
UC-NRLF

^B 27fl 21D

m
iiiiii
. ;;;J..-;. 4 1. t, 3 i flit

11

n ill i!

WifPl
1!

!l !

i ili'll

I
i ii

11

Mil Hnpn'SMt'iibH!' ;!!!'•! i-'i ; Hit
1! !

ilil ilii ijllll
i i iiiiii!! ill! ill

I iiiiiit .

m

i

iiii

i iipiiiiiiii 1

i|!
Pi PI!

mmmW

iliiiiliiiiiiii

niiH iiiill! ;i;P-:'iH";;:'

l!iilipiteiii|iii|iil;:-.i:':
"•"'iilfjj i; iij; : ; ::.^':i

:

i'»lliilifJ

ijiiiiiipij

liiliiniJHHljHiHiulilii

mm

.iiiiil||jy|||||i||j|iiiihiiiil!ii!

Iiii

iiltiil'ijii'iiii'iiiiiiliiiiiiiliii:

p; p;:!ii;iii|ii!! i j
|i iji u

! il ! i
i liiilii!! |l=!iiiiHi|ii

iii |i I

iiiiiiiipP^Hil !

iiiiiiHiiPiiiiiii

HiiPiiiPiihuiniin

i
iii

mm iil«

ii li Hi i!iH j! Iiii Ijii ii ii

ii iliill

m
iilMlii

I i:il'

!;ii:i

"

lililBiili

il Ipi!!
i iii i

'

ii! jlii !l;nS:

iiiiipiW:

H I mm

!l ! f ) r

mwmmm
!|!lii;;.

'Hiiji

i ! n ' ; I h



/? ''', rm^%

IN MEMORIAM
FLORIAN CAJORI



filM^lco

igiTize(

in 2007 with funding from

IVIicrosoft Co roo ration

msmK





ANALYTIC GEOMETRY



1

A SERIES OF MATHEMATICAL TEXTS
EDITED BY

EARLE RAYMOND HEDRICK

THE CALCULUS
By Ellery Williams Davis and William Charles

Brenke.

PLANE AND SOLID ANALYTIC GEOMETRY
By Alexander Ziwet and Louis Allen Hopkins.

PLANE AND SPHERICAL TRIGONOMETRY WITH
COMPLETE TABLES

By Arthur Monroe Kenyon and Louis Ingold,

PLANE AND SPHERICAL TRIGONOMETRY WITH
BRIEF TABLES

By Arthur Monroe Kenyon and Louis Ingold.

THE MACMILLAN TABLES
Prepared under the direction of Earle Raymond Hedrick.

PLANE GEOMETRY
By Walter Burton Eord and Charles Ammerman.

PLANE AND SOLID GEOMETRY
By Walter Burton Ford and Charles Ammerman.

SOLID GEOMETRY
By Walter Burton Ford and Charles Ammerman.



ANALYTIC GEOMETRY
AND

PRINCIPLES OF ALGEBRA

BY

ALEXANDER ZIWET
PROFESSOR OF MATHEMATICS, THE UNIVERSITY OF MICHIGAN

AND

LOUIS ALLEN HOPKINS
INSTRUCTOR IN MATHEMATICS, THE UNIVERSITY OF MICHIGAN

'Nzta gorft

THE MACMILLAN COMPANY
1913

All rights reserved



COPTBIGHT, 1913,

By the MACMILLAN COMPANY.

Set up and electrotyped. Published November, 1913

NortooolJ ^ttw
J. 8. Cashing Co. — Berwick & Smith Co.

Norwood, Masa., U.S.A.



QA'

PREFACE

The present work combines with analytic geometry a num-

ber of topics traditionally treated in college algebra that

depend upon or are closely associated with geometric repre-

sentation. Through this combination it becomes possible to

show the student more directly the meaning and the useful-

ness of these subjects.

The idea of coordinates is so simple that it might (and per-

haps should) be explained at the very beginning of the study

of algebra and geometry. Keal analytic geometry, however,

begins only when the equation in two variables is interpreted

as defining a locus. This idea must be introduced very gradu-

ally, as it is difficult for the beginner to grasp. The familiar

loci, straight line and circle, are therefore treated at great

length.

Simultaneous linear equations present themselves naturally

in connection with the intersection of straight lines and lead

to an early introduction of determinants, whose broad useful-

ness is most apparent in analytic geometry.

The study of the circle calls for a discussion of quadratic

equations which again leads to complex numbers. The geo-

metric representation of complex numbers will present no

great difficulty because the student is now somewhat familiar

with the idea of variables, of coordinates, and even vectors

(in a plane).

The discussion of the conic sections is preceded by the

study, especially the plotting, of curves of the form y = f{x),
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where f(x) is a polynomial of the second, third, etc. degree.

In connection with this the solution of numerical algebraic

equations can be given a geometric setting.

In the chapters on the conic sections only the most essential

properties of these curves are given in the text; thus, poles

and polars are discussed only in connection with the circle.

Great care has been taken in presenting the fundamental

problem of finding the slope of a curve. It seemed desirable

and quite feasible to introduce the idea of the derivative (of

a polynomial only) in connection with the discussion of alge-

braic equations. The calculus method of finding the slope of

a conic section has therefore been explained, in addition to

the direct geometric method.

The treatment of solid analytic geometry follows more the

usual lines. But, in view of the application to mechanics,

the idea of the vector is given some, prominence; and the

representation of a function of two variables by contour lines

as well as by a surface in space is explained and illustrated

by practical examples.

The exercises have been selected with great care in order

not only to furnish sufficient material for practice in algebraic

work but also to stimulate independent thinking and to point

out the applications of the theory to concrete problems. The

number of exercises is sufficient to allow the instructor to

make a choice.

To reduce the course presented in this book to about one

half its extent, the parts of the text in small type, the chap-

ters on solid analytic geometry, and the more difficult prob-

lems throughout may be omitted.

ALEXANDER ZIWET,

L. A. HOPKINS,

E. R. HEDRICK, Editor.
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PLANE ANALYTIC aEOMETRY

CHAPTER I

COORDINATES

1. Location of a Point on a Line. The position of a point

P (Fig. 1) on a line is fully determined by its distance OP
from a fixed point on the line, if we know on which side of

O the point P is situated (to the right or to the left of in

Fig. 1). Let us agree, for instance, to count distances to the

f
Fig. 1

right of as positive, and distances to the left of as negative

;

this is indicated in Fig. 1 by the arrowhead which marks the

positive sense of the line.

The fixed point is called the origin. The distance OP,

taken with the sign + if P lies, let us say, on the right, and

with the sign — when P lies on the opposite side, is called

the abscissa of P.

It is assumed that the unit in which the distances are

measured (inches, feet, miles, etc.) is known. On a geographi-

cal map, or on a plan of a lot or building, this unit is indicated

by the scale. In Fig. 1, the unit of measure is one inch, the

abscissa of P is +2, that of Q is — 1, that of P is — 1/3.

B 1
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2. Determination of a Point by its Abscissa. Let us select,

on a given line, an arbitrary origin 0, a unit of measure, and a

definite sense as positive. Then any real number, such as 5,

— 3, 7.35, — V2, regarded as the abscissa of a point F, fully

determines the position of P on the line. Conversely, every

point on the line has one and only one abscissa.

The abscissa of a point is usually denoted by the letter x,

which, in analytic geometry as in algebra, may represent any

real or complex number.

To represent a real point the abscissa must be a real number.

If in any problem the abscissa a; of a point is not a real num-

ber, there exists no real point satisfying the conditions of the

problem.

EXERCISES

1. "What is the abscissa of the origin ?

2. With the inch as unit of length, mark on a line the points whose

abscissas are : 3, —2, VS, — 1.25, — V5, |, — i

3. On a railroad line running east and west, if the station B is 20 miles

east of the station A and the station C is 33 miles east of A, what are the

abscissas of A and C for B as origin, the sense eastward being taken as

positive ?

4. On a Fahrenheit thermometer, what is the positive sense ? What
is the unit of measure ? What is the meaning of the reading 66° ?

What is meant by — 7° ?

5. A water gauge is a vertical post carrying a scale ; the mean water

level is generally taken as origin. If the water stands at -|- 7 on one day

and at —11 the next day, the unit being the inch, how much has the

water fallen ?

6. If xu X2 (read : x one, x two) are the abscissas of any two points

Pi, P2 on a given line, show that the abscissa of the midpoint between

Pi and P2 is ^ (xi + 3^2) • Consider separately the cases when Pi, P2 lie

on the same side of the origin and when they lie on opposite sides.
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3. Ratio of Division. A segment AB (Fig. 2) of a straight

line being given, it is shown in elementary geometry how to

find the point C that divides

AB in a given ratio k. Thus,

if it = I, the point G such that

AC^2
AB 5

is found as follows. On any

line through A lay off AD = 2 and AE= 5
;

join B and E.

Then the parallel to BE through D meets AB at the required

point C.

Analytically, the problem of dividing a line in a given ratio

is solved as follows. On the line AB (Fig. 3) we choose a

point as origin and assign a positive sense. Then the

abscissas Xj of A and X2 of B are known. To find a point G

r—

1

^:g:":Z-> '

Fig. 3

which divides AB in the ratio of division k = AG/AB, let us

denote the unknown abscissa of G by x. Then we have

AG=x — Xi, AB = X2 — Xi',

hence the abscissa x oi G must satisfy the condition

H/2 — iCj

whence
yj ^^ yJj ~j~ /t ( «^2 """

*yiy }

or, if we write Ax (read : delta x) for the " difference of the

a^s," I.e. Ax = X2— Xi,

x = Xi-\-k ' Ax.

Thus, if the abscissas of A and B are 2 and 7, the abscissas
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of the points that divide AB in the ratios |, i,
|, | are 3, 4^,

8, 9^, respectively. Check these results by geometric con-

struction.

If the segments AC and AB have the same sense, the divi-

sion ratio k is positive. For example, in Fig. 3, the point O
lies between A and B ; hence the division ratio fc is a positive

proper fraction. If the division ratio k is negative, the seg-

ments AC and AB must have opposite sense, so that B and C
lie on the opposite sides of A.

If the abscissas of A and B are again 2 and 7, the abscissa

xof C when A;= 2, - 1, - f,
- .2 will be 12, - 3, 0, 1, respec-

tively. Illustrate this by a figure, and check by the geometric

construction.

4. Location of a Point in a Plane. To locate a point in

a plane, that is, to determine its position in a plane, we may
proceed as follows. Draw two lines at right angles in the

plane ; on each of these take the point of intersection O as

origin, and assign a definite positive sense to each line, e.g. by

marking each line with an arrowhead. It is usual to mark

the positive sense of one line by affixing the letter x to it, and

the positive sense of the other line by

affixing the letter ?/ to it, as in Fig. 4.

These two lines are then called the axes

of coordinates, or simply the axes. We
distinguish them by calling the line Ox the

a>axis, or axis of abscissas, and the line Oy

the ?/-axis, or axis of ordinates. Now project the point P on

each axis, i.e. let fall the perpendiculars PQ, PR from P on

the axes. The point Q has the abscissa OQ = x on the axis Ox.

The point R has the abscissa OR = y on the axis Oy. The

distance OQ = RP=x is called the abscissa of P, and

y

B --,Pr
j

y\
X 1 JC

~~D Q

Fig. I
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y

n P'r— /
1

1 ^
1

! X
I

' ^ 1—jp-

m
\

JY

p"'

OR = QP= 2/ is called the ordinate of P. The position of the

point P in the plane is fully determined if its abscissa x and

its ordinate y are both given. The two numbers x, y are also

called the coordinates of the point P.

5. Signs of the Coordinates. Quadrants. It is clear

from Fig. 4 that x and y are the perpendicular distances of the

point P from the two axes. It should be observed that each

of these numbers may be positive or

negative, as in § 1.

The two axes divide the plane into

four compartments distinguished as in

trigonometry as the first, second, third,

and fourth quadrants (Fig. 5). It is

readily seen that any point in the first

quadrant has both its coordinates posi-

tive. What are the signs of the coordi-

nates in the other quadrants ? What are the coordinates of the

origin ? What are the coordinates of a point on one of the

axes ? It is customary to name the abscissa first and then

the ordinate ; thus the point (—3, 5) means the point whose

abscissa is — 3 and whose ordinate is 5.

Every point in the plane has two definite real numbers as co-

ordinates; conversely, to every pair of real numbers corresponds

one and ordy one point of the jiilane.

Locate the points: (6, -2), (0, 7), (2-V3, f), (-4, 2V2),

(-5,0).

6. Units. It may sometimes be convenient to choose the

unit of measure for the abscissa of a point different from the

unit of measure for the ordinate. Thus, if the same unit, say

one inch, were taken for abscissa and ordinate, the point (3, 48)

might fall beyond the limits of the paper. To avoid this we
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may lay off the ordinate on a scale of i inch. When different

units are used, the unit used on each axis should always be

indicated in the drawing. ^ When nothing is said to the con-

trary, the units for abscissas and ordinates are always under-

stood to be the same.

7. Oblique Axes. The position of a point in a plane can

also be determined with reference to two axes that are 7iot at

right angles ; but the angle <o between these

axes must be given (Fig. 6). The abscissa

and the ordinate of the point P are then / y/
0/a> X /

the segments OQ = x, OB = y cut off on /\ Jg
the axes by the parallels through P to the

axes. If o) = |^7r, i.e. if the axes are at

right angles, we have the case of rectangular coordinates

discussed in §§4, 5. In what follows, the axes are always

taken at right angles unless the contrary is definitely

stated.

8. Distance of a Point from the Origin.

For the distance r = OP (Fig. 7) of the point

P from the origin O we have from the right-

angled triangle OQP:
Fig. 7

p

where x, y are the coordinates of P.

If the axes are oblique (Fig. 8), with the angle

xOy = (a^ we have, from the triangle OQP, in

which the angle at Q is equal to ir — w,* by the

cosine law of trigonometry,
Fig. 8

r = Vx2 -\-y2 — 2 xy cos (tt — w) = Vx^ + y"-^ + 2 xy cos w.

* In advanced mathematics, angles are generally measured in radians, the

symbol tt denoting an angle of 180^.
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Notice that these formulas hold not only when the point P
lies in the first quadrant, but quite generally wherever the

point P may be situated. Draw the figures for several cases.

9. Distance between Two Points. By Fig. 9, the distance

d = PiP2 between two points Pi{xi, y^ and ^2(^2? 2/2) can be

found if the coordinates of the two points

are given. For in the triangle P1QP2 we ^

have

PiQ = X2-Xi, QPs = 2/2 - 2/1

;

hence Fio. 9

(1) e« = V(i»2-a:^i)2 + (2/2-2/1)2.

If we write Ax (§ 3) for the " difference of the aj's " and Ay

for the ^' difference of the ^'s ", i.e.

Ax = X2 — Xi and Ay = 2/2 — 2/1 >

the formula for the distance has the simple form

(2) rZ = V(Ai»)2-|-(Ai/)2;

or, in words,

The distance between any two points is equal to the square root

of the sum of the squares of the differences between their corre-

sponding coordinates.

Draw the figure showing the distance between two points

(like Fig. 9) for various positions of these points and show

that the expression for d holds in all cases.

Show that the distance between two points Pi {xi, ?/i), P2 (0:2, 2/2) when

the axes are oblique, with angle w, is

d = V{x2 - xi)2+ (2/2 - yi)'^ + 2(X2 - xi) (2/2 - y\) cos w

= \/( Ax)2 + (Ay)2 + 2 Ax . Ay . cos w.
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10. Ratio of Division. If two points P^ {x^
, 2/1) «**f^ ^2 fe 2/2)

are given by their coordinates, the coordinates x, y of any point

Pon the line P1P2 can be found if the division ratio P^P/P^P^ = k

is known in lohich the point P divides the segment P^P^. Let Q^

,

Q2, Q (Fig. 10), be the projections oi P^, P2, P on the axis Ox
;

then the point Q divides Q1Q2 in the same ratio k in which

P divides PiP^- Now as OQi = aji,

0^2= ^2) OQ = X, it follows from § 3

that

X=Xi -\-k(X2— Xi).

In the same way we find by projecting

Pi, P2f P on the axis Oy that

Fig. 10

2/ = 2/i ^-^•0/2-2/l)•

Thus, the coordinates x, y oi P are found expressed in terms

of the coordinates of P^ , Po and the division ratio k. Putting

again X2 — Xi = Ax, 2/2 — 2/1 = ^2/ > we may also write

x = Xi-}-k' Ax, y = yi-\-k'Ay.

Here again the student should convince himself that the

formulas hold generally for any position of the two points, by

selecting numerous examples. He should also prove, from a

figure, that the same expressions for the coordinates of the

point P hold for oblique coordinates.

As in § 3, if the division ratio k is negative, the two

segments P1P2 and P^P must have opposite sense, so that

the points P and Pg must lie on opposite sides of the

point Pi.

Find, e.g., the coordinates of the points that divide the seg-

ment joining (— 4, 3) to (6, — 5) in the division ratios k = ^,

k = 2, fc=— 1, k = — 1, and indicate the four points in a

figure.



IJ 11]
• COORDINATES 9

11. Midpoint of a Segment. The midpoint P of a segment

P1P2 has for its coordinates the arithmetic means of the corre-

sponding coordinates of P^ and P^ ; that is, if x-^
, 2/1 are the co-

ordinates of Pi, 0-2, 2/2 those of P2, the division ratio being

A; =
I",

the coordinates of the midpoint P are (§ 10)

a; = a?! -j- "2" (^2 ^1) = 2 (^1 1 •^2)5

2/= ^1 + i (2/2 - 2/1) = i (2/1 + 2/2).

EXERCISES

1. With reference to the same set of axes, locate the points (6, 4),

(2, - i). (- 6.4, - 3.2), (-4, 0), (- 1, 5), (.001, - 4.01).

2. Locate the points (-3,4), (0,-1), (6, - V2), (1,-10^),

(0,a), (a, 6), (3, -2), (-2, v^).

3. If a and 6 are positive numbers, in what quadrants do the follow-

ing points lie : (a, — 6), (6, a), (a, a), (— &, &), (— &, — a)?

4. Show that the points (a, 6) and (a, — 6) are symmetric with

respect to the axis Ox ; that (a, 6) and (—a, 6) are symmetric with re-

spect to the axis Oy ; that (a, 6) and (— a, — 6) are symmetric with

respect to the origin.

5. In the city of Washington the lettered streets (A street, B street,

etc.) run east and west, the numbered streets (1st street, 2d street, etc.)

north and south, the Capitol being the origin of coordinates. The axes

of coordinates are called aivenues ; thus, e.gr., 1st street north runs one

block north of the Capitol. If the length of a block were 1/10 mile, what

would be the distance from the corner of South C street and East 5th

street to the corner of North Q street and West 14^h street ?

6. Prove that the points (6, 2), (0, - 6), (7, 1) lie on a circle whose

center is (3, — 2).

7. A square of side s has its center at the origin and diagonals coin-

cident with the axes ; what are the coordinates of the vertices ? of the

midpoints of the s.ides ? ...

8. If a point moves jjarallel to the axis Oy, which of its coordinates

remains constant ?
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9. In what quadrants can a point lie if its abscissa is negative ? its

ordinate positive ?

10. Find the coordinates of the points which trisect the distance be-

tween the points (1, — 2) and (— 3, 4).

11. To what point must the hne segment drawn from (2, —3) to

(—3, 5) be extended so that its length is doubled ? trebled ?

12. The abscissa of a point is — 3, its distance from the origin is 5

;

what is its ordinate ?

13. A rectangular house is to be built on a corner lot, the front, 30 ft.

wide, cutting off equal segments on the adjoining streets. If the house is

20 ft. deep, find the coordinates (with respect to the adjoining streets) of

the back corners of the house.

14. A baseball diamond is 90 ft. square and pitcher's plate is 60 ft.

from home plate. Using the foul lines as axes, find the coordinates of

the following positions :

(a) pitcher's plate
;

(6) catcher 8 ft. back of home plate and in line with second base
;

(c) base runner playing 12 ft. from first base
;

(d) third baseman playing midway between pitcher's plate and third

base (before a bunt)

;

(e) right fielder playing 90 ft. from first and second base each.

16. How far does the ball ^o in Ex. 14 if thrown by third baseman

in position (d) to second base ?

16. If right fielder (Ex. 14) catches a ball in position (e) and throws

it to third base for a double play, how far does the ball go ?

17. A park 600 ft. long and 400 ft. wide has six lights arranged in a

circle about a central light cluster. All the lights are 200 ft. apart, and

the central cluster and two others are in a line parallel to the length of

the park. What are the coordinates of all the lights with respect to two

boundary hedges ?

18. With respect to adjoining walks, three trees have coordinates

(30 ft., 8 ft.), (20 ft., 45 ft.), (- 27 ft., 14 ft.), respectively. A tree is to

be planted to form the fourth vertex of a parallelogram; where should it

be placed ? (Three possible positions ; best found by division ratio.)
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Fig. 11

12. Area of a Triangle with One Vertex at the Origin.

Let one vertex of a triangle be the origin, and let the other

vertices be P^ {x^, 2/1) and P^ (x^, y^. Draw through P^ and

P2 lines parallel to the axes (Fig. 11). The

area A of the triangle is then obtained by

subtracting from the area of the circum-

scribed rectangle the areas of the three non-

shaded triangles ; i.e.

A = x{y^ - i
a;i?/i -\x^^-\ (x^ -x^ {y^ - y^)

= i{^iy2 - a^22/i).

This formula gives the area with the sign -|- or — according

as the sense of the motion around the perimeter OP1P2O is

counterclockwise (opposite to the rotation of the hands of a

clock) or clockwise.

For numerical computation it is most convenient to write

down the coordinates of the two points thus

:

^1 2/1

«2 2/2

and to take half the difference of the crosswise products. The

formula is therefore often written in the form

=i
X,

X, 2/2

^1 Vi

X
I 2/2

where the symbol

stands for x^yc^—x-^i, and is called a determinant (of the second

order).

