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AN INTEODUCTION TO
MATHEMATICS

CHAPTER I

THE ABSTRACT NATURE OF MATHEMATICS

THE study of mathematics is apt to com'
mence in disappointment. The important
applications of the science, the theoretical

interest of its ideas, and the logical rigour of

its methods, all generate the expectation of

a speedy introduction to processes of interest.

We are told that by its aid the stars are

weighed and the billions of molecules in a

drop of water are counted. Yet, like the

ghost of Hamlet's father, this great science

eludes the efforts of our mental weapons
to grasp it

"
'Tis here, 'tis there, 'tis

gone
" and what we do see does not suggest

the same excuse for illusiveness as sufficed

for the ghost, that it is too noble for

our gross methods. '* A show of violence,"
if ever excusable, may surely be " offered

"

to the trivial results which occupy the

7



8 INTRODUCTION TO MATHEMATICS

pages of some elementary mathematical
treatises.

The reason for this failure of the science to

live up to its reputation is that its funda-

mental ideas are not explained to the student

disentangled from the technical procedure
which has been invented to facilitate their

exact presentation in particular instances.

Accordingly, the unfortunate learner finds

himself struggling to acquire a knowledge of

a mass of details which are not illuminated

by any general conception. Without a doubt,
technical facility is a first requisite for valu-

able mental activity : we shall fail to appre-
ciate the rhythm of Milton, or the passion of

Shelley, so long as we find it necessary to

spell the words and are not quite certain of

the forms of the individual letters. In this

sense there is no royal road to learning. But
it is equally an error to confine attention to

technical processes, excluding consideration

of general ideas. Here lies the road to

pedantry.
The object of the following Chapters is not

to teach mathematics, but to enable students

from the very beginning of their course to

know what the science is about, and why it is

necessarily the foundation of exact thought
as applied to natural phenomena. All allu-

sion in what follows to detailed deductions
in any part of the science will be inserted
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merely for the purpose of example, and care

will be taken to make the general argument
comprehensible, even if here and there some
technical process or symbol which the reader

does not understand is cited for the purpose
of illustration.

The first acquaintance which most people
have with mathematics is through arithmetic.

That two and two make four is usually taken
as the type of a simple mathematical pro-

position which everyone will have heard of.

Arithmetic, therefore, will be a good subject
to consider in order to discover, if possible,
the most obvious characteristic of the science.

Now, the first noticeable fact about arithmetic

is that it applies to everything, to tastes and
to sounds, to apples and to angels, to the

ideas of the mind and to the bones of the

body. The nature of the things is perfectly

indifferent, of all things it is true that two
and two make four. Thus we write down as

the leading characteristic of mathematics
that it deals with properties and ideas

which are applicable to things just because

they are things, and apart from any particular

feelings, or emotions, or sensations, in any
way connected with them. This is what
is meant by calling mathematics an abstract

science.

The result which we have reached deserves

attention. It is natural to think that an
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abstract science cannot be of much import-
ance in the affairs of human life, because it

has omitted from its consideration every-

thing of real interest. It will be remembered
that Swift, in his description of Gulliver's

voyage to Laputa, is of two minds on this

point. He describes the mathematicians of

that country as silly and useless dreamers,
whose attention has to be awakened by
flappers. Also, the mathematical tailor mea-
sures his height by a quadrant, and deduces
his other dimensions by a rule and compasses,

producing a suit of very ill-fitting clothes.

On the other hand, the mathematicians of

Laputa, by their marvellous invention of the

magnetic island floating in the air, ruled the

country and maintained their ascendency
over their subjects. Swift, indeed, lived at

a time peculiarly unsuited for gibes at con-

temporary mathematicians. Newton's Prin-

cipia had just been written, one of the great
forces which have transformed the modern
world. Swift might just as well have laughed
at an earthquake.
But a mere list of the achievements of

mathematics is an unsatisfactory way of

arriving at an idea of its importance. It is

worth while to spend a little thought in

getting at the root reason why mathematics,
because of its very abstractness, must always
remain one of the most important topics
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for thought. Let us try to make clear to

ourselves why explanations of the order of

events necessarily tend to become mathe-
matical.

Consider how all events are interconnected.

When we see the lightning, we listen for the

thunder ; when we hear the wind, we look

for the waves on the sea ; in the chill autumn,
the leaves fall. Everywhere order reigns, so

that when some circumstances have been
noted we can foresee that others will also be

present. The progress of science consists in

observing these interconnections and in show-

ing with a patient ingenuity that the events

of this evershifting world are but examples of

a few general connections or relations called

laws. To see what is general in what is par-
ticular and what is permanent in what is

transitory is the aim of scientific thought. In
the eye of science, the fall of an apple, the

motion of a planet round a sun, and the cling-

ing of the atmosphere to the earth are all

seen as examples of the law of gravity. This

possibility of disentangling the most complex
evanescent circumstances into various ex-

amples of permanent laws is the controlling
idea of modern thought.
Now let us think of the sort of laws which

we want in order completely to realize this

scientific ideal. Our knowledge of the par-
ticular facts of the world around us is gained
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from our sensations. We see, and hear, and
taste, and smell, and feel hot and cold, and

push, and rub, and ache, and tingle. These
are just our own personal sensations : my
toothache cannot be your toothache, and my
sight cannot be your sight. But we ascribe

the origin of these sensations to relations be-

tween the things which form the external

world. Thus the dentist extracts not the
toothache but the tooth. And not only so,

we also endeavour to imagine the world as

one connected set of things which underlies

all the perceptions of all people. There is not
one world of things for my sensations and an-

other for yours, but one world in which we
both exist. It is the same tooth both for

dentist and patient. Also we hear and we
touch the same world as we see.

It is easy, therefore, to understand that we
want to describe the connections between
these external things in some way which does
not depend on any particular sensations, nor
even on all the sensations of any particular

person. The laws satisfied by the course of

events in the world of external things are to
be described, if possible, in a neutral uni-

versal fashion, the same for blind men as for

deaf men, and the same for beings with
faculties beyond our ken as for normal human
beings.
But when we have put aside our immediate



NATURE OF MATHEMATICS 13

sensations, the most serviceable part from
its clearness, definiteness, and universality
of what is left is composed of our general ideas

of the abstract formal properties of things;
in fact, the abstract mathematical ideas men-
tioned above. Thus it comes about that,

step by step, and not realizing the full mean-

ing of the process, mankind has been led to

search for a mathematical description of the

properties of the universe, because in this way
only can a general idea of the course of events
be formed, freed from reference to particular

persons or to particular types of sensation.

For example, it might be asked at dinner:
" What was it which underlay my sensation

of sight, yours of touch, and his of taste

and smell ?
"

the answer being
" an apple."

But in its final analysis, science seeks to
describe an apple in terms of the positions
and motions of molecules, a description which

ignores me and you and him, and also ig-
nores sight and touch and taste and smell.

Thus mathematical ideas, because they
are abstract, supply just what is wanted
jfor a scientific description of the course 01

events.

This point has usually been misunderstood,
from being thought of in too narrow a way.
Pythagoras had a glimpse of it when he pro-
claimed that number was the source of all

things. In modern times the belief that the
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ultimate explanation of all things was to be
found in Newtonian mechanics was an adum-
bration of the truth that all science as it

grows towards perfection becomes mathe-
matical in its ideas.



CHAPTER II

VARIABLES

MATHEMATICS as a science commenced when
first someone, probably a Greek, proved pro-

positions about any things or about some

things, without specification of definite par-
ticular things. These propositions were first

enunciated by the Greeks for geometry ; and,

accordingly, geometry was the great Greek
mathematical science. After the rise of geo-

metry centuries passed away before algebra
made a really effective start, despite some
faint anticipations by the later Greek mathe-
maticians.

The ideas of any and of some are intro-

duced into algebra by the use of letters, in-

stead of the definite numbers of arithmetic.

Thus, instead of saying that 2+3=3+2, in

algebra we generalize and say that, if x and

y stand for any two numbers, then x -\-y=y +a?.

Again, in the place of saying that 3 > 2, we
generalize and say that if x be any number
there exists some number (or numbers) y such
that y>x. We may remark in passing that
this latter assumption for when put in its

strict ultimate form it is an assumption is

15



16 INTRODUCTION TO MATHEMATICS

of vital importance, both to philosophy and
to mathematics ; for by it the notion of in-

finity is introduced. Perhaps it required the

introduction of the arabic numerals, by which
the use of letters as standing for definite

numbers has been completely discarded in

mathematics, in order to suggest to mathe-
maticians the technical convenience of the

use of letters for the ideas of any number
and some number. The Romans would have
stated the number of the year in which this

is written in the form MDCCCCX., whereas
we write it 1910, thus leaving the letters for

the other usage. But this is merely a specu-
lation. After the rise of algebra the differ-

ential calculus was invented by Newton and

Leibniz, and then a pause in the progress
of the philosophy of mathematical thought
occurred so far as these notions are concerned ;

and it was not till within the last few years
that it has been realized how fundamental

any and some are to the very nature of mathe-

matics, with the result of opening out still

further subjects for mathematical explora-
tion.

Let us now make some simple algebraic
statements, with the object of understanding
exactly how these fundamental ideas occur.

(1) For any number a?, #+2=2+#;
(2) For some number #, #+2=8 ;

(3) For some number a?, x+2 > 3.



VARIABLES 17

The first point to notice is the possibilities

contained in the meaning of some, as here

used. Since a +2 =2 +x for any number a?, it

is true for some number x. Thus, as here used,

any implies some and some does not exclude

any. Again, in the second example, there is,

in fact, only one number x, such that x +2 =8,

namely only the number 1. Thus the some

may be one number only. But in the third,

example, any number x which is greater than
1 gives x -f2 > 3. Hence there are an infinite

number of numbers which answer to the some
number in this case. Thus some may be any-
thing between any and one only, including
both these limiting cases.

It is natural to supersede the statements

(2) and (3) by the questions :

(2') For what number x is x+2 =3;
(3') For what numbers x is #-f2>3.

Considering (2'), #+2=3 is an equation, and
it is easy to see that its solution is x =3 2 =1.
When we have asked the question implied in

the statement of the equation <r+2=8, x is

called the unknown. The object of the solu-

tion of the equation is the determination of

the unknown. Equations are of great im-

portance in mathematics, and it seems as

though (2') exemplified a much more thorough-
going and fundamental idea than the original
statement (2). This, however, is a complete
mistake. The idea of the undetermined
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"
variable

"
as occurring in the use of

** some "

or
"
any

"
is the really important one in

mathematics ; that of the
" unknown "

in an

equation, which is to be solved as quickly as

possible, is only of subordinate use, though
of course it is very important. One of the

causes of the apparent triviality of much of

elementary algebra is the preoccupation of

the text-books with the solution of equations.
The same remark applies to the solution of

the inequality (3') as compared to the original
statement (3).

But the majority of interesting formulae,

especially when the idea of some is present,
involve more than one variable. For ex-

ample, the consideration of the pairs of num-
bers x and y (fractional or integral) which

satisfy x+y=I involves the idea of two corre-

lated variables, x and y. When two variables

are present the same two main types of

statement occur. For example, (1) for

any pair of numbers, x and y, x+y=y+ac,
and (2) for some pairs of numbers, x and t/,

The second type of statement invites con-
sideration of the aggregate of pairs of num-
bers which are bound together by some fixed

relation in the case given, by the relation

x+y=\. One use of formulae of the first

type, true for any pair of numbers, is that by
them formulae of the second type can be
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thrown into an indefinite number of equiva-
lent forms. For example, the relation x-\-y
=1 is equivalent to the relations

y+x=I, (x-y)+2y=l, 6x+6y=6,

and so on. Thus a skilful mathematician
uses that equivalent form of the relation

under consideration which is most convenient
for his immediate purpose.

It is not in general true that, when a pair
of terms satisfy some fixed relation, if one of

the terms is given the other is also definitely
determined. For example, when x and y
satisfy y

2 =x, if #=4, y can be 2, thus,
for any positive value of x there are alter-

native values for y. Also in the relation

j?+t/>l, when either x or y is given, an
indefinite number of values remain open for

the other.

Again there is another important point to

be noticed. If we restrict ourselves to posi-
tive numbers, integral or fractional, in con-

sidering the relation <c+t/=l, then, if either

x or y be greater than 1, there is no positive
number which the other can assume so as to

satisfy the relation. Thus the "field" of

the relation for x is restricted to numbers less

than 1, and similarly for the
"

field
"

open
to y. Again, consider integral numbers only,

positive or negative, and take the relation
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t/
2 =#, satisfied by pairs of such numbers.
Then whatever integral value is given to y,

x can assume one corresponding integral
value. So the

"
field

"
for y is unrestricted

among these positive or negative integers.
But the

"
field

"
for x is restricted in two

ways. In the first place x must be positive,
and in the second place, since y is to be in-

tegral, x must be a perfect square. Accord-

ingly, the
"
field

"
of x is restricted to the set

of integers I 2, 22, 32, 42, and so on, i.e., to 1,

4, 9, 16, and so on.

The study of the general properties of a

relation between pairs of numbers is much
facilitated by the use of a diagram constructed

as follows :

O x M i A

Fig. 1.

Draw two lines OX and OF at right angles ;

let any number x be represented by x units
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(in any scale) of length along OX, any num-
ber ybyy units (in any scale) of length along
OF. Thus if OM, along OX, be x units in

length, and ON, along OF, be y units in length,

by completing the parallelogram OMPN we
find a point P which corresponds to the pair
of numbers x and y. To each point there

corresponds one pair of numbers, and to each

pair of numbers there corresponds one point.
The pair of numbers are called the co-

ordinates of the point. Then the points
whose coordinates satisfy some fixed rela-

tion can be indicated in a convenient way,
by drawing a line, if they all lie on a line,

or by shading an area if they are all points
in the area. If the relation can be repre-
sented by an equation such as o?+t/=l, or

t/
2 =#, then the points lie on a line, which is

straight in the former case and curved in

the latter. For example, considering only
positive numbers, the points whose co-

ordinates satisfy x-\-y=\ lie on the straight
line AB in Fig. 1, where 0^=1 and OB=l.
Thus this segment of the straight line AB
gives a pictorial representation of the proper-
ties of the relation under the restriction to

positive numbers.
Another example of a relation between two

variables is afforded by considering the varia-

tions in the pressure and volume of a given
mass of some gaseous substance such as air
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or coal-gas or steam at a constant tempera-
ture. Let v be the number of cubic feet in

its volume and p its pressure in Ib. weight
per square inch. Then the law, known as

Boyle's law, expressing the relation between

p and v as both vary, is that the product
pv is constant, always supposing that the

temperature does not alter. Let us suppose,
for example, that the quantity of the gas
and its other circumstances are such that

we can put pv=I (the exact number on
the right-hand side of the equation makes
no essential difference).

Then in Fig. 2 we take two lines, OV and

OP, at right angles and draw OM along OV
to represent v units of volume, and ON along
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OP to represent p units of pressure. Then
the point Q, which is found by completing the

parallelogram OMQN, represents the state of

the gas when its volume is v cubic feet and its

pressure is p Ib. weight per square inch. If

the circumstances of the portion of gas con-

sidered are such that pv=l, then all these

points Q which correspond to any possible
state of this portion of gas must lie on the

curved line ABC, which includes all points
for which p and v are positive, and pv=I.
Thus this curved line gives a pictorial repre-
sentation of the relation holding between the

volume and the pressure. When the pressure
is very big the corresponding point Q must
be near C, or even beyond C on the undrawn

part of the curve ; then the volume will be

very small. When the volume is big Q will

be near to A, or beyond A ; and then the

pressure will be small. Notice that an en-

gineer or a physicist may want to know the

particular pressure corresponding to some

definitely assigned volume. Then we have
the case of determining the unknown p when
v is a known number. But this is only in

particular cases. In considering generally
the properties of the gas and how it will be-

have, he has to have in his mind the general
form of the whole curve ABC and its general

properties. In other words the really funda-

mental idea is that of the pair of variables
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satisfying the relation pv=I. This example
illustrates how the idea of variables is funda-

mental, both in the applications as well as in

the theory of mathematics.



CHAPTER III

METHODS OF APPLICATION

THE way in which the idea of variables

satisfying a relation occurs in the applications
of mathematics is worth thought, and by
devoting some time to it we shall clear up
our thoughts on the whole subject.
Let us start with the simplest of examples :

Suppose that building costs Is. per cubic

foot and that 205. make l. Then in all

the complex circumstances which attend the

building of a new house, amid all the various

sensations and emotions of the owner, the

architect, the builder, the workmen, and the
onlookers as the house has grown to comple-
tion, this fixed correlation is by the law
assumed to hold between the cubic content
and the cost to the owner, namely that if x
be the number of cubic feet, and y the cost,
then 20?/=a?. This correlation of x and y is

assumed to be true for the building of any
house by any owner. Also, the volume of

the house and the cost are not supposed to

have been perceived or apprehended by any
particular sensation or faculty, or by any

25
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particular man. They are stated in an ab-
stract general way, with complete indiffer-

ence to the owner's state of mind when he has
to pay the bill.

Now think a bit further as to what all this

means. The building of a house is a com-

plicated set of circumstances. It is im-

possible to begin to apply the law, or to test

it, unless amid the general course of events

it is possible to recognize a definite set of

occurrences as forming a particular instance

of the building of a house. In short, we must
know a house when we see it, and must recog-
nize the events which belong to its building.
Then amidst these events, thus isolated in

idea from the rest of nature, the two elements
of the cost and cubic content must be deter-

minable ; and when they are both determined,
if the law be true, they satisfy the general
formula

20y=a.

*But is tl !
( law true ? Anyone who has had

much to i
;>. with building will know that we

have hext put the cost rather high. It is

only for <>a expensive type of house that it

will work out at this price. This brings out

another point which must be made clear.

While we are making mathematical calcula-

tions connected with the formula 20t/=#, it

is indifferent to us whether the law be true or
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false. In fact, the very meanings assigned
to x and y, as being a number of cubic feet

and a number of pounds sterling, are in-

different. During the mathematical investi-

gation we are, in fact, merely considering the

properties of this correlation between a pair
of variable numbers x and y. OUT results

will apply equally well, if we interpret y to

mean a number of fishermen and x the num-
ber of fish caught, so that the assumed law
is that on the average each fisherman catches

twenty fish. The mathematical certainty of

the investigation only attaches to the results

considered as giving properties of the corre-

lation 20y=x between the variable pair of

numbers x and y. There is no mathematical

certainty whatever about the cost of the

actual building of any house. The law is not

quite true and the result it gives will not be

quite accurate. In fact, it may well be hope-
lessly wrong.
Now all this no doubt seems very obvious.

But in truth with more complicated instances

there is no more common error than to assume
that, because prolonged and accurate mathe-
matical calculations have been made, the

application of the result to some fact of

nature is absolutely certain. The conclusion

of no argument can be more certain than the

assumptions from which it starts. All mathe-
matical calculations about the course of
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nature must start from some assumed law of

nature, such, for instance, as the assumed
law of the cost of building stated above.

Accordingly, however accurately we have
calculated that some event must occur, the

doubt always remains Is the law true ? If

the law states a precise result, almost cer-

tainly it is not precisely accurate ; and thus
even at the best the result, precisely as calcu-

lated, is not likely to occur. But then we
have no faculty capable of observation with
ideal precision, so, after all, our inaccurate

laws may be good enough.
We will now turn to an actual case, that

of Newton and the Law of Gravity. This law
states that any two bodies attract one an-

other with a force proportional to the product
of their masses, and inversely proportional to

the square of the distance between them.
Thus if m and M are the masses of the two
bodies, reckoned in Ibs. say, and d miles is

the distance between them, the force on either

body, due to the attraction of the other and

directed towards it, is proportional to
p- ;

thus this force can be written as equal to

JT~
wnere & is a definite number depending

on the absolute magnitude of this attraction

and also on the scale by which we choose to

measure forces. It is easy to see that, if we
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wish to reckon in terms of forces such as the

weight of a mass of 1 lb., the number which
k represents must be extremely small ; for

when m and M and d are each put equal to

1, becomes the gravitational attraction

of two equal masses of 1 lb. at the distance of

one mile, and this is quite inappreciable.
However, we have now got our formula for

the force of attraction. If we call this force

F, it is F^kp-, giving the correlation be-

tween the variables F, m, M, and d. We all

know the story of how it was found out.

Newton, it states^ was sitting in an orchard
and watched the fall of an apple, and then
the law of universal gravitation burst upon
his mind. It may be that the final formu-
lation of the law occurred to him in an
orchard, as well as elsewhere and he must
have been somewhere. But for our purposes
it is more instructive to dwell upon the vast

amount of preparatory thought, the product
of many minds and many centuries, which
was necessary before this exact law could be
formulated. In the first place, the mathe-
matical habit of mind and the mathematicaJ

procedure explained in the previous two
chapters had to be generated ; otherwise
Newton could never have thought of a formula

representing the force between any two masses
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at any distance. Again, what are the mean-

ings of the terms employed, Force, Mass, Dis-

tance ? Take the easiest of these terms,
Distance. It seems very obvious to us to

conceive all material things as forming a de-

finite geometrical whole, such that the dis-

tances of the various parts are measurable in

terms of some unit length, such as a mile or

a yard. This is almost the first aspect of a
material structure which occurs to us. It is

the gradual outcome of the study of geometry
and of the theory of measurement. Even
now, in certain cases, other modes of thought
are convenient. In a mountainous country
distances are often reckoned in hours. But

leaving distance, the other terms, Force and

Mass, are much more obscure. The exact

comprehension of the ideas which Newton
meant to convey by these words was of slow

growth, and, indeed, Newton himself was the

first man who had thoroughly mastered the

true general principles of Dynamics.
Throughout the middle ages, under the in-

fluence of Aristotle, the science was entirely
misconceived. Newton had the advantage of

coming after a series of great men, notably
Galileo, in Italy, who in the previous two
centuries had reconstructed the science and
had invented the right way of thinking about
it. He completed their work. Then, finally,

having the ideas of force, mass, and distance,



clear and distinct in his mind, and realising
their importance and their relevance to the
fall of an apple and the motions of the planets,
he hit upon the law of gravitation and proved
it to be the formula always satisfied in these

various motions.
The vital point in the application of mathe-

matical formulae is to have clear ideas and a
correct estimate of their relevance to the

phenomena under observation. No less than

ourselves, our remote ancestors were im-

pressed with the importance of natural

phenomena and with the desirability of taking
energetic measures to regulate the sequence
of events. Under the influence of irrelevant

ideas they executed elaborate religious cere-

monies to aid the birth of the new moon, and

performed sacrifices to save the sun during
the crisis of an eclipse. There is no reason to
believe that they were more stupid than we
are. But at that epoch there had not been

opportunity for the slow accumulation of

clear and relevant ideas.

The sort of way in which physical sciences

grow into a form capable of treatment by
mathematical methods is illustrated by the

history of the gradual growth of the science
of electromagnetism. Thunderstorms are
events on a grand scale, arousing terror in

men and even animals. From the earliest

times they must have been objects of wild
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and fantastic hypotheses, though it may be
doubted whether our modern scientific dis-

coveries in connection with electricity are not
more astonishing than any of the magical
explanations of savages. The Greeks knew
that amber (Greek, electron) when rubbed
would attract light and dry bodies. In
1600 A.D., Dr. Gilbert, of Colchester, published
the first work on the subject in which any
scientific method is followed. He made a
list of substances possessing properties similar

to those of amber ; he must also have the

credit of connecting, however vaguely, electric

and magnetic phenomena. At the end of the

seventeenth and throughout the eighteenth

century knowledge advanced. Electrical

machines were made, sparks were obtained

from them ; and the Leyden Jar was in-

vented, by which these effects could be in-

tensified. Some organised knowledge was

being obtained ; but still no relevant mathe-
matical ideas had been found out. Franklin,
in the year 1752, sent a kite into the clouds

and proved that thunderstorms were elec-

trical.

Meanwhile from the earliest epoch (2634 B.C.)

the Chinese had utilized the characteristic

property of the compass needle, but do not

seem to have connected it with any theoretical

ideas. The really profound changes in human
life all have their ultimate origin in knowledge
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pursued for its own sake. The use of the com-

pass was not introduced into Europe till the end
of the twelfth century A.D., more than 3000

years after its first use in China. The import-
ance which the science of electromagnetism
has since assumed in every department of

human life is not due to the superior practical
bias of Europeans, but to the fact that in the
West electrical and magnetic phenomena
were studied by men who were dominated by
abstract theoretic interests.

The discovery of the electric current is due
to two Italians, Galvani in 1780, and Volta
in 1792. This great invention opened a new
series of phenomena for investigation. The
scientific world had now three separate,

though allied, groups of occurrences on hand
the effects of

"
statical

"
electricity arising

from frictional electrical machines, the mag-
netic phenomena, and the effects due to
electric currents. From the end of the

eighteenth century onwards, these three lines

of investigation were quickly inter-connected
and the modern science of electromagnetism
was constructed, which now threatens to
transform human life.

Mathematical ideas now appear. During
the decade 1780 to 1789, Coulomb, a French-

man, proved that magnetic poles attract or

repel each other, in proportion to the inverse

square of their distances, and also that the
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same law holds for electric charges laws

curiously analogous to that of gravitation.
In 1820, Oersted, a Dane, discovered that
electric currents exert a force on magnets,
and almost immediately afterwards the
mathematical law of the force was correctly
formulated by Ampere, a Frenchman, who
also proved that two electric currents exerted
forces on each other. " The experimental in-

vestigation by which Ampere established the
law of the mechanical action between electric

currents is one of the most brilliant achieve-

ments in science. The whole, theory and

experiment, seems as if it had leaped, full-

grown and full armed, from the brain of

the
' Newton of Electricity.' It is perfect

in form, and unassailable in accuracy, and it

is summed up in a formula from which all

the phenomena may be deduced, and which
must always remain the cardinal formula of

electro-dynamics."
*

The momentous laws of induction between
currents and between currents and magnets
were discovered by Michael Faraday in 1831-
82. Faraday was asked: "What is the use
of this discovery ?

" He answered :

" What is

the use of a child it grows to be a man."

Faraday's child has grown to be a man and
is now the basis of all the modern applications

*
Electricity and Magnetism, Clerk Maxwell, VoL II.,

eh. iii.
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of electricity. Faraday also reorganized the
whole theoretical conception of the science.

His ideas, which had not been fully under-
stood by the scientific world, were extended
and put into a directly mathematical form by
Clerk Maxwell in 1873. As a result of his

mathematical investigations, Maxwell recog-
nized that, under certain conditions, electrical

vibrations ought to be propagated. He at

once suggested that the vibrations which
form light are electrical. This suggestion has
since been verified, so that now the whole

theory of light is nothing but a branch of the

great science of electricity. Also Herz, a
German, in 1888, following on Maxwell's

ideas, succeeded in producing electric vibra-

tions by direct electrical methods His

experiments are the basis of our wireless

telegraphy.
In more recent years even more funda-

mental discoveries have been made, and the

science continues to grow in theoretic import-
ance and in practical interest. This rapid
sketch of its progress illustrates how, by the

gradual introduction of the relevant theoretic

ideas, suggested by experiment and them-
selves suggesting fresh experiments, a whole
mass of isolated and even trivial phenomena
are welded together into one coherent science,
in which the results of abstract mathematical

deductions, starting from a few simple as-
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sumed laws, supply the explanation to the

complex tangle of the course of events.

Finally, passing beyond the particular
sciences of electromagnetism and light, we
can generalize our point of view still further,
and direct our attention to the growth of

mathematical physics considered as one great

chapter of scientific thought. In the first

place, what in the barest outlines is the story
of its growth ?

It did not begin as one science, or as the

product of one band of men. The Chaldean

shepherds watched the skies, the agents of

Government in Mesopotamia and Egypt
measured the land, priests and philosophers
brooded on the general nature of all things.
The vast mass of the operations of nature

appeared due to mysterious unfathomable
forces.

" The wind bloweth where it listeth ? '

expresses accurately the blank ignorance then

existing of any stable rules followed in detail

by the succession of phenomena. In broad out-

line, then as now, a regularity of events was

patent. But no minute tracing of their inter-

connection was possible, and there was no

knowledge how even to set about to construct

such a science.

Detached speculations, a few happy or un-

happy shots at the nature of things, formed
the utmost which could be produced.
Meanwhile land-surveys had produced geo-
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metry, and the observations of the heavens
disclosed the exact regularity of the solar

system. Some of the later Greeks, such as

Archimedes, had just views on the elementary
phenomena of hydrostatics and optics. In-

deed, Archimedes, who combined a genius for

mathematics with a physical insight, must
rank with Newton, who lived nearly two
thousand years later, as one of the founders
of mathematical physics. He lived at Syra-
cuse, the great Greek city of Sicily. When
the Romans besieged the town (in 212 to

210 B.C.), he is said to have burned their ships

by concentrating on them, by means of

mirrors, the sun's rays. The story is highly

improbable, but is good evidence of the repu-
tation which he had gained among his con-

temporaries for his knowledge of optics. At
the end of this siege he was killed. According
to one account given by Plutarch, in his life of

Marcellus, he was found by a Roman soldier

absorbed in the study of a geometrical diagram
which he had traced on the sandy floor of his

room. He did not immediately obey the orders

of his captor, and so was killed. For the credit

of the Roman generals it must be said that

the soldiers had orders to spare him. The
internal evidence for the other famous story
of him is very strong ; for the discovery
attributed to him is one eminently worthy of

his genius for mathematical and physical re-
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search. Luckily, it is simple enough to be

explained here in detail. It is one of the best

easy examples of the method of application
of mathematical ideas to physics.

Hiero, King of Syracuse, had sent a quan-
tity of gold to some goldsmith to form the
material of a crown. He suspected that the

craftsmen had abstracted some of the gold
and had supplied its place by alloying the

remainder with some baser metal. Hiero
sent the crown to Archimedes and asked him
to test it. In these days an indefinite num-
ber of chemical tests would be available.

But then Archimedes had to think out the

matter afresh. The solution flashed upon
him as he lay in his bath. He jumped
up and ran through the streets to the

palace, shouting Eureka! Eureka! (I have
found it, I have found it). This day, if we
knew which it was, ought to be celebrated as

the birthday of mathematical physics ; the
science came of age when Newton sat in his

orchard. Archimedes had in truth made a

great discovery. He saw that a body when
immersed in water is pressed upwards by the

surrounding water with a resultant force

equal to the weight of the water it displaces.
This law can be proved theoretically from the

mathematical principles of hydrostatics and
can also be verified experimentally. Hence,
if W Ib. be the weight of the crown, as weighed
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in air, and w Ib. be the weight of the water
which it displaces when completely immersed,
W w would be the extra upward force

necessary to sustain the crown as it hung in

water.

Now, this upward force can easily be ascer-

tained by weighing the body as it hangs in

water, as shown in the annexed figure. If

The
crown

Weights

Fig. 3.

the weights in the right-hand scale come to
F Ib., then the apparent weight of the crown
in water is F Ib. ; and we thus have

F=W-w
and thus

and
W
w

W
W-F

where W and F are determined by the easy,
and fairly precise, operation of weighing.
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W
Hence, by equation (A), is known. But

W
is the ratio of the weight of the crown to

to

the weight of an equal volume of water.

This ratio is the same for any lump of metal of

the same material : it is now called the specific

gravity of the material, and depends only on
the intrinsic nature of the substance and not
on its shape or quantity. Thus to test if the
crown were of gold, Archimedes had only to

take a lump of indisputably pure gold and
find its specific gravity by the same process.
If the two specific gravities agreed, the crown
was pure ; if they disagreed, it was debased.

