẑ(x); ∂xẑ(x))]∂xi
y(x) = E1(x) − E2(x) (3.304)

=

m∑

i=1

∂xi
{[− 1

m
ψi(x) + ∂ui

L(x; ẑ(x); ∂xẑ(x))]y(x)}−

−
m∑

i=1

{∂xi
[− 1

m
ψi(x) + ∂ui

L(x; ẑ(x); ∂xẑ(x))]}y(x)

for any x ∈ θ ⊆ Dm. For each x0 ∈ θ arbitrarily fixed, let Dx0 ⊆ θ be a cube centered
at x0 and using (3.304) for

y ∈ Y , y(x) =
m∏

i

yi(xi), y ∈ C(Dx0), y|∂Dx0
= 0 (3.305)

we rewrite (3.301) restricted to the cube Dx0 ⊆ θ

∫

Dx0

E1(x)Dx =

∫

dx0

E2(x)dx (3.306)

On the other hand,applying Gauss-Ostrogradsky formula to the first integral in (3.306)
we get

∫

Dx0

E1(x)dx =

∮

∂Dx0

y(x){
m∑

i=1

[− 1

m
ψi(x)+∂ui

L(x; ẑ(x), ∂xẑ(x))]cos ωi}dS (3.307)

and using (3.305) we obtain

0 =

∫

Dx0

E1(x)dx =

∫

dx0

E2(x)dx (3.308)

for any y ∈ Y satisfying (3.305) where

E2(x) = {
m∑

i=1

[− 1

m
ψi(x) + ∂ui

L(x; ẑ(x), ∂xẑ(x))]}y(x)

= {−∂zL(x; ẑ(x), ∂xẑ(x))

+

m∑

i=1

∂ui
L(x; ẑ(x), ∂xẑ(x))}y(x) (3.309)

Assimilating (3.308) as an equation for a linear functional on the space Y x0 = {y ∈
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C(Dx0) : y|∂Dx0
= 0}

0 =

∫

Dx0

E1(x)dx =

∫

Dx0

h(x)y(x)dx, ∀ y ∈ Y x0 (3.310)

a standard argument used in the scalar case can be applied here and it shows that

h(x) = 0 ∀ x ∈ Dx0 (3.311)

where

h(x) =

m∑

i=1

∂xi
[∂ui

L(x; ẑ(x), ∂xẑ(x))] − ∂zL(x; ẑ(x), ∂xẑ(x))

In particular h(x0) = 0 where x0 ∈ θ is arbitrarily fixed and the proof is complete.

Remark 3.12.2. The equation (3.310) is contradicted if we assume that h(x) > 0.It
is acomplished by constructing an auxiliary function y0(x) = σ2−|x−x0|2 on the ball
x ∈ B(x0, σ) ⊆ Dx0 which satisfy

1. y0(x) = 0, ∀ x ∈ Γx0 = boundary of B(x0, σ)

2. y0(x) > 0, ∀ x ∈ intB(x0, σ)

3. h(x) > 0, ∀ x ∈ intB(x0, σ) if σ > 0 is sufficiently small

Define y0(x) = 0 for any x ∈ Dx0 \B(x0, σ) and

∫

Dx0

h(x)y0(x)dx > 0 contradicting

.

3.12.3 Examples of PDE Involving E-L Equation

(E1) Elliptic Equations

Example 3.12.1. Consider Laplace equation

∆z(x) =

m∑

i=1

∂2i z(x) = 0
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on a bounded domain x ∈ D0
m =

m∏
i=1

(ai, bi), Dm =
m∑
i=1

[ai, bi], associated with a Drichlet

boundary condition z \ ∂Dm = z0(x) where z0 ∈ C(∂Dm).
Define Dirichlet integral

D(z) =
1

2

∫

Dm

|∂xz(x)|2dx , ∂xz(x) = (∂1z(z), ..., ∂mz(x)),

and notice that the corresponding Lagrange function is given by

L(x, z, u) =
1

2
|u|2 , u ∈ R

m

If it is the case then compute ∂zL = 0 and
m∑
i=1

∂xi
[∂ui

L(x; ẑ(x), ∂xẑ(x))] = ∆ẑ(x)

which allows one to see that (E-L) equation (3.303) coincides with the above given
Dirichlet problem provided {ẑ(x) : x ∈ intDm} is second order continuously differen-
tiable

Example 3.12.2. Consider Piosson rquation ∆z(x) = f(x0 , x ∈
0

Dm associated
with a boundary condition z|∂Dm

= z0, where z0 ∈ C(∂Dm).
This Dirichlet problem for Poisson equation can be deduced from (E-L) equation
(3.303)(see theorem (E-L))and in this respect associated the following functional

J(z) =

∫

Dm

{1 \ 2|∂xz(x)|2 + f(x)z(x)}dx

where L(x, z, u) = 1 \ 2|u|2 + f(x)z , u ∈ Rm, z ∈ R, is the corresponding Lagrange
function.Notice that ∂zL = f(x) and

m∑

i=1

∂xi
[∂ui

L(x; ẑ(x), ∂xẑ(x))] = ∆ẑ(x)

allows one to write (E-L) equation (3.303) as

∆ẑ(x) = f(x), x ∈
0

Dm ẑ|∂Dm
= z)(x), for z0 ∈ C(∂Dm) .

Example 3.12.3. A semilinear Poisson equation ∆z(x) = f(x), x ∈
0

Dm, associated
with a Dirichlet boundary condition z|∂Dm

= z)(x), for z0 ∈ C(∂Dm) can be deduced
from (E-L)equation (3.303) provided we associate the following functional

J(z) =

∫

Dm

{1 \ 2|∂xz(x)|2 + g(z(x))}dx

where g(z) : R → R is a primitive of f(z) , dg|z|dz = f(z) , z ∈ R

Similarly, the standard argument used in examples 3.12.1 and 3.12.2 lead us to the



3.12. APPENDIX II VARIATIONAL METHOD INVOLVING PDE 157

following non linear elliptic equation

−∆ẑ(x) = ẑ(x)|ẑ(x)|p−1 + f(ẑ(x)) , x ∈
0

Dm

provided L(x, z, u) = { 1
2 |u|2 − 1

p+1 |z|p+1 − g(z)} , p > 1 where g(z) : R → R is a

primitive of f(z). Assuming that f(z) satisfy f(0) = 0, lim
z→∞

f(z)
|z|p = 0, for p = 3

we take g(z) = 1
2λ|z|2 and the corresponding (E-L) equation coincides with so called

Yang-Milles equation which is significant in Physics.

(E2) Wave equation
(1) Consider (x, t) ∈ R3 × R = R4 and a bounded interval D4 ⊆ R4. Associated the
following functional

J(z) =

∫

D4

1 \ 2{∂2t |∂xz(t, x)|2}dxdt

Notice that the corresponding (E-L) equation (3.303) can be written as a wave equa-
tion

�ẑ(t, x) = ∂2t ẑ(t, x) − ∆xẑ(t, x) = 0, (t, x) ∈
0

D4

(“�”d’Alembert operator)
(2) With the same notations as above we get Klein-Gordan equation(mentioned in
math.Physics equation)

�ẑ(t, x) + k2ẑ(t, x) = 0 , (t, x) ∈
0

D4

which agrees with the following Lagrange Function

L(x, z, u) =
1

2
{(u0)2 −

3∑

i=1

(ui)
2 − k2 z2}, u = (u0, u1, u2, u3)

Adding λ
4 z

4 + j z to the above L we get another Klein-Gordon equation

�ẑ(t, x) + k2ẑ(t, x) = λ(ẑ(t, x))3 + j, (t, x) ∈
0

D4

(E3) PDE involving mimimal-area surface
Looking for a minimal-area surface z = ẑ(x), x ∈ Dm satisfying
ẑ|∂Dm

= z0 ∈ C(∂Dm) we associate the functional

J(z) =

∫

Dm

√
1 + |∂xz(x)|2dx

The corresponding (E-L) equation (3.303) is div(T (z))(x) = 0 , x ∈
0

D4

where T (z)(x) = ∂xz(x) \
√

1 + |∂xz(x)|2
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(E4) ODE as (E-L)equation for m=1
A functional

J(y) =

∫ b

a

√
1 + (y′(x))2dx

stands for the length of the curve {y(x) : x ∈ [a, b]} and the corresponding (E-L)
equation (3.303) is {

d
dx

ŷ′(x)√
1+(ŷ′(x))

= 0 , x ∈ (a, b)

ŷ(a) = ya, ŷ(b) = yb

The solutions are expressed by linear ŷ(x) = αx + β, x ∈ R, where α, β ∈ R are
determined such that the boundary conditions ŷ(a) = ya, ŷ(b) = yb are satisfied.

3.13 Appendix III Harmonic Functions;

Recovering a Harmonic Function from its Bound-
ary Values

3.13.1 Harmonic Functions

A vector field H(x) = (H1(x), . . . , Hn(x)) : V ⊆ Rn → Rn is called harmonic in a
domain V ⊆ Rn if H ∈ C1(V ;Rn) and

divH(x) =

n∑

i=1

∂xiHi(x) = 0, (∂xiHj − ∂xjHi)(x) = 0, i, j ∈ {i, . . . , n} (3.312)

for any x ∈ V. In what follows we restrict ourselves to simple convex domain V and
notice that the second condition in (3.312) implies that H(x) = gradφ(x) = ∂xφ(x)
of some scalar function φ (H has a potential) where φ is second order continuously
differentiable. Under these conditions, the first constraint in (3.312) can be viewed
as an equation for the scalar function φ

0 = divH(x) = div(gradφ)(x) =
n∑

i=1

∂2i φ(x) = ∆φ(x) (3.313)

Any scalar function φ(x) : V ⊆ Rn → R which is second order continuously differen-
tiable and satisfies the Laplace equation (3.313) for x ∈ V will be called a harmonic
function on V.
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3.13.2 Green Formulas

Let V ⊆ Rn be a bounded domain with a piecewise smooth boundary S = ∂V ;
consider a continuously derivable scalar field ψ(x) : V → Rn. By a direct computation
we get (∂ = (∂1, . . . , ∂n))

divψR =< ∂, ψR >= ψ < ∂,R > + < R, ∂ψ >= ψ∆φ+ < ∂φ, ∂ψ > (3.314)

Applying Gauss-Ostrigradsky formula and integrating both terms of equality we get

∫

V

ψ∆φdx +

∫

V

< ∂φ, ∂ψ > dx =

∫

V

(divψR)dx

=

∮

V

< m,ψR > dS

=

∮

S

ψ < m,R > dS

=

∮

S

ψ(Dmφ)dS

which stands for
∫

V

< ∂φ, ∂ψ > dx+

∫

V

ψ∆φdx =

∮

S

ψ(Dmφ)dS (3.315)

Here Dmφ =< m, ∂φ > is the derivative of the scalar function φ in the normal
direction represented by the unitary orthogonal vector m at the surface S = ∂V
oriented outside of V . The expression in 3.315 is the first Green formula and by
permutation and subtracting we get the second Green formula

∫

V

(ψ∆φ− φ∆ψ)dx =

∮

S

[ψ(Dmφ) − φ(Dmψ)]dS (3.316)

Theorem 3.13.1. (a) If a harmonic function h vanishes on the boundary S = ∂V
then h(x) = 0 for any x ∈ intV

(b) If h1 and h2 are two harmonic functions satisfying h1(x) = h2(x), x ∈ S = ∂V,
then h1(x) = h2(x) for all x ∈ int V.

(c) If a harmonic vector field H(x) satisfies < m,H >= 0 on the boundary S = ∂V
then H(x) = 0 for any x ∈ int V.

(d) If H1 and H2 are two harmonic vector fields satisfying < m,H1 >=< m,H2 >
on the boundary S = ∂V then H1(x) = H2(x) for any x ∈ int V.

Proof. (a): Using the first Green formula 3.315 for φ = ψ = h and ∆h = 0 we
get

∫
V |∂h|2dx = 0 and therefore ∂h = gradh(x) = 0 for any x ∈ V which implies

h(x) = const, x ∈ V. Using h(x) = 0, x ∈ S = ∂V . We conclude h(x) = 0 for any
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x ∈ V.
(b): For h(x) = h1(x) − h2(x) use the conclusion of (a).
(c): By hypothesis H(x) = ∂h(x), x ∈ V, where the potential function h(x), x ∈ V, is
harmonic, ∆h = 0. Using the first Green formula (3.315) for φ = ψ = h with ∆φ = 0
and Dmφ =< m,H > (x) = 0 for x ∈ S = ∂V.. We get

∫

V

|∂h|2dx =

∫

V

|H(x)|2dx = 0 andH(x) = 0 for allx ∈ V.

(d): Follows from (c) using the same argument as in (b). The proof is complete.

Theorem 3.13.2. (a) If h(x) is harmonic on the domain V ⊂ Rn then∮
S

(Dmh)(x)dS = 0, where Dmh =< m, ∂h > .

(b) Let B(y, r) ⊂ V be a ball centered at y ∈ intV, and h is a harmonic function on
V ⊂ Rn. Then the arithmetic mean value on

∑
= ∂B(y, r) equals the value

h(y) at the center y,

h(y) =
1

|∑ |

∮

∑

h(x)dS.

