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PEEFACE.

nnniS tract is intended to give an account of the theory of equations

-*- according to the ideas of Galois. The conspicuous merit of this

method is that it analyses, so far as exact algebraical processes permit,

the set of roots possessed by any given numerical equation. To

appreciate it properly it is necessary to bear constantly in mind the

difference between equalities in value and identities or equivalences in

form ; I hope that this has been made sufficiently clear in the text.

The method of Abel has not been discussed, because it is neither so

clear nor so precise as that of Galois, and the space thus gained has

been filled up with examples and illustrations.

More than to any other treatise, I feel indebted to Professor

H. Weber's invaluable Algebra, where students who are interested

in the arithmetical branch of the subject will find a discussion of

various types of equations, which, for lack of space, I have been

compelled to omit.

I am obliged to Mr Morris Owen, a student of the University

College of North Wales, for helping me by verifying some long cal-

culations which had to be made in connexion with Art. 52.

G. B. M.

Bangor,

August, 1907.
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CORRIGENDUM.

p. 9, line 11 from bottom the text should be

"because v,i + i
is derived from v^ + i

[7iot v^]...'



CHAPTER I.

GALOISIAN GROUPS AND RESOLVENTS.

1. Suppose that Ci, Ca, ... c« form a set of assigned algebraic

quantities, and that

/(^) - ir" + Ci^**-^ + ...+Cr a;''-'' + ... + c„.

If we can find another set of algebraic quantities cci, x^^ ... x^ such

that

2^j = -Ci, ^XiXj = C^, ..., XxX^ ... Xn^^-^Cn (l)

we shall have identically

fix) = (^ - X^ (X-X2) ... (X- Xn).

Under these circumstances (supposing that th^ algebra we are

using is the ordinary one)

for x = Xi, X2, ... Xn and for no other values of x.

Thus every solution of (1) leads to the complete solution of the

equation /(^) = 0. Conversely the complete solution oif{x) = in the

form x = ^i, ^2, ••• ^n leads to the complete solution of (1), considered

as a system of simultaneous equations, in the form

Xi, ^2> ••• '^n ~ taj fcb) ... ^l

where $a, ib, •" ii represents, in turn, every permutation of

tl) %2) ••• %«•

If the values ^1, 4, ••• in are all distinct, /(x) = has no multiple

roots, and the solutions of the simultaneous equations are all distinct,

and are nl in number.

If f(x) = has multiple roots, its solution may be made to depend

upon an equation without multiple roots. Suppose, for example, that

f(x) has a root r of multiplicity a ; then the first derived function

/i (x), that is to say df/dx, has a root r of multiplicity (a - 1). Hence

M. 1



2 GROUPS AND RESOLVENTS [CH. I

if ^ = dv(y; /i), the highest common factor of/ and /i, the equation

//<t> = has coefficients which are rational functions of Ci, C2, ••• c„,

and its roots are the distinct roots of /(.^), each occumng only once.

Moreover, if /i = d'/lda^, we can, by finding dv(/i, /a), dv(/2, /g) and

so on, determine by rational operations the exact multiplicity of any

repeated root of /= : hence the complete solution of //<{> = leads to

that of /= 0. In all that follows it will be assumed that / has no

multiple roots.

2. It has been proved in various ways that the roots of /(^r) =

actually exist ; that is to say, if real or complex values be assigned, at

pleasure, to the coefficients, then there are exactly n determinate real

or complex numbers a^u x^-, ... Xn such that

f{x) = U{x-x^

for all values of x. Another theorem which will be assumed throughout

is that every rational symmetric function of the roots can be expressed

as a rational function of the coefficients.

3. What gives special interest to the subject in hand is that the

actual determination of the roots of a given equation is a problem

which differs in complexity according to the assumptions made with

regard to the coefficients, and the value of n. Thus, if n < 5, and the

coefficients are left arbitrary, it is possible to construct an explicit

algebraic function of the coefficients which is a root of the equation.

For 72 > 4, this is no longer the case ; a fact first proved by Abel, who

also perceived the real reason for the limitation, namely, the special

properties of the group of permutations of n different things when

71 < 5.

When the coefficients are numerically given, the rational roots, if

any exist, can be found by trial, and the values of the irrational ones

can be found by approximation. With these processes of approximation,

however, we shall not be concerned ; our main problem is, in fact, the

following

:

Given a particular equation with numerical coefficients, it is re-

quired to find the simplest set of irrational quantities such that all the

roots of the given equation can be expressed as finite rational functions,

in an explicit form, of the set of irrationals. What is to be understood

by the simplest set of auxiliary irrationals will appear as we proceed.

4. Before entering upon the general theory, it will be useful to

consider the case of a cubic equation with arbitrary coefficients, and
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roots a, (3, y. Since the value of a + ^ + y is known, it will be sufficient

if we can find the values of two other independent linear functions of

the roots. If we take an arbitrary linear function a + 1/3 + my, this will,

in general, assume six values by the permutation of a, f3, y: these

values will be the roots of an equation

2/^ + m^y^ + ... + me =

the coefficients of which are rational in I, m and known quantities. Let

us try to make this a quadratic in ^. Then if w is a complex cube

root of unity, there will be six roots of the form

Assuming, as an identity independent of a, y8, y,

a + 1/3 + my = oi {P + ly + ma)

we have l^o), m^oy^ : so that we obtain a function

^1 = a + wy8 + w^y

the values of which, when a, /?, y are interchanged, become

3^2 = a + a)2^4-coy,

y3 = Q)2a + (u^ + y-(o2y2,

3^4 = (oa + 0)2/3 + y = 0)3/1,

^5 = o)a + ^ + o)2y = o)3/2,

^Q = (o^a + p + <ay = in^yi.

Consequently

Vi + y^ =(a+o)/3 + a)2y)3 + (a + w^/? + o)y)3 = A,

a quantity symmetrical in a, ^, y, and therefore rational in the

coefficients of the given cubic ; in fact,

A = 22a3 - Sta'fi + 12af3y = - 2Ci^ + dc^C^ - 21Cs.

Similarly y^y^ = ^a^ - :Sa/3 = c^^ -Sc^^B

another rational function of the coefficients: so that y^^, yi are the

roots of the rational equation

f-Af + B^ = 0.

Let ,^|^ + V(^--4^y

with a fixed determination of the radicals involved. Then we may
put

a + /3 + y = -Ci,

a + 0);8 + o>2y = 9,

a + 0)2/8 + o>y = BjO,

1—2



4 GROUPS AND RESOLVENTS [CH. I

and hence

By giving ^ all its six values, we obtain all the six permutations of

o, A y-

It will be noticed that the success of this method depends on finding

a power of a linear function of the roots which is a two-valued function

of the coefficients ; this has been done with the help of an auxiliary

number <o which is a root of the rational quadratic w^ + o> + 1 = 0.

In a similar way for the general quartic

(a-P + y-Sy

is a three-valued function of the coefficients, and may be explicitly

found by means of an auxiliary rational cubic ; after this the solution

of the quartic may be completed.

6. If, after the manner of Lagrange, we try to extend this process

to a quintic, we take «, a complex fifth root of unity, and form the

rational equation satisfied by

The degree of this is 24, and it is only in special cases that it can be

solved in a manner similar to that which is applicable in the foregoing

examples. Thus the method breaks down ; at the same time, a

generalisation of the process, due to Galois, is of the highest importance

in the whole of the theory.

6. Galois begins by considering the rational equation satisfied by

the most general linear function of the roots. Let m,, i/a, •• «^n be a set

of absolutely undetermined symbols, subject merely to the ordinary

algebraic laws of combination ; and for the sake of brevity let n\ = fi.

If we pat
i = n

«, = ttia?! + UtXt + ... + UnXn = 2 UiXt,

where 4^, «^, ... at. are the roots (all different) of/{x) = 0, we can obtain

from 1^, by interchanging the roots in all possible ways, fi essentially

different expressions v, , v,, . . . tv.

The product
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where 'y is a new indeterminate, is an integral function of v with

coefficients which are integral and rational in C], Ca, ... c^ as well as in

Ui, Uo, ... Un because F(v) is a symmetrical function of the roots of/.

The equation F(v) = is called the complete Galoisian resolvent

of f{x) = 0. Its discriminant is a rational integral function of

Ci, c.2,...Cn, th, U2,...Un, which does not vanish identically: so

that we may, if we please, assign numerical values to the parameters

til, U2, ...Un without making any two roots of the resolvent equal to

each other. In particular, these numerical values may be ordinary real

integers.

7. The most important property of F is that any rationalfunction

of the roots off can he expressed as a rational function of any one of

the roots of F.

Let the given rational function be <;^(iz?i, ^2» ••• ^«), and let

be the expressions obtained from <ji by applying the substitutions which

derive '^i, v^, v^, ...v^ from Vi . These expressions cf>i are not necessarily

all different in form ; and two which have different forms may have the

same value. But it must be remembered that
(f>i is derived from <^i by

the same permutation which changes Vi to Vi.

Consider the expression

^ ^ ^ [V-Vi V-V.2 V-Vy.) ^ ^

'

\l/{v) is an integral function of v, in general of degree (/x-1), but

possibly lower, and it is a symmetric function of ccx, x^, ... Xn. Hence

the coefficients of ypiv) can be expressed as rational functions of

Ci, C.2, ...Cn', and if, after doing this, we put v = v-^, it follows from the

above identity that

or <f>^
= ^p^ = B(Vi; Ci,C2,...Cn; Ui,U2,...Un)

where B denotes a rational function of the quantities in the bracket.

This equality reduces to an absolute identity if on the right-hand side

we replace '^i, Ci, ...Cn by their expressions in terms of x^, ^2, •••^n,

Ui, U2, ...Un.

The discriminant ofF is

^ = F'(vOF'(vd"-F'M,
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and the quotient A/F'(vi) is expressible as a rational integral function

of Vi : hence we may also put <^ into the form

^ A - A

where J(vi) is a rational integral function of Vi.

It should be observed also that <^,- can be expressed as the same
function of Vi that <^i is of v^.

Finally, <^i is expressible as a rational function of any root of

F(v). Thus if we choose Vi, all we have to do is to replace, in the

foregoing proof,

Vu V2, ... v^

by 5i(^i)» ^iW, .. Si(v^),

where Si is the perfectly definite substitution which converts -^i to Vf.

In general, <^ is not the same rational function of Vi as it is of v^.

8. Several important consequences immediately follow from the

theorem just proved. In the first place, we may put
<f>
= Vi, and thus

infer that

All the roots of the Galoisian resolvent may be expressed as rational

functions of any one of them.

An equation having this property is called a normal equation ; the

Galoisian resolvent is accordingly a normal equation. It must be

remembered that the same equation may be normal from one point of

view and not from another, if, in the definition, we understand

"rational function" to mean "rational function with rational

coefficients." By a field of rationality we shall understand the

aggregate of all the expressions obtainable from a finite set of symbols

^1, ^2j ••• ^m by a finite set of rational operations ; that is to say, all the

expressions which can be reduced to the form

^(tut„ ...tj'

where </>, if/ are finite polynomials with ordinary whole numbers for

their coefficients. The elements ti, t<i, •• tm may be partly undetermined

parameters, or umbrce, partly determinate numbers ; those which are

numerical may be irrational arithmetically, but are here considered

rational in the sense of being given or determined. The simplest

field of rationality is that of ordinary rational numbers; this is

contained in every other field.

If tm + i is any algebraic number or symbol not contained in the

field (^1, ti, ... tm), the field (^i, ti, ... t^, tm + i) is said to be obtained from
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the former field by the adjunction of tm+\'. this term is specially-

employed when tm+\ is a numerical quantity.

In the case of the Galoisian resolvent we may say, then, that it

is a normal equation in the field

(Ci, C^i '•• Cn\ Ihi '^2) ••• U-n)'

9. If, in the theorem of Art. 7, we put <f>
= cci, we arrive at the

proposition that

Every root of an eqttation witJwut multiple roots can be expressed as

a rationalfunction of any one root of its Galoisian resolvent.

If rational values are given to the parameters Ui, u^, ... %, the

resolvent equation becomes normal in the field (ci, c^, ... c„). More-

over if Ci, Ca, ... Cn are given, not as symbols, but as actual numbers,

the resolvent becomes a definite numerical equation. Unless this

equation has multiple roots, it is still true that the knowledge of the

value of any one root of the resolvent leads to the complete solution

of /= ; because to calculate the function xj/ (y) of Art. 7 in its

rational form it is sufficient to know the values of the elementary

symmetric functions of ^i, iTg, ... x^^ and these are given by/.

10. The total resolvent F(v) may or may not be reducible without

adjunction ; in the second case/(iy) = is said to be an equation with-

out affectimi.

The irreducible factors of the resolvent oj an affected equation are

all of the same degree.

Let i/^i {v)y xl/2 (v) be any two such factors : let '^i be any root of

^^ (i;) = 0, and V2 any root of xf/2 (v) = 0. Then (Art. 7) v^ can be

expressed as an integral function, / ('^i), of Vi . If the Tschirnhausen

transformation y--=J(x) is applied to xj/i (x) = 0, we obtain an equation

^(^) = of the same degree as i/'i = which has a solution y^Vz in

common with if/^ (y) = : hence x (3/) is divisible by xj/^ {y\ and the

degree of i/^i cannot be less than that of 1/^2. By a similar argument,

the degree of j/^o cannot be less than that of »/^i ; therefore the degrees

must b^e equal.

If h is the degree of each irreducible factor, we have an identity

with mh = ix,

so that m and h are conjugate factors of /x.