Thus, the area of the triangle formed by the origin with the

pair of points (4, 3) and (2, 5) is

. 4 3

2 5
=:i(4x5-2x3) = 7.
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13. Translation of Axes. Instead of the origin and the

axes Ox, Oy (Fig. 12), let us select a new origin 0' (read : O
prime) and new axes 0'x\ O'y', parallel to the old axes. Then

any point P whose coordinates with reference to the old axes

are OQ=:x, QP= y will have with

reference to the new axes the coordi-

nates 0'Q' = x', Q'P=y'', and the

figure shows that if 7i, k are the co-

ordinates of the new origin, then

X — x' + h,

y = y'-\-k.

yl

y 1—i— j>

1 y\

k
h \ \ X

Q

Fig. V.

The change from one set of axes to a new set is called a

transformation of coordinates. In the present case, where the

new axes are parallel to the old, this transformation can be

said to consist in a translation of the axes.

14. Area of Any Triangle. Let Pi(aji, y^, P^ix^, 2/2)?

P3 (ajg
, 2/3) be the vertices of the triangle (Fig. 13). If we take

one of these vertices, say P3, as new

origin, with the new axes parallel to the ^

old, the new coordinates of Pi , Pg will be

:

I
Jb^ Jbo% Jb Xo X'\

y'i=yi-ys, y'2 = y2-:

Hence, by § 12, the area of the triangle

AAA is Fig. 13

A = i {x'yy'.,-x'^\)= l [{xi - xs) (2/2 - 2/3)- {xo- x^) (y, - y.,)]

For numerical computation it is best to put down the coordi-

nates of the three points with a 1 after each pair, thus

:
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flJl 2/1 1

x^ 2/2 1

% 2/.3
1

Then add the three products formed by following the full lines

and subtract the three i^roducts formed by following the dotted

lines as indicated in the accompany-

ing scheme, i.e. form the determinant

(of the third order)

= a^?/2 + a^22/3 + ^32/i - «^32/2 - ^^1 - aJi2/3. /

This is equal to the expression in \

the square brackets above, i.e. to 2 A.

Therefore

^=h

Here as in § 12 the sign of the area is + or — according as

the sense of the motion along the perimeter P^PoP^P^ is coun-

terclockwise or clockwise.

a^ 2/1 1

x^ 2/2 1

Xz 2/3 1

EXERCISES

1. Find the areas of the triangles having the following vertices

:

(a) (1, 3), (5, 2), (4, 6) ; (6) (-2, 1), (2, - 3), (0, - 6) ;

(c) (a, 6), (a, 0), (0, h)
;

{d) (4, 3), (6, - 2), (- 1, 5).

2. Show that the area of the triangle whose vertices are (7, — 8),

(— 3, 2), (—5, —4) is four times the area of the triangle formed by-

joining the midpoints of the sides.

3. Find the area of the quadrilateral whose vertices are (2, 3), (— 1,

-1), (-4,2), (-3,6).

4. Find the area of the triangle whose vertices are (a, 0), (0, 6),

C-c, -c).

5. Find the area of the triangle (1, 4), (3, -2), (-3, 16). What

does your result show about these points ?
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6. Find the area of the triangle (a, h + c), (6, c + a), (c, a + h).

What does the result show whatever the values of a^h^c'}

7. Show that the points (3, 7), (7, 3), (8, 8) are the vertices of an

isosceles triangle. What is its area ? Show that the same is true for the

points (a, 6), (6, a), (c, c), whatever a, 6, c, and find the area,

8. Find the perimeter of the triangle whose vertices are (3, 7), (2,

— 1), (5, 3). Is the triangle scalene ? What is its area ?

15. Statistics. Related Quantities. If pairs of values

of two related quantities are given, each of these pairs of

Values is represented by a point in the plane if the value of

one quantity is represented by the abscissa and that of the

other by the ordinate of the point. A curved line joining

these points gives a vivid idea of the way in which the two

quantities change. Statistics and the results of scientific ex-

periments are often represented in this manner.

EXERCISES

1. The population of the United States, as shown by the census reports,

is approximately as given in the following table :

Tear 1790 1800 '10 '20 '30 '40 '50 '60 'TO '80 '90 1900 '10

Millions 4 5 7 10 13 17 23 31 39 50 63 76 92

Mark the points corresponding to the pairs of numbers (1790, 4),

(1800, 5), etc., on squared pager, representing the time on the horizontal

axis and the population vertically. Connect these points by a curved line.

2. From the figure of Ex. 1, estimate approximately the population

of the United States in 1875 ; in 1905 ; in 1915.

3. From the figure of Ex. 1, estimate approximately when the popula-

tion was 25 millions ; 60 millions ; when it will be 100 milhons.

4. Draw a figure to represent the growth of the population of yom'

own State, from the figures given by the Census Reports.



I, § 15] COORDINATES 15

[Other data suitable for statistical graphs can be found in large quan-

tity in the Census Keports ; in the Crop Reports of the government ; in

the quotations of the market prices of food and of stocks and bonds
;
in

the World Almanac ; and in many other books. ]

5. The temperatures on a certain day varied hour by hour as follows :

A.M. N. P.M.

Time . .

Temp. . .

6

50

7

52

8

55

9

60

10

64

11

67

12

70

1

72

2

74

3

75

4

74

5

72

6

69

7

65

8

60

9

57

Draw a figure to represent these pairs of values.

6. In experiments on stretching an iron bar, the tension t (in tons)

and the elongation E (in thousandths of an inch) were found to be as

follows

:

t (in tons)

JS (in thousandths of an inch)

6

60

8

81

10

103

Draw a figure to represent these pairs of values.

[Other data can be found in books on Physics and Engineering.]

7. By Hooke's law, the elongation ^ of a stretched rod is supposed

to be connected with the tension t by the formula E = c -t, where c is a

constant. Show that if c = 10, with the units of Ex. 6, the values of E
and t would be nearly the same as those of Ex. 6. Plot the values given

by the formula and compare with the figure of Ex. 6.

8. The distances through which a body will fall from rest in a vacuum

in a time t are given by the formula s = 16 t^, approximately, if t is in

seconds and s is in feet. Show that corresponding values of s and t are

2

64

3

144

4

256

5

400

6

576

Draw a figure to represent these pairs of values.



16 PLANE ANALYTIC GEOMETRY [I, § 16

16. Polar Coordinates. The position of a point P in a

plane (Fig. 14) can also be assigned by its distance OP=r
from a fixed point, or pole, 0, and the angle xOP =

(f>,
made

by the line OP with a fixed line Ox, the polar axis. The dis-

tance r is called the radius vector, the angle <^ the polar angle

(or also the vectorial angle, azimuth, qmpU- j»

tvAie^ or anomaly), of the point P. The ^^^^

radius vector r and the polar angle <^ are O'^^^ £>

called the polar coordinates of P.
^'^' ^*

Locate the points: (5, \it), (6, |7r), (2, 140°), (7, 307°),

(V5, tt), (4, 0°).

To obtain for every point in the plane a single definite pair of polar

coordinates it is sufficient to take the radius vector r always positive and

to regard as polar angle the positive angle between and 2 tt (0 ^ < 2 tt)

through which the polar axis (regarded as a half-line or ray issuing from

the pole 0) must be turned about the pole O in the counterclockwise sense

to pass through P. The only exception is the pole for which r = 0,

while the polar angle is indeterminate.

But it is not necessary to confine the radius vector to positive values

and the polar angle to values between and 2 7r. A single definite point

P will correspond to every pair of real values of r and 0, if we agree that

a negative value of the radius vector means that the distance r is to be

laid off in the negative sense on the polar axis, after being turned through

the angle 0, and that a negative value of <j> means that the polar axis

should be turned in the clockwise sense.

The polar angle is then not changed by adding to it any positive or

negative integral multiple of 2 tt ; and a point whose polar coordinates are

r, can also be described as having the coordinates — r, (p ± ir.

Locate the points

:

(3, -i^), (a, -Itt), (-5, 75°), (-3, -20°).

17. Transformation from Cartesian to Polar Coordinates,

and vice versa. The coordinates OQ = x, QP=zy, defined in

§ 4, are called cartesian coordinates, to distinguish them
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from the polar coordinates. The term is derived from the

Latin form, Cartesius, of the name of Rene Descartes, who

first applied the method of coordinates systematically (1637),

and thus became the founder of analytic geometry.

The relation between the cartesian and polar coordinates of

one and the same point P appears from

Fig. 15. We have evidently :

V

^^V X \ X
Q

Fig. 15

x=:r COS <j>y y— ^^^ + 2/^

2/ = rsin<^, ^^
tan</,=:^.

18. Distance between Two Points in Polar Coordinates.

If two points Pi , Po are given by their polar coordinates, r^
,

<^i and r^ , <^2 ? the distance d = PjPg between

them is found from the triangle OP1P.2 (Fig. 16),

by the cosine law of trigonometry, if we ob-

serve that the angle at O is equal to ± (<^2— <^i) •

d = Vri^ -1-^2^ — 2 rirs cos (<^2 — <^i)- Fig. Iti

EXERCISES

1. Find the distances between the points : (2, | tt) and (4, | tt)
;

(a, Itt) and (3 a, ^tt).

2. Find the cartesian coordinates of the points (5, ^tt), (6, — -^tt),

(4a7r), (2, Itt), (7, 7r),(6, -tt), (4,0), (-3,60°), (-5, -90^^).

3. Find the polar coordinates of the points (\/3, 1), (— V3, 1), (1, —1),

i-h -i)» (-«' «)•

4. Find an expression for the area of the triangle whose vertices are

(0, 0), (n, 0i), and (ro
, 02).

5. Find the area of the triangle whose vertices are (vi , e6i), (r2
, 02)?

(»'3, 03).

c
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6. Find the radius vector of the point P on the Une joining the points

-Pi {ii'i 1 0i) and P-z (r2, ^2) sucli that the polar angle of P is ^(0i + 02) •

7. If the axes are oblique with angle w, what arc the relations existing

between the cartesian and polar coordinates of a point ?

19. Projection of Vectors. A straight line segment AB
of definite length, direction, and sense (indicated by an arrow-

head, pointing from A to B) is called a vector. The projection

A'B' (Figs. 17, 18) of a vector AB on an axis, i.e. on a line I

on which a definite sense has been selected as positive, is the

product of the length (or absolute value) of the vector AB into

the cosine of the angle between the positive senses of the axis and

the vector :

A'B' = AB cos a.

The positive sense of the axis (drawn through the initial point

of the vector) makes with the vector two angles whose sum is

2 IT = 360°. As their cosines

are the same it makes no differ-

ence which of the two angles is

used.

With these conventions it is

readily seen that the sum of the

projections of the sides of an

open polygon on any axis is equal

to the projection of the closing

side on the same axis, the sides of the open polygon being

taken in the same sense around the perimeter. Thus, in Fig. 19,

Fig. 19



I, § 20] COORDINATES 19

the vectors P1P2) A^s? ••• AA are inclined at the angles

Ui, 02, •" a;i to the axis I; the closing line PiPq makes the

angle «with ?; its projection is P'lP'e] and we have

P1P2 cos «! H- P2P3 cos ao 4- P3P4 cos ccg + P4P5 cos a^ -\- P^Pq cos «5

= P'iP'6 = PiP6COsa.

For, if the abscissas of Pj, Pg , • • • Pe measured along I, from

any origin on /, are Xi, X2, ••• iCg , the projections of the

vectors are iCg— iCi , a^g— ajg , etc., so that our equation becomes

the identity

:

•^2 — ^ ~r ^3 — ^2 ~r *^4 — -^s "h -^o — ^4 I -^6 — ^5^^ ^6 — "^i*

20. Components and Resultants of Vectors. In physics,

forces, as well as velocities, accelerations, etc., are represented

by vectors because such magnitudes have not only a numerical

value but also a definite direction and

sense. ? "^^v
According to the j^^^i^'^^^^^^ogram law of Z^^-" /

physics, two forces OPi, OP2, acting on ^
fig. 20

'

the same particle, are together equivalent

to the single force OP (Fig. 20), whose vector is the diagonal

of the parallelogram formed with OPi, OP2 as adjacent

sides. The same law holds for simultaneous velocities and

accelerations, and for simultaneous or consecutive rectilinear

translations. The vector OP is called the resultant of OP^

and OP2 , and the vectors OPi , OP2 are called the components

of OP.

To construct the resultant it suffices to lay off from the ex-

tremity of the vector OPi the vector P^P= OP2 ; the closing

line OP is the resultant. This leads at once to finding the
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resultant OP of any num-

ber of vectors, by adding

the component vectors geo-

metrically, i.e. putting them

together endwise succes-

sively, as in Fig. 21, where

the dotted lines need not

be drawn.

By §19, the projection
^'''- ^^

of the resultant on any axis is equal to the sum of the pro-

jections of all the components on the same axis.

EXERCISES

1. The cartesian coordinates ic, y of any point P are the projections of

its radius vector OP on the axes Ox, Oy. (See § 16.)

2. The projection of any vector AB on the axis Ox, is the difference

of the abscissas of A and B ; similarly for Oy.

3. A force of 10 lb. is inclined to the horizon at 60° ; find its hori-

zontal and vertical components.

4. A ship sails 40 miles N. 60° E., then 24 miles N. 45° E. How far

is the ship then from its starting point ? How far east ? How far north ?

5. A point moves 5 ft. along one side of an equilateral triangle, then

6 ft. parallel to the second, and finally 8 ft. parallel to the third side.

What is the distance from the starting point ?

6. The sum of the projections of the sides of any closed polygon on

any axis is zero.

7. If three forces acting on a particle are parallel and proportional to

the sides of a triangle, the forces are in equilibrium, i.e. their resultant is

zero. Similarly for any closed polygon.

8. Find the resultant of the forces OPi , OP2 , OP3 , OP4, 0P&, if

the coordinates of Pi, P2 , P3, P4, P5 , with O as origin, are (3, 1),

(1, 2), (-1, 3), (-2, -2), (2, -2). (Resolve each force into its

components along the axes.)



I, § 21] COORDINATES 21

9. If any number of vectors (in the same plane) , applied at the ori-

gin, are given by the coordinates x, y of their extremities, the length of

the resultant is =V{IiX)'^ -\-{I>yy^ (where 2x means the sum of the ab-

scissas, Sy the sum of the ordinates) , and its direction makes with Ox an

angle a such that tan a = I,y/I>x.

10. Find the horizontal and vertical components of the velocity of a

ball when moving 200 ft./sec. at an angle of 30° to the horizon.

11. Six forces of 1, 2, 3, 4, 5, 6 lb., making angles of 60° each with

the next, are applied at the same point, in a plane ; find their resultant.

12. A particle at one vertex of a square is acted upon by three forces

represented by the vectors from the particle to the other three vertices
;

find the resultant.

21. Geometric Propositions. In using analytic geometry

to prove general geometric propositions, it is generally conven-

ient to select as origin a prominent point in the geometric

figure, and as axes of coordinates prominent lines of the figure.

But sometimes greater symmetry and elegance is gained by

taking the coordinate system in a general position. (See, e.g.,

Exs. 14, 17, 18, below.)

MISCELLANEOUS EXERCISES

1. A regular hexagon of side 1 has its center at the origin and one

diagonal coincident with the axis Ox ; find the coordinates of the vertices.

2. Show by similar triangles that the points (1, 4), (3, — 2), (— 2,

13) lie on a straight line.

3. If a square, with each side 5 units in length, is placed with one

vertex at the origin and a diagonal coincident with the axis Ox, what are

the coordinates of the vertices ?

4. If a rectangle, with two sides 3 units in length and two sides

3VS units in length, is placed with one vertex at the origin and a diagonal

along the axis Ox, what are the coordinates of the vertices? There are two

possible positions of the rectangle
;
give the answers in both cases.
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6. Show that the pomts (0, - 1), (-2, 3), (6, 7), (8, 3) are the

vertices of a parallelogram. Prove that this parallelogram is a rectangle.

6. Show that the points (1, 1), (-1, —1), ( + V3, — >/3) are the

vertices of an equilateral triangle.

7. Show that the points (6, 6), (3/2, - 3), (- 3, 12), (- J^^, 3) are

the vertices of a parallelogram.

8. Find the radius and the coordinates of the center of the circle pass-

ing through the three points (2, 3), (-2, 7), (0, 0).

9. The vertices of a triangle are (0, 6), (4, —3), (—5, 6). Find the

lengths of the medians and the coordinates of the centroid of the triangle,

i.e. of the intersection of the medians.

Prove the following propositions :

10. The diagonals of any rectangle are equal.

11. The distance between the midpoints of two sides of any triangle

is equal to half the third side.

12. The distance between the midpoints of the non-parallel sides of a

trapezoid is equal to half the sum of the parallel sides.

13. In a right triangle, the distance from the vertex of the right angle

to the midpoint of the hypotenuse is equal to half the hypotenuse.

14. The line segments joining the midpoints of the adjacent sides of a

quadrilateral form a parallelogram.

15. If two medians of a triangle are equal, the triangle is isosceles.

16. In any triangle the sum of the squares of any two sides is equal

to twice the square of the median drawn to the midpoint of the third side

plus half the square of the third side.

17. The line segments joining the midpoints of the opposite sides of

any quadrilateral bisect each other.

18. The sum of the squares of the sides of a quadrilateral is equal to

the sum of the squares of the diagonals plus four times the square of the

line segment joining the midpoints of the diagonals.

19. The difference of the squares of any two sides of a triangle is equal

to the difference of the squares of their projections on the third side.

20. The vertices (xi, y{), (x^, 2/2), (arg, Vz) of a triangle being given,

find the centroid (intersection of medians).

Vj>A^



CHAPTER II

THE STRAIGHT LINE

22. Line Parallel to an Axis. When the coordinates x, y

of a point P with reference to given axes Ox, Oy are known,

the position of P in the plane of the axes is determined com-

pletely and uniquely. Suppose now

that only one of the coordinates is

given, say, a? = 3 ; what can be said

about the position of the point P?
It evidently lies somewhere on the

line AB (Fig. 22) that is parallel to

the axis Oy and Jias the distance 3

from Oy. Every point of the line AB
has an abscissa x = 3, and every point

whose abscissa is 3 lies on the line AB.

say that the equation
aj = 3

^rt^

A

Fig. 22

3 \4 \s

For this reason we

represents the line AB; we also say that a; = 3 is the equation

of the line AB.

More generally, the equation x=a, where a is any real

number, represents that parallel to the axis Oy whose distance

from Oy is a. Similarly, the equation y = h represents a

parallel to the axis Ox.

EXERCISES ^* \

Draw the lines represented by the equations :

1. x=-2. 4. 5x = 7. 7. 3a; + 1 = 0.

2. ic = 0. 6. y = 0. 8. 10-3y = 0.

3. a: = 12.5, 6. 2y=-7. 9. ?/=±2.
23

i^.
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23. Line through the Origin. Let us next consider any

line * through the origin 0, such as the line OP in Fig. 23.

The points of this line have the prop-

erty that the ratio y/x of their coordi-

nates is the same, wherever on this

line the point P be taken. This ratio

is equal to the tangent of the angle a ^
made by the line with the axis Ox, Fig. 23

i.e, to what we. shall call the slope of the line. Let us put

tan a = w

;

then we have, for any point P on this line : y/x = m, i.e. :

(1) y = mx.

Moreover, for any point Q, not on this line, the ratio y/x

must evidently be different from tan a, i.e. from m. The equa-

tion y = mx is therefore said to represent the line through O
whose slope is m; and y = 7nx is called the equation of this line.

We mean by this statement that the relation y = mx is satis-

fied by the coordinates of every point on the line OP, and only

by the coordinates of the points on this line. Notice in partic-

ular that the coordinates of the origin 0, i.e. x = 0, y = 0,

satisfy the equation y = mx.

24. Proportional Quantities. Any two values of x are

proportional to the corresponding values of y it y = mx. For,

if (xi , ?/i) and (iCg
, 2/2) ^^^ two pairs of values of x and y that

satisfy (1), we have

yi==mxi, y2 = mx2;

* For the sake of brevity, a straight line will here in general be spoken oi

simply as a line ; a line that is not straight will be called a curve.
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hence, dividing,

2/1/2/2 = Va?2.

The constant quantity m is called the factor ofproportionality.

Many instances occur in mathematics and in the applied

sciences of two quantities related to each other in this man-

ner. It is often said that one quantity y varies as the other

quantity x.

Thus Hooke's Law states that the elongation E of a, stretched

wire or spring varies as the tension t ; that is, E = Jet, where k

is a constant.

Again, the circumference c of a circle varies as the radius r;

EXERCISES

1. Draw each of the lines :

(a)y = 2x. (c) yz=-j\x. (e) 5x+3?/=0. {g)y = -x.

(b) y=~Sx. {d)5y = Sx. {f)y = x. (h)x-y = Q.

2. Show that the equation ax -^-hy =Q can be reduced to the form

y = 7nx, if & :51b 0, and therefore represents a line through the origin.

3. Find the slope of the lines

:

(a) x + y=0. (c) Sx_-^y = 0.

(b) x-y = 0. (d) \/2x + y = 0.

4. Draw a line to represent Hooke's Law E = kt, ii k = 10 (see Ex. 7,

p. 15). Let t be represented as horizontal lengths (as is x in § 23) and

let E be represented by vertical lengths (as is ?/ in § 23).

6. Draw a line to represent the relation c = 2 7rr, where c means the

circumference and r the radius of a circle.

6. The number of yards y in a given length varies as the number of

feet / in the same length ; in particular, f=Sy. Draw a figure to

represent this relation.