(c) A harmonic function h(x) : Rn → R which satisfies lim|x|→∞ h(x) = 0 is vanish-
ing everywhere, h(x) = 0, for all x ∈ Rn

Proof. (a): Use (3.316) for φ = h, ψ = 1.
(b): Let B(y, ρ) ⊂ B(y, r) be another ball, ρ < r, and denote

∑
r = ∂B(y, ρ) the

corresponding boundaries. Define Vrρ = W − Q and notice that the boundary S =
∂Vrρ =

∑
r

∐∑
ρ, where W = B(y, r), Q = B(y, ρ). The normal derivative Dm =<

m, ∂ > is oriented outside of the domain Vrρ and it implies

Dm = ∂r on
∑

r

Dm = −∂r on
∑

ρ

Take V = Vrρ, ϕ = h, ψ = 1
|x−y|n−2 in the second Green formula ((3.316)). It is known

that ψ(x), x ∈ V , is a harmonic function on V (see x 6= y) and as a consequence the
left hand side in ((3.316)) vanishes. The corresponding right hand side in ((3.316))
can be written as a difference on

∑
r and

∑
ρ and the equation ((3.316))lead us to

∮
∑

r

[
1

rn−2

∂h

∂r
− h

∂

∂r
(

1

rn−2
)]dS =

∮
∑

ρ

[
1

ρn−2

∂h

∂r
− h

∂

∂r
(

1

rn−2
)]dS.

Performing the elementary derivatives we get

1

rn−2

∮
∑

r

∂h

∂r
dS +

n− 2

rn−1

∮
∑

r

h dS =
1

ρn−2

∮
∑

ρ

∂h

∂r
dS +

n− 2

ρn−1

∮
∑

ρ

h dS.
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The first term in both sides of the last equality vanishes (see (a)). Let |S1| be the
area of the sphere S(0, 1) ⊆ Rn and dividing by |S1|. We get 1

rn−1|S1|
∮
∑

r
h dS =

1
ρn−1|S1|

∮
∑

ρ
h dS, where rn−1|S1| = |∑r |, ρn−1|S1| = |∑ρ |. Using the continuity

property of h and letting ρ→ 0 from the last equality we get the conclusion (b). (c) :
Using the conclusion of (b) for r → ∞, we get conclusion (c).

3.13.3 Recovering a Harmonic Function Inside a Ball I

By Using its Boundary Values

The arguments for this conclusion are based on the second Green formula written on
a domain V = W −Q, where W = B(0, r), Q = B(y, ρ) ⊆ B(0, r). This time, we use
the following harmonic functions on V (∂V = S =

∑
r

∐∑
ρ)

ϕ = h(x), ψ = ψ(x) =
1

|x− y|n−2
− rn−2

|y|n−2

1

|x− y ∗ |n−2
(3.317)

where y∗ = r2

|y|2 y, ψ(x) = 0, x ∈ ∑
r = ∂B(0, r) and ψ0(x) = rn−2

|y|n−2
1

|x−y∗|n−2 is

harmonic on W . The second Green formula becomes

−
∮
∑

r

h(x)
∂ψ

∂r
dS =

∮
∑

ρ

[ψ
∂h

∂ρ
(x) − h

∂ψ

∂ρ
(x)]dS (3.318)

where ∂
∂ρ stands for the derivative following the direction of the radius [y, x], x ∈∑ρ .

A direct computation lead us to




|
∮
∑

ρ

ψ ∂h∂ρ (x)dS| 6 c1
1

ρn−2 c2ρ
n−1 → 0 for ρ→ 0

|
∮
∑

ρ
h∂ψ0(x)

∂ρ dS| 6 cρn−1 → 0 for ρ→ 0
(3.319)

and ∮
∑

ρ

h
∂

∂ρ

1

ρn−2
ds = (n− 2)

∮
∑

ρ

h
1

ρn−1
ds =

(n− 2) | S1 |
|∑ρ |

(3.320)

∮
∑

ρ

h ds −→ (n− 2) | S1 | h(y), forρ −→ 0

Letting ρ −→ 0 from (3.318) we get

h(y) =
−1

(n− 2) | S1 |

∮

∑

h(x)
∂ψ

∂r
(x) ds (3.321)
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It remains to compute ∂ψ(x)
∂r on x ∈∑r and it is easily seen that see ψ(x) = const x ∈∑

r
∂ψ

∂r
(x) = − | gradψ(x) | (3.322)

By definition, y∗ is taken such that

| x− y |2
| x− y∗ |2 =

r2 − 2 < x, y > + | y |2
r2 − 2 < x, y > r2

|y|2 + r4

|y|2
=

| y |2
r2

= const (3.323)

for any x ∈∑r and the direct computation of | gradψ(x) | shows that

| gradψ(x) |= (n− 2)(r2− | y |2)

r | x− y |n , | x |= r (3.324)

provided (3.323) is used. Using (3.322) and (3.324) int (3.321) we get the following
Poisson formula

h(y) =
r2− | y |2
| S1 | r

∮

∑

h(x)

| x− y |n ds =

∮

∑

P (x, y)h(x) ds, (3.325)

where Poisson kernel

P (x, y) =
r2− | y |2
| S1 | r

1

| x− y |n > 0 for any y ∈ B(0, r) (3.326)

Theorem 3.13.3. Let λ(x) : Σ ⊆ Rn → R be a continuous function where Σ = ∂W is
the boundary of a fixed ball W ⊂ Rn. Then there exists a unique continuous function
h(y) : W −→ Rwhich is harmonic for y ∈ intW and coincides withλ(x) on the
boundary Σ.

Proof. Let r > 0 be the radius of the ballW and for any y ∈ intW define h(y) as
follows.

h(y) =

∮

∑

P (x, y)λ(x)ds (3.327)

where P (x, y) = r2−|y|2
|S1|r

1
|x−y|n is the Poisson kernel (see(3.326)) We know that both

ϕ(y) = 1
|x−y|n−2 , y ∈ intW and its derivatives ∂ϕ(y)

ϕyi
, y ∈ intW, i ∈ 1, 2 . . . , n are

harmonic function. As a consequence the following linear combination
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ϕ(y) − 2

n− 2

n∑

i=1

xi
∂ϕ(y)

∂yi
=

1

| x− y |n−2
+ 2

n∑

i=1

xi(yi − xi)

| x− y |n

=
1

| x− y |n (

n∑

i=1

(xi − yi)
2 + 2

n∑

i=1

xiyi − 2

n∑

i=1

x2i )

=
1

| x− y |n
n∑

i=1

(y2i − x2i )

=
| y2 | −r2
| x− y |n = − | Si | P (x, y) (3.328)

is a harmonic function. In conclusion, h(y), y ∈ intW, defined in ((3.327)is a har-
monic function. On the other hand, for a sequence {ym}m>1 ⊂ intW, lim

m−→∞
ym =

χ0 ∈ Σ. We get ∮

Σ

P (x, ym)dS = 1(see(3.325), forh ≡ 1) (3.329)

lim
m−→∞

∫

Σ

P (x, ym)dS = 0, whereΣ′ = ∂B(x0, δ) ∩ Σ, δ > 0, (3.330)

and | x− ym |> c > 0,m > 1, are used.

Using (3.329) and (3.330) we see easily that

lim
m→∞

∮

∑

P (x, ym)λ(x)ds = λ(x0) (3.331)

and {h(y) : y ∈ W} is a continuous function satisfying

h(x) = λ(x), x ∈
∑

(3.332)

△h(y) = 0, (forall)y ∈ intW (3.333)

A continuous function satisfying (3.332) and (3.333) is unique provided the maximum
principle for laplace equation is used.
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3.13.4 Recovering a Harmonic Function Inside a Ball II

By Using its Normal Derivative on the Boundary

Let h(y) : W ⊆ Rn → R be a harmonic function and W = B(z, r) ⊆ Rn is a ball.
Then

φ(y) =
n∑

i=1

yi
∂h(y)

∂yi
and

∂h(y)

∂yi
, i ∈ 1, 2, ...., n (3.334)

are harmonic functions on the ball W;

ϕ(x) = ϕ
∂h(x)

∂ρ
, for any x in Σ = ∂W (3.335)

where ∂h(x)
∂ρ is the normal derivative of h on Σ. The property (3.334) is obtained

by a direct computation the property (3.335) uses the following argument. Without
restricting generality, take z = 0, r = 1, and for y = ρ.x, |x| = 1, 0 6 ρ 6 1, rewrite
h(y) in (3.334) as follows

Theorem 3.13.4. Let λ(x) :
∑ ⊆ Rn → R be a continuous function satisfying∮

∑ λ(x)dS = 0, where
∑

= ∂W is the boundary of a ball W = B(z, r) ⊆ Rn .Then

there exists a continuous function h(y) : W → R which is harmonic on y ∈ intW

and admitting the normal derivative ∂h(ρx)
∂ρ (x ∈∑, 0 < ρ 6 1) which equals λ(x) for

ρ = 1. Any other function ϕ with these properties verifies

ϕ(y) − h(y) = const (∀) y ∈W. (3.336)

Proof. The existence of a function h uses the Poisson kernel P (x, y) given in (§3.10),

ϕ(y) =

∮

∑
P (x, y)λ(x)dS. (3.337)

Using (§3.16, §3.17) we know that the function {ϕ(y), y ∈ W} is continuous and

{
ϕ(x) = λ(x), x ∈∑

∆ϕ(y) = 0, y in int W (varphi is harmonic on int W)
(3.338)

In addition, using
∮
∑ λ(x)dS = 0 we get

ϕ(0) =

∮

∑
λ(x)dS = 0 (3.339)
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Define

h(y) = h(ρx) =

∫ ρ

0

ϕ(τx)

τ
dτ + h(0) (3.340)

where ϕ(y) is continuously derivable at y = 0, ϕ(0) = 0 and h(0) = const (arbitrarily
fixed). We shall show that h(y) : W → R is a continuous function satisfying

∆h(y) = 0, y ∈ intW (h is harmonic in intW ) (3.341)

∂h(ρx)

∂ρ

∣∣∣∣
ρ=1

=
∂h(x)

∂ρ
= ϕ(x) = λ(x), x ∈

∑
(3.342)

For simplicity, take h(0) = 0, and using (3.340) for ρ = 1 we compute

∮

∑
P (s, y)h(s)dS =

∮

∑
P (s, y)

{∫ 1

0

ϕ(τs)

τ
dτ

}
dS

∫ 1

0

{∮

∑
P (s, y)

ϕ(τs)

τ
dS

}
dτ (3.343)

By the definition ϕ(τs)
τ , τ ∈ [0, 1] fixed, is a harmonic function satisfying (3.338) and

(3.343) is rewritten as

∮

∑
P (s, y)h(s)dS =

∫ 1

0

ϕ(τs)

τ
dτ =

∫ ρ

0

ϕ(ξx)

ξ
dξ = h(y). (3.344)

where {
ϕ(τy)

τ
, τ ∈ [0, 1]

}
→
{
ϕ(ξy)

ξ
, ξ ∈ [0, ρ]

}
(3.345)

and ξ = ρτ are used. The equation (3.344) stands for (3.341) and (3.342) is obtained
from (3.340) by a direct derivation.

Bibliographical Comments

Mainly, it was written using the references [5] and [10]. The last section 3.9 follows
the same presentation as in the reference [12]. In the appendices are are used the
presentation contained in the references [4] and [9].
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Chapter 4

Stochastic Differential
Equations; Approximation
and Stochastic Rule of
Derivations

4.1 Properties of continuous semimartingales and
stochastic integrals

Let a complete probability space {Ω, F, P} be given. Assume that a family of sub
σ-fields Ft ⊆ F, t ∈ [0, T ], is given such that the following properties are fulfilled:

i) Each Ft contains all null sets of F .

ii) (Ft) is increasing, i.e. Ft ⊆ Fs if t > s.

iii) (Ft) is right continuous, i.e.
⋂
ε>0

Ft+ε = Ft for any t < T . Let X(t), t ∈ [0, T ]

be a measurable stochastic process with values in R. We will assume, unless other-
wise mentioned, that it is Ft-adapted, i.e., X(t) is Ft-measurable for any t ∈ [0, T ].
The process X(t) is called continuous if X(t;ω) is a continuous function of t for
almost all ω ∈ Ω. Let Lc be the linear space consisting of all continuous stochas-
tic processes. We introduce the metric ρ by |X − Y | = ρ(X,Y ) = (E[sup

t
|X(t) −

167
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Y (t)|2/(1 + sup
t

|X(t) − Y (t)|2])1/2. It is equivalent to the topology of the uniform

convergence in probability. A sequence {Xn} of Lc is a Cauchy sequence iff for any
ε > 0, P (sup

t
|Xn(t) − Xm(t)| > ε) → 0 if n,m → ∞. Obviously Lc is a complete

metric space. We introduce the norm || · || by ||X || = (E[sup
t

|X(t)|2])1/2 and denote

by L2
c the set of all elements in Lc with finite norms. We may say that the topology

of L2
c is the uniform convergence in L2. Since ρ(X, 0) 6 ||X ||, the topology by || || is

stronger than that by ρ and it is easy to see that L2
c is a dense subset of Lc.