Every one of the equations \\/i (v) = is normal, and they are all

Tschirnhausen transformations of any one of them. Each may be
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called a pi'imary resolvent of f{x) - 0. The knowledge of any one

root of a primary resolvent leads to the complete solution of f(x) = 0.

11. A simple example will help to illustrate the results so far

obtained. Let the given equation be

and let a, 6, c be used instead of Ui, Wa, ^s-

The complete resolvent is F= <f>x^i

where

<^=(v-a)2 + (6-c)^ x = (^-^)'+(c-a)% ^ = (:v-cy + (ia-by.

One root of <^ = is a- bi + ci, and from this the roots 1, i, - i of

the original equation are obtained. If w^e put

Vi = a- hi + ci,

then ±-j , 1,b-c

give the roots of/=0 as rational functions of Vi.

12. The reducibility of F shows the existence of asymmetrical

functions of Wj, ^2, ••• ^n which nevertheless have rational values. The

coefficients of the terms of a primary resolvent if/ (v), considered as a

polynomial in -y, «^, Wg, ... ^«, are all rational ; but when expressed in

terms of ^2^1,572, ... cPn they cannot all be symmetrical, otherwise every

permutation of the roots of/ would leave ^ (v) unaltered, and this is

not the case.

13. Consider now a primary resolvent

^i{v) = (v-Vi){v-V2) ... (v-vn).

Any one of its roots, say Vi, can be derived from Vi by a perfectly

definite permutation of a?i, a^2> ••• ^n : let this be called Si. Including

the identical substitution Si, we have in connection with \f/i just k

substitutions Si, S2, .-. Sh. It is a most important theorem that these

substitutions form a group ; that is to say, for every pair of substitu-

tions Sa, Sh (the same or different) we have SaSb = Sc, where Sc is a

definite substitution of the same set.

It follows from Art. 7 that since Vu and «i are both roots of

F(v)=0, there is an integral function J{v) such that

Moreover it appears from the same article that

J(Va) = Sa (Vb) = Sa {Sb (Vi)}.



10-15] GROUPS AND RESOLVENTS 9

But since the equations

have a common root v^, and the first is irreducible, while both are

rational, each root of the first is a root of the second, and in

particular

that is to say, Sa {su (v^)} is a root of i/^i (v) = 0, and is therefore equal in

value to Sc (vi), where Sc is a substitution of the set 5i, Sg, ... s^. But
this equality in value must also be a coincidence in form, on account

of the arbitrary nature of the parameters u^, u^, ... w„. Hence

it being understood that SuSa means the result of first applying Sj, and
then applying §«. In a similar way SaSb = Sa; but Sa is, in general,

different from Sc.

14. If xf/2 is any other of the primary resolvents, there will, in the

same way, be a group of substitutions connected with it. This is, in

fact, the same group as the one associated with i/^i. For suppose that

x}/.2(v) = (v-Vn+i)(v-Vh + 2) "• (.v-V2k):

then v,i+i can be expressed in the form

and by the usual argument it follows that

^2 = {v-JM) {v - J(y,)} ...{v- J{vn)].

The notation may be so arranged that

J(Vi) = Vu+i (i=l, 2, ... h),

and this being so, we conclude that

because Vu+i is derived from 'y,i by the change of Vi into Vi, and the

only substitution which does this is 5^.

The group (si, S2, ... s^) is called the Galoisian group of the equation

f{x) = 0. If the complete resolvent is irreducible without adjunction,

h-n\ and the Galoisian group consists of all the permutations of

15. We will now select any one of the primary resolvents, denote

it by ^\l (v), and call it simply, for the present, t/ie resolvent of /(x).

Assuming nothing about /(a;) except that its coefficients are actually

given, F(v) and subsequently i{/ (v) can be found by rational operations.

The degree of ij/ (v) in v at once gives the order of the Galoisian group.
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But we can go further than this, and determine, from an examination

of if/J the elements 5i, 5.2, ... 5^ which form the group. The notation may-

be so arranged that

ij/ = (v-vi)(v-n2) ... (^-%),

Vi = Ui^i + u^^ + . . . + M„ir„.

Now the change of v^ into Vo effected by the substitution 52 may also be

effected by a substitution o-g operating on the parameters Wi, ^/2, ... w,j.

For instance, if

l?i = UxXx + U<]X^ + U^z + ^4^74 + U^^ + 7^6^6j

then 52 = (^1^-2^4) (^s^e^o), 0-2 = (U1U4U2) (u^UaUe).

In general, if 5,- contains the cycle (iVa'^h ••• ^t^Oj ^i contains the

cycle (uiUk . • UiUa) and there is a one-one correspondence between the

substitutions St and the substitutions o-^. If o-j is applied to if/ (v) in its

rational form, the result is a function x ('^) of the same order, which

has a root Vt, and therefore coincides with ilf(v). Thus there are at

least h distinct permutations cr, forming a group, which leave il/(v)

formally unaltered. The same argument applies to the other primary

resolvents obtained from F, and since there are only hm substitutions

o- altogether, it follows that there are precisely k substitutions o- which

leave
\f/

formally unaltered ; from each of these we can deduce uniquely

a substitution s belonging to the Galoisian group.

For instance, in the example of Art. 11, if we take «/- as the

resolvent,

oTi = 1, 0-2 = (ab),

and the corresponding Galoisian group is

5i = 1, Si= {sciX^.

After obtaining the elements of the Galoisian group

G={Su 52, ... S/0,

its properties, as a group of substitutions, or more generally as an

abstract group, may be investigated. These are, in themselves, wholly

independent of the values of ^1, x^, ... ar„.

16. It will now be supposed that the coefficients of / are

numerical ; and, as explained in Art. 8, any quantity in the field

(<;,, C2, ... c„) will be considered rational, no matter whether the coeffi-

cients Ci are arithmetically rational or not. It will now be proved that

Every rational function of the roots of f which is unchanged in

numerical value by the substitutions of the Galoisian group has
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a value which can he exjyressed in a rational form : that is to say, it is

equal in value to a certain rationalfunction of the coefficients off
Let the given function be <^ (^i, ^2, ••• ^«) and letvi,^^,... Vn be the

roots of the resolvent if/ (v). Then (Art 7) there is an integral function

J(v) such that

<f>
=

<t>l
= J(Vi)

<I>2 = J (^2), <A3 = •^('^3), • •
. </>A = /(%),

where <^2, ^2, ••• i>h are derived from <^ by applying the Galoisian

substitutions Sa, S3, ... s^. Hence

<t>i + <f>2+ •..+ff>h =JM + J{V2)+...+ J(Vh)

— ^ [plj (^2, ••• (^n } Ui, U2) •-• Unj,

where /S' is a rational function, because '^J(Vi) is a symmetrical

function of v^, v^, ... Vu and the coefficients of \l/{v) are rational. If,

now^, ^i means the value of <^i, we have, by hypothesis,

7 ^ \Ci, C2, ... Cji ', Ui, U2, ... Un)

where 8 means the value of the rational function >S'.

If the coefficients Ci are represented symbolically, the function S,

even in its lowest terms, may contain the parameters explicitly ; in this

case the value of <^ is expressible as the quotient of any numerical

coefficient in the numerator of S by the corresponding coefficient in the

denominator. The fact that we thus have alternative rational

equivalents for <^ implies one or more rational relations connecting the

coefficients Ci. If, on the other hand, the coefficients Ci are actually

given as numbers in a definite field (for instance, if they are all of the

form a + /3j2, with a, ft rational numbers in the ordinary sense) the

parameters^ at the last stage of the process, disappear of themselves,

and we obtain the value of <^ as a definite number in the field. The

point of the proof is then that the value in question is expressible as a

quantity in that particular field.

17. Conversely, eve?y 7'ational function of the roots which has

a rational value keeps that valus when any substitution of the

Galoisian group is applied to it.

Let <^ be the rational function, and A its rational value. Express-

ing <^ as a rational integral function of Vi, we have
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and hence the rational equation

J(v)-A=0

is satisfied by v^ and consequently by -i^i, Vg, ... v^.

Thus J(Vi) = A;

that is to say, A = s, /(vi) = Si<f>,

which proves the theorem. It must be remembered, of course, that

Si<f> may or may not be formally different from <^. Moreover, in any

actual case, if we reduce J{vi) to a degree lower than h by means of

^ (t'l) = we shall in the end obtain A explicitly, if the value of <fi is

actually rational : so the process of Art. 7, applied to a particular

function
<f> and a particular equation /, decides whether the value of <f>

is rational or not.

Finally, there are rationalfunctions of the roots which have rational

values, but change these values when substitutions other than those of G
are applied to them.

To show this, let 6 be an undetermined rational quantity ; then

^l,{6)
= {e-v,){e-v,)...{6-v,) = A,

where A is rational in (6 ; c^, c^, ... c„ ; Ui, u^, ... Un). If t is any

substitution not contained in the Galoisian group, tif/ (6) = \f/i (6), where

if/i is a primary resolvent distinct from if/. Considered as an equation

in^,

cannot have more than (^ - 1) roots, even when the parameters have

fixed numerical values (subject to the usual restriction A #= 0). Since

there are (m-1) conjugate resolvents into which xf/ can be transformed,

we have to exclude at most {h-l){m-l) values of 6. For any

other rational value of 0, it is the substitutions of G, and these alone,

which leave the value of if/ (0) unaffected.

Every coefficient of «/', considered as a polynomial in B^u^^u^, ... Un,

is unaffected in value by the substitutions of (r ; it not unfrequently

happens that some one of these coefficients, or a simple linear

combination of them, can be seen to have its value changed by all

substitutions not belonging to G ; in this case it may be taken instead

of xj/ (0). For an example, see Art. 29 below.

As a result of the three theorems last proved we may define the

Galoisian group of / as the aggregate of those pennutations of

a*!, ^2, ••• ^n which leave unaltered in value eve7'i/ rational function of

the roots which has a rational value.
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18. If
<f>

is any rational function of the roots of / it has been

proved that <^ can be expressed as an integral rational function of Vi,

and it has been observed that in virtue of i}/ (vi) = 0, this integral

function can be reduced so that its degree does not exceed (A- 1). An
independent proof of this affords a little more information. If, with

the usual notation,

[V-Vi V-V2 V-Vu) ^ ^

xiv) is an integral function of v which is also rational, because it is

unaltered by any substitution of G. Consequently

a rational function of v-^ , which may also be reduced to the form

S '

where 8 is the discriminant of i/', and j {v-^ is an integral function, which

in virtue of \p (v-^ = may be supposed put into its reduced form, so

that its degree is not greater than {h - 1). If ff> is an integral function

of the roots, the coefficients of j will be integral in

Cj, C2j ••• Cm Ml, U^t ••• Un-

Similarly, <^^ =j (vi) /8.

•

(i = l, 2, S, ... k)

The quantity 8 is not zero, because it is a factor of A.

The substitutions of G give to <^ the different forms <^i , </>2, ... <f>h'

these, however, need not be all different in value. Those substitutions

of the Galoisian group which leave <^ unaltered in value form a

subgroup, or factor, oi G which may be called the invariant group

of<f>.
^

In fact, if Sa, Sb are any two such substitutions,

numerically: hence 5a<^-<^ = 0,

and since the expression on the left hand is a rational function of the

roots which has the rational value 0, we may, by Art. 17, apply the

substitution s^ to it, and conclude that

Sb(sa<t>-<}>) = 0;

that is, Sb (sa<f>) = Sb<f> = <i>

numerically. Hence SaSb leaves the value of <f>
unaltered, and the
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substitutions in question form a group, because SaSt, is identical with

a substitution of Gy and it has been shown that it leaves <^ unaltered

in value.

It must be carefully remembered that the invariant group of <^

consists exclusively of substitutions which belong to G. There may
be other substitutions which leave

<f>
unaltered in value, or even in

form, but if they are not in the Galoisian group they are not to

be included. The fact is that we cannot infer for certain that if

Sai>-^ = Oi then Sb(Sa<t> - <f>)
= Oj unless Si, belongs to the Galoisian

group (cf. Art. 17, end).

Writing, as usual, Si<f> = <f>i, the function </> is a root of the rS-tional

equation

But if the invariant group of <^ is of order ^ > 1, the roots of this

equation are repeated each k times : hence if we put k/k = I, which is

necessarily an integer, <^ is a root of a rational equation

^l^h,^'-'-¥ ... + bi = 0.

19. If fix) is rediicible without adjunction, its Galoisian group is

intransitive^ and conversely.

First suppose that G is intransitive: this means that a certain

number of roots

iTi, iTa, ••• scr (r<n)

are only interchanged among themselves by the substitutions of G.

Consequently (Art. 16)

(X - Xi) {X- CC^...{X- Xr)

being unaltered by any substitution of G has rational coefficients, and

f(jt!) is reducible without adjunction.

Conversely, suppose th.&tf(x) has a rational factor

fi(x) -{x~ x^ (x - X2) ...(x-Xr) (r < n)

then, if G is transitive, it must contain a substitution s, which converts

some one of the roots x^ x^^ ... Xr, say Xi, into a root Xr+i, formally

different from Xi, x^, ...Xr. Hence sf contains the factor (x-Xr+i):

but since f is rational ^1 =/, , and consequently

=/i (Xr+i) = {Xr^i - Xi) (Xr.,1 - X^) . .
. (^r+1 " ^r) ;

implying ihsitf(x) = has equal roots, contrary to hypothesis. Hence

if/(a:) is reducible, G is intransitive. The example of Art. 1 1 gives a

simple illustration.