This argument has been given at length,
because not only is it the first precise example
of the application of mathematical ideas to

physics, but also because it is a perfect and

simple example of what must be the method
and spirit of the science for all time.

The death of Archimedes by the hands of a

Roman soldier is symbolical of a world-change
of the first magnitude : the theoretical Greeks,
with their love of abstract science, were super-
seded in the leadership of the European world

by the practical Romans. Lord Beacons-

field, in one of his novels, has defined a practi-
cal man as a man who practises the errors of

his forefathers. The Romans were a great

race, but they were cursed with the sterility
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which waits upon practicality. They did not

improve upon the knowledge of their fore-

fathers, and all their advances were confined

to the minor technical details of engineering.

They were not dreamers enough to arrive at

new points of view, which could give a more
fundamental control over the forces of nature.

No Roman lost his life because he was ab-

sorbed in the contemplation of a mathe-
matical diagram.



CHAPTER IV

DYNAMICS

THE world had to wait for eighteen hundred

years till the Greek mathematical physicists
found successors. In the sixteenth and seven-

teenth centuries of our era great Italians, in

particular Leonardo da Vinci, the artist

(born 1452, died 1519), and Galileo (born 1564,
died 1642), rediscovered the secret, known to

Archimedes, of relating abstract mathematical
ideas with the experimental investigation of

natural phenomena. Meanwhile the slow

advance of mathematics and the accumula-
tion of accurate astronomical knowledge had

placed natural philosophers in a much more

advantageous position for research. Also the

very egoistic self-assertion of that age, its

greediness for personal experience, led its

thinkers to want to see for themselves what

happened ; and the secret of the relation of

mathematical theory and experiment in in-

ductive reasoning was practically discovered.

It was an act eminently characteristic of the

age that Galileo, a philosopher, should have

42
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dropped the weights from the leaning tower
of Pisa. There are always men of thought
and men of action ; mathematical physics is

the product of an age which combined in the

same men impulses to thought with impulses
to action.

This matter of the dropping of weights from
the tower marks picturesquely an essential

step in knowledge, no less a step than the

first attainment of correct ideas on the science

of dynamics, the basal science of the whole

subject. The particular point in dispute was
as to whether bodies of different weights
would fall from the same height in the same
time. According to a dictum of Aristotle,

universally followed up to that epoch, the

heavier weight would fall the quicker. Gali-

leo affirmed that they would fall in the same
time, and proved his point by dropping
weights from the top of the leaning tower.

The apparent exceptions to the rule all arise

when, for some reason, such as extreme light-
ness or great speed, the air resistance is im-

portant. But neglecting the air the law is

exact.

Galileo's successful experiment was not the

result of a mere lu'cky guess. It arose from
his correct ideas in connection with inertia

and mass. The first law of motion, as follow-

ing Newton we now enunciate it, is Every
body continues in its state of rest or of uni-



44 INTRODUCTION TO MATHEMATICS

form motion in a straight line, except so far

as it is compelled by impressed force to

change that state. This law is more than a

dry formula : it is also a paean of triumph
over defeated heretics. The point at issue

can be understood by deleting from the law
the phrase

"
or of uniform motion in a straight

line." We there obtain what might be taken
as the Aristotelian opposition formula:
**

Every body continues in its state of rest

except so far as it is compelled by impressed
force to change that state."

In this last false formula it is asserted that,

apart from force, a body continues in a state

of rest ; and accordingly that, if a body is

moving, a force is required to sustain the

motion ; so that when the force ceases, the

motion ceases. The true Newtonian law
takes diametrically the opposite point of view.

The state of a body unacted on by force is

that of uniform motion in & straight line, and
no external force or influence is to be looked
for as the cause, or, if you like to put it so, as

the invariable accompaniment of this uniform
rectilinear motion. Rest is merely a par-
ticular case of such motion, merely when the

velocity is and remains zero. Thus, when a

body is moving, we do not seek for any ex-

ternal influence except to explain changes in

the rate of the velocity or changes in its direc-

tion. So long as the body is moving at the
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same rate and in the same direction there is

no need to invoke the aid of any forces.

The difference between the two points of

view is well seen by reference to the theory of

the motion of the planets. Copernicus, a

Pole, born at Thorn in West Prussia (born
1473, died 1543), showed how much simpler
it was to conceive the planets, including the

Force(onFalse hypothesis)

Fig. 4.

earth as revolving round the sun in orbits

which are nearly circular ; and later, Kepler,
a German mathematician, in the year 1609

proved that, in fact, the orbits are practically

ellipses, that is, a special sort of oval curves
which we will consider later in more detail.

Immediately the question arose as to what
are the forces which preserve the planets in

this motion. According to the old false view,
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held by Kepler, the actual velocity itself re-

quired preservation by force. Thus he looked

for tangential forces as in the accompanying
figure (4). But according to the Newtonian

law, apart from some force the planet would
move for ever with its existing velocity in a

straight line, and thus depart entirely from
the sun. Newton, therefore, had to search

for a force which would bend the motion

Planer

Fig. 5.

round into its elliptical orbit. This he showed
must be a force directed towards the sun as in

the next figure (5). In fact, the force is the

gravitational attraction of the sun acting

according to the law of the inverse square of

the distance, which has been stated above.
The science of mechanics rose among the

Greeks from a consideration of the theory of

the mechanical advantage obtained by the use
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of a lever, and also from a consideration of

various problems connected with the weights
of bodies. It was finally put on its true basis

at the end of the sixteenth and during the
seventeenth centuries, as the preceding ac-

count shows, partly with the view of explain-

ing the theory of falling bodies, but chiefly
in order to give a scientific theory of planetary
motions. But since those days dynamics has
taken upon itself a more ambitious task, and
now claims to be the ultimate science of which
the others are but branches. The claim
amounts to this : namely, that the various

qualities of things perceptible to the senses

are merely our peculiar mode of appreciating

changes in position on the part of things

existing in space. For example, suppose we
look at Westminster Abbey. It has been

standing there, grey and immovable, for cen-

turies past. But, according to modern scien-

tific theory, that greyness, which so heightens
our sense of the immobility of the building, is

itself nothing but our way of appreciating the

rapid motions of the ultimate molecules, which
form the outer surface of the building and
communicate vibrations to a substance called

the ether. Again we lay our hands on its

stones and note their cool, even temperature,
so symbolic of the quiet repose of the building.
But this feeling of temperature simply marks
our sense of the transfer of heat from the
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hand to the stone, or from the stone to the
hand ; and, according to modern science,
heat is nothing but the agitation of the mole-
cules of a body. Finally, the organ begins
playing, and again sound is nothing but the
result of motions of the air striking on the
drum of the ear.

Thus the endeavour to give a dynamical
explanation of phenomena is the attempt to

explain them by statements of the general
form, that such and such a substance or body
was in this place and is now in that place.
Thus we arrive at the great basal idea of

modern science, that all our sensations are

the result of comparisons of the changed
configurations of things in space at various

times. It follows therefore, that the laws
of motion, that is, the laws of the changes
of configurations of things, are the ultimate

laws of physical science.

In the application of mathematics to the

investigation of natural philosophy, science

does systematically what ordinary thought
does casually. When we talk of a chair, we
usually mean something which we have been

seeing or feeling in some way ; though most
of our language will presuppose that there

is something which exists independently of

our sight or feeling. Now in mathematical

physics the opposite course is taken. The
chair is conceived without any reference to
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anyone in particular, or to any special modes
of perception. The result is that the chair

becomes in thought a set of molecules in space,
or a group of electrons, a portion of the ether

in motion, or however the current scientific

ideas describe it. But the point is that

science reduces the chair to things moving in

space and influencing each other's motions.

Then the various elements or factors which
enter into a set of circumstances, as thus

conceived, are merely the things, like lengths
of lines, sizes of angles, areas, and volumes, by
which the positions of bodies in space can be
settled. Of course, in addition to these geo-
metrical elements the fact of motion and

change necessitates the introduction of the

rates of changes of such elements, that is to

say, velocities, angular velocities, accelera-

tions,and suchlike things. Accordingly,mathe-
matical physics deals with correlations be-

tween variable numbers which are supposed
to represent the correlations which exist in

nature between the measures of these geo-
metrical elements and of their rates of change.
But always the mathematical laws deal with

variables, and it is only in the occasional

testing of the laws by reference to experi-
ments, or in the use of the laws for special

predictions that definite numbers are substi-

tuted.

The interesting point about the world as
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thus conceived in this abstract way through-
out the study of mathematical physics, where

only the positions and shapes of things are

considered together with their changes, is that
the events of such an abstract world are suffi-

cient to "explain" our sensations. When we
hear a sound, the molecules of the air have
been agitated in a certain way : given the

agitation, or air-waves as they are called, all

normal people hear sound ; and if there are

no air-waves, there is no sound. And, simi-

larly, a physical cause or origin, or parallel
event (according as different people might like

to phrase it) underlies our other sensations.

Our very thoughts appear to cprrespond to

conformations and motions of the brain ; in-

jure the brain and you injure the thoughts.
Meanwhile the events of this physical universe

succeed each other according to the mathe-
matical laws which ignore all special sensa-

tions and thoughts and emotions.

Now, undoubtedly, this is the general aspect
of the relation of the world of mathematical

physics to our emotions, sensations, and

thoughts ; and a great deal of controversy
has been occasioned by it and much ink

spilled. We need only make one remark. The
whole situation has arisen, as we have seen,

from the endeavour to describe an external

world
"
explanatory

"
of our various in-

dividual sensations and emotions, but a world
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also, not essentially dependent upon any
particular sensations or upon any particular
individual. Is such a world merely but
one huge fairy tale ? But fairy tales are

fantastic and arbitrary : if in truth there

be such a world, it ought to submit itself

to an exact description, which determines

accurately its various parts and their mutual
relations. Now, to a large degree, this

scientific world does submit itself to this

test and allow its events to be explored
and predicted by the apparatus of abstract

mathematical ideas. It certainly seems that

here we have an inductive verification of

our initial assumption. It must be admitted
that no inductive proof is conclusive ; but
if the whole idea of a world which has
existence independently of our particular per-

ceptions of it be erroneous, it requires careful

explanation why the attempt to characterise

it, in terms of that mathematical remnant
of our ideas which would apply to it, should
issue in such a remarkable success.

It would take us too far afield to enter into

a detailed explanation of the other laws of

motion. The remainder of this chapter must
be devoted to the explanation of remarkable
ideas which are fundamental, both to mathe-
matical physics and to pure mathematics :

these are the ideas of vector quantities and
the parallelogram law for vector addition. We
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have seen that the essence of motion is that

a body was at A and is now at C. This trans-

ference from A to C requires two distinct

elements to be settled before it is completely
determined, namely its magnitude (i.e. the

length AC) and its direction. Now any-
thing, like this transference, which is com-

pletely given by the determination of a magni-

tude and a direction is called a vector. For

example, a velocity requires for its definition

the assignment of a magnitude and of a
direction. It must be of so many miles per
hour in such and such a direction. The ex-

istence and the independence of these two
elements in the determination of a velocity
are well illustrated by the action of the captain
of a ship, who communicates with different sub-

ordinates respecting them : he tells the chief

engineer the number of knots at which he is

to steam, and the helmsman the compass
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bearing of the course which he is to keep.

Again the rate of change of velocity, that is

velocity added per unit time, is also a vector

quantity : it is called the acceleration. Simi-

larly a force in the dynamical sense is another
vector quantity. Indeed, the vector nature

of forces follows at once according to dynami-
cal principles from that of velocities and
accelerations ; but this is a point which we
need not go into. It is sufficient here to say
that a force acts on a body with a certain

magnitude in a certain direction.

Now all vectors can be graphically repre-
sented by straight lines. All that has to be
done is to arrange : (i) a scale according to

which units of length correspond to units of

magnitude of the vector for example, one
inch to a velocity of 10 miles per hour in the

case of velocities, and one inch to a force of

10 tons weight in the case of forces and (ii)

a direction of the line on the diagram corre-

sponding to the direction of the vector. Then
a line drawn with the proper number of inches

of length in the proper direction represents the

required vector on the arbitrarily assigned scale

of magnitude. This diagrammatic representa-
tion of vectors is of the first importance. By
its aid we can enunciate the famous "

parallelo-

gram law "
for the addition of vectors of the

same kind but in different directions.

Consider the vector AC in figure 6 as repre-



54 INTRODUCTION TO MATHEMATICS

sentative of the changed position of a body
from A to C : we will call this the vector of

transportation. It will be noted that, if the

reduction of physical phenomena to mere

changes in positions, as explained above, is

correct, all other types of physical vectors are

really reducible in some way or other to this

single type. Now the final transportation
from A to C is equally well effected by a

transportation from A to B and a transporta-
tion from B to C, or, completing the parallelo-

gram ABCD, by a transportation from A to

D and a transportation from D to C. These

transportations as thus successively applied
are said to be ad<ded together. This is simply
a definition of what we mean by the addition

of transportations. Note further that, con-

sidering parallel lines as being lines drawn in

the same direction, the transportations B to

C and A to D may be conceived as the same

transportation applied to bodies in the two
initial positions B and A. With this con-

ception we may talk of the transportation
A to D as applied to a body in any position,
for example at B. Thus we may say that

the transportation A to C can be conceived
as the sum of the two transportations A to

B and A to D applied in any order. Here
we have the parallelogram law for the ad-

dition of transportations : namely, if the

transportations are A to B and A to D,
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complete the parallelogram ABCD, and then

the sum of the two is the diagonal AC.
All this at first sight may seem to be

very artificial. But it must be observed

that nature itself presents us with the idea.

For example, a steamer is moving in the

direction AD (cf. fig. 6) and a man walks

across its deck. If the steamer were still,

in one minute he would arrive at B ; but

during that minute his starting point A on
the deck has moved to D, and his path on
the deck has moved from AB to DC. So

that, in fact, his transportation has been from
A to C over the surface of the sea. It is,

however, presented to us analysed into the

sum of two transportations, namely, one from
A to B relatively to the steamer, and one
from A to D which is the transportation of

the steamer.

By taking into account the element of time,

namely one minute, this diagram of the man's

transportation AC represents his velocity.
For if AC represented so many feet of trans-

portation, it now represents a transportation
of so many feet per minute, that is to say, it

represents the velocity of the man. Then
AB and AD represent two velocities, namely,
his velocity relatively to the steamer, and the

velocity of the steamer, whose "sum" makes

up his complete velocity. It is evident that

diagrams and definitions concerning trans-
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portations are turned into diagrams and de-

finitions concerning velocities by conceiving
the diagrams as representing transportations

per unit time. Again, diagrams and defini-

tions concerning velocities are turned into

diagrams and definitions concerning accelera-

Fig. 7.

tions by conceiving the diagrams as repre-

senting velocities added per unit time.

Thus by the addition of vector velocities

and of vector accelerations, we mean the

addition according to the parallelogram law.

Also, according to the laws of motion a
force is fully represented by the vector

acceleration it produces in a body of given
mass. Accordingly, forces will be said to be
added when their joint effect is to be reckoned

according to the parallelogram law.

Hence for the fundamental vectors of
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science, namely transportations, velocities,

and forces, the addition of any two of the same
kind is the production of a "

resultant
"

vector according to the rule of the parallelo-

gram law.

By far the simplest type of parallelogram
is a rectangle, and in pure mathematics it is

the relation of the single vector AC to the
two component vectors, AB and AD, at right

angles (cf. fig. 7), which is continually re-

curring. Let x, y, and r units represent the

lengths of AB, AD, and AC, and let m units

of angle represent the magnitude of the angle
BAG. Then the relations between #, y, r,

and m, in all their many aspects are the con-

tinually recurring topic of pure mathematics ;

and the results are of the type required for

application to the fundamental vectors of

mathematical physics. This diagram is the
chief bridge over which the results of pure
mathematics pass in order to obtain applica-
tion to the facts of nature.



CHAPTER V

THE SYMBOLISM OF MATHEMATICS

WE now return to pure mathematics, and
consider more closely the apparatus of ideas

out of which the science is built. Our first

concern is with the symbolism of the science,
and we start with the simplest and universally
known symbols, namely those of arithmetic.

Let us assume for the present that we have

sufficiently clear ideas about the integral

numbers, represented in the Arabic notation

by 0,1,2, . . ., 9, 10, 11, ... 100, 101, . . . and
so on. This notation was introduced into

Europe through the Arabs, but they appar-
ently obtained it from Hindoo sources. The
first known work * in which it is systematic-

ally explained is a work by an Indian mathe-

matician, Bhaskara (born 1114 A.D.). But
the actual numerals can be traced back to the
seventh century of our era, and perhaps were

originally invented in Tibet. For our present

* For the detailed historical facts relating to pure
mathematics, I am chiefly indebted to A Short History
of Mathematics, by W. W. B. Ball.
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purposes, however, the history of the notation

is a detail. The interesting point to notice

is the admirable illustration which this

numeral system affords of the enormous im-

portance of a good notation. By relieving
the brain of all unnecessary work, a good
notation sets it free to concentrate on more
advanced problems, and in effect increases

the mental power of the race. Before the
introduction of the Arabic notation, multipli-
cation was difficult, and the division even of

integers called into play the highest mathe-
matical faculties. Probably nothing in the

modern world would have more astonished a
Greek mathematician than to learn that, under
the influence of compulsory education, a

large proportion of the population of Western

Europe could perform the operation of

division for the largest numbers. This fact

would have seemed to him a sheer impos-
sibility. The consequential extension of

the notation to decimal fractions was not

accomplished till the seventeenth century.
Our modern power of easy reckoning with
decimal fractions is the almost miraculous
result of the gradual discovery of a perfect
notation.

Mathematics is often considered a diffi-

cult and mysterious science, because of the
numerous symbols which it employs. Of
course, nothing is more incomprehensible than
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a symbolism which we do not understand.
Also a symbolism, which we only partially
understand and are unaccustomed to use, is

difficult to follow. In exactly the same way
the technical terms of any profession or trade

are incomprehensible to those who have never
been trained to use them. But this is not
because they are difficult in themselves. On
the contrary they have invariably been intro-

duced to make things easy. So in mathe-

matics, granted that we are giving any serious

attention to mathematical ideas, the sym-
bolism is invariably an immense simplifica-
tion. It is not only of practical use, but is

of great interest. For it represents an analy-
sis of the ideas of the subject and an almost

pictorial representation of their relations to

each other. If anyone doubts the utility of

symbols, let him write out in full, without any
symbol whatever, the whole meaning of the

following equations which represent some of

the fundamental laws of algebra
*

:

z+y=y+x (l)

(x+y}+z=x+(y+z) .. . . (2)
as x y=y xx (3)

(x x y) x z=x x (y x z) . . (4)
x x (y+z)=(x x y)+(x x z) . . (5)

Here (1) and (2) are called the commutative
and associative laws for addition, (3) and (4)

* Cf. Note A, p. 250.



SYMBOLISM OF MATHEMATICS 61

are the commutative and associative laws for

multiplication, and (5) is the distributive law

relating addition and multiplication. For ex-

ample, without symbols, (1) becomes: If a
second number be added to any given number
the result is the same as if the first given
number had been added to the second number.

This example shows that, by the aid of sym-
bolism, we can make transitions in reasoning
almost mechanically by the eye, which other-

wise would call into play the higher faculties

of the brain.

It is a profoundly erroneous truism, repeated
by all copy-books and by eminent people when
they are making speeches, that we should
cultivate the habit of thinking of what we are

doing. The precise opposite is the case.

Civilization advances by extending the num-
ber of important operations which we can

perform without thinking about them. Opera-
tions of thought are like cavalry charges in

a battle they are strictly limited in num-
ber, they require fresh horses, and must only
be made at decisive moments.
One very important property for symbolism

to possess is that it should be concise, so as to
be visible at one glance of the eye and to be

rapidly written. Now we cannot place sym-
bols more concisely together than by placing
them in immediate juxtaposition. In a good
symbolism therefore, the juxtaposition of im-
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portant symbols should have an important
meaning. This is one of the merits of the
Arabic notation for numbers ; by means of

ten symbols, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and by
simple juxtaposition it symbolizes any number
whatever. Again in algebra, when we have
two variable numbers x and y, we have to

make a choice as to what shall be denoted by
their juxtaposition xy. Now the two most

important ideas on hand are those of addition

and multiplication. Mathematicians have
chosen to make their symbolism more concise

by denning xy to stand for x x y. Thus the
laws (3), (4), and (5) above are in general
written,

xy=yx, (xy}z=x(yz) y x(y+z)=xy+xz,
thus securing a great gain in conciseness.

The same rule of symbolism is applied to the

juxtaposition of a definite number and a vari-

able : we write 3x for 3 x x, and 30x for 30 x x.

It is evident that in substituting definite

numbers for the variables some care must be
taken to restore the x, so as not to conflict

with the Arabic notation. Thus when we
substitute 2 for x and 3 for y in xy, we must
write 2x3 for xy, and not 23 which means
20+3.

It is interesting to note how important for

the development of science a modest-looking
symbol may be. It may stand for the em-

phatic presentation of an idea, often a very
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subtle idea, and by its existence make it easy
to exhibit the relation of this idea to all the

complex trains of ideas in which it occurs.

For example, take the most modest of all

symbols, namely, 0, which stands for the num-
ber zero. The Roman notation for numbers
had no symbol for zero, and probably most
mathematicians of the ancient world would
have been horribly puzzled by the idea of the

number zero. For, after all, it is a very
subtle idea, not at all obvious. A great deal

of discussion on the meaning of the zero of

quantity will be found in philosophic works.
Zero is not, in real truth, more difficult or

subtle in idea than the other cardinal numbers.
What do we mean by 1 or by 2, or by 3 ?

But we are familiar with the use of these ideas,

though we should most of us be puzzled to

give a clear analysis of the simpler ideas

which go to form them. The point about zero
is that we do not need to use it in the opera-
tions of daily life. No one goes out to buy
zero fish. It is in a way the most civilized

of all the cardinals, and its use is only forced
on us by the needs of cultivated modes of

thought. Many important services are ren-

dered by the symbol 0, which stands for the
number zero.

The symbol developed in connection with
the Arabic notation for numbers of which it

is an essential part. For in that notation the
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value of a digit depends on the position in

which it occurs. Consider, for example, the

digit 5, as occurring in the numbers 25, 51,

3512, 5213. In the first number 5 stands for

five, in the second number 5 stands for fifty,

in the third number for five hundred, and in

the fourth number for five thousand. Now,
when we write the number fifty-one in the

symbolic form 51, the digit 1 pushes the digit
5 along to the second place (reckoning from

right to left) and thus gives it the value fifty.

But when we want to symbolize fifty by itself,

we can have no digit 1 to perform this service ;

we want a digit in the units place to add

nothing to the total and yet to push the 5

along to the second place. This service is

performed by 0, the symbol for zero. It is

extremely probable that the men who intro-

duced for this purpose had no definite con-

ception in their minds of the number zero.

They simply wanted a mark to symbolize the

fact that nothing was contributed by the

digit's place in which it occurs. The idea of

zero probably took shape gradually from a

desire to assimilate the meaning of this mark
to that of the marks, 1, 2, ... 9, which do re-

present cardinal numbers. This would not

represent the only case in which a subtle idea

has been introduced into mathematics by a

symbolism which in its origin was dictated by
practical convenience.
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Thus the first use of was to make the

arable notation possible no slight service.

We can imagine that when it had been intro-

duced for this purpose, practical men, of the

sort who dislike fanciful ideas, deprecated the

silly habit of identifying it with a number
zero. But they were wrong, as such men
always are when they desert their proper
function of masticating food which others have

prepared. For the next service performed by
the symbol essentially depends upon assign-

ing to it the function of representing the

number zero.

This second symbolic use is at first sight
so absurdly simple that it is difficult to make
a beginner realize its importance. Let us
start with a simple example. In Chapter II.

we mentioned the correlation between two
variable numbers x and y represented by the

equation x -\-y 1. This can be represented
in an indefinite number of ways ; for example,
x = 1 y, y= Ix, 2x+3y 1 = x-\-2y, and so

on. But the important way of stating it is

x+y-I = 0.

Similarly the important way of writing the

equation x=I is a? 1=0, and of representing
the equation 3x 2=2x* is 2x* 30+2=0.
The point is that all the symbols which repre-
sent variables, e.g. x and y, and the symbols
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representing some definite number other than

zero, such as 1 or 2 in the examples above,
are written on the left-hand side, so that the

whole left-hand side is equated to the number
zero. The first man to do this is said to

have been Thomas Harriot, born at Oxford
in 1560 and died in 1621. But what is the

importance of this simple symbolic pro-
cedure ? It made possible the growth of the

modern conception of algebraic form.
This is an idea to which we shall have con-

tinually to recur ; it is not going too far to

say that no part of modern mathematics can
be properly understood without constant re-

currence to it. The conception of form is

so general that it is difficult to characterize

it in abstract terms. At this stage we shall

do better merely to consider examples. Thus
the equations 2x 3=0, #1=0, 5x 6=0,
are all equations of the same form, namely,

equations involving one unknown x, which is

not multiplied by itself, so that a?
2

, a?
3
, etc., do

not appear. Again 3a?2 2x+ 1 = 0, x2 3x+ 2

=0, o?
2 4=0, are all equations of the same

form,namely,equations involving oneunknown
x in which a?xa;, that is a?2 , appears. These

equations are called quadratic equations.

Similarly cubic equations, in which a?
3
appears,

yield another form, and so on. Among the

three quadratic equations given above there

is a minor difference between the last equa-
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tion, x2 4=0, and the preceding two equa-
tions, due to the fact that x (as distinct

from x2 ) does not appear in the last and
does in the other two. This distinction is

very unimportant in comparison with the

great fact that they are all three quadratic
equations.
Then further there are the forms of equation

stating correlations between two variables;
for example, x+y 1=0, 2x -\-3y-8=0, and
so on. These are examples of what is called

the linear form of equation. The reason for

this name of
"
linear

"
is that the graphic

method of representation, which is explained
at the end of Chapter II, always represents
such equations by a straight line. Then there

are other forms for two variables for example,
the quadratic form, the cubic form, and so on.

But the point which we here insist upon is

that this study of form is facilitated, and,
indeed, made possible, by the standard method
of writing equations with the symbol on
the right-hand side.

There is yet another function performed by
in relation to the study of form. Whatever

number x may be, x x=Q, and #+0=#.
By means of these properties minor differ-

ences of form can be assimilated. Thus the

difference mentioned above between the quad-
ratic equations x2 3#-f-2=0, and x2 4=0,
can be obliterated by writing the latter
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equation in the form #2 +(Oxo:) 4=0. For,

by the laws stated above, #2 +(Ox#) 4=
a^+O 4=#2 4. Hence the equation #2 4

=0, is merely representative of a particular
class of quadratic equations and belongs to

the same general form as does x2 3#-f2=0.
For these three reasons the symbol 0, re-

presenting the number zero, is essential to

modern mathematics. It has rendered pos-
sible types of investigation which would have
been impossible without it.

The symbolism of mathematics is in truth
the outcome of the general ideas which
dominate the science. We have now two
such general ideas before us, that of the vari-

able and that of algebraic form. The junction
of these concepts has imposed on mathematics
another type of symbolism almost quaint in

its character, but none the less effective. We
have seen that an equation involving two

variables, x and y, represents a particular
correlation between the pair of variables.

Thus x -{-y 1 =0 represents one definite corre-

lation, and 3x+2y 5=0 represents another
definite correlation between the variables x
and y ; and both correlations have the form
of what we have called linear correlations.

But now, how can we represent any linear

correlation between the variable numbers x
and y ? Here we want to symbolize any
linear correlation ; just as x symbolizes any
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number. This is done by turning the numbers
which occur in the definite correlation 3x+2y

5 =o into letters. We obtain ax -\-by c =0.
Here a, b, c, stand for variable numbers just
as do x and y : but there is a difference in the

use of the two sets of variables. We study
the general properties of the relationship be-

tween x and y while a, b, and c have un-

changed values. We do not determine what
the values of a, b, and c are ; but whatever

they are, they remain fixed while we study
the relation between the variables x and y
for the whole group of possible values of x
and y. But when we have obtained the pro-

perties of this correlation, we note that, be-

cause a, b, and c have not in fact been deter-

mined, we have proved properties which must

belong to any such relation. Thus, by now
varying a, b, and c, we arrive at the idea that

ax+by c=0 represents a variable linear

correlation between x and y. In comparison
with x and t/, the three variables a, b, and c

are called constants. Variables used in this

way are sometimes also called parameters.
Now, mathematicians habitually save the

trouble of explaining which of their variables

are to be treated as
"
constants," and which

as variables, considered as correlated in their

equations, by using letters at the end of the

alphabet for the
"
variable

"
variables, and

letters at the beginning of the alphabet for
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the
"
constant

"
variables, or parameters.

The two systems meet naturally about the

middle of the alphabet. Sometimes a word
or two of explanation is necessary ; but as a
matter of fact custom and common sense are

usually sufficient, and surprisingly little con-

fusion is caused by a procedure which seems
so lax.

The result of this continual elimination of

definite numbers by successive layers of para-
meters is that the amount of arithmetic per-
formed by mathematicians is extremely small.

Many mathematicians dislike all numerical

computation and are not particularly expert
at it. The territory of arithmetic ends where
the two ideas of "variables" and of "alge-
braic form " commence their sway.



CHAPTER VI

GENERALIZATIONS OT NUMBER

ONE great peculiarity of mathematics is the

set of allied ideas which have been invented
in connection with the integral numbers from
which we started. These ideas may be called

extensions or generalizations of number. In
the first place there is the idea of fractions.

The earliest treatise on arithmetic which we
possess was written by an Egyptian priest,
named Ahmes, between 1700 B.C. and 1100

B.C., and it is probably a copy of a much older

work. It deals largely with the properties of

fractions. It appears, therefore, that this

concept was developed very early in the his-

tory of mathematics. Indeed the subject is

a very obvious one. To divide a field into

three equal parts, and to take two of the

parts, must be a type of operation which had
often occurred. Accordingly, we need not be

surprised that the men of remote civilizations

were familiar with the idea of two-thirds, and

71
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with allied notions. Thus as the first genera-
lization of number we place the concept of

fractions. The Greeks thought of this sub-

ject rather in the form of ratio, so that a
Greek would naturally say that a line of

two feet in length bears to a line of three

feet in length the ratio of 2 to 8. Under
the influence of our algebraic notation we
would more often say that one line was
two-thirds of the other in length, and would
think of two-thirds as a numerical mul-

tiplier.

In connection with the theory of ratio, or

fractions, the Greeks made a great discovery,
which has been the occasion of a large amount
of philosophical as well as mathematical

thought. They found out the existence of
" incommensurable "

ratios. They proved,
in fact, during the course of their geometrical

investigations that, starting with a line of any
length, other lines must exist whose lengths
do not bear to the original length the ratio

of any pair of integers or, in other words,
that lengths exist which are not any exact
fraction of the original length.
For example, the diagonal of a square cannot

be expressed as any fraction of the side of the

same square ; in our modern notation the

length of the diagonal is \/2 times the length
of the side. But there is no fraction which

exactly represents \/2. We can approximate
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to V2 as closely as we like, but we never

exactly reach its value. For example, is'

25
g

just less than 2, and - is greater than 2, so
4

7 3
that \/2 lies between -= and 5 . But the best

o 1.

systematic way of approximating to \/2 in

obtaining a series of decimal fractions, each

bigger than the last, is by the ordinary method
of extracting the square root ; thus the series

14 141 1414
18 *

16' iob' looo'
and so on '

Ratios of this sort are called by the Greeks
incommensurable. They have excited from
the time of the Greeks onwards a great deal

of philosophic discussion, and the difficulties

connected with them have only recently been
cleared up.
We will put the incommensurable ratios

with the fractions, and consider the whole
set of integral numbers, fractional numbers,
and incommensurable numbers as forming
one class of numbers which we will call

"
real

numbers." We always think of the real

numbers as arranged in order of magnitude,
starting from zero and going upwards, and

becoming indefinitely larger and larger as we

proceed. The real numbers are conveniently



represented by points on a line. Let OX be
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of size, starting from zero and continually

increasing as we go on.