Definition 4.1.1. Let X(t), t ∈ [0, T ], be a continuous Ft-adapted process. (i) It is
called a martingale if E|X(t)| < ∞ for any t and satisfies E[X(t)/Fs] = X(s) for
any t > s.

(ii) It is called a local martingale if there exists an increasing sequence of stopping
times (Tn) such that Tn ↑ T and each stopped process XTn

(t) ≡ X(t∧Tn) is a martingale

(iii) It is called an increasing process if X(t;ω) is an increasing function of t almost
surely (a.s.) with respect to ω ∈ Ω, i.e. there is a P -null set N ⊆ Ω such that X(t, ω),
t ∈ [0, T ] is an increasing function for any ω ∈ Ω \N .

(iv) It is called a process of bounded variation if it is written as the difference of
two increasing processes.

(v) It is called a semi-martingale if it is written as the sum of a local martingale
and a process of bounded variation.

We will quote two classical results of Doob concerning martingales without giving
proofs.(see A. Friedmann)

Theorem 4.1.2. Let X(t), t ∈ [0, T ] be a martingale.

(i) Optional sampling theorem. Let S and U be stopping times with values
in [0, T ]. Then X(S) is integrable and satisfies E[X(S)/F (U)] = X(S ∧ U), where
F (U) = {A ∈ FT : A ∩ {U 6 t}} ∈ F (t) for any t ∈ [0, T ]}

(ii) Inequality. Suppose E|X(T )|p <∞ with p > 1. Then

E sup
t

|X(t)|p 6 qpE|X(T )|p

where
1

p
+

1

q
= 1

Remark 4.1.3. Let S be a stopping time. If X(t) is a martingale the stopped process
XS(t) ≡ X(t∧ S) is also a martingale. In fact, by Doob’s optional sampling theorem
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we have (for t > s) E[XS(t)|F (s)] = X(t ∧ S ∧ s) = X(S ∧ s) = XS(s). Similarly,
if X is a local martingale the stopped process XS is a local martingale. Let X be
a local martingale. Then there is an increasing sequence of stopping times Sk ↑ T
such that each stopped process XSk is a bounded martingale. In fact, define Sk by
Sk = inf {t > 0 : |X(t)| > k}(= T if {· · · } = φ). Then Sk ↑ T and it holds
sup
t

|XSk(t)| 6 k, so that each XSk is a bounded martingale.

Remark 4.1.4. Let Mc be the set of all square integrable martingale, X(t) with
X(0) = 0. Because of Doob’s inequality the norm ||X || is finite for any X ∈ Mc.

HenceMc is a subset of L2
c. We denoteM loc

c the set of all continuous local martingales
X(t) such that X(0) = 0 ; it is a subset of Lc.

Theorem 4.1.5. Mc is a closed subspace of L2
c · M loc

c is a closed subspace of Lc.
Further more, Mc is dense in M loc

c .

Remark 4.1.6. Denote by H2
t the set consisting of all random variables h : Ω →

R which are Ft-measurable and E|h|2 < ∞. Then for each X ∈ L2
c there holds

E[X(T )/Ft] = ĥ where ĥ ∈ H2
t is the optional solution for

min
h∈H2

t

E|X(T ) − h|2 = E|X(T ) − ĥ|2

Definition Let X(t) be a continuous stochastic process and ∆ a partition of the

interval [0, T ] : ∆ = {0 = t0 < . . . < tn = T , and let |∆| = max(ti+1 − ti). Associated

with the partition ∆, we define a continuous process 〈X〉∆(t) as

〈X〉∆(t) =
k−1∑

i=0

(X(ti+1 −X(ti))
2 + (X(t) −X(tk))2

where k is the number such that tk 6 t < tk+1. We call it the quadratic variation of
X(t) associated with the partition ∆ Now let {∆}m be a sequence of partitions such

that |∆m| → 0. If the limit of 〈X〉∆m(t) exists in probability and it is independent
of the choice of sequence {∆m} a.s., it is called the quadratic variation of X(t) and
is denoted by 〈X〉(t). We will see that a natural class of processes where quadratic
variations are well defined is that of continuous semimartingales.

Lemma 4.1.7. Let X be a continuous process of bounded variation. Then the
quadratic variation exists and it equals zero a.s.

Proof. Let |X |(t;ω) be the total variation of the function X(s, ω), 0 6 s 6 t. Then
there holds

|X |(t) = sup
∆

[|X(t0)| +

k−1∑

j=0

|X(tj+1) −X(tj)| + |X(t) −X(tk)|]

and 〈X〉∆(t) 6
(∑k−1

j=0 |X(tj+1) −X(tj)| + |X(t) −X(tk)|
)

max
i

|X(ti+1) −X(ti)|
6 |X |(t) max

i
|X(ti+1) −X(ti)|
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The right hand side converges to 0 for |∆| → 0 a.s.

Theorem 4.1.8. Let M(t) t ∈ [0, T ], be a bounded continuous martingale. Let {∆n}
be a sequence of partitions such that |∆n| → 0. Then 〈M〉∆n(t), t ∈ [0, T ], converges
uniformly to a continuous increasing process 〈M〉(t) in L2 sense, i.e.,

lim
n→∞

E[sup
t

|〈M〉∆n(t) − 〈M〉(t)|2] = 0;

in addition M2(t) − 〈M〉(t), t ∈ [0, T ] is a martingale.

The proof is based on the following two lemmas.

Lemma 4.1.9. For any t > s, there holds,

E[〈M〉∆(t)/F (s)] − 〈M〉∆(s) = E[(M(t) −M(s))2|F (s)]

In particular, M2(t) − 〈M〉∆(t) is a continuous martingale.

Hint. Rewrite M(t) and M(s) as follows (s < t)

M(t) = M(t) −M(tk) +

k−1∑

i=0

[M(ti+1 −M(ti)] +M(0),where tk 6 t < tk+1

M(s) = M(s) −M(sl) +

l−1∑

i=0

[M(si+1) −M(si)] +M(0),where sl 6 s < sl+1

and ∆ ∩ [0, s] = {0 = s0 < s1 < . . . < sl}. On the other hand

E[(M(t) −M(s))2/F (s)] = E[(M(t) −M(tk))2 +

k−1∑

i=l+1

(M(ti+1) −M(ti))
2

+ (M(sl+1) −M(s))2/F (s)] (4.1)

where tl+1 = sl+1 and

E[(M(ti+1) −M(ti))(M(tj+1) −M(tj)]/F (s)]

= E{E[(M(ti+1) −M(ti)](M(tj+1) −M(tj))/F (tj+1)]/F (s)} = 0 (ifi > j)(4.2)

are used. Adding and subtracting M∆(s) = M(s) − M(sl))
2 +

∑l−1
i=0(M(si+1) −

M(si))
2 we get the first conclusion which can be written as a martingale property.

Lemma 4.1.10. It holds

lim
n,m→∞

E[|〈M〉∆n(T ) − 〈M〉∆m(T )|2] = 0.
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Theorem 4.1.11. M(t) be a continuous local martingale. Then there is a contin-
uous increasing process 〈M〉(t) such that 〈M〉∆(t) converges uniformly to 〈M〉(t) in
probability.

Corollary 4.1.12. M2(t)−〈M〉(t) is a local martingale if M(t) is a continuous local
martingale.

Theorem 4.1.13. Let X(t) be a continuous semi-martingale. Then 〈X〉∆(t) con-
verges, uniformly to 〈M〉(t) in probability as |∆| → 0, where M(t) is the local mar-
tingale part of X(t)

Stochastic integrals Let M(t) be a continuous local martingale and let f(t) be a
continuous F (t) adapted process. We will define the stochastic integral of f(t) by the
differential dM(t) using the properties of martingales, especially those of quadratic
variations. Let ∆ = (0 = t0 < . . . < tn = T ) be a partition of [0, T ]. For any t ∈ [0, T ]
choose tk of ∆ such that tk 6 t < tk+1 and define

L∆(t) =
k−1∑

i=0

f(ti)(M(ti+1) −M(ti)) + f(tk))(M(t) −M(tk)) (4.3)

It is easily seen that L∆(t) is a continuous local martingale. The quadratic variation
is computed directly as

〈L∆〉(t) =

k−1∑

i=0

f2(ti)(〈M〉(ti+1)

− 〈M〉(ti)) + f2(tk)(〈M〉(t) − 〈M〉(tk))

∫ t

0

|f∆(s)|2d〈M〉(s) (4.4)

where f∆(s) is a step process defined from f(s) by f∆(s) = f(tk) if tk 6 s < tk+1.
Let ∆′ be another partition of [0, T ]. We define L∆′

(t) similarly, using the same f(s)
and M(s). Then there holds

〈L∆ −  L∆′〉(t) =

∫ t

0

|f∆
(s) − f∆′

(s) |2d〈M〉(s).

Now let {∆n} be a sequence of partitions of [0, T ] such that |∆n| → 0. Then 〈L∆n −
L∆m〉(T ) converges to 0 in probability as n,m → ∞. Hence {L∆n} is a Cauchy
sequence in M loc

c . We denote the limit as L(t).

Definition 4.1.14. The above L(t) is called the Itô integral of f(t) by dM(t) and is

denoted by L(t) =
∫ t
0 f(s)dM(s).
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Definition 4.1.15. Let X(t) be a continuous semimartingale decomposed to the sum
of a continuous local martingale M(t) and a continuous process of bounded variation
A(t)

Let f be an F (t)-adapted process such that f ∈ L2(〈M〉) and∫ T
0 |f(s)|d|A|(s)〈∞. Then the Ito integral of f(t) by dX(t) is defined as

∫ t

0

f(s)dX(s) =

∫ t

0

f(s)dM(s) +

∫ t

0

f(s)dA(s)

Remark 4.1.16. If f is a continuous semimartingale then
∫ t
0 f(s)dX(s) exists. We

will define another stochastic integral by the differential ”◦dX (s) s ∈ [0, t]
∫ t
0 f(s) ◦

dX(s) = lim|∆|→0

[∑k−1
i=0

1
2 (f(ti+1) + f(ti))(X(ti+1) −X(ti))

+ 1
2 (f(t) + f(tk))(X(t) −X(tk))

]

Definition 4.1.17. If the above limit exists, it is called the Fisk-Stratonovich integral
of f(s) by dX(s).

Remark 4.1.18. If f is a continuous semimartingale, the Fisk-Stratonovitch integral
is well defined and satisfies

∫ t
0
f(s) ◦ dX(s) =

∫ t
0
f(s)dX(s) + 1

2 〈f,X〉(t)

Proof. Is easily seen from the relation

k−1∑

i=0

1

2
(f(ti+1) + f(ti))(X(ti+1) −X(ti)) +

1

2
(f(t) + f(tk))(X(t) −X(tk))

=

k−1∑

i=0

f(ti)(X(ti+1) −X(ti)) + f(tk)(X(t) −X(tk)) +
1

2
〈f,X〉∆(t) (4.5)

where the joint quadratic variation

〈f,X〉∆(t) =

k−1∑

i=0

(f(ti+1 − f(ti))(X(ti+1 −X(ti)) + (f(t) − f(tk))(X(t) −X(tk))

and k is the number such that tk 6 t < tk+1.