It is possible to resolve /(^) into its irreducible factors by means of

rational operations, even when the coefficients are connected by known
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algebraic relations. Unless the contrary is expressed, it will be assumed

henceforth that / is irreducible without adjunction.

20. Suppose that by the adjunction of a quantity the resolvent

if/ becomes reducible in the field (0 : Ci, Ca, ... c^ : Ui, ?^2, ... Un). If we

have

it follows by comparing coefficients that satisfies one or more rational

equations in the original field. These must be consistent with each

other, so that must satisfy a definite irreducible equation

a(e)= 0^ + a.e^-'' + ... + ai =

with rational coefficients, which we may suppose integral because, if

necessary, may be replaced by z6, where z is any rational quantity.

If, by any means, this irreducible equation has been found, it is

possible to actually resolve ^ into its irreducible factors in the new

field; and this resolution is unique. We shall have

'/' = XlX2•••X^

and Vi will be a root of one of the irreducible equations Xt = 0-

Arranging the notation so that xi (^i) = 0, and for convenience putting

Xi = Xj we have an equation

xW = o,

which, in the new field, will serve as a primary resolvent of /= 0.

This is clear, because x('^) is only a transformation of a product

SO that (Art. 1) x(y)-^ is a normal equation ; and every rational

function of ^i, ^2, •••^w can be expressed, in the new field, as an

integral function of Vj , the degree of which is less than that of x^ and

which is not of higher degree than (I- 1) in 6. As in Art. 10 it can be

proved that the functions Xij Xa? ••• X^ ^^^ ^11 of the same degree in v,

and are Tschirnhausen transformations of each other.

In expressing any rational function of ^j, . . . Xn as a reduced function

of Vi in the new field, we may proceed as follows. In the original field

let <^ =j(vi) be the reduced expression for
<f>

(Art. 18) ; divide j(v) by

X (v) until the remainder is of degree lower than that of x- We thus

obtain an identity

j(v)=Q(v)x(v) + k(v),

and by putting v=Vii we have

<^ =i(^i) = K^^O,
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because xC^O'^O. The coefficients of k, which are integral functions

of B, may be reduced to their lowest degree by dividing them by a{6).

It will be noticed that x(^') must contain 6 explicitly, because it is a

factor of i/'(t'), which is irreducible in the old field.

21. We are now approaching the culminating point of Galois's

theory. Unless (r is a simple group, it will contain self-conjugate

factors distinct from the identical substitution : and among these there

will be a certain number of maximum self-conjugate factors. Let r be

a maximum self-conjugate factor of (r, of order k and of index l{ = k/k)

with respect to G. The notation may be so arranged that

Let z be an undetermined rational number, and

e = <^(;ri, Xi,...Xn) = (Z- V^) (Z-V2)...(Z- Vk),

where Vi, V2,--'Vk are the roots of the resolvent 1/^ = 0, which correspond

to the substitutions of r. Then the value of is unaltered by any

substitution of F, and by choosing z properly (Art. 17) we can make

sure that the value of 6 is altered by every substitution of G which is

not contained in T.

Consequently ^ is a function of which T is the invariant group, and

is a root of a rational equation

a{e) =6^ + «i^'-i + a^e^-"" + ...+ a^ - 0.

So long as 2;, Ui, U2,,.,Un remain undetermined, the coefficients in

this equation are integral in the field {z\ u^, u^^,...Un\ Ci, C2,...Cn): it

is possible to give fixed rational integral values to z, u^, ?^2 , • • • w„ so as

to make the coefficients rational in (ci, Cg, ...c„).

22. It is important to determine the Galoisian group of the

equation satisfied by 0. To do this, it is necessary to use a lemma,

derived from the elements of the theory of groups. All the substitu-

tions of G may be arranged in the form

Sl, Siy ... Sjc

tiSu tiS^y ... tiSk

where t^ ts, ... ti are distinct elements suitably chosen from G.

If any substitution s of G he applied by premultiplication to the

elements of a row in this scheme it will produce a new row which con-

sists either of the elements of the same row, usually in a different order,
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or else the elements of another row, usually in a different order.

In no case can elements of the same row be changed into elements of

two different rows.

To prove this, suppose, if possible, that, for instance,

where a, h are different. Then, since 5i, Si,...Sk form a group,

therefore taSi = hSj, ta = hSjSf^ = t^Sr

which is impossible, because tiyS,. is in the ^th row, and (on account of

the way in which t^, U,-..ti are chosen) is distinct from #„, which is in

the ath row.

Hence we may say that the application of any substitution of G
produces a permutation of the rows of the table. These permutations

form a group, denoted by (r/r, and called the complementary group (or

factor-group) of G with respect to r. The only substitutions of G
which leave the first row in its place are the elements of r, and these

leave every other row in its place, because

SitjSy, = tjSiSk = tjSm

for all values of i, j, k, since r is self-conjugate.

Moreover any substitution which converts the first row into the ith.

must be of the form ttSa. Applying this to any element tjSb of the ^*th

row, we obtain

tiSa . tjSf).

Now because r is self-conjugate, we may put

Sjj = tjSc,

and hence tiSatjSb = titjScSb = titjSc.

Finally titj = tkSa, where h is a definite substitution determined by

ti, tj alone: hence

titjSc = tjcSdSc = tkSe

and the substitution tiSa converts the ^th row into the /?;th. Conversely,

the only substitutions which change the Jth row into the ^th are those

which change the first row into the ^th. Consequently G/T, considered

as a group of permutations of rows, may be represented in the form

(ti, T2,...Tj)

where n is the definite substitution of G/V which changes the first row

into the *th.

2
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The substitutions t^, t2, ...ti do not, as a rule, form a group : but they

behave like a group when considered as operations on the rows of the

table.

23. It will now be shown that the Galoisian group of the equation

a(0) = is holoedrically isomorphic with G/T. The values of are all

different, and we may denote them in such a way that

e,^^A=t.sA.
(;:;;t::l)

This being so, every permutation of rows in G/T corresponds to a

permutation of (^i, 0^, ... 6^, and every substitution of G produces on

(^1, 62, ... Oi) the same permutation as it does in the rows. Now let

Q(6i, 0^, ... Oi) be any rational function of the roots of a(0) = which

has a rational value. Then

where B is another rational function. Since the value of R is rational,

it is unchanged numerically by any substitution of G. This substitu-

tion applied to Q produces a permutation of ^1, ^2> ••• ^i corresponding

to an element of G/T. If, then, H is the group of permutations of

^1 , ^2 , • • • ^i which is holoedrically isomorphic with G/F, considered as a

permutation of rows, every substitution ofH must leave Q (^i, B^, ... 0^

unaltered in value. Conversely, if $ is unaltered in value by every

substitution of H it must be rational, because in this case every

substitution of G leaves it unaltered in value. Therefore (Art. 17)

H is the Galoisian group of a (^) = 0; and we may put H= G/T, in the

sense that these two groups are holoedrically isomorphic.

Since GIT is transitive, IT is so too, and hence the equation in 6 is

irreducible (Art. 19). Moreover, we can prove, as in Art 18, that it is

a normal equation, by taking the function

lA^A^-^e^y"^
where <^ is any rational function of ^1, ^2, ••• ^j and <^, <^2, ••• <^i are the

functions derived from it by applying the substitutions of G/T.

24. Consider, now, the effect of adjoining 6^ to the field of

rationality : this means that every function Ii{6i; Cj, Ca, ... Cn) which is

rational in form is to be considered rational in value. The group T is

the largest group in G which leaves the values of all such functions

unaffected, and it is, in fact, the Galoisian group oi f{pc) in the new
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field. To prove this it has to be shown that every rational function

R{^u ^2, ••• ^n) which has a rational value A in the new field is

expressible as an explicit rational function of 0-^.

To prove this, take the function

6 being arbitrary, and apply to it all the substitutions of G. Then the

function

can be expressed in a rational form

S(0: Ci, Ca, ... c„)

(Arts. 7, 17). Now if

so that a(0) = is the irreducible rational equation satisfied by ^i in

the old field, we have

where k = h/l. Moreover, among the denominators

(e-e,),(0-e,),...(e-e,)

only I are distinct, namely.

Hence it follows that

where T (6) is a rational integral function of 0. If the value of B is

unaltered by each substitution of r, all the fractions with the de-

nominator — 0-^ must have the same value B in the numerator, and

we may write, as an arithmetical equality,

true for all values of 0. The quantities L2, L^, ... Li are all rational

functions oi x^, x^, ... Xn. By putting 6 = 6^, we obtain

and this may, if we please, be replaced by an equivalent integral

function of degree not exceeding (/-I).

2—2
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The theorem proved amounts to this :

—

If B is a rational function of the roots of f{x) = 0, which has

for its inva7'iant group a self-conjugate factory F, of G, the effect of

adjoining 6 to the field of rationality is to reduce the Galoisian

group offix) = from G to V,

25. In the new field we can construct a new total resolvent for

f{x). In fact, if (v — v^) is any factor of the old resolvent i// {v\ and if

the substitutions of V give Vy the values Vj, v^y ...Vji, then the new

total resolvent is

F-y{v) = (v-Vi) (v - V2) ... (v - Vk)

= 7^+Pi1^~'^+ ... +p]c

where the coefficients are rational in the new field. In one, at least, of

these coefficients 0^ must occur explicitly, because il/(v) is irreducible in

the original field. Moreover

il^{v) = F,(v)F,(v)...Fi(v)

where Fi (v) is obtained from Fi (v) by changing ^1 to ^f, then expressing

Oi and its powers in terms of ^1, and finally reducing the coefficients by

means of a (6^) = 0.

If Fi (v) is reducible in the new field, all its irreducible factors must

be of the same degree (cf Art. 10), and any one of these may be taken

as a new primary resolvent. Every root of / may be expressed as a

rational function of -i^i, ^1, Ci, Cg, ... c„, ^^, ^^2, ••• «^n> where Vi is any root

of the new primary resolvent.

26. The equation a(0) = satisfied by the adjoined irrationality

61 is usually called a Galoisian resolvent of /(x) = : but we shall

find it convenient to call it a Galoisian auxiliary equation, or simply

an auxiliary equation when there is no risk of mistake. On the other

hand the equation Fi(v) = Oy obtained in the last article, may be

properly called a resolvent.

If we form the auxiliary equation according to the general method

of Art. 21, its coefficients will contain the parameters Mi, e^, ... m„ in a

complicated manner. In any practical case we at once simplify the

auxiliary equation as far as we can by giving definite values to the

parameters, thus making 6^ a definite numerical irrationality to be

adjoined to the field. It may or may not be convenient to give

definite numerical values to the parameters as they occur in Fi (v) : for

some purposes, even in a practical case, it may be convenient to leave

them umbral. This is one of the main reasons for distinguishing

between an auxiliary and a resolvent equation : in other respects they
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are similar, for example they are both normal. The real service

rendered by an auxiliary equation is to define a new field of rationality

in which the Galoisian group of /(^) = is of lower order than it was
originally, while at the same time the Galoisian group of the auxiliary

equation in the miginal field is of lower cyrder than that off(x) = 0.

Unless this last condition is satisfied, we do not gain anything by the

construction of an equation a (0) = 0, even though the adjunction of

one of its roots lowers the order of the Galoisian group of/; because

in this case the Galoisian group of a(0)=0 is, in its abstract form,

just the same as that of f{cc) = 0, and we are confronted with the

original problem in another shape.

If, however, as we have supposed, ^ is a rational function of the

roots of / which has for its invariant group a proper self-conjugate

factor of G (that is, one which is not merely the identical substitution),

the problem is really simplified by being made to depend upon two

equations

a(^)-0,

'/'i(^, ^i) = 0,

where the first is of order /, a proper factor of h, and has a Galoisian

group of order I in the old field ; while the second is rational in the

field obtained by the adjunction of ^i, any root of the first, and has a

Galoisian group in the new field the order of which is either hjl^

or a factor thereof, and is equal in any case to the degree of \l/x in i?, if

we suppose, as we may do, that i/'i is irreducible in the new field.

27. As soon as the original Galoisian group of / has been

determined, we can construct what is called a composition-series for G
in the form

G^ Gx, G2, ••' Gp, 1,

where Gi is a maximum self-conjugate factor of G, G^ a maximum

self-conjugate factor of Gi, and so on. Using the conventions

Gq=G, (tp+i = 1, we have a set of indices

^1 > ^2 ) • • • ^pi ^p + ii

such that ei is the index of Gi with respect to Gi-i. The group Gp

is simple and its order is ep + i.

We have seen that if we construct a quantity a, which is a rational

function of ^1, ^2, ••• ^« and which has Gi for its invariant group,

a will satisfy an equation

a (a) = a^i + aitt^'-^ + . . . + tte, =

which is rational and irreducible and normal in the field (cj, Ca, ... c„).
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By the adjunction of any one of its roots, we obtain a new field of

rationality, which we may denote by (a, c), and in this field the group

oi/isG,.

We can now construct a function for which G2 is the invariant

group in the new Jleld. Let ^1, L, ... tm (where m^hjeie^ be the

elements of 6^2, and let 6 be an undetermined rational quantity of the

new field. We may arrange our notation so that

Vyy Vs, ... 'Om

are the expressions obtained from -^i by applying the substitutions of

Gi ; and then, if we put

P is invariant for G^ in the field (a, c). By choosing 6 properly, as

a rational function of a, it will be possible to secure that no other

substitution of Gi leaves 13 numerically unaltered (cf. Art. 17).

Employing a notation which is now usual, we may write

Gi = S1G2 + S.2G2 + . . . + Sefi2>

as an equivalent for a tabular arrangement such as that of Art. 22.