All this seems simple enough, but even at

this stage there are some interesting ideas to

be got at by dwelling on these obvious facts.

Consider the series of points which represent
the integral numbers only, namely, the points,
O, A, B, C, D, etc. Here there is a first point
0, a definite next point, A, and each point,
such as A or B, has one definite immediate

predecessor and one definite immediate suc-

cessor, with the exception of 0, which has no

predecessor ; also the series goes on in-

definitely without end. This sort of order is

called the type of order of the integers ; its

essence is the possession of next-door neigh-
bours on either side with the exception of

No. 1 in the row. Again consider the integers
and fractions together, omitting the points
which correspond to the incommensurable
ratios. The sort of serial order which we now
obtain is quite different. There is a first

term ; but no term has any immediate pre-
decessor or immediate successor. This is

easily seen to be the case, for between any
two fractions we can always find another

fraction intermediate in value. One very
simple way of doing this is to add the fractions

together and to halve the result. For ex-

ample, between f and , the fraction (f + f),

that is IT, lies ; and between f and H the
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fraction (f -j- {), that is If, lies ; and so on

indefinitely. Because of this property the

series is said to be
"
compact." There is no

end point to the series, which increases in-

definitely without limit as we go along the
line OX. It would seem at first sight as

though the type of series got in this way from
the fractions, always including the integers,
would be the same as that got from all the

real numbers, integers, fractions, and incom-
mensurables taken together, that is, from all

the points on the line OX. All that we have
hitherto said about the series of fractions

applies equally well to the series of all real

numbers. But there are important differ-

ences which we now proceed to develop. The
absence of the incommensurables from the

series of fractions leaves an absence of end-

points to certain classes. Thus, consider the

incommensurable A/2. In the series of real

numbers this stands between all the numbers
whose squares are less than 2, and all the

numbers whose squares are greater than 2.

But keeping to the series of fractions alone

and not thinking of the incommensurables, so

that we cannot bring in \/2, there is no frac-

tion which has the property of dividing off

the series into two parts in this way, i.e. so

that all the members on one side have their

squares less than 2, and on the other side

greater than 2. Hence in the series of frac-
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tions there is a quasi-gap where \/2 ought to

come. This presence of quasi-gaps in the

series of fractions may seem a small matter ;

but any mathematician, who happens to read

this, knows that the possible absence of limits

or maxima to a class of numbers, which yet
does not spread over the whole series of num-
bers, is no small evil. It is to avoid this

difficulty that recourse is had to the incom-

mensurables, so as to obtain a complete series

with no gaps.
There is another even more fundamental

difference between the two series. We can

rearrange the fractions in a series like that of

the integers, that is, with a first term, and
such that each term has an immediate suc-

cessor and (except the first term) an immediate

predecessor. We can show how this can be
done. Let every term in the series of fractions

and integers be written in the fractional form

by writing j for 1, f for 2, and so on for all the

integers, excluding 0. Also for the moment
we will reckon fractions which are equal in

value but not reduced to their lowest terms
as distinct ; so that, for example, until further

notice f, |, J-, A> etc., are all reckoned as dis-

tinct. Now group the fractions into classes

by adding together the numerator and de-

nominator of each term. For the sake of

brevity call this sum of the numerator and
denominator of a fraction its index. Thus 7
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is the index of |, and also of f , and of f . Let
the fractions in each class be all fractions

which have some specified index, which may
therefore also be called the class index. Now
arrange these classes in the order of magni-
tude of their indices. The first class has
the index 2, and its only member is T 5 the
second class has the index 3, and its members
are and f ; the third class has the index

4, and its members are J, f, f; the fourth

class has the index 5, and its members are

i i> f T J and so on - It is easy to see that

the number of members (still including frac-

tions not in their lowest terms) belonging to

any class is one less than its index. Also the
members of any one class can be arranged
in order by taking the first member to be the
fraction with numerator 1, the second mem-
ber to have the numerator 2, and so on, up to

(n 1) where n is the index. Thus for the
class of index n, the members appear in the
order.123 n-1 .

~, -, -, . . ., = . The mem-
n 1 n 2 n3 1

bers of the first four classes have in fact been
mentioned in this order. Thus the whole set

of fractions have now been arranged in an
order like that of the integers. It runs thus

1121 T21 31234
r 2' r '

LLl' r ? 3* 2' r
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n-2 _1 2_ 3 n-1 1

1 'ra-l'n-2'n-3'
' ''

1
'

n'

and so on.

Now we can get rid of all repetitions of

fractions of the same value by simply striking
them out whenever they appear after their

first occurrence. In the few initial terms
written down above, f which is enclosed above
in square brackets is the only fraction not in

its lowest terms. It has occurred before as

T. Thus this must be struck out. But the
series is still left with the same properties,

namely, (a) there is a first term, (6) each term
has next-door neighbours, (c) the series goes
on without end.

It can be proved that it is not possible to

arrange the whole series of real numbers in

this way. This curious fact was discovered

by Georg Cantor, a German mathematician
still living ; it is of the utmost importance
in the philosophy of mathematical ideas. We
are here in fact touching on the fringe of the

great problems of the meaning of continuity
and of infinity.
Another extension of number comes from

the introduction of the idea of what has been

variously named an operation or a step,
names which are respectively appropriate
from slightly different points of view. We
will start with a particular case. Consider
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the statement 2+3=5. We add 3 to 2 and
obtain 5. Think of the operation of adding
3: let this be denoted by +3. Again 43
=1. Think of the operation of subtracting
3 : let this be denoted by 3. Thus instead

of considering the real numbers in themselves,
we consider the operations of adding or sub-

tracting them : instead of -v/2, we consider

+V2 and \/2, namely the operations of

adding V2 and of subtracting \/2. Then we
can add these operations, of course in a
different sense of addition to that in which we
add numbers. The sum of two operations is

the single operation which has the same effect

as the two operations applied successively.
In what order are the two operations to be

applied ? The answer is that it is indifferent,

since for example

2+3+1=2+1+3;

so that the addition of the steps +3 and +1
is commutative.
Mathematicians have a habit, which is

puzzling to those engaged in tracing out

meanings, but is very convenient in practice,
of using the same symbol in different though
allied senses. The one essential requisite for

a symbol in their eyes is that, whatever its

possible varieties of meaning, the formal laws

for its use shall always be the same. In
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accordance with this habit the addition of

operations is denoted by -f as well as the

addition of numbers. Accordingly we can
write

where the middle + on the left-hand side

denotes the addition of the operations -{-3

and -f 1. But, furthermore, we need not be
so very pedantic in our symbolism, except in

the rare instances when we are directly tracing

meanings ; thus we always drop the first +
of a line and the brackets, and never write

two + signs running. So the above equation
becomes

3+1=4,

which we interpret as simple numerical addi-

tion, or as the more elaborate addition of

operations which is fully expressed in the

previous way of writing the equation, or

lastly as expressing the result of applying
the operation +1 to the number 3 and ob-

taining the number 4. Any interpretation
which is possible is always correct. But the

only interpretation which is always possible,
under certain conditions, is that of operations.
The other interpretations often give non-
sensical results.

This leads us at once to a question, which
must have been rising insistently in the



reader's mind : What is the use of all this

elaboration ? At this point our friend, the

practical man, will surely step in and insist on

sweeping away all these silly cobwebs of the

brain. The answer is that what the mathe-
matician is seeking is Generality. This is an
idea worthy to be placed beside the notions

of the Variable and of Form so far as concerns

its importance in governing mathematical

procedure. Any limitation whatsoever upon
the generality of theorems, or of proofs, or of

interpretation is abhorrent to the mathe-
matical instinct. These three notions, of the

variable, of form, and of generality, compose
a sort of mathematical trinity which preside
over the whole subject. They all really

spring from the same root, namely from the

abstract nature of the science.

Let us see how generality is gained by the

introduction of this idea of operations. Take
the equation x+1=3; the solution is x =2.
Here we can interpret our symbols as mere

numbers, and the recourse to
"
operations

"

is entirely unnecessary. But, if a? is a mere

number, the equation #+3=1 is nonsense.

For x should be the number of things which
remain when you have taken 3 things away
from 1 thing ; and no such procedure is

possible. At this point our idea of algebraic
form steps in, itself only generalization under
another aspect. We consider, therefore, the
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general equation of the same form as <r+l =3,
This equation is x-\-a=b y and its solution is

x=b a. Here our difficulties become acute ;

for this form can only be used for the numeri-
cal interpretation so long as b is greater than

a, and we cannot say without qualification
that a and b may be any constants. In other

words we have introduced a limitation on
the variability of the

"
constants

" a and b,

which we must drag like a chain throughout
all our reasoning. Really prolonged mathe-
matical investigations would be impossible
under such conditions. Every equation
would at last be buried under a pile of limita-

tions. But if we now interpret our symbols
as

"
operations," all limitation vanishes like

magic. The equation x+1=3 gives #= +2,
the equation x+3=1 gives x= 2, the equa-
tion x-\~a=b gives x=ba which is an opera-
tion of addition or subtraction as the case

may be. We need never decide whether b a

represents the operation of addition or of

subtraction, for the rules of procedure with
the symbols are the same in either case.

It does not fall within the plan of this work1

to write a detailed chapter of elementary
algebra. Our object is merely to make plain
the fundamental ideas which guide the forma-
tion of the science. Accordingly we do not
further explain the detailed rules by which
the

"
positive and negative numbers "

are
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multiplied and otherwise combined. We have

explained above that positive and negative
numbers are operations. They have also

been called
"
steps." Thus +3 is the step

by which we go from 2 to 5, and 3 is the

step backwards by which we go from 5 to 2.

Consider the line OX divided in the way ex-

plained in the earlier part of the chapter, so

that its points represent numbers. Then +2
,

D' C' B' A' +1 +2 +3
-3-2-1 A B C D E

is the step from to B, or from A to C, or

(if the divisions are taken backwards along
OX') from C' to A', or from D f

to B', and so

on. Similarly 2 is the step from to B',
or from B' to D', or from B to 0, or from C
to A.
We may consider the point which is reached

by a step from 0, as representative of that

step. Thus A represents +1> B represents
+2, A' represents 1, B' represents 2, and
so on. It will be noted that, whereas previ-

ously with the mere "unsigned
"

real numbers
the points on one side of only, namely along
OX, were representative of numbers, now
with steps every point on the whole line

stretching on both sides of is representative
of a step. This is a pictorial representation
of the superior generality introduced by the

positive and negative numbers, namely the
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operations or steps. These "signed
" num-

bers are also particular cases of what have
been called vectors (from the Latin veho, I

draw or carry). For we may think of a

particle as carried from O to A, or from A
to B.
In suggesting a few pages ago that the

practical man would object to the subtlety
involved by the introduction of the positive
and negative numbers, we were libelling that

excellent individual. For in truth we are on
the scene of one of his greatest triumphs. If

the truth must be confessed, it was the practi-
cal man himself who first employed the actual

symbols -f- and . Their origin is not very
certain, but it seems most probable that they
arose from the marks chalked on chests of

goods in German warehouses, to denote excess

or defect from some standard weight. The
earliest notice of them occurs in a book pub-
lished at Leipzig, in A.D. 1489. They seem
first to have been employed in mathematics

by a German mathematician, Stifel, in a book

published at Nuremburg in 1544 A.D. But
then it is only recently that the Germans
have come to be looked on as emphatically
a practical nation. There is an old epigram
which assigns the empire of the sea to the

English, of the land to the French, and of the

clouds to the Germans. Surely it was from
the clouds that the Germans fetched + and
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; the ideas which these symbols have

generated are much too important for the

welfare of humanity to have come from the

sea or from the land.

The possibilities of application of the posi-
tive and negative numbers are very obvious.

If lengths in one direction are represented

by positive numbers, those in the opposite
direction are represented by negative numbers.
If a velocity in one direction is positive, that
in the opposite direction is negative. If a
rotation round a dial in the opposite direction

to the hands of a clock (anti-clockwise) is

positive, that in the clockwise direction is

negative. If a balance at the bank is posi-

tive, an overdraft is negative. If vitreous

electrification is positive, resinous electrifica-

tion is negative. Indeed, in this latter case,

the terms positive electrification and negative
electrification, considered as mere names,
have practically driven out the other terms.

An endless series of examples could be given.
The idea of positive and negative numbers
has been practically the most successful of

mathematical subtleties.



CHAPTER VII

IMAGINARY NUMBERS

IF the mathematical ideas dealt with in the

last chapter have been a popular success,

those of the present chapter have excited

almost as much general attention. But their

success has been of a different character, it

has been what the French term a succes de

scandale. Not only the practical man, but
also men of letters and philosophers have ex-

pressed their bewilderment at the devotion
of mathematicians to mysterious entities

which by their very name are confessed to be

imaginary. At this point it may be useful

to observe that a certain type of intellect

is always worrying itself and others by
discussion as to the applicability of technical

terms. Are the incommensurable numbers

properly called numbers ? Are the positive
and negative numbers really numbers ? Are
the imaginary numbers imaginary, and are

they numbers ? are types of such futile

questions. Now, it cannot be too clearly
understood that, in science, technical terms
are names arbitrarily assigned, like Christian

87
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names to children. There can be no question
of the names being right or wrong. They
may be judicious or injudicious ; for they can
sometimes be so arranged as to be easy to

remember, or so as to suggest relevant and

important ideas. But the essential principle
involved was quite clearly enunciated in

Wonderland to Alice by Humpty Dumpty,
when he told her, a propos of his use of words,"
I pay them extra and make them mean

what I like." So we will not bother as to

whether imaginary numbers are imaginary,
or as to whether they are numbers, but will

take the phrase as the arbitrary name of a
certain mathematical idea, which we will now
endeavour to make plain.
The origin of the conception is in every

way similar to that of the positive and nega-
tive numbers. In exactly the same way it

is due to the three great mathematical ideas

of the variable, of algebraic form, and of

generalization. The positive and negative
numbers arose from the consideration of

equations like #-fl=3, +3=l, and the

general form x+a=b. Similarly the origin
of imaginary numbers is due to equations like

#2 +l=8, a?
2+3=1, and OJ

2 -fa=&. Exactly
the same process is gone through. The equa-
tion a;

2+1 =3 becomes #2 =2, and this has two

solutions, either x= + V%, or x= V2. The
statement that there are these alternative
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solutions is usually written x= A/2. So far

all is plain sailing, as it was in the previous
case. But now an analogous difficulty arises.

For the equation x
2+3=1 gives #2= 2 and

there is no positive or negative number which,
when multiplied by itself, will give a negative

square. Hence, if our symbols are to mean
the ordinary positive or negative numbers,
there is no solution to x2= 2, and the equa-
tion is in fact nonsense. Thus, finally taking
the general form x2+a=b ) we find the pair
of solutions x= \/(b a), when, and only
when, b is not less than a. Accordingly we
cannot say unrestrictedly that the

"
con-

stants
" a and b may be any numbers, that is,

the
"
constants

" a and b are not, as they
ought to be, independent unrestricted

"
vari-

ables
"

; and so again a host of limitations

and restrictions will accumulate round our
work as we proc'eed.
The same task as before therefore awaits

us : we must give a new interpretation to our

symbols, so that the solutions V(6 a) for

the equation x2 -{-a=b always have meaning.
In other words, we require an interpretation
of the symbols so that Va always has meaning
whether a be positive or negative. Of
course, the interpretation must be such that
all the ordinary formal laws for addition, sub-

traction, multiplication, and division hold

good ; and also it must not interfere with the



90 INTRODUCTION TO MATHEMATICS

generality which we have attained by the use
of the positive and negative numbers. In

fact, it must in a sense include them as

special cases. When a is negative we may
write c2 for it, so that c2 is positive. Then

Va=V(^?) =yr

((->l)xc
2
}

=V(-i) Vc*=c vT^i)-

Hence, if we can so interpret our symbols that

V( 1) has a meaning, we have attained our

object. Thus V( 1) has come to be looked
on as the head and forefront of all the

imaginary quantities.
This business of finding an interpretation

for V( 1) is a much tougher job than the

analogous one of interpreting 1. In fact,

while the easier problem was solved almost

instinctively as soon as it arose, it at first

hardly occurred, even to the greatest mathe-

maticians, that here a problem existed which
was perhaps capable of solution. Equations
like x2-

3, when they arose, were simply
ruled aside as nonsense.

However, it came to be gradually perceived

during the eighteenth century, and even

earlier, how very convenient it would be if

an interpretation could be assigned to these

nonsensical symbols. Formal reasoning with
these symbols was gone through, merely
assuming that they obeyed the ordinary
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algebraic laws of transformation ; and it was
seen that a whole world of interesting results

could be attained, if only these symbols might
legitimately be used. Many mathematicians
were not then very clear as to the logic of

their procedure, and an idea gained ground
that, in some mysterious way, symbols which
mean nothing can by appropriate manipula-
tion yield valid proofs of propositions. No-

thing can be more mistaken. A symbol
which has not been properly defined is not a

symbol at all. It is merely a blot of ink on

paper which has an easily recognized shape.

Nothing can be proved by a succession of

blots, except the existence of a bad pen or a
careless writer. It was during this epoch
that the epithet "imaginary" came to be

applied to V( 1). What these mathema-
ticians had really succeeded in proving were
a series of hypothetical propositions, of which
this is the blank form: If interpretations
exist for V( 1) and for the addition, sub-

traction, multiplication, and division of

V( 1) which make the ordinary algebraic
rules (e.g. x+y=y-\-x, etc.) to be satisfied,

then such and such results follows. It was
natural that the mathematicians should not

always appreciate the big "If," which ought
to have preceded the statements of their re-

suits.

As may be expected the interpretation,
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when found, was a much more elaborate affair

than that of the negative numbers and the
reader's attention must be asked for some
careful preliminary explanation. We have

already come across the representation of a

point by two numbers. By the aid of the

p'

M 1

p"

y'

A''

y'

ptu

y
Fig. 8.

positive and negative numbers we can now
represent the position of any point in a plane
by a pair of such numbers. Thus we take
the pair of straight lines XOX' and YOY' t at

right angles, as the
"
axes " from which we

start all our measurements. Lengths mea-
sured along OX and OY are positive, and
measured backwards along OX' and OY' are

negative. Suppose that a pair of numbers,
written in order,e.g. (+3, +!) so that there
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is a first number (+3 in the above example),
and a second number (+1 in the above ex-

ample), represents measurements from O
along XOX' for the first number, and along
YOY' for the second number. Thus (cf . fig. 9) in

( +3, +1) a length of 3 units is to be measured

along XOX' in the positive direction, that

is from O towards X, and a length +1
measured along YOY' in the positive direc~

tion, that is from O towards F. Similarly in

(3, +1) the length of 3 units is to be
measured from O towards X', and of 1 unit

from towards Y . Also in (3, 1) the
two lengths are to be measured along OX'
and OF' respectively, and in (+3, 1) along
OX and OF* respectively. Let us for the

moment call such a pair of numbers an
"
ordered couple." Then, from the two num-

bers 1 and 3, eight ordered couples can be

generated, namely

(+1, +3), (-1, +3), (-1, -3), (+1, -3),
(+3, +1), (-3, +1), (-3, -1), (+3, -1).

Each of these eight "ordered couples
"

directs

a process of measurement along XOX' and
FOF' which is different from that directed

by any of the others.

The processes of measurement represented

by the last four ordered couples, mentioned

above, are given pictorially in the figure.
The lengths OM and ON together correspond
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to (+3, +1), the lengths OM' and ON
together correspond to (3, +1), OM' and
ON' together to (3, 1), and OM and
ON' together to (+3, 1). But by com-

pleting the various rectangles, it is easy to

see that the point P completely determines

and is determined by the ordered couple

P'
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couple (x, y), where x and y are any positive
or negative numbers, and the corresponding

point reciprocally determine each other. It

is convenient to introduce some names at this

juncture. In the ordered couple (x, y) the

first number x is called the
"
abscissa

"
of the

corresponding point, and the second number

y is called the
"
ordinate

"
of the point, and

the two numbers together are called the
"
co-

ordinates
"

of the point. The idea of deter-

mining the position of a point by its
"
co-

ordinates
" was by no means new when the

theory of
"
imaginaries

" was being formed.

It was due to Descartes, the great French
mathematician and philosopher, and appears
in his Discours published at Leyden in 1637
A.D. The idea of the ordered couple as a

thing on its own account is of later growth
and is the outcome of the efforts to interpret

imaginaries in the most abstract way possible.
It may be noticed as a further illustration

of this idea of the ordered couple, that the

point M in fig. 9 is the couple (+3, 0), the

point N is the couple (0, +1), the point M'
the couple (3, 0), the point N' the couple
(0, 1), the point O the couple (0, 0).

Another way of representing the ordered

couple (x, y) is to think of it as representing
the dotted line OP (cf . fig. 8), rather than the

point P. Thus the ordered couple represents
a line drawn from an "

origin," O, of a certain
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length and in a certain direction. The line

OP may be called the vector line from O to

P, or the step from O to P. We see, therefore,
that we have in this chapter only extended
the interpretation which we gave formerly of

the positive and negative numbers. This
method of representation by vectors is very
useful when we consider the meaning to be

assigned to the operations of the addition and

multiplication of ordered couples.
We will now go on to this question, and

ask what meaning we shall find it convenient
to assign to the addition of the two ordered

couples (x, y) and (a?', y'). The interpreta-
tion must, (a) make the result of addition

to be another ordered couple, (b) make the

operation commutative so that (x, y)+
(x', y') =(%'Ty') -f-(tf71/)> (c) make the opera-
tion associative so that

(d) make the result of subtraction unique,
so that when we seek to determine the

unknown ordered couple (x, y) so as to

satisfy the equation

(x, y)+(a, b)=(c, d),

there is one and only one answer which we
can represent by

(x, y)=(c, d)-(at b).
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All these requisites are satisfied by taking
(xy y)+(x', y') to mean the ordered couple
(x+x', y+y'). Accordingly by definition we
put

(*, t/)+(a?', y')=(x+x
f

, y+y').

Notice that here we have adopted the mathe-
matical habit of using the same symbol -f- in

different senses. The + on the left-hand side

of the equation has the new meaning of +
which we are just defining ; while the two
-f-'s on the right-hand side have the meaning
of the addition of positive and negative num-
bers (operations) which was defined in the
last chapter. No practical confusion arises

from this double use.

As examples of addition we have

(+3, + l)+(+2, + 6) =(+5, + 7),

(+3, - l)+(-2, - 6)=(+l -
7),

( +8,+l)+(-8, -1)=(0, 0).

The meaning of subtraction is now settled

for us. We find that

(x, y)(u, V)=(IK-U, yv).
Thus

{ +3, + 2) -( +1, + 1) =( +2, -f 1),

and

( +1, - 2) -( +2, - 4)=( -1, + 2),

and

( -1, - 2) -( +2, + 3) =( -3, - 5).

D
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It is easy to see that

(x, y)-(u, v)=(x, */)+(-, -v).
Also

0* y) (# y) = (> o).

Hence (0, 0) is to be looked on as the zero

ordered couple. For example

( S/)-H 0)=(a?, y).

The pictorial representation of the addition

of ordered couples is surprisingly easy.

y
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to OX ; then evidently the triangles OQMi

and PRS are in all respects equal. Hence
MM'=PS=Xi, and RS=QMl \ and there-

fore

OM'=OM+MM'=
RM'=SM'+RS=

Thus OJ? represents the ordered couple as

required. This figure can also be drawn with
OP and OQ in other quadrants.

It is at once obvious that we have here

come back to the parallelogram law, which
was mentioned in Chapter VI. ,

on the laws of

motion, as applying to velocities and forces.

It will be remembered that, if OP and OQ
represent two velocities, a particle is said to

be moving with a velocity equal to the two
velocities added together if it be moving with
the velocity OR. In other words OR is said

to be the resultant of the two velocities OP
and OQ. Again forces acting at a point of a

body can be represented by lines just as

velocities can be ; and the same parallelogram
law holds, namely, that the resultant of the

two forces OP and OQ is the force represented

by the diagonal OR. It follows that we can
look on an ordered couple as representing a

velocity or a force, and the rule which we
have just given for the addition of ordered

couples then represents the fundamental laws
of mechanics for the addition of forces and
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velocities. One of the most fascinating
characteristics of mathematics is the surpris-

ing way in which the ideas and results of

different parts of the subject dovetail into

each other. During the discussions of this

and the previous chapter we have been guided
merely by the most abstract of pure mathe-
matical considerations ; and yet at the end
of them we have been led back to the most
fundamental of all the laws of nature, laws
which have to be in the mind of every engineer
as he designs an engine, and of every naval
architect as he calculates the stability of a

ship. It is no paradox to say that in our
most theoretical moods we may be nearest to

our most practical applications*



CHAPTER VIII

IMAGINARY NUMBERS (Continued)

THE definition of the multiplication of

ordered couples is guided by exactly the same
considerations as is that of their addition.

The interpretation of multiplication must be
such that

(a) the result is another ordered couple,

(/3) the operation is commutative, so that

(x, y) x(o?', y')=(x', y'} x(#, t/),

(7) the operation is associative, so that

{(x, y)x(x
f

, y')} x (u, v)

=(# J/)x{(' y')*(u, v)} 9

(&) must make the result of division unique
[with an exception for the case of the zero

couple (0, 0)], so that when we seek to deter-

mine the unknown couple (x, y) so as to

satisfy the equation

(x, y)x(a, b)=(c, d),

there is one and only one answer, which we
can represent by

(*, S/)= (c, d)-H(a, 6), or by (, t/)=
JA*>

101
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(e) Furthermore the law involving both
addition and multiplication, called the dis-

tributive law, must be satisfied, namely

(x,y)x{(a,b)+(c 9 d)}
=

{(*, y) x (a, 6)} +{(*, y) x (c, d)}.

All these conditions (a), (), (7), (8), (e) can
be satisfied by an interpretation which,

though it looks complicated at first, is capable
of a simple geometrical interpretation.

By definition we put

(x, y)x(x', y')
= {(xx'-yy')> (xy'+ x'y}} (A)

This is the definition of the meaning of the

symbol x when it is written between two
ordered couples. It follows evidently from
this definition that the result of multiplica-
tion is another ordered couple, and that the

value of the right-hand side of equation (A)
is not altered by simultaneously interchanging
x with x' t and y with y'. Hence conditions

(a) and (/?) are evidently satisfied. The proof
of the satisfaction of (7), (8), (e) is equally

easy when we have given the geometrical

interpretation, which we will proceed to do
in a moment. But before doing this it will

be interesting to pause and see whether we
have attained the object for which all this

elaboration was initiated.

We came across equations of the form
a?
2= 3, to which no solutions could be
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assigned in terms of positive and negative real

numbers. We then found that all our diffi-

culties would vanish if we could interpret the

equation x2= 1, i.e., if we could so define

V(-l) that V( 1) x V( 1)= 1.

Now let us consider the three special
ordered couples

*
(0,0), (1,0), and (0,1).

We have already proved that

(*, */)+(<>, 0)=(a, y).

Furthermore we now have

(x, t/)x(0, 0)=(0, 0).

Hence both for addition and for multiplica-
tion the couple (0,0) plays the part of zero in

elementary arithmetic and algebra ; com-

pare the above equations with c+0=a?, and
x x 0=0.

Again consider (1, 0) : this plays the part
of 1 in elementary arithmetic and algebra.
In these elementary sciences the special
characteristic of 1 is that x xl=#, for all

values of x. Now by our law of multiplica-
tion

(xt y) x (1, 0)= {(x- 0), (y +0)} = (*, y).

Thus (1, 0) is the unit couple.

* For the future we follow the custom of omitting the

-f sign wherever possible, thus (1,0) stands for (+ 1,0)
and (0,1) for (0,
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Finally consider (0,1) : this will interpret
for us the symbol V( 1). The symbol must
therefore possess the characteristic property
that V( 1) x V(ZT)= 1. Now by the
law of multiplication for ordered couples

(0,1) x (0,1) = {(0
-

1), (0+ 0)} = ( -1, 0).

But (1,0) is the unit couple, and (1, 0)
is the negative unit couple ; so that (0,1) has
the desired property. There are, however,
two roots of 1 to be provided for, namely

V( 1). Consider (0, 1) ; here again re-

membering that (1)2 =1, we find, (0, 1)

x(0,-l) = (-l, 0).

Thus (0, 1) is the other square root of

V( 1). Accordingly the ordered couples

(0,1) and (0, 1) are the interpretations of

V( 1) in terms of ordered couples. But
which corresponds to which ? Does (0,1)

correspond to + V( 1) and (0, 1) to

- VC^T), or (0,1) to -Vr^andfO, -
1)

to + V( 1) ? The answer is that it is per-

fectly indifferent which symbolism we adopt.
The ordered couples can be divided into

three types, (i) the
"
complex imaginary

"

type (x,y), in which neither x nor y is zero ;

(ii) the
"
real

"
type (#,0) ; (iii) the

"
pure

imaginary
"
type (O,?/). Let us consider the

relations of these types to each other. First

multiply together the
"
complex imaginary

'
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eouple (x,y) and the
"
real

"
couple (a,0), we

find

(a,0)x(x,y)=(ax, ay).

Thus the effect is merely to multiply each
term of the couple (x,y) by the positive or

negative real number a.

Secondly, multiply together the
"
complex

imaginary
"

couple (x,y) and the
"
pure

imaginary
"
couple (0,6), we find

(0,6) x(x,y)=(by, bx).

Here the effect is more complicated, and is

best comprehended in the geometrical inter-

pretation to which we proceed after noting
three yet more special cases.

Thirdly, we multiply the
"
real

"
couple

(o,0) by the imaginary (0,6) and obtain

(a,0) x (0,6) =(0,ai).

Fourthly, we multiply the two "
real

"

couples (a,0) and (a', 0) and obtain

(a,0)x(a',0)=(oa',0).

Fifthly, we multiply the two "imaginary
couples

"
(0,6) and (0, 6) and obtain

(0,6)x(0,6')=(-66', 0).

We now turn to the geometrical interpreta-
tion, beginning first with some special cases.
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Take the couples (1,3) and (2,0) and consider
the equation

(2,0) x (1,3) =(2,6)
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represents the new product is at right angles
to OQ and of the same length. Notice that

we have the same law regulating the length
of OQ as in the previous case, namely, that

its length is the product of the lengths of

the two vectors which are multiplied to-

gether ; but now that we have ONi along the
*'
ordinate

"
axis OY, instead of ON along

the
**
abscissa

"
axis OX, the direction of

OP has been turned through a right-angle.
Hitherto in these examples of multiplication

we have looked on the vector OP as modified

by the vectors ON and ONi. We shall get
a clue to the general law for the direction by
inverting the way of thought, and by think-

ing of the vectors ON and ONi as modified by
the vector OP. The law for the length re-

mains unaffected ; the resultant length is the

length of the product of the two vectors.