Theorem 4.1.19. Let X and Y be continuous semi-martingales. The joint quadratic
variation associated with the partition ∆ is defined as before and is written 〈X,Y 〉∆.
Then 〈X,Y 〉∆ converges uniformly in probability to a continuous process of bounded
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variation 〈X,Y 〉(t). If M and N are local martingale parts of X and Y , respectively,
then 〈X,Y 〉 coincides with 〈M,N〉

Remark 4.1.20. Let w(t) = (w1(t), . . . , wm(t)) be an m-dimensional (F(t))-adapted
continuous stochastic process. It is an (F(t))-Wiener process iff each wi(t) is a scalar
Wiener process with the joint quadratic variation fulfilling 〈wi, wj〉(t) = δijt where
δii = 1 and δy = 0 i 6= j

4.2 Approximations of the diffusion equations by
smooth ordinary differential equations

The m-dimensional Wiener process is approximated by a smooth process and it allows
one to use non anticipative smooth solutions of ordinary differential equations as ap-
proximations for solutions of a diffusion equation. It comes from Langevin’s classical
procedure of defining a stochastic differential equation. By a standard m-dimensional
Wiener process we mean a measurable function w(t, ω) ∈ Rm, (t;ω) ∈ [0,∞) × Ω
with continuous trajectories w(t, ω) for each ω ∈ Ω such that w(0, ω) = 0, and i1 )
E(w(2)) − w(t1)/Ft1) = 0, i2) E([w(t2) − w(t1)][w(t2) − w(t1)]T /Ft1) = Im(t2 − t1)
for any 0 6 t1 < t2, where (Ω,F , P ) is a given complete probability space and Ft ⊆ F
is the σ-algebra generated by (w(s), s 6 t). The quoted Langevin procedure replaces
a standard m-dimensional Wiener process by a C1 non-anticipative process vε(t) (see
vε(t) is Ft measurable) as follows

vε(t) = w(t) −
∫ t

0

(exp − β(t − s))dw(s), β =
1

ε
, ε ↓ 0 (4.6)

where the integral in the right hand side is computed as

w(t) − β

∫ t

0

w(s)(exp − β(t− s))ds (the integration by parts formula) (4.7)

Actually, vε(t), t ∈ [0, T ], is the solution of the following equations

dvε(t)

dt
= −βvε(t) + βw(t) = β(w(t) − vε(t), vε(0) = 0 (4.8)

and by a direct computation we obtain

E||vε(t) − w(t)||2 6 ε, t ∈ [0, T ] (4.9)

Rewrite vε(t) in (4.6) as
vε(t) = w(t) − ηε(t),
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where

ηε(t) =

∫ t

0

exp − β(t− s)dw(s) (4.10)

fulfills dηi = −βηidt+ dwi(t), i = 1, . . . ,m, and

dvε
dt

(t) = βηε(t), β =
1

ε
, ε ↓ 0. (4.11)

Now, we are given continuous functions

f(t, x), gj(t, x) : [0, T ] ×Rn → Rn, j = 1, . . . ,m,

such that

(α)

{
i) f, gj are bounded, j = 1, . . . ,m

ii) ||h(t, x′′) − h(t, x′|| 6 L||x′′ − x′|| (∀)x′, x′′ ∈ Rn, t ∈ [0, T ]

where L > 0 is a constant,h , f, gj. In addition, we assume that (gj ∈ C1,2
b ([0, T ] ×

Rn)

β)
d∂gj
∂t ,

d∂gj
∂x ,

d∂2gj
∂t∂x ,

d∂2gj
∂x2 , j = 1, . . . ,m, are continuous and bounded functions. Let

x0(t) and xε(t), t ∈ [0, T ], be the solution in

dx = [f(t, x) +
1

2

m∑

i=1

∂gi
∂x

(t, x)gi(t, x)]dt (4.12)

+

m∑

i=1

gi(t, x)dwi(t), x(0) = x0

and
dx

dt
= f(t, x) +

m∑

i=1

gi(t, x)
dviε(t)

dt
, x(0) = x0 (4.13)

correspondingly, where vε(t) is associated with w(t) in (4.6) and fulfills (4.8)-(4.11).
It is the Fisk-Stratonovich integral (see ”◦” below) which allow one to rewrite the
system (4.12) as

dx = f(t, x)dt+

m∑

i=1

gi(t, x) ◦ dwi(t), x(0) = x0, (4.14)

where

gi(t, x) ◦ dwi(t) def= gi(t, x)dwi(t) +
1

2

∂gi
∂x

(t, x)gi(tx)dt

Theorem 4.2.1. Assume that continuous functions f(t, x), gi(t, x), t ∈ [0, T ], x ∈ Rn,
are given such that (α) and (β) are fulfilled. Then limε→0E||xε(t) − x0(t)||2 = 0, t ∈
[0, T ], where x0(t) and xε(t) are the solutions defined in (4.12) and, respectively,(4.13)
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Proof. Using (4.12) we rewrite the solution xε(t) as

xε(t) = x0 +

∫ t

0

f(s), xε(s))ds+

m∑

i=1

β

∫ t

0

ηiε(s)gi(s, xε(s))ds, t ∈ [0, T ] (4.15)

and from Ft-measurability of ηε(t) we obtain that xε(t) is Ft-measurable and non-
anticipative with respect to {Ft}, t ∈ [0, T ]. Therefore, the stochastic integrals∫ t

0

gi(s, xε(s))dw
i(s) and

∫ t

0

gi(s, xε(s))dη
i
ε(s) are well defined, and using (4.10) we

obtain

∫ t

0

gi(s, xε(s))dη
i
ε(s) = −β

∫ t

0

gi(s, xε(s))η
i
ε(s)ds+

∫ t

0

gi(s, xε(s, xε(s))dw
i(s).

(4.16)
Step 1

Using (4.15)in(4.15) there follows

xε(t) = x0 +

∫ t

0

f(s, xε(s))ds+

m∑

i=1

∫ t

0

gi(s, xε(s))dw
i(s)

−
m∑

i=1

∫ t

0

gi(ss, xε(s))dη
i
ε(s), t ∈ [0, T ] (4.17)

In what follows it will be proved that (see step 2 and step 3)

−
∫ t

0

gi(s, xε(s))dη
i
ε(s) =

1

2

∫ t

0

∂gi
∂x

(s, xε(s))gi(s, xε(s))ds+Ot(ε) (4.18)

where E||Ot(ε)||2 6 c1ε, (∀) t ∈ [0, T ], for some constant c1 > 0. Using (4.18) in
(4.17) we rewrite (4.17) as

xε(t) = x0 +

∫ t

0

[
f(s, xε(s))

+
1

2

m∑

i=1

∂gi
∂x

(s, xε(s))gi(s, xε(s))
]
ds

m∑

i=1

∫ t

0

gi(s, xε(s))dw
i(s) +Ot(ε),(4.19)

where E|Ot(ε)||2 6 c1ε.

The hypotheses (α) and (β) allow one to check that

f̃(t, x) , f(t, x) +
1

2

m∑

i=1

∂gi
∂x

(t, x)gi(t, x)

and gi(t, x) fulfil (α) also but with a new Lipschitz constant L̃.
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The proof will be complete noticing that

E||xε(t) − x0(t)||2 6 c2

∫ t

0

E||xε(s) − x0(s)||2ds+ c3ε, t ∈ [0, T ] (4.20)

for some constants c2, c3 > 0 and Gronwall’s lemma applied to (4.20) implies

E||xε(t) − x0(t)||2 6 εc3(expTc2) = εc4 (4.21)

which proves the conclusion.

Step 2

To obtain (4.18) fulfilled we use an ordinary calculus as integration by parts formula
(see xε(t) is a C1 function in t ∈ [0, T ]). More precisely

−
∫ t

0

gi(s, xε(s))dη
i
ε(s) = −gi(t, xε(t)ηiε(t) +

∫ t

0

ηiε(s)
( d
ds
gi(s, xε(s))

)
ds

=

m∑

j=1

∫ t

0

∂gi
∂x

(s, xε(s))gj(s, xε(s))
dvjε(s)

ds
ηiε(s)ds

+ Oit(ε) ,

m∑

j=1

Tij(t) +Oit(ε), (4.22)

Here

Tij(t) ,

∫ t

0

∂gi
∂x

(s, xε(s))gj(s, xε(s))
dvjε(s)

ds
ηiε(s)ds and

Oit(ε) ,

∫ t

0

ηiε(s)
[∂gi
∂s

(s, xε(s)) +
∂gi
∂x

(s, xε(s))f(s, xε(s))
]
ds

−gi(t, xε(t))ηiε(t)
satisfies

E||O1
t (ε)||2 6 kε, t ∈ [0, T ], (4.23)

(see E||ηiε(t)||2 6 ε in (4.10) and f, gi,
∂gi
∂x

;
∂gi
∂t

are bounded). On the other hand,

dvjε
dt

= βηjε(t) (see (4.11)) and using βηjε(t)dt = dwj(t)− dηjε(t) (see (4.10)) we obtain

that Tij in (4.22) fulfils

Tij(t) = −
∫ t

0

gij(s, xε(s))η
i
ε(s)dη

j
ε(s) + θ2t (ε), (4.24)
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where gij(t, x) ,
∂gi
∂x

(t, x)gj(t, x) and

θ2t (ε) ,

∫ t

0

gij(s, xε(s))η
i
ε(s)dw

j(s)

satisfies
E||θ2t (ε)||2 6 k2ε, t ∈ [0, T ] (4.25)

(see gij bounded and E||ηiε(t)||2 6 ε).

Step 3

(a) For i = j we use formulas

ηiε(t) = (exp − βt)µiε(t), µ
i
ε(t) =

∫ t

0

(expβs)dwi(s)

(ηiε(t))
2 = (exp − 2βt)(µiε(t))

2 = (exp − 2βt)
[ ∫ t

0

2(exp2βs)ηiε(s)dw
i(s) +

∫ t

0

(exp2βs)ds
]

= 2

∫ t

0

ηiε(s)dη
i
ε(s) +

∫ t

0

ds

Tii(t) = −
∫ t

0

gii(s, xε(s))η
i
ε(s)dη

i
ε(s) + θ2t (ε) (see (4.24))

We get

Tii(t) =
1

2

∫ t

0

gii(s, xε(s))ds − 1

2

∫ t

0

gii(s, xε)d(ηiε(t))
2 + θ2t (ε)

=
1

2

∫ t

0

gii(s, xε(s))ds − 1

2
gii(t, xε(t))(η

i
ε(t))

2

+
1

2

∫ t

0

[ d
ds
gii(s, xε(s))

]
(ηiε(s))

2ds+ θ2t (ε)

=
1

2

∫ t

0

gii(s, xε(s))ds+O2
t (ε). (4.26)

Here

O2
t (ε) , θ2t (ε) − 1

2
gii(t, xε(t))(η

i
ε(t))

2

+
1

2

∫ t

0

[ ∂
∂s
gii(s, xε(s)) +

∂gii
∂x

(s, xε(s))f(s, xε(s))

+β

m∑

j=1

∂gii
∂x

(s, xε(s))gj(s, xε(s))η
j
ε(s)

]
(ηiε(s))

2ds
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fulfils E||O2
t (ε)||2 6 K̃2ε taking into account that

E||θ2t (ε)||2 6 k2ε (see (4.24)), E(ηiε(t))
2 = (exp − 2βt)E(µiε(t))

2 6 ε (4.27)

In addition, write (ηiε(t))
2 = (exp − 2βt)(µiε(t))

2, where (µiε(t))
2 = ai(t) + b(t) is the

corresponding decomposition using martingale ai(t) ,
∫ t
0

2µi(s)(expβs)dwi(s) and

b(t) ,
∫ t
0

(exp2βs)ds. Compute (ηiε(t))
4 = (exp − 4βt)[ai(t))

2 + (b(t))2 + 2ai(t)b(t)]
and (ηiε(t))

6 = (exp − 6βt)[(ai(t))
3 + (b(t))3 + 3(ai(t))

2b(t) + 3ai(t)(b(t))
2]. Noticing

that ai(t), t ∈ [0, T ], is a martingale with ai(0) = 0 we can prove (exercise!) that any
(ai(t))

m(m = 2, 3) satisfies

E(ai(t))
m =

1

2

∫ t

0

m (m− 1)E[ai(s))
m−2 (fi(s))

2]ds

where fi(t) , 2(expβt)µi(t) and ai(t) ,
∫ t
0 fi(s)dw

i(s). We get

E(ηiε(t))
4 6 (const) ε2, E(ηiε(t))

6 6 (const) ε3 t ∈ [0, T ] (4.28)

and the conclusion E||θ2t (ε)||2 6 (const)ε used in (4.26) follows directly from (4.27)
and (4.28).

(b) For any i 6= j, there holds

Tij(t) = −
∫ t

0

gij(s, xε(s))η
i
ε(s)dη

j
ε(s) + θ2t (ε) (see (17))

where
dηjε(s) = −βηjε(s)ds+ dwj(s) (see (4.10)) (4.29)

Using (4.29) in (4.24) for i 6= j we obtain that ηiε(t), η
j
ε(t) are independent random

variables and

Tij(t) = −1

2

∫ t

0

gij(s, xε(s))d[ηiε(s)η
j
ε(s)] + θt(ε) + Õt(ε), (4.30)

where

Õt(ε) = −
∫ t

0

gij(s, xε(s))η
i
ε(s)dw

j(s)

satisfies
E||Õt(ε)||2 6 (const)ε (see gij is bounded andE(ηiε(s))

2 6 ε) (4.31)

Integrating by parts the first term in (4.30) and using

E(ηiε(t))
2(ηjε(t))

2 6 (const)ε2, E(ηiε(t))
2(ηjε(t))

2(ηkε (t))2 6 (const)ε3 (4.32)

we finally obtain

Tij(t) = Õ2
t (ε)withE||Õ2

t (ε)||2 6 C̃ε, t ∈ [0, T ] (4.33)
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Using (4.26), (4.33) in (4.22) we find (4.18) fulfilled. The proof is complete

Remark 4.2.2. Under the conditions in theorem (4.2.1) it might be useful to notice
that the computations remain unchanged if a stopping time τ : Ω → [0, T ], {ω : τ >
t} ∈ Ft, (∀)t ∈ [0, T ], is used. Namely

lim
ε↓0

E||xε(t ∧ τ) − x0(t ∧ τ)||2 = 0 (∀) t ∈ [0, T ],

if the random varieble τ : Ω → [0, T ] is adapted to {Ft} i.e. {ω : τ > t} ∈ Ft for
t ∈ [0, T ].