7. If 1 in. = 2.54 cm., show that c = 2.54 i, where c is the number of

centimeters and i is the number of inches in the same length. Draw a

figure.
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25. Slope Form. Finally, consider a line that does not pass

through the origin and is not parallel to either of the axes of

coordinates (Fig. 24) ; let it intersect the axes Ox, Oy at A,

B, respectively, and let P(x, y) be any other point on it. The
figure shows that the slope m of y

the line, i.e. the tangent of the

angle a at which the line is in- b

clined to the axis Ox, is ^^^^

RPm = tan a =

or, since i2P= QP

BR'

-QR=QP-OB
y — b

Fig. 24

-bSiXidBR = OQ=:x:

that is,

(2) y = mx 4- b,

where b = OB is called the intercept made by the line on the

axis Oy, or briefly the y-intercept.

The slope angle a at which the line is inclined to the axis Ox

is always understood as the smallest angle through which the

positive half of the axis Ox must be turned counterclockwise

about the origin to become parallel to the line.

26. Equation of a Line. On the line AB oi Fig. 24 take

any other point P' ; let its coordinates be x', y', and show that

y' = mx' + b.

Take the point P' {x', y') outside the line AB and show that

the equation y = mx + 6 is not satisfied by the coordinates x',

y' of such a point.

For these reasons the equation ys=mx-\-b is said to represent

the line ivhose y-intercept is b and ivhose slope is m ; it is also

called the equation of this line. The ^/-intercept OB = b and

the slope m = tan a together fully determine the line.
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Every line of the plane can be represented by an equation of the

form
y = mx + b,

excepting the lines parallel to the axis Oy. When the line be-

comes parallel to the axis Oy, both its slope m and its ly-inter-

cept b become infinite. We have seen in § 22 that the equa-

tion of a line parallel to the axis Oy is of the fbrm x — a.

Eeduce the equation ^x—2y=5 to the form y = mx-\-b and

sketch the line.

EXERCISES

1. Sketch the lines whose y-intercept is & = 2 and whose slopes are

m =
I, 3, 0, — I ; write down their equations.

2. Sketch the lines whose slope is w = 4/3 and whose ^/-intercepts are

0, 1, 2, 5, — 1, — 2, — 6, — 12.2, and write down their equations.

3. Sketch the lines whose equations are

:

(a) y=2x+S. (c) y=x-l. (e) x-y=l. (g) 1x-y+ l2=0.

(6) y=_ix+l. (d)x-\-y= l. (/)x-2y + 2=0. (/i) 4x+ 3?/+ 5=0.

4. Do the points (1, 5), (-2, -1), (3, 7) lie on the line y= 2x-\-Z ?

5. A cistern that already contained 300 gallons of water is filled at the

rate of 1 00 gallons per hour. Show that the amount A of water in the

cistern n hours after filling begins is J. = 100 w+300. Draw a figure to

represent this relation, plotting the values of A vertically, with 1 vertical

space = 100 gallons.

6. In experiments with a pulley block, the pull p in lbs., required to

lift a load I in lbs., was found to be expressed by the equation p= . 15 Z+ 2.

Draw this line. How much pull is required to operate the pulley with no

load (i.e. when 1 = 0)?

7. The readings of a gas meter being tested, T, were found in compari-

son with those of a standard gas meter S, and the two readings satisfied

the equation r = 300 + 1.2 S. Draw a figure. What was the reading

T when the reading S was zero ? What is the meaning of the slope of

the line in the figure ?



28 PLANE ANALYTIC GEOMETRY [II, § 27

27. Parallel and Perpendicular Lines. Two lines

y = m-^x + &i , 2/ = '^^2^* + ^2

are obviously parallel if they have the same slope, i.e. if

(3) mi = m^.

Two lines 2/ = mjcc 4- ft^ , ?/ = mga; + h^ are perpendicular if the

slope of one is equal to minus the reciprocal of the slope of

the other, i.e. if

(4) mima = — 1.

For if m2 = tan aj , mg = tan Wg , the condition that mim^ = — 1

gives tan aa = — 1/tan ctj = — cot a^ , whence ots = «i + i t.

(^C EXERCISES

1. Write down the equation of any line : (a) parallel to y = 3 a: — 2,

(6) perpendicular to y = 3 x — 2.

2. Show that the parallel to y = Sx — 2 through the origin isy = S x.

3. Show that the perpendicular to y =zSx — 2 through the origin is

y=-^x.
4. For what value of b does the line y = Sx + b pass through the

point (4, 1) ? Find the parallel to ?/ = 3 x — 2 through the point (4, 1).

6. Find the parallel to y = 5x + 1 through the point (2, 3).

6. Find the perpendicular to y = 2x — 1 through the point (1, 4).

7. What is the geometrical meaning of 61 = 62 in the equations

y — m-iX + ?>i , y = m^x + &2 ?

8. Two water meters are attached to the same water pipe and the water

is allowed to flow steadily through the pipe. The readings B\ and ^2 of the

two meters are found to be connected with the time t by means of the

equations Bi = 2.6t, i?2 = 2.5« + 150,

where i?i and B2 are measured in cubic feet and t is measured in seconds.

Show that the lines that represent these equations are parallel. What

is the meaning of this fact ?

9. The equations connecting the pull p required to lift a load lo is

found for two pulley blocks to be

pi = .05 w; -t- 2, p2 = .05 w + 1.6

Show that the lines representing these equations are parallel. Explain.



II, §29] THE STRAIGHT LINE 29

10. The equations connecting the pull p required to lift a load w is

found for two pulley blocks to be

Pi = .1510 + 1.5, p<i
— .05 w + 1.5.

Show that the lines representing these equations are not parallel, but

that the values of pi and p-i are equal when lo = 0. Explain.

28. Linear Function. The equation y = mx+b, when m
and b are given, assigns to every value of x one and only one

definite value of y. This is often expressed by saying that

mx + 6 is a function of x ; and as the expression mx + 6 is of

the first degree in x, it is called Siftinctiori of the first degree or,

owing to its geometrical meaning, a linear function of x.

Examples of functions of x that are not linear are 3 ic^ — 5,

ax^ -\-hx-\-c, x{x — l), 1/x, sin a;, 10"^, etc. The equations

y = 3a^ — 5, y = ax^ -{- bx -\- Cj etc., represent, as we shall see

later, not straight lines but curves.

The linear function y = mx + b, being the most simple kind

of function, occurs very often in the applications. Notice that

the constant b is the value of the function for x = 0. The con-

stant m is the rate of change of y with respect to x.

29. Illustrations. Example 1. A man, on a certain date,

has $10 in bank; he deposits $3 at the end of every week;

how much has he in bank x weeks after date ?

Denoting by y the number of dollars in bank, we have

y = 3x-\-10.

His deposit at any time a; is a linear function of x. Notice

that the coefficient of x gives the rate of increase of this de-

posit ; in the graph this is the slope of the line.

Example 2. Water freezes at 0° C. and 32° F. ; it boils at

100'* C. and at 212° F. ; assuming that mercury expands uni-

formly, i.e. proportionally to the temperature, and denoting
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by X any temperature in Centigrade degrees, by y the same

temperature in Fahrenheit degrees, we have

y-S2 212-32 9 . o . oo

If the line represented by this equation be drawn accurately,

on a sufficiently large scale, it could be used to convert centi-

grade temperature into Fahrenheit temperature, and vice versa.

Example 3. A rubber band, 1 ft. long, is found to stretch

1 in. by a suspended mass of 1 lb. Let the suspended mass

be increased by 1 oz., 2 oz., etc., and let the corresponding

lengths of the band be measured. Plotting the masses as ab-

scissas and the lengths of the band as ordinates, it will be

found that the points (x, y) lie very nearly on a straight line

whose equation is y = ^^x -\-l. The experimental fact that

the points lie on a straight line, i.e. that the function is linear,

means that the extension, y — 1, is proportional to the tension

j

i.e. to the weight of the suspended mass x (Hooke's Law).

Notice that only the part of the line in the first quadrant,

and indeed only a portion of this, has a physical meaning.

Can this range be extended by using a spiral steel spring ?

Example 4. When a point P moves along a line so as to

describe always equal spaces in equal times, its motion is called

uniform. The spaces x^assed over are then proportional to the

times in which they are described, and the coefficient of pro-

portionality, i.e. the ratio of the distance to the time, is called

the velocity v of the uniform motion. If at the time t = the

moving point is at the distance Sq, and at the time t at the dis-

tance s, from the origin, then

S = SQ-\-Vt.

Thus, in uniform motion, the distance s is a linear function of

the time t, and the coefficient of t is the speed : v = (s — SQ)/t.
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Example 5. When a body falls from rest (in a vacuum) its

velocity v is proportional to the time t of falling : v= gt, where

g is about 32 if the velocity is expressed in ft./sec, or 980

if the velocity is expressed in cm./sec.

If, at the time t = 0, the body is thrown downward with an

initial velocity Vq, its velocity at any subsequent time t is

v = Vq + gt.

Thus the velocity is a linear function of t, and the coefficient g

of t denotes the rate at which the velocity changes with the

time, i.e. the acceleration of the falling body.

EXERCISES

1. Draw the line represented by the equation y = f x + 32 of Ex-

ample 2, § 29. What is its slope ? What is the y-intercept ? What is

the meaning of each of these quantities if y and x represent the tempera-

tures in Fahrenheit and in Centigrade measure, respectively ?

2. Kepresent the equation ?/ = j^^ a: + 1 of Example 3, § 29, by a figure.

What is the meaning of the ?/-intercept ?

3. Draw the line s = sq -\- vt of Example 4, § 29, for the values Sq = 10,

^ = 3. What is the meaning ofv? Show that the speed v may be thought

of as the rate of increase of s per second.

4. If, in the preceding exercise, v be given a value greater than 3,

how does the new line compare with the one just drawn ?

6. If, in Ex. 3, v is given the value 3, and so several different values,

show that the lines represented by the equation are parallel. Explain.

6. In experiments on the temperatures at various depths in a mine,

the temperature (Centigrade) T was found to be connected with the

depth d by the equation r= 60 + .01 d, where d is measured in feet.

Draw a figure to represent this equation. Show that the rate of increase

of the temperature was 1° per hundred feet.

7. In experiments on a pulley block, the pull p (in lb.) required to

lift a weight w (in lb.) was found to he p = .03 w { 0.5. Show that the

rate of increase of p is 3 lb. per hundred weight increase in w.
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30. General Linear Equation. The equation

in which A, B, C are any real numbers, is called the general

equation of the first degree in x and y. The coefficients Ay B, C
are called the constants of the equation ; x, y are called the

variables. It is assumed that A and B are not both zero.

The terms Ax and By are of the first degree ; the term C is

said to be of degree zero because it might be written in the

form Cx^ ; this term C is also called the constant term.

Every equation of the first degree,

(5) Ax+By-\-C = 0,

in which A and B are not both zero, represents a straight line;

and conversely, every straight line can be represented by such an

equation. For this reason, every equation of the first degree

is called a linear equation.

The first part of this fundamental proposition follows from

the fact that, when B is not equal to zero, the equation can be

reduced to the form y = mx-^ bhy dividing both sides by B
;

and we know that y = mx -\- b represents a line (§ 25). When
B is equal to zero, the equation reduces to the form x = a,

which also represents a line (§ 22).

The second part of the theorem follows from the fact that

the equations which we have found in the preceding articles

'for any line are all particular cases of the equation

Ax-\-By -\- C = 0.

This equation still expresses the same relation between x

and y when multiplied by any constant factor, not zero. Thus,

any one of the constants A, B, C, if not zero, can be reduced

to 1 by dividing both sides of the equation by this constant.

The equation is therefore said to contain only tivo (not three)

essential constants.
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31. Conditions for Parallelism and for Perpendicularity.

It is easy to recognize whether two lines whose equations are

Ax + By-i-C=0 and A'x -\- B'y + C" = are parallel or per-

pendicular. The lines are parallel if they have the same slope,

and they are perpendicular (§ 27) if the product of their slopes

is equal to —1. The slopes of our lines are — A/B and

— A'/B' ; hence these lines are parallel if — A/B = — A'/B'y

*-e-if A:B = A':B':

and they are perpendicular if

^.^; = -l, Le.ii
B B'

'
AA' + BB' = 0.

32. Intercept Form. If the constant term (7 in a linear

equation is zero, the equation represents a line through the

origin. For, the coordinates (0, 0) of the origin satisfy the

equation Ax + By = 0.

If the constant terra C is not equal to zero, the equation

Ax + By -\- C= can be divided by (7 ; it then reduces to the

form
^x + |, + l=0.

If A and B are both different from zero, this can be written

:

+ y
- C/A ' - C/B '

or putting — C/A = a, — C/B

(6)

6:

a o
Fig. 25

The conditions A^(), B^^O mean

evidently that the line is not parallel to either of the axes.

Therefore the equation of any line, not passing through the

origin, and not parallel to either axis, can be written in the
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form (6). With 2/ = this equation gives a; = a; with x =
it gives y = b. Thus

^ B' A

are the intercepts (Fig. 25) made by the line on the axes Oxy

Oyj respectively (see § 25).

EXERCISES

1. Write down the equations of the line whose intercepts on the

axes Ox^ Oy are 5 and — 3, respectively ; the line whose intercepts are

— I and 7 ; the line whose intercepts are — 1 and — |. Sketch each of

the lines and reduce each of the equations to the form Ax-\-By-{-C=0, so

that A, B, C are integers.

2. Find the intercepts of the lines : Sx — 2y = 1, x + ly-{-l = 0,

— Sx + ^y — 5 = 0. Try to read off the values of the intercepts directly

from these equations as they stand.

3. In Ex. 2, find the slopes of the lines.

4. Prove (6), § 32 by equality of areas, after clearing of fractions.

5. What is the equation of the axis Oy ? of the axis Ox ?

6. What is the value of B such that the line represented by the equa-

tion ix-{- By — li = passes through the point (— 5, 17) ?

7. What is the value of A such that the line Ax -\- 7 y = 10 has its

OS-intercept equal to — 8 ?

8. Reduce each of the following equations to the intercept form (6),

and draw the lines :

(a) Sx-6y-16 = 0. (b) x -{- ^y + 1= 0.

(c) i^-3y-6 ^^ (d) 5.x = 3x + ?/-10.
x + y

9. Reduce the equations of Ex. 8 to the slope form (2), § 25.

10. Find the equation of the hue of slope passing through the point

(6,-5).
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XI. What relation exists between the coefficients of the equation

Ax-i- By + C = 0, ii the line is parallel to the line ix — 6y = 8? parallel

to the axis Oy ?

12. Show that the points (- 1, -7), Q, -3), (2,2), (-2, -10)
lie on the same line.

13. Find the area of the triangle formed by the lines x+y=0, x—y=0,
X— a = 0.

14. Show that the line 4(ic — a) + 5(y — &) = is perpendicular to the

line 5 ic— 4 y—10=0 and passes through the point (a, b).

15. A line has equal positive intercepts and passes through (—5, 14).

What is its equation ? its slope ?

16. If a line through the point (6, 7) has the slope 4, what is its

y-intercept ? its a;-intercept ?

17. The Reaumur thermometer is graduated so that water freezes at

0° and boils at 80". Draw the line that represents the reading B of the

Reaumur thermometer as a function of the corresponding reading G of

the Centigrade thermometer.

18. What function of the altitude is the area of a triangle of given

base ?

19. A printer asks 75 f to set the type for a program and 2 ^ per copy

for printing. The total cost is what function of the number of copies

printed ? Draw the line representing the function.

Another printer asks 3 ^ per copy, with no charges for setting the type.

For how many copies would both charge the same ?

20. The sum of two complementary angles a and j3 is ^ tt ; draw the

line representing /3 as a function of a. When a = | tt, what is /3 ?

21. Express the value of a note of § 1000 at the end of the first year as

a function of the rate of interest. At 6% simple interest its value is what
function of the time in years ?

22. Two weights are attached to the opposite ends of a rope that runs

through a double pulley block of which one block is fastened at a height

above ground. If x and y denote the distances of the two weights above the

ground, determine a linear relation between them if a; = 40 when y =
and y = 10 when x = 0.
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33. Line through One Point. To find the line of given

slope 7ni through a given point Pi(i«i, 2/1)? observe that the

equation must be of the form (2), viz.

y = TiiiX + b,

since this line has the slope m^. If this line is to pass through

the given point, the coordinates x^, y^ must satisfy this equa-

tion, i.e. we must have

2/1 = ra^^i + &•

This equation determines h, and the value of h so found might

be substituted in the preceding equation. But we can eliminate

h more readily between the two equations by subtracting the

latter from the former. This gives

y-yi = m,{x-x,)

as the equation of the line of slope Wj through Pi{xi, y^.

The problem of finding a line through a given point parallel,

or perpendicular, to a given line is merely a particular case of

the problem just solved, since the slope of the required line can

be found from the equation of the given line (§ 27). If the

slope of the given line is m^ = tan a-^, the slope of any parallel

line is also mj, and the slope of any line perpendicular to it is

mg = tan (ai-\-lir) = — cot a^ = ——

.

mi

34. Line throughTwo Points. To find the line through two

given points, Pi{xi, 2/0? -^2(^2? 2/2)? observe (Fig. 26) that the

slope of the required line is evi- ^
dently

if, as in § 9, we denote by A a;, A?/

the projections of P1P2 011 Ox, Oy\
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and as the line is to pass through (xi, y^), we find its equation

by § 33 as V V ^ ^. V , ^
j^^

,; ^p^
2/2-2/1, .— W, = (x— cc, ),

a; 2/ 1

^'1 2/1 1

^2 2/2 1

y-yi = -~(^-^i)'

The equation of the line through two given points (aj^, yi),

fe 2/2) can also be written in the determinant form

which (§ 14) means that the point (x, y) is such as to form

with the given points a triangle of zero area. By expanding

the determinant it can be shown that this equation agrees with

the preceding equation. A more direct proof will be given

later (§ 49).

EXERCISES

1. Find the equation of the line through the point (—7, 2) parallel

to the line y = Sx.

2. Show that the points (4, —3), (—5, 2), (5, 20) are the vertices of

a right triangle.

3. Find the equation of the line through the point (— 6, — 3) which

makes an angle of 30° with the axis Ox ;
30° with the axis Oy.

4. Does the line of slope | through the point (4, 3) pass through the

.point (—5, -4) ?

5. Find the equation of the line through the point (—2, 1) parallel to

the line through the points (4, 2) and (- 3, — 2).

6. Find the equations of the lines through the origin which trisect

that portion of the line 5 x - 6 y = 60 which lies in the fourth quadrant.

7. What are the intercepts of the line through the points (2, —3),

(-5, 4) ?
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8. Show that the equation of the line through the point (a, 6) per-

pendicular to the line Ax-\- By -{- C = is (x — a)/A = (y — h)/B.

9, Find the equations of the diagonals of the rectangle formed by the

lines ic + a = 0, a; — &=0, ?/ + c = 0, y — cZ = 0.

10. Find the equation of the perpendicular bisector of the line joining

the points (4, —5) and (— 3, 2). Show that any point on it is equally

distant from each of the two given points.

11. Find the equation of the line perpendicular to the line 4x—3?/+6=0
that passes through the midpoint of (—4, 7) and (2, 2).

12. What are the coordinates of a point equidistant from the points

(2, —3) and (— 5, 0) and such that the line joining the point to the origin

has a slope 1 ?

13. If the axes are oblique with angle t»7, show that the slope of the

line joining the points P\(x\, y\) and P^ixo, y^) is

(y2 — yi) sin a>

(a;2-a;i) + {y2-yi)cosw

^ 14. If the axes are oblique with angle w, show that the equation of the

line through the point Pi{xi, yi) which makes with the axis Ox the

angle (p, is

sm (w — 0)

Is the coefficient of (x — Xi) the slope of this line ?

15. In an experiment with a pulley-block it is assumed that the rela-

tion between the load I and the pull p required to lift it is linear. Find

the relation Up = 8 when I = 100, and p = 12 when I = 200.

16. In an experiment in stretching a brass wire it is assumed that the

elongation E is connected with the tension t by means of a linear relation.

Find this relation if t = IS lb. when E = .1 in., and i = 58 lb. when

^ = .3 in.

17. A cistern is being filled by water flowing into it at the rate of 30

gallons per second. Assuming that the amount A of water in the cistern

is connected with the time « by a hnear relation, find this relation if

A = 1000 when ( = 10. Hence find A when t = 0.



CHAPTER III

SIMULTANEOUS LINEAR EQUATIONS
DETERMINANTS

PART I. EQUATIONS IN TWO UNKNOWNS
DETERMINANTS OF SECOND ORDER

35. Intersection of Two Lines. The point of intersection

of any two lines is found by solving the equations of the lines as

simultaneous equations. For the coordinates of the point of

intersection must satisfy each of the two equations, since this

point lies on each of the two lines ; and it is the only point

having this property. Find the points of intersection of the

following pairs of lines

:

^^^
l3a; + 52/-34 = 0. ^^ \lx + 2y=^0.

.

^^^ l5a;-22/ + ll = 0.

The solution of simultaneous linear equations is much

facilitated by the use of determinants. As, moreover, deter-

minants are used to advantage in many other problems (see,

e.g., §§ 12, 14) it is desirable to study determinants systemati-

cally before proceeding with the study of the straight line.

36. Solution of Two Linear Equations. To solve two

linear equations (§ 30),

[ ttga; + &^ = ^2 J

we may eliminate y to find x, and eliminate x to find y. The

elimination of y is done systematically by multiplying the first

39
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equation by 63? the second by 61, and then subtracting the

second from the first ; this gives

Likewise, to eliminate x, multiply the first equation by a2, the

second by aj , and subtract the first from the second :

If aib2 — a2&i =^ ^} we can divide by this quantity and thus

find

/f)\ ^ "'1"2— ^2^1 „. ^V^2 — ^2%
(Z) X = —

;

—
, y = ; , •

^ a^2 — «20i otiOa — «20i

Observe that the values of x and y are quotients with the

same denominator, and that the numerator of x is obtained

from this denominator by simply replacing a by A;, while the

numerator of y is obtained from the same denominator by

replacing h by k.