Hence we see that the effect of applying all the substitutions of Gi to

p is to produce me2 expressions which have only 62 different values,

each repeated m times. They are the roots of an equation rational

in the new field, and of degree mSi : but since all its roots are of

multiplicity m, it is of the form {b (/S)}"" = 0, where b (/3) is also rational,

and of degree e^.

Consequently ^ is a root of an auxiliary equation

b(l3) = P''+b,/3'^--' + ...+be,=

with coefficients which are rational in the new field.

This equation is normal, because (ri/(r2 is a simple and simply

transitive group; hence by the adjunction of any one of its roots,

all the others become rational, and the Galoisian group of / becomes

G2 in the new field (a, /?, c).

Moreover we have

F^(v) = {v- V,) (v - V2) .-.(v- v„,) =v'^ + q^v'^-'' + ... + qm

a total resolvent for / in tlie field (a, /?, c) with coefficients which are

rational in that field. This process may be continued until the

Galoisian group of / is reduced to Gp ; and finally, by forming an

auxiliary equation of degree e^ + i, G is reduced to unity, and each root

of / is expressible as a rational function of the field (a, p, ... \, c),

where o, /8, ... X are roots of the (p + I) auxiliary equations. If
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desirable, this rational function may be transformed so as to be

integral in the adjoined irrationalities.

The ^th auxiliary equation is of the form

^^• + ri^*~^ + ... +re. = 0,

with coefficients rational in Ci, c^, ... c^ and the selected roots of the

preceding auxiliary equations.

28. It will be well to illustrate these very important results by a

special example. Let the given equation be

Then if r is any one of its roots, r^ = l, and the other roots are

r^, r^ r*, r^, r^. Thus we have a very simple case of a normal equation.

It may be proved that fix) is irreducible without adjunction : this

will, indeed, appear incidentally from what follows.

If we put
v-y = ar + br^ + cr^ + dr^ + e7^ +fr^,

V2 = ar^ + br* + cr^ + dr + ei^ + /?*^,

V3 = ar" + br^ + cr^ + dr^ + er +fr^,

V4 = ar^ + br + c/-^ + dr"^ + er^ +/^,

V5 = ar^ + br^ + cr + dr^ + er^ +/r^,

Vq = ar^ + br^ + cr^ + dt^ + ei^ -^fr,

then Vi is derived from v^ by changing r to /**, and Vi, Va, ••• '^6 are the

roots of a primary resolvent xp {v) = 0. Expressing the operation of

changing Vi into Vi as a permutation of the roots of / we have

Si = l, .^, = (124) (365), 53 = (132645)

s, = (142) (356), 55- (154623), s, = (16) (25) (34).

These are the elements of the Galoisian group of /, and combine

according to the multiplication table

1 S2 53 Si S5 s.

^2 S4 Se 1 S3 S5

S3 So ^2 S5 1 54

S4 1 ^5 S2 Se Ss

s. Ss 1 Se S4 52

Se S5 §4 s^ S2 1
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which is to be read s./ = S4, 8283 = 8^, etc. It appears from the table

that SaSi, = SbSay SO that G is Abeliaii, and every one of its factors is

self-conjugate. As a matter of fact, if we put S3 = s, the elements of

G are

X
f Sf o

J
a

f
S y 8

f

and the group is cyclical. It is also transitive, so that /(w) is

irreducible without adjunction.

One factor of G is (1, ^2, 84), and from this we can derive an

auxiliary quadratic. To find a function of which (1, Sa, S4) is the

invariant group, we start with

(t + v,)(t + V2){t + v;);

in this expression the coefficient of fa is

and this is, in fact, a function such as we require, because (83, S5, ^e)

each convert it into

which has a different value because/ is irreducible. If, now, we put

then ^1 + ^2 = - 1 J and 3/1^2 = 2, in virtue of /(r) = 0. Consequently

yi is a root of the auxiliary equation

3/^ + ^ + 2 = (1).

Let us take 3/1
=

,j

and adjoin it to the field of rationality, which thus becomes (3/1). The

Galoisian group of / reduces to (1, ^2, 54), of which the only self-

conjugate factor is unity. Hence r must be the root of an auxiliary

cubic, and since r is changed by Sa, ^4 into ?'^, r* respectively, this

auxiliary cubic is

(z-r)(z-r^)(z-r*) = 0;

or, on multiplying out, and expressing the coefficients in the new field,

this is

ii^-i/iz'-(y, + l)z-l=0 (2).

If Zi is any root of this equation, the others are Zi', Zx\ finally the

roots of the original equation may be expressed in the form

n = 2^1, ^2 = 2^1', r3 = z^ = y^z^ + Oi + 1) z^ + 1,

n = z^^ = -z^-z^^ yu n = z^^ = - (1 +yx)z^^ -z,-l,

U = z^ = z^ - yi^^i - (1 + 3^1).

If we solve (2) by the method of Art. 4, we find that

(zi + uizi^ + ii?z^y



28] GROUPS AND RESOLVENTS 25

is a root of the quadratic

^2 + (2yi-13)#-7(2yi + l) = 0,

one root of which may be put into the form

. _ -2^1 + 13 + 372 1 _ 14 + 3^21 - ^V7*-
2

-
2

•

Let a definite cube root of this be extracted, and called 6 ; then

since

{z^ + oiZ^ + ta^zf) {z^ + lo^Zx^ + <^Zi^) = 2l/i + 1 = ijl,

we may write

2^1 + Zi + Zi^ = —^
, Zi + (o% + <si%^ = 0,

Zx + (a'^z-^ + mzi = iJl/6 ;

whence, by addition,

Szx- + ^ + -o~

^ - 1 + ij7 - 14 + 3^21 + ^V7 ^
2 "^ 14

The quantity is of the form a + ySi, with a, /3 real ; and the

question might be asked, whether a and p admit of representation by

means of real radicals. This is not the case, because a is the root of a

cubic with all its roots real, so that the formula expressing it again

involves cube roots of complex quantities*.

By the adjunction of 1/1 the resolvent if/ (v) can be expressed as the

product of two rational factors ; one of these is

F,(v) = (v- Vx) (« - V,) (v-v^) = 'i^- Pv^ + Qv-E,
where

P = (a + b + d)y,- (c + e +f) (1 +3/1),

Q =-(a' + h^^(P) (1 +3/0 + (c^ + ^+/Oyi
+ (ac + hf+ de) (2 - 3/1) + {ae + ftc + df) (3 + y^
- (bd + da + ab + ef+/c + ce + af+ be + cd\

E = a^ + b^ + c^ + d^ + e^ +/3

+ (a^b + a^c + a'e + b'c + b'^d + by+ cH + &e

\-d^a + d^e + d^f+ e'b + e^f+fa +/^c) y,

- {aH + «y + b'^a + b^e + c^a + c'^^ + cy+ c?'^> + c?'^

+ e^a + e^c + eH +Pb +pd ^fh) (1 + y^)

+ (a6c? + aef-\- bee + cc?/*) (2 - y^
+ (a6/+ ac^ + bde + c^) (3 + 3/1)

- (a^c + abe + ac^ + ac/+ ode + ac?/*

+ ^c^ + 6c/+ 6<?/'+ ^^/+ cc?e; + def).

* Holder, Mathematische Annalen, xxxviii, 307.
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The other rational factor may be obtained from this by changing y^

into - (1 + y,).

This example affords a verification of the theory of Art. 15. The
permutations of the parameters which leave i/^ (v) foi-mally unaltered

are

o-i = 1, 0-2 = {dha) {efc\ o-g = {edfhca\

0-4 = Q)da) (Jec\ 0-5 = {chfdea\ <r^ = (fa) {eh) {dc\

and these could have been found by experiment from ^(v\ without

assuming any special relations among the roots of f{x). We should

then infer the Galoisian group oi f(ai) from the permutations o-^, and

hence finally discover the relations connecting the roots. The per-

mutations o- which leave i^i(v) unaltered are 1, org, 0-4, as may easily be

verified; while 0-3, 0-5, a-^ each convert Fi(v) into the other rational

factor of if/ (v).

Instead of starting with the factor (1, Sa, S4) we might start with

the factor (1, Se). This leads to the auxiliary equations

f + f-2y-l = (3),

z'-y,z+l = (4),

where we may suppose

Zi = r, yi = r + r\

With the notation of Art. 4 we find that A = B -1,

^ 7-H2UV3
2 '

and the reduced forms for the roots are

ri = z^, ri = Zi^ = yiZ^-ly r3 = Zi^ = (yi^- l)z,-yi;

r, = z,' = -(i/,'-\)z,-y,'+l = -W-l)(z,^l),

n = 2^1' = - y^z^^y^-\, ra = z^ = ^z^+y

29. In general, a composition-series for G may be constructed in

more ways than one ; but in every case the indices e^, e.^, ... ep^i are the

same in number and value, and only differ in the order in which they

occur*; moreover, the factor-groups Gi/Gi+i are the same, except for

the order in which they occur, and all of them are simple. Thus the

number and the degrees of the auxiliary equations are the same in

every case, and however they are formed, the problem of solving them

has just the same degree of difficulty. This shows very clearly how

deeply the theory of Galois penetrates into the special nature of any

given equation.

* Burnside, Theory of Groups, pp. 118-123.
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A few words may be said as to the effect of adjoining a rational

function of the roots, which has for its invariant group r, a factor of G
which is not self-conjugate. If the order of V is k, and we put hjk = /,

it can be proved, as in Art. 24, that the adjoined function </> satisfies a

rational equation of degree /, that its Galoisian group is simply

isomorphic with the permutations of (r, t^^^ ...tiV) arising from pre-

multiplication by substitutions of (r, and that the adjunction of <^

reduces the Galoisian group of / from G to r. If we adjoin all the

roots of the equation satisfied by <^, the group of / sinks to that

factor of G which leaves each element of (r, tj^, ...tiT) unaltered.

This factor is the group consisting of all the substitutions common to r

and its conjugate groups ^^r^^"^ ; a group which is self-conjugate in r.

Consequently, the adjunction of all the roots of the auxiliary equation

a (0) = is equivalent to the adjunction of any rational function for

which the self-conjugate group last referred to is the invariant group
;

hence it is unnecessary to adjoin any irrationalities except those of

which the invariant groups are self-conjugate in G.

To avoid misunderstanding, it may be remarked that a group Gi

of the composition-series is not necessarily self-conjugate in G ; but

before constructing the ^th auxiliary equation, we have reduced the

Galoisian group of/ from G to Gi-i, and in this group Gi is self-

conjugate. The advantage of choosing Gi as a maximum self-conjugate

factor of Gi_i is that in this case Gi-i/Gi is a simple and simply tran-

sitive group*; hence the ^th auxiliary equation is normal, and, subject

to this condition, of the lowest possible degree.

From what has been said it follows that the natural classification of

equations is according to the properties of their Galoisian groups.

Equations of quite different degrees are solvable by processes of just

the same complexity, provided that their Galoisian groups, in their

abstract form, are identical.

30. There is an important theorem which, to a certain extent,

forms the converse of that stated in Art. 24, and more generally in

Art. 29. It is as follows :

—

Suppose that <t>(^) = is any rational equation such that the

adjunction of one of its roots makes a primary resolvent ^{v) re-

ducible: then this same reduction may he effected by means of one of

the Galoisian auxiliary equations constructed after the manner which

has been explained.

* Burnside, pp. 29, 38-40, and Art. 22 above.
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We may suppose that <t>(y) = is irreducible. By hypothesis, if/ (v)

becomes reducible in the field (i/i) : let the new irreducible factor which

has the root i\ be x (% Vi), a function which must contain ?/i explicitly.

With a proper arrangement of the notation, we have identically

X(^. ^i) = (^- '^i) {'e-v^)...(v- Vk).

Th£ substitutions (s^ 52) ••• ^fc) of G which are associated in the usual

way with Vi, v^^ ... Vu, must form a group V. To see this, we observe

that by Art. 7 we may write

where Ja, •••i* denote rational functions. Hence the equation

x{iaW}-o
Has a root Vi in common with x (^) = 0, and consequently

for ft = 1, 2, ... A:. But since Sa and Si, belong to the Galoisian group, we

can infer from

that S^{SaV^)=ja{v^)\

hence xK(5aVi)} =

and SaSi must be one of the set 5i, ^2, ... 5*.

Now let u{xx, ^2, ••• ^») be a rational function of the roots of/ for

which r is the invariant group ; this will satisfy a rational irreducible

equation

a{u) =

of degree hjk. We shall have a resolution

xl/{v) = xj/i (v, u) «A2 (y, u) ... xlfi (v, u)

with / = hik; and we may suppose that i/^i (i?i, u) = 0.

Whatever value the rational quantity t may have, the function

{t-v,){t-v,)...{t-v^)

is invariable for the substitutions of F: hence it may be expressed

(Art. 24) as an integral function of u and t, say J{t, u). But the

function is also x (^, Vi) '• so that the rational equation in u

h(u) = Jit,u)-x{t,y,) =

has a root u-Ux in common with a (ii) = 0. By giving t a suitable

value we can make u^ the only common root. The process of finding

the highest common factor of a {u) and b {u) leads to an identity

Pa + Qb = Ru- S,
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where R, S are integral functions of i/i ; and since a, h have a linear

factor in common, we must have

Wi = SIE, •

a rational function of yi which may be reduced to an integral form

by means of <^ (3/1) = 0.