Proof. By definition

xε(t ∧ τ) = x0 +

∫ t∧τ

0

f(s, xε(s))ds+
m∑

j=1

∫ t∧τ

0

gj(s, xε(s)
dvjε
ds

(s),

x0(t ∧ τ) = x0 +

∫ t∧τ

0

f̃(t, x0(s))ds+
m∑

j=1

∫ t∧τ

0

gj(s, x0(s)dwj(s), t ∈ [0, T ],

where

f̃(t, x) , f(t, x) +
1

2

m∑

j=1

∂gj
∂x

(t, x)gj(t, x).

Using the characteristic function

χ(t, ω) =

{
1 if τ(ω) > t

0 if τ(ω) < t

which is a non-anticipative function, we rewrite yε(t) , xε(t∧τ) and y0(t) , χ0(t∧τ)
as

(∗) yε(t) = x0 +

∫ t

0

χ(s)f(s, yε(s)ds+
m∑

j=1

∫ t

0

χ(s)gj(s, yε(s)
dvjε(s)

ds
,

(∗∗) y0(t) = x0 +

∫ t

0

χ(s)f̃(s, y0(s))ds +
m∑

j=1

∫ t

0

χ(s)gj(s, y0(s))dwj(s).

Now the computations in Theorem 4.2.1 repeated for (*) and (**) allow one to obtain
the conclusion.

Remark 4.2.3. Using Remark 1 we may remove the boundedness assumption of f, gj
in the hypothesis (α) of Theorem 4.2.1. That is to say, the solutions xε(t), x0(t), t ∈
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[0, T ], exist assuming only the hypothesis (α, (ii)) and (β), and to obtain the conclusion
we multiply f, gj by a C∞ scalar function 0 6 αN (x) 6 1 such that αN (x) = 1 if
x ∈ SN (x0) , αN (x) = 0 if x ∈ Rn S2N(x0) where Sρ(x0) ⊆ Rn is the ball of radius ρ
and centered at x0. We obtain new bounded functions

fN (t, x) = f(t, x)αN (x), gNj (t, x) = gj(t, x)αN (x)

fulfilling (α) and (β) of Theorem 4.2.1, and therefore limε↓0 E||xNε (t) − xN0 (t)||2 = 0
(∀) t ∈ [0, T ], where xNε (t) and xN0 (t) are the corresponding solutions. On the other
hand, using a stopping time (exit ball time)

τN (ω) = inf{t > 0 : x0(t, ω) 6∈ SN (x0)}

we obtain x0(t ∧ τN ) = xN0 (t ∧ τN ), t ∈ [0, T ] (see Friedmann) where x0(t), t ∈ [0, T ]
is the solution of the equation (4.12) with f, gi fulfilling (α, ii) and (β).

Finally we obtain:

c) lim
ε→0

E||xNε (t ∧ τN ) − x0(t ∧ τN )||2 = 0

for any t ∈ [0, T ], and for arbitrarily fixed N > 0. The conclusion (c) represents the
approximation of the solution in (4.12) under the hypotheses (α, ii) and (β).

Remark 4.2.4. The nonanticipative process vε(t), t ∈ [0, T ], used in Theorem 4.2.1
is only of the class C1 with respect to t ∈ [0, T ], but a minor change in the approxi-

mating equations as follows (β =
1

ε
, ε ↓ 0)

dvε
dt

(t) = y1, ε
dy1
dt

= −y1 + y2, . . . , ε
dyk−1

dt
= −yk−1 + yk

εdyk = −ykdt+ dw(t), t ∈ [0, T ], yj(0) = 0, j = 1, . . . k, vε(0) = 0

will allow one to obtain a non-anticipative vε(t), t ∈ [0, T ] of the class Ck, for an
arbitrarily fixed k.

4.3 Stochastic rule of derivation

The results contained in Theorem 4.2.1 and in remarks following the theorem give the
possibility to obtain, in a straight manner, the standard rule of stochastic derivation
associated with stochastic differential equations ( SDE.) (6s) when the drift vector
field f(t, x) ∈ Rn and diffusion vector fields gj(t, x) ∈ Rn, j ∈ {1, . . . ,m} are not
bounded with respect to (t, x) ∈ [0, T ]×Rn. More precisely, we are given continuous
functions
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f(t, x), gj(t, x) : [0, T ] ×Rn → Rn, j = 1, . . . ,m

such that

(1) ||h(t, x′′)− h(t, x′)|| 6 L||x′′ − x′||, for any x′, x′′ ∈ Rn, t ∈ [0, T ] where L > 0 is
a constant and h stands for f or gj , j ∈ {1, . . . ,m}

(2) gj ∈ C1,2
b ([0, T ] × Rn) i.e. ∂tgj , ∂xgj , ∂

2
txgj and ∂2x2gj, j ∈ {1, . . . ,m} are con-

tinuous and bounded functions

Consider the following system of SDE

(3) dx = f(t, x)dt+

m∑

j=1

gj(t, x) ◦ dwj(t), x(0) = x0, t ∈ [0, T ] where Fisk-Stratonovich

integral ”0” is related to It ô stochatisc integral ”.” by

gj(t, x) ◦ dwj(t) def= gj(t, x) • dwj(t) +
1

2
[dxgj(t, x)]gj(t, x)dt

Assuming that {f, gj, j = 1, . . . ,m}, fulfil the hypotheses (1), (2) then there is a
unique solution x(t) : [0, T ] → Rn which is a continuous and Ft-adapted process
satisfying the corresponding integral equation

(4) x(t) = x0 +

∫ t

0

f(s, x(s))ds+
m∑

j=1

∫ t

0

gj(s, x(s)) ◦ dwj(s), t ∈ [0, T ]

(see A. Friedman). Here w(t) = (w1(t), . . . , wm(t) : [0, T ] → Rm is the stan-
dard Wiener process over the filtered probability space {Ω, {Ft} ↑⊆ F , P} and
{Ft, t ∈ [0, T ]} ⊆ F is the corresponding increasing family of σ-algebras. Con-
sider the exist ball time

(5) τ
def
= inf{t ∈ [0, T ] : x(t) 6∈ B(x0, ρ)} associated with the unique solution of (4)

and the ball centered at x0 ∈ Rn with radius ρ > 0.

By definition, each set {ω : τ > t} belongs to Ft, t ∈ [0, T ] and the characteristic
function χτ (t) : [0, T ] → {0, 1}, χτ(t) = 1 for τ > t, χτ (t) = 0 for τ < t, is an
Ft-adapted process

Theorem 4.3.1. (stochastic rule of derivation)

Assume that the hypotheses (1) and (2) are fulfilled and let {x(t) : t ∈ [0, T ]} be
the unique solution of (4).

Define a stopping time τ : Ω → [0, T ] as in (5) and consider a smooth scalar
function ϕ ∈ C1,3([0, T ] ×Rn). Then the following integral equation is valid
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(6) ϕ(t ∧ τ, x(t ∧ τ)) = ϕ(0, x0) +
∫ t∧τ
0

[∂sϕ(s, x(s))+ < ∂xϕ(s, x(s)),

f(s, x(s)) >]ds+
∑m

j=1

∫ t∧τ
0 < ∂xϕ(s, x(s))gj(s, x(s)) > ◦ dwj(s),

t ∈ [0, T ]

where the Fisk-Stratonovich integral ”0” is defined by

hj(s, x(s)) ◦ dwj(s) = hj(s, x(s)).dwj(s) + 1
2 [∂xhj(s, x(s))]gj(s, x(s))]ds

using Itô stochastic integral ”.”.

Proof. Denote α(t) = ϕ(t, x(t)) ∈ R, z(t) = col(α(t), x(t) ∈ Rn, t ∈ [0, T ] where
{x(t), t ∈ [0, T ]} is the unique solution of (4) and ϕ ∈ C1,3([0, T ] × Rn) is fixed.

Define new vector fields f̂(t, x) = col(h0(t, x), f(t, x) ∈ Rn+1,

(7) ĝj(t, x) = col(hj(t, x), gj(t, x)) ∈ Rn+1, j ∈ {1, . . . ,m},

where

h0(t, x)
def
= ∂tϕ(t, x)+ < ∂xϕ(t, x), f(t, x) >

and

hj(t, x) =< ∂xϕ(t, x), gj(t, x) >, (t, x) ∈ [0, T ]×Rn, j ∈ {1 . . . ,m}, z = col(α, x) ∈
Rn+1.

Let γ(x) : Rn → [0, 1] be a smooth function (γ ∈ C∞(Rn)) such that γ(x) = 1
if x ∈ B(x0, ρ), γ(x) = 0 if x ∈ Rn \ B(x0, 2ρ) and 0 6 γ(x) 6 1 for any

x ∈ B(x0, 2ρ) \B(x0, ρ), where ρ > 0 is fixed arbitrarily. Multiplying f̂ and ĝj
by γ ∈ C∞(Rn) we get

(8) fρ(t, x)
def
= γ(x) f̂(t, x), gρj (t, x) = γ(x)ĝj(t, x), j = 1, . . . ,m, as smooth func-

tions satisfying the hypothesis of Theorem 4.2.1 and denote {zρ(t), t ∈ [0, T ]}
the unique solution fulfilling the foloowing system of SDE. (zρ(t) = (αρ(t), xρ(t))

(9) zρ(t) = z0 +

∫ t

0

fρ(s, xρ(s))ds+

m∑

j=1

∫ t

0

gρj (s, xρ(s)) ◦ dwj(s), t ∈ [0, T ], where

z0 = col(ϕ(0, x0), x0) ∈ Rn+1 and
gρj (s, xρ(s)) ◦ dwj)(s) = gρj (s, xρ(s)) • dwj(s) + 1

2 [∂xg
ρ
j (s, xρ(s))]gρj (s, xρ(s))ds.

In particular, for t ∈ [0, τ ] and using the characteristic function χτ (t),
t ∈ [0, T ], (see (5)) we rewrite (9) as

(10) zρ(t ∧ τ) = z0 +

∫ t

0

χτ (s)f̂(s, x(s))ds +

m∑

j=1

∫ t

0

χ∂(s)ĝj(s, x(s)) ◦ dw(s) for any

t ∈ [0, T ], where zρ(t ∧ τ) = (αρ(t ∧ τ), x(t ∧ τ)) and ĝj(f̂) are defined in (7).

Using Remark 4.2.3, we get

(11)
lim
ε→0

E||zρε (t) − zρ(t ∧ τ)|| = 0, for each t ∈ [0, T ]
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Here zρε
def
= zρε (t ∧ τ), t ∈ [0, T ], verifies the following system of ODE.

(12)





dz

dt
= χτ (t)fρ(t, x) +

m∑

j=1

χτ (t)gj(t, x)
dvjε(t)

dt
, t ∈ [0, T ]

z(0) = z0 = (ϕ(0, x0), x0)

where the vector fields fρ, gρj , f ∈ {1, . . .m} are defined in (8) and fulfil the hypothesis
of Theorem 4.2.1. By definition, zρε (t) = (αρε(t), x

ρ
ε(t), t ∈ [0, T ], and (12) can be

rewritten as follows

(13)





dαρε(t)

dt
= χτ (t)γ(xρε(t))

[
h0(t, xρε(t)) +

m∑

j=1

hj(t, x
ρ
ε(t))

dvjε(t)

dt

]

dxρε(t)

dt
= χτ (t)γ(xρε(t))

[
f(t, xρε(t)) +

m∑

j=1

gj(t, x
ρ
ε(t))

dvjε(t)

dt

]

αρε(0) = ϕ(0, x0), xρε(0) = x0, t ∈ [0, T ],

where the scalar functions hi, i ∈ {0, 1, . . . ,m}, are given in (7).

In a similar way, write zρ(t) = (αρ(t), xρ(t)), t ∈ [0, T ] and using (10) we get that
αρ(t ∧ τ) = α̂ρ(t) and xρ(t ∧ τ) = x̂ρ(t), t ∈ [0, T ] fulfil the following system of SDE.
(14)



α̂ρ(t) = ϕ(0, x0) +

∫ t

0

χτ (s)h0(s, x(s))ds +

m∑

j=1

,

∫ t

0

χτ (s)hj(s, x(s)) ◦ dwj(s)

x(t ∧ τ) = x̂ρ(t) = x0 +

∫ t

0

χτ (s)f(s, x(s))ds +

m∑

j=1

∫ t

0

χτ (s)gj(s, x(s)) ◦ dwj(s)

Notice that αρε(t) = ϕ(t ∧ τ, xρε(t)) and xρε(t), t ∈ [0, T ], ε > 0, are bounded and
convergent to α̂ρ(t), x(t ∧ τ) = x̂ρ(t), correspondigly, for each t ∈ [0, T ] (see (11)),
when ε→ 0.