The new direction for the enlarged ON (i.e.

OQ) is found by rotating it in the (anti-clock-

wise) direction of rotation from OX towards
OY through an angle equal to the angleXOP :

it is an accident of this particular case that

this rotation makes OQ lie along the line OP.

Again consider the product of ONi and OP ;

the new direction for the enlarged ONi (i.e.

OR) is found by rotating ON in the anti-

clockwise direction of rotation through an

angle equal to the angle XOP, namely, the

angle NiOR is equal to the angle XOP.
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The general rule for the geometrical repre-
sentation of multiplication can now be enunci-

ated thus :

Fig. 12.

The product of the two vectors OP and

OQ is a vector OR, whose length is the pro-
duct of the lengths of OP and OQ and whose
direction OR is such that the angle XOR is

equal to the sum of the angles XOP and XOQ.
Hence we can conceive the vector OP as

making the vector OQ rotate through an

angle XOP (i.e. the angle QO.K = the angle
XOP), or the vector OQ as making the vector

OP rotate through the angle XOQ (i.e. the

angle POR =the angle XOQ).
We do not prove this general law, as we
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should thereby be led into more technical

processes of mathematics than falls within the

design of this book. But now we can im-

mediately see that the associative law [num-
bered (7) above] for multiplication is satisfied.

Consider first the length of the resultant

vector ; this is got by the ordinary process
of multiplication for real numbers ; and thus

the associative law holds for it.

Again, the direction of the resultant vector

is got by the mere addition of angles, and the

associative law holds for this process also.

So much for multiplication. We have now
rapidly indicated, by considering addition and

multiplication, how an algebra or
"
calculus

"

of vectors in one plane can be constructed,
which is such that any two vectors in the

plane can be added, or subtracted, and can
be multiplied, or divided one by the other.

We have not considered the technical de-

tails of all these processes because it would
lead us too far into mathematical details ;

but we have shown the general mode of pro-
cedure. When we are interpreting our alge-
braic symbols in this way, we are said to be

employing
"
imaginary quantities

"
or

*' com-

plex quantities." These terms are mere
details, and we have far too much to think
about to stop to enquire whether they are or

are not very happily chosen.
The nett result of our investigations is that



110 INTRODUCTION TO MATHEMATICS

any equations like #+3=2 or (#+3)2= 2

can now always be interpreted into terms of

vectors, and solutions found for them. In

seeking for such interpretations it is well to

note that 3 becomes (3,0), and 2 becomes

(2,0), and x becomes the "unknown"
couple (u, v) : so the two equations become

respectively (u, v) +(3,0) =(2,0), and {(u,v)

+(3,0)}2 = (-2,0).
We have now completely solved the initial

difficulties which caught our eye as soon as

we considered even the elements of algebra.
The science as it emerges from the solution is

much more complex in ideas than that with
which we started. We have, in fact, created

a new and entirely different science, which
will serve all the purposes for which the old

science was invented and many more in addi-

tion. But, before we can congratulate our-

selves on this result to our labours, we must

allay a suspicion which ought by this tune to

have arisen in the mind of the student. The

question which the reader ought to be asking
himself is : Where is all this invention of new

interpretations going to end ? It is true that

we have succeeded in interpreting algebra so

as always to be able to solve a quadratic

equation like a?
2 2#+4=0; but there are

an endless number of other equations, for

example, x3 2a?-f4=0, #4 +a?3+2=0, and so

on without limit. Have we got to make a
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new science whenever a new equation ap-
pears ?

Now, if this were the case, the whole of our

preceding investigations, though to some
minds they might be amusing, would in truth
be of very trifling importance. But the great
fact, which has made modern analysis possible,
is that, by the aid of this calculus of vectors,

every formula which arises can receive its

proper interpretation ; and the
" unknown "

quantity in every equation can be shown to

indicate some vector. Thus the science is now
complete in itself as far as its fundamental
ideas are concerned. It was receiving its final

form about the same time as when the steam

engine was being perfected, and will remain
a great and powerful weapon for the achieve-
ment of the victory of thought over things
when curious specimens of that machine

repose in museums in company with the
helmets and breastplates of a slightly earlier

epoch.



CHAPTER IX

COORDINATE GEOMETRY

THE methods and ideas of coordinate geo-

metry have already been employed in the

previous chapters. It is now time for us to

consider them more closely for their own
sake ; and in doing so we shall strengthen our
hold on other ideas to which we have attained.

In the present and succeeding chapters we
will go back to the idea of the positive and

negative real numbers and will ignore the

imaginaries which were introduced in the last

two chapters.
We have been perpetually using the idea

that, by taking two axes, XOX' and YOY',
in a plane, any point P in that plane can be
determined in position by a pair of positive
or negative numbers x and t/, where (cf.

fig. 13) x is the length OM and y is the length
PM. This conception, simple as it looks, is

the main idea of the great subject of co-

ordinate geometry. Its discovery marks a
momentous epoch in the history of mathe-
matical thought. It is due (as has been

112
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already said) to the philosopher Descartes,
and occurred to him as an important mathe-
matical method one morning as he lay in bed.

Philosophers, when they have possessed a

thorough knowledge of mathematics, have
been among those who have enriched the

p

\y

M

Y'

Fig. 13.

science with some of its best ideas. On the

other hand it must be said that, with hardly
an exception, all the remarks on mathematics
made by those philosophers who have pos-
sessed but a slight or hasty and late-acquired

knowledge of it are entirely worthless, being
either trivial or wrong. The fact is a curious

one ; since the ultimate ideas of mathematics
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seem, after all, to be very simple, almost

childishly so, and to lie well within the

province of philosophical thought. Probably
their very simplicity is the cause of error ; we
are not used to think about such simple
abstract things, and a long training is neces-

sary to secure even a partial immunity from
error as soon as we diverge from the beaten
track of thought.
The discovery of coordinate geometry, and

also that of projective geometry about the
same time, illustrate another fact which is

being continually verified in the history of

knowledge, namely, that some of the greatest
discoveries are to be made among the most
well-known topics. By the time that the
seventeenth century had arrived, geometry
had already beenstudiedforover two thousand

years, even if we date its rise with the Greeks.

Euclid, taught in the University of Alexandria,

being born about 330 B.C. ; and he only

systematized and extended the work of a long
series of predecessors, some of them men of

genius. After him generation after genera-
tion of mathematicians laboured at the im-

provement of the subject. Nor did the

subject suffer from that fatal bar to progress,

namely, that its study was confined to a
narrow group of men of similar origin and
outlook quite the contrary was the case ;

by the seventeenth century it had passed
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through the minds of Egyptians and Greeks,
of Arabs and of Germans. And yet, after all

this labour devoted to it through so many
ages by such diverse minds its most important
secrets were yet to be discovered.

No one can have studied even the elements

of elementary geometry without feeling the

lack of some guiding method. Every proposi-
tion has to be proved by a fresh display of in-

genuity ; and a science for which this is true

lacks the great requisite of scientific thought,

namely, method. Now the especial point of

coordinate geometry is that for the first

time it introduced method. The remote
deductions of a mathematical science are not
of primary theoretical importance. The
science has not been perfected, until it consists

in essence of the exhibition of great allied

methods by which information, on any desired

topic which falls within its scope, can easily
be obtained. The growth of a science is not

primarily in bulk, but in ideas ; and the more
the ideas grow, the fewer are the deductions
which it is worth while to write down. Un-

fortunately, mathematics is always encum-
bered by the repetition in text-books of

numberless subsidiary propositions, whose im-

portance has been lost by their absorption
into the role of particular cases of more

general truths and, as we have already in-

sisted, generality is the soul of mathematics.
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Again, coordinate geometry illustrates

another feature of mathematics which has

already been pointed out, namely, that mathe-
matical sciences as they develop dovetail into

each other, and share the same ideas in com-
mon. It is not too much to say that the
various branches of mathematics undergo a

perpetual process of generalization, and that

as they become generalized, they coalesce.

Here again the reason springs from the very
nature of the science, its generality, that is

to say, from the fact that the science deals

with the general truths which apply to all

things in virtue of their very existence as

things. In this connection the interest of co-

ordinate geometry lies in the fact that it

relates together geometry, which started as

the science of space, and algebra, which has

its origin in the science of number.
Let us now recall the main ideas of the two

sciences, and then see how they are related

by Descartes' method of coordinates. Take

algebra in the first place. We will not trouble

ourselves about the imaginaries and will

think merely of the real numbers with posi-
tive or negative signs. The fundamental idea

is that of any number, the variable number,
which is denoted by a letter and not by any
definite numeral. We then proceed to the

consideration of correlations between vari-

ables. For example, if x and y are two vari-



ables, we may conceive them as correlated by
the equations x+y=I, or by x y=I, or in

any one of an indefinite number of other ways.
This at once leads to the application of the

idea of algebraic form. We think, in fact, of

any correlation of some interesting type, thus

rising from the initial conception of vari-

able numbers to the secondary conception of

variable correlations of numbers. Thus we
generalize the correlation x+yl, into the

correlation ax+by=c. Here a and b and c,

being letters, stand for any numbers and are

in fact themselves variables. But they are

the variables which determine the variable

correlation ; and the correlation, when deter-

mined, correlates the variable numbers a: and

y. Variables, like a, b, and c above, which
are used to determine the correlation are

called
"
constants," or parameters. The use

of the term "
constant

"
in this connection

for what is really a variable may seem at first

sight to be odd ; but it is really very natural.

For the mathematical investigation is con-

cerned with the relation between the variables

x and y, after a,b,e are supposed to have been
determined. So in a sense, relatively to x
and y, the

"
constants "

a, b, and c are con-
stants. Thus ax+by=c stands for the general

example of a certain algebraic form, that is,

for a variable correlation belonging to a certain

class.
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Again we generalize #2 +t/2=l into

by
2 =c, or still further into ax2 +2hxy +by2

=c, or, still further, into ax2 +2hxy +by2 +2gx

Here again we are led to variable correlations

which are indicated by their various algebraic
forms.

Now let us turn to geometry. The name
of the science at once recalls to our minds
the thought of figures and diagrams exhibiting

triangles and rectangles and squares and
circles, all in special relations to each other.

The study of the simple properties of these

figures is the subject matter of elementary
geometry, as it is rightly presented to the

beginner. Yet a moment's thought will show
that this is not the true conception of the

subject. It may be right for a child to com-
mence his geometrical reasoning on shapes,
like triangles and squares, which he has cut

out with scissors. What, however, is a tri-

angle ? It is a figure marked out and bounded

by three bits of three straight lines.

Now the boundary of spaces by bits of

lines is a ve"ry complicated idea, and not at

all one which gives any hope of exhibiting
the simple general conceptions which should
form the bones of the subject. We want

something more simple and more general. It

is this obsession with the wrong initial ideas

very natural and good ideas for the creation
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of first thoughts on the subject which was
the cause of the comparative sterility of the

study of the science during so many centuries.

Coordinate geometry, and Descartes its in-

ventor, must have the credit of disclosing the

true simple objects for geometrical thought.
In the place of a bit of a straight line, let

us think of the whole of a straight line

throughout its unending length in both direc-

tions. This is the sort of general idea from
which to start our geometrical investigations.
The Greeks never seem to have found any
use for this conception which is now funda-

mental in all modern geometrical thought.
Euclid always contemplates a straight line as

drawn between two definite points, and is

very careful to mention when it is to be pro-
duced beyond this segment. He never thinks

of the line as an entity given once for all as a
whole. This careful definition and limita-

tion, so as to exclude an infinity not immedi-

ately apparent to the senses, was very charac-

teristic of the Greeks in all their many
activities. It is enshrined in the difference

between Greek architecture and Gothic archi-

tecture, and between the Greek religion and
the modern religion. The spire on a Gothic
cathedral and the importance of the un-
bounded straight line in modern geometry
are both emblematic of the transformation of

the modern world.
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The straight line, considered as a whole,
is accordingly the root idea from which
modern geometry starts. But then other

sorts of lines occur to us, and we arrive at the

conception of the complete curve which at

every point of it exhibits some uniform char-

acteristic, just as the straight line exhibits

at all points the characteristic of straight-
ness. For example, there is the circle which
at all points exhibits the characteristic of

being at a given distance from its centre, and

again there is the ellipse, which is an oval

curve, such that the sum of the two distances

of any point on it from two fixed points, called

its foci, is constant for all points on the curve.

It is evident that a circle is merely a particu-
lar case of an ellipse when the two foci are

superposed in the same point ; for then the

sum of the two distances is merely twice the

radius of the circle. The ancients knew the

properties of the ellipse and the circle and, of

course, considered them as wholes. For ex-

ample, Euclid never starts with mere seg-
ments (i.e., bits) of circles, which are then pro-

longed. He always considers the whole circle

as described. It is unfortunate that the

circle is not the true fundamental line in

geometry, so that his defective consideration

of the straight line might have been of less

consequence.
This general idea of a curve which at any



COORDINATE GEOMETRY 121

point of it exhibits some uniform property is

expressed in geometry by the term "
locus."

A locus is the curve (or surface, if we do not

confine ourselves to a plane) formed by points,
all of which possess some given property.
To every property in relation to each other

which points can have, there corresponds
some locus, which consists of all the points

possessing the property. In investigating
the properties of a locus considered as a whole,
we consider any point or points on the locus.

Thus in geometry we again meet with the

fundamental idea of the variable. Further-

more, in classifying loci under such headings
as straight lines, circles, ellipses, etc., we again
find the idea of form.

Accordingly, as in algebra we are concerned
with variable numbers, correlations between
variable numbers, and the classification of

correlations into types by the idea of algebraic
form ; so in geometry we are concerned with
variable points, variable points satisfying
some condition so as form to a locus, and the
classification of loci into types by the idea of

conditions of the same form.

Now, the essence of coordinate geometry
is the identification of the algebraic corre-

lation with the geometrical locus. The point
on a plane is represented in algebra by its

two coordinates, x and t/, and the condition
satisfied by any point on the locus Is re-
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presented by the corresponding correlation

between x and y. Finally to correlations

expressible in some general algebraic form,
such as ax+by=c, there correspond loci of

some general type, whose geometrical con-

ditions are all of the same form. We
have thus arrived at a position where we
can effect a complete interchange in ideas

and results between the two sciences. Each
science throws light on the other, and itself

gains immeasurably in power. It is im-

possible not to feel stirred at the thought
of the emotions of men at certain historic

moments of adventure and discovery
Columbus when he first saw the Western

shore, Pizarro when he stared at the Pacific

Ocean, Franklin when the electric spark came
from the string of his kite, Galileo when he
first turned his telescope to the heavens.

Such moments are also granted to students

in the abstract regions of thought, and high
among them must be placed the morning when
Descartes lay in bed and inventedfthe method
of coordinate geometry.
When one has once grasped the idea of co-

ordinate geometry, the immediate question
which starts to the mind is, What sort of

loci correspond to the well-known algebraic
forms ? For example, the simplest among
the general types of algebraic forms is ax+
by=c. The sort of locus which corresponds



COORDINATE GEOMETRY 123

to this is a straight line, and conversely to

every straight line there corresponds an equa
tion of this form. It is fortunate that the

simplest among the geometrical loci should

correspond to the simplest among the alge-
braic forms. Indeed, it is this general corre-

spondence of geometrical and algebraic sim-

plicity which gives to the whole subject its

power. It springs from the fact that the
connection between geometry and algebra is

not casual and artificial, but deep-seated and
essential. The equation which corresponds
to a locus is called the equation

"
of

"
(or"

to ") the locus. Some examples of equations
of straight lines will illustrate the subject.

;

Fig. 14.
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Consider y x =0 ; here the a, 6, and c, of

the general form have been replaced by 1, 1,

and respectively. This line passes through
the "origin," 0, in the diagram and bisects

the angle XOY. It is the line L'OL of the

diagram. The fact that it passes through the

origin, 0, is easily seen by observing that the

equation is satisfied by putting xQ and

t/=0 simultaneously, but and are the co-

ordinates of 0. In fact it is easy to generalize
and to see by the same method that the

equation of any line through the origin is of

the form ax-\-by=Q. The loeus of equation
/+aj=0 also passes through the origin and
bisects the angle X'OY : it is the line L\OL\
of the diagram.

Consider y x=\ : the corresponding locus

does not pass through the origin. We there-

fore seek where it cuts the axes. It must cut

the axis of x at some point of coordinates

x and 0. But putting t/=0 in the equation,
we get x 1; so the coordinates of this

point (A) are 1 and 0. Similarly the point

(B) where the line cuts the axis OY are and
1. The locus is the line AB in the figure and
is parallel to LOU. Similarly y+x=\ is the

equation of line AJB of the figure ; and the

locus is parallel to L^OL\. It is easy to prove
the general theorem that two lines represented

by equations of the forms ax-\-by=0 and

ax+by=c are parallel.
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The group of loci which we next come upon
are sufficiently important to deserve a chap-
ter to themselves. But before going on to

them we will dwell a little longer on the main
ideas of the subject.
The position of any point P is determined

by arbitrarily choosing an origin, 0, two axes,

OX and OF, at right-angles, and then by
noting its coordinates ac and y, i.e. OM and
PM (cf. fig. 13). Also, as we have seen in the

last chapter, P can be determined by the
"
vector

"
OP, where the idea of the vector

includes a determinate direction as well as a
determinate length. From an abstract

mathematical point of view the idea of an

arbitrary origin may appear artificial and

clumsy, and similarly for the arbitrarily
drawn axes, OX and OY. But in relation to

the application of mathematics to the event
of the Universe we are here symbolizing with
direct simplicity the most fundamental fact

respecting the outlook on the world afforded

to us by our senses. We each of us refer

our sensible perceptions of things to an origin
which we call

"
here

"
: our location in a

particular part of space round which we
group the whole Universe is the essential fact

of our bodily existence. We can imagine
beings who observe all phenomena in all space
with an equal eye, unbiassed in favour of any
part. With us it is otherwise, a cat at our
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feet claims more attention than an earth-

quake at Cape Horn, or than the destruction

of a world in the Milky Way. It is true that

in making a common stock of our knowledge
with our fellowmen, we have to waive some-

thing of the strict egoism of our own indi-

vidual
"
here." We substitute

"
nearly

here
"

for
"
here "

; thus we measure miles

from the town hall of the nearest town, or

from the capital of the country. In measur-

ing the earth, men of science will put the

origin at the earth's centre ; astronomers
even rise to the extreme altruism of putting
their origin inside the sun. But, far as this

last origin may be, and even if we go further

to some convenient point amid the nearer

fixed stars, yet, compared to the immeasur-
able infinities of space, it remains true that

our first procedure in exploring the Universe

is to fix upon an origin
"
nearly here."

Again the relation of the coordinates OM
and MP (i.e. x and t/) to the vector OP is an
instance of the famous parallelogram law, as

can easily be seen (cf. fig. 8) by completing
the parallelogram OMPN. The idea of the
"
vector

"
OP, that is, of a directed magni-

tude, is the root-idea of physical science.

Any moving body has a certain magnitude
of velocity in a certain direction, that is to

say, its velocity is a directed magnitude, a

vector. Again a force has a certain magni-
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tude and has a definite direction. Thus,
when in analytical geometry the ideas of the
"
origin," of

"
coordinates," and of

"
vec-

tors
"

are introduced, we are studying the
abstract conceptions which correspond to the
fundamental facts of the physical world.



CHAPTER X

CONIC SECTIONS

WHEN the Greek geometers had exhausted,
as they thought, the more obvious and inter-

esting properties of figures made up of

straight lines and circles, they turned to

the study of other curves ; and, with their

almost infallible instinct for hitting upon
things worth thinking about, they chiefly

(devoted

themselves to conic sections, that

is, to the curves in which planes would cut

the surfaces of circular cones. The man
who must have the credit of inventing the

study is Menaechmus (born 375 B.C. and
died 325 B.C.); he was a pupil of Plato

and one of the tutors of Alexander the

Great. Alexander, by the by, is a con-

spicuous example of the advantages of good
tuition, for another of his tutors was the

philosopher Aristotle. We may suspect that

Alexander found Menaechmus rather a dull

teacher, for it is related that he asked for the
128
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proofs to be made shorter. It was to this

request that Menaechmus replied :

** In the

country there are private and even royal
roads, but in geometry there is only one road
for all." This reply no doubt was true

enough in the sense in which it would have
been immediately understood by Alexander.
But if Menaechmus thought that his proofs
could not be shortened, he was grievously
mistaken ; and most modern mathematicians
would be horribly bored, if they were com-

pelled to study the Greek proofs of the pro-

perties of conic sections. Nothing illustrates

better the gain in power which is obtained by
the introduction of relevant ideas into a
science than to observe the progressive

shortening of proofs which accompanies the

growth of richness in idea. There is a cer-

tain type of mathematician who is always
rather impatient at delaying over the ideas

of a subject : he is anxious at once to get on
to the proofs of

"
important

"
problems. The

history of the science is entirely against him.
There are royal roads in science ; but those

who first tread them are men of genius and
not kings.
The way in which conic sections first pre-

sented themselves to mathematicians was as

follows : think of a cone (cf. fig. 15), whose
vertex (or point) is F, standing on a circular

base STU, For example, a conical shade to

E
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an electric light is often an example of such a

surface. Now let the
"
generating

"
lines

which pass through V and lie on the surface

be all produced backwards; the result is a
double cone, and PQR is another circular cross

section on the opposite side of V to the cross

section STU. The axis of the cone CVC'
passes through all the centres of these circles

and is perpendicular to their planes, which
are parallel to each other. In the diagram
the parts of the curves which are supposed
to lie behind the plane of the paper are dotted

lines, and the parts on the plane or in front

of it are continuous lines. Now suppose this

double cone is cut by a plane not perpen-
dicular to the axis CVC', or at least not

necessarily perpendicular to it. Then three

cases can arise :

(1) The plane may cut the cone in a closed

oval curve, such as ABA'B' which lies en-

tirely on one of the two half-cones. In this

case the plane will not meet the other half-cone

at all. Such a curve is called an ellipse ; it is

an oval curve. A particular case of such a

section of the cone is when the plane is per-

pendicular to the axis CFC", then the section,

such as STU or PQR, is a circle.
IJe^nce

a

circle is a particular case of the ellipse.
^^ ^

(2) The plane may be parallelled -tangent
plane touching the cone along one of its

"
gen-

erating
"

lines as for example the plane of the
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curve DiAiDi' in the diagram is parallel to

the tangent plane touching the cone along the

generating line VS ; the curve is still confined

to one of the half-cones, but it is now not a
closed oval curve, it goes on endlessly as long
as the generating lines of the half-cone are

produced away from the vertex. Such a
conic section is called a<sarabola., /

(3) The plane may cut botlFtTie half-cones,
so that the complete curve consists of two
detached portions, or

" branches "
as they

are called, this case is illustrated by the two
branches G^^G-i and LiA^L^ which together
make up the curve. Neither branch is closed,

each of them spreading out endlessly as the

two half-cones are prolonged away from the

vertex. Such a conic section is called a

yperbolay
There are accordingly three types of conic

sections, namely, ellipses, parabolas, and

hyperbolas. It is easy to see that, in a sense,

parabolas are limiting cases lying between

ellipses and hyperbolas. They form a more

special sort and have to satisfy a more par-
ticular condition. These three names are

apparently due to Apollonius of Perga (born
about 260 B.C., and died about 200 B.C.), who
wrote a systematic treatise on conic sections

which remained the standard work till the

sixteenth century.
It must at once be apparent how awkward



and difficult the investigation of the proper-
ties of these curves must have been to the
Greek geometers. The curves are plane
curves, and yet their investigation involves

Fig. 16

the drawing in perspective of a solid figure.

Thus in the diagram given above we have

practically drawn no subsidiary lines and yet
the figure is sufficiently complicated. The
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curves are plane curves, and it seems obvious

that we should be able to define them without

going beyond the plane into a solid figure.
At the same time, just as in the

"
solid

"

Fig. 17

definition there is one uniform method of

definition namely, the section of a cone by
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a plane which yields three cases, so in any
"
plane

"
definition there also should be one

uniform method of procedure which falls into

three cases. Their shapes when drawn on
their planes are those of the curved lines in

the three figures 16, 17, and 18. The

points A and A' in the figures are called

Fig. 18

the vertices and the line AA' the major axis.

It will be noted that a parabola (cf. fig. 17)
has only one vertex. Apollonius proved

* that

the ratio of PM2 to AM.MA '

(i.e. -^^-\ AM.MA
remains constant both for the ellipse and the

hyperbola (figs. 16 and 18), and that the ratio

* Cf. Ball, loc. cit., for this account of Apollonius and
Pappus.
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of PM2 to AM is constant for the parabola
of fig. 17 ; and he bases most of his work
on this fact. We are evidently advancing
towards the desired uniform definition which
does not go out of the plane ; but have not

yet quite attained to uniformity.
In the diagrams 16 and 18, two points, S

and S', will be seen marked, and in diagram 17
one point, S. These are the foci of the curves,
and are points of the greatest importance.
Apollonius knew that for an ellipse the sum
of SP and S'P (i.e. SP+S'P) is constant as

P moves on the curve, and is equal to AA'.

Similarly for a hyperbola the difference S'P
S'P is constant, and equal to AA' when P is

on one branch, and the difference SP' S'P'

is constant and equal to AA' when P' is on
the other branch. But no corresponding
point seemed to exist for the parabola.

Finally 500 years later the last great Greek

geometer, Pappus of Alexandria, discovered

the final secret which completed this line of

thought. In the diagrams 16 and 18 will be
seen two lines,XN and X'N', and in diagram
17 the single line, XN. These are the direc-

trices of the curves, two each for the ellipse
and the hyperbola, and one for the parabola.
Each directrix corresponds to its nearer focus.

The characteristic property of a focus, S, and
its corresponding directrix, XN, for any one
of the three types of curve, is that the ratio
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(rrr>\
i.e. pr) is constant, where PN is

the perpendicular on the directrix fromP,
and P is any point on the curve. Here we
have finally found the desired property of the

curves which does not require us to leave

the plane, and is stated uniformly for all
OIT>

three curves. For ellipses the ratio* ^^ is lessPN
than 1, for parabolas it is equal to 1, and for

hyperbolas it is greater than 1.

When Pappus had finished his investiga-

tions, he must have felt that, apart from
minor extensions, the subject was practically
exhausted ; and if he could have foreseen

the history of science for more than a thousand

years, it would have confirmed his belief.

Yet in truth the really fruitful ideas in con-

nection with this branch of mathematics had
not yet been even touched on, and no one
had guessed their supremely important ap-

plications in nature. No more impressive

warning can be given to those who would
confine knowledge and research to what is

apparently useful, than the reflection that

conic sections were studied for eighteen hun-
dred years merely as an abstract science,

without a thought of any utility other than
to satisfy the craving for knowledge on the

part of mathematicians, and that then at the
end of this long period of abstract study, they

* Cf. Note B, p. 250.
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were found to be the necessary key with
which to attain the knowledge of one of the
most important laws of nature.

Meanwhile the entirely distinct study of

astronomy had been going forward. The

great Greek astronomer Ptolemy (died 168

A.D.) published his standard treatise on the

subject in the University of Alexandria, ex-

plaining the apparent motions among the

fixed stars of the sun and planets by the con-

ception of the earth at rest and the sun and
the planets circling round it. During the

next thirteen hundred years the number and
the accuracy of the astronomical observa-

tions increased, with the result that the de-

scription of the motions of the planets on

Ptolemy's hypothesis had to be made more
and more complicated. Copernicus (born
1473 A.D. and died 1543 A.D.) pointed out
that the motions of these heavenly bodies
could be explained in a simpler manner if the
sun were supposed to rest, and the earth and

planets were conceived as moving round it.

However, he still thought of these motions as

essentially circular, though modified by a set

of small corrections arbitrarily superimposed
on the primary circular motions. So the
matter stood when Kepler was born at Stutt-

gart in Germany in 1571 A.D. There were
two sciences, that of the geometry of conic
sections and that of astronomy, both of which
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had been studied from a remote antiquity
without a suspicion of any connection be-

tween the two. Kepler was an astronomer,
but he was also an able geometer, and on the

subject of conic sections had arrived at ideas

in advance of his time He is only one of

many examples of the falsity of the idea that
success in scientific research demands an ex-

clusive absorption in one narrow line of study.
Novel ideas are more apt to spring from
an unusual assortment of knowledge not

necessarily from vast knowledge, but from a

thorough conception of the methods and ideas

of distinct lines of thought. It will be re-

membered that Charles Darwin was helped
to arrive at his conception of the law of

evolution by reading Malthus' famous Essay
on Population, a work dealing with a dif-

ferent subject at least, as it was then

thought.
Kepler enunciated three laws of planetary

motion, the first two in 1609, and the third

ten years later. They are as follows :

(1) The orbits of the planets are ellipses,
the sun being in the focus.

(2) As a planet moves in its orbit, the
radius vector from the sun to the planet

sweeps out equal areas in equal times.

(3) The squares of the periodic times of the
several planets are proportional to the cubes
of their major axes.
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These laws proved to be only a stage to-

wards a more fundamental development of

ideas. Newton (born 1642 A.D. and died

1727 A.D.) conceived the idea of universal

gravitation, namely, that any two pieces of \

matter attract each other with a force pro-

portional to the product of their masses and
,

inversely proportional to the square of their

distance from each other. This sweeping
general law, coupled with the three laws of

motion which he put into their final general

shape, proved adequate to explain all astro-

nomical phenomena, including Kepler's laws,
and has formed the basis of modern physics.

Among other things he proved that comets

might move in very elongated ellipses, or in

parabolas, or in hyperbolas, which are nearly

parabolas. The comets which return such\
as Halley's comet must, of course, move in I

ellipses. But the essential step in the proof of

the law of gravitation, and even in the sug-

gestion of its initial conception, was the veri-

fication of Kepler's laws connecting the
motions of the planets with the theory of

conic sections.

From the seventeenth century onwards the
abstract theory of the curves has shared in

the double renaissance of geometry due to

the introduction of coordinate geometry and
of projective geometry. In pEpjeetuta-gee*
metry the fundamental ideas cluster round
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the consideration of sets (or pencils, as they
are called) of lines passing through a common
point (the vertex of the

"
pencil "). Now

(cf. fig. 19) if A, B, C, Z), be any four fixed

points on a conic section and P be a variable

point on the curve, the pencil of lines PA,

Fig. 19.

PB, PC, and PD, has a special property,
known as the constancy of its cross ratio. It

will suffice here to say that cross ratio is a
fundamental idea in projective geometry.
For projective geometry this is really the de-

finition of the curves, or some analogous pro-

perty which is really equivalent to it, It
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will be seen how far in the course of ages of

study we have drifted away from the old

original idea of the sections of a circular cone.

We know now that the Greeks had got hold
of a minor property of comparatively slight

importance ; though by some divine good
fortune the curves themselves deserved all

the attention which was paid to them. This

unimportance of the
'*
section

"
idea is now

marked in ordinary mathematical phrase-

ology by dropping the word from their

names. As often as not, they are now
named merely

"
conies

"
instead of

"
conic

sections."

Finally, we come back to the point at

which we left coordinate geometry in the last

chapter. We had asked what was the type
of loci corresponding to the general algebraic
form ax-\-by=c, and had found that it was
the class of straight lines in the plane. We
had seen that every straight line possesses an

equation of this form, and that every equation
of this form corresponds to a straight line.