Hence i/^i (y, u,) = if/^ {v, {y^)],

a rational factor of ^ (v) which vanishes for v = Vi, and must therefore

coincide with x (v, y^ because x is irreducible, and the degrees of both

factors are the same. This proves that any new irreducible factor of
\l/

obtained by the adjunction of 3/1 can also be obtained by the adjunction

of a quantity u^ which can be expressed as a rational function of the

roots of/
Rational functions of the roots of /have been called by Kronecker

natural irrationalities (in the case when their values are not rational, of

course) : thus we may express the theorem by saying that every possible

resolution of the Galoisian resolvent of an equation hy means ofalgebraic

operations can be effected by the adjunction of natural irrationalities.

The roots of a chain of normal Galoisian auxiliary equations are

natural irrationalities : in a certain sense they form a " simplest " set

of irrationalities in terms of which all the roots of the given equation

can be rationally expressed.



CHAPTER 11.

CYCLICAL EQUATIONS.

31. The only irreducible equations which have unity for their

Galoisian group are linear, and require no discussion. The next

simplest irreducible equation is one of which the Galoisian group is

cyclical, so that

with s"=l.

This is called a cyclical equation The necessary and sufficient

condition that a rational function of its roots should have a rational

value is that its value remains unaltered when the substitution s is

applied to it.

The group G must be transitive, since/ is supposed to be irreducible

:

hence s must consist of a single cycle which, with a suitable notation for

the roots, may be written in the forms

s = {xxX^ . . . ^„) = (12 . . . w).

If/? is any prime factor of w, and n = mp^ the group

is self-conjugate in Gy and we can form an auxiliary equation

a(a) = 0,

of degree p, which reduces the group of/ to Gx-

If q is any prime factor of w, and m = Iq, the group

is self-conjugate in Gi, and we can form another auxiliary equation

ft(/3) =

of degree q, with coefficients rational in the field (a), which reduces the

group of /to (t2 : and so on.

It thus appears that if

n=p^q''...z'



81, 32] CYCLICAL EQUATIONS 31

whereat?, q^ ... 2; are different primes, the complete solution of /= can

be obtained from (^ + ^ + . . . + ^) auxiliary equations : h of these are of

degree p, k of degree q, ... t oi degree z.

Each of the auxiliary equations is cyclical. For example, the group

of b((3) is G1/G2, and this is cyclical, because if we break up Gi into

parts (or rows) with respect to G^ we have

G,= G, + s^G, + s'PG, + ... + 5(«-i)^(^2,

and hence s'^^ = s'^G^ + s^'+^^^G^ +...+ s^^-'^+'^^G^

a cyclical permutation of the parts. In other words, the group of b is

of the form (1, o-, o-^, ... o-^~^) with a-^^ 1, and so for any other auxiliary.

32. Thus the solution of any cyclical equation may be made to

depend upon the solution of auxiliary cyclical equations of prime

degrees. In the first place, however, we shall explain a process of

solution which is applicable to the original equation as well as to its

auxiliaries. This solution expresses the roots of/ rationally in terms

of its coefficients, a primitive nth. root of unity c, and the nth. root of a

quantity which is rational when e is adjoined to the original field.

Let Oi = iCi + €0^2+ ... + €^~^a^n '-

then s^i = ^2 + €^3 + • • • + ^'^~^^n + c*""^^! = €"^^1

:

and similarly s% = €-% :

hence s* (^/) = c-^'^^i'^ = ^A

and 61^ must be a rational quantity in the new field, because its value

is unaffected by any substitution of G, and the group of/ in the new

field must be either G itself, or a factor thereof Consequently we may

put

where X/R denotes some one definite nth root of the rational quantity jB,

for instance the real root, if it exist. B may, and in general will,

explicitly contain the auxiliary quantity e.

Now consider the expression obtained from 0^ by changing c to €*,

where k is any positive integer. Calling it 0,^, we have

and hence s (

^J
=
p^^^,

= ^

.
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Assuming that the value of ^, is not zero, it follows that

eic-B^e,' (/: = 2,3,...7i-l),

where Bk is a rational quantity in the new field.

Finally nxi = -Ci + B^-\-$2+ .,. + O^-i

= -ci + e, + BA' +Bse,'+... + Bn.ie.^'-K

By changing 0^ into t-% we obtain a similar expression for wi+i

.

As an illustration, take the example of Art. 28. In the first mode
of solution, after the adjunction of ^i,

Oi' = ^ ^ = 5 - 42^1 - (3 + 63^1) o),

In the second mode of solution

and the roots of the first auxiliary equation are given by

t

33. The method above explained breaks down when ^1 = for each

primitive root €. To avoid this difficulty, Weber * has put the expression

for Xx into a slightly different form as follows.

We have identically

Wiri + Ci = 2^i (e = 1, 2, ... w - 1)

and hence n {x^ - ^1) = 2 (e-** -i)6i.

Now let h = n/p, where p is any prime factor of n ; the coefficient

(c-**-l) vanishes whenever i is a multiple of j», while on the other

* Algebra, i, 689.
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hand (a^h-^i) is not zero, because /is irreducible. Consequently there

must be one integer i at least such that Oi does not vanish, and i is

prime to p.

If, therefore n=p'^q^ry ...

where p, q, r ... are different primes, we can find integers A., fx, v ...

prime to p, q, r ... respectively, such that 0^, 0^, 0^,, etc. are all

different from zero.

Taking any positive integers t, w, ^, z, ... and denoting, as before,

the generating substitution of G by s, we have

where u= -t + \w + fxi/ + vz+ ....

The greatest common measure of A., //, v, etc. is prime to n: con-

sequently there are positive integers $, rj, ^, etc. such that

X$ + fjLy) + v^+ ...= I (mod n)

and if we put O^O^^O^^O,^ ...

^ is a quantity which does not vanish and is such that

s(o,6-') = e,e-K

Consequently Ot = Bt6' (jJ = 1, 2, . . . ?^^
where Bt is rational ; and

with ^" = -^,

where ^ is a non-vanishing quantity, rational in the new field.

34. Since s (Ox'') = €-^^^a% the lowest power of 0^ which is rational

is determined by the congruence

X^ = (mod n)

or ^ = (mod n/d)

where <^ = dv (n, A). On account of A. being prime to p, d is also prime

to p, and we may write

njd^pHx

where k is an integer. If we put

then <Aa^* = Tx

3
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where Tx is rational, and

We may in the same way derive from ^,x, ^^, etc. quantities

<^M> ^vi etc. such that

and so on.

The integer /i is prime to p, mi is prime to q, and so on : hence we

can find integers $, rj, ^, etc. such that

li\i+ mi fji.7j + 72iv^+ ...= 1. (mod n)

Now s(0,<i>x--<f>^-y <!>,-' ...) = €^e,<i>x-<f>^-y<f>,-^

where u = -t + liXic + mifiy + nivz + ... ;

so that u = (mod n) if

x,y,z,...=t^, trj, tC, ....

Consequently, if we put

then ^, = /S',<^*

where /Si is rational

:

na;i + Ci = Si<t> + S,<ly'+...+Sn<i>''-'' (1),

and <^A, <f>fi., etc. are determined by the binomial equations

<}>r=T,, v^^t;,...

the degrees of which are the powers of primes which occur in n. By
giving <^x, <^^, etc. all their different values, <^ assumes ?^ different

values, and if these are substituted in (1), we get all the roots of the

given equation. Of course the adjunction of the quantities <^a, <^^, etc.,

is equivalent to the adjunction of the single quantity 6 which is

determined by a binomial equation of degree n ; but the equations

which determine </>a, etc. are all lower than the one which determines 0.

In this 7'espect the last form of the solution may be considered the

simpler one. All this illustrates the fact that what is to be called the

" simplest " solution of an equation is partly a matter of convention.

Thus, again, if, in the present case, we solve the eciuation by a cliain

of Galoisian auxiliaries, they will all be of prime degree, and for each of

them one at least of the quantities 6i must be different from zero, so

that Weber's supplementary transformation is unnecessary. In these

respects the solution is the simplest of all: on the other hand, just

because the expressions for the roots are more explicit, they are more

complicated in appearance.
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35. In the solution of the general cyclic equation complex roots

of unity appear as auxiliary irrationalities. These roots of unity are

themselves the roots of cyclic (or Abelian) equations, and it is natural

to inquire how far the solution of these special equations can be carried.

If n=p^p^...p^

where ^i,;?2, etc. are powers of different primes, the complex roots of
^" = 1 may all be expressed in the form

where a, /3, ... \ are roots of

so that it is sufficient to consider the case in which n is a> power of a

prime.

We shall begin by supposing that n=p,&n odd prime ; the equation

to be solved is therefore

/(;r) = a;P-^ + af-'^ + ... + ^ + 1 =: 0.

If r is any one of its roots, the others are r^, i^, ... r^~^. These

may be expressed in a more convenient form as follows. Let ^ be a

primitive root oip ; that is to say, a primitive root of the congruence

^P-'El. (modjo)

Then 1, g, g^^ ... g^~^ form a complete set of residues of jp, and if we

write

the roots oifQr) will be denoted by suffixes in such a way that

In this notation, every integral function of the roots which is

unaltered in value by the substitution

5 = (nr2...rp_i)

is rational.

The function in question can be reduced to the form <^ (n), where <^

is a rational polynomial. If the substitution s is applied to the original

form of the function, its effect is the same as changing i\ into r/ in

<^ (ri). Hence if A is the value of the function, which by hypothesis is

unaltered,

A=<f>{r,) = 4>{r,^)-<^(rf) = ...

p 1

a rational quantity, because symmetrical in the roots of /.

3—2
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If (v - Vi) is a factor of the total resolvent of / and we put

s*(vi) = Va+i, the factor

xf, (v) = (v- Vi) (v-V2)...(v- Vp.,)

will be rational, and moreover it will be irreducible, because otherwise

there would be an identity

v^-i^-'^(aui + ...) + ••• = (^-'i'i) (v-Va) (v-vp) ...

= 'y*-'y^"M(n + ^a+i + r^+i + ...) wi + ...} + ...

leading to n + ra+i + rp+i + ...=a

with a rational, and less than (p-l) terms on the left-hand side.

This is impossible, because /(.-r) = is an irreducible equation*.

Hence if/ (v) is a primary resolvent of/, and the Galoisian group of/

is (1, s, ^, ...s^~^), so that / is a cyclical equation. We may proceed

to solve it, either by forming a chain of auxiliary equations, the degrees

of which are the prime factors of (p - 1), or else by adjoining a primitive

(p— l)th root of unity, and proceeding as in Arts. 32, 33.

36. An example of the first method (for p = l) has been com-

pletely worked out in Art. 28. In the general case, let jt? — 1 = ^,

where e is a prime. Putting

a will be a root of an auxiliary equation

a(a) = 0,

with rational integral coefficients and of degree e.

If /= gk, where ^ is a prime, we put

P = ri + rge+i + r^2ge+l + . . . + Tp-gey

and now )8 is a root of an auxiliary equation

i(/8) =

of degree ^, with coefficients which are rational polynomials in a. We
proceed in this way until all the prime factors of (jt? — 1) are exhausted.

A case of historical interest is when p = n. The auxiliary equations

are (taking 3 as the primitive root of 1 7)

a24-a-4 = 0,

2/-2/Sy + (a^-a + )8-3) = 0,

• Weber, Algebra, i. 596 ; or my Theory of Numbers, p. 186.
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All these equations, except the last, have real roots, and a, )8, y, 8

can all be obtained explicitly in forms containing real arithmetical

surds : thus we may put

^^
-1 + V17 ^_ -l + V17 + V(34-2V17)

but the expressions for y and 8 are too complicated to be worth writing

down.

37. To solve the equation considered in Art. 28 by the method of

Art. 32, we put
0-1 = r + lo^r^ - (o/^ + oir^ — wV - r^,

(- to being a primitive sixth root of unity, and the cyclical order of the

roots of / being r, r', r^, r^, r"^, r' when we take 3 as the primitive root

of 7). It is found by actual multiplication that

e^ = (5 _ 3a,) (r + 7^ + r* - 7-=^ - r' - 1^\

^i" = - 7 (16 - 39(o) = (1 + 3a)) (2 + 3a>)^

where it may be observed that in the field {i^^ the norm of Ox is 7^ It

may also be verified that

2-0, 8 + 30) 18 + 19(0
^4

0^0., _ 55 + 39o) .5

^^~l-2o,- 2401 '
'

so that finally

1 Ox 2-0). 2 8 + 3o).3 18 + 19o) 55 + 39o)
r = -Y + Y + -^^i +-^^^1 ^4— ^1

+—^i
— ^1-

38. The simplest way of calculating the quantities Oi is the

following. If h is any one of the numbers 1, 2, 3, ... (jo- 3), the

product O^Oy, is not rational, and its quotient by ^a+i is equal to

the coefficient of r in the product O^^h after reducing it by first

replacing all powers of r higher than r^'^ according to the formula

^.ap+b^^b^ and then replacing any rational term a by its equivalent

value

Now ^^^^ = 5€^°«i«+fti^d6^+6_ {a,h = \, 2, ...io^)

The only pairs (a, h) which contribute to the coefficient which we wish

to find are those for which

a-vh =p,
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The second set contributes, after the first reduction, a coefficient of

r which is

2ginda + Aind(p + l-«)^
(« = 2, ... JO^l)

the other set, after the second reduction, contributes

Since ind (j>-a) = ind (- a)

= i (/?-!) + ind a,

the sum last written

o = l

Q
and hence

ij^^ ;^^nda+Aind(p+i-a)^ (a = 2, 3, ...p-1)
'h+l

On the other hand, if ^ =^ - 2, then 6l6}^ is rational. Its value may
be written in the form

$$ _ — ^gind a+(p- 2) ind 6 ^a + &

since €^ ^ = 1. Now if we put a= tb (mod p), we obtain the equivalent

expression
^^dt^a + t)b^

(^>, ^-1, 2, ...^1)

The terms for which t=p-l contribute

for any other value of t

hence the value of all the remaining terms

< = p—

2

--=-1 2 £^<*' = -l;
t=i

and finally ^i^p-2 = -p-

This, together with

-l-^="*°'2 jindm + fcind (p+l-7rt)
f^ = 1 2 . . . » — 31

^;»+l m = 2

enables us to find the values of 0^, 6^, ... Op_^ with great facility. Of

course the indices of the powers of « are reduced, at the first opportunity,

to their least residues, mod (p-1).
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^

As an example, when p = 7,we construct the table of indices for the
primitive root 3 :

—

m 12 3 4 5 6

ind m

ind (8 - m)

6 2 14 5 3

3 5 4 12

and hence find

"•2

6

1'^3 _ n

0,

0.