This peculiar form of the numerators and denominators of

X and y is brought out more clearly if we agree to write the

common denominator ajftg — ^2^1 in the form of a determinant

:

an 60
(3)

as in § 12. Thus

2

7

-1
4

=2x5-7x3 11;

= -lx2-4x7=-30.

With this notation, the values (2) of x and y are

(4) a;=

^1 &i

"'2 ^2

% fc,

aj fc,

Oi 61

aj 6.

I"
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37. General Rule. If a, h, c, d are any four numbers, the

expression a i,
i

c ay

which stands for ad — he, is called a determinant, more pre-

cisely, a determinant of the second order because two numbers

occur in each (horizontal) row, as well as in each (vertical)

column. (See § 12.)

The determinant (3) is called the determinant of the equa-

tions (1), § 36.

We can then state the following rule for solving the two

linear equations (1) : If the determinant of the equations is not

equal to zero, x as well as y is the quotient of two determinants

;

the denominator is the sayiie, viz. the determinant of the equa-

tio7is (1) ; the numerator of x is obtained from this denominator

by replacing the coefficients of x by the constant terms, the numer-

ator of y is found from the same denominator by replacing the

coefficients ofy by the constant terms.*

EXERCISES

1. Find the values of the following determinants :

(«)
10 2

3 7

(c?)
12 5

(0

2-1
1 2

h -12

f -§
2. Solve the following equations ; in writing down the solution, begin

with the denominators

:

(a-) P^-2y = l,

|2x + 3y + 4 = 0,

^ ^ \Bx-5y-16 = 0.

(ft)

i2x + 7y = 3,

\5x-y = -ll.

l6x-3y-2 = 0,

[y =:4x-l.

* One great advantage of this rule is that the same rule applies to the solu-

tion of any (finite) number of linear equations with the same number of

variables. (See § 74.)
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38. Exceptions. The process of § 37 cannot be applied

when the determinant of the equations (1) vanishes, i.e. when

= 0,

that is, when ajj2 = ^2^1 •

For the sake of simplicity we here assume that none of the

four numbers a^, b^, a^, 6, is zero. If any one of them were

zero, we might solve the equation in which it occurs to obtain

the value of one of the variables. With this assumption, the

condition may be written in the form

02 _ 62

ai by

or, denoting the common value of these quotients by m

:

a^ = ma^f b^ = mb^,

so that the equations (1) become

a^x + biy = A^i,

maiX + mbiy = k^.

We must now distinguish two cases, according as k^ = m\ or

^2 ^ mfci. In the former case, i.e. if

k.^ = mkx,

the second equation reduces, upon division by m, to the first

equation. Thus, the two equations represent one and the

same relation between x and y, and are therefore not sufficient

to determine x and y separately. We can assign to either

variable an arbitrary value and then find a corresponding

value of the other variable. The equations (1) can then be

said to have an infinite number of solutions.

In the other case, i.e. if

the equations are evidently inconsistent, and there exist no

finite values of x and y satisfying both equations. Thus the

equations \x — 2y = 2, 2 « — 12 v/ = 15 are inconsistent.
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39. Geometric Interpretation. All these results about

linear equations can be interpreted geometrically. We have

seen (§ 30) that every linear equation represents a straight

line, and (§ 35) that by solving two such equations we find

the coordinates of the point of intersection of the two lines.

Now two lines in a plane may either intersect, or coincide, or

be parallel. In the first case, they have a single point in com-

mon ; in the second, they have an infinite number of points in

common ; in the third, they have no point in common. The

first case is that of §§ 36, 37 ; the last two cases are discussed in

§ 38. Including the case of coincident lines with that of paral-

lels, we may say that the relation

is the necessary and sufficient condition of parallelism of the

two lines a^x -{- hy = h, a^x + b.jy = k,.

=

40. Elimination. If in the linear equations (1) of § 36 the

constant terms k^, k^ are both zero so that they are

a^x + h^y = 0,

a.2X-\-b2y = 0,

the equations are called homogeneous. Obviously, two homo-

geneous linear equations are always satisfied by the values

x= 0, ^ = 0.

If the determinant of ^ the equations does not vanish, i.e. if

this solution is also found from § 36, and it is the only solution.

But if ai &i

it is found as in § 38 that the equations have an infinite num-

ber of solutions. Conversely, if two homogeneous linear eqiia-

=0,
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tions are satisfied by values of x and y that are not both zero, the

determinant of the equations must vanish. For, multiplying the

first equation by 62; and the second by 5^, and subtracting, we

Eliminating a? in a similar manner, we find

(ai&2-a2&i)2/=0.

These equations show that unless x and y are both zero we

must have

% 5i
a^bz — a^b^ = 0, i.e.

a.2 &2

= 0.

This relation is also the result of eliminating x and y between

the two equations. For, if, e.g., jc =/= we may divide both

equations by x and then eliminate y/x between the equations

ai4-6i^ = 0, a2 + &2-=0,
X X

by multiplying the former by 62) the latter by b^, and subtract-

ing. The result is again afiz — ajb^^ = 0. Thus the result of

eliminating the variables between two homogeiieous linear equa-

tions is the determinant of the equations equated to zero. We
shall see later (§ 75) that all the results of the present article

are true for any number of homogeneous linear equations.

Geometrically, two homogeneous linear equations of course

represent two lines through the origin. The vanishing of the

determinant means that the lines coincide so that they have an

infinite number of points in common.

EXERCISES

1. Evaluate the determinants :

(a)
2 5

3 4
> (&)

7 -3
4 1

5 (c)
1 a

-a 1
'

id)
sin^

cos j9

— cos /S

sin^
;
(e)

1

cos/3

30Si8

1
; (/)

ai + a2

at

02

a2 + a3
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2. Express x^ + y- in the form of a determinant of the second order.

3. Verify that

a2 + 52 aa' + bb' a b 2

and that

aa'-\-bb' a'^-hb'^ a' b'
>

a2 + 62 _|_ c2 aa' + bh' + cc'

aa' + bb' + cc' a'^ + 6'2 _ c'2

= b c

b< c'

2

+
c a

c' a'

2 a
^ a'

b

b'

4. Verify that

\aa' -\-hh' ac' +bd' \a b\ \a' b'

lea ' + db' cc' +dd'
~

c dn c' d'

(a)

(d)

(a)

(d)

(a)

:3x- 6^-8=0,
[
x-2y + l = 0.

4x-2y-7 = 0,

2x-Sy + 5 = 0.

|5x-7y + 6 = 0,

l5x-7y+s=0.

(&)

(&)

5. Find the coordinates of the points of intersection of the following

lines ; and check by a sketch :

|6x-7y+ll= 0, j4x+2y-7zz:0, • i2x-by = 3,

[3x+2y-12=0. ^ ^ [3x-8y+4=0. ^^^
| x + Sy=-l.

j4x + 2i/ = 9,
I

3x+2i/=0, |2.4x+3.l2/=4.5,

|2x-5y=0. ^^^ |6x-4i/+4=0. ^*'^
[ .8x + 2y=6.2.

6. Do the following pairs of lines intersect, or are they parallel or

coincident ?

I

3x + ?/-6 = 0,
I

3x-5?/=0,

I
»; + i?/-2=0. ^^^ |]0?/-6x=0.

f2x-62/-4=0
I

x + iy = 0,

I
x-3y-2=0.'^^\2x + S y = 0.

For what values of s do the following pairs of lines become parallel ?

f4x + sy-15 = 0,
j
3sx-8?/-13=0, |7x - Uy + 8 =0,

|2x-7i/+10 = 0. ^ ^ {2x-2s^+15=0. ^^-^ jsx- 2y + s=0.

8. For what values of s do the following pairs of lines coincide ?

3x + 2?/ + 3 = 0, |3x + 6y-5 = 0,

sx —2y -\- s =0. ^^M x + sy — f = 0.

Solve the following equations by determinants :

(«)

(d)

{2 U-3V-.

I?
jX y

25,

5.
(&)

? = 2,

Ix y

ie)

I

X2+ ?/2

[2x2- 3y2

x2 2/2 3 '

i+2i=:

25,

5.

(/)

f s = 16 «2 + 100,
^^^ {5s + <2 = 824

1 3

x+y x—y
2 , 5

x-\-y x — y

= - 8,

= 17.
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PART XL EQUATIONS IN THREE UNKNOWNS
DETERMINANTS OF THIRD ORDER

41. Solution of Three Linear Equations.

linear equations with three variables x, y, Zy

To solve three

(1) Kin

a^x + 632/ + Cg^ = k^,

in a systematic way, we might first eliminate z between the

second and third equations (by multiplying the second by C3,

the_ third by Co, and subtracting) ; and then eliminate z between

the third and first equations. We should then have two linear

equations in x and y, which can be solved as in § 36. This

method is long and tedious. But we can find x directly by

multiplying the three given equations respectively by

^2^3 ^3^2 — 63C1 — biC^ =
^

61C2 — b^Ci

and adding the resulting equations. For it is readily verified

that, in the final equation, the coefficients of y and z, viz.

&i + &2
^3 C3

63 C

are both zero

&2 ^2

61 Ci

+ 63 Ci + C2 +C3

a
Cz

4-a2
\02 C2IJ

fcl + A:2 -fA:3
^

62 C2
I

' ^
I &:

We find therefore

^3 C3

&2 C2

^3 C3

i.e. if the coefficient of ic is =/= 0,

^162^3 — fei&3C2 4- ^2^3^! — kzbiC^ 4- k^biCi — A;362Ci

^1^2<^3 ~ ^1^3C2 + 0^2^361 — «2&iC3 + (^5^162 — O362C1

Observe that the numerator is obtained from the denomina-

tor by simply replacing every a by the corresponding k.

-[ :11

x =
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It can be shown similarly that y is a, quotient with the same

denominator, and with the numerator obtained from the de-

nominator by replacing every b by the corresponding k ; and that

z is a quotient with the same denominator and the numerator

obtained by replacing every c by the corresponding k.

42. Determinants. The common denominator of x, y, z is

usually written in the form

«! bi Ci

(Xo ^2 2

*3 C3

(2)

and is then called a determinant of the third order. The nine

numbers ai, &i, q, ag, 62? ^2? ^3? ^3? Cg are called its elements ; the

horizontal lines are called the rows, the vertical lines the

columns. The diagonal through the first element a^ is called

the principal diagonal ; that through a^ the secondary diagonal.

By § 41 we have

% b. Ci
b2 C2 h C3 h Ci

C2 = %
h

+ «2
h

+ ^3
hC3 Ci C2

Gz

Thus, a determinant of the third order represents a sum of six

terms, each term being a product of

three elements and containing one

and only one element from each row

and from each column.

The most convenient method for

expanding a determinant of the

third order, i.e. for finding the six

terms of which it is the sum, is

indicated by the adjoining scheme.
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Draw the principal diagonal and the parallels to it, as in the

figure ; this gives the terms with sign + ; then draw the

secondary diagonal and the parallels to it ; this gives the terms

with sign— . (Compare § 14.)

43. General Rule. When three linear equations, like (1),

§ 41, are given, the determinant (2), § 42, of the coefficients of

X, y, z is called the determinant of the equations. We can now

state the rule for solving the equations (1) when their determi-

nant is different from zero, by the following formulas (compare

§36):

a; =

i.e. each of the variables is the quotient of two determinants; the

denominator in each case is the determinant of the equations, while

the numerator is obtained from this common denominator by re-

placing the coefficients of the variable by the constant terms.

It will be shown in solid analytic geometry that any linear

equation in x, y, z represents a plane. Hence by solving the

three simultaneous equations of § 41 we find the point (or

points) common to three planes.

h &1 Cl (Xl h Cl <h h h
h b2 C2 0^2 k. C2 a^ 62 h
h h C3

, 2/
= ag h C3

-,2; = q-3 h h
(h h <h «i h. Cl a. h Cl

(h h C2 02 h ^2 a^ h C2

«3 h C3 «3 h C3 «3 h C3

EXERCISES

1. Evaluate the determinants :

1 2 1

(a) 3 1 3

1 4 1

•

13
id) 4 3

5 -1 2|

1 2 3

(&) 4 5 6

7 8 9

1

(e) X 1

y z 1

(0

(/)

-1 1 2

7 3 .

6 -4 9

1 c -h
— c 1 a

h — c i|
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2. Show that

a-\-b

b

3. Evaluate

r^ ''•

(a)

b

b + c c

c c + d
\a b c d)

a b c

b c a

c a b

a a

a a

a a

4. Solve by determinants :

2r = 5,

(a) I X— y- z =0,

2z = 1.

(c)

(e)

X— y -

2x-^y-
x + 2y- Sz

x + Sy

2x-6y-l0z

1 1 2

= 7,

= 4,

= -8.

x^
+ 8 = 0,

4 +A-4+ 9 = 0,

(&)

(d)

(/)

(&)

Sx -4y +1 z =8,

2x +3y +Qz =-7,
X - y =4.

a;2 + 3,

i + i-^.+ 15

2X2- y2 4.3 2;2^ 62,

5 iC2 _ 2 2/2 _ 3 ^2 ^ _ 11.

2 3

X— y y -z
4 ^

^ + x X — y—
+^W — + X

= 1,

= -7,

= 0.

44. Properties of Determinants.— The advantages of using de-

terminants instead of the longer equivalent algebraic expressions of the

usual kind will be apparent after studying the principal properties of de-

terminants and the geometrical applications that will follow.

(1) A determinant is zero whenever all the elements of any roio, or all

those of any column, are zero.

This follows from the fact that, in the expanded form (§42), every

term contains one element from each row and one from each column.

(2) It follows, for the same reason, that if all elements of any roio {or

of any column) have a factor in common, this factor can be taken out and

placed before the determinant; thus, e.g.,

ai mbi Ci

a2 mbi C2

as mbs Cs

«1 bi ci

a2 bi C2

«3 &3 C3
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(3) The value of a determinant is not changed by transposition ; i.e.

by making the columns the rows, and vice versa., preserving their order.

Thus:
ai bi Cl ai a2 as

a2 &2 C2 = 6i 62 bs

as bz Cs Cl C2 Cs

for, by expanding the determinant on the riglit we obtain the same six

terms, with the same signs, as by expanding the determinant on the left.

(4) The interchange of any two rows {or of any two columns) reverses

the sign, but does not change the absolute value, of the determinant.

This also follows directly from the expanded form of the determinant

(§ 42). For, the interchange of two rows is equivalent to interchanging

two subscripts leaving the letters fixed, and this changes every term with

the sign + into a term with the sign — , and vice versa. The interchange

of two columns is equivalent to the interchange of two letters, leaving

the subscripts fixed, which has the same effect.

(5) A determinant in which the elements of any row (column) are equal

to the corresponding elements of any other row {column) is zero.

For, by (4), the sign of the determinant is reversed when any two

rows (columns) are interchanged ; but the interchange of two equal rows

(columns) cannot change the value of the determinant. Hence, denoting

this value by A, we have in this case — A = A, i.e. -4 = 0.

^

EXERCISES

1. Show that

4

6

10

2. Evaluate without expanding

;

-3 4 2 3 4

-1 5 = 2 3 1 5

7 -9 5 7 9

(a)

2 -4 3

7 14 7
,

(ft)

4 -8 4

13 11

6

-2

3. Without expanding show that

(c)

1000

4

8

(a)

a b c

d e f
a h i

abc

1 1 1 be a 1 a2 a 1

dbc eca fab ;
(b) ca b 1 = 62 b 1

gbc hca iab ab c 1 c2 c 1
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45. Expansion by Minors. The general type of a determinant of

the third order is often written in the form

«11 «12 «13

a21 «22 a23

asi 0532 ^33

so that the first subscript indicates the row, the second the column in

which the element stands. Any one of the nine elements is denoted

by ttik.

If in a determinant of the third order, both the row and the column in

which any particular element anc stands be struck out, the remaining ele-

ments form a determinant of the second order, which is called the minor

of the element aik. Thus the minor of a23 is

«ii

«31

«12

«32
r§45J we have

an ai2 ai3

021 0522 ^23

«31 «32 ^33

«22 ^23 «32 0533 «12 ^13= «11 + a2i + azi
«32 a33 «12 «13 a22 ^23

an ai2

a2i 0522

a-ix ^32

az\ azz an ai3 ^21 ^23
= ai2 + ^22 + a32

^21 a23 a-ix azz an ai3

the right-hand member is called the expansion of the determinant by

minors of the (elements of the) first column. It should be noticed, how-

ever, that, while the coeflBcients of an and asi in this expansion are the

minors of these elements, the coefficient of a2i is minus the minor of 021.

The determinant can also be expanded by minors of the second column :

ai3

a23

a33

here the coefficients of ai2 and a32 are minus the minors of these elements

while the coefficient of a22 is the minor of a22 itself. This expansion fol-

lows from the previous one because the value of the determinant merely

changes sign when the first and second columns are interchanged.

Let the student write out the similar development in terms of minors

of the third column.

As the value of the determinant is not changed by transposition (§44

(3)), the detenninant may also be expanded by minors of the elements of

any row.
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46. Cofactors. To sum up these results briefly, let us denote by A
the value of the determinant itself, and by Aih the value of the minor of

the element aa-, multiplied hij (— 1)*+*, i.e. the so-called cofactor of a»fc.

We then have

:

A = aixAii + a2i^2i + «3i^3i

,

= «12^12 + «22^22 + «32^32 ,

= 0513^13 + «23-423 4- dZzA 33,

and similarly for the expansion by minors, or rather cofactors, of any row.

At the same time it should be noted that if we add the elements of any

column (row) each multiplied by the cofactors of any other column (row),

the result is always zero. Thus it is readily verified that

«11^12 + «21-422 + «31-<432 = 0,

«11^13 + «21^23 + «31^33 = 0,

auAn + «22^21 + «32^31 = 0,

etc. This property was used in § 4L

47. Sum of Two Determinants, if all the elements of any

column (or row) are sums, the determinant can be resolved into a sum of

determinants. Thus, if all elements of the firs: column are sums of two

terms, we find, expanding by minors of the first column :

a2+wi2

a3+wi3

(«i+ wii) + (a2+ wt2) + (a3+m3)

= ai
b% c^

&3 C3
+ 052

bz C3

bi ci
+ az

bi ci

bi Ci

+ mi
62 C2

63 C3 &1 Ci

bi Ci

02 Ca

ai 61 ci Wi 61 Ci

= a2 62 <h + ma 62 C2 '

Oz 63 c3 wis 63 Cs

Let the student show, by interchanging rows and columns, that the

same property holds for rows.

As any row (column) can be made the first by interchanging it with the

first and changing the sign of the determinant, this decomposition into

the sum of two determinants is possible whenever every element of any

one row or column is a sum.
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As a particular case we have

ai-^bi 61 ci ai &i ci 61 61 Ci «! 61 Ci

a2+ &2 62 C2 = a2 &2 C2 + &2 &2 C2 = (Z2 62 C2

as+ bs 63 ^^3 ^3 h C3 63 &3 C3 053 bs C3

since the second determinant, which has two equal columns, is zero by

(5), § 44. We conclude that the value of a determinant is not changed

by adding to each element of any row {column) the corresponding element

of any other row (column). Indeed, owing to (2), § 44, we can add to

each element of any row (column) the corresponding element of any

other row (column) multiplied by one and the same factor. This property

is of great help in reducing a given determinant to a more simple form

and evaluating it.

In the case of a numerical determinant, it is often best after taking out

the common factors from any row or column to reduce two elements of

some row or column to zero, by addition or subtraction. Thus, taking

out the factors 2 from the third column and 3 from the second row,

we have
2 3 -14 2 3 -7
3 18 -12 = 6 1 -2
4 8 18 -4 8 9

subtracting twice the second row from the first and adding 4 times the

second row to the third, we find

A = 6

-9 -3 -9 -3
1 6 -2 =-« S2 J

=18
32 1

= -622.

EXERCISES

1. Evaluate the determinants

:

(a)

(d)

1 3 7

3 5 9 ,

4 8 16

6 33 9

14 21 35

26 39 412

1

(ft)

(e)

27 26 27

31 33 36

43 44 45

7 17 29

11 19 31

13 23 37

He)

(/)

17 34 51

28 72 38
?

39 65 52

2 -3 40

5 7 -10

3 -2 (30l

\b
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2. 8how that

b + c a 1

c -h a b 1

a+ feci
(a) = 0; (&)

(c)

(d)

6i + ci

62 + C2

63 + C3

a-hb

a + 2b

a + Sb

ci + ai

C2+ a2

C3+ as

a + 46

a + 5b

a + 66

1 a'2 -ff^ a3 -# 1 a2 a3

1 &2 _ d2 b^ -d^ = 1 62 63

1 c2-d-^ c3 -# 1 C2 C3

ai + &i «i 61 Ci

a2 + 62 — 2 a2 62 C2
>

a3 + 63 as &3 C3

a + 76

a + 86 = 0.

a + 9b

48. Elimination. Three hoynogeneous linear equations,

(3)

a^x + 61?/ + CiZ = 0,

a^ -f &2^ + C22; = 0,

«'3« + 632/ + C32 = 0,

are obviously satisfied by x = 0, y = 0, z=0. Can they have

other solutions?

Solving the equations by the method of § 43, and denoting

the determinant of the equations for the sake of brevity by A,

we find since Aij = 0, fcg = 0, A^a = :

Ax=0, Ay = 0, Az = 0.

Hence, if x, y, z are not all three zero, we must have ^ = 0.

Three homogeneous linear equations can therefore have solutions

that are not all zero only if the determinant of the equations is

equal to zero.

If X, for instance, is different from zero, we can divide each

of the three equations by x and then eliminate y/x and z/x be-

tween the three equations. The result is ^ = 0, i.e.

tti hi Ci

a^ 62 C2 =0.