We now wish to go on to the next general

type of algebraic forms. This is evidently
to be obtained by introducing terms involv-

ing x2 and xy and y2. Thus the new general
form must be written

x +2fy+c=0

What does this represent ? The answer is
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that (when it represents any locus) it always re-

presents a conic section, and, furthermore,
that the equation of every conic section can

always be put into this shape. The discrimi-

nation of the particular sorts of conies as given

by this form of equation is very easy. It en-

tirely depends upon the consideration of ab

h2 , where a, b, and h, are the
"
constants "

as

written above. If abh2 is a positive number,
the curve is an ellipse ; if abh2 ~0, the curve
is a parabola : and if abh2 is a negative
number, the curve is a hyperbola.

For example, put a =6=1, h=g=f=Q,
c= 4. We then get the equation x2 -\-y

2 4

=0. It is easy to prove that this is the equa-
tion of a circle, whose centre is at the origin,
and radius is 2 units of length. Now abh2

becomes 1x1 O2, that is, 1, and is therefore

positive. Hence the circle is a particular
case of an ellipse, as it ought to be. Genera-

lising, the equation of any circle can be

put into the form a(x
2
-\-y

2
} -\-2gcc -\-2fy+c=0.

Hence abh2 becomes a2 0, that is, a2,

which is necessarily positive. Accordingly
all circles satisfy the condition for ellipses.

The general form of the equation of a para-
bola is

so that the terms of the second degree, as
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they are called, can be written as a perfect

square. For squaring out, we get

dzx2 +2dexy+e2
y
2+2gx+2fy+c ;

so that by comparison a=d2
, h=de, b=ez

,

and therefore ab h2=d2e2 (de)
2 =0. Hence

the necessary condition is automatically satis-

fied. The equation 2xy 4=0, where a =b
=g=/=0, h=l, c= 4, represents a hyper-
bola. For the condition abh2 becomes

I2, that is, 1, which is negative.
The limitation, introduced by saying that,

when the general equation represents any locus,

it represents a conic section, is necessary, be-

cause some particular cases of the general

equation represent no real locus. For ex-

ample x2 -\-y
2+I=Q can be satisfied by no

real values of x and y. It is usual to say that

the locus is now one composed of imaginary
points. But this idea of imaginary points in

geometry is really one of great complexity,
which we will not now enter into.

Some exceptional cases are included in the

general form of the equation which may not

be immediately recognized as conic sections.

By properly choosing the constants the equa-
tion can be made to represent two straight
lines. Now two intersecting straight lines

may fairly be said to come under the Greek
idea of a conic section. For, by referring to
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the picture of the double cone above, it will

be seen that some planes through the vertex,

F, will cut the cone in a pair of straight lines

intersecting at V. The case of two parallel

straight lines can be included by considering
a circular cylinder as a particular case of a
cone. Then a plane, which cuts it and is

parallel to its axis, will cut it in two parallel

straight lines. Anyhow, whether or no the

ancient Greek would have allowed these

special cases to be called conic sections, they
are certainly included among the curves re-

presented by the general algebraic form of

the second degree. This fact is worth noting ;

for it is characteristic of modern mathematics
to include among general forms all sorts of

particular cases which would formerly have
received special treatment. This is due to

its pursuit of generality.



CHAPTER XI

FUNCTIONS

THE mathematical use of the term function

has been adopted also in common life. For

example,
" His temper is a function of his

digestion," uses the term exactly in this

mathematical sense. It means that a rule

can be assigned which will tell you what his

temper will be when you know how his

digestion is working. Thus the idea of a
"
function

"
is simple enough, we only have

to see how it is applied in mathematics to

variable numbers. Let us think first of some
concrete examples : If a train has been travel-

ling at the rate of twenty miles per hour, the

distance (s miles) gone after any number of

hours, say t, is given by s=20xt; and s is

called a function of t. Also 20 xt is thTTunc^
tion of t with which s is identical. If John
is one year older than Thomas, then, when
Thomas is at any age of x years, John's age
(y years) is given by y=x+I ; and y is a
function of #, namely, is the function x+\.

In these examples t and x are called the

145
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"
arguments

"
of the functions in which they

appear. Thus t is the argument of the func-
tion 20 xt, and x is the argument of the func-

tion #-{-1. If s=20xt, and t/=a?+l, tAen ^

and y are called the "values "
of the functions

20 xt and a?-f-l respectively.

Coming now to the general case, we can
define a function in mathematics as a corre-

lation between two variable numbers, called

respectively the argument and the value of

the function, such that whatever value be

assigned to the
"
argument of the function

"

the
"
value of the function

"
is definitely

(i.e. uniquely) determined. The converse

is not necessarily true, namely, that when
the value of the function is determined
the argument is also uniquely determined.

Other functions of the argument x are yx2
,

t/=2a?
2 -|-3#+l, y=x, y=log x, y=sin x. The

last two functions of this group will be

readily recognizable by those who understand
a little algebra and trigonometry. It is not

worth while to delay now for their explana-
tion, as they are merely quoted for the sake

of example.

Up to this point, though we have defined

what we mean by a function in general, we
have only mentioned a series of special func-

tions. But mathematics, true to its general
methods of procedure, symbolizes the general
idea of any function. It does this by writing
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f\x), /(#), g(x), <f>(x), etc., for any function of

x, where the argument x is placed in a bracket,
and some letter like F, /, g, <f>, etc., is prefixed
to the bracket to stand for the function.

This notation has its defects. Thus it obvi-

ously clashes with the convention that the

single letters are to represent variable num-
bers ; since here F, /, g, <, etc., prefixed to a
bracket stand for variable functions. It

would be easy to give examples in which we
can only trust to common sense and the con-

text to see what is meant. One way of

evading the confusion is by using Greek
letters (e.g. <f>

as above) for functions ; an-

other way is to keep to / and F (the initial

letter of function) for the functional letter,

and, if other variable functions have to be

symbolized, to take an adjacent letter like g.

With these explanations and cautions, we
write yf(x) t to denote that y is the value of

some undetermined function of the argument
x ; where f(x) may stand for anything such
as a?+l, x2 2#4-l, sin x, log x, or merely for

x itself. The essential point is that when x
is given, then y is thereby definitely deter-

mined. It is important to be quite clear as

to the generality of this idea. Thus in y=
f(x), we may determine, if we choose, f(x) to

mean that when x is an integer, f(x) is zero,
and when x has any other value, f(x) is 1.

Accordingly, putting t/ =/(#), with this choice



148 INTRODUCTION TO MATHEMATICS

for the meaning of /, y is either or 1 accord-

ing as the value of x is integral or otherwise.

Thus /(1)=0, /(2)=0, /()=!, /(V2)=l, and
so on. This choice for the meaning of f(x)

gives a perfectly good function of the argu-
ment x according to the general definition of

a function.

A function, which after all is only a sort

of correlation between two variables, is re-

presented like other correlations by a graph,
that is in effect by the methods of coordinate

geometry. For example, fig. 2 in Chapter II.

is the graph of the function - where v is the

argument and p the value of the function.

In this case the graph is only drawn for

positive values of v, which are the only values

possessing any meaning for the physical ap-

plication considered in that chapter. Again
in fig. 14 of Chapter IX. the whole length of

the line AB, unlimited in both directions, is

the graph of the function aj+l, where x is the

argument and y is the value of the function ;

and in the same figure the unlimited line

AiB is the graph of the function 1 x, and
the line LOL' is the graph of the function x,

x being the argument and y the value of the

function.

These functions, which are expressed by
simple algebraic formulae, are adapted for re-

presentation by graphs. But for some func-
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tions this representation would be very
misleading without a detailed explanation, or

might even be impossible. Thus, consider the
function mentioned above, which has the value
1 for all values of its argument x, except
those which are integral, e.g. except for #=0,
o:=l, #=2, etc., when it has the value 0.

Its appearance on a graph would be that of

the straight line ABA' drawn parallel to the

A'

I
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higher mathematics, but we need not concern
ourselves further about them here.

* The most important division between func-

tions is that between continuous and discon-

tinuous functions. A function is continuous
when its value only alters gradually for

gradual alterations of the argument, and is

discontinuous when it can alter its value by
sudden jumps. Thus the two functions #+1
and 1x, whose graphs are depicted as

straight lines in fig. 14 of Chapter IX., are con-

tinuous functions, and so is the function -,

depicted in Chapter II., if we only think of

positive values of v. But the function de-

picted in fig. 20 of this chapter is discontinuous

since at the values o?=l, x=2, etc., of its

argument, its value gives sudden jumps.
Let us think of some examples of functions

presented to us in nature, so as to get into

our heads the real bearing of continuity and

discontinuity. Consider a train in its journey
along a railway line, say from Euston Station,
the terminus in London of the London and
North-Western Railway. Along the line in

order lie the stations of Bletchley and Rugby.
Let t be the number of hours which the train

has been on its journey from Euston, and s be
the number of miles passed over. Then * is

a function of t, i.e. is the variable value

corresponding to the variable argument t.
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If we know the circumstances of the train's

run, we know s as soon as any special value

of t is given. Now, miracles apart, we may
confidently assume that s is a continuous

function of t. It is impossible to allow for

the contingency that we can trace the train

continuously from Euston to Bletchley, and
that then, without any intervening time, how-
ever short, it should appear at Rugby. The
idea is too fantastic to enter into our calcula-

tion : it contemplates possibilities not to be
found outside the Arabian Nights ; and even
in those tales sheer discontinuity of motion

hardly enters into the imagination, they do
not dare to tax our credulity with anything
more than very unusual speed. But unusual

speed is no contradiction to the great law of

continuity of motion which appears to hold
in nature. Thus light moves at the rate of

about 190,000 miles per second and comes to

us from the sun in seven or eight minutes ;

but, in spite of this speed, its distance travelled

is always a continuous function of the time.

It is not quite so obvious to us that the

velocity of a body is invariably a continuous
function of the time. Consider the train at

any time t : it is moving with some definite

velocity, say v miles per hour, where v is

zero when the train is at rest in a station and
is negative when the train is backing. Now
we readily allow that v cannot change its
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value suddenly for a big, heavy train. The
train certainly cannot be running at forty
miles per hour from 11.45 a.m. up to noon,
and then suddenly, without any lapse of time,
commence running at 50 miles per hour. We
at once admit that the change of velocity
will be a gradual process. But how about
sudden blows of adequate magnitude ? Sup-
pose two trains collide ; or, to take smaller

objects, suppose a man kicks a football. It

certainly appears to our sense as though the

football began suddenly to move. Thus, in

the case of velocity our senses do not revolt

at the idea of its being a discontinuous func-

tion of the time, as they did at the idea of the
train being instantaneously transported from

Bletchley to Rugby. As a matter of fact,

if the laws of motion, with their conception
of mass, are true, there is no such thing as

discontinuous velocity in nature. Anything
that appears to our senses as discontinuous

change of velocity must, according to them,
be considered to be a case of gradual change
which is too quick to be perceptible to us.

It would be rash, however, to rush into the

generalization that no discontinuous functions

are presented to us in nature. A man who,

trusting that the mean height of the land
above sea-level between London and Paris

was a continuous function of the distance

from London, walked at night on Shakes-



FUNCTIONS 153

peare's Cliff by Dover in contemplation of

the Milky Way, would be dead before he had
had time to rearrange his ideas as to the

necessity of caution in scientific conclusions.

It is very easy to find a discontinuous

function, even if we confine ourselves to the

simplest of the algebraic formulae. For ex-

ample, take the function y=-, which we
x

have already considered in the form p=->

where v was confined to positive values. But
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now let x have any value, positive or negative.
The graph of the function is exhibited in fig.

21. Suppose x to change continuously from
a large negative value through a numerically
decreasing set of negative values up to 0, and
thence through the series of increasing posi-
tive values. Accordingly, if a moving point,
M, represents x on XOX', M starts at the
extreme left of the axis XOX' and succes-

sively moves through MI, MZ, MZ, M*, etc.

The corresponding points on the function are

PI, P2, PS, P-i, etc. It is easy to see that

there is a point of discontinuity at #=0, i.e.

at the origin O. For the value of the function

on the negative (left) side of the origin be-

comes endlessly great, but negative, and the
function reappears on the positive (right)
side as endlessly great but positive. Hen.ce,
however small we take the length M2M3 ,

there is a finite jump between the values of

the function at M% andM3 . Indeed, this case

has the peculiarity that the smaller we take the

length between M% and MS, so long as they
enclose the origin, the bigger is the jump in

value of the function between them. This

graph brings out, what is also apparent in

fig. 20 of this chapter, that for many functions

the discontinuities only occur at isolated

points, so that by restricting the values of the

argument we obtain a continuous function for

these remaining values. Thus it is evident
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from fig. 21 that in y =-, if we keep to positivex
values only and exclude the origin, we obtain
a continuous function. Similarly the same
function, if we keep to negative values only,

excluding the origin, is continuous. Again
the function which is graphed in fig. 20 is con-

tinuous between B and Ci, and between C\
and 2, and between C% and C& and so on,

always in each case excluding the end points.
It is, however, easy to find functions such thaT?
their discontinuities occur at all points. For

j

example, consider a function /(#), such thaf^

when x is any fractional number /(#)=!, and
when x is any incommensurable number

/(#) =2. This function is discontinuous at all

points.

Finally, we will look a little more closely
at the definition of continuity given above.
We have said that a function is continuous
when its value only alters gradually for

gradual alterations of the argument, and is

discontinuous when it can alter its value by
sudden jumps. This is exactly the sort of

definition which satisfied our mathematical
i forefathers and no longer satisfies modern
.mathematicians. It is worth while to spend
ji
some time over it ; for when we understand
the modern objections to it, we shall have

:gone a long way towards the understanding
of the spirit of modern mathematics. The



156 INTRODUCTION TO MATHEMATICS

whole difference between the older and the
newer mathematics lies in the fact that vague
half-metaphorical terms like

"
gradually

"

are no longer tolerated in its exact statements.
Modern mathematics will only admit state-

ments and definitions and arguments which

exclusively employ the few simple ideas about
number and magnitude and variables on
which the science is founded. Of two num-
bers one can be greater or less than the
other ; and one can be such and such a multi-

ple of the other ; but there is no relation of
"
graduality

" between two numbers, and
hence the term is inadmissible. Now this

may seem at first sight to be great pedantry.
To this charge there are two answers. In
the first place, during the first half of the
nineteenth century it was found by some

great mathematicians, especially Abel in

Sweden, and Weierstrass in Germany, that

large parts of mathematics as enunciated in

the old happy-go-lucky manner were simply
wrong. Macaulay in his essay on Bacon
contrasts the certainty of mathematics with
the uncertainty of philosophy ; and by way
of a rhetorical example he says,

" There has
been no reaction against Taylor's theorem."
He could not have chosen a worse example.
For, without having made an examination of

English text-books on mathematics contem-

porary with the publication of this essay, the



FUNCTIONS 157

assumption is a fairly safe one that Taylor's
theorem was enunciated and proved wrongly
in every one of them. Accordingly, the

anxious precision of modern mathematics is

necessary for accuracy. In the second place
it is necessary for research. It makes for

clearness of thought, and thence for boldness

of thought and for fertility in trying new
combinations of ideas. When the initial

statements are vague and slipshod, at every

subsequent stage of thought common sense

has to step in to limit applications and to

explain meanings. Now in creative thought
common sense is a bad master. Its sole

criterion for judgment is that the new ideas

shall look like the old ones. In other words
it can only act by suppressing originality.
In working our way towards the precise

definition of continuity (as applied to func-

tions) let us consider more closely the state-

ment that there is no relation of "
graduality

"

between numbers. It may be asked, Cannot
one number be only slightly greater than
another number, or in other words, cannot
the difference between the two numbers be
small ? The whole point is that in the ab-

stract, apart from some arbitrarily assumed

application, there is no such thing as a great
or a small number. A million miles is a
small number of miles for an astronomer

investigating the fixed stars, but a million
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pounds is a large yearly income. Again, one-

quarter is a large fraction of one's income to

give away in charity, but is a small fraction

of it to retain for private use. Examples can
be accumulated indefinitely to show that

great or small in any absolute sense have no
abstract application to numbers. We can

say'bf two numbers that one is greater or
smaller than another, but not without speci-
fication of particular circumstances that any
one number is great or small. Our task

therefore is to define continuity without any
mention of a "

small
"

or
"
gradual

"
change

in value of the function.

In order to do this we will give names to

some ideas, which will also be useful when
we come to consider limits and the differential

calculus.

An "
interval

"
of values of the argument

a? of a function /(#) is all the values lying
between some two values of the argument.
For example, the interval between x=l and
#=2 consists of all the values which x can
take lying between 1 and 2, i.e. it consists of

all the real numbers between 1 and 2. But
the bounding numbers of an interval need
not be integers. An interval of values of the

argument contains a number a, when a is a

member of the interval. For example, the

interval between 1 and 2 contains f , f, ,
and

so on.
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A set of numbers approximates to a num-
ber a within a standard k, when the numerical
difference between a and every number of the

set is less than k. Here k is the
"
standard

of approximation." Thus the set of num-
bers 3, 4, 6, 8, approximates to the number
5 within the standard 4. In this case the
standard 4 is not the smallest which could

have been chosen, the set also approximates
to 5 within any of the standards 3-1 or 3 -01

or 3-001. Again, the numbers, 3-1, 3-141,

3-1415, 3-14159 approximate to 3-13102 with-

in the standard -032, and also within the
smaller standard -03103.

These two ideas of an interval and of

approximation to a number within a standard
are easy enough ; their only difficulty is that

they look rather trivial. But when combined
with the next idea, that of the

"
neighbour-

hood "
of a number, they form the foundation

of modern mathematical reasoning. What
do we mean by saying that something is true

for a function f(x) in the neighbourhood of

the value a of the argument x ? It is this

fundamental notion which we have now got to
make precise.
The values of a function f(x) are said to

possess a characteristic in the
"
neighbour-

hood of a " when some interval can be found,
which (i) contains the number a not as an

end-point, and (ii) is such that every value
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of the function for arguments, other than a,

lying within that interval possesses the char-
acteristic. The value /(a) of the function for

the argument a may or may not possess the
characteristic. Nothing is decided on this

point by statements about the neighbourhood
of a.

For example, suppose we take the particu-
lar function x2 . Now in the neighbourhood of

2, the values of x2 are less than 5. For we can
find an interval, e.g. from 1 to 2 f

l, which

(i) contains 2 not as an end-point, and (ii) is

such that, for values of x lying within it, x2

is less than 5.

Now, combining the preceding ideas we
know what is meant by saying that in the

neighbourhood of a the function f(x) approxi-
mates to c within the standard k. It means
that some interval can be found which (i)

includes a not as an end-point, and (ii) is such

that all values of /(#), where x lies in the inter-

val and is nota, differ fromc by less than k. For

example, in the neighbourhood of 2, the func-

tion i/x approximates to 1-41425 within the

standard '0001. This is true because the

square root of 1-99996164 is 1-4142 and the

square root of 2*00024449 is 1-4143 ; hence

for values of x lying in the interval

1-99996164 to 2-00024449, which contains 2

not as an end-point, the values of the function

<x all lie between 1-4142 and 1-4143, and
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they therefore all differ from 1 '41425 by less

than '0001. In this case we can, if we like,

fix a smaller standard of approximation,^
namely '000051 or -0000501. Again, to take
another example, in the neighbourhood of 2

the function x2 approximates to 4 within the

standard -5. For (1'9)
2 =3'61 and (2 1)2=

4*41, and thus the required interval 1*9 to

2'1, containing 2 not as an end-point, has

been found. This example brings out the

fact that statements about a function f(x) in

the neighbourhood of a number a are distinct

from statements about the value of f(x) when
x =a. The production of an interval, through-
out which the statement is true, is required.
Thus the mere fact that 22=4 does not by
itself justify us in saying that in the neigh-
bourhood of 2 the function x2 is equal to 4.

This statement would be untrue, because no
interval can be produced with the required

property. Also, the fact that 22=4 does not

by itself justify us in saying that in the

neighbourhood of 2 the function x2 approxi-
mates to 4 within the standard '5 ; although
as a matter of fact, the statement has just
been proved to be true.

If we understand the preceding ideas, we
understand the foundations of modern
mathematics. We shall recur to analogous
ideas in the chapter on Series, and again
in the chapter on the Differential Calculus.
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Meanwhile, we are now prepared to define
"
continuous functions." A function /(a?)

is
"
continuous

"
at a value a of its argu-

ment, when in the neighbourhood of a
its values approximate to /(a) (i.e. to its

value at a) within every standard of ap-

proximation.
This means that, whatever standard k be

chosen, in the neighbourhood of a j(x) ap-

proximates to /(a) within the standard k.

For example, x2 is continuous at the value 2

of its argument, #, because however k be
chosen we can always find an interval, which

(i) contains 2 not as an end-point, and (ii) is

such that the values of x2 for arguments lying
within it approximate to 4 (i.e. 22

)
within

the standard k. Thus, suppose we choose

the standard -1 ; now (1'999)
2 =3'996001,

and (2 -01 )
2=4*0401, and both these numbers

differ from 4 by less than *1. Hence, within

the interval 1-999 to 2 -01 the values of x2

approximate to 4 within the standard !.

Similarly an interval can be produced for any
other standard which we like to try.
Take the example of the railway train. Its

velocity is continuous as it passes the signal

box, if whatever velocity you like to assign

(say one-millionth of a mile per hour) an in-

terval of time can be found extending before

and after the instant of passing, such that at

all instants within it the train's velocity
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differs from that with which the train passed
the box by less than one-millionth of a mile

per hour ; and the same is true whatever
other velocity be mentioned in the place of

one-millionth of a mile per hour.



CHAPTER XII

PERIODICITY IN NATURE

THE whole life of Nature is dominated by
the existence of periodic events, that is, by
the existence of successive events so analogous
to each other that, without any straining of

language, they may be termed recurrences of

the same event. The rotation of the earth

produces the successive days. It is true that

each day is different from the preceding days,
however abstractly we define the meaning of

a day, so as to exclude casual phenomena.
But with a sufficiently abstract definition of

a day, the distinction in properties between
two days becomes faint and remote from

practical interest ; and each day may then
be conceived as a recurrence of the phenome-
non of one rotation of the earth. Again the

path of the earth round the sun leads to the

yearly recurrence of the seasons, and imposes
another periodicity on all the operations of

nature. Another less fundamental perio-

dicity is provided by the phases of the moon.
In modern civilized life, with its artificial light,

these phases are of slight importance, but in

164
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ancient times, in climates where the days are

burning and the skies clear, human life was

apparently largelyinfluencedbythe existenceof

moonlight. Accordingly our divisions into

weeks and months, with their religious associa-

tions, have spreadover the European racesfrom

Syria and Mesopotamia, though independent
observances following the moon's phases are

found amongst most nations. It is, however,

through the tides, and not through its phases
of light and darkness, that the moon's perio-

dicity has chiefly influenced the history of

the earth.

Our bodily life is essentially periodic.
It is dominated by the beatings of the

heart, and the recurrence of breathing.
The presupposition of periodicity is indeed
fundamental to our very conception of life.

We cannot imagine a course of nature in

which, as events progressed, we should be
unable to say :

"
This has happened before."

The whole conception of experience as a guide
to conduct would be absent. Men would

always find themselves in new situations

possessing no substratum of identity with

anything in past history. The very means of

measuring time as a quantity would be absent.

Events might still be recognized as occurring
in a series, so that some were earlier and
others later. But we now go beyond this

bare recognition. We can not only say that
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three events, A, B, C, occurred in this order,
so that A came before B, and B before C ;

but also we can say that the length of time
between the occurrences of A and B was
twice as long as that between B and C. Now,
quantity of time is essentially dependent on

observing the number of natural recurrences

which have intervened. We may say
that the length of time between A and B was
so many days, or so many months, or so

many years, according to the type of recur-

rence to which we wish to appeal. Indeed,
at the beginning of civilization, these three

modes of measuring time were really distinct.

It has been one of the first tasks of science

among civilized or semi-civilized nations, to

fuse them into one coherent measure. The
full extent of this task must be grasped. It

is necessary to determine, not merely what
number of days (e.g. 365 '25 . . .) go to some
one year, but also previously to determine that
the same number of days do go to the suc-

cessive years. We can imagine a world in

which periodicities exist, but such that no two
are coherent. In some years there might be
200 days and in others 350. The determina-
tion of the broad general consistency of the
more important periodicities was the first step
in natural science. This consistency arises

from no abstract intuitive law of thought ;

it is merely an observed fact of nature



PERIODICITY IN NATURE 167

guaranteed by experience. Indeed, so far is

it from being a necessary law, that it is not
even exactly true There are divergencies in

every case. For some instances these diver-

gencies are easily observed and are therefore

immediately apparent. In other cases it re-

quires the most refined observations and
astronomical accuracy to make them appar-
ent. Broadly speaking, all recurrences de-

pending on living beings, such as the beatings
of the heart, are subject in comparison with
other recurrences to rapid variations. The

great stable obvious recurrences stable in

the sense of mutually agreeing with great

accuracy are those depending on the motion
of the earth as a whole, and on similar motions
of the heavenly bodies.

We therefore assume that these astronomi-

cal recurrences mark out equal intervals of

time. But how are we to deal with their

discrepancies which the refined observations

of astronomy detect ? Apparently we are

reduced to the arbitrary assumption that one
or other of these sets of phenomena marks out

equal times e.g. that either all days are of

equal length, or that all years are of equal

length. This is not so : some assumptions
must be made, but the assumption which
underlies the whole procedure of the astrono-

mers in determining the measure of time is

that the laws of motion are exactly verified.



Before explaining how this is done, it is in-

teresting to observe that this relegation of

the determination of the measure of time to

the astronomers arises (as has been said) from
the stable consistency of the recurrences with
which they deal. If such a superior con-

sistency had been noted among the recur-

rences characteristic of the human body, we
should naturally have looked to the doctors

of medicine for the regulation of our clocks.

In considering how the laws of motion
come into the matter, note that two incon-

sistent modes of measuring time will yield
different variations of velocity to the same

body. For example, suppose we define an
hour as one twenty-fourth of a day, and take
the case of a train running uniformly for two
hours at the rate of twenty miles per hour.

Now take a grossly inconsistent measure of

time, and suppose that it makes the first hour
to be twice as long as the second hour. Then,

according to this other measure of duration,
the time of the train's run is divided into

two parts, during each of which it has tra-

versed the same distance, namely, twenty
miles ; but the duration of the first part is

twice as long as that of the second part.
Hence the velocity of the train has not been

uniform, and on the average the velocity

during the second period is twice that during
the first period. Thus the question as to
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whether the train has been running uniformly
or not entirely depends on the standard of

time which we adopt.
Now, for all ordinary purposes of life on the

earth, the various astronomical recurrences

may be looked on as absolutely consistent ;

and, furthermore assuming their consistency,
and thereby assuming the velocities and

changes of velocities possessed by bodies, we
find that the laws of motion, which have
been considered above, are almost exactly
verified. But only almost exactly when we
come to some of the astronomical phenomena.
We find, however, that by assuming slightly
different velocities for the rotations and
motions of the planets and stars, the laws
would be exactly verified. This assumption
is then made ; and we have, in fact thereby,
adopted a measure of time, which is indeed
defined by reference to the astronomical

phenomena, but not so as to be consistent

with the uniformity of any one of them. But
the broad fact remains that the uniform flow
of time on which so much is based, is itself

dependent on the observation of periodic
events.

Even phenomena, which on the surface

seem casual and exceptional, or, on the other

hand, maintain themselves with a uniform

persistency, may be due to the remote influ-

ence of periodicity. Take for example, the
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principle of resonance. Resonance arises

when two sets of connected circumstances
have the same periodicities. It is a dynami-
cal law that the small vibrations of all bodies

when left to themselves take place in definite

times characteristic of the body. Thus a

pendulum with a small swing always vibrates

in some definite time, characteristic of its shape
and distribution of weight and length. A more

complicated body may have many ways of

vibrating ; but each of its modes of vibration

will have its own peculiar
"
period." Those

periods of vibration of a body are called its
**
free

"
periods. Thus a pendulum has but

one period of vibration, while a suspension

bridge will have many. We get a musical

instrument, like a violin string, when the

periods of vibration are all simple submultiples
of the longest ; i.e. if t seconds be the longest

period, the others are \t, \t, and so on, where

any of these smaller periods may be absent.

Now, suppose we excite the vibrations of a

body by a cause which is itself periodic;

then, if the period of the cause is very nearly
that of one of the periods of the body, that

mode of vibration of the body is very violently
excited ; even although the magnitude of the

exciting cause is small. This phenomenon is

called
"
resonance." The general reason is

easy to understand. Any one wanting to

upset a rocking stone will push
"

in tune "
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with the oscillations of the stone, so as always
to secure a favourable moment for a push.
If the pushes are out of tune, some increase

the oscillations, but others check them. But
when they are in tune, after a time all the

pushes are favourable. The word "
reson-

ance " comes from considerations of sound :

but the phenomenon extends far beyond the

region of sound. The laws of absorption and
emission of light depend on it, the

"
tuning

"

of receivers for wireless telegraphy, the com-

parative importance of the influences of

planets on each other's motion, the danger
to a suspension bridge as troops march over
it in step, and the excessive vibration of some

ships under the rhythmical beat of their

machinery at certain speeds. This coinci-

dence of periodicities may produce steady
phenomena when there is a constant associ-

ation of the two periodic events, or it may
produce violent and sudden outbursts when
the association is fortuitous and temporary.

Again, the characteristic and constant

periods of vibration mentioned above are

the underlying causes of what appear to
us as steady excitements of our senses. We
work for hours in a steady light, or we listen

to a steady unvarying sound. But, if modern
science be correct, this steadiness has no

counterpart in nature. The steady light is

due to the impact on the eye of a countless
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number of periodic waves in a vibrating ether,
and the steady sound to similar waves in a

vibrating air. It is not our purpose here to

explain the theory of light or the theory of

sound. We have said enough to make it

evident that one of the first steps necessary
to make mathematics a fit instrument for the

investigation of Nature is that it should be
able to express the essential periodicity of

things. If we have grasped this, we can
understand the importance of the mathe-
matical conceptions which we have next to

consider, namely, periodic functions.



CHAPTER XIII

TRIGONOMETRY

TRIGONOMETRY did not take its rise from
the general consideration of the periodicity of

nature. In this respect its history is analo-

gous to that of conic sections, which also had
their origin in very particular ideas. Indeed,
a comparison of the histories of the two
sciences yields some very instructive analogies
and contrasts. Trigonometry, like conic sec-

tions, had its origin among the Greeks. Its

inventor was Hipparchus (born about 160

B.C.), a Greek astronomer, who made his

observations at Rhodes. His services to

astronomy were very great, and it left his

hands a truly scientific subject with important
results established, and the right method of

progress indicated. Perhaps the invention

of trigonometry was not the least of these

services to the main science of his study. The
next man who extended trigonometry was

Ptolemy, the great Alexandrian astronomer,
whom we have already mentioned. We now

173
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see at once the great contrast between conic
sections and trigonometry. The origin of

trigonometry was practical ; it was invented
because it was necessary for astronomical re-

search. The origin of conic sections was

purely theoretical. The only reason for its

initial study was the abstract interest of the
ideas involved. Characteristically enough
conic sections were invented about 150 years
earlier than trigonometry, during the very
best period of Greek thought. But the im-

portance of trigonometry, both to the theory
and the application of mathematics, is only
one of innumerable instances of the fruitful

ideas which the general science has gained
from its practical applications.
We will try and make clear to ourselves

what trigonometry is, and why it should be

generated by the scientific study of astronomy.
In the first place : What are the measure-
ments which can be made by an astronomer ?