As a consequence

(15)

ϕ(t ∧ τ, x(t ∧ τ)) = lim
ε→0

ϕ(t ∧ τ, xρε(t)) = lim
ε→0

αρε(t) = α̂ρ(t) =

= ϕ(0, x0) +

∫ t∧τ

0

h0(s, x(s))ds +

m∑

j=1

∫ t∧τ

0

hj(s, x(s)) ◦ dwj(s), t ∈ [0, T ]

and the proof of the conclusion (6) is complete.
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Comment on stochastic rule of derivation
The stochastic rule of derivation is based on the hypothesis (2) which involves higher

differentiability properties of the diffusion vector fields

gj ∈ C1,2
b ([0, T ] ×Rn;Rn), j ∈ {1, . . . ,m}

On the other hand, using a stopping time τ : Ω → [0, T ], the right hand side of the
equation (6) is a semimartingale without imposing any growth condition on the test
function ϕ ∈ C1,3([0, T ] × Rn). The standard stochastic rule of derivation does not
contain a stopping time and it can be accomplished assuming the following growth
condition

(16) |∂tϕ(t, x)|, |∂xi
ϕ(t, x)|, |∂2xixj

ϕ(t, x)| 6 k(1 + ||x||p), i, j ∈ {1, . . . , n},
x ∈ Rn, where p > 1 (natural) and k > 0 are fixed. Adding condition (16) to the
hypotheses (1) and (2) of Theorem 4.3.1, and using a sequence of stopping times
τρ : Ω → [0, T ], lim

ρ→∞
τρ = T , we get the following stochastic rule of derivation

(17)

ϕ(t, x(t)) = ϕ(0, x0) +

∫ t

0

[∂sϕ(s, x(s))+ < ∂xϕ(s, x(s)), f(s, x(s)) >]ds+

+

m∑

j=1

∫ t

0

< ∂xϕ(s, x(s)), gj(s, x(s)) > ◦dwj(s), t ∈ [0, T ]

.

4.4 Appendix

I. Two problems for stochastic flows asociated with
nonlinear parabolic equations

(I. Molnar , C. Varsan, Functionals associated with gradient stochastic flows and
nonlinear parabolic equations, preprint IMAR 12/2009)
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4.4.1 Introduction

Consider that {x̂ϕ(t;λ) : t ∈ [0, T ]} is the unique solution of SDE driven by complete
vector fields f ∈ (Cb ∩ C1

b ∩ C2)(Rn;Rn) and g ∈ (C1
b ∩ C2)(Rn;Rn),

{
dtx̂ = ϕ(λ)f(x̂)dt+ g(x̂) ◦ dw(t), t ∈ [0, T ], x ∈ R

n,

x̂(0) = λ ∈ R
n,

(4.34)

where ϕ ∈ (C1
b ∩ C2)(Rn) and w(t) ∈ R is a scalar Wiener process over a complete

filtered probability space {Ω,F ⊃ {Ft}, P}. We recall that Fisk-Stratonovich integral
“◦” in (4.34) is computed by

g(x) ◦ dw(t) = g(x) · dw(t) +
1

2
∂xg(x) · g(x)dt,

using Ito stochastic integral “·”.

We are going to introduce some nonlinear SPDE or PDE of parabolic type which
describe the evolution of stochastic functionals u(t, x) := h(ψ(t, x)), or S(t, x) :=
Eh(x̂ψ(T ; t, x)), t ∈ [0, T ], x ∈ Rn, for a fixed h ∈ (C1

b ∩ C2)(Rn). Here {λ = ψ(t, x) :
t ∈ [0, T ], x ∈ Rn} is the unique solution satisfying integral equations

x̂ϕ(t;λ) = x ∈ R
n, t ∈ [0, T ]. (4.35)

The evolution of {S(t, x) : t ∈ [0, T ], x ∈ Rn} will be defined by some nonlinear
backward parabolic equation considering that {x̂ψ(s; t, x) : s ∈ [t, T ], x ∈ Rn} is the
unique solution of SDE

{
dsx̂ = ϕ(ψ(t, x))f(x̂)ds+ g(x̂) ◦ dw(s), s ∈ [t, T ],

x̂(t) = x ∈ R
n.

4.4.2 Some problems and their solutions

Problem (P1). Assume that g and f commute using Lie bracket, i.e.

[g, f ](x) = 0, x ∈ R
n, (4.36)

where [g, f ](x) := [∂xg(x)]f(x) − [∂xf(x)]g(x),

TVK = ρ ∈ [0, 1), (4.37)

where V = sup{|∂xϕ(x)| : x ∈ R}n and K = sup{|f(x)|;x ∈ Rn}.
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Under the hypotheses (4.36) and (4.37), find the nonlinear SPDE of parabolic
type satisfied by {u(t, x) = h(ψ(t, x)) :∈ [0, T ], x ∈ Rn}, h ∈ (C1

b ∩ C2)(Rn), where
{λ = ψ(t, x) ∈ Rn : t ∈ [0, T ], x ∈ Rn} is the unique continuous and Ft-adapted
solution of the integral equation (4.35).

Problem (P2). Using {λ = ψ(t, x)} found in (P1), describe the evolution of a func-
tional S(t, x) := Eh(x̂ψ(T ; t, x)) using backward parabolic equations, where {x̂ψ(s; t, x) :
s ∈ [t, T ]} is the unique solution of SDE

{
dsx̂ = ϕ(ψ(t, x))f(x̂)ds+ g(x̂) ◦ dw(s), s ∈ [t, T ]

x̂(t) = x ∈ R
n.

(4.38)

4.4.3 Solution for the Problem (P1)

Remark 4.4.1. Under the hypotheses (4.36) and (4.37) of (P1), the unique solution
of integral equations (4.35) will be found as a composition

ψ(t, x) = ψ̂(t, ẑ(t, x)), (4.39)

where ẑ(t, x) := G(−w(t))[x] and λ = ψ̂(t, z), t ∈ [0, T ], z ∈ Rn, is the unique
deterministic solution satisfying integral equations

λ = F (−θ(t;λ))[z] =: V̂ (t, z;λ), t ∈ [0, T ], z ∈ R
n. (4.40)

Here F (σ)[z] and G(τ)[z], σ, τ ∈ R, are the global flows generated by complete vector
fields f and g correspondingly, and θ(t;λ) = tϕ(λ). The unique solution of (4.40) is
constructed in the following

Lemma 4.4.2. Assume that (4.37) is fulfilled. Then there exists a unique smooth

deterministic mapping {λ = ψ̂(t, z) : t ∈ [0, T ], x ∈ Rn} solving integral equations
(4.40) such that





F (θ(t; ψ̂(t, z)))[ψ̂(t, z)] = z ∈ R
n, t ∈ [0, T ],

|ψ̂(t, z) − z| 6 R(T, z) :=
r(T, z)

1 − ρ
, t ∈ [0, T ], where r(T, z) = TK|ϕ(z)|,

(4.41)

{
∂tψ̂(t, z) + ∂zψ̂(t, z)f(z)ϕ(ψ̂(t, z)) = 0, t ∈ [0, T ], x ∈ R

n,

ψ̂(0, z) = z ∈ R
n.

(4.42)

Proof. The mapping V̂ (t, z;λ) (see (4.40)) is a contractive application with respect
to λ ∈ Rn, uniformly of (t, z) ∈ [0, T ]×Rn which allows us to get the unique solution
of (4.40) using a standard procedure (Banach theorem). By a direct computation, we
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get
|∂λV̂ (t, z;λ)| = |f(V̂ (t, z;λ))∂λθ(t;λ)| 6 TVK = ρ ∈ [0, 1), (4.43)

for any t ∈ [0, T ], z ∈ Rn, λ ∈ Rn, where ∂λθ(t;λ) is a row vector. The corresponding
convergent sequence {λk(t, z) : t ∈ [0, T ], z ∈ Rn}k>0 is constructed fulfilling

λ0(t, z) = z, λk+1(t, z) = V̂ (t, z;λk(t, z)), t > 0, (4.44)

{
|λk+1(t, z) − λk(t, z)| 6 ρk|λ1(t, z) − λ0(t, z)|, k > 0,

|λ1(t, z) − λ0(t, z)| 6 |V̂ (t, z; z) − z| 6 TK|ϕ(z)| =: r(T, z).
(4.45)

Using (4.45) we obtain that {λk(t, z)}k>0 is convergent and

ψ̂(t, z) = lim
k→∞

λk(t, z), |ψ̂(t, z) − z| 6 r(T, z)

1 − ρ
=: R(T, z), t ∈ [0, T ]. (4.46)

Passing k → ∞ into (4.44) and using (4.46) we get the first conclusion (4.41). On the

other hand, notice that {V̂ (t, z;λ) : t ∈ [0, T ], z ∈ Rn} of (4.40) fulfils

V̂ (t, ŷ(t, λ);λ) = λ, t ∈ [0, T ], where ŷ(t, λ) = F (θ(t;λ))[λ]. (4.47)

This shows that all the components of V̂ (t, z;λ) ∈ Rn are first integrals associated
with the vector field fλ(z) = ϕ(λ)f(z), z ∈ Rn, for each λ ∈ Rn, i.e.

∂tV̂ (t, ŷ(t, λ);λ) + [∂zV̂ (t, ŷ(t, λ);λ)]f(ŷ(t, λ))ϕ(λ) = 0, t ∈ [0, T ] (4.48)

is valid for each λ ∈ Rn. In particular, for λ = ψ̂(t, z) we get ŷ(t, ψ̂(t, z)) = z and
(4.48) becomes (H-J)-equation

∂tV̂ (t, z; ψ̂(t, z)) + [∂zV̂ (t, z; ψ̂(t, z)]f(z)ϕ(ψ̂(t, z)) = 0, t ∈ [0, T ], z ∈ R
n. (4.49)

Combining (4.40) and (4.49), by direct computation, we convince ourselves that λ =

ψ̂(t, z) fulfils the following nonlinear (H-J)-equation (see (4.42))

{
∂tψ̂(t, z) + [∂zψ̂(t, z)]f(z)ϕ(ψ̂(t, z)) = 0, t ∈ [0, T ], z ∈ R

n,

ψ̂(0, z) = z ∈ R
n,

(4.50)

and the proof is complete.

Remark 4.4.3. Under the hypothesis (4.36), the {x̂ϕ(t;λ) : t ∈ [0, T ], λ ∈ Rn}
generated by SDE (4.34) can be represented as follows

x̂ϕ(t;λ) = G(w(t)) ◦ F (θ(t;λ))[λ] = H(t, w(t);λ), t ∈ [0, T ], λ ∈ R
n (4.51)

where θ(t;λ) = tϕ(λ).

Lemma 4.4.4. Assume that (4.36) and (4.37) are satisfied and consider {λ =

ψ̂(t, z) : t ∈ [0, T ], z ∈ Rn} found in Lemma 4.4.2. Then the stochastic flow gen-
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erated by SDE (4.34) fulfils

{x̂ϕ(t;λ) : t ∈ [0, T ], λ ∈ R
n} can be represented as in (4.51), (4.52)

ψ(t, x) = ψ̂(t, ẑ(t, x)) is the unique solution of integral equations (4.35),

where ẑ(t, x) = G(−w(t))[x].
(4.53)

Proof. Using the hypothesis (4.36), we see easily that

y(θ, σ)[λ] := G(σ) ◦ F (θ)[λ], θ, σ ∈ R, λ ∈ R
n (4.54)

is the unique solution of the gradient system

{
∂θy(θ, σ)[λ] = f(y(θ, σ)[λ]), ∂σy(θ, σ)[λ] = g(y(θ, σ)[λ]),

y(0, 0)[λ] = λ
(4.55)

Applying the standard rule of stochastic derivation associated with the smooth map-
ping ϕ(θ, σ) := y(θ, σ)[λ] and the continuous process θ = θ(t;λ) = tϕ(λ), σ = w(t),
we get that ŷϕ(t;λ) = y(θ(t;λ), w(t)), t ∈ [0, T ], fulfils SDE (4.34), i.e.

{
dtŷϕ(t;λ) = ϕ(λ)f(ŷϕ(t;x))dt + g(ŷϕ(t;λ)) ◦ dw(t), t ∈ [0, T ],

ŷϕ(0;λ) = λ.
(4.56)

On the other hand, the unicity of the solution satisfying (4.34) lead us to the conclu-
sion that x̂ϕ(t;λ) = ŷϕ(t;λ), t ∈ [0, T ], and (4.52) is proved. The conclusion (4.53) is

a direct consequence of (4.52) combined with {λ = ψ̂(t, z) : t ∈ [0, T ], z ∈ Rn} is the
solution defined in Lemma 4.4.2. The proof is complete.

Lemma 4.4.5. Under the hypotheses in Lemma 4.4.4, consider the continuous and
Ft-adapted process ẑ(t, x) = G(−w(t))[x], t ∈ [0, T ], x ∈ Rn. Then the following
SPDE of parabolic type is valid

{
dtẑ(t, x) + ∂xẑ(t, x)g(x)◦̂dw(t) = 0, t ∈ [0, T ], x x ∈ R

n,

ẑ(0, x) = x
(4.57)

where the “◦̂” is computed by

h(t, x)◦̂dw(t) = h(t, x) · dw(t) − 1

2
∂xh(t, x)g(x)dt,

using Ito “·”.

Proof. The conclusion (4.57) is a direct consequence of applying standard rule of
stochastic derivation associated with σ = w(t) and smooth deterministic mapping
H(σ)[x] := G(−σ)[x]. In this respect, using H(σ) ◦ G(σ)[λ] = λ ∈ Rn for any
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x = G(σ)[λ], we get





∂σ{H(σ)[x]} = −∂x{H(σ)[x]} · g(x), σ ∈ R, x ∈ R
n,

∂2σ{H(σ)[x]} = ∂σ{∂σ{H(σ)[x]}} = ∂σ{−∂x{H(σ)[x]} · g(x)}
= ∂x{∂x{H(σ)[x]} · g(x)} · g(x), σ ∈ R, x ∈ R

n.