Ctg 63 Ci
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Thus, the result of eliminating the three variables betiveen three

homogeneous linear equations is the determinant of the equations

equated to zero. (Compare § 40.)

Solving the first and second equations for y/x, z/Xy we obtain

X y z

bi Ci c, a, a, 61

62 C2 C2 0^2 (X2 62

provided the denominators are all different from zero.

With the notation of § 46, this can be written x:y : z=Azi : ^32 : ^33-

If we solve the third and first or second and third equations for y/x, z/x^

we find, respectively, x :y: z = A21 : A22 ' A23, or x :y :z = An '• ^12 : ^i3-

Hence, whenever ^ = 0, we can find the ratios of the variables unless all

the minors of A are zero.

49. Geometric Applications. The equation of a line

through two points Pj {x-^, 2/1) and Pg fe 2/2) can be found as fol-

lows. The equation of any line must be of the form (§ 30)

(4) Ax-irBy+C=^0.

The question is to determine the coefficients A, B, C, so that

the line shall pass through the points P^ and Pg. If the line is

to pass through the point P^, the equation must be satisfied by

the coordinates x^, y^ of this point, i.e. we must have

^1 + ^^1+0= 0;

this is the first condition to be satisfied by the coefficients. In

the same way we find the second condition

Ax^-\- By,^^C=0.

We might calculate from these two conditions the values of A/C
and B/G and then substitute these values in the first equation.

But as this means merely eliminating A, B, C between the

three equations, we can obtain the result directly (§ 48) by

equating to zero the determinant of the coefficients of A, B, C.
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Thus the equation of the line through two points P^, P^ is

(5)

X y 1

«! 2/1 1

X^ 2/2 1

= 0.

Observe that this equation is evidently satisfied if x^ y are re-

placed either by x^, i/i or by x^, 2/2 (see (5), § 44).

50. Area of a Triangle. The area ^ of a triangle PiPoP^

in terms of the coordinates of its vertices Pi(xij 2/i)> ^^2(^2? 2/2)?

^3(3^3,2/3)13:

for, upon expanding this determinant, we find the value given

before in § 14.

It will now be seen that the determinant equation (5) of the

line through two points given in § 49 merely expresses the

fact that any point (x,'y) of the line forms with the given

points (xi, 2/1) and (x^, y^ a triangle whose area is zero.

A = \

X, 2/1 1

x^ 2/2 1

X, Vs 1

EXERCISES

1. Write down the equation of the line through (2, 3), (—2, \); ex-

pand the determinant by minors of the first row ; determine the slope and

the intercepts ; sketch the line.

2. Find the equation of the line through the points : (3, — 4) and

(0, 2) ; (0, 6) and (a, 0); (0, 0) and (2, 1).

3. Find the area of the triangle whose vertices are the points (1, 1),

(2, -3), (5, -8).

4. Find the area of the quadrilateral whose vertices are the points

(3, -2), (4, -5), (-3,1), (0,0).

6. If the base of a triangle joins the points (— 1, 2) and (4, 3), on

what line does the vertex lie if the area of the triangle is equal to 6 ?
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6. Find the coordinates of the common vertex of the two triangles of

equal area 3, whose bases join the points (3, 5), (6, — 8) and (3, — 1),

(2, 2), respectively.

7. Show that the area of any triangle is four times the area of the

triangle formed by joining the midpoints of its sides.

8. Show that the sum of the areas of the triangles whose vertices are

(a, d), (2 6, c), (6 c, f), and (Sa,d), (4&, e), (3 c,/) is given by the

determinant
2a d 1

Bb e 1

4c / 1

9. Show that the lines joining the midpoints of the sides of any

triangle divide the triangle into four equal triangles.

10. Show that the condition that the three lines Ax -{- By {- C = 0^

A'x + B'y + C" = 0, A"x + B"y + C" = meet at a point is

ABC
A' B' C =0.

A" B" C"

11. Show that the straight lines Sx + y — l=0, x—Sy-\-lS = 0,

2x— y-{-6=^0 have a common point.

12. For what values of s do the following lines meet in a point :

4x-Qy-\-s = 0, sx-S6y = 0,x-{-y-l=0?

13. Show that the altitudes of any triangle meet in a point.

14. Show that the medians of any triangle meet in a point.

15. Show that the line through the origin perpendicular to the line

through the points (a, 0) and (0, b) meets the lines through the points

(a, 0), (— &, &) and (0, 6), (a, — a) in a common point.

16. Show that the distance of the point Pi(xi, y{) from the line joining

the points P2(,X2, 1/2) and Pz^xs, ys) is

xi y\ 1

X2 yt 1

xz yz 1

y/ixz-x.y^+ (2/3-2^2)2



CHAPTER IV

RELATIONS BETWEEN TWO OR MORE LINES

51. Angle between Two Lines. We shall understand by

the angle (I, V) = 6 between two lines I and I' the least angle

through which I must be turned coun-

terclockwise about the point of inter-

section to come to coincidence with l'.

This angle is equal to the differ-

ence of the slope angles a, a' (Fig. 27)

of the two lines. Thus, if a' > a, we

have B= a! — a, since a' is the exterior

angle of a triangle, two of whose interior angles are a and 6.

It follows that

tan a! — tan a

Fig. 27

(1) tan Q — tan {a! — a)
1 -f- tan a tan a!

If the equations of I and X are

y = mx -\- b, y = m'x + 6',

respectively, we have tan a = m, tan a' = m' ; hence

m' — m
(2) tan^ =

1 4- mm'

If the equations of I and I' are

^a; + 52/ -f C =0,

respectively, we have tan a = — ^1/-B, tan a' = — ^'/^'
5
hence

AB' - AB
(3) tan^ =

AA'+BB^'
58
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52. It follows, in particular, that the two lines Z and Z', § 51,

are parallel if and only if

m' = m, or AB' - A'B = ;

and they are perpendicular to each other if and only if

m' = --, ovAA' + BB'=0.
m

(Compare §§ 27, 31.) Hence, to write down the equation of

a line parallel to a given line, replace the constant term by an

arbitrary constant ; to write down the equation of a line per-

pendicular to a given line, interchange the coefficients of x and

y, changing the sign of one of them, and replace the constant

term by an arbitrary constant.

EXERCISES

1. Determine whether the following pairs of lines are parallel or per-

pendicular : 3x + 2?/ — 6 = 0, 2x-3?/ + 4=z0; 5ic + 3y-6=0,
10x + 6y4-2 = 0;2x-|-5y-14=0, 8x-3?/ + 6=0.

2. Find the point of intersection of the Hne 5x + 8y + 17=0 with its

perpendicular through the origin,

3. Find the point of intersection of the lines through the points (6, —2)

and (0, 2), and (4, 5) and (-1,-4).

4. Find the perpendicular bisector of the line-segment joining the

point (3, 4) to the point of intersection of the lines 2x — y + 1 = Q and

3 X 4- 2/
- 16 = 0.

6. Find the lines through the point of intersection of the lines 5 x— z/ =0,

x + 7i/ — 9 = and perpendicular to them.

6. Find the area of the triangle formed by the lines 3 x + 4 y = 8,

6 X — 5 2/ = 30, and x = 0.

7. Find the area of the triangle formed by the lines x + y — 1 = 0,

2 X + y + 5 = 0, and X - 2 !/ - 10 = 0.

8. Find the point of intersection of the lines

(a) ^ + f=l, f + I=l.ah ha
(h) - + |=1, y = mx-\-h-

a
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9. Find the area of the triangle formed by the lines y = miX + 6i,

y = m2X + &2 and the axis Ox.

10. The vertices of atriangle are (5, — 4), (— 3, 2), (7,6). Find the

equations of the medians and their point of intersection.

11. Find the angle between the lines 4 x—S y—G=0 and x—7 y-\-Q=0.

12. Find the tangent of the angle between the lines (a) 4 x—Sy-\-6=0

and9a; + 22/-8 = 0; (b) 3a; + 6y-ll=0 and x-\-2y-S = 0.

13. Find the two lines through the point (6, 10) inclined at 45° to

the line 3a;-2?/-12=:0.

14. Find the lines through the point (— 3, 7) such that the tangent of

the angle between each of these lines and the line 6.x — 2i/ + ll = 0isJ.

15. Show that the angle between the lines Jtc + J5y + C = and

(A + B)x -{A- B)y + D = is 45°.

16. Find 'the lines which make an angle of 45° with the line

4x — 7y + 6=0 and bisect the portion of it intercepted by the axes.

17. The hypotenuse of an isosceles right-angled triangle lies on the line

Sx — 6y-n==0. The origin is one vertex ; what are the others ?

53. Polar Equation of Line. The position of a line in the

plane is fully determined by the length p = ON (Fig. 28) of the

perpendicular let fall from the origin on

the line and the angle /3 = xON made by

this perpendicular with the axis Ox.

Then p and /8 are evidently the polm^

coordinates of the point -^ (§ 16). Let

P be any point of the line and OP= r,

xOP— d> its polar coordinates. As the
Fig *^8

projection of OP on the perpendicular

ON is equal to ON, and the angle NOP = <^ — ft we have

(4) rGO{i(<f> — p)=p.

This is the equation of the line NP in polar coordinates.
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54. Normal Form. The last equation can be transformed to

Cartesian coordinates by expanding the cosine :

r cos <^ cos P + r sin <f>sm p=p

and observing (§ 17) that r cos
<l>
= x, r sin

<i>
= y\ the equation

then becomes

(5) ai^cosp+ y8inp=ip.

This equation, which is called the normal form of the equation

of the line, can be read off directly from the figure ; it means

that the sum of the projections of x and y on the perpendicular

to the line is equal to the projection of r (§ 20).

Observe that in the normal form (5) the number p is always

positive, being the distance of the line from the origin, or the

radius vector of the point JSf. Hence x cos ^ -f- y sin ^ is always

positive ; this also appears by considering that x cos /3 -\-y sin ^
is the projection of the radius vector OP on ON, and that this

radius vector makes with ON an angle that cannot be greater

than a right angle.

The angle l3
= xONiSj as a polar angle (§ 16), always under-

stood to be the angle through which the axis Ox must be turned

counterclockwise about the origin to make it coincide with ON;
it can therefore have any value from to 2 tt. By drawing the

parallel to the line NP through the origin it is readily seen

that, if a is the slope angle of the line NP, we have

according as the line lies on one side of the origin or the other,

angles differing by 2 tt being regarded as equivalent. Thus, in

Fig. 28, « = 120°, /? = «+! 7r = 120°+ 270° = 390°, which is

equivalent to 30°. For a parallel on the opposite side of the

origin we should have ^ = «-}- 1 tt = 120° + 90° = 210°.
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55. Reduction to Normal Form. The equation

Ax-\-By^C=0

is in general not of the form (5), since in the latter equation

the coefficients of x and y, being the cosine and sine of an

angle, have the property that the sum of their squares is equal

to 1, while in the former equation the sum of the squares of

A and B is in general not equal to 1. But the general equation

Ax-{-By-\-C=0

can be reduced to the normal form (5) by multiplying it by

a factor k properly chosen ; we know (§ 30) that the equation

hAx-\-'kBy^'kG=0

represents the same line as does the equation Ax-\-By-\-G=0.

Now if we select k so that

kA = cos p, kB = sin /3, kC = — 1>,

the equation Ax + By-\-C=0 reduces to the normal form

xQos p + y sin p — 2) = 0. The first two conditions give

A;M2 + k'^B' = cos2 /3 + sin^ ^ = 1,

whence A; = ±
VA^-hB"

Since the right-hand member p in the normal form (5) is posi-

tive, the sign of the square root must be selected so that kC

becomes negative. We have therefore the rule :

\ To reduce the general equation Ax -\-By-{-C =0 to the normal

Jform

\ ajcos^ + 2/ sin/3 — j9= 0,

/ divide by — \/A? + B^ when C is positive and by -^^A^-\-B^

\wjien C is negative.

Then the coefficients of x and y will be cos ft sin ft respec-

tively, and the constant term will be the distance p of the line

from the origin.
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Thus, to reduce 3a; + 22/H-5 = 0to the normal form, divide

by _ V3'' + 22 = - Vl3 ; this gives

3 . ^ 2
•

5
cos B = , sm « = Tzn, —p = 1=

;

VI3 V13 V13
i.e. the normal form is

3 2 5
7=^ ;=2/ =

V13 Vl3 V13

The perpendicular to the line from the origin has the length

5/Vl3 ; and as both cos ^ and sin ft are negative, this perpen-

dicular lies in the third quadrant. Draw the line.

Reduce the equation 3 a; + 2?/ — 5 = to the normal form.

^ 56. Distance of a Point from a Line. If, in Fig. 28, we

take instead of a point P on the line any point Pi {x^, 2/1)

not on the line (Fig. 29), the expression \ ^
Xy cos P + Vi sin j8 is still the projection on

ON (produced if necessary) of the radius

vector OPi. But this projection OS differs

from the normal ON= p to the line. The

figure shows that the difference '

1 \ ,
~

Xy cos )8 + 2/1 sin y8 — p = OaS — 0N= N8 fig. 29 ^-

is equal to the distance N^P^ of the point Pj from the line.

Thus, to find the distance of any point Pj (x^, 2/1) from a line

whose equation is given in the normal form

a; cos /8 + 2/ sin ^ — p = 0,

it sufiices to substitute in the left-hand member of this equa-

tion for X, y the coordinates x^, 1/1 of ^^^ point P^. The expression

iCi cos /? -f 2/1 sin ^ —

p

then represents the distance of P^ from the line.

If this expression is negative, the point P^ lies on the same

side of the line as does the origin ; if it is positive, the point
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Pi lies on the opposite side of the line. Any line thus divides the

plane into two regions which we may call the positive and nega-

tive regions ; that in which the origin lies is the negative region.

To find the distance of a point Pi (x^, y{) from a line given in

the general form
Ax-\-Bi/-i-C=0,

we have only to reduce the equation to the normal form (§ 55)

and then apply the rule given above. Thus the distance is

Ax, + By, + C ^^ Ax,-^By,-\-C
^- V^-P + B" V^2-f^

according as C is positive or negative.

57. Bisector of an Angle. To find the bisectors of the

angles between two lines given in the normal form

x cos /8 4- 2/ sin ^—p=zO,

X cos /?' + y «iii P' —p' = 0,

observe that for any point on either bisector its distances from

the two lines must be equal in absolute value. Hence the

equations of the bisectors are

a; cos ^ + ?/ sin )8 —p = ± (a; cos y8' + 2/ sin yS' — i>').

To distinguish the two bisectors, ob-

serve that for the bisector of that pair

of vertical angles which contains the

origin (Fig. 30) the perpendicular dis-

tances are, in one angle both positive,

in the other both negative ; hence the

plus sign gives this bisector.

If the equations of the lines are

given in the general form

Ax + By + C = 0, A'x -f- B'y + C = 0,

first reduce the equations to the normal form, and then apply

the previous rule.

Fig. 30
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EXERCISES

1. Draw the lines represented by the following equations :

(a) rcos(0-^7r)=6. (e) r cos (0 + f tt) = 3.

(6) r cos (0 - tt) = 4. (/) rsin (0-i7r) =8.

(c) r cos = 10. (g) rsin (0 + |^) = 7.

((?) r sin = 5. (A) r cos (0 - 1 tt) = 0.

2. In polar coordinates, find the equations of the lines : (a) parallel to

and at the distance 5 from the polar axis (above and below)
;

(b) per-

pendicular to the polar axis and at the distance 4 from the pole (to the

right and left)
;

(c) inclined at an angle of |ir to the polar axis and at

the distance 12 from the pole.

3. Express in polar coordinates the sides of the rectangle OABG if

OA = 6 and AB = 9, OA being taken as polar axis.

4. What lines are represented by (5) when p is constant, while /3

varies from zero to 2 ir ? What lines when p varies while j3 remains con-

stant ?

5. The perpendicular from the origin to a line is 5 units in length and

makes an angle tan-i y\- with the axis Ox. Find the equation of the line.

6. Reduce the equations of Ex. 8, p. 34, to the normal form (5),

7. Find the equations of the lines whose slope angle is 150° and which

are at the distance 4 from the origin.

8. What is the equation of the line through the point ( — 3, 6) whose

perpendicular from the origin makes an angle of 120^ with the axis Ox ?

9. For the line 7a;— 24?/ — 20 =0 find the intercepts, slope, length

of perpendicular from the origin and the sine and cosine of the angle

which this perpendicular makes with the axis Ox.

10. Find by means of sin ^3 and cos ^ the quadrants crossed by the line

4x — 5y = S.

11. Put the following equations in the form (5) and thus find p, sin /3,

cos /3:

(a)y=mx-\-b. (b) - +^ = 1. (c)3« = 4y.
a b

12. Is the point (3, — 4) on the positive or negative side of the line

through the points (— 5, 2) and (4, 7) ?
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13. Is the point (—1, — f ) on the positive or negative side of the line

4x-9y-S = 0?

14. Find by means of an altitude and a side the area of the triangle

formed by the lines 3a5 + 2i/ + 10 = 0, 4x-3?/+16 = 0, 2cc + ?/-4

= 0. Check the result with another altitude and side.

15. Find the distance between the parallel lines (a) Hx— 6y— 4 =
and 6 X - 10 y + 7 = ; {h) 5 x + 7 y + 9 = and 15 x + 21 y - 3 = 0.

16. What is the length of the perpendicular from the origin to the line

through the point (—5, — 4) whose slope angle is 60" ?

17. What are the equations of the lines whose distances from the

origin are 6 units each and whose slopes are | ?

18. Find the points on the axis Ox whose perpendicular distances from

the line 24 x - 7 ?/ — 16 = are ±5.

19. Find the point equidistant from the points (4, — 3) and (—2, 1),

and at the distance 4 from the line 3x — 4?/ — 5 = 0.

20. Find the line parallel to 12 x — 5?/ — 6 = and at the same distance

from the origin ; farther from the origin by a distance 3.

21. Find the two lines through the point (1, -y^) such that the perpen-

diculars let fall from the point (6, 5) are of length 5.

22. Find the line perpendicular to4x — 7«/ — 10 = which crosses the

axis Ox at a distance 6 from the point (— 2, 0).

23. Find the bisectors of the angles between the lines: (a) x—y —4=0
and 3 X + 3 y + 7 = ; (6) 6x - 12 y - 16 = and 24 x + 7y + 60 = 0.

24. Find the bisectors of the angles of the triangle formed by the lines

5 X + 12 y + 20 = 0, 4 X — 3 2/ - 6 = 0, 3 X - 4 y + 5 = and the centerof

the circle inscribed in the triangle.

25. Find the bisector of that angle between the lines 3 x — VS ?/+ 10=0,

V2 x + y — 6 = 0in which the origin lies.

26. If two lines are given in the normal form, what is represented by

their sum and what by their difference ?

27. Show that the angle between the lines x + y = and x — y = is

90° whether the axes are rectangular or oblique.
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58. Pencils of Lines. All lines through one and the same

point are said to form a pencil; the point is called the center of

the pencil. If

^^ \A'x + B'y-^C'=:0

are any two differeijjt-iilies of a pencil, the equation

(7) Ax-\-By+C+k(A'x-hB'y-]-C')=0,

where k is any constant, represents a line of the pencil. For,

the equation (7) is of the first degree in x and y, and the coeffi-

cients of X and y cannot be both zero, since this would mean

that the lines (6) are parallel. Moreover, the line (7) passes

through the center of the pencil (6) because the coordinates of

the point that satisfies each of the equations (6) also satisfy

the equation (7).

All lines parallel to the same direction are said to form a

pencil of parallels. It is readily seen that if the lines (6) are

parallel, the equation (7) represents a line parallel to them.

EXERCISES

1. Find the line: (a) through the point of intersection of the lines

4 ic — 7 y + 5 =0, 6aj + 11 y — 7=0 and the origin
; (6) through the

point of intersection of the lines 4a; — 2y — 3 = 0, x^-y — 5 = and

the point (—2, 3) ;
(c) through the p^nt of intersection of the lines

4ic— 5?/ + 6 = 0, y — x — S = 0, of slope 3
;

(d) through the intersection

of5x — 62/4-10 = 0, 2x + 3y— 12 = 0, perpendicular to 4 y + a; = 0.

2. Find the line of the pencil x— 5 = 0, y -\-2 = that is inclined to

the axis Ox at 30°.

3. Determine the constant b of the line y = 3x+ b so that this line

shall belong to the pencil Sx — iy + 6 = 0, x = 6.

4. Find the line joining the centers of the pencils x — Sy = 12,

5x— 2y = 1 and x-{-y = 6, 4tx — 5y = S.

5. Find the line of the pencil 4x-5y-12 = 0, 3a; + 22/-16=0
that makes equal intercepts on the axes.
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69. Non-linear Equations representing Lines. When two

lines are given, say
Ax-{-By-\-C=0,

then the equation

{Ax -f JB2/ + C){A'x + By + 0') = 0,

obtained by multiplying the left-hand members (the right-hand

members being reduced to zero) is satisfied by all the points

of the first given line as well as all the points of the second

given line, and by no other points.

The product equation which is of the second degree is there-

fore said to represent the two given lines. Similarly, by equat-

ing to zero the product of the left-hand members of the equations

of three or more straight lines (whose right-hand members are

zero) we find a single equation representing all these lines.

An equation of the 7ith degree may therefore represent n

straight lines, viz. when its left-hand member (the right-hand

member being zero) can be resolved into n linear factors, with

real coefficients.

EXERCISES

1. Find the common equation of the two axes of coordinates.

2. Show that n lines through the origin are represented by a homo-

geneous equation (i.e. one in \^ich all terms are of the same degree in

X and y) of the nth degree.

3. Draw the lines represented by the following equations

:

(a) (x -a)(y-b)= 0. (/) xy - ax = 0.