They are measurements of time and measure-
ments of angles. The astronomer may adjust
a telescope (for it is easier to discuss the
familiar instrument of modern astronomers)
so that it can only turn about a fixed axis

pointing east and west ; the result is that
the telescope can only point to the south, with
a greater or less elevation of direction, or, if

turned round beyond the zenith, point to the

north. This is the transit instrument, the
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great instrument for the exact measurement
of the times at which stars are due south or

due north. But indirectly this instrument
measures angles. For when the time elapsed
between the transits of two stars has been

noted, by the assumption of the uniform
rotation of the earth, we obtain the angle

through which the earth has turned in that

period of time. Again, by other instruments,
the angle between two stars can be directly
measured. For if E is the eye of the astrono-

Fig. 22.

mer, and EA and EB are the directions in
which the stars are seen, it is easy to devise
instruments which shall measure the angle
AEB. Hence, when the astronomer is form-

ing a survey of the heavens, he is, in fact,

measuring angles so as to fix the relative
directions of the stars and planets at any in-

stant. Again, in the analogous problem of
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land-surveying, angles are the chief subject
of measurements. The direct measurements
of length are only rarely possible with any
accuracy ; rivers, houses, forests, mountains,
and general irregularities of ground all get in

the way. The survey of a whole country will

depend only on one or two direct measure-
ments of length, made with the greatest
elaboration in selected places like Salisbury
Plain. The main work of a survey is the
measurement of angles. For example, A, B,
and C will be conspicuous points in the dis-

Fig. 23.

trict surveyed, say the tops of church towers.

These points are visible each from the others.

Then it is a very simple matter at A to

measure the angle BAG, and at B to measure
the angle ABC, and at C to measure the angle
BCA. Theoretically, it is only necessary to

measure two of these angles ; for, by a well-

known proposition in geometry, the sum of

the three angles of a triangle amounts to two
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right-angles, so that when two of the angles
are known, the third can be deduced. It is

better, however, in practice to measure all

three, and then any small errors of observa-

tion can be checked. In the process of map-
making a country is completely covered with

triangles in this way. This process is called

triangulation, and is the fundamental process
in a survey.
Now, when all the angles of a triangle are

known, the shape of the triangle is known
that is, the shape as distinguished from the
size. We here come upon the great principle
of geometrical similarity. The idea is very
familiar to us in its practical applications.
We are all familiar with the idea of a plan
drawn to scale. Thus if the scale of a plan
be an inch to a yard, a length of three inches

in the plan means a length of three yards in

the original. Also the shapes depicted in the

plan are the shapes in the original, so that a

right-angle in the original appears as a right-

angle in the plan. Similarly in a map, which
is only a plan of a country, the proportions
of the lengths in the map are the proportions
of the distances between the places indicated,
and the directions in the map are the direc-

tions in the country. For example, if in the

map one place is north-north-west of the

other, so it is in reality ; that is to say, in a

map the angles are the same as in reality.
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Geometrical similarity may be defined thus :

Two figures are similar (i) if to any point
in one figure a point in the other figure

corresponds, so that to every line there is a

corresponding line, and to every angle a

corresponding angle, and (ii) if the lengths
of corresponding lines are in a fixed propor-
tion, and the magnitudes of corresponding
angles are the same. The fixed proportion
of the lengths of corresponding lines in a map
(or plan) and in the original is called the scale

of the map. The scale should always be
indicated on the margin of every map and

plan. It has already been pointed out that

two triangles whose angles are respectively

equal are similar. Thus, if the two triangles

6 E' C F

Fig. 24.

ABC and DEF have the angles at A and D
equal, and those at B and E, and those at C
and F, then DE is to AB in the same propor-
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tion as EF is to BC, and as FD is to CA.
But it is not true of other figures that simi-

larity is guaranteed by the mere equality of

angles. Take for example, the familiar cases

of a rectangle and a square. Let ABCD be
a square, and ABEF be a rectangle. Then
all the corresponding angles are equal. But

B

Fig. 25.

whereas the side AB of the square is equal to

the side AB of the rectangle, the side EC of

the square is about half the size of the side

BE of the rectangle. Hence it is not true
that the square ABCD is similar to the rect-

angle ABEF. This peculiar property of the

triangle, which is not shared by other recti-

linear figures, makes it the fundamental

figure in the theory of similarity. Hence in

surveys, triangulation is the fundamental

process ; and hence also arises the word "
tri-
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gonometry," derived from the two Greek
words trigonon a triangle and metria measure-
ment. The fundamental question from which

trigonometry arose is this : Given the magni-
tudes of the angles of a triangle, what can be
stated as to the relative magnitudes of the

sides. Note that we say
"

relative magnitudes
of the sides," since by the theory of similarity
it is only the proportions of the sides which
are known. In order to answer this ques-
tion, certain functions of the magnitudes of

an angle, considered as the argument, are in-

troduced. In their origin these functions

were got at by considering a right-angled tri-

angle, and the magnitude of the angle was
defined by the length of the arc of a circle.

In modern elementary books, the funda-
mental position of the arc of the circle as de-

fining the magnitude of the angle has been

pushed somewhat to the background, not to

the advantage either of theory or clearness

of explanation. It must first be noticed

that, in relation to similarity, the circle holds

the same fundamental position among curvi-

linear figures, as does the triangle among
rectilinear figures. Any two circles are simi-

lar figures ; they only differ in scale. The

lengths of the circumferences of two circles,

such as APA' and A-J*\A\ in the fig. 26 are

in proportion to the lengths of their radii.

Furthermore, if the two circles have the same
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centre 0, as do the two circles in fig. 26, then
the arcs AP and A\P\ intercepted by the

arms of any angle AOP, are also in propor-
tion to their radii. Hence the ratio of the

Fig. 26.

length of the arc AP to the length of the

arc A.P
radius OP, that is 7^= is a number which

radius OP
is quite independent of the length OP, and is

the same as thefraction -^ ^4- . This frac-
radms OPi

tion of
"
arc divided by radius

"
is the proper

theoretical way to measure the magnitude of
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an angle ; for it is dependent on no arbitrary
unit of length, and on no arbitrary way of

dividing up any arbitrarily assumed angle,
AP

such as a right-angle. Thus the fraction

represents the magnitude of the angle AOP.
Now draw PM perpendicularly to OA. Then
the Greek mathematicians called the line PM
the sine of the arc AP, and the line OM the
cosine of the arc AP. They were well aware
that the importance of the relations of these

various lines to each other was dependent on
the theory of similarity which we have just

expounded. But they did not make their

definitions express the properties which arise

from this theory. Also they had not in their

heads the modern general ideas respecting
functions as correlating pairs of variable num-
bers, nor in fact were they aware of any
modern conception of algebra and algebraic

analysis. Accordingly, it was natural to

them to think merely of the relations between
certain lines in a diagram. For us the case

is different : we wish to embody our more

powerful ideas.

Hence, in modern mathematics, instead

of considering the arc AP, we consider

AP
the fraction , which is a number the

same for all lengths of OP ; and, instead of

considering the lines PM and OM, we con-
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PM , OM , . ,

sider the fractions and -, which again

are numbers not dependent on the length of

OP, i.e. not dependent on the scale of our
PM

diagrams. Then we define the number

PA
to be the sine of the number -, and the

number =- to be the cosine of the number

PA
These fractional forms are clumsy to

AP
print ; so let us put u for the fraction

which represents the magnitude of the angle
PM

AOP, and put v for the fraction -, and w

OM
for the fraction - Then u, v, w, are num-

bers, and, since we are talking of any angle
AOP, they are variable numbers. But al

correlation exists between their magnitudes,!
so that when u (i.e. the angle AOP) is given,
the magnitudes of v and w are definitely deter-!

mined. Hence v and w are functions of the

argument u. We have called v the sine of

u, and w the cosine of u. We wish to adapt
the general functional notation y=f(x) to

these special cases : so in modern mathe-
matics we write sin for

"
/
" when we want to
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indicate the special function of
"

sine," and
"cos" for "/" when we want to indicate

the special function of "cosine." Thus, with

the above meanings for u, v, w, we get

v=sin u, and w=cos u,

where the brackets surrounding the x in /(#)

are omitted for the special functions. The

meaning of these functions sin and cos as

correlating the pairs of numbers u and v, and
u and w is, that the functional relations are to

be found by constructing (cf. fig. 26) an angle
AOP, whose measure " AP divided by OP "

is equal to u, and that then v is the number

given by
" PM divided by OP

" and w is the

number given by
" OM divided by OP."

It is evident that without some further defi-

nitions we shall get into difficulties when the

number u is taken too large. For then the arc

AP may be greater than one-quarter of the

circumference of the circle, and the point M
(cf. figs. 26 and 27) may fall between and A'
and not between O and A. Also P may be
below the line AOA' and not above it as in

fig. 26. In order to get over this difficulty
we have recourse to the ideas and conven-
tions of coordinate geometry in making our

complete definitions of the sine and cosine.

Let one arm OA of the angle be the axis

OX, and produce the axis backwards to
obtain its negative part OX'. Draw the
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other axis YOY' perpendicular to it. Let

any point P at a distance r from O have
coordinates x and y. These coordinates are

both positive in the first "quadrant" of

the plan, e.g. the coordinates x and y of

P in fig. 27. In the other quadrants, either

one or both of the coordinates are negative,
for example, x' and y for P', and x' and y'
for P", and x and y' for P'" in fig. 27, where
a?' and y' are both negative numbers. The

positive angle POA is the arc AP divided

by r, its sine is - and its cosine is -
; the posi-



tive angle AOP' is the arc ABP' divided by r,

its sine is - and cosine -
; the positive angle

AOP" is the arc ABA'P" divided by r, its

t/' x'
sine is - and its cosine is -

; the positive
r r

angle AOP'" is the arc ABA'B'P'" divided

w' ^E

by r, its sine is - and its cosine is -.
r r

But even now we have not gone far enough.
For suppose we choose t* to be a number
greater than the ratio of the whole circum-
ference of the circle to its radius. Owing to

the similarity of all circles this ratio is the
same for all circles. It is always denoted in

mathematics by the symbol 2ir
t where TT

is the Greek form of the letter p and its

name in the Greek alphabet is
"
pi." It can

be proved that TT is an incommensurable

number, and that therefore its value cannot
be expressed by any fraction, or by any
terminating or recurring decimal. Its value
to a few decimal places is 3-14159 ; for many
purposes a sufficiently accurate approximate

value is . Mathematicians can easily cal-
7

culate TT to any degree of accuracy required,

just as \/2 can be so calculated. Its value

has been actually given to 707 places of



TRIGONOMETRY 187

decimals. Such elaboration of calculation is

merely a curiosity, and of no practical or

theoretical interest. The accurate deter^
mination of TT is one of the two parts of

the famous problem of squaring the circle.

The other part of the problem is, by the
theoretical methods of pure geometry to

describe a straight line equal in length to the

circumference. Both parts of the problem
are now known to be impossible ; and the
insoluble problem has now lost all special

practical or theoretical interest, having be-
'

come absorbed in wider ideas.

After this digression on the value of TT, we
now return to the question of the general
definition of the magnitude of an angle, so as

to be able to produce an angle corresponding
to any value u. Suppose a moving point, Q,
to start from A on OX (cf . fig. 27), and to rotate

in the positive direction (anti-clockwise, in

the figure considered) round the circumference
of the circle for any number of times, finally

resting at any point, e.g. at P or P' or P" or

P"'. Then the total length of the curvilinear

circular path traversed, divided by the radius

of the circle, r, is the generalized definition of
(

a positive angle of any size. Let x, y be the
coordinates of the point in which the point Q
rests, i.e.in one of the four alternative positions
mentioned in fig. 27 ; x and y (as here used) will

either x and y, or x
r and y, or x' and t/', or x
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and y'. Then the sign of this generalized
a i

flfl

angle is - and its cosine is -. With these
r r

definitions the functional relations a=sin u
and ry=cos u, are at last defined for all posi-
tive real values of u. For negative values of

u we simply take rotation of Q in the opposite

(clockwise) direction ; but it is not worth our
while to elaborate further on this point, now
that the general method of procedure has

been explained.
These functions of sine and cosine, as thus

defined, enable us to deal with the problems
concerning the triangle from which Trigono-
metry took its rise. But we are now in a

position to relate Trigonometry to the wider
idea of Periodicity of which the importance
was explained in the last chapter. It is easy
to see that the functions sin u and cos u are

periodic functions of u. For consider the

position, P (in fig. 27), of a moving point, Q,
which has started from A and revolved round
the circle. This position, P, marks the angles
arc AP , , . arc AP ,

A
. arc AP-

, and 2 TT-\
---

, and 4 ir-\
--

,

Q Trt

and 6 TT+ , and so on indefinitely. Now,

all these angles have the same sine and cosine,

?/ 72

namely, and -. Hence it is easy to see that,
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if u be chosen to have any value, the argu-
ments u and 2 TT+U, and 4-77+ w, and 67r-fw,

and STT+U and so on indefinitely, have all the

same values for the corresponding sines and
cosines. In other words,

sn w=sn 2

=etc. ;

COS U= COS (27T+tt)=COS (47T+w)=COS
=etc.

This fact is expressed by saying that sin u and
cos u are periodic functions with their period

equal to 2?r.

The graph of the function t/=sin x (notice
that we now abandon v and u for the more
familiar y and x) is shown in fig. 28. We take

on the axis of x any arbitrary length at pleasure
to represent the number TT, and on the axis

of y any arbitrary length at pleasure to -repre-
sent the number 1. The numerical values of

the sine and cosine can never exceed unity.
The recurrence of the figure after periods of

2-7T will be noticed. This graph represents the

simplest style of periodic function, out of

which all others are constructed. The cosine

gives nothing fundamentally different from the

sine. For it is easy to prove that cos x=
rjf

sin (#+ -) ; hence it can be seen that the
it

graph of cos x is simply fig. 28 modified by
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drawing the axis of OF through the point

on OX marked -, instead of drawing it in

its actual position on the figure.
It is easy to construct a

'

sine
'

function in

Fig. 28.

which the period has any assigned value a.

For we have only to write

. 27TX

and then

sin
(27TX . _
l--\-2ir

[a
I . STHC1= sin .

d

Thus the period of this new function is now a.

Let us now give a general definition of what
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we mean by a periodic function. The function

/(a?) is periodic, with the period a, if (i) for any
value of x we have f(x)=f(x-{-a), and (ii) there

is no number b smaller than a such that for

any value of x, f(x)=f(x-}-b).
The second clause is put into the definition

because when we have sin- , it is not onlya

periodic in the period a, but also in the periods
2a and 3a, and so on ; this arises since

. 27r(#+3a) . /2-rrx ,

\ . 2irx
sin - !-'= sml--h67r 1 =sm- .

a \ a / a

So it is the smallest period which we want to

get hold of and call the period of the function.

The greater part of the abstract theory of

periodic functions and the whole of the appli-
cations of the theory to Physical Science are

dominated by an important theorem called

Fourier's Theorem ; namely that, if /(#) be a

periodic function with the period a and if f(x)
also satisfies certain conditions, which practic-

ally are always presupposed in functions sug-

gested by natural phenomena, then /(a?) can
be written as the sum of a set of terms in the
form

2TTX . \
,

. /47T
-f j

j
+c2 sin

\r

. iG-rrx
, \

in I--1-^3)
.

, ,+c3 sin I--1-^3)+ etc.
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In this formula CQ, GI, c%, 03, etc., and also

fit %> 3* etc., are constants, chosen so as to

suit the particular function. Again we have
to ask, How many terms have to be chosen ?

And here a new difficulty arises : for we can

prove that, though in some particular cases a
definite number will do, yet in general all we
can do is to approximate as closely as we like

to the value of the function by taking more
and more terms. This process of gradual
approximation brings us to the consideration

of the theory of infinite series, an essential

part of mathematical theory which we will

consider in the next chapter.
The above method of expressing a periodic

function as a sum of sines is called the
"
har-

monic analysis
"

of the function. For ex-

ample, at any point on the sea coast the tides

rise and fall periodically. Thus at a point
near the Straits of Dover there will be two

daily tides due to the rotation of the earth.

The daily rise and fall of the tides are com-

plicated by the fact that there are two tidal

waves, one coming up the English Channel,
and the other which has swept round the

North of Scotland, and has then come south-

ward down the North Sea. Again some high
tides are higher than others : this is due to

the fact that the Sun has also a tide-generating
influence as well as the Moon. In this way
monthly and other periods are introduced.
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We leave out of account the exceptional in-

fluence of winds which cannot be foreseen.

The general problem of the harmonic analysis
of the tides is to find sets of terms like those
in the expression on page 191 above, such that

each set will give with approximate accuracy
the contribution of the tide-generating influ-

ences of one "
period

" to the height of the
tide at any instant. The argument x will

therefore be the time reckoned from any con-

venient commencement.

Again, the motion of vibration of a violin

string is submitted to a similar harmonic

analysis, and so are the vibrations of the

ether and the air, corresponding respectively
to waves of light and waves of sound. We
are here in the presence of one of the funda-
mental processes of mathematical physics

namely, nothing less than its general method
of dealing with the great natural fact of

Periodicity.



CHAPTER XIV

SERIES

No part of Mathematics suffers more from
the triviality of its initial presentation to

beginners than the great subject of series.

Two minor examples of series, namely arith-

metic and geometric series, are considered ;

these examples are important because they
are the simplest examples of an important
general theory. But the general ideas are

never disclosed ; and thus the examples,which

exemplify nothing, are reduced to silly triviali-

ties.

The general mathematical idea of a series

is that of a set of things ranged in order, that

is, in sequence; This meaning is accurately

represented in the common use of the term.

Consider for example, the series of English
Prime Ministers during the nineteenth century,

arranged in the order of their first tenure of

that office within the century. The series

commences with William Pitt, and ends with

Lord Rosebery, who, appropriately enough,
is the biographer of the first member. We

194
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might have considered other serial orders for

the arrangement of these men ; for example,
according to their height or their weight.
These other suggested orders strike us as

trivial in connection with Prime Ministers,
and would not naturally occur to the mind ;

but abstractly they are just as good orders

as any other. When one order among terms
is very much more important or more obvious
than other orders, it is often spoken of as the

order of those terms. Thus the order of 'the

integers would always be taken to mean their

order as arranged in order of magnitude. But
of course there is an indefinite number -of

other ways of arranging them. When the

number of things considered is finite, the

number of ways of arranging them in order is

called the number of their permutations. The
number of permutations of a set of n things,
where n is some finite integer, is

nx(n l)x(n 2)x(n 3)x...x4x3x2xl

that is to say, it is the product of the first n

integers ; this product is so important in

mathematics that a special symbolism, is used
for it, and it is always written

' n 1

'

Thus,
21=2x1=2, and 3!=3x2xl=6, and 4!=4
x3x2xl=24, and 51=5x4x3x2x1=120.
As n increases, the value of n \ increases very
quickly ; thus 100 ! is a hundred times as

large as 99 I
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It is easy to verify in the case of small

values of n that n ! is the number of ways
of arranging n things in order. Thus con-
sider two things a and b ; these are capable
of the two orders ab and ba, and 2 ! =2.

Again, take three things a, b, and c ; these
are capable of the six orders, abc, acb, bac,

bca, cab, cbat and 31=6. Similarly for the

twenty-four orders in which four things a, b,

c, and d, can be arranged.
When we come to the infinite sets of things
like the sets of all the integers, or all the

fractions, or all the real numbers for instance

we come at once upon the complications of

the theory of order-types. This subject was
touched upon in Chapter VI. in considering
the possible orders of the integers, and of the

fractions, and of the real numbers. The
whole question of order-types forms a com-

paratively new branch of mathematics of

great importance. We shall not consider it

any further. All the infinite series which we
consider now are of the same order-type as

the integers arranged in ascending order of

magnitude, namely, with a first term, and
such that each term has a couple of next-

door neighbours, one on either side, with the

exception of the first term which has, of

course, only one next-door neighbour. Thus,
if m be any integer (not zero), there will be

always an mth term. A series with a finite
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number of terms (say n terms) has the same
characteristics as far as next-door neighbours
are concerned as an infinite series ; it only
differs from infinite series in having a last

term, namely, the nth.

The important thing to do with a series of

numbers using for the future
"

series
"

in

the restricted sense which has just been men-
tioned is to add its successive terms to-

gether.
Thus if u\, Uz, 3, . . . un . . . are respec-

tively the 1st, 2nd, 3rd, 4th, . . . nth, . . .

terms of a series of numbers, we form succes-

sively the series u\ t u\+uz, ^1+^2+^3, i-f-

W2+W3+W4, and so on ; thus the sum of the

1st n terms may be written.

If the series has only a finite number of

terms, we come at last in this way to the

sum of the whole series of terms. But, if

the series has an infinite number of terms,
this process of successively forming the sums
of the terms never terminates ; and in this

sense there is no such thing as the sum of an
infinite series.

But why is it important successively to add
the terms of a series in this way ? The answer
is that we are here symbolizing the funda-

mental mental process of approximation.
This is a process which has significance far
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beyond the regions of mathematics. Our
limited intellects cannot deal with compli-
cated material all at once, and our method of

arrangement is that of approximation. The
statesman in framing his speech puts the

dominating issues first and lets the details

fall naturally into their subordinate places.
There is, of course, the converse artistic

method of preparing the imagination by the

presentation of subordinate or special details,

and then gradually rising to a crisis. In
either way the process is one of gradual sum-
mation of effects ; and this is exactly what
is done by the successive summation of the

terms of a series. Our ordinary method of

stating numbers is such a process of gradual
summation, at least, in the case of large
numbers. Thus 568,213 presents itself to

the mind as

500,000 +60,000 +8,000 +200 +10+3

In the case of decimal fractions this is so

more avowedly. Thus 3-14159 is

Also, 3 and 3+^, and 3+^+^, and

~t~Ttfff ~^T?nn7
anc* ^+T1

o'i'T^4~T7nn7~l~TTmn7 are

successive approximations to the complete re-

sult 3-14159. If we read 568,218 backwards
from right to left, starting with the 3 units,
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we read it in the artistic way, gradually pre-

paring the mind for the crisis of 500,000.
The ordinary process of numerical multi-

plication proceeds by means of the summa-
tion of a series, Consider the computation

342
658

2736
1710

2052

225036

Hence the three lines to be added form a

series of which the first term is the upper
line. This series follows the artistic method
of presenting the most important term last,

not from any feeling for art, but because of

the convenience gained by keeping a firm

hold on the units' place, thus enabling us to

omit some O's, formally necessary.
But when we approximate by gradually

adding the successive terms of an infinite

series, what are we approximating to ? The

difficulty is that the series has no " sum "
in

the straightforward sense of the word, because

the operation of adding together its terms

can never be completed. The answer is that

we are approximating to the limit of the

summation of the series, and we must now
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proceed to explain what the
"
limit

"
of a

series is.

The summation of a series approximates to

a limit when the sum of any number of its

terms, provided the number be large enough,
is as nearly equal to the limit as you care to

approach. But this description of the mean-

ing of approximating to a limit evidently will

not stand the vigorous scrutiny of modern
mathematics. What is meant by large

enough, and by nearly equal, and by care to

approach ? All these vague phrases must be

explained in terms of the simple abstract

ideas which alone are admitted into pure
mathematics.
Let the successive terms of the series be

i, U2, Ws, W4, . . . , un) etc., so that un is the

nth term of the series. Also let sn be the

sum of the 1st n terms, whatever n may be.

So that

and

Then the terms $1, $2, $3, . . . $n , . . . form
a new series, and the formation of this series

is the process of summation of the original
series. Then the

"
approximation

"
of the

summation of the original series to a
"
limit

"

means the
"
approximation of the terms of

this new series to a limit." And we have
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now to explain what we mean by the approxi-
mation to a limit of the terms of a series.

Now, remembering the definition (given in

chapter XII.) of a standard of approxima-
tion, the idea of a limit means this : I is

the limit of the terms of the series si, $2,

*s sn , . . ., if, corresponding to each
real number k, taken as a standard of

approximation, a term sn of the series can
be found so that all succeeding terms (i.e.

sn+i> *n+2> e*c-) approximate to I within

that standard of approximation. If another
smaller standard k1 be chosen, the term
sn may be too early in the series, and a
later term 8m with the above property will

then be found.

If this property holds, it is evident that as

you go along to series Si, $2, $3, . . ., sn , . . .

from left to right, after a time you come to

terms all of which are nearer to I than any
number which you may like to assign. In
other words you approximate to I as closely
as you like. The close connection of this

definition of the limit of a series with the

definition of a continuous function given in

chapter XI. will be immediately perceived.
Then coming back to the original series MI,

t*2 3, . . . un , . . ., the limit of the terms of

the series Si, $2, $3, . . , 9 sn , . . ., is called

the " sum to infinity
"

of the original series.

But it is evident that this use of the word
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" sum "

is very artificial, and we must not
assume the analogous properties to those of

the ordinary sum of a finite number of terms
without some special investigation.
Let us look at an example of a " sum to

infinity." Consider the recurring decimal
1111. . . . This decimal is merely a way of

symbolizing the "sum to infinity
"
of the series

1, -01, -001, -0001, etc. The correspond-
ing series found by summation is si = -I t

$2 ='11, 53 ='111, 54 =-1111, etc. The limit

of the terms of this series is ; this is easy to

see by simple division, for

^=a+7V=-ll+^=.lll+ irzrVir= etc.

Hence, if T
3
T is given (the k of the definition),

1 and all succeeding terms differ from by
less than T

8
T ; if -^^ is given (another choice

for the k of the definition), -111 and all

succeeding terms differ from by less than

YflVo-; and so on, whatever choice for k be
made.

It is evident that nothing that has been
said gives the slightest idea as to how the
"sum to infinity" of a series is to be
found. We have merely stated the condi-

tions which such a number is to satisfy. In-

deed, a general method for finding in all

cases the sum to infinity of a series is intrinsic-

ally out of the question, for the simple reason
that such a "

sum," as here defined, does not

always exist. Series which possess a sum to
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infinity are called convergent, and those which
do not possess a sum to infinity are called

divergent.
An obvious example of a divergent series

is 1, 2, 3, . . ., n . . . i.e. the series of in-

tegers in their order of magnitude. For
whatever number I you try to take as its

sum to infinity, and whatever standard ol

approximation A; you choose, by taking

enough terms of the series you can always
make their sum differ from / by more than
k. Again, another example of a divergent
series is 1, 1, 1, etc., i.e. the series ol

which each term is equal to 1. Then the

sum of n terms is n, and this sum grows
without limit as n increases. Again, another

example of a divergent series is 1, 1, 1, 1,

1, 1, etc., i.e. the series in which the terms
are alternately 1 and 1. The sum of an
odd number of terms is 1, and of an even
number of terms is 0. Hence the terms of

the series $1, $2, $3, . . . sn , . . . do not ap-

proximate to a limit, although they do not
increase without limit.

It is tempting to suppose that the condi-

tion for MI, 2 unt . . . to have a sum
to infinity is that un should decrease inde-

finitely as n increases. Mathematics would
be a much easier science than it is, if this

were the case. Unfortunately the supposition
is not true.
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For example the series

111 1

7 2' 3' 4'
' ' *' n

' * '

is divergent. It is easy to see that this is

the case ; for consider the sum of n terms

ginning at the (n+1)"
1 term. These n

4-Uterms are --,
-

-,
-

-, ...--: there
w+l'n+2'n+3' 2n

are n of them and is the least among them.
SBO

Hence their sum is greater than n times

, i.e. is greater than -. Now, without

altering the sum to infinity, if it exist, we
can add together neighbouring terms, and
obtain the series

that is, by what has been said above, a series

whose terms after the 2nd are greater than

those of the series,

1, i, i, I, etc.,

where all the terms after the first are equal.
But this series is divergent. Hence the

original series is divergent.*
This question of divergency shows how

careful we must be in arguing from the pro-
* Cf. Note C, p. 251.
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perties of the sum of a finite number of terms
to that of the sum of an infinite series. For
the most elementary property of a finite

number of terms is that of course they
possess a sum : but even this fundamental

property is not necessarily possessed by an
infinite series. This caution merely states

that we must not be misled by the suggestion
of the technical term " sum of an infinite

series." It is usual to indicate the sum of

the infinite series

t*i, u2 , t*s, . . . t*n . . . . by

We now pass on to a generalization of the

idea of a series, which mathematics, true to

its method, makes by use of the variable.

Hitherto, we have only contemplated series

in which each definite term was a definite

number. But equally well we can generalize,
and make each term to be some mathematical

expression containing a variable x. Thus
we may consider the series 1, x, x2, x*t . . .,

xnt . . ., and the series

x2- x3 x"
*' '

8"
..... 7P

' ' '

In order to symbolize the general idea of

any such function, conceive of a function of

x, fn(x) say, which involves in its formation
a variable integer n, then, by giving n the
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values 1, 2, 3, etc., in succession, we get the

series

/i(), h(x), h(x), . . ., fn(x), . . .

Such a series may be convergent for some
values of as and divergent for others. It is,

in fact, rather rare to find a series involving a
variable x which is convergent for all values

of x, at least in any particular instance it is

very unsafe to assume that this is the case.

For example, let us examine the simplest of

all instances, namely, the
"
geometrical

"

series

1, x, x2, #3, . . ., xn, . . .

The sum of n terms is given by

Now multiply both sides by x and we get

Now subtract the last line from the upper
line and we get

sn(l x) =sn xsn=1 aP+\

and hence (if x be not equal to 1)

1 gn+l . 1 xn+l^ __n I-x
~
l^x~T^x

Now if x be numerically less than 1, for suffi-

jn+l
ciently large values of n,

-- is always numeri-
L X J
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cally less than k, however k be chosen. Thus,
if x be numerically less than 1, the series 1, #,

#2, . . . tc
n
, . . . is convergent, and -- is its

1 x

limit. This statement is symbolized by

. . ., (-1 <x
A X

But if x' is numerically greater than 1, or

numerically equal to 1, the series is divergent.
In other words, if x lie between 1 and -f-l>

the series is convergent ; but if x be equal
to 1 or -}-l, or if a; lie outside the interval

1 to +1, then the series is divergent. Thus
the series is convergent at all

"
points

"

within the interval 1 to +i> exclusive of

the end points.
At this stage of our enquiry another ques-

tion arises. Suppose that the series

is convergent for all values of x lying within
the interval a to b, i.e. the series is convergent
for any value of x which is greater than a and
less than b. Also, suppose we want to be
sure that in approximating to the limit we
add together enough terms to come within
some standard of approximation k. Can we
always state some number of terms, say n,
such that, if we take n or more terms to
form the sum, then whatever value x has
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within the interval we have satisfied the

desired standard of approximation?
Sometimes we can and sometimes we can-

not do this for each value of k. When we
can, the series is called uniformly convergent

throughout the interval, and when we cannot
do so, the series is called non-uniformly con-

vergent throughout the interval. It makes
a great difference to the properties of a series

whether it is or is not uniformly convergent
through an interval. Let us illustrate the

matter by the simplest example and the

simplest numbers.
Consider the geometric series

It is convergent throughout the interval

1 to +1, excluding the end values aj= 1.

But it is not uniformly convergent through-
out this interval. For if sn(x) be the sum of

n terms, we have proved that the difference

1 #n+1
between sn(x) and the limit -- is --

1 a? \x
Now suppose n be any given number of terms,

say 20, and let k be any assigned standard
of approximation, say -001. Then, by taking
$ near enough to + 1 or near enough to 1,

#21
we can make the numerical value of -- toIa?
be greater than -001. Thus 20 terms will
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not do iver the whole interval, though it is

more thai enough over some parts of it.