(4.58)

The standard rule of stochastic derivation lead us to SDE

dtẑ(t, x) = ∂σ{H(σ)[x]}σ=w(t) · dw(t) +
1

2
∂2σ{H(σ)[x]}σ=w(t)dt, t ∈ [0, T ], (4.59)

and rewritting the right hand side of (4.59) (see (4.58)) we get SPDE of parabolic
type given in (4.57). The proof is complete.

Lemma 4.4.6. Assume the hypotheses (4.36) and (4.37) are fulfilled and consider
{λ = ψ(t, x) : t ∈ [0, T ], x ∈ Rn} defined in Lemma (4.4.4). Then u(t, x) := h(ψ(t, x)),
t ∈ [0, T ], x ∈ Rn, h ∈ (C1

b ∩ C2)(Rn), satisfies the following nonlinear SPDE of
parabolic type

{
dtu(t, x) + 〈∂xu(t, x), f(x)〉ϕ(ψ(t, x))dt + 〈∂xu(t, x), g(x)〉◦̂dw(t) = 0

u(0, x) = h(x), t ∈ [0, T ], x ∈ R
n,

(4.60)

where the “◦̂” is computed by

h(t, x)◦̂dw(t) = h(t, x) · dw(t) − 1

2
∂xh(t, x)g(x)dt.

Proof. By definition (see Lemma (4.4.4)), ψ(t, x) = ψ̂(t, ẑ(t, x)), t ∈ [0, T ], where

ẑ(, x) = G(−w(t))[x] and {ψ̂(t, z) ∈ Rn : t ∈ [0, T ], z ∈ Rn} satisfies nonlinear (H-J)-
equations (4.42) of Lemma 4.4.2. In addition {ẑ(t, x) ∈ Rn : t ∈ [0, T ], x ∈ Rn} fulfils
SPDE (4.57) in Lemma 4.4.5, i.e.

dtẑ(t, x) + ∂xẑ(t, x)◦̂dw(t) = 0, t ∈ [0, T ], x ∈ R
n. (4.61)

Applying the standard rule of stochastic derivation associated with the smooth map-
ping {λ = ψ̂(t, z) : t ∈ [0, T ], z ∈ Rn} and stochastic process ẑ(t, x) := G(−w(t))[x] =:
H(w(t))[x], t ∈ [0, T ], we get the following nonlinear SPDE

{
dtψ(t, x) + ∂xψ(t, x)f(x)ϕ(ψ(t, x))dt + ∂xψ(t, x)g(x)◦̂dw(t) = 0,

ψ(0, x) = x, t ∈ [0, T ].
(4.62)

In addition, the functional u(t, x) = h(ψ(t, x)) can be rewritten u(t, x) = û(t, ẑ(t, x)),

where û(t, z) := h(ψ̂(t, z)) is a smooth satisfying nonlinear (H-J)-equations (see (4.42)
of Lemma 4.4.2)

{
∂tû(t, z) + 〈∂z û(t, z), f(z)〉ϕ(ψ̂(t, z)) = 0, t ∈ [0, T ], z ∈ R

n,

û(0, z) = h(z).
(4.63)
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Using (4.61)and (4.63) we obtain SDPE fulfilled by {u(t, x)},

{
dtu(t, x) + 〈∂z û(t, ẑ(t, x)), f(ẑ(t, x))〉ϕ(ψ(t, x))dt + 〈∂xu(t, x), g(x)〉◦̂dw(t) = 0,

u(0, x) = h(x), t ∈ [0, T ], x ∈ R
n.

(4.64)
The hypothesis (4.36) allows us to write

〈∂zû(t, ẑ(t, x)), f(ẑ(t, x))〉 = ∂zû(t, ẑ(t, x))[∂xẑ(t, x)][∂xẑ(t, x)]−1f(ẑ(t, x))

= 〈∂xu(t, x), f(x)〉, t ∈ [0, T ], x ∈ R
n,

(4.65)

and using (4.65) into (4.64) we get the conclusion (4.60),

{
∂tu(t, x) + 〈∂xu(t, x), f(x)〉ϕ(ψ(t, x))dt + 〈∂xu(t, x), g(x)〉◦̂dw(t) = 0,

u(0, x) = h(x), t ∈ [0, T ], x ∈ R
n,

(4.66)

where the “◦̂” is computed by

h(t, x)◦̂dw(t) = −1

2
∂xh(t, x)g(x)dt + h(t, x) · dw(t), (4.67)

using Ito integral “·”. The proof is complete.

Remark 4.4.7. The complete solution of Problem (P1) is contained in Lemmas
4.4.2–4.4.6. We shall rewrite them as a theorem.

Theorem 4.4.8. Assume that the vector fields f ∈ (Cb ∩ C1
b ∩ C2)(Rn;Rn), g ∈

(C1
b ∩ C2)(Rn;Rn), and scalar function ϕ ∈ (C1

b ∩ C2)(Rn) fulfil the hypotheses (4.36)
and (4.37). Consider the continuous and Ft- {λ = ψ(t, x ∈ Rn) : t ∈ [0, T ], x ∈ Rn}
satisfying integral equations (4.35). Then u(t, x) := h(ψ(t, x)), t ∈ [0, T ], x ∈ Rn,
fulfils nonlinear SPDE of parabolic type (4.60) (see Lemma 4.4.6), for each h ∈ (C1

b ∩
C2)(Rn).

4.4.4 Solution for the Problem (P2)

Using the same notations as in subsection 4.4.3, we consider the unique solution
{x̂ψ(s; t, x) : s ∈ [t, T ]} satisfying SDE (4.38) for each 0 6 t < T and x ∈ Rn. As far
as SDE (4.38) is a , the evolution of a functional S(t, x) := Eh(x̂ψ(T ; t, x)), t ∈ [0, T ],
x ∈ Rn, h ∈ (C1

b ∩C2)(Rn), will be described using the pathwise representation of the
conditional mean values functional

v(t, x) = E{h(x̂ψ(T ; t, x)) | ψ(t, x)}, 0 6 t < T, x ∈ R
n. (4.68)

Assuming the hypotheses (4.36) and (4.37) we may and do write the following integral
representation

x̂ψ(T ; t, x) = G(w(T ) − w(t)) ◦ F [(T − t)ϕ(ψ(t, x))][x], 0 6 t < T, x ∈ R
n, (4.69)



4.4. APPENDIX 191

for a solution of SDE (4.38), where G(σ)[z] and F (τ)[z], σ, τ ∈ R, z ∈ Rn, are the
global flows generated by g, f ∈ (C1

b ∩ C2)(Rn;Rn). The right side hand of (4.69) is a
continuous mapping of the two independent random variables, z1 = [w(T )−w(t)] ∈ R

and z2 = ψ(t, x) ∈ Rn (Ft-measurable) for each 0 6 t < T , x ∈ Rn. A direct
consequence of this remark is to use a

y(t, x;λ) = G(w(T ) − w(t)) ◦ F [(T − t)ϕ(λ)][x], 0 6 t < T, (4.70)

and to compute the conditional mean values (4.68) by

v(t, x) = [Eh(y(t, x;λ))](λ = ψ(t, x)). (4.71)

Here the functional

u(t, x;λ) := Eh(y(t, x;λ)), t ∈ [0, T ], x ∈ R
n, (4.72)

satisfies a backward parabolic equation (Kolmogorov’s equation) for each λ ∈ Rn and
rewrite (4.71) as follows,

v(t, x) = u(t, x;ψ(t, x)), 0 6 t < T, x ∈ R
n. (4.73)

In conclusion, the functional {S(t, x)} can be written as

S(t, x) = E[E{h(x̂ψ(T ; t, x)) | ψ(t, x)} = Eu(t, x;ψ(t, x)), 0 6 t < T, x ∈ R
n,
(4.74)

where {u(t, x;λ) : t ∈ [0, T ], x ∈ Rn} satisfies the corresponding backward parabolic
equations with parameter λ ∈ Rn,





∂tu(t, x;λ) + 〈∂xu(t, x;λ), f(x, λ)〉 +
1

2
〈∂2xu(t, x;λ)g(x), g(x)〉 = 0,

u(T, x;λ) = h(x), f(x, λ) := ϕ(λ)f(x) +
1

2
[∂xg(x)]g(x).

(4.75)

We conclude these remarks by a theorem.

Theorem 4.4.9. Assume that the vector fields f, g and the scalar function ϕ of SDE
(4.38) fulfil the hypotheses (4.36) (4.37), where the continuous and Ft- {ψ(t, x) ∈ Rn :
t ∈ [0, T ]} is defined in Theorem 4.4.8. Then the evolution of the functional

S(t, x) := Eh(x̂ψ(T ; t, x)), t ∈ [0, T ], x ∈ R
n, h ∈ (C1

b ∩ C2)(Rn) (4.76)

can be described as in (4.74), where {u(t, x) : t ∈ [0, T ], x ∈ Rn} satisfies linear
backward parabolic equations (4.75) for each λ ∈ Rn.

Remark 4.4.10. Consider the case of several vector fields defining both the drift and
diffusion of SDE (4.34), i.e.




dtx̂ = [

m∑

i=1

ϕi(λ)fi(x̂)]dt+

m∑

i=1

gi(x̂) ◦ dwi(t), t ∈ [0, T ],

x̂(0) = λ ∈ R
n.

(4.77)
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We notice that the analysis presented in Theorems 4.4.8 and 4.4.9 can be extended to
this multiple vector fields case (see next section).

4.4.5 Multiple vector fields case

We are given two finite sets of vector fields {f1, . . . , fm} ⊂ (Cb ∩ C1
b ∩ C2)(Rn;Rn)

and {g1, . . . , gm} ⊂ (C1
b ∩C2)(Rn;Rn) and consider the unique solution {x̂ϕ(t, λ) : t ∈

[0, T ], λ ∈ Rn} of SDE




dtx̂ = [

m∑

i=1

ϕi(λ)fi(x̂)]dt+

m∑

i=1

gi(x̂) ◦ dwi(t), t ∈ [0, T ], x̂ ∈ R
n,

x̂(0) = λ ∈ R
n

(4.78)

where ϕ = (ϕ1, . . . , ϕm) ⊂ (C1
b ∩ C2) are fixed and w = (w1(t), . . . , wm(t)) ∈ Rm is a

standard Wiener process over a complete filtered probability space {Ω,F ⊃ {Ft}, P}.
Each “◦” in (4.78) is computed by

gi(x) ◦ dwi(t) = gi(x) · dwi(t) +
1

2
[∂xgi(x)]gi(x)dt, (4.79)

using Ito integral “·”.

Assume that {λ = ψ(t, x) ∈ Rn : t ∈ [0, T ], x ∈ Rn} is the unique continuous and
Ft-adapted solution satisfying integral equations

x̂ϕ(t;λ) = x ∈ R
n, t ∈ [0, T ]. (4.80)

For each h ∈ (C1
b ∩ C2)(Rn), associate stochastic functionals {u(t, x) = h(ψ(t, x) :

t ∈ [0, T ], x ∈ Rn)} and {S(t, x) = Eh(x̂ψ(T ; t, x)) : t ∈ [0, T ], x ∈ Rn}, where
{x̂ψ(s; t, x) : s ∈ [t, T ], x ∈ Rn} satisfies the following SDE




dsx̂ = [

m∑

i=1

ϕi(ψ(t, x))fi(x̂)]ds+

m∑

i=1

gi(x̂) ◦ dwi(t), s ∈ [t, T ],

x̂(t) = x.

Problem (P1). Assume that

{
M = {f1, . . . , fm, g1, . . . , gm} are muttualy commuting using Lie bracket i.e.

[X1, X2](x) = 0 for any pair X1, X2 ∈M

(4.81)

TViKi = ρi ∈ [0,
1

m
), (4.82)



4.4. APPENDIX 193

where Vi := sup{|∂xϕi(x)| : x ∈ Rn} and Ki = {|fi(x)| : x ∈ Rn}, i = 1, . . . ,m.

Under the hypotheses (4.81) and (4.82), find the nonlinear SPDE of parabolic
type satisfied by {u(t, x) = h(ψ(t, x)), t ∈ [0, T ], x ∈ Rn}, h ∈ (C1

b ∩ C2)(Rn), where
{λ = ψ(t, x) ∈ Rn : t ∈ [0, T ], x ∈ Rn} is the unique continuous and Ft-adapted
solution of integral equations (4.80).

Problem (P2). Using {λ = ψ(t, x) ∈ Rn : t ∈ [0, T ], x ∈ Rn} found in (P1), describe
the evolution of a functional S(t, x) = Eh(x̂ψ(T ; t, x)) using backward parabolic equa-
tions, where {x̂ψ(s; t, x) : s ∈ [t, T ]} is the unique solution of SDE




dsx̂ = [

m∑

i=1

ϕi(ψ(t, x))fi(x̂)]ds+

m∑

i=1

gi(x̂) ◦ dwi(s), s ∈ [t, T ],

x̂(t) = x̂ ∈ R
n.