(6) 3x^-xy-4y'^ = 0. (g) y^ - ^y^ ¥ Qy = 0.

(c) rK2 _ 9 1/2 = 0. (h) yfiy-xy = 0.

{d) ax"^ + 6^2 = 0. (0 y^-Q xy"^ + 11 x^y - 6 a;^ = 0.

(e) a:2 - iK - 12 = 0.

4. What relation must hold between a, h, b, if the lines represented

by ax^ -\-2hxy + by^ = are to be real and distinct, coincident, imag-

inary ?
•
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MISCELLANEOUS EXERCISES

1. Find the angle between the lines represented by the equation

ayi^ + 2 hxy + hy'^ — 0. What is the condition for these lines to be per-

pendicular ? coincident ?

2. Reduce the general equation Ax -\- By -{- C = to the normal

form xoos p + y sin j3 = p by considering that, if both equations represent

the same line, the intercepts must be the same.

3. Find the line through (xi , yi) making equal intercepts on the axes.

4. Find the area of the triangle formed by the hues y = miX + 6i

,

y = m2X -\- b2
>, y = b.

5. What does the equation = const, represent in polar coordinates ?

6. Find the polar equation of the line through (6, v) and (4, | nr).

7. Derive the determinant expression for the area of a triangle (§14)

by multipljdng one side by half the altitude.

8. The weights lo, W being suspended at distances d, Z), respectively,

from the fulcrum of a lever, we have by the law of the Jever WD = icd.

If the weights are shifted along the lever, then to every value of d cor-

responds a definite value of D ; i.e. i> is a function of d. Represent this

function graphically ; interpret the part of the line in the third quadrant.

9. A train, after leaving the station yl, attains in the first 6 minutes,

li miles from A, the speed of 30 miles per hour with which it goes on.

How far from A will it be 50 minutes after starting? (Compare Ex-

ample 4, § 29.) Illustrate graphically, taking s in miles, t in minutes.

10. A train leaves Petroit at 8 hr. 25 m. a.m. and reaches Chicago at

4 hr. 5 m. p.m. ; another train leaves Chicago at 10 hr. 30 m. a.m. and

arrives in Detroit at 5 hr. 30 m. p.m. The distance is 284 miles. Regard-

ing the motion as uniform and neglecting the stops, find graphically and

analytically where and when the trains meet. If the scale of distances

(in miles) be taken 1/20 of the scale of times (in hours), how can the

velocities be found from the slopes ?

11. A stone is dropped from a balloon ascending vertically at the rate

of 24 ft. /sec; express the velocity as a function of the time (Example 5,

§ 29) . What is the velocity after 4 sec. ?

12. How long will a ball rise if thrown vertically upward with an

initial velocity of 100 ft. /sec. ?



CHAPTER V

PERMUTATIONS AND COMBINATIONS. DETERMI-
NANTS OF ANY ORDER

60. Introduction. In using determinants of the second and

third order we have seen how advantageous it is to arrange

conveniently the symbols of an algebraic expression. Before

proceeding to the study of the general determinant of the wth

order, we must discuss very briefly that branch of algebra

which is concerned with the theory of arrangements and

changes of arrangement (permutations and combinations).

The results are important not only for determinants, but are

used very often, even in the common affairs of life ; they form,

moreover, the basis of the theory of " choice and chance," or of

probabilities.

The " things " to be arranged or combined need not be num-

bers (as they are in a determinant), but may be any what-

ever, provided they are, and remain, clearly distinguishable

from each other ; we shall call them elements and designate

them by letters a, h, c, etc.

61. Permutations. Any two elements, a and 6, can obvi-

ously be arranged in a row in 2 ways

:

ah, ha.

Three elements a, 5, c can be arranged in a row in 6, and only

6, ways:
ahc hac cab

acb hca cha

The question arises: in how many ways can ^i elements be

arranged in a row ?

70
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Any arrangement of n elements in a row is called a permu-

tation. It is found by trial that the number of permutations of

n elements increases very rapidly with their number n. Thus

for 4 elements it is 24, for 5 elements 120. It will be shown

that for n elements the number of permutations zs 1 • 2 • 3 • • • n.

This expression, the product of the first n positive integers, is

briefly designated by n !, or \n, and is called factorial n :

n! = l -2 .3...%.

If we denote by P„ the number of permutations of n ele-

ments our proposition is

62. Mathematical Induction. The proof of the proposition

that P^ = nl is obtained by an important method of reasoning

called mathematical induction.

By actual trial we can readily find that P^ = 1, Pg = 2,

Pg = 6, and with sufficient patience we might even ascertain

that Pe = 720. But to prove the general proposition that

P^ = 7i! we must look into the method by which in the

particular cases we make sure that we have found all the pos-

sible permutations. This method consists in proceeding step

by step

:

Seeing that 2 elements have 2 permutations, we form the

permutations of 3 elements by taking each of the 3 elements

and associating with it the 2 permutations of the remaining

two ; we thus find that Pg = 3 • 2 = 6.

Similarly, to form the permutations of 4 elements we asso-

ciate each of the 4 with the 6 permutations of the remaining 3
;

this gives P4 = 4 .3! = 4!

This leads us to expect that P^ = nl The actual proof rests

on two facts : (a) the special fact, found by actual trial, that
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e.g. P2 = 2
! ; (6) the general law that the number of permuta-

tions of n-\-l elements is found by associating each of the

n -f 1 elements with the P„ permutations of the remaining 71,

i.e. that

-p„+.=(»+i)^„-

Knowing from (a) that P2 = 2 ! we find from this formula that

P3 = 3 . P2 = 3 . 2 ! = 3
!

; in the same way that P4 = 4 . 3 ! = 4

!

etc.

Notice that mathematical induction is not merely a method

of trial and experiment. It requires that we should know not

only one special case of the general formula to be proved, but

also the law by which we can proceed from every special case to

the next, i.e. from n to ?i + 1 whatever the value of n. This law

is a result, not of trial or induction, but of deductive reasoning.

In our case it is expressed by the formula P„+i = (n -{- 1)P„.

The method of mathematical induction is therefore often called

reasoning from n to n-\-l.

63. Permutations by Groups. A somewhat more general

problem in permutations is suggested by the following exam-

ple: In an office there are two vacancies, one at $1000, the

other at $800. There are 5 applicants for either of the 2

positions ; in how many ways can the positions be filled ?

The first vacancy can be filled in 5 ways, and then the sec-

ond can still be filled in 4 ways ; hence there are 5 • 4 = 20

ways. Denoting the applicants by a, &, c, d, e the 20 possi-

bilities are

:

ab ac ad ae

ha be bd be

ca cb cd ce

da db do de

ea eb ec ed
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The general problem here suggested is that of finding the

number ofpermutations of n elements k at a time, where Tc <n.
Each permutation here contains k elements ; and we have to

fill the k places in all possible ways from the n given elements.

The first place can be filled in n ways. The second can then be

filled in ?i — 1 ways ; hence the first and second places can be

filled in n(ii — 1) ways. The third place, when the first two are

filled, can still be filled in n — 2 ways, so that the first three

places can be filled in n{n — V)(ji — 2) ways. Proceeding in this

way we find that the k places can be filled in ti (n — 1) (n — 2) •••

(n -~k-{-l) ways.

Thus the number of permutations of n elements, A; at a time,

which is denoted by „P;t, is

„P, = n{n - l){n _ 2) ... (n - fc + 1).

Notice that in ^P^ there are as many factors as places to be

filled, viz. k ; the first factor being n, the second n — 1, etc., the

A:th will be n — {k -- 1) = n — k -\-l.

lik^nwQ have the case of § 61 ; i.e. „P„ == P^.

As ?i! = n(?i — 1) ... (n-'k-\-l) • {n — k){7i — k — l) ..-2.1

= n{n — 1 ) '" {n — k-\-l) • {n — k)\, the expression for „P^ can

also be written in the form

p _ n!

{n-k)\

64. Combinations. If, in the problem of § 63, the 2

vacancies to be filled are positions of the same rank (as to

salary, qualifications required, etc.), the answer will be differ-

ent. We have now merely to select in all possible ways 2 out

of 5 applicants, the arrangements ah and ha, ac and ca, etc.,

being now equivalent. Therefore the answer is now 20 divided

by 2, i.e. 10, as can readily be verified directly : ah, ac, ad, oe,

be, bdj be, cd, ce, de.
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If there were 3 vacancies, the number of ways of filling

them from 4 applicants, when the positions are different, is

4P3 = 4 . 3 • 2 = 24 ; but when the positions are alike, the

number is 24 divided by the number of permutations of 3

things, i.e. 24/6 = 4.

A set of k elements selected out of n, when the arrangement

of the k elements in each set is indifferent, is called a combina-

tion. The number of combinations of k elements that can be

selected from n elements is denoted by ^C^ ; to find this num-

ber we may first form the number ^P^ of permutations of n

elements A; at a time, and then divide by the number Pj^=ik\

of permutations of k elements. Thus

p _ n{n — l) ••' {n — k-\-l) _ n\
" *~ 1.2 ...A; ~k\{n-k)\'

The number of combinations of n elements that can be

selected from n elements is clearly 1 ; indeed, for A: = n our

first expression gives ^(7„ = 1.

EXERCISES
1. Find the value of n if ^

*

(a) ^ = 5.
^ , {hy ^= 20. (c) p. = 40320.

2. Show that

(a) nGk= nGn-lc> (&) nCk"^ nCk-^= n+lCk. (c) A;n+lC*= (n+ 1)„C*-1.

3. Prove by mathematical Induction that

:

(a) 1 + 2 + 3 + - + n = I n(n + 1).

(5) 12 + 22 + 3'-'+ ••• +n2 = ^n(n+l)(2n + l).

(c) 13 + 23 + 33+ ... +n3=[^n(n + l)]2 = (l +2 + 3+ •.• + n)2.

{d) 1 + 3 + 5 + ... +(2 n - 1)= n2.

(c) 2 + 4 + 6 + ... + 2 n = n{n + 1).

(/) 1.2 + 2.3 + 3.4+ ... +n(7i + l)=in(w + l)(n + 2).

(9') T~^ + ^7—^ + ^7—; + ••• +1.22.33.4 n{n + \) n + \
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4. A pile of shot forms a pyramid with n shot on a side at the base.

How many shot in the pile if the base is a square ? an equilateral triangle ?

6. Three football teams plan a series of games so that each team will

play the other two teams 4 times. How many games in the schedule ?

6. In how many ways can a committee of 3 freshmen and 2 sopho-

mores be chosen from 8 freshmen and 5 sophomores ?

7. In how many ways can the letters of the word equal be arranged

in a row four letters at a time ?

8. From the 26 letters of the alphabet, in how many ways can four

different letters, one of which is d, be arranged in a row ?

9. How many numbers of three digits each can be formed with 1,

2, 3, 4, 5, no digit being repeated ? How many of these numbers are

even ? odd ?

10. From a company of 60 men, how many guards of 4 men can be

formed? How many times will one man (A) serve ? How many times

will A and B serve together ?

11. Which is the largest of the numbers „(7i, „C2, nOs, ••• „0„_i,

when n is even ? odd ?

12. How many straight lines are determined by 12 points, no 3 of

which are in a line ?

13. How many triangles are determined by 10 points, no 3 of which

are in a line ?

65. Inversions in Permutations. When n elements ai, ag,

as, ••• a„, distmguished by their subscripts, are given, their arrange-

ment, with the subscripts in the natural order of increasing numbers,

is called the principal permutation. In every other permutation of these

elements it will occur that lower subscripts are preceded by higher ones.

Every such occurrence is called an inversion. Any permutation is called

even or odd according as the number of inversions occurring in it is even

or odd. The principal permutation, which has no inversion, is classed as

even. To count the number of inversions in a given permutation, take
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each subscript in order and see by how many higher subscripts it is

preceded. Thus, in the permutation

the subscript 1 is preceded by the higher subscripts 2, 3, 5 (3 inversions);

2 and 3 are preceded by no higher subscripts ; 4 is preceded by 5 (1 in-

version) ; 5, 6, 7 are not preceded by any higher subscripts. Hence there

are 3 -f 1 = 4 inversions, and the permutation is even. The permutation

of the same elements has 3 + 3 + 2 + 3 + 2 = 13 inversions, and is, there-

fore, odd.

66. If in a permutation any two adjacent elements are interchanged^

the number of inversions is changed by 1 ; hence the class to which the

permutation belongs is changed (from even to odd or from odd to even).

Let the two adjacent elements be ah, au and suppose that h<.k.

Two cases arise according as the original arrangement is ahak or ata/,.

(a) If the original arrangement is a^a^:
i
the new arrangement is a^rt/,

;

as A < k^ and as all other elements of the permutation remain unchanged,

the number of inversions is increased by 1.

(Z>) If the original arrangement is akCih , the new arrangement is anak

so that the number of inversions is diminished by 1."

67. If in a permutation any two elements lohatever be interchanged, the

number of inversions is changed by an odd number, and hence the class

of the permutation is changed.

Eor, the interchange of any two elements a^, ai, can be effected by a

number of successive interchanges of adjacent elements. If there are m
elements between an and ak, we have only to interchange a^ with the first

of these elements, then with the next, and so on, finally with ak, and

then ak with the last of the m elements, with the next to the last, and so

on ; thus in all wi + 1 + m = 2 wi + 1 interchanges of adjacent elements

are required, i.e. an odd number.

68. Of the n ! permutations of n elements just one half are even, the

other half are odd.

This follows by observing that if in each of the n ! permutations we

interchange any two elements, the same in all, every even permutation
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becomes odd and every odd permutation becomes even, and no two differ-

ent permutations are changed into the same permutation. After this

interchange we must have exactly the same n ! permutations as before.

Hence the number of even permutations must equal that of the odd

permutations.

The propositions about inversions are important for the theory of de-

terminants of the nth order to which we now proceed.

69. General Definition of Determinant. When n^ numbers are

given (e.g. the coefficients of the variables in n linear equations), arranged

in a square array, we denote by the symbol

«ii ••• «i,

and call determinant of the nth order the algebraic sum of the n ! terms

obtained as follows : the first term is the product of the n numbers in the

principal diagonal aiia22«33 ••• «„n ; the other terms are derived from this

term by permuting in all possible ways either the second subscripts or

the first subscripts, and multiplying each term by + 1 or — 1 according

as it is an even or odd permutation (i.e. contains an even or odd number

of inversions)

.

It follows at once that every term contains n factors, viz. one and only

one from each row, and one and only one from each column.

It is readily seen that this definition gives in the case of determinants

of the second and third order the expressions previously used as defining

such determinants. For a determinant of the fourth order,

«11 an ai3 au

an «22 ^28 ^24

azi az2 ass a34

an «42 ^43 au

we obtain the 1 • 2 • 3 • 4 = 24 terms from the principal diagonal term

ana^asiau

by forming all the permutations, say of the second subscripts 1, 2, 3, 4

and assigning the + or — sign according to the number of inversions. If

these permutations are derived by successive interchanges of two sub-

scripts the terms will have alternately the + and — sign.
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70. The properties of the determinant of the nth order are essentially

the same as those of the determinant of the third order (§§ 44-47).

(1) The determinant is zero whenever all the elements of any row, or

all those of any column, are zero.

For, every term contains one element from each row and one from

each column.

(2) It follows from the same observation that if all elements of any

row {or of any column) have a factor in common, this factor can be taken

out and placed before the determinant.

(8) The value of a determinant is not changed by transposition; i.e.

by making the columns the rows, and vice versa, preserving their

order.

For, this merely interchanges the subscripts of every element, i.e. the

first series of subscripts becomes the second series, and vice versa.

Hence any property proved for rows is also true for columns.

(4) The interchange of any two rows (columns) reverses the sign of

the determinant.

For, the interchange of any two rows gives an odd number of inver-

sions to the first series of subscripts in the principal diagonal (§ 67), and

does not alter the second series. Hence the signs of all the terms are

reversed.

CoR. 1. A determinant in which the elements of any row {column)

are equal to the corresponding elements of any other row {column) is zero.

For, the sign of the determinant is reversed when any two rows

(columns) are interchanged ; but the interchange of two equal rows

(columns) cannot change the value of the determinant. Hence, denot-

ing this value by A, we have in this case — A = A, i.e. A = 0.

(5) If all the elements of any row (column) are sums of two terms, the

determinant can be resolved into a sum of two determinants.

For, in the expansion of the determinant every term contains one bi-

nomial factor ; therefore it can be resolved into two terms. See § 47 for

an illustration.

By means of this property, prove the following corollaries

:

CoR. 1. If all the elements of any row (column) are algebraic

sums of any number of terms, the determinant can be resolved into a

corresponding number of determinants.

Cor. 2. The value of a determinant is not changed by adding to the
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elements of any row (column) those of any other row {column) multiplied

by any common factor.

This corollary furnishes a method (see § 72) by which all the elements

but one of any row (column) can be reduced to zero.

EXERCISES

1. How many inversions are there in the following permutations ?

(a) aia^aza^aia^a^. (b) a7a6aiasa2aiaB. (c) a7a6«5«4a3a2«i-

2. In the expansion of the determinant below, what sign must be

placed before the terms celn, agjp ?

3. Show that

a b c d

e f g h

i J k I

m n P

aix + biy + Ciz ai &i Ci

a^X + biy + C2Z «2 &2 C2

azx + bsy + Csz as 63 C3

a^x + biy + c^z a^ 64 C4

= 0.

4. Reduce the following determinant to one in which all the elements

of the first column are 1:

2 4 1 3

3 7 5 6

2 5

6 1 2 3

5. Show that

(6 + c)2 a2 «2

(a) 62 (c + a)2 62 = 2 abc(a + 6 + c)^
;

c2 c2 (a + 6)2

66' + cc' ba' ca'

(&) ab' cc' + aa' c6' = 4 aa'bb'cc'.

ac' be' aa'+66'

(Hint. Multiply the rows by a, 6, c, respectively.)
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71. Minors and Cofactors. if in a determinant both the row

and column in which any particular element atu occurs be struck out, the

remaining elements form a determinant of order n — 1, which is called

the minor of the element aiu-

From the definition (§ 69), we observe that the expansion of any de-

terminant is linear and homogeneous in the elements of any one row

(column). The terms which contain an as factor are those terms whose

other elements have all possible permutations of either the first or second

subscripts 2, 3, ••• n. Hence the sum of the terms that contain an as

factor can be expressed as an multiplied by its minor, i.e.

«22 ••• din

«n • • •

dfii "' (Inn

By interchanging the first and second rows ((4) § 70) we observe similarly

that the sum of those terms which contain a-n as factor can be written

«i2 ••• ax,

— a'ix • • •

(ln2 '" Oni.

Those terms which contain a^i as factor are given by

«12 ••' «i«

asi . • .

a„2 ••• a,

and so on. Hence the expansion of a determinant by minors of the first

column is

«ii

a22 ••• a2r.

«n2

— «21

«12 ••• «ln

«n2

+ ... (- l)"+^a«i

«12 au

(hi-li 2 ""O^n-lj n

Let Aik denote the cofactor of atk ; that is, (— 1)»+* times the minor of Qik]

and A the original determinant ; we can then write this expansion in the

form
A — a\\A\\ 4- a>2iA2i + ^si^si + ••• + «ni^ni.

Similarly by cofactors of the elements of any column,

A = aikAik + a2*^2* + «3*^3fe + ••• + ankA„k, for A: = 1, 2, 3, ... n,

and by cofactors of the elements of any row,

A = anA i + a<2^i2 + aoAis -\- ... + ainAtn, for i = 1, 2, 3, ... n.
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The evaluation of a determinant of order n is tlius reduced to the

evaluation of n determinants of order n — I. To each of these the same

process is applied until determinants of order 3 are obtained which can be

evaluated by the rule of § 42.

72. In case of numerical determinants this process of successive reduc-

tion is very much simplified by reducing to zero all the elements of any

one row (column) with the exception of one element, say Uik. This can

always be done by addition or subtraction of multiples of rows (columns),

by Cor. 2, § 70. The expansion by cofactors of the elements of this row

(column) then reduces to a single term, viz. aikAik.

The sign (— 1)«+* to be affixed to the minor of au to obtain the cofactor

Aik is readily found by counting plus, minus, plus, minus, etc., from the

first element an down to the itli row and then to the yfcth column until

Uik is reached.

73. The sum of the elements of any row (column) multiplied respec-

tively by the cofactors of the elements of any other row (column) is zero.

For, this corresponds to replacing the elements of any row (column) by

the elements of another row (column). Hence the determinant vanishes

(§ 70, (4), Cor. 1). For example, if in the expansion by cofactors of the

first row
aii^n + auAu + ••• + otiu^in

we replace the elements of the first row by those of any other row we find

anAn + ai2^i2 + ••• + «m^in = 0, for i = 2, 3, ••• w.

74. Linear Equations. We write n equations in n variables

aji, X2, Xs, ••• Xn as follows,

auXi + ttnXz + ••• -f ainXn = h,

anXl + a22X2 + ••• + a2nOf7i = ^2,

«nia^l + an2X2 + ••• + ann^n = kn-

The determinant formed by the coefficients of the variables is called the

determinant of the equations (§§37, 43) and is denoted by A. To solve

the equations for any one of the variables, say Xj, we multiply the first

equation by the cofactor of aij in A, i.e. by Ay, the second equation by

A2j, the third equation by Asj, etc., and add. This sum is by § 71

{aijAij + a2jA2j + ••• + anjAnj)Xj = Axj = kiAij + A;2^2j + ••• + knAnj,

as the coefficients of all the other variables vanish (§ 73). Hence if
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^ :5£i 0, we have the following rule : Each variable is the quotient of two

determinants, the denominator in each case is the determinant of the

equations, while the numerator is obtained from the denominator by re-

placing the coefficients of the variable by the constant terms (§§ 37, 43).