The sane reasoning can be applied what-
ever other number we take instead of 20,
and whatever standard of approximation in-

stead of -001. Hence the geometric series

I-\-x+x2 -{-x
3
-t . . . +xtt+ ... is non-uni-

formly convergent over its whole interval of

convergence 1 to -f-1. But if we take any
smaller interval lying at both ends within the

interval 1 to +1, the geometric series is

uniformly convergent within it. For ex-

ample, take the interval to +^. Then any

value for n which makes -- numerically
1 a;

less than k at these limits for x also serves

for all values of x between these limits, since

it so happens that diminishes in numeri-
1 x

cal value as x diminishes in numerical value.

For example, take k =-001; then, putting
x= vzr . we find :

forn=l,
1 X 1 Tr
-rn+1 / 1 \3

for n=2, -=^r =ir^= -00111 . . .,
1 X 1 rfr

for n= 3, 5 = J^ =WV7= '000111 . . .,

1 x 1 yir

Thus three terms will do for the whole in-
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terval, though, of course, for some parts of

the interval it is more than is necessary.
Notice that, because l+a4-#2

-}- . . .

+ n+ ... is convergent (though not uni-

formly) throughout the interva
1

1 to +1,
for each value of x in the internal some num-
ber of terms n can be found wMch will satisfy
a desired standard of approximation ; but,
as we take x nearer and nearer to either end
value +1 or 1, larger and larger values of

n have to be employed.
It is curious that this important distinction

between uniform and non-uniform conver-

gence was not published till 1847 by Stokes

afterwards, Sir George Stokes and later, in-

dependently in 1850 by Seidel, a German
mathematician.
The critical points, where non-uniform con-

vergence comes in, are not necessarily at the

limits of the interval throughout which con-

vergence holds. This is a speciality belonging
to the geometric series.

In the case of the geometric series l+#
. . +xn+ . . ., a simple algebraic

expression -- can be given for its limit in
1 x

its interval of convergence. But this is not

always the case. Often we can prove a series

to be convergent within a certain interval,

though we know nothing more about its

limit except that it is the limit of the series.
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But this is a very good way of defining a
function ; viz. as the limit of an infinite con-

vergent series, and is, in fact, the way in which
most functions are, or ought to be, defined.

Thus, the most important series in ele-

mentary analysis is

where n \ has the meaning defined earlier in

this chapter. This series can be proved to

be absolutely convergent for all values of ,

and to be uniformly convergent within any
interval which we like to take. Hence it has
all the comfortable mathematical properties
which a series should have. It is called the

exponential series. Denote its sum to infinity

by exp#. Thus, by definition,

expa? is called the exponential function.
It is fairly easy to prove, with a little

knowledge of elementary mathematics, that

(expa?)x(expt/)=exp(#+t/) . . .(A)

In other words that
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This property (A) is an example of what
is called an addition-theorem. IVhen any
function [say /(#)] has been denned, the first

thing we do is to try to express /(#+*/) in terms
of known functions of x only, and known func-

tions of y only. If we can do so, the result

is called an addition-theorem. Addition-

theorems play a great part in mathematical

analysis. Thus the addition-theorem for the

sine is given by

sin (x+y)sin x cos y+cos x sin y,

and for the cosine by

cos (x+y) =cos x cos y sin x sin y.

As a matter of fact the best ways of de-

fining sin x and cos x are not by the elaborate

geometrical methods of the previous chapter,
but as the limits respectively of the series

x3 x5 x

so that we put
x3

. x5 x7 .

sin *=*--+___ +etc

, X2
,
X4 XQ

,cos *=!-_+- +etc
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These definitions are equivalent to the geo-
metrical definitions, and both series can be
proved to be convergent for all values of a?,

and uniformly convergent throughout any
interval. These series for sine and cosine
have a general likeness to the exponential
series given above. They are, indeed, intim-

ately connected with it by means of the

theory of imaginary numbers explained in

Chapters VII. and VIII.

X. A *
Fig. 29.

The graph of the exponential function is

given in fig. 29. It cuts the axis OF at the

point t/=l, as evidently it ought to do, since

when x=Q every term of the series except
the first is zero. The importance of the ex-

ponential function is that it represents any
changing physical quantity whose rate of

increase at any instant is a uniform per-

centage of its value at that instant. For
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example, the above graph represents the size

at any time of a population with a uniform

birth-rate, a uniform death-rate, and no emi-

gration, where the x corresponds to the time
reckoned from any convenient day, and the

y represents the population to the proper
scale. The scale must be such that OA re-

presents the population at the date which is

taken as the origin. But we have here come

upon the idea of
"
rates of increase

" which
is the topic for the next chapter.
An important function nearly allied to the

exponential function is found by putting aj
2

for x as the argument in the exponential func-

tion. We thus get exp. ( x2 ). The graph
t/=exp. ( x2) is given in fig. 30.

Fig. 30.

The curve, which is something like a cocked

hat, is called the curve of normal error. Its
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corresponding function is vitally important
to the theory of statistics, and tells us in

many cases the sort of deviations from the

average results which we are to expect.
Another important function is found by

combining the exponential function with the

sine, in this way :

y=exp( car) xsin
2772!

Fig. 31.

Its graph is given in fig. 31. The points

A, B, O, C, D, E, F, are placed at equal in-

tervals \p, and an unending series of them
should be drawn forwards and backwards.

This function represents the dying away of

vibrations under the influence of friction or of
"
damping

"
forces. Apart from the friction,

the vibrations would be periodic, with a

period p ; but the influence of the friction
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makes the extent of each vibration smaller

than that of the preceding by a constant per-

centage of that extent. This combination
of the idea of

"
periodicity

"
(which requires

the sine or cosine for its symbolism) and of
"
constant percentage

"
(which requires the

exponential function for its symbolism) is the

reason for the form of this function, namely,
its form as a product of a sine-function into

an exponential function.



CHAPTER XV

THE DIFFERENTIAL CALCULUS

THE invention of the differential calculus

marks a crisis in the history of mathematics,
The progress of science is divided between

periods characterized by a slow accumulation
of ideas and periods, when, owing to the new
material for thought thus patiently collected,
some genius by the invention of a new method
or a new point of view, suddenly transforms
the whole subject on to a higher level. These
contrasted periods in the progress of the

history of thought are compared by Shelley
to the formation of an avalanche.

The sun-awakened avalanche ! whose mass,
Thrioe sifted by the storm, had gathered there
Flake after flake, in heaven-defying minds
As thought by thought is piled, till some great truth
Is loosened, and the nations echo round,

The comparison will bear some pressing.
The final burst of sunshine which awakens
the avalanche is not necessarily beyond com-

parison in magnitude with the other powers
of nature which have presided over its slow

217



218 INTRODUCTION TO MATHEMATICS

formation. The same is true in science. The
genius who has the good fortune to produce
the final idea which transforms a whole

region of thought, does not necessarily excel

all his predecessors who have worked at the

preliminary formation of ideas. In consider-

ing the history of science, it is both silly and

ungrateful to confine our admiration with a

gaping wonder to those men who have made
the final advances towards a new epoch

In the particular instance before us, the

subject had a long history before it as-

sumed its final form at the hands of its

two inventors. There are some traces of its

methods even among the Greek mathe-

maticians, and finally, just before the actual

production of the subject, Fermat (born 1601

A.D., and died 1665 A.D.), a distinguished
French mathematician, had so improved on

previous ideas that the subject was all but
created by him. Fermat, also, may lay
claim to be the joint inventor of coordinate

geometry in company with his contemporary
and countryman, Descartes. It was, in fact,

Descartes from whom the world of science

received the new ideas, but Fermat had cer-

tainly arrived at them independently.
We need not, however, stint our admira-

tion either for Newton or for Leibniz. New-
ton was a mathematician and a student of

physical science, Leibniz was a mathema-
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tician and a philosopher, and each of them
in his own department of thought was one of

the greatest men of genius that the world
has known. The joint invention was the

occasion of an unfortunate and not very
creditable dispute. Newton was using the

methods of Fluxions, as he called the subject,
in 1666, and employed it in the composition
of his Principia, although in the work as

printed any special algebraic notation is

avoided. But he did not print a direct state-

ment of his method till 1693. Leibniz pub-
lished his first statement in 1684. He was
accused by Newton's friends of having got
it from a MS. by Newton, which he had been
shown privately. Leibniz also accused New-
ton of having plagiarized from him. There
is now not very much doubt but that both
should have the credit of being independent
discoverers. The subject had arrived at a

stage in which it was ripe for discovery, and
there is nothing surprising in the fact that

two such able men should have independ-
ently hit upon it.

These joint discoveries are quite common
in science. Discoveries are not in general
made before they have been led up to

by the previous trend of thought, and by
that time many minds are in hot pursuit
of the important idea. If we merely keep
to discoveries in which Englishmen are



220 INTRODUCTION TO MATHEMATICS

concerned, the simultaneous enunciation of

the law of natural selection by Darwin and

Wallace, and the simultaneous discovery of

Neptune by Adams and the French astrono-

mer, Leverrier, at once occur to the mind.
The disputes, as to whom the credit ought to

be given, are often influenced by an unworthy
spirit of nationalism. The really inspiring
reflection suggested by the history of mathe-
matics is the unity of thought and interest

among men of so manyepochs, somanynations,
and so many races. Indians, Egyptians,

Assyrians, Greeks, Arabs, Italians, French-

men, Germans, Englishmen,and Russians,have
all made essential contributions to the pro-

gress of the science. Assuredly the jealous
exaltation of the contribution of one particu-
lar nation is not to show the larger spirit.

The importance of the differential calculus

arises from the very nature of the subject,
which is the systematic consideration of the

rates of increase of functions. This idea is

immediately presented to us by the study of

nature ; velocity is the rate of increase of the

distance travelled, and acceleration is the

rate of increase of velocity. Thus the funda-

mental idea of change, which is at the basis of

our whole perception of phenomena, immedi-

ately suggests the enquiry as to the rate of

change. The familiar terms of
"
quickly

"

and "
slowly

"
gain their meaning from a tacit
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reference to rates of change. Thus the differ-

ential calculus is concerned with the very

key of the position from which mathematics
can be successfully applied to the explanation
of the course of nature.

This idea of the rate of change was certainly
in Newton's mind, and was embodied in the

o T ft

Fig. 32.

language in which he explained the subject.
It may be doubted, however, whether this

point of view, derived from natural phenomena,
was ever much in the minds of the preced-

ing mathematicians who prepared the subject
for its birth. They were concerned with the

more abstract problems of drawing tangents
to curves, of finding the lengths of curves, and
of finding the areas enclosed by curves. The
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last two problems, of the rectification of curves
and the quadrature of curves as they are

named, belong to the Integral Calculus, which
is however involved in the same general subject
as the Differential Calculus.

The introduction of coordinate geometry
makes the two points of view coalesce. For

(cf. fig. 32) let AQP be any curved line and let

PT be the tangent at the point P on it. Let
the axes of coordinates be OX and OY ; and
let y =/(#) be the equation to the curve, so that

OM=x, and PM=y. Now let Q be any
moving point on the curve, with coordinates

#i */i> ; then yi =f(xi). And let Q' be the point
on the tangent with the same abscissa x\ ;

suppose that the coordinates of Q' are x\ and

y'. Now suppose that N moves along the

axis OX from left to right with a uniform

velocity ; then it is easy to see that the ordi-

nate y' of the point Q' on the tangent TP also

increases uniformly as Q' moves along the

tangent in a corresponding way. In fact it is

easy to see that the ratio of the rate of increase

of Q'N to the rate of increase of ON is in the

ratio of Q'N to TN, which is the same at all

points of the straight line. But the rate of

increase of Q2V, which is the rate of increase

of /(#i), varies from point to point of the curve

so long as it is not straight. As Q passes

through the point P, the rate of increase of

/ (#1) (where x\ coincides with x for the moment)



is the same as the rate of increase of y' on the

tangent at P. Hence, if we have a general
method of determining the rate of increase

of a function /(#) of a variable x, we can
determine the slope of the tangent at any
point (x, y,) on a curve, and thence can
draw it. Thus the problems of drawing tan-

gents to a curve, and of determining the
rates of increase of a function are really
identical.

It will be noticed that, as in the cases of

Conic Sections and Trigonometry, the more
artificial of the two points of view is the one
in which the subject took its rise. The really
fundamental aspect of the science only rose

into prominence comparatively late in the

day. It is a well-founded historical genera-
lization, that the last thing to be discovered

in any science is what the science is really
about. Men go on groping for centuries,

guided merely by a dim instinct and a puzzled
curiosity, till at last

" some great truth is

loosened."
Let us take some special cases in order to

familiarize ourselves with the sort of ideas

which we want to make precise. A train is

in motion how shall we determine its velocity
at some instant, let us say, at noon ? We can
take an interval of five minutes which includes

noon, and measure how far the train has gone
in that period. Suppose we find it to be five
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miles, we may then conclude that the train

was running at the rate of 60 miles per hour.

But five miles is a long distance, and we
cannot be sure that just at noon the train

was moving at this pace. At noon it may
have been running 70 miles per hour, and
afterwards the break may have been put on.

It will be safer to work with a smaller interval,

say one minute, which includes noon, and to

measure the space traversed during that

period. But for some purposes greater

accuracy may be required, and one minute

may be too long. In practice, the necessary

inaccuracy of our measurements makes it

useless to take too small a period for measure-
ment. But in theory the smaller the period
the better, and we are tempted to say that

for ideal accuracy an infinitely small period
is required. The older mathematicians, in

particular Leibniz, were not only tempted,
but yielded to the temptation, and did say
it. Even now it is a useful fashion of speech,

provided that we know how to interpret it

into the language of common sense. It is

curious that, in his exposition of the founda-

tions of the calculus, Newton, the natural

scientist, is much more philosophical than

Leibniz, the philosopher, and on the other

hand, Leibniz provided the admirable nota-

tion which has been so essential for the pro-

gress of the subject.



Now take another example within the region
of pure mathematics. Let us proceed to find

the rate of increase of the function x2 for

any value x of its argument. We have not

yet really denned what we mean by rate of

increase. We will try and grasp its meaning
in relation to this particular case. When x
increases to x +h, the function x2 increases to

(x-\-h)
2

; so that the total increase has been

(x-\-h)
2 x2 , due to an increase h in the argu-

ment. Hence throughout the interval x to

(x+h) the average increase of the function per

, . (x+h)2-x2
unit increase of the argument is - ^~- .

But

(x+h)2=x2+2hx+h*t

and therefore

nm ,,

Thus 2x+h is the average increase of the

function x2 per unit increase in the argument,
the average being taken over by the interval

x to x+h. But 2x+h depends on h, the size

of the interval. We shall evidently get what
we want, namely the rate of increase at the

value x of the argument, by diminishing h

more and more. Hence in the limit when h
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has decreased indefinitely, we say that 2x is the
rate of increase of x2 at the value x of the

argument.
Here again we are apparently driven up

against the idea of infinitely small quantities
in the use of the words "

in the limit when h
has decreased indefinitely." Leibniz held that,

mysterious as it may sound, there were actu-

ally existing such things as infinitely small

quantities, and of course infinitely small num-
bers corresponding to them. Newton's lan-

guage and ideas were more on the modern
lines ; but he did not succeed in explaining
the matter with such explicitness so as to be

evidently doing more than explain Leibniz's

ideas in rather indirect language. The real

explanation of the subject was first given by
Weierstrass and the Berlin School of mathe-
maticians about the middle of the nineteenth

century. But between Leibniz and Weier-
strass a copious literature, both mathematical
and philosophical, had grown up round these

mysterious infinitely small quantities which
mathematics had discovered and philosophy
proceeded to explain. Some philosophers,

Bishop Berkeley, for instance, correctly denied
the validity of the whole idea, though for

reasons other than those indicated here. But
the curious fact remained that, despite all

criticisms of the foundations of the subject,
there could be no doubt but that the mathe-
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matical procedure was substantially right. In

fact, the subjectwas right, though the explana-
tions were wrong. It is this possibility of

being right, albeit with entirely wrong ex-

planations as to what is being done, that so

often makes external criticism that is so far

as it is meant to stop the pursuit of a method

singularly barren and futile in the progress of

science. The instinct of trained observers,
and their sense of curiosity, due to the fact

that they are obviously getting at something,
are far safer guides. Anyhow the general
effect of the success of the Differential Calculus

was to generate a large amount of bad philo-

sophy, centring round the idea of the in-

finitely small. The relics of this verbiage
may still be found in the explanations of

many elementary mathematical text-books on
the Differential Calculus. It is a safe rule to

apply that, when a mathematical or philoso-

phical author writes with a misty profundity,
he is talking nonsense.

Newton would have phrased the question
by saying that, as h approaches zero, in the
limit 2x+h becomes 2#. It is our task so to

explain this statement as to show that it does
not in reality covertly assume the existence

of Leibniz's infinitely small quantities. In

reading over the Newtonian method of state-

ment, it is tempting to seek simplicity by
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saying that 2x+h is 2x, when h is zero. But
this will not do ; for it thereby abolishes the

interval from as to x+h, over which the average
increase was calculated. The problem is, how
to keep an interval of length h over which to

calculate the average increase, and at the same
time to treat h as if it were zero. Newton did
this by the conception of a limit, and we now
proceed to give Weiers trass's explanation of

its real meaning.
In the first place notice that, in discussing

2x +h, we have been considering x as fixed in

value and h as varying. In other words x
has been treated as a "

constant "
variable,

or parameter, as explained in Chapter IX. ;

and we have really been considering 2x+h as

a function of the argument h. Hence we can

generalize the question on hand, and ask
what we mean by saying that the function

/(/&) tends to the limit I, say, as its argument
h tends to the value zero. But again we shall

see that the special value zero for the argument
does not belong to the essence of the subject ;

and again we generalize still further, and ask,
what we mean by saying that the function f(h)
tends to the limit I as h tends to the value a.

Now, according to the Weierstrassian ex-

planation the whole idea of h tending to the

value , though it gives a sort of metaphorical
picture of what we are driving at, is really off

the point entirely. Indeed it is fairly obvious



that, as long as we retain anything like "A
tending to a," as a fundamental idea, we are

really in the clutches of the infinitely small ;

for we imply the notion of h being infinitely
near to a. This is just what we want to get
rid of.

Accordingly, we shall yet again restate our

phrase to be explained, and ask what we
mean by saying that the limit of the function

f(h) at a is I.

The limit of /(/) at a is a property of the

neighbourhood of a, where "
neighbourhood

"

is used in the sense defined in Chapter XI.

during the discussion of the continuity of

functions. The value of the function f(h) at

a is /(a) ; but the limit is distinct in idea

from the value, and may be different from

it, and may exist when the value has not
been defined. We shall also use the term
"
standard of approximation

"
in the sense

in which it is defined in Chapter XI. In

fact, in the definition of
"
continuity

"
given

towards the end of that chapter we have

practically defined a limit. The definition of

a limit is :

A function /(#) has the limit I at a value
a of its argument a?, when in the neighbour-
hood of a its values approximate to I within

every standard of approximation.
Compare this definition with that already

given for continuity, namely :
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A function f(x) is continuous at a value a
of its argument, when in the neighbourhood
of a its values approximate to its value at a
within every standard of approximation.

It is at once evident that a function is con-

tinuous at a when (i) it possesses a limit at a,

and (ii) that limit is equal to its value at a.

Thus the illustrations of continuity which
have been given at the end of Chapter XI. are

illustrations of the idea of a limit, namely,
they were all directed to proving that /(a)
was the limit of /(#) at a for the functions

considered and the value of a considered. It

is really more instructive to consider the

limit at a point where a function is not con-

tinuous. For example, consider the function

of which the graph is given in fig. 20 of Chap-
ter XI. This function /(#) is denned to have
the value 1 for all values of the argument
except the integers 0, 1, 2, 3, etc., and for these

integral values it has the value 0. Now let

us think of its limit when x=3. We notice
that in the definition of the limit the value
of the function at a (in this case, a =3) is ex-

cluded. But, excluding /(3), the values of

/(#), when on lies within any interval which

(i) contains 3 not as an end-point, and (ii)

does not extend so far as 2 and 4, are all

equal to 1 ; and hence these values approxi-
mate to 1 within every standard of approxi-
mation. Hence 1 is the limit of /(#) at the
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value 3 of the argument x, but by definition

/(3)=0.
This is an instance of a function which

possesses both a value and a limit at the

value 3 of the argument, but the value is not

equal to the limit. At the end of Chapter
XI. the function x2 was considered at the

value 2 of the argument. Its value at 2 is 22,

i.e. 4, and it was proved that its limit is also

4. Thus here we have a function with a
value and a limit which are equal.

Finally we come to the case which is essen-

tially important for our purposes, namely, to

a function which possesses a limit, but no
defined value at a certain value of its argu-
ment. We need not go far to look for

2di
such a function, -- will serve our purpose.x

Now in any mathematical book, we might

2x
find the equation, - =2, written without

x

hesitation or comment. But there is a diffi-

culty in this ; for when x is zero, = -
; and

x

- has no defined meaning. Thus the value

2#
of the function - - at xQ has no defined

x
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meaning. But for every other value of x,

O/V|

the value of the function is 2. Thus the
x

2/p
limit of at xQ is 2, and it has no value

x

x2
at x=0. Similarly the limit of at xa is

a whatever a may be, so that the limit of

a?2 a?
2

at 0=0 is 0. But the value of at x=0
x x

takes the form -, which has no denned

#2
meaning. Thus the function - - has a limit

x

but no value at 0.

We now come back to the problem from
which we started this discussion on the nature

of a limit. How are we going to define the

rate of increase of the function x2 at any
value x of its argument. Our answer is that

this rate of increase is the limit of the func-

(x -\-Tl\Z_ /r;2

tion v ^ ' at the value zero for its

argument h. (Note that x is here a "
con-

stant.") Let us see how this answer works
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in the light of our definition of a limit. We
have

(a?+A)
2-a2

_2/kc+A
2 _h(2x+h)

h h h

Now in finding the limit of ^
,

' at the

value of the argument h, the value (if any)
of the function at h=Q is excluded. But for

all values of h, except A=0, we can divide

through by h. Thus the limit of at

h=0 is the same as that of 2x+h at h=0.
Now, whatever standard of approximation k
we choose to take, by considering the interval

from \k to +\k we see that, for values of

h which fall within it, 2x+h differs from 2x

by less than \k, that is by less than k. This
is true for any standard k. Hence in the neigh-
bourhood of the value for /, 2x-\-h approxi-
mates to 2x within every standard of approxi-
mation, and therefore 2x is the limit of 2x+h
at h=0. Hence by what has been said above

2x is the limit of ;
- at the value
n

for h. It follows, therefore, that 2x is what
we have called the rate of increase of x2 at

the value x of the argument. Thus this

method conducts us to the same rate of in-
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crease for x2 as did the Leibnizian way of

making h grow
"

infinitely small."

The more abstract terms "
differential co-

efficient," or
"
derived function," are gener-

ally used for what we have hitherto called the
"
rate of increase

"
of a function. The

general definition is as follows : the differ-

ential coefficient of the function f(x) is the

limit, if it exist, of the function

of the argument h at the value of its argu-
ment.
How have we, by this definition and the

subsidiary definition of a limit, really managed
to avoid the notion of

"
infinitely small num-

bers
" which so worried our mathematical

forefathers ? For them the difficulty arose

because on the one hand they had to use an
interval x to x+h over which to calculate

the average increase, and, on the other hand,

they finally wanted to put h=0. The result

was they seemed to be landed into the notion

of an existent interval of zero size. Now
how do we avoid this difficulty ? In this

way we use the notion that corresponding
to any standard of approximation, some in-

terval with such and such properties can be
found. The difference is that we have

grasped the importance of the notion of
"
the

variable," and they had not done so. Thus,
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at the end of our exposition of the essential

notions of mathematical analysis, we are led

back to the ideas with which in Chapter II.

we commenced our enquiry that in mathe-
matics the fundamentally important ideas

are those of
" some things

" and **

any
things.'?



CHAPTER XVI

GEOMETRY

GEOMETRY, like the rest of mathematics, is

abstract. In it the properties of the shapes
and relative positions of things are studied.

But we do not need to consider who is observ-

ing the things, or whether he becomes ac-

quainted with them by sight or touch or

hearing. In short, we ignore all particular
sensations. Furthermore, particular things
such as the Houses of Parliament, or the
terrestrial globe are ignored. Every pro-

position refers to any things with such and
such geometrical properties. Of course it

helps our imagination to look at particular

examples of spheres and cones and triangles
and squares. But the propositions do not

merely apply to the actual figures printed in

the book, but to any such figures.
Thus geometry, like algebra, is dominated

by the ideas of
"
any

" and " some "
things.

Also, in the same way it studies the inter-

relations of sets of things. For example, con-

sider any two triangles ABC and DEF.
236
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What relations must exist between some of

the parts of these triangles, in order that the

triangles may be in all respects equal ? This
is one of the first investigations undertaken
in all elementary geometries. It is a study

a c E f

Fig. 33.

of a certain set of possible correlations be-

tween the two triangles. The answer is that

the triangles are in all respects equal, if :

Either, (a) Two sides of the one and the in-

cluded angle are respectively equal to two
sides of the other and the included angle :

Or, (b) Two angles of the one and the side

joining them are respectively equal to two

angles of the other and the side joining them :

Or, (c) Three sides of the one are respect-

tively equal to three sides of the other.

This answer at once suggests a further en-

quiry. What is the nature of the correlation

between the triangles, when the three angles
of the one are respectively equal to the three

angles of the other ? This further investiga-
tion leads us on to the whole theory of simi-
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larity (cf. Chapter XIII.), which is another

type of correlation.

Again, to take another example, consider

the internal structure of the triangle ABC.
Its sides and angles are inter-related the

greater angle is opposite to the greater side,

and the base angles of an isosceles triangle
are equal. If we proceed to trigonometry
this correlation receives a more exact deter-

mination in the familiar shape

sin A sin B sin C

a? = &2_j_ C2 _ 2bccosA, with two similar

formulae.

Also there is the still simpler correlation

between the angles of the triangle, namely,
that their sum is equal to two right angles ;

and between the three sides, namely, that the

sum of the lengths of any two is greater than
the length of the third

Thus the true method to study geometry is

to think of interesting simple figures, such as

the triangle, the parallelogram, and the circle,

and to investigate the correlations between
their various parts. The geometer has in his

mind not a detached proposition, but a figure
with its various parts mutually inter-depend-
ent. Just as in algebra, he generalizes the

triangle into the polygon, and the side into
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the conic section. Or, pursuing a converse

route, he classifies triangles according as they
are equilateral, isosceles, or scalene, and

polygons according to their number of sides,

and conic sections according as they are hy-
perbolas, ellipses, or parabolas.
The preceding examples illustrate how the

fundamental ideas of geometry are exactly
the same as those of algebra ; except that

algebra deals with numbers and geometry
with lines, angles, areas, and other geo-
metrical entities. This fundamental identity
is one of the reasons why so many geometrical
truths can be put into an algebraic dress.

Thus if A, B, and C are the numbers of degrees

respectively in the angles of the triangle ABC,
the correlation between the angles is repre-
sented by the equation

and if a, b, c are the number of feet respectively
in the three sides, the correlation between the
sides is represented by a <(6+c, b <(c-f a,

c </*+&. Also the trigonometrical formulae

quoted above are other examples of the same
fact. Thus the notion of the variable and
the correlation of variables is just as essential

in geometry as it is in algebra.
But the parallelism between geometry and

algebra can be pushed still further, owing to

the fact that lengths, areas, volumes, and
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angles are all measurable ; so that, for exam-

ple, the size of any length can be determined

by the number (not necessarily integral) of

times which it contains some arbitrarily known
unit, and similarly for areas, volumes, and

angles. The trigonometrical formulae, given
above, are examples of this fact. But it re-

ceives its crowning application in analytical

geometry. This great subject is often mis-

named as Analytical Conic Sections, thereby
fixing attention on merely one of its sub-

divisions. It is as though the great science

of Anthropology were named the Study of

Noses, owing to the fact that noses are a

prominent part of the human body.
Though the mathematical procedures in

geometry and algebra are in essence identical

and intertwined in their development, there

is necessarily a fundamental distinction be-

tween the properties of space and the proper-
ties of number in fact all the essential differ-

ence between space and number. The "
spaci-

ness
"

of space and the
"
numerosity

"
of

number are essentially different things, and
must be directly apprehended. None of the

applications of algebra to geometry or of

geometry to algebra go any step on the road
to obliterate this vital distinction.

One very marked difference between space
and number is that the former seems to be so

much less abstract and fundamental than the
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latter. The number of the archangels can be
counted just because they are things. When
we once know that their names are Raphael,
Gabriel, and Michael, and that these distinct

names represent distinct beings, we know with-

out further question that there are three of

them. All the subtleties in the world about
the nature of angelic existences cannot alter

this fact, granting the premisses.
But we are still quite in the dark as to their

relation to space. Do they exist in space at

all ? Perhaps it is equally nonsense to say
that they are here, or there, or anywhere, or

everywhere. Their existence may simply have
no relation to localities in space. According-
ly, while numbers must apply to all things,

space need not do so.

The perception of the locality of things
would appear to accompany, or be involved
in many, or all, of our sensations. It is in-

dependent of any particular sensation in the
sense that it accompanies many sensations.

But it is a special peculiarity of the things
which we apprehend by our sensations. The
direct apprehension of what we mean by the

positions of things in respect to each other
is a thing sui generis, just as are the appre-
hensions of sounds, colours, tastes, and smells.

At first sight therefore it would appear that

mathematics, in so far as it includes geometry
in its scope, is not abstract in the sense in
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which abstractness is ascribed to it in

Chapter I.

This, however, is a mistake ; the truth being
that the

"
spaciness

"
of space does not enter

into our geometrical reasoning at all. It

enters into the geometrical intuitions of

mathematicians in ways personal and peculiar
to each individual. But what enter into the

reasoning are merely certain properties of

things in space, or of things forming space,
which properties are completely abstract in

the sense in which abstract was denned in

Chapter I.; these properties do not involve

any peculiar space-apprehension or space-
intuition or space-sensation. They are on

exactly the same basis as the mathematical

properties of number. Thus the space-intui-
tion which is so essential an aid to the study
of geometry is logically irrelevant : it does
not enter into the premisses when they are

properly stated, nor into any step of the rea-

soning. It has the practical importance of an

example, which is essential for the stimulation

of our thoughts. Examples are equally neces-

sary to stimulate our thoughts on number.
When we think of

" two " and "
three

" we
see strokes in a row, or balls in a heap, or

some other physical aggregation of particular

things. The peculiarity of geometry is the

fixity and overwhelming importance of the

one particular example which occurs to our
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minds. The abstract logical form of the

propositions when fully stated is,
"

If any
collections of things have such and such
abstract properties, they also have such and
such other abstract properties.'-' But what

appears before the mind's eye is a collection

of points, lines, surfaces, and volumes in the

space : this example inevitably appears, and
is the sole example which lends to the propo-
sition its interest. However, for all its over-

whelming importance, it is but an example.
Geometry, viewed as a mathematical science,

is a division of the more general science of

order. It may be called the science of dimen-
sional order ; the qualification

"
dimensional

"

has been introduced because the limitations,
which reduce it to only a part of the general
science of order, are such as to produce the

regular relations of straight lines to planes,
and of planes to the whole of space.