+ C^ + €^ + e^ + 6=^ = - 1 + 2o>,

= e^ + 6=^ + €V C^ + €^ = - 3 - <o,

By multiplication we find that

^i« = -7(l-2a))2(3 + <o)2

= -7(16-390))

as before; and all the results of Art. 37 may now be obtained with

ease.

39. Suppose now that n=p'^, a power of a prime. The primitive

wth roots of unity in this case are the roots of the equation

/w= Xpa _
J
= cc^''-^ (^-') + ^^""' (^'-2) + . . . + ^^"-' +1=0,

which is irreducible, and of degree jt?«"-^ {p — 1). It is also cycHcal,

because there are primitive roots of p'^ which can be used, as in the

case when a = 1, to fix a cyclical order of the roots, and the arguments

of Art. 35 may be repeated. The indices of the composition-series will

be the prime factors of (jo-1) and also the prime p repeated (a-1)

times. Hence if we solve the equation /(^) = by a chain of Galoisian

auxiliaries, (« — 1) of these will be of degree p, and (Art. 30) no purely

algebraical solution can replace these auxiliaries by others of lower

degree.
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Finally, if

n=p''q^ry ,.,
<l> (n) = p''-'^

(p - 1) qP-'^ (q - I) ...

the primitive nth roots of unity are <^ (n) in number, and they may
be determined by as many chains of auxiliary equations as there are

different prime factors of n. Tlie degrees of the auxiliary equations

are the prime factors of <^ (w). It should be observed that the primitive

nth. roots satisfy an irreducible equation of degree <f>(n), but this

equation is not cyclical.

A specially interesting case is when the auxiliary equations are all

quadratics. The necessary and sufficient condition for this is that <^ (n)

should be a power of 2 ; this is equivalent to saying that

n = 2'^pqr . .

.

where JO, q, r, etc. are different primes, each of the form 2™+ 1. When
n is of this form, and then only, a regular polygon of w slides can be

inscribed in a circle by means of the rule and compass; because the

complete solution of ^" = 1 leads to the determination of cos 2'rr/?i and

sin 27r/w, and conversely, while every construction with rule and

compass can be put into an analytical form which involves only linear

and quadratic equations. This remarkable connexion between geometry

and analysis was discovered by Gauss.

The values of n, below 100, which are of this special form are

3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30,

32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96.

Of these the only ones which are not considered in Euclid's

Elements, or at least easily brought into connexion with the cases

(w = 3, 4, 5, 6, 15) which he does consider, are 17, 34, 51, 68

and 85.



CHAPTER III.

ABELIAN EQUATIONS.

40. A GROUP is said to be Abelian when its elements satisfy the

commutative law of multiplication : that is to say when ss = s's,

s and s' denoting any two elements of the group. An Abelian equa-

tion is one of which the Galoisian group is xlbelian. Cyclical equations

form the simplest class of Abelian equations : it will be shown in this

chapter that every Abelian equation may be solved by means of

auxiliary cyclical equations.

It will be supposed, in the first place, that the given Abelian

equation is irreducible. This being so, its Galoisian group G is

transitive, and will contain a substitution Si which converts ^i into

any other assigned root iPi.

The substitutions of G which leave Xi unaltered form a subgroup

of G. Let o- be any one of these : then since ^r^ changes a^i to Xi ,

Si
-^

a-Si {Xi) = a-Si (^i) = Si {a- (^i)} = {Vi,

that is to say, Si~^(TSi leaves a^i unaltered. But since G is Abelian,

g.-^aSi^Si'^SiO-^a ; consequently o- leaves every root unaltered, and

is the identical substitution. It follows from this that G is simply

transitive, and that if ^i, cc2, ••• ^n are the roots of the given equation

G = (l, 52, .93, ...Sn)

where Si is the definite substitution which changes ^1 into iVi .

Moreover the adjunction of ^1 reduces G to unity : consequently

^2, - .'Pn are expressible as rational functions of ^1, and /(^r) = is a

normal equation.

Let the rational expressi >ns of the other roots in terms of ^1 be

To these equations (Art. 17) we may apply any substitution of G :

thus from ^i = ^i(^i), ^j = ^j(^i)

we deduce Sjo^i = 6i (xj), siXj = Oj {x^

.
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But SjXi = sj {siX^ \
= Si {sjXj } = Si Xj

:

consequently Oi {xj) = Oj (xi) ,

that is, Oi{ej(x,)} = ej{di(x,)}.

By applying a Galoisian substitution to this we infer that

«. {»jW } = »j {SiW

}

U, j,k=l,2,...n]

with the convention that 0^ (x^^ = x^.

In other words, the rational function

ei\ei{x)]-e,{ei{x)]

must either vanish identically, or have a numerator which is divisible

by f{x). In general, it is the latter case that occurs ; so we may
write, to express this fact,

6i {6^ {x) } - 6j {e, (x) ]
= 0. (mod f(x))

Conversely if the roots of a normal equation /(x) = can be ex-

pressed in a form Xi = 6i (x^ such that these congruences are satisfied,

the Galoisian group is Abelian. For we have arithmetically

that is 6i (xj) = 6j (xi) :

but since SiXi = Xi^ Oi (xi), and SjXi = Xj^6j (xi),

it follows that Sj (siXi) = Oi (xj) , Si (sjXi) = Oj (x!)
;

consequently Sj (SiXi) = Si (sjXi) ,

and in this we may change Xi to x^. Finally, then, SiSj = SjSi identically,

and the group of the equation is Abelian. It will be observed that

this converse theorem is true whether /(;r) is irreducible or not.

41. The simplest way of expressing the elements of an Abelian

group is by what is called a basis*. The elements 5i, Sg, ... s^ form a

basis of G when every element of G can be expressed in one and only

one way in the form

s{^s.J^ ...Sh {x^mi, i/^7n2, ...t^ m,,)

with Xj y, ... t positive integers, and mi, /Wg, ... m^ the least positive

integers such that

If desirable, the base may be so chosen that mi, m2,...mh are

powers of primes : of course their product is equal to n, the order of G.

* Weber, Algebra, ii, 38-45.
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42. No generality will be lost, and the notation will be much
simplified if we suppose that the basis of G consists of three elements

s, t, u, of order a, b, c respectively, so that ahc = n, and all the

elements of G are expressed by

Let p be any prime factor of a ; then the substitutions for which,

in their basic form, i is divisible by p form a self-conjugate sub-group

of G, the index of which, with respect to G, is p. Since p is prime,

this is a maximum sub-group, which we may denote by Gi, and a

rational function of the roots for which G-i is the invariant group will

satisfy a rational cyclic equation of degree p. By adjoining one root

of this equation, the Galoisian group of/ sinks from G to G-^.

Suppo«5e, now, that ^ is a prime factor of ajj) : then the substi-

tutions of G which, in their basic form, are such that i is divisible

by pq, form a maximum self-conjugate factor of G^, which we may
call G2. A function for which G2 is the invariant group in the

enlarged field will satisfy a rational cyclical equation of order q, and

the adjunction of one of its roots reduces the group of/ from Gy to G^.

By proceeding in this way, we can exhaust all the prime factors of a

and reduce the group of / to those substitutions of which the basic

forms are t^u^. If p is any prime factor of h we have a group (^%*)

withy divisible by y, and a corresponding cyclic auxiliary of degree y,
and so on. The group of /is finally reduced to unity by a chain of

auxiliary cyclic equations, the degrees of which are the prime factors

of n : that is to say, if n ^p'^q^r'^ . .
.

, there will be a auxiliary equations

of degree jo, ^ of degree q^ y of degree r, etc.

43. As a simple illustration, we will take

the roots of which are the primitive 20th roots of unity. If we arrange

the roots so that

Xi = r, X2 - r\ Xs = r\ X4 = r\

x, = r'\ Xe = r'\ X7 = r^\ Xs = r'^

substitutions of G are

1

S2 = (1243) (5687), S3 = (1342) (5786),

^4 -(14) (23) (58) (G7), S5 = (15)(26)(37)(48),

§6 = (1647) (2835), S7 = (1746) (2538),

.s = (18) (27) (36) (45).
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If we apply these to the function given by

the only new function arising is

^2 = ^6 + ^6 + ^7 + ^8 = —y\'

Hence yi is a root of a rational quadratic. To find it, we have,

with the help of/(r) =^ 0,

y^ = r + 'i^ + r' + r^ = 2r'' - r° + 2r*,

y,^ = (2r^ -r^ + 2r«)^ = 5r^o [mod/(r) ]

= -5,

and the first auxiliary equation is

3^1' + 5 = 0.

If we now put

Zi = Xi + a;^ = r + 7^, Z2=£C2 + cc^^'i^ -^r^

we find that 2^1 + 2^2 = 3^1 > ^1 2^2 = — ^ so that the second auxiliary

equation is

Zi-yiZ^-l = Q.

Finally x^ and ^4 are the roots of

cc^-ZiXi- 1=0.

By actually solving the auxiliaries we see that we may take

„-;/5 -- '(V5 + 1) ^ V(10-2V5)+,-(>/5 + l)
.

yi - * V 0, *i - 2~~^ ' ^1
~ 4 '

and as a verification we observe that the expression last written is

exp (67^^720), one of the primitive roots required.

The group G is in this case dibasic : if we put

8 = S2j t = Sg,

then (s, t) is a basis, and the basic representation of G is

Si = lj Si = S, 83 = 8^, 84 = 8^,

S5 = 8^tj 8q = 8Hy 87 = 8t, Ss = t,

with s^ = t^ = i.

It is a very remarkable fact, discovered by Kronecker, that if the

coefficients of an Abelian equation are ordinary real integers, its roots

can be expressed as rational functions of roots of unity, with real

rational coefficients. Proofs of tiiis theorem have been given by

Weber and Hilbert, but they are too long and difficult to be re-

produced here.



CHAPTER IV.

METACYCLIC EQUATIONS.

44. Suppose that p h a prime number, and that g is any one of

its primitive roots. The numbers (1, 2, S, ... p) form a complete

system of residues to the modulus p, and we can form a group of

permutations of these numbers in the following manner.

Let s denote the operation of changing any residue z mto z+ 1, and

reducing the result to its least positive residue, mod p. Thus

s(ip-l)=p, s{p)=l, s(l) = 2, etc.,

and we may write

s(l,2,...p) = (2,S,...p, 1).

Let t denote the operation of changing z into gz, and reducing the

result to its least positive residue, mod p. Thus

t(l,2...p) = (g, 2g, ..•p^'g,p).

Evidently 5 is a cyclical permutation of order p ; since

t'(l,2,..,p)=(g\2g\...p),

and ^ = 1 (mod p) only when A is a multiple of (p - 1), it follows that

t is of order (jo - 1). It will be observed that t does not displace p,

and that like 5 it is a cyclical substitution.

It will now be proved that ihep(j)-l) operations

' ^
ln=l,2,,..(p-l)J

form a group.

We have t^s' (z) = s" (g^z) ^g^'z + c

= g'(z + l)

provided that / = cgP-'-\
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Giving / its least positive value we infer that

and ^lf.^f = ^.1^^.lf = ^^H''^^.

Since rt, h, c, d may be any four integers, this proves that the

operations form a group. For convenience, it will be called the

metacyclical group, mod jp, and the reference to p may be omitted when

no mistake is likely to arise.

45. There is another way of regarding the group, more convenient

for some purposes, and representing the group as a set of linear

substitutions. We have

^ti'{z) = gy{z + x)

= lz + m,

provided that g^ = /, g^a^ = m. (mod p)

If X and y are given, the last two congruences determine /, m
uniquely to the modulus p. Conversely if I, m are given and / is

prime to p, X and y are uniquely determined to the moduli /?, (/?-!)

respectively. Thus the group may be represented by the substitutions

and in this form may be called the integral linear group.

The group is doubly transitive : that is to say, there is a definite

substitution which converts any two given residues a, /? into any two

other given residues y, 8. This follows from the fact that the

congruences
la + m = y, ip + m = 8 (mod p)

admit of one and only one solution, because

and (a - p), (y - 8) are both prime to p.

As an example, \et p= 1, g=' 3, and let it be recjuired to find the

operation of the group which interchanges 1 and 2. The congruences

l+m = 2, 2l + m= 1 (mod 7)

lead to / = 6, w = 3, and the required operation is (z, 6z + 3), or, in

the other notation, s*^. As a verification

5^(1, 2, ...7) =(5, 6, 7, 1,2,3,4),

^(5, 6, 7, 1,2, 3, 4) = (2, 1,7,6,5,4,3).
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46. It has been shown that

where / is different from c, while the index b remains unaltered. It

follows from this that if d is any factor of (p - 1), including unity and
Qo - 1) itself, and iip-l^de, the operations

gm^nd rm=l,2,...p-]

U = l, 2, ... eJ
form a group of order pe.