(4.83)

4.4.6 Solution for (P1)

Under the hypotheses (4.81) and (4.82), the unique solution of SPDE (4.78) can be
represented by

x̂ϕ(t;λ) = G(w(t)) ◦ F (θ(t;λ))[λ] =: H(t, w(t);λ) (4.84)

where

G(σ)[z] = G1(σ1) ◦ · · · ◦Gm(σm)[z], σ = (σ1, . . . , σm) ∈ R
m,

F (σ)[z] = F1(σ1) ◦ · · · ◦ Fm(σm)[z], θ(t;λ) = (tϕ1(λ), . . . , tϕm(λ)) ∈ R
m and

{(Fi(σi)[z], Gi(σi)[z]) : σi ∈ R, z ∈ R
n}

are the global flows generated by (fi, gi), i ∈ {1, . . . ,m}.

The arguments for solving (P1) in the case of one pair (f, g) of vector fields
(see subsection (4.4.3)) can be used also here and we get the following similar results.
Under the representation (4.84), the unique continuous and Ft-adapted solution {λ =
ψ(t, x) : t ∈ [0, T ], x ∈ Rn} solving equations

x̂ϕ(t;λ) = x ∈ R
n, t ∈ [0, T ] (4.85)

will be found as a composition

ψ(t, x) = ψ̂(t, ẑ(t, x)), ẑ(t, x) := G(−w(t))[x]. (4.86)
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Here λ = ψ̂(t, z), t ∈ [0, T ], z ∈ Rn is the unique solution satisfying

λ = F (−θ(t;λ))[z] =: V̂ (t, z;λ), t ∈ [0, T ], z ∈ R
n. (4.87)

Lemma 4.4.11. Asume that (4.81) and (4.82) is fulfilled. Then there exists a unique

smooth mapping {λ = ψ̂(t, z) : t ∈ [0, T ], z ∈ Rn} solving (4.87) such that





F (θ(t; ψ̂(t, z)))[ψ̂(t, z)] = z ∈ R
n, t ∈ [0, T ],

|ψ̂(t, z) − z| 6 R(T, z) :=
r(T, z)

1 − ρ
, t ∈ [0, T ], z ∈ R

n,
(4.88)

where ρ = ρ1 + · · · + ρm ∈ [0, 1) and r(T, z) = T
∑m

i=1Ki|ϕi(z)|.

In addition, the following nonlinear (H-J)-equation is valid





∂tψ̂(t, z) + ∂zψ̂(t, z)[
m∑

i=1

ϕi(ψ̂(t, z))fi(z)] = 0, t ∈ [0, T ], z ∈ R
n,

ψ̂(0, z) = z.

(4.89)

The proof is based on the arguments of Lemma 4.4.2 in subsection 4.4.3.

Lemma 4.4.12. Assume that (4.81) and (4.82) are satisfied and consider {λ =

ψ̂(t, z) ∈ Rn : t ∈ [0, T ], z ∈ Rn} found in Lemma (4.4.11). Then the generated by
SDE (4.78) fulfils

{x̂ϕ(t;λ) : t ∈ [0, T ], λ ∈ R
n} can be represented as in (4.84), (4.90)

ψ(t, x) = ψ̂(t, ẑ(t, x)), is the unique solution of (4.85),

where ẑ(t, x) = G(−w(t))[x].
(4.91)

The proof follows the arguments used in Lemma 4.4.4 of section 4.4.3.

Lemma 4.4.13. Under the hypothesis (4.81), consider the continuous and Ft- ẑ(t, x) =
G(−w(t))[x], t ∈ [0, T ], x ∈ Rn. Then the following SPDE of is valid




dtẑ(t, x) +

m∑

i=1

∂xẑ(t, x)gi(x)◦̂dwi(t) = 0, t ∈ [0, T ], x ∈ R
n

ẑ(0, x) = x,

(4.92)

where the “◦̂” is computed by

hi(t, x)◦̂dwi(t) = hi(t, x) · dwi(t) −
1

2
∂xhi(t, x)gi(x)dt

using Ito “·”.
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Proof. The conclusion (4.92) is a direct consequence of applying standard rule of asso-
ciated with σ = w(t) ∈ Rm and smooth deterministic mapping H(σ)[x] = G(−σ)[x].
In this respect, using H(σ) ◦G(σ)[λ] = λ ∈ Rn for any x = G(σ)[λ], we get





∂σi
H(σ)[x] = −∂x{H(σ)[x]}gi(x), σ = (σ1, . . . , σm) ∈ R

m, x ∈ R
n,

∂2σi
{H(σ)[x]} = ∂σi

{∂σi
{H(σ)[x]}} = ∂σi

{−∂x{H(σ)[x]}gi(x)}
= ∂x{∂x{H(σ)[x]}gi(x)}gi(x), σ ∈ R

m, x ∈ R
n

(4.93)

for each i ∈ {1, . . . ,m}. Recall that the standard rule of lead us to SDE

dtẑ(t, x) =

m∑

i=1

∂σi
{H(σ)[x]}(σ=w(t)) · dwi(t) +

1

2

m∑

i=1

∂2σi
{H(σ)[x]}(σ=w(t))dt, (4.94)

for any t ∈ [0, T ], x ∈ Rn. Rewritting the right hand side of (4.94) (see (4.93)) we
get SPDE of parabolic type given in (4.92).

Lemma 4.4.14. Assume the hypotheses (4.81) and (4.82) are fulfilled and consider
{λ = ψ(t, x) : t ∈ [0, T ], x ∈ Rn} defined in Lemma 4.4.12. Then u(t, x) := h(ψ(t, x)),
t ∈ [0, T ], x ∈ Rn, h ∈ (C1

b ∩ C2)(Rn), satisfies the following nonlinear SPDE





dtu(t, x)+〈∂xu(t, x),

m∑

i=1

ϕi(ψ(t, x)fi(x))〉dt

+

m∑

i=1

〈∂xu(t, x), gi(x)〉◦̂dwi(t) = 0, t ∈ [0, T ]

u(0, x) = h(x)

(4.95)

where the nonstandard “◦̂” is computed by

hi(t, x)◦̂dwi(t) = hi(t, x) · dwi(t) −
1

2
∂xhi(t, x)gi(x)dt.

The proof uses the same arguments as in Lemma 4.4.6 of section 4.4.3.

Theorem 4.4.15. Assume that the vector fields {f1, . . . , fm} ⊂ (Cb∩C1
b∩C2)(Rn;Rn),

{g1, . . . , gm} ⊂ (C1
b ∩ C2)(Rn;Rn) and scalar functions {ϕ1, . . . , ϕm} ⊂ (C1

b ∩ C2)(Rn)
fulfil the hypotheses 4.81 and 4.82

Consider the continuous and Ft- {λ = ψ(t, x) ∈ Rn : t ∈ [0, T ], x ∈ Rn} satis-
fying integral equations (4.85) (see Lemma 4.4.12). Then {u(t, x) := h(ψ(t, x)) : t ∈
[0, T ], x ∈ Rn} fulfils nonlinear SPDE of parabolic type (4.95) (see Lemma 4.4.14) for
each h ∈ (C1

b ∩ C2)(Rn).
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4.4.7 Solution for (P2)

As far as SDE (4.83) is a non-markovian system, the evolution of a functional S(t, x) :=
Eh(x̂ψ(T ; t, x)), t ∈ [0, T ], x ∈ Rn, for each h ∈ (C1

b ∩ C2)(Rn) will be described using
the pathwise representation of the conditioned mean values functional

v(t, x) := E{h(x̂ψ(T ; t, x)) | ψ(t, x)}, 0 6 t < T, x ∈ R
n. (4.96)

Here x̂ψ(T ; t, x) can be expressed using the following integral representation

x̂ψ(T ; t, x) = G(w(T ) − w(t)) ◦ F [(T − t)ϕ(ψ(t, x))](x), 0 6 t < T, (4.97)

where G(σ)[z] and F (σ)[z], σ = (σ1, . . . , σm) ∈ Rm, x ∈ Rn, are defined in (P1)
(see (4.84)) for ϕ := (ϕ1, . . . , ϕm). The right hand side of (4.97) is a continuous
mapping of the two independent random variables, z1 = w(T ) − w(t) ∈ Rm and
z2 = ψ(t, x) ∈ Rn (Ft-measurable) for each 0 6 t < T , x ∈ Rn.

Using the parameterized random variable

y(t, x;λ) = G(w(T ) − w(t)) ◦ F [(T − t)ϕ(λ)](x), 0 6 t < T (4.98)

we may and do compute the functional v(t, x) in (4.96) by

v(t, x) = [Eh(y(t, x;λ))](λ = ψ(t, x)), 0 6 t < T, x ∈ R
n. (4.99)

Here, the functional

u(t, x;λ) = Eh(y(t, x;λ)), t ∈ [0, T ], x ∈ R
n, (4.100)

satisfies a backward parabolic equation (Kolmogorov‘s equation) for each λ ∈ Rn and
rewrite (4.99) as follows,

v(t, x) = u(t, x;ψ(t, x)), 0 6 t < T, x ∈ R
n. (4.101)

In conclusion, the functional S(t, x) = Eh(x̂ψ(T ; t, x)) can be reprezented by

S(t, x) = E[E{h(x̂ψ(T ; t, x)) | ψ(t, x)}] = Eu(t, x;ψ(t, x)) (4.102)

for any 0 6 t < T , x ∈ Rn, where {u(t, x;λ) : t ∈ [0, T ], x ∈ Rn} satisfies the
corresponding backward parabolic equations with parameter λ ∈ Rn,





∂tu(t, x;λ) + 〈∂xu(t, x;λ), f(x, λ)〉 +
1

2

m∑

i=1

〈∂2xu(t, x;λ)gi(x), gi(x)〉 = 0,

u(T, x;λ) = h(x), f(x, λ) =

m∑

i=1

ϕi(λ)fi(x) +
1

2

m∑

i=1

[∂xgi(x)]gi(x).

(4.103)
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We conclude these remarks by a theorem.

Theorem 4.4.16. Assume that the vector fields {f1, . . . , fm} ⊂ (Cb∩C1
b∩C2)(Rn;Rn),

{g1, . . . , gm} ⊂ (C1
b ∩ C2)(Rn;Rn), and scalar functions ϕ = (ϕ1, . . . , ϕm) ⊂ (C1

b ∩
C2)(Rn) of SDE (4.83) fulfil the hypotheses (4.81) and (4.82). Then the evolution of
the functional

S(t, x) := Eh(x̂ψ(T ; t, x)), t ∈ [0, T ], x ∈ R
n, h ∈ (C1

b ∩ C2)(Rn) (4.104)

can be described as in (4.102), where {u(t, x;λ) : t ∈ [0, T ], x ∈ Rn} satisfies linear
backward parabolic equations (4.103), for each λ ∈ Rn.

Final remark. One may wonder about the meaning of the martingale representa-
tion associated with the non-markovian functionals h(x̂ψ(T ; t, x)), h ∈ (C1

b ∩C2)(Rn).
In this respect, we may use the parameterized functional {u(t, x;λ) : t ∈ [0, T ], x ∈
Rn} fulfilling backward parabolic equations (4.103). Write

h(x̂ψ(T ; t, x)) = u(T, x̂ψ(T ; t, x); λ̂ = ψ(t, x)) (4.105)

and apply the standard rule of stochastic derivation associated with smooth mapping
{u(s, x; λ̂) : s ∈ [0, T ], x ∈ Rn} and stochastic process {x̂ψ(s; t, x) : s ∈ [t, T ]}. We get

h(x̂ψ(T ; t, x)) =u(t, x; λ̂) +

∫ T

t

(∂s + Lλ̂)(u)(s, x̂ψ(s; t, x); λ̂)ds

+
m∑

i=1

∫ T

t

〈∂xu(s, x̂ψ(s; t, x); λ̂), gi(x)〉dwi(s),
(4.106)

where Lλ̂(u)(s, x; λ̂) := 〈∂xu(s, x; λ̂), f(x, λ̂)〉 + 1
2

∑m
i=1〈∂2xu(s, x; λ̂)gi(x), gi(x)〉 coin-

cides with parabolic operator in PDE (4.103). Using (4.103) for λ̂ = ψ(t, x), we obtain
the following martingale representation

h(x̂ψ(T ; t, x)) = u(t, x;ψ(t, x))+

m∑

i=1

∫ T

t

〈∂xu(s, x̂ψ(s; t, x); λ̂), gi(x)〉·dwi(s), (4.107)

which shows that the standard constant in the markovian case is replaced by a Ft-
measurable random variable u(t, x;ψ(t, x)). In addition, the backward evolution of
stochastic functional {Q(t, x) := h(x̂ψ(T ; t, x)) : t ∈ [0, T ], x ∈ Rn} given in (4.107)
depends essentially on the forward evolution process {ψ(t, x)} for each t ∈ [0, T ] and
x ∈ Rn.
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