75. Elimination, if the n linear equations are homogeneous, i.e. if

kiy ^2, '" kn are all zero, we have

«iia-'i + aiiX2 + ••• + ainXn = 0,

a^iXi + a22^2 + ••• 4- «2naJn = 0,

an\Xi + a„2aJ2 + ••• + ann^n = 0.

These equations are evidently satisfied by the values

Xi = 0, iC2 = 0, • • • iCw = 0.

Other values of the variables can satisfy the equations only if the deter-

minant of the equations is zero. For, the method of § 74 gives in the

case of homogeneous equations

Axi = 0, Axi = 0, ••• Axn = 0.

Hence if Xi, X2, ••• Xn are not all zero we must have

^ = 0.

This result may also be stated as follows : The result of eliminating n

variables between n homogeneous linear equations is the determinant of

the equations equated to zero.

If, for instance, Xn =^ 0, we can divide each equation by Xn and then

solve any n—1 equations for the quotients Xi/Xn-, Xz/Xn-, ••• Xn-i/Xn. It

thus appears as in § 48 that when ^ = the ratios of the variables can

be found unless all the cofactors Aij are zero.

EXERCISES
1. Show that

«ii «12 «13 ai4

an an _ a2i ^22 «23 «24

an «22 1 au
1

2. Write the expansion of

X as

-1 X 02

-1 X a\

— 1 ao
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3. Express aox* + cli^^ + 0,2^'^ + «3aJ

4. Find the value of

054 as a determinant.

a b c d

— a b X y

— a -b c z

— a -b -c d
5. Show that

1 + a 1 1 1 1

1 1 + & 1 1 1

1 1 1 + c 1 1 = abcde

1 11 1 + ^ 1111 1 1 + e

6. Solve the equations :

Sx+y-

z

-2w=-S
,

(a) .

2x-y+5
5x + 4y-

z-Sw=6
z + w = 7,

>

(&)

. x+2y- Sz + w —- 3.

abcde (1+^ + 1 + ^ + 1 + 1)
\ a - b c d eJ

ix-2y + 2z + w = ly

2x + Sy-Sz + Sw = 2,

X — y+z — 4:W=^y

Sx + y-4:z + Sw=-5.

7. Are the following equations satisfied by other values of the variables

than 0, 0, 0, ?

(a)

Sx-4:y + 5z+w = 0,

5x + 2y — Sz-io = 0,

X — y + z + w = 0,

2x + 2y-3z + Sw = 0.

(&)

[Sx + 2y + z-6w = 0,

9x + 9y + 6z-l0w=0,
2x + y - z + Sw = 0,

x + 2y + z + iw = 0.

8. The relations between the sides and cosines of the angles of a tri-

angle are a = 6 cos 7 4- c cos /3, & = c cos a + a cos 7, c = a cos /3 + 6 cos a
;

find the relation between the cosines of the angles.

76. Special Forms, in any determinant

an ••• ain

two elements are called cowjw^aie when one occupies the same row and

column that the other does column and row respectively ; thus the

element conjugate to anc is aui. The elements with equal subscripts an,

a22, ••• ann are called the leading elements; they are their own conju-
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A determinant in which each element is equal to its conjugate (i.e.

ttik = aki) is called symmetric.

A determinant in which each element is equal and opposite in sign to

its conjugate (i.e. aik = — au) is called skew-symmetric \ the condition

implies that the leading elements are all zero.

A skeio-symmetric determinant of odd order is always equal to zero.

For, if we change the rows to columns (§70, Prop. 3) and multiply

each column by — 1, the determinant resumes its original form. But

since the determinant is of odd order we have multiplied by — 1 an odd

number of times, which changes the sign of the determinant [(4), § 70].

Hence denoting the value of the determinant by ^4, we have — A — A,

i.e. A=0.

77. Multiplication, it can easily be verified for determinants of

the second order that the product of any two such determinants

«ii .«i2| f>n hi

(221 ^22
I

^21 ^22

can be expressed as a determinant of the second order in any one of the

four following forms :

«ii?>ii + cinbu

(i2il>n + a22&i2

^ii^ii -f a2i&2i

ai2?>ii + a22&2i

dnbii +ai2&22

«21&21 + a22'^22

ail&12 + «21&22

ai2&12 4- ^22^22

anbii 4- aiibii dnbn + 012622

a21?>ll + dllbil a2lbi2 + a22&22

ail^U + «21&12

dnbn + diibii

anbii + 021^22

1

^12^21 + a22&22

Thus the first of these forms is, by (6), § 70, equal to the sum of four

determinants

«ii&ii

021611

011621! |aii6ii

021621! I021611

012622

^22622

012612

022612

011621

O21621

012612

O22612

012622

]

022622

of which the first and fourth are zero, while the sum of the second and

third reduces to

611622

For determinants of higher order the same method can be shown to

hold. Without giving the general proof we here confine ourselves to

illustrating the' metho'd for determinants of the third ord^r :

On 012

a2i O22
— 612621

On 012

021 022
= «ii

021

012

O22

611

621

612

622
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an «i2 «i3 ftll &12 &13 Cii C12 Ci3

^21 «22 «23 &21 &22 &23 = C21 C22 C23

«31 «32 «33 631 &32 &33 C31 C32 C33

where
Cn = «11&11 + «12&12 + «13&13» C12 = ail&21 + «12&22 + «13&23»

Cl3 = ail&31 + Clnhi + «13&33, C21 = a2lbn + «22&12 + «23^13i

etc. The product determinant can here also be written in four different

forms, according as we combine rows with rows, rows with columns,

columns with rows, or columns with columns.

If the two determinants to be multiplied are not of the same order,

they can be made of the same order by adding to the lower determinant

columns and rows consisting of zeros and a one ; thus

1

a h
a & z=.

c d^
c d

etc.

EXERCISES

1. Show that (a) The minors of the leading elements of a symmetric

determinant are symmetric. (6) The minors of the leading elements of

a skew-symmetric determinant are skew-symmetric, (c) The square of

any determinant is a symmetric determinant.

2. Expand the symmetric determinants

:

(«)

('0

H G
B F
F C

(&)

1 1

1 X

1 X

1 y z

x 4- p px + q

x+p
px -^q

Show that

(a)

1 1

1 a b =
1 c d

1 11
1 a-{- a & + /3

1 c+ a d + p\

(e)

(0

1 X

X 1

y

z

1

1

1

1

y z

(State this property in words.)



86 PLANE ANALYTIC GEOMETRY [V, § 77

(?>)

X a a a
X a a

a X a = {x-ay\x-v2a). (c)
a X

a a

a a

X a
a a X

a a a X

= (a;-ffl)3(a;-f-3a).

4. Show that any determinant whose elements on either side of the

principal diagonal are all zero, is equal to the product of the leading

elements.

5. A symmetric determinant in which all the elements of the first

row and first column are 1 and such that every other element is the sum

of the element above and the element to the right of it, has the value 1.

Illustrate this proposition for a determinant of the fourth order.

6. Show that any skew-symmetric determinant of order 2 or 4 is a

perfect square. This is true for any skew-symmetric determinant of

even order,

7. Expand the following determinants

:

a be
-a f e

-h -f (id
— c —e —d

(«)

1 a

-a 1

h -c
(&) • (c)

a -6
— a /

h -/
— c — e -d

8. Express as a determinant

(a)

id)

d\
(&) (c)

X a a 1

a X a . 1

a a X 1

(0

X z

X y

y z

-11

si

(/)

an — S ai2 G5l3

«31 «32 Cf33

9. Show that

a b c

d e f •

g h k

d'

b' c'

e' f =
h' k'

aii4 s «12 an

^21 «22 + S «23

an «32 a33 4-

a b c

d e f
g h k

a p 7 a' b' c'

8 e f d' e' f
V e K g' h' k'
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THE CIRCLE. QUADRATIC EQUATIONS

78. Circles. A circle, in a given plane, is defined as the locus

of all those points of the plane which are

at the same distance from a fixed point.

Let C (h, k) be the center, r the radius

(Fig. 31) ; the necessary and sufficient

condition that any point P (x, y) is at

the distance r from C (h, k) is that

(1) (a? - hfj^{y _ Jc)^=r^,

This equation, which is satisfied by the coordinates x, y of

every point on the circle, and by the coordinates of no other

point, is called the equation of the circle of center C (h, k) and

radius r.

If the center of the circle is at the origin (0, 0), the equation

of the circle is evidently

(2) ar^+y = r2.

EXERCISES

Write down the equations of the following circles :

(a) center (3, 2), radius 7
;

(6) center at origin, radius 3
;

(c) center at (— a, 0), radius a ;

(d) circle of any radius touching the axis Ox at the origin
;

(e) circle of any radius touching the axis Oy at the origin.

Illustrate each case by a sketch.

87
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79. Equation of Second Degree. Expanding the equation

(1) of § 78, we obtain the equation of the circle in the new form

x^ -\- y"" ~2hx-2ky -^-h} + l? - r^ = 0.

This is an equation of the second degree in x and y. But it is of

a particular form. The general equation of the second degree

in X and y is of the form

(3) Ax'^^ Ilxy + By^ + 2Ox-\-2Fy-\-C=^0;

i.e. it contains a constant term, (7; two terms of the first de-

gree, one in x and one in y ; and three terms of the second de-

gree, one in a^, one in xy, and one in y\

If in this general equation we have

it reduces, upon division by A, to the form

^ +f+^x + ^^y + ^= 0,

which agrees with the form (1) of the equation of a circle, ex-

cept for the notation for the coefficients.

We can therefore say that any equation of the second degree

which contains no xy-term and in which the coefficients of a? and

y^ are equal, may represent a circle.

80. Determination of Center and Radius. To draw the

circle represented by the general equation

(4) Ax^ + Ay^ ^2Gx-\-2Fy^C = 0,

where A, G, F, C are any real numbers while ^ ^^ 0, we first

divide by A and complete the squares in x and y ; i.e. we first

write the equation in the form

, GW f , FY G\ F""

'^'-aJ^'^aJ-a^^a^'a
The left-hand member represents the square of the distance of

the point (x, y) from the point {—G/A, —F/A)\ the right-
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hand member is constant. The given equation therefore repre-

sents the circle whose center has the coordinates

h- ^ k- ^

and whose radius is

This radius is, however, imaginary \i G^ -{- F"^ <, AG ] in this

case the equation is not satisfied by any points with real co-

ordinates.

If G^ + F^ = AG, the radius is zero, and the equation is satis-

fied only by the coordinates of the point (— G/A, — F/A).

If G^+F^ > AG, the radius is real, and the equation repre-

sents a real circle.

Thus, the general equation of the second degree (3), § 79, repre-

sents a circle if, and only if,

A = B^O,'H^O, G' + F'>AG.

81. Circle determined by Three Conditions. The equation

(1) of the circle contains three constants h, k, r. The general

equation (4) contains four constants of which, however, only

three are essential since we can always divide through by one of

these constants. Thus, dividing by A and putting 2 GjA = a,

2 F/A = b, C/A — c, the general equation (4) assumes the form

(5) ay'^.f^axi-by-^c^O,

with the three constants a, b, c.

The existence of three constants in the equation corresponds

to the possibility of determining a circle geometrically, in a

variety of ways, by three conditions. It should be remembered

in this connection that the equation of a straight line contains

two essential constants, the line being determined by two

geometrical conditions (§ 30).
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EXERCISES

1. Draw the circles represented by the following equations:

(a) 2x^ + 2y^-Sx + 5y + l=0. (b) Sx^-\- Sy^+IT x - 16y-6 = 0.

(c) 4 ic2 + 4 2/2 _ 6 X - 10 y + 4 = 0. (d) x^ + y^ -\- x - 4:y =0.

(e) 2 x2 + 2 2/2 - 7 a; = 0. (f)x^-{-y^-Sx-6z=0.

2. What is the equation of the circle of center {h, k) that touches the

axis Ox ? that touches the axis Oy ? that passes through the origin ?

3. What is the equation of any circle whose center lies on the axis

Ox ? on the axis Oy? on the line y= x? on the line y = 2x? on the line

y = mx ?

4. Find the equation of the circle whose center is at the point (— 4, 6)

and which passes through the point (2, 0).

5. Find the circle that has the points (4, — 3) and ( — 2, — 1) as ends

of a diameter.

6. A swing moving in the vertical plane of the observer is 48 ft. away

and is suspended from a pole 27 ft. high. If the seat when at rest is 2 ft.

above the ground, what is the equation of the path (for the observer as

origin)? What is the distance of the seat from the observer when the

rope is inclined at 45^ to the vertical ?

7. Find the locus of a point whose distance from the point (a, h) is /c

times its distance from the origin.

Let P (ic, y) be any point of the locus ; then the condition is

V(x-a)2-f (2/-6)2= KVx2 + 2/2
;

upon squaring and rean*anging this becomes :

(1 - k2)x2 + (1 - k2)2/2 -2ax-2hy -\- cfi-\- 62 = o.

Hence for any value of k except k = 1, the locus is a circle whose center is

a/{\ - k2), 6/(1 - k2) and whose radius is k y/d^ + 6V(1 - k^). What

is the locus when ic = 1 ?

8. Find the locus of a point twice as far from the origin as from the

point(6, — 3). Sketch.

9. What is the locus of a point whose distances from two points Pi,

P2 are in the constant ratio k ?
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10. Determine the locus of the points which are k times as far from

the point (—2, 0) as from the point (2, 0). Assign to k the values

\/5, V8, V2, I VS, ^ \/3, I \/2 and illustrate with sketches drawn with

respect to the same axes.

11. Determine the locus of a point whose distance from the line

Sx — 4y+l=0 is equal to the square of its distance from the origin.

Illustrate with a sketch.

12. Determine the locus of a point if the square of its distance from

the line x + y — a = is equal to the product of its distances from the

axes.

82. Circle in Polar Coordinates. Let us now express the

equation of a circle in polar coordinates. If (7(ri, <^i) is the

center of a circle of radius a (Fig. 32)

and P(rj <^) any point of the circle,

then by the cosine law of trigo-

nometry ^"'-^ T'^ .

r^ + ri^ — 2 riV cos (<^ — <^i) = a\ Fig. 32

This is the equation of the circle since, for given values of ?-i,

<^i, a, it is satisfied by the coordinates r, 4> of every point of

the circle, and by the coordinates of no other point.

Two special cases are important:

(1) If the origin^ be taken on the circumference and the

.polar axis along a diameter OA (Fig. 33),

the equation becomes

^2
_f_ a2 — 2 ar cos

<f>
= a^,

i.e. r = 2 a cos <^.

This equation has a simple geometrical

interpretation : the radius vector of any

point Pon the circle is the projection of the diameter OA =2 a

on the direction of the radius vector.

(2) If the origin be taken at the center of the circle, the

equation is r = a.

%
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^ EXERCISES

1. Draw the following circles in polar coordinates :

'"^(a) r = 10 cos 0.
'~~-

(b) r = 2a cos (0 — ^ ir). (c) r — sin 0.

((?) r = 6. (e) r = 7 sin (0 — | tt) . {f)r- 17 cos 0.

2. Write the equation of the circle in polar coordinates :

\a) with center at (10, ^tt) and radius 5
;

(6) with center at (6, \ tt) and touching the polar axis
;

(c) with center at (4, | tt) and passing through the origin
;

(d) with center at (3, tt) and passing through the point (4, \ tt) .

^
3. Change the equations of Ex, (1) and (2) to rectangular coordinates

with the origin at the pole and the axis Ox coincident with the polar axis.

4. Determine in polar coordinates the locus of the midpoints of the

chords drawn from a fixed point of a circle.

83. Quadratic Equations. The fundamental problem of

finding tlie intersections of a line and a circle leads, as we shall

see (§ 86), to a quadratic equation. Before discussing it we

here recall briefly the essential facts about quadratic equations.

The method for solving a quadratic equation consists in com-

pleting the square of the terms in x^ and a*, which is done most

conveniently after dividing the equation by the coefficient of x^.

The equation
«2 + 2 j9a; + g =

has the roots

x=. — J) ± V/52 — q.

The quantity i[P- — q\.^ called the discriminant of the equation.

According as the discriminant is positive, zero, or negative, the

roots are real and different, real and equal, or imaginary. In

the last case, i.e. when p^ < g, the roots are, more precisely,

conjugate complex, i.e. of the form a + bi and a — hi, where a

and h are real while i =V— 1.

As remarked above, any quadratic equation may be thrown

into the form here discussed, by dividing by the coefficient

of x^.
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84. Relations between Roots and Coefficients. If we de-

note the roots of the quadratic equation

by Xi and x^ , we have

Xi= — p -\- Vp^ — q, X2 = — p — Vi?2 — q,

whence
Xi -{- x^ = — 2 p, X1X2 = q ;

i. e. the sum of the roots of a quadratic equation in which the

coefficient ofx^ is reduced to 1 is equal to minus the coefficient of

x; the product of the roots is equal to the constant term.

With the values of x^, x.2 just given we find

{x — x^{;x — x^ = 0? -\- 2px + g,

so that the quadratic equation can be written in the form

{X — X^{X — CCg) = 0,

which gives

These properties of the roots often make it possible to solve

a quadratic equation by inspection.

EXERCISES

1. Solve the quadratic equations :

(a) a:2 - 6 X + 8 = 0. I (ft) x2 + 5 a; - 14 = 0.

(c) 2 a;2 - x - 28 = 0. ' (d) 6 jc^ - 7 a; - 6 = 0.

(e) a;2 + 2 &x - a^ + &2 ^^ q. {f) a^x^ - {a^ + b^)x + b'^ = 0.

(fir) ax2 + &x = 0. (h) 12 a:2 + 8 x - 15 = 0.

/ 2. Show that the solutions of the quadratic equation ax'^ + &x + c =

may be written in the form x = - -^ ± ^^ - 4 «c

2a 2a

When are these solutions real and unequal ? equal ? imaginary ?

3. Write down the quadratic equation that has the following roots

:

(a) 3, - 2. (ft) - 3, 0. (c) 5, - 5.

(d) a-b, a + b. (e) 3 - 2V3, 3 + 2 >/3. (/) 1 + \/2, 1 - \/2^

(9) c, -i. (h) h-h ' (i) 3, V2.
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4. Without solving, determine the nature of the roots of the follow-

ing equations :

» 5a;2-6x-2 = 0. (6) 9x^ + (>x+lz=0.

^c) 2 a:2 - a; + 3 = 0. (cZ) 20 a;2 + 6 a; - 5 = 0.

(e) llx2-4x-^^ = 0. (/) 3a:2 + 2x + l = 0.

6- For what values of k are the roots of the following equations real

and different ? real and equal ? conjugate complex ?

(a) x2- 4x + A: = 0. (6) a:2 + 2 ^•a; + 36 = 0.

i^ ,(c) 9x^ + kx+26 = 0. (d) ax^-\-bx + k = 0.
"^

(e) A:x2 - 5 X + 6 = 0. (/) ax2 + A:x + c = 0.

6. Solve the following equations as quadratic equations :

(_(a) ?/4_3y2_4^0. (Let 1/2= 2;.) (6) 2;3-2 + 3 2;-i - 2 = 0.

, , ,x 2 , X + 3 „
(c) X + V^TTS = 3. (^) ^^ + -^ = 2.

(e) m6 + 18 m3 - 243= 0. (/) 2 x"! + x'^ - 16 = 0.

7. If xi and X2 are the roots of x2 + 2 px + g = 0, find the values of

(7(a) Xi2x2 + X1X22. (6) Xi2 + X22. (C) (Xi - X2)2.

Xi X2 Xi2 X22

and apply these results to the case x2 — 3 x + 4 = 0.

8. Without solving, form the equation whose roots are each twice

the roots of x2 - 3 x + 7 = 0. [See § 84.]

9. What is the equation whose roots are m times the roots of

x2 + 2px + ^ = 0?

10. Form the equation whose roots are related to the roots of 2 x2 —
3 X — 5 = 0, in the following ways :

(o) less by 2
;

(h) greater by 3
;

(c) divided by 6.

85. Simultaneous Linear and Quadratic Equations. To

solve two equations in x and y of which one is of the first

degree (linear) while the other is of the second degree, it is

generally most convenient to solve the linear equation for either

X or y and to substitute the value so found in the equation of the

second degree. It then remains to solve a quadratic equation.

An equation of the first degree represents a straight line.
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If the given equation of the second degree be of the form

described in § 79, it will represent a circle. By solving two

such simultaneous equations we find the coordinates of the

points that lie both on the line and on the circle, i.e. the points

of intersection of line and circle.

86. Intersection of Line and Circle. Let us find the in-

tersections of the line

y = mx -h b

with the circle about the origin

Substituting the value of y from the former equation into the

latter, we find the quadratic equation in x

:

x^+(mx-{-by=r^,

or (1 + 'nv')^ + 2 mbx -\-b^-r^=:0'

The two roots Xi, X2 of this equation are the abscissas of the

points of intersection ; the corresponding ordinates are found

by substituting iCi, X2in y = mx + b.

It is easily seen that the abscissas Xi, x^ are real and differ-

ent if (l + mV-62>o,
. .0 b ^
I.e. II —^:=z=: < r.

Vl + rn?

Since m = tan a, and hence 1/Vl + m^ = cos a, the preceding

relation means that b cos a < r, i.e. the line has a distance from

the origin less than the radius of the circle. If

the roots x^, x^ are real and equal. The line and the circle then

have only a single point in common. Such a line is said to

touch the circle or to be a tangent to the circle. If

(1 + 'rri')7^ -b^<0,
the roots are complex, and the line has no points in common
with the circle.
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87. The General Case. The intersections of the line and

circle

i»^ + 2/^ + «i» + &2/ + c = 0,

are found in the same way : substitute the value of y (or a;),

found from the equation of the line, in the equation of the

circle and solve the resulting quadratic equation.