It is easy to understand the practical im-

portance of space in the formation of the
scientific conception of an external physical
world. On the one hand our space-percep-
tions are intertwined in our various sensations

and connect them together. We normally
judge that we touch an object in the same

place as we see it ; and even in abnormal
cases we touch it in the same space as we see

it, and this is the real fundamental fact which
ties together our various sensations. Accord-
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ingly, the space perceptions are in a sense the
common part of our sensations. Again it

happens that the abstract properties of space
form a large part of whatever is of spatial
interest. It is not too much to say that to

every property of space there corresponds an
abstract mathematical statement. To take
the most unfavourable instance, a curve may
have a special beauty of shape : but to this

shape there will correspond some abstract

mathematical properties which go with this

shape and no others.

Thus to sum up : (1) the properties of space
which are investigated in geometry, like those

of number, are properties belonging to things
as things, and without special reference to

any particular mode of apprehension : (2)

Space-perception accompanies our sensations,

perhaps all of them, certainly many ; but it

does not seem to be a necessary quality of

things that they should all exist in one space
or in any space.



CHAPTER XVII

QUANTITY

IN the previous chapter we pointed out
that lengths are measurable in terms of some
unit length, areas in term of a unit area, and
volumes in terms of a unit volume.
When we have a set of things such as

lengths which are measurable in terms of any
one of them, we say that they are quantities
of the same kind. Thus lengths are quantities
of the same kind, so are areas, and so are

volumes. But an area is not a quantity of

the same kind as a length, nor is it of the
same kind as a volume. Let us think a little

more on what is meant by being measurable,

taking lengths as an example.
Lengths are measured by the foot-rule. By

transporting the foot-rule from place to place
we judge of the equality of lengths. Again,
three adjacent lengths, each of one foot, form
one whole length of three feet. Thus to

measure lengths we have to determine the

equality of lengths and the addition of lengths.
When some test has been applied, such as the

transporting of a foot-rule, we say that the

lengths are equal ; and when some process

245



has been applied, so as to secure lengths being
contiguous and not overlapping, we say that
the lengths have been added to form one
whole length. But we cannot arbitrarily take

any test as the test of equality and any
process as the process of addition. The re-

sults of operations of addition and of judg-
ments of equality must be in accordance with
certain preconceived conditions. For exam-

ple, the addition of two greater lengths must

yield a length greater than that yielded by
the addition of two smaller lengths. These

preconceived conditions when accurately for-

mulated may be called axioms of quantity.
The only question as to their truth or falsehood

which can arise is whether, when the axioms
are satisfied, we necessarily get what ordinary
people call quantities. If we do not, then
the name " axioms of quantity

"
is ill-judged

that is all.

These axioms of quantity are entirely ab-

stract, just as are the mathematical properties
of space. They are the same for all quantities,
and they presuppose no special mode of per-

ception. The ideas associated with the notion
of quantity are the means by which a con-

tinuum like a line, an area, or a volume can
be split up into definite parts. Then these

parts are counted ; so that numbers can be
used to determine the exact properties of a
continuous whole.
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Our perception of the flow of time and of

the succession of events is a chief example
of the application of these ideas of quantity.
We measure time (as has been said in con-

sidering periodicity) by the repetition of

similar events the burning of successive

inches of a uniform candle, the rotation of

the earth relatively to the fixed stars, the

rotation of the hands of a clock are all ex-

amples of such repetitions. Events of these

types take the place of the foot-rule in rela-

tion to lengths. It is not necessary to assume
that events of any one of these types are

exactly equal in duration at each recurrence.

What is necessary is that a rule should be
known which will enable us to express the

relative durations of, say, two examples of

some type. For example, we may if we like

suppose that the rate of the earth's rotation

is decreasing, so that each day is longer than
the preceding by some minute fraction of a
second. Such a rule enables us to compare
the length of any day with that of any other

day. But what is essential is that one series

of repetitions, such as successive days, should
be taken as the standard series ; and, if the
various events of that series are not taken as

of equal duration, that a rule should be
stated which regulates the duration to be

assigned to each day in terms of the duration
of any other day.
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What then are the requisites which such
a rule ought to have ? In the first place it

should lead to the assignment of nearly equal
durations to events which common sense

judges to possess equal durations. A rule

which made days of violently different lengths,
and which made the speeds of apparently
similar operations vary utterly out of pro-

portion to the apparent minuteness of their

differences, would never do. Hence the first

requisite is general agreement with common
sense. But this is not sufficient absolutely
to determine the rule, for common sense is a

rough observer and very easily satisfied. The
next requisite is that minute adjustments of

the rule should be so made as- to allow of the

simplest possible statements of the laws of

nature. For example, astronomers tell us
that the earth's rotation is slowing down, so

that each day gains in length by some incon-

ceivably minute fraction of a second. Their

only reason for their assertion (as stated more

fully in the discussion of periodicity) is that

without it they would have to abandon the

Newtonian laws of motion. In order to keep
the laws of motion simple, they alter the

measure of time. This is a perfectly legiti-

mate procedure so long as it is thoroughly
understood.

What has been said above about the ab-

stract nature of the mathematical properties
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of space applies with appropriate verbal

changes to the mathematical properties of

time. A sense of the flux of time accompanies
all our sensations and perceptions, and prac-

tically all that interests us in regard to time
can be paralleled by the abstract mathe-
matical properties which we ascribe to it.

Conversely what has been said about the two

requisites for the rule by which we determine
the length of the day, also applies to the rule

for determining the length of a yard measure

namely, the yard measure appears to retain

the same length as it moves about. Accord-

ingly, any rule must bring out that, apart
from minute changes, it does remain of in-

variable length; Again, the second requisite
is this, a definite rule for minute changes
shall be stated which allows of the simplest

expression of the laws of nature. For ex-

ample, in accordance with the second re-

quisite the yard measures are supposed to

expand and contract with changes of tem-

perature according to the substances which

they are made of.

Apart from the facts that our sensations

are accompanied with perceptions of locality
and of duration, and that lines, areas, volumes,
and durations, are each in their way quanti-
ties, the theory of numbers would be of very
subordinate use in the exploration of the laws

of the Universe,- As it is, physical science



reposes on the main ideas of number, quan-
tity, space, and time. The mathematical
sciences associated with them do not form
the whole of mathematics, but they are the
substratum of mathematical physics as at

present existing.

NOTES
A (p. 60). In reading these equations it must be noted

that a bracket is used in mathematical symbolism to
mean that the operations within it are to be performed
first. Thus (l + 3)+2 directs us first to add 3 to 1, and
then to add 2 to the result; and l + (3+2) directs us
first to add 2 to 3, and then to add the result to 1. Again
a numerical example of equation (5) is

2x(3+4)=(2x3)+ (2x4).

We perform first the operations in brackets and obtain

2x7=6+8
which is obviously true.

SPB (p. 136). This fundamental ratio -p^ is called the

eccentricity of the curve. The shape of the curve, as
distinct from its scale or size, depends upon the value of

its eccentricity. Thus it is wrong to think of ellipses
in general or of hyperbolas in general as having in either

case one definite shape. Ellipses with different eccen-
tricities have different shapes, and their sizes depend
upon the lengths of their major axes. An ellipse with
small eccentricity is very nearly a circle, and an ellipse
of eccentricity only slightly less than unity is a long
flat oval. All parabolas have the same eccentricity and
are therefore of the same shape, though they can be
drawn to different scales.
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C (p. 204). If a series with all its terms positive is

convergent, the modified series found by making some
terms positive and some negative according to any
definite rule is also convergent. Each one of the set of

series thus found, including the original series, is called
"
absolutely convergent." But it is possible for a series

with terms partly positive and partly negative to be

convergent, although the corresponding series with all

its terms positive is divergent. For example, the series

1-i+i-i+etc.
is convergent though we have just proved that

l+i-H+i+ etc.

is divergent. Such convergent series, which are not

absolutely convergent, are much more difficult to deal
with than absolutely convergent series.

BIBLIOGRAPHY
NOTE ON THE STUDY OF MATHEMATICS

THE difficulty that beginners find in the study of this

science is due to the large amount of technical detail which
has been allowed to accumulate in the elementary text-

books, obscuring the important ideas.

The first subjects of study, apart from a knowledge of

arithmetic which is presupposed, must be elementary
geometry and elementary algebra. The courses in both

subjects should be short, giving only the necessary ideas ;

the algebra should be studied graphically, so that in

practice the ideas of elementary coordinate geometry are
also being assimilated. The next pair of subjects should
be elementary trigonometry and the coordinate geometry
of the straight line and circle. The latter subject is a
short one ;

for it really merges into the algebra. The
student is then prepared to enter upon conic sections, a

very short course of geometrical conic sections and a longer
one of analytical conies. But in all these courses great
care should be taken not to overload the mind with more
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detail than is necessary for the exemplification of the
fundamental ideas.

The differential calculus and afterwards the integral
calculus now remain to be attacked on the same system.
A good teacher will already have illustrated them by the
consideration of special cases in the course on algebra
and coordinate geometry. Some short book on three-

dimensional geometry must be also read.
This elementary course of mathematics is sufficient for

some types of professional career. It is also the necessary
preliminary for any one wishing to study the subject for

its intrinsic interest. He is now prepared to commence
on a more extended course. He must not, however, hope
to be able to master it as a whole. The science has grown
to such vast proportions that probably no living mathe-
matician can claim to have achieved this.

Passing to the serious treatises on the subject to be read

after this preliminary course, the following may be men-
tioned : Cremona's Pure Geometry (English Translation,
Clarendon Press, Oxford), Hobson's Treatise on Trigono-
metry, ChrystaPs Treatise on Algebra (2 volumes), Salmon's
Gonic Sections, Lamb's Differential Calculus, and some
book on Differential Equations. The student will probably
not desire to direct equal attention to all these subjects,
but will study one or more of them, according as his interest

dictates. He will then be prepared to select more ad-
vanced works for himself, and to plunge into the higher
parts of the subject. If his interest lies in analysis, he
should now master an elementary treatise on the theory
of Functions of the Complex Variable ; if he prefers to

specialize in Geometry, he must now proceed to the
standard treatises on the Analytical Geometry of three
dimensions. But at this stage of his career in learning
he will not require the advice of this note.

I have deliberately refrained from mentioning any
elementary works. They are very numerous, and of

various merits, but none of such outstanding superiority
as to require special mention by name to the exclusion

of all the others.
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"Each volume represents a three-hours' traffic with the talking-power

of a good brain, operating with the ease and interesting freedom of a

specialist dealing with his own subject. ... A series which promises to

perform a real social service." The Times.
"We can think of no series now being issued which better deserves

support." The Observer.
We think if they were given as prizes in place of the more costly

di:

id prol
series they might well take :

ispensed on prize days, the pupils would
rofit. If the publishers want a motto for the

rubbish that is wont to be
find more pleasure and
series they might well take :

'

Infinite riches in a little room.'" Irish

Journal ofEducation," The scheme was successful at the start because it met a want
among earnest readers; but its wider and* sustained success, surely,
comes from the fact that it has to a large extent created and certainly
refined the taste by which it is appreciated." Daily Chronicle.
" Here is the world's learning in little, and none too poor t<

house-room!" Daily Telegraph.

to give it

]/- net
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History and (geography

3. THE FRENCH REVOLUTION
By HILAIKE BELLOC, M.A. (With Maps.) "It is coloured with all the

militancy of the author's temperament." Daily News.

4. HISTORY OF WAR AND PEACE
By G. H. FERRIS. The Rt. Hon. JAMES BRYCE writes:

"
I have read it with

much interest and pleasure, admiring the skill with which you have managed
to compress so many facts and views into so small a volume."

8. POLAR EXPLORATION
By Dr W. S. BRUCE, F.R.S.E., Leader of the "Scotia" Expedition. (With
Maps.) "A very freshly written and interesting narrative." The Times.
"A fascinating book." Portsmouth Times.

12. THE OPENING-UP OF AFRICA
By Sir H. H. JOHNSTON. G.C.M.G., K.C.B., D.Sc., F.Z.S. (With Maps.)" The Home University Library is much enriched by this excellent work."

Daily Mail.

13. MEDIAEVAL EUROPE
By H. W. C. DAVIS, M.A. (With Maps.) "One more illustration of the
fact that it takes a complete master of the subject to write briefly upon it."

Manchester Guardian.

14. THE PAPACY &* MODERN TIMES (1303-1870)

By WILLIAM BARRY, D.D. "Dr Barry has a wide range of knowledge
and an artist's power of selection." Manchester Guardian.

23. HISTORY OF OUR TIME, 1885-1911

By G. P. GOOCH, M.A. " Mr Gooch contrives to breathe vitality into his story,
and to give us the flesh as well as the bones of recent happenings." Observer.

25. THE CIVILISATION OF CHINA
By H. A. GILES, LL.D., Professor of Chinese in the University of Cambridge.
"In all the mass of facts, Professor Giles never becomes dull. He is always
ready with a ghost story or a street adventure for the reader's recreation."

Spectator.

29. THE DA WN OF HISTORY
By J.L.MYRES, M. A., F.S. A., Wykeham Professor ofAncient History, Oxford.
"There is not a page in it that is not suggestive." Manchester Guardian.

33. THE HISTORY OF ENGLAND:
A Study in Political Evolution.

By Prof. A. F. POLLARD, M.A. With a Chronological Table. "
It takes its

place at once among the authoritative works on English history." Observer.

34. CANADA
By A. G. BRADLEY. " Who knows Canada, better than Mr A. G. Bradley?

"

Daily Chronicle. "The volume makes an immediate appeal to the man who
wants to know something vivid and true about Canada." Canadian Gazette.



37. PEOPLES 6* PROBLEMS OF INDIA
By Sir T. W. HOLDERNESS, K.C.S.I., Secretary of the Revenue, Statistics,

! and Commerce Department of the India Office. "Just the book which news-

paper readers require to-day, and a marvel of comprehensiveness." Pall
\ Mall Gazette.

42. ROME
By W. WARDE FOWLHR, M.A. " A masterly sketch of Roman character and
of what it did for the world." The Spectator. "It has all the lucidity and
charm of presentation we expect from this writer." Manchester Guardian.

48. THE AMERICAN CIVIL WAR
By F. L. PAXSON, Professor of American History, Wisconsin University.

(With Maps.) "A stirring study." The Guardian.

51. WARFARE IN BRITAIN
By HILAIRE BELLOC, M.A. An account of how and where great battles of the

past were fought on British soil, the roads and physical conditions determining
the island's strategy, the castles, walled towns, etc.

55. MASTER MARINERS
By J. R. SPEARS. The romance of the sea, the great voyages of discovery,
naval battles, the heroism of the sailor, and the development of the ship, from

ancient times to to-day.

IN PREPARATION
ANCIENT GREECE. By Prof. GILBERT MURRAY, D.Litt., LL.D., F.B.A
ANCIENT EGYPT. By F. LL. GRIFFITH, M.A.
THE ANCIENT EAST. By D. G. HOGARTH, M.A., F.B.A.
A SHORTh'ISTORYOFEUROPE. By HERBERT FISHER, M. A., F.B.A.
PREHISTORIC BRITAIN. By ROBERT MUNRO, M.A., M.D., LL.D.
THE BYZANTINE EMPIRE. By NORMAN H. BAVNES.
THE REFORMA TION. By Principal LINDSAY, LL.D.
NAPOLEON. By HERBERT FISHER, M.A., F.B.A.
A SHORT HISTORY OF RUSSIA. By Prof. MILYOUKOV.
MODERN TURKEY. By D. G. HOGARTH, M.A.
FRANCE OF TO-DAY. By ALBERT THOMAS.
GERMANY OF TO-DA Y. By CHARLES TOWER.
THE NAVY AND SEA POWER. By DAVID HANNAY.
HISTORY OF SCOTLAND. By R. S. RAIT, M.A.
SOUTH AMERICA. By Prof. W. R. SHEPHERD.
LONDON. By Sir LAURENCE GOMME, F.S.A.
HISTORY AND LITERATURE OF SPAIN. By J. FITZMAURICE-

KELLY, F.B.A., Litt.D.

Literature and
2. SHAKESPEARE
By JOHN MASEFIELD. " The book is a joy. We have had half-a-dozen more
learned books on Shakespeare in the last few years, but not one so wise."
Manchester Guardian.

27. ENGLISH LITERATURE: MODERN
By G. H. MAIR, M.A. "

Altogether a fresh and individual book." Olstrver.

35. LANDMARKS INFRENCHLITERATURE
By G. L. STRACHEY. " Mr Strachey is to be congratulated on his courage and
success. It is difficult to imagine how a better account of French Literature
could be given in 250 small pages than he has given here." The Times.



39- ARCHITECTURE
By Prof. W. R. LETHABY. (Over forty Illustrations.)

"
Popular guide-books

to architecture are, as a rule, not worth ranch. This volume is a welcome excep-
tion." Building News.

"
Delightfully bright reading." Christian World.

43. ENGLISH LITERATURE: MEDIAEVAL
By Prof. W. P. KER, M.A. "Prof. Ker has long proved his worth as one of
the soundest scholars in English we have, and he is the very man to put an
outline of English Mediaeval Literature before the uninstructed public. His
knowledge and taste are unimpeachable, and his style is effective, simple, yet
never dry." The Athemeum.

45. THE ENGLISH LANGUAGE
By L. PEARSALL SMI-TH, M.A. "A wholly fascinating study of the different

streams that went to the making of the great river of the English speech."
Daily News.

52. GREAT WRITERS OF AMERICA
By Prof. J. EKSKINE and Prof. W. P. TRENT. A popular sketch by two
foremost authorities.

IN PREPARATION
ANCIENT ART AND RITUAL. By Miss JANE HARRISON, LL.D.,

D.Litt.
GREEK LITERA TURE. By Prof. GILBERT MURRAY, D.Litt.
LA TIN LITERA TURE. By Prof. J. S. PHILLIMORE.
CHA UCER AND HIS TIME. By Miss G. E. HADOW.
THE RENAISSANCE. By Mrs R. A. TAYLOR.
ITALIAN ARTOF THE RENAISSANCE. By ROGER E. FRY, M.A.
THE ART OF PAINTING. By Sir FREUERICK WEDMORE.
DR JOHNSON AND HIS CIRCLE. By JOHN BAILEY, M.A.
THE VIC IORIAN AGE. By G. K- CHESTERTON.
ENGLISH COMPOSITION. By Prof. WM. T. BREWSTER.
GREA T WRITERS OF RUSSIA. By C. T. HAGBERG WRIGHT, LL.D.
THE LITERATURE OF GERMANY. By Prof. J. G. ROBERTSON,

M.A., Ph.D.
SCANDINAVIAN HISTORY AND LITERATURE. By T. C.

SNOW, M.A.

Science

7. MODERN GEOGRAPHY
By Dr MARION NEWBIGIN. (Illustrated.) "Geography, again : what a dull,
tedious study that was wont to be I . . . But Miss Marion Newbigin invests its

dry bones with the flesh and blood of romantic interest, taking stock of

geography as a fairy-book of science." Daily Telegraph.

9. THE EVOLUTION OF PLANTS
By Dr D. H. SCOTT, M.A., F.R.S., late Hon. Keeper of the Jodrell Laboratory,
Kew. (Fully illustrated.) "The information which the book provides is as

trustworthy as first-band knowledge can make it. ... Dr Scott's candid and
familiar style makes the difficult subject both fascinating and easy."
Gardeners' Chronicle.

17. HEALTH AND DISEASE
By W. LESLIE MACKKNZIE, M.D., Local Government Board, Edinburgh.
"The science of public health administration has had no abler or more attractive

exponent than Dr Mackenzie. He adds to a thorough grasp of the problems
an illuminating style, and an arresting manner of treating a subject often

dull and sometimes unsavoury." Economist.



1 8. INTRODUCTION TO MATHEMATICS
' By A. N. WHITEHEAD, Sc.D., F.R.S. (With Diagrams.) "MrWhitehead

has discharged with conspicuous success the task he is so exceptionally qualified

I
to undertake. For he is one of our great authorities upon the foundations of the

science, and has the breadth of view which is so requisite in presenting to the

reader its aims. His exposition is clear and striking." Westminster Gazette.

19. THE ANIMAL WORLD
By Professor F. W. GAMBLE, D.Sc., F.R.S. With Introduction hy Sir Oliver

Lodge. (Many Illustrations.)
" A delightful and instructive epitome ofanimal

(and vegetable) life. ... A most fascinating and suggestive survey." Morning
Post.

20. EVOLUTION
By Professor J. ARTHUR THOMSON and Professor PATRICK GEDDES. "A
many-coloured and romantic panorama, opening up, like no other book we know,
a rational vision of world-development." Belfast News-Letter.

22. CRIME AND INSANITY
By Dr C. A. MERCIER, F.R.C.P., F.R.C.S., Author of "Text-Book of In-

sanity," etc-
"
Furnishes much valuable information from one occupying the

highest position among medico-legal psychologists." Asylum NCVJS.

28. PSYCHICAL RESEARCH

and thus what he has to say on thought-reading, hypnotism, telepathy, crystal-

vision, spiritualism, divinings, and so on, will be read with avidity." Dundee

31. ASTRONOMY
By A. R. HINKS, M.A., Chief Assistant, Cambridge Observatory. "Original
in thought, eclectic in substance, and critical in treatment. . . . No better
little book is available." School World.

32. INTRODUCTION TO SCIENCE
By J. ARTHUR THOMSON, M.A., Regius Professor of Natural History, Aberdeen
University.

" Professor Thomson's delightful literary style is well known ; and
here he discourses freshly and easily on the methods of science and its relations
with philosophy, art, religion, and practical life." Aberdeen Journal,

36.

By H. N. DICKSON, D.Sc. Oxon., M.A., F.R.S.E., President of the Royal
Meteorological Society ; Professor ofGeography in University College, Reading.
(With Diagrams.) "The author has succeeded in presenting in a very lucid
and agreeable manner the causes of the movement of the atmosphere and of

the more stable winds." Manchester Guardian.

41. ANTHROPOLOGY
By R R. MARETT, M.A., Reade
"An absolutely perfect handboo
fascinating and human that it bea

44. THE PRINCIPLES OF PHYSIOLOGY
By Prof. J. G. McKENDRiCK, M.D. "

It is a delightful and wonderfully com-
prehensive handling of a subject which, while of importance to all, does not
readily lend itself to untechnical explanation. . . . The little book is more than
a mere repository of knowledge ; upon every page of it is stamped the impress
of a creative imagination." Glasgow Herald.

By R. R. MARETT, M.A., Reader in Social Anthropology in Oxford University.
"An absolutely perfect handbook, so clear that a child could understand it, so
fascinating and human that it beats fiction

'
to a frazzle.'

"
Morning Leader.



46. MATTER AND ENERGY
By F. SODDY, M.A., F.R.S. "A most fascinating and instructive account or

the great facts of physical science, concerning which our knowledge, of later

years, has made such wonderful progress." The Bookseller.

49. PSYCHOLOGY, THE STUDY OF BEHAVIOUR
By Prof. W. McDouGALL, F.R.S., M.B. "A happy example of the non-

technical handling ofan unwieldy science, suggesting rather than dogmatising.
It should whet appetites for deeper study." Christian World.

53. THE MAKING OF THE EARTH
ByProf.J.W. GREGORY, F.R.S. (With 38 Maps and Figures.) The Professor
of Geology at Glasgow describes the origin of the earth, the formation and

changes of its surface and structure, its geological history, the first appearance
of life, and its influence upon the globe.

57. THE HUMAN BODY
By A. KEITH, M.D., LL,D., Conservator of Museum and Hunterian Pro-

fessor, Royal College of Surgeons. (Illustrated.) The work of the dissecting-
room is described, and among other subjects dealt with are : the development
of the body ; malformations and monstrosities ; changes of youth and age ;

sex

differences, are they increasing or decreasing? race characters ; bodily features

as indexes of mental character ; degeneration and regeneration ;
and the

genealogy and antiquity of man.

58. ELECTRICITY
By GisBERT KAPP, D.Eng., M.I.E.E., M.I.C.E., Professor of Electrical

Engineering in the University of Birmingham. (Illustrated.) Deals with
frictional and contact electricity ; potential ; electrification by mechanical
means ; the electric current ; the dynamics of electric currents ; alternating
currents ; the distribution of electricity, etc.

IN PREPARATION
CHEMISTRY. Py Prof. R. MELDOLA, F.R.S.
THE MINERAL WORLD. By Sir T. H. HOLLAND, K.C.I. E., D.Sc.
PLANT LII-'E. By Prof. J. B. FARMER, F.R.S.
NERVES. By Prof. D. FRASER HARRIS, M.D., D.Sc.
A STUDYOF SEX. By Prof. J. A. THOMSON and Prof. PATRICK GEDDES.
THE GROWTH OF EUROPE. By Prof. GRKNVILLE COLE.

Philosophy and "Religion

ig's

:tate

15. MOHAMMEDANISM
By Prof. D. S. MARGOLIOUTH, M.A., D.Litt. "This generous shilling':

worth of wisdom. ... A delicate, humorous, and most responsible tractati

by an illuminative professor." Daily Mail.

40. THE PROBLEMS OF PHILOSOPHY
By the Hon. BERTRAND RUSSELL, F.R.S. : 'A book that the

' man in the

street
'

will recognise at once to be a boon. . . . Consistently lucid and non-
technical throughout." Christian World.

47. BUDDHISM



go. NONCONFORMITY: Its ORIGIN and PROGRESS
I'.'- Principal W. B. SELBIE, M.A. "The historical part is brilliant in its

:., clarity, and proportion, and in the later chapters on the present position
.urns of Nonconformity Dr Selbie proves himself to be an ideal exponent

of sound and moderate views." Christian World.

54. ETHICS
By G. E. MOORE, M.A., Lecturer in Moral Science in Cambridge University.
Discusses Utilitarianism, the Objectivity of Moral Judgments, the Test of

Right and Wrong, Free Will, and Intrinsic Value.

56. THE MAKING OF THE NEW TESTAMENT
By Prof. B. W. BACON, LL. LX, D.D. An authoritative summary of the results

of modern critical research with regard to the origins of the New Testament, in
"
the formative period when conscious inspiration was still in its full glow rather

than the period of collection into an official canon," showing the mingling of the

two great currents of Christian thought
" Pauline and 'Apostolic,' the Greek-

Christian gospel about Jesus, and the Jewish-Christian gospel of Jesus, the

gospel of the Spirit and the gospel of au thority."

jo. MISSIONS: THEIR RISE and DEVELOPMENT
By Mrs CREIGHTON. The beginning of modern missions after the Reforma-
tion and their growth are traced, and an account is given of their present
work, its extent and character.

IN PREPARATION
THE OLD TESTAMENT. By Prof. GEORGE MOORE, D.D., LL.D.
BETWEEN THE OLD AND NEW TESTAMENTS. By R. H.

CHARLES, D.D.
COMPARATIVE RELIGION. By Prof. J. ESTLIN CARPENTER, D.Litt.
A HISTORY ofFREEDOM ofTHOUGHT. By Prof. J. B. BURY, LL.D.
A HISTORY OF PHILOSOPHY. By CLEMKNT WKBB, M.A.

Social Science

. PARLIAMENT
Its History, Constitution, and Practice. By Sir COURTENAY P. ILBERT.
K.C.B., K.C.S.I., Clerk of the House of Commons. "The best book on the
history and practice ofthe House ofCommons since Bagehot's 'Constitution.'"
Yorkshire Post.

. THE STOCK EXCHANGE
By F. W. HIRST, Editor of

" The Economist." " To an unfinancial mind must
be a revelation. . . . The book is as clear, vigorous, and sane as Bagehot's

' Lom-
bard Street,' than which there is no higher compliment." Morning Leader

. IRISH NATIONALITY
By Mrs J. R. GREEN. " As glowing as it is learned. No book could be more
timely." Daily News. "A powerful study. . . . A magnificent demonstration
of the deserved vitality of the Gaelic spirit." Freeman s Journal.
3. THE SOCIALIST MOVEMENT

RAMSAY MACDONALD, M.T. "Admirably adapted for the purpose of
exposition." The Times. "Mr MacDonald is a very lucid exponent. . . . The
volume will be of great use in dispelling illusions about the tendencies of
Socialism in this country." The Nation.

i. CONSERVATISM
Jy Lord HUGH CECIL, M.A., M.P. "One of those great little books which
seldom appear more than once in a generation." Morning Post.



1 6. THE SCIENCE OF WEALTH
By J. A. HOUSON, M.A. "Mr J. A. Hobson holds an unique position among
living economists. . . . The text-book produced is altogether admirable.
Original, reasonable, and illuminating." The Nation.

21. LIBERALISM
By L. T. HOBHOUSE, M. A., Professor ofSociology in the University of London.
"A book of rare

quality.
. . . We have nothing but praise for the rapid and

masterly summaries of the arguments from first principles which form a large
part of this book." Westminster Gazette.

24. THE EVOLUTION OF INDUSTRY
ByD. H. MACGREGCR, M.A., Professor of Political Economy in the University
of Leeds. "A volume so dispassionate in terms may be read with profit by all

interested in the present state of unrest." Aberdeen Journal.

26. AGRICULTURE
By Prof. W. SOMERVILLE, F.L.S. "

It makes the results of laboratory work
at the University accessible to the practical farmer." Athena-urn.

30. ELEMENTS OF ENGLISH LAW
By W. M. GELDART, M.A., B.C.L., Vinerian Professor of English Law at

Oxford. "Contains a very clear account of the elementary principles under-

lying the rules of English law
; and we can recommend it to all who wish to

become acquainted with these elementary principles with a minimum of

trouble." Scots Law Times.

38. THE SCHOOL
An Introduction to the Study ofEducation.

By J. J. FINDLAY, M.A., Ph.D., Professor of Education in Manchester

University.
<: An amazingly comprehensive volume. . . . It is a remarkable

performance, distinguished in its crisp, striking phraseology as well as its

inclusiveness of subject-matter." Morning Post.

-59. ELEMENTS OF POLITICAL ECONOMY
By S. J. CHAPMAN, M.A., Professor of Political Economy in Manchester

University. A simple explanation, in the light of the latest economic thought,
of the working of demand and supply ; the nature of monopoly ; money and
international trade ; the relation of wages, profit, interest, and rent ; and the

effects of labour combination prefaced by a short sketch of economic study
since Adam Smith.

IN PREPARATION
THE CRIMINAL AND THE COMMUNITY. By Viscount ST.

CYRES, M.A.
COMMONSENSE IN LA W. By Prof. P. VINOGRADOFF, D.C.L.
THE CIVIL SERVICE. By GRAHAM WALLAS, M.A.
PRACTICAL IDEALISM. By MAURICE HEWLETT.
NEWSPAPERS. By G. BINNEY DIBBLEE.
ENGLISH VILLAGE LIFE. By E. N. BENNETT, M.A.
CO -PARTNERSHIP At\D PROFIT-SHARING. By ANEURIN

WILLIAMS, J.P.
THE SOCIAL SETTLEMENT. By JANE ADDAMS and R. A. WOODS.
GREA T INVENTIONS. By Prof. J. L. MYRES, M.A., F.S.A.

TOWN PLANNING. By RAYMOND UNWIN.
POLITICAL THOUGHT IN ENGLAND: From Bentham to J. S.

Mill. By Prof. W. L. DAVIDSON.
POLITICAL THOUGHT IN ENGLAKD: From Herbert Spencer

to To-day. By ERNEST BARKER, M.A.

London: WimTMS^AND~NORGATE
And of all Bookshops and Bookstalls.
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