This group is self-conjugate in the metacyclic group, because there

is an integer i such that

Let US put

p(p-l)=h, p-l=Piqi=PiP^2='-=^PiP-2-"Pr,

where Pi, p^, ---Pr are the prime factors of (p-1). Then we have

a composition-series

with indices jt?i, p^, " Pr,p\

tbe notation being such that Grpq. means the group of which the

operations are

Lw = l, 2, ... gj

In particular, G^ means the cyclical group (1, ^", ^^ ... s^~^).

47. Suppose now that we have an equation of prime degree, and

that its roots are x-^^x^^ ... x^. We obtain a group of permutations of its

roots by applying to their suffixes the operations of the metacyclic

group. If this is the Galoisian group of the equation, the equation is

said to he metacyclic. An equation of this kind can be solved by a

chain of auxiliaries, each cyclical and of prime degree. That the

auxiliaries may be taken of prime degree follows from the composition-

series just given for Gn : that they are cyclical may be inferred from

the fact that they are normal as well as of prime degree, or again from

the fact that Gpq._^ ^ Gpq. is holoedrically isomorphic with the cycHcal

ffroup

(^, ?{^ ... ^(^»-^''^),

where d =piP2 • - - pi-i (cf Art. 23).
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48. Kronecker has put the solution of a metacyclic equation of

prime degree into a very interesting form, which is analogous to that

given for cyclical equations in Arts. 32-4. Before reproducing it,

a few explanations and lemmas will be necessary.

As in Art. 32, we take e, a primitive jt?th root of unity, and write

^fc = ^1 + €*^2 + ... + e(^-i)%. [k = l,2 ...(p-l)]

If s, t are the generators of the metacyclic group,

as before : to find the effect of t, we observe that

i i

where h is determined by the congruence

gh = 1, (mod p)

leading to h = g^'^ (mod p)

With this value of h t {0^} - €*<'^-i)(9fcft.

It is convenient now (cf. Art. 35) to introduce a slight change of

notation. We shall write

^, = e^ ^'-0, 1, 2, ...(;?- 2)]

on the understanding that Bgi means B^, where r is the least positive

residue of g^ to the modulus p. We also make the convention that for

any positive integers rriy n,

provided that m = n. (mod p-l)

Thus there are only (p - 1) distinct quantities ^i, and these are the

same as the quantities 6i in a different order : in particular,

Ul—^Q= ^p-l , ^l=Bg.

The effects of s and t upon ^< can be found from previous formulae

:

thus

Let us now write

f^ = ^i^o"^ /l = -^A'^ • • • /i= -^i +l^r") • • • fp-2 = ^p-l^p-2'

Then 5 (/)=/<,

and t (ft) = /-^'^'^i . €-^^'-'-^')^;f,

with the special case

t(/o)=/p-2'
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Consequently any rational cyclical function of /«, /, /a, ... /p_2 is

unaltered by i? and t : the quantities fi are therefore the roots of a

ratio aal cyclic equation of degree (/> - 1). The change of c to €^

converts fi into /i+i ; hence it follows that when the cyclical equation

aforesaid is reduced by means of the equation satisfied by €, the

imaginary root of unity will disappear. In other words we have

identically, after this reduction,

(/-/o) (/-/i) - (/-/p-2) -f'-' + mj^-^ -f ... 4- m^_„

where Ml, m^y ... rrip-i are/orw2a%metacyclic functions oi x^, x^, ... Xp,

and have rational values when the given equation is metacyclic.

Suppose that we have a set of quantities ^o, </>i, ... <^p_2, each of

which is rational in e^ Xi^ x^, ... Xp and which also satisfy the following

conditions :

—

(1) 5(</>o, <^i, ... <t>p-2)^^o, <^i, ••• <^p-2;

(3) the change of c into €^ produces the same cyclical permutation

as t~'^
;

(4) cychcal functions of <^0 5 <l>u ••• ^p-2 are metacyclical functions

of ;2?i, X2, ... Xp, and can be expressed in a form which is free from €.

Then by arguments precisely similar to those employed in Arts. 7,

24 it may be proved that

<l>i
= B{A\ (z = 0,l, 2, ...jo^)

where i2 is a rational function free from e, and the coefficients of the

powers of/i are metacyclic functions oi x^, x^, ••• Xp. i

49. From the equations which express the quantities fi in terms

of the quantities ^i we can eliminate all the ^s except ^o in the

following manner. Raise the first equation to the power g^'^, the

second to the power /"^ etc., and multiply all the results together :

observing that ^p-i = ^Q, we have

^^-.^-^ ^ff-^^ff-\..ff-'-\..fUfp_, (1).

The primitive root g may always be chosen in such a way that

where ^ is a positive integer. Supposing this done,
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Now the quantities V^, V^ ••• -^^-a satisfy all the conditions

enumerated in the latter part of Art. 48, so that we may put

%'"' = ii(/«) (2),

where M is & rational function of the nature explained above

The positive integers ri, n, ... r^-a can he iiui(iuely determined so

that
g^-^ = qp-^p + rp_2, f-^ = qp-zP + ^i,-3, etc.

with 0<ri<p (^ = l, 2, ...p-2)

and the quantities qi positive integers or zeros.

If, now, we write, as an abbreviation,

K, = R{f,)f,^v-^^A^^-^...flU (3),

we obtain from (1), after multiplying both sides by V"^'j

V = ^oVo''^-^//^-^ -Al-Jp-. (4).

From this it follows that

^^^=K^fi^V-^rP^' •••/i+p-2 (5),

where Ki is derived from K^ by changing/,, /i, / ... into /, /•+!,

/•+2, ... respectively.

The relations (1), (2), (4), (5) are all reducible to identities, whatever

.^1, Xzi ••• scp may be, solely in virtue of the equation satisfied by €,

and the definitions of -^f, /», etc. If a^i, x^, •• Xp are the roots of a

metacyclic equation with numerical coefficients, /o, /i, ... /_2 are the

roots of an auxiliary cyclical equation with rational coefficients. By
the adjunction of /o the other roots become rational, and finally, if

we put

a definite pih. root of/, we have

pX^ = -C, + ^^i = -C, + %KiirP-^Trp-^ ... Tj^ 3r,+^_2.
i

If, in the expression on the right, we give to each quantity t^ any

one of its p different values, we only obtain p different expressions on

the whole : thus the formula may be used to determine any root of the

given equation, and it does not lead to any value of Xi which is not a

root.

50. When jt? = 3, the metacyclic group consists of all the per-

mutations of three things : hence the general cubic equation is

metacyclic. To solve it by Kronecker's method we take ^ = 5,

.&0 = a + wy8 + o)2y, .^i
= a + w^^ + o>y,

/o = '^1^0~°J /l = ^Q^l'^'
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With the notation of Art. 4, we find that/o,/ are the roots of

B'P-{A'-2&)f+B =
(1).

Moreover f^^f^ = ^^-2^

v-/oyxW)^ .....(2),

and we have now to express V in terms of/;. To do this by the
general method is a good exercise ; but it is simpler to proceed as
follows. We have

(V-. V)(V-V) A

hence A (V - ^/) - B^ {/, -/o) = ^^ (/o +/i - 2/o)

= A^-2B^-2B'f„

and y- i (V -V + ^) -^^^^~ -^'-^^

(3).

If we write /o = r/, /i-tj^

we obtain from (2) and (3)

_MA^-B^-BV,y A(A^-B^-B^f,y
,^0 - j-s To Tl, ^1 = ^1 Tj^To.

To put the solution into its simplest form, we must express the

multipliers of t^^t^ and t^^tq as linear functions of/o and/i respectively.

The final result is

^n -= -1 Vtj,

^1

B(BVo-A' + B')

A

B(B'A-A' + B') ,

A

This gives the solution in a definite form whenever the values of A
and B are both diff'erent from zero. When A =0, the expressions for

^0 and -3^1 assume the indeterminate form 0/0 : in this special case the

cubic has the rational root - cJS, and the others are the roots of a

rational quadratic. When ^ = the cubic may be written

(3^ + Ci)'4-Ci'-27c3,

and is cyclical. Finally, when A = B = the cubic has three equal

roots.

51. It is an interesting problem to find the most general form of

a metacyclic equation of the fifth degree. To do this, we must first

find the most general form of a cyclic quartic. There will be no real

loss of generality if we suppose the sum of the roots of the quartic to

4—2
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be zero ; assuming this, there will be four rational quantities 6, c, d, e

such that, X being a root of the required quartic

The elimination of leads to the required equation in the form

a'-2(2bd + c') ex^ - 4 (6' + <^^) cex

- [6^ - (26'^e^ - ^hc'd + c')e + d'e'] e = 0.

Since (bO + dO^f = 2bde + (b' + dJ'e) B^

we may write

Xx= cje+ J(2bde + {b^ + d^e) Je\

x^ = - cje + J{Wd6 - (b^ + d'e)Je\

x^ = cje - J(2bde + {b"" + d^e)^e),

^4 = - cJe - J(2bde - (6^ + d^e)^e).

By a change of notation, these expressions may be put into other

equivalent forms. To make the formula absolutely general, an arbitrary

quantity a may be added on the right-hand side, and the quartic

modified by changing x into (x - a). The quartic is then cyclical in

the field (a, b, c, d, e).

Now let /, rriy n, p^ q be any rational quantities ; and let

Xi = ri\ (^ = l,2,3,4)

f{x) = la^ + mx^ + nx +p^

Then Xi, x^, x^, x^ being the roots of a cyclic quartic as previously

constructed, $ will be a root of a rational quintic which is metacyclic

in the field (a, 6, c, d, e, /, m, w, p, q).

It is supposed here that the notation for the roots of the quartic is

80 arranged that its Galoisian group consists of the cyclical permuta-

tion (xiX.2X-^4) and its powers. This having been done we may give

each of the quantities Tj all its five values, without obtaining more than

five values for $. There will generally be five different values : but

there may be repetitions for particular values of (a, b, ... q).

52. The general quintic can be transformed, with the help of

solvable equations, to the standard form

x^ + ax + P = (1),

and if this is metacyclic its roots can be actually found in the following

manner.
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The generators of the metacyclic group may be taken to be

5 = (12345), ?f = (1243)(5);

and if we put c = e^'^*/^,

it is found by actual calculation that, in virtue of 2^^ = %xi' = %xi = 0,

eA=4>J^ = -eA (2),

'

e,% + e.^e,^eie, + e,A = o (3)^

Ox, O2, etc. having the same meaning as in Art. 48 and elsewhere. If

we write, for simplicity,

<^^5 =u
and eliminate 0^, 0^ from (2) and (3), the result may be written in the

form

u%'' + u'' (o,%y + (e,%y - uo,'' (e,%) = o.

This is satisfied identically, and in the most general manner, by
putting

o,' = i'(i+iy{i-iyA (4),

I and t representing two independent parameters.

Now one root of the quintic is given by

~^'^
e} i\i'-i)f^ 6,

^^^^

by means of (2) and (4). Eliminating ^i from this and the second of

equations (4), we find that

+ (P + 1) (P + 22P- 6P - 22/ + 1) ^] = (6).

It will now be supposed that / and t have values such that the

equations (6) and (1) are equivalent : thus

/(/^-l)(/^ + /-l)(/^-4/-l)^^+125a = (7),

/(/^-l)(/^ + 22^-6/' -22/ +1)2^ +3125/8 = (8).

It remains to make use of the fact that (1) is metacyclic. The sub-

stitution s makes no change in </>, and in virtue of ^iCiOJj = the

substitution t converts <^ into - <^ : consequently <^^ is a metacyclic

function, and its value is rational. Denoting it by y, we deduce from

the first of equations (4)

P(P-iyt* = 5y (9),
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and from tliis and (7)

7 (r + /- 1) (/^ - 4/ - 1 ) + 25a (/2 - 1) / = 0.

The solution of this is given by

')^ + (25a-3y)2^-4y = 0|

(11),

From (7) and (8)

25(r+/-i)y-4/-i)/?
(/^+l)(/^+22P-6/2-22/+l)a

and from (4)
5^o(p + i-iy(P-4i-ir(uini-iyi*p^

(I' + If (i' + 22/^-6/^-22/+ Ifa'
"'^^'^^^

Equations (10), (11), (12) and (5) contain the complete solution

of the problem, supposing that the value of y is known ; and it will be

observed that, in accordance with theory, the degrees of the auxiliary

equations are 2, 2 and 5, the prime factors of the order of the meta-

cyclic group.

The quantity y is a root of the equation *

(y-a)*(y2-6ay + 25a2)^5^;8^y (13),

SO that the quintic is, or is not, metacyclic in any given field according

as (13) has or has not a rational root in that field. If the field is

(a, ^), we must have rational quantities X, /w, such that

whence

syx 5yx
(X - 1)* (X^ - 6X + 25) ' "^ (A - 1)4 (X2 _ 6X + 25)

*

It may be observed that the solution of (6) assumes a very elegant

form if we put

where ^ (z) is a lemniscate function of 2; ; that is to say, one for which

5^3 = 0.

* Weber, Algebra, i, 675.



CHAPTER V.

SOLUTION BY STANDARD FORMS.