It is often desired to determine merely ivhetlier the line is

tangent to the circle. To answer this question, substitute y

(or x) from the linear equation in the equation of the circle

and, without solving the quadratic equation^ write down the con-

dition for equal roots (p^ = q, § 83).

EXERCISES

1. Find the coordinates of the points where the circle x^ + y'^^ — x -\- y

— 12 = crosses the axes.

2. Find the intersections of the line 3aj + y— 5 = and the ^circle

x2 + 1/2 _ 22 a; - 4 y + 25 = 0.

3. Find the intersections of the line 2x — 1 y + 6 = and the circle

2x2 + 2y2 4.9x + 9?/-ll = 0.

4. Find the equations of the tangents to the circle xr + y'^ = 16 that

are parallel to the line y =—Sx -j-S.

5. Show that the equations of the tangents to the circle x^ -\- y"^ = r^

with slope m are y = mx ± rVl + m'^.

6. For what value of r will the line 3x-2y — 5 = 0be tangent to the

circle x^ + y^ = r^ ?

7. Find the equations of the tangents to the circle 2x'^ + 2y^ — Sx

+ 5?/ — 7 = that are perpendicular to the line x + 2y + 3 = 0.

8. Find the midpoint of the chord intercepted by the line 5x-y + 9=0

on the circle x^ -\-y^ = 18. (Use § 84.)

9. Find the equations of the tangents to the circle x^ + y2 _ 53 that

pass through the point (10, 4).
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88. The Tangent to a Circle. The tangent to a circle (com-

pare § 86) at any point P may be defined as the perpendicular

through P to the radius passing through P. To find the equa-

tion of the tangent to a circle whose center is at the origin,

x^ -\- y"^ = r^,

at the point P (x, y) of the circle (Fig. 34), observe that the

distance p of the tangent from the origin

is equal to the radius r and that the

angle p made by this distance with the

axis Ox is such that

cos /? = - , sin /8 = -^
:

T r

substituting these values in the normal

form X cos /8 + r sin ^ = p of the Fig. m

equation of a line (§ 54), we find as equation of the tangent

xX-]-yY=r'^,

where x, y are the coordinates of the point of contact P and

X Y are those of any point of the tangent.

89. The General Case. To find the equation of the tangent

to a circle whose center is not at the origin let us write the

general equation (4), § 80, viz.

(4) Ax"" + .4?/2 + 2 (^a; + 2 i<V + C = 0,

in the form
F^ C

"+fT^i^+2j=^+^^ ^a) a^

where — G/A, — F/A are the coordinates of the center and
Q2/ji + F^/A"- C/A is the square of the radius r (§ 80).

With respect to parallel axes through the center the same circle

has the equation

2.2 G^
,
F""

-^
A'' A^

= r\
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and the tangent at the point P{x, y) of the circle is (§ 88)

:

Hence, transferring back to the original axes, we find as

equation of the tangent at P (x, y) to the circle (4)

:

AxX-\-AyY-\-G{:x+X)^F{y^- Y)+ (7=0.

This general form of the tangent is readily remembered if we

observe that it can be derived from the equation (4) of the

circle by replacing x^ by xX, y^ hy yY, 2 a? by ic+ X, 2y'byy-\-Y.

EXERCISES \ \n

1. Find the tangent to the given circle at the given point

:

(a) 0^2 + 2/2 = 41, (5, -4).

(6) x^ + y^ + Qx + ^y- 16 = 0, (-2, 3).

(c) 3a-2 + 3?/2 + 10a; + 17?/+18 = 0, (-2, -o).

(d) a;2 + ?/2 - ax -hy = 0, («, 6).

2. The equation of any circle through the origin can be written in the

form (§ 81) x^ + y^ + ax + by = 0; show that the line ax -\- by = is the

tangent at the origin, and find the equation of the parallel tangent.

3. Derive the equation of the tangent to the circle {x—h)'^+{y—k)^=:r^.

4. Show that the circles x'^ + y^ — 6x + 2y + 2 = and x^ + y'^ — 4y

+ 2 = touch at the point (1, 1).

5. Find the tangents to the circle x^ + y^ — 2x — 10y-{-9 = at the

extremities of the diameter through the point (— 1, 11/2).

6. The line 2aj + 2/ = 10 is tangent to the circle x^ + y'^ = 20 ; what is

the point of contact ?

7. What is the point of contact if Ax -{- By -h C = is tangent to the

circle x^ + y^ = r'^?

8. Show that x — y — l = is tangent to the circle aj^ + ?/2 + 4 x

— 10 ?/ — 3 = 0, and find the point of contact.

9. By § 86, the line y = mx + & has but one point in common with

the circle x^ + ?/2 = r^ if ( 1 + m'^)r^ = b^ ; show that in this case the radius

drawn to the common point is perpendicular to the line y = mx -\- b.
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90. Circle through Three Pomts. To fiyid the equation of

the circle passing through three points Piix^^y^, -^2(^2? 2/2)5

A (^3 J 2/3)? observe that the coordinates of these points satisfy

the equation of the circle (§ 81)

(6) .T2^2/' + ^a^ + % + c = 0;

hence we must have

(J)

^i + Vi + «^i + &2/1 + c = 0,

^2 + 2/2^ + «^2 + &2/2 +c = 0,

.^i + Vz^ + «% + &2/3+ c = 0.

From the last three equations we can find the values of a, 6,

and c ; these values must then be substituted in the first equa-

tion.

In general this is a long and tedious operation. What we

actually wish to do is to eliminate a, b, c between the four

equations above. The theory of determinants furnishes a very

simple means of eliminating four quantities between four

homogeneous linear equations (§ 75). Our equations are not

homogeneous in a, 6, c. But if we write the first two terms in

each equation with the factor 1 : (a?^ -f y^) . 1, (x-^ 4- y-^) • 1, etc.,

we have four equations which are linear and homogeneous in 1,

a, b, c ; hence the result of eliminating these four quantities is

the determinant of their coefficients equated to zero. Thus the

equation of tJie circle through three points is

=

Compare § 49, where the equation of the straight line through

two points is given in determinant form.

^ + y' X y 1

aa' + 2/i' Xi 2/1
1

3^2^ + 2/2' ^2 2/2 1

x^ty^' Xs 2/3 1
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EXERCISES

1. Find the equations of the circles that pass through the points :

^ (a) (2,3), (-1,2), (0,-3).

-^(6) (0,0), (1,-4), (5,0).

(c) (0, 0), (a, 0), (0, b).

• 2. Find the circles through the points (3, — 1), (— 1, —2) which
touch the axis Ox.

^ 3. Find the circle through the points (2, 1), (— 1, 3) with center on

the line 3x — y + 2-0.

4. Find the circle whose center is (3, — 2) and which touches the

line 3a: + 4y-12 = 0.

6. Find the circle through the origin that touches the line

4x-5y- 14 = Oat (6, 2).

6. Find the circle inscribed in the triangle determined by the lines

24x-7?/ + 3=0, 3x-4«/-9 = 0, 5x + 12y-50 = 0.

7.' Two circles are said to be orthogonal if their tangents at a point of

intersection are perpendicular ; the square of the distance between their

centers is then equal to the sum of the squares of their radii. If the

equations of two intersecting circles are

x^ -\-y^ + aix + biy + Ci =0, and x^ + y^ + a^x + &22/ + C2 = 0,

show that the circles are orthogonal when aia2 + 6162 = 2(ci + C2).

8. Find the circle that has its center at (—2, 1) and is orthogonal to

the circle x^ + y^-6x + S = 0.

9. Find the circle that has its center on the line i/ = 3 x + 4, passes

through the point (4, — 3), and is orthogonal to the circle

x^ + y^ + lSx + 5y + 2 =0.

91. Inversion. A circle of center O and radius a being given

(Fig. 35), we can find to every point P of the plane

(excepting the center O) one and only one point P'

on OP, produced beyond P if necessary, such that

OP . OP' = a2.

The point P' is said to be inverse to P with respect

to the circle (0, a) ; and as the relation is not Fig. 35
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changed by interchanging P and P', the point P is inverse to P'. The

point is called the center of inversion.

It is clear that (1) the inverse of a point P within the circle is a point

P' without, and vice versa ; (2) the inverse of a point of the circle itself

coincides with it
; (3) as P approaches the center 0, its inverse P' moves

off to infinity, and vice versa.

The inverse of any geometrical figure (line, curve, area, etc.) is the

figure formed by the points inverse to all the points of the given figure.

92. Inverse of a Circle. Taking rectangular axes through O

(Fig. 36), we find for the relations between the coordinates of two in-

verse points P{x, y), P' (x', y'), if we put OP = r, OP' = r' ;

X y r

rr' a2

r2

since rr' = a^ . hence

X'-
^'"^

y'--

X2+2/2'

and similarly

._ aV
11 _ a'^y'

X'2 + 2/'2
Fig. 36

These equations enable us to find to any curve whose equation is given the

equation of the inverse curve, by simply substituting for x, y their values.

Thus it can be shown that hy inversion any circle is transformed into

a circle or a straight line.

For, if in the general equation of the circle

^(x2 + y2) + 2 ^x + 2 Py + (7 =

we substitute for x and y the above values, we find

Aa^
x'2 + y' + 2(?a2. 4-2Pa2.

y'
4-c = o,

(X'2 + ?/'2)2 x'-2 + y'-^ X'2 4- ?/'2

that is, Aa^ + 2 QaH' + 2 Fay + 0(x'2 + y''^) = 0,

which is again the equation of a circle, provided C ^0. In the special

case when C = 0, the given circle passes through the origin, and its in-

verse is a straight line. Thus every circle through the origin is trans-

formed hy inversion into a straight line. It is readily proved conversely

that every straight line is transformed into a circle passing through the

origin ; and in particular that every line through the origin is transformed

into itself, as is obvious otherwise.
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EXERCISES

1. Find the coordinates of the points inverse to (4, 3), (2, 0), (—5, 1)

with respect to the circle x^-j-y'^ = 26.

2. Show that by inversion every line (except a line through the center)

is transformed into a circle passing through the center of inversion.

3. Show that all circles with center at the center of inversion are

transformed by inversion into concentric circles.

4. Find the equation of the circle about the center of inversion which

is transformed into itself.

6. With respect to the circle x^ + y"^ = 16, find the equations of the

curves inverse to :

(a) x=b, (b) x-y=0, (c) x'^ +y^-6x=0, (d) x^+y^-lOy+ l=0,

(e) Sx-^y-\-Q=0.

6. Show that the circle Ax'^ + Ay'^ -^2 Gx-\-2 Fy + a^A = is trans-

formed into itself by inversion with respect to the circle a:^ + y2 — q2^

7. Prove the statements at the end of § 92,

93. Pole and Polar. Let P, P' (Fig. 37) be inverse points with

respect to the circle (O, a) ; then the perpen-

dicular I to OP through P' is called the polar of

P, and P the pole of the line Z, with respect to

the circle.

Notice that (1) if (as in Fig. 37) P lies within

the circle, its polar I lies outside
; (2) if P lies

outside the circle, its polar intersects the circle

in two points
; (3) if P lies on the circle, its

polar is the tangent to the circle at P. Fig. 37

Referring the circle to rectangular axes through its center (Fig. 38) so

that its equation is

x2 -)- 2/2 = a%

we can find the equation of the polar I of

any given point P(ic, y). For, using

as equation of the polar the normal

form X cos /3+ F sin /3 =;;, we have

evidently, if P' is the point inverse

toP:
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cos/3

\/x^ + y'^

sin/3

therefore the equation becomes

xX

vx'^ + y'^

yY _

p=OP' =

or simply xX-\-yY=a'^.

This then is the equation of the polar I of the point P {x, y) with re-

spect to the circle of radius a about the origin. If, in particular, the

point P (a;, y) lies on the circle, the same equation represents the tan-

gent to the circle xP- \-'f — a^ at the point P (x^y), as shown previously

in § 88.

94. Chord of Contact. The polar l of any outside point P with

respect to a given circle passes through the points of contact Ci , C2 of

the tangents drawn from P to the circle.

To prove this we have only to show that if Ci is one of the points of

intersection of the polar I of P with the circle, then the angle OCiP

(Fig. 39) is a right angle. Now the triangles

OCiP and OP'Ci are similar since they have

the angle at in common and the including

sides proportional owing to the relation

OP • OP' = a2,

OP^ a

a 0P'\
i.e.

where a = OCi. It follows that ^ OC\P=
j.^^ 3^

0P'Ci = |7r.

The rectilinear segment C1C2. is sometimes called the chord of contact

of the point P. We have therefore proved that the chord of contact of

any outside point P lies on the polar of P.

It follows that the equations of the tangents that can he drawn from

any outside point P to a given circle can be found by determining the

intersections Ci , Ci of the polar of P with the circle ; the tangents are

then obtained as the lines joining Ci , C2 to P.
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95. The General Case. The equation of the polar of a point

P (x, y) with respect to any circle given in the general form (4),

§ 80, viz.,

(4) Ax^- + Ay^-\-2Gx + 2Fy + C = 0,

is found by the same method that was used in § 89 to generalize the

equation of the tangent. Thus, with respect to parallel axes through the

center the equation of the circle is

C
A'

the equation of the polar of P(x, y) with respect to these axes is by

--^-l-f

§93:

Hence, transferring back to the original axes, we find as equation of the

polar of P {x, y) with respect to the circle (4) :

AxX-\- AyY -{- G{x + X)+ F(y + Y)+ C = 0.

If, in particular, the point P (x, y) lies outside the circle, this polar

contains the chord of contact of P; if P lies on the circle, the polar be-

comes the tangent at P (§ 89).

96. Construction of Polars. if a point Pi describes a line I, its

polar h with respect to a given circle (0, a) turns about a fixed point,

viz., the pole P of the line I (Fig. 40).

Conversely, if a line h turns about one

of its points P, its pole Pi with respect

to a given circle {0, a) describes a line Z,

viz. the polar of the point P.

For, the line I is transformed by in-

version with respect to the circle (0, a)

into a circle passing through and

through the pole P of I; as this circle

must obviously be symmetric with respect

to OP it must have OP as diameter. Any
point Pi of I is transformed by inversion

into that point Q of the circle of diameter OP at which this circle is in-

tersected by OPi . The polar of Pi is the perpendicular through Q to

OPi ; it passes therefore through P, wherever Pi be taken on ^

The proof of the converse theorem is similar.

Fig. 40
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The pole Pi of any line h can therefore be constructed as the intersec-

tion of the polars of any two points of h ; this is of advantage when the

line h does not meet the circle. And the polar h of any point Pi can be

constructed as the line joining the poles of any two lines through Pi ; this

is of advantage when the point Pi lies inside the circle.

EXERCISES

1. Find the equation of the polar of the given point with respect to

the given circle and sketch if possible

:

(a) (4, 7),x2 + ?/2^8.

(6) (0, 0),x2 + ?/2-3x-4 = 0.

(c) (2, l),x2 + «/2_4x-2?/+l=0.
(rZ) (2, -3), x2 + 2/2+ 3a; +10?/+ 2 = 0.

2. Find the pole of the given line with respect to the given circle and

sketch if possible :

(a) X + 2 y - 20 = 0, a;2 + y/2 = 20.

(6) X + ?/ + 1 = 0, x2 + ?/2 = 4.

(c) 4 X - ?/ = 19, x2 + y2 = 25.

(d) Ax + By + C = 0, x2 + ?/2 = r2.

(e) 2/ = mx + 6, x2 + i/2 = r^.

3. Find the pole of the line joining the points (20, 0) and (0, 10),

with respect to the circle x^ + y^ = 25.

4. Find the tangent to the circle x2+«/2-10x+4 2/+9=0 at (7, - 6).

5. Find the intersection of the tangents to the circle 2 x2 + 2 y^— 15 x

+ y — 28 = at the points (3, 5) and (0, — 4)

.

6. Find the tangents to the circle x2 + ]/2 — 6x — 10 2/ + 2 = that

pass through the point (3, — 3)

.

7. Find the tangents to the circle x^ + y2 _ 3 x + y — 10 = that pass

through the point (— f, — V")-

8. Show that the distances of two points from the center of a circle

are proportional to the distances of each from the polar of the other.

9. Show analytically that if two points are given such that the polar

of one point passes through the second point, then the polar of the second

point passes through the first point.

10. Find the poles of the lines x - y -S = and x + y + S = with

respect to the circle x2 + 2/- _ 6 x + 4 y + 3 = 0.
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If in the left-hand member of the equa-97. Power of a Point.

tion of the circle

we substitute for x and y the coordinates xi , ?/i of a point Pi not on the

circle (Fig. 41), the expression (xi — hy -\- (yi — k)^ — r'^ is different

from zero. Its value is called the power y

of the point Pi (xi , y{) with respect to

the circle. As (x\ — h)'^ + {y\ — k)^ is

the square of the distance PiC = d be-

tween the point Pi {xi , yi) and the

center C(h, k), the power of the point

Pi (iCi, yi) with respect to the circle is

cP — r^; and this is positive for points

without the circle (d>r), zero for points Fig. 41

on the circle (d = r), and negative for points within the circle (d<ir).

If the point lies without the circle, its power has a simple interpretation
;

it is the square of the segment PiT = t of the tangent drawn from Pi to

the circle

:

«2=(?2 (^i - hy -H (yi - ky - r2.

Hence the length t of the tangent that can be drawn from an outside

point Pi (a^i , yi) to a circle x'^ + y'^ -\- ax -\- hy -\- c = () i^ given by-

fa = xi2 + y{^ + axi + hyi + c.

Notice that the coefficients of x^ and y^ must be 1. Compare the similar

case of the distance of a point from a line (§ 56).

98. Radical Axis. The locus of a point whose powers with respect

to any two circles

x2 -}- 2/2 + axx + hiy + ci = 0,

a;2 + y2 + a^x + h^y + ca = 0,

are equal is given by the equation

a;2 + y2 + a^x + hiy + ci = x^-\-y'^ + a^x -f b^y + cs,

which reduces to

(ai — a2)x + (&i — h2)y + (t'l — ci) - 0.

This locus is therefore a straight line ; it is called the radical axis of the

two circles. It always exists unless ai = a<i and hi = ?)2, i-e- unless the

circles are concentric. - •
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Three circles taken in pairs have three radical axes which pass through

a common point, called the radical center. For, if the equation of the

third circle is

x2 + y2 + asx + hy + C3 = 0,

the equations of the radical axes will be

(a2 - as)x + (62 - b3)y + (C2 - C3) = 0,

(as - ai)x 4- (&3 - &i)y + (C3 - ci) = 0,

(ai - a2)x + (61 - b2)y + (ci - C2) = 0.

These lines intersect in a point, since the determinant of the coefficients

in these equations is equal to zero (Ex. 10, p. 57).

99. Family of Circles. The equation

(8) (a;2 4- 2/2 + a,x + b^ + c,) + k^x"" -\-y'-\- a,x + 6^ + Cg) =

represents a family, or pencil, of circles each of which passes

through the points of intersection of the circles

(9) i«2 + ^2^aiaj + &i2/+Ci = 0,

and

(10) a;2 + 2/2 + a^x + h^ + c^ = (),

if these circles intersect. For, the equation (8) written in the

form

(1 + k)x2 + (1 _^ ^^^y2 _,. (ct^ ^ ^a2)x + (61 + Kh^)y + Ci + KC2 =

represents a circle for every value of k except k = — 1, as the

coefficients of x^ and y"^ are equal and there is no xy-iQvm (§ 79).

Each one of the circles (8) passes through the common points

of the circles (9) and (10) if they have any, since the equation

(8) is satisfied by the coordinates of those points which satisfy

both (9) and (10). Compare § b^. The constant k is called the

parameter of the family.

In the special case when k — — 1, the equation i§ of the first

degree and hence represents a line, viz. the radical axis (§ 98)

of the two circles (9), (10). If the circles intersect, the radical

axis contains their common chord.
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EXERCISES

1. Find the powers of the following points with respect to the circle

aj2 -\-y'2 — Sx—2y=0 and thus determine their positions relative to the

circle: (2,0), (0,0), (0, -4), (3,2).

2. What is the length of the tangent to the circle : (a) x^ -i-
y'^ + ax

+ by-\-c = from the point (0, 0), (6) {x - 2)2+ (:« _ 3)2 - 1 = from

the point (4, 4) ?

3. By § 97, t^=:d-^ — r^=(d-{-r)(d-r); interpret this relation

geometrically.

4. Find the radical axis of the circles x^ -\- y^ + ax+ by + c = and

x^ + y^ + bx -\- ay + c = and the length of the common chord.

5. Find the radical center of the circles x^-\-y^ — Sx + 'iy — 7=0,
ic2 + ?/2 _ 16, 2(a;2 -I- ?/2) _f. 6 X + 1 = 0. Sketch the circles and their radi-

cal axes.

6. Find the circle that passes through the intersections of the circles

a;2 _f. ^2 _|_ 5 3j _ and x^ -\- y'^ + x — 2 y — 5 = 0, and (a) passes through

the point (—5, 6), (h) has its center on the line 4x — 2y — l5 = 0,

(c) has the radius 5.

7. Sketch the family of circles x^ + y^ - 6 y + k{x^ + ^/^ + 3 ?/) = 0.

8. What family of circles does the equation Ax -{ By + O + k(x^

+ y^ -\- ax -{ by -\- c) = represent ?

9. Find the family of curves inverse to the family of lines y = mx + 6;

(a) with m constant and b variable, (b) with m variable and b constant.

Draw sketches for each case.

10. Show that a circle can be drawn orthogonal to three circles, pro-

vided their centers are not in a straight line.

11. Find the locus of a point whose power with respect to the circle

2 .^2 -f 2 ?/2 — 5 X + 11 y — 6 = is equal to the square of its distance from

the origin. Sketch.

12. Show that the locus of a point for which the sum of the squares of

its distances from the four sides of a square is constant, is a circle. For

what value of the constant is the circle real ? For what value is it the

inscribed circle ?
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13. Find