53. As explained in Chap, i (Art. 27), the first step towards the

solution of an equation, after determining its Galoisian group, is to

construct a series of Galoisian auxiliaries. If the degree of each

auxiliary is prime, the equation is solvable by radicals, because each

auxiliary is cyclical ; and it can be proved that in no other case is

the original equation solvable by radicals. The group of each

auxiliary is simple ; hence the only outstanding difficulty is the

discussion of non-cyclical equations, of which the Galoisian groups

are simple. The reason why the general equation of order n cannot be

solved algebraically when w > 4 is that the group of even permutations

of n things is simple* except when n^L The cases 7^ = 2 and ?^ = 3

are also exceptional, because in the first case there are no even permuta-

tions, and in the second they form a cyclical group of order 3.

The most effective way of attacking an equation of which the group

is non-cyclical and simple is to transform it, if possible, into another

equation of standard form, for which the solution is known or has been

tabulated. The spirit of the method may be illustrated, in the first

place, by considering the cubic equation

where a, h denote redl positive quantities. If we put

a) ^ %, 3F = 4a, c = 4:hl¥

the equation becomes

and by properly choosing the sign of k, we can make this

4/ ± 3^ - c = 0,

with c> 0. If the coefficient of i/ is - 3, and c is a proper fraction, we

may find a real quantity 6 such that cos 3^ = c, and then

y = coBO, cosfo + Yp ^^^ (^ "*" y) '

* Burnside, Theory of Groups, p. 153.
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while if c> 1 we find 6 such that cosh 3^ = c, and then

y = cosh 0, cosh (6 + -—
j

, cosh (0+ ^ ).

On the other hand, if the coefficient of ?/ is + 3, we may find such

that sinh 30 = c, and then

y^sinliO, sinh(^ + -^), sinh[^+—^j.

Thus in every case the equation is solved with the help of a table of

trigonometrical or hyperbolic functions.

54. Several methods of this kind, all indeed ultimately equivalent,

have been applied to the general quintic. One of these, the solution

by means of the icosahedral irrationality, will now be given in outline

;

for further details the reader is referred to Klein's lectures on the

icosahedron, and to the treatise on modular functions by Klein and

Fricke.

A point on a sphere may be determined by its north polar distance

6 and longitude
<t>.

If we put
n

Zx : Z2 = tan - (cos
<f>
+ i sin <^),

Zx , Zi may be taken as homogeneous coordinates defining the position of

the point. Suppose, now, tliat we have a regular icosahedron inscribed

in the sphere, with one vertex at the point ^ = and another on the

great circle <^ = 0. If we put

f=z,z.,(zx^'+\Wz^'-z^'')

the roots of /= correspond to the twelve vertices of the solid. The

binary form / has two covariants

H^- {zx"" + ;^2^) + 228 {zx^'z^' - z^'z^^)

-

494 z^'z^\

T = (z,"^ + z^r) + 522 {zx^'z^' - z^z^) - 10005 {z^z.}'' + z^^'z^),

and the three forms are connected by the identity

ir»+ 7^2= 1728/^.

The roots o^ H=0 correspond to the centres of the equilateral triangles

into which the surface of the sphere is divided by the great circle arcs

into which the edges of the icosahedron are projected from the centre of

the sphere ; and the roots of 7^= correspond to the middle points of

the sides of these triangles. H is the Hessian of /, and T is the

Jacobian of H and /
Let ^ J9 be a side of any one of the 20 triangles, and CD any other

of the remaining 29 sides. Then there is a definite rotation about a
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diameter of the sphere which brings AB into coincidence with CD.
Similarly there is a definite rotation which brings AB into coincidence

with DC. We thus obtain 58 rotations, each of which, applied to the

icosahedron, brings it into a new position in which it occupies the same

space as before. Besides these, there is the rotation about the diameter

bisecting AB, which brings AB into coincidence with BA. Altogether,

there are sixty different positions of the icosahedron, and if we include,

as the identical operation, that of leaving the icosahedron alone, we

have a group of 60 rotations which form a group. Each rotation may
be associated with a linear substitution applied to Zi and z^. If we put

g27ri/5 = €,

then /=1, ?^ = 1,

and 5, t generate a group of 120 homogeneous substitutions, with which

the group of rotations is hemihedrically isomorphic ; because if

{azi + fiz2, yZi + 82^2) is any one of the substitutions,

f(aZi + j3z2, 'YZi + Sz2)=-(-oiZi-(3z2, -yZi-Sz^^

which corresponds to the same rotation. Every one of the homogeneous

substitutions leaves/ H, T absolutely unaltered, but produces a certain

permutation among their roots.

Consider, now, the function T. It evidently has the rational

factor

<^i
- Zi^ + z^

;

and if we apply to this the substitution t, we find that t(<fi^) = - <t>i.

Now the roots of <^i
= are the ends of a diameter of the sphere

:

hence t must correspond to a rotation through an angle tt about a

perpendicular diameter, the extremities of which are unaltered by t, so

that they are given by
(€+€^)Zi + Z2 _ Zi

Zi-(€ + €^)Z2~ Z2*

or </»2 = z^^-2(€ + €') z,Z2 - z^ = 0.

If we put <^3 = z^^-2 («" + €«) z^Z2 - z^^

it is easily proved that the roots of <^3 = are at the ends of a diameter

perpendicular to each of the two others : hence, writing

r = <t>i<t>2i>s
= Z^ + '^ZxZ^^ - hz^'z.^ - Wz^t " ^Z^Z.^ + Z^

r is a factor of T and the roots of t = are the vertices of a regular

octahedron. Since this has 12 edges, there are 24 rotations which

bring it into coincidence with itself; of these 12 belong to the

icosahedral group, and form a factor of it.
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By applying all the icosabedral substitutions to t we obtain five

different sextics Ti(=t), Tg, xg, t^, xg the product of which is T. If,

now, we form the equation

(r - Tj) (t- To) ... (t - T5) = T'+p,r* +...+p, =

the coefficients are binary forms which are invariable for the icosabedral

group and of degrees 6, 12, 18, 24, 30 respectively. Each coefficient

equated to zero must give an invariant set of points on the sphere; and

since there are no sets of 6 or 18 points, and the only sets of 12 and 24

are given by /= 0,/^ = 0, the equation must reduce to the form

r' + afT^ + b/h-T=0
where a, b are numerical. By a comparison of coefficients it is found

that a = - 10, i = 45, so that finally

T^-lO/T^ + 45/V-r-O.

Putting t2//= r

we find that r satisfies the equation

r(/'^-10r + 45)2-7^//=.

The Hessian of t is given by

K = - (;^« + zi) + {z^z., - z,z.I) - 7 {z,'z^^ + z^^zi) - 7 {z.'zi - z^zi)
;

like T this has five conjugate values and is invariant for the same

group as T.

Suppose, now, that /, m are arbitrary numerical quantities, and let

I/k mPTK .

y=Ti^-HT (^)-

This is a function of the ratio Zijz^ which assumes only five values

when the icosabedral substitutions are applied to it. The invariant

quintic of which it is a root can be found by a process similar to that

by which the equation satisfied by r was constructed. The result is,

that if we write

-p=J^ 7^=^1 = 1728-^

aj = 8f + Pm+ ;

bj = -l^+ +
Ji j\

<'J = l'- 7-+ 7a

y satisfies the equation

^ + (iay'' + ^by-\-c = (3).

•(2)
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55. Conversely, suppose a quintic given in the form (3) : if we can
find, in terms of a, 6, c quantities /, m, j, j^ such that j +j\ = 1728, and
the last three of equations (2) are satisfied, the roots of the given quintic

will be expressible as rational functions of any one root of the normal
equation

By combining equations (2) we find

jiilb + c) -- m'a (4),

'('-x)^ ('-¥) <«•

./la + Sb\ ,„ 21QPm dlm^ 21Qm^
ji- )

= P +—^— + "V- + .„ (6).

From (2) and (6), by squaring,

27ay = l728/« + 432/^m + 2lfl + ^^^\ fm'^

4320.3 3 _^/2 72'^
,2 4 18.216/w^ 27w«

Ji \Ji h / 3x Jx

jif { =Jil + 432fw + ( 18 + —7— l^m"^ + —T—Pm^
\ m J \ Ji J Jx

/81 2.216^,2 4 18.216, , 27.1728 »

\Jx Jx / Jx Jx

On subtracting the last equation from the one before, we find that

(1728 -ji) is a factor of the right-hand side ; since j +j\ = 1728, this

cancels with the factor j on the left hand, and we thus obtain

•fo^ 2 • /^» + 86X2-1
, 3^^2x3

Comparing this with (5), we infer that

27a'-^.ila + Sby^lc-K^ (7),

and by eliminating m'Yii from this and (4) it is found that I satisfies

the equation

{a' + abc-b')P-(na^b-ac'' + 2b^c)l-(27a'c-Ua^b^ + bc') =

(8).

If D is the discriminant of (3), that of (8) is a^Dl5^, so that / is

rational in the field (a, b, c, JD, J6). The adjunction of JD reduces

the group of the quintic from the symmetrical group to the alternate

group of order 60 ; the quantity Jb is what is called an auxiliary

irrationality, and does not affect the group.
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Having determined /, equations (4) and (5) give

._ {aP-m-Zcf . .

^~a%axi'-lf)l-bc} ^^^'

a rational function of / ; and since

\ JiJ 3x

we find, after substituting for j and m^\jx from (4) and (9), that

^ =
\a^f^l-bc

•••^^')-

Thus m can also be expressed as a rational function of /: of course, the

above expression, like that obtained for J, can be transformed in various

ways by making use of the equation satisfied by /.

To make this method actually useful for solving numerical quintics,

we require a table giving the roots of the icosahedral equation

for difierent numerical values of/ When D is positive, /, m, j are

real ; but when D is negative, j is in general complex, so that a

complete table would have to include imaginary values oi j.

56. When a = 0, the foregoing results require modification, because

in this case lb + c = 0, and the formulae (9) and (10) become in-

determinate. Starting afresh with equations (2), after putting a = 0,

it is found that if ^ is a determinate root of

b^t^ + c''$-QW = (11)
we may put

bl = -c

¥m = nb^c-(?^

¥j = b' (1 7286» + 63c0 - c"" (c' + Sib') $

tPj\ = - 63^>V + c" (c* + 8160 ^1

and the formula (1), combined with H^-jf = 0, will give the roots of

the equation

y + 5by + c = 0.

Another special case that requires examination is when a > 0, and

equation (8) of last article is satisfied by putting

(ac-b')l = bc.

•(12),
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This leads to Sac = 46^, whence also, supposing that c does not

vanish, I = ib/a = 3c/b. It is found that the equations (2) of Art. 54

reduce to

i+ii-1728,

. 2"6^ Ub^m
J-

a' ' Sa'
J

r^ 166^

. Ji

'

3a''

The elimination ofi and j\ leads to

9a'm''+2^}'ab'm + S.2''(32b' -27a')b'' = 0,

the roots of which are

966 S2b (27a' - 32b')

a da'

and the corresponding values of j are

0127,3

0, %'^.(^la'-m^).

Now, if we take i = the auxiliary equation is H -0. Referring

back to equation (1), Art. 54, we see that this must be rejected,

because it introduces a zero factor into the denominator of the

expression for y. Thus the solution is

4J)fK 32b {21a'- 32b')f\K
y~ aH^ MHT

with 21a^H' - 2^'b' (21a' - Ub')/' = 0.

This may be simplified by putting

166^ _
27^^~'''

thus 2, =g{l + 24(l-2.^)•^},

with H'-2\3'n{n-l)r = 0.

If a = 2p', b = 3j^?^ this solution fails : but the equation is then

f + lOp'y'' + Ihp'y + 6j9« = ;

that is to say,

the roots of which are obvious.
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8. The very important idea of a field of rationality has been made

precise by Dedekind (Dirichlet-Dedekind, Vorlesungen liber Zahlen-

theorie, Suppl. xi.) and Kronecker (Grundziige einer arithmetischen

Theorie der algebraischen Grossen : Journ. f. Math. 92 = Werke 2).

15. On the problem of finding the irreducible factors of a poly-

nomial, see Kronecker (Grundz.) and K. Runge (/. /. Math. 99).

Special devices often shorten the work in particular cases.

Another way of finding the Galoisian group is explained by

0. Holder {Encycl. d. math. Wiss. I., p. 486). Except theoretically, the

problem is not of much interest.

40. It will be observed that the definition of Abelian equations

includes cyclical equations as a particular case ; it is, however, con-

venient to retain both terms.

43, end. For the proof referred to, see Weber's Algebra^ ii.

pp. 736-821 (or Acta Math. 8), and Hilbert, Die Theorie der

algebraischen Zahlkorper, chap. 23 {Jahresb. d. deutschen Math.- Ver.

1894-5).

47. Weber applies the term metacyclic to all groups for which the

indices ei (p. 21) are primes, and calls the corresponding equations

metacyclic. Another (perhaps preferable) term is soluble. The defini-

tion of a metacyclic group given in the text agrees with that of

Kronecker {Berl Ber. 1879).

55. The algebraical eliminations contained in this article appear

to have been first carried out in this way by Gordan (see Klein, Ikos,

p. 192, note).
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(5) Determination of the inflexions of a plane cubic. 0. Hease

{Crelle, xxxiv. 193).

CAMBBICOE : PRINTED BY JOHN CLAY, M.A. AT THE UNIVERSITY PRESS.









^i'



Ill

QA
211

M37

Mathews, George Ballard
Algebraic equations

Physical &
Applied ScL

PLEASE DO NOT REMOVE

CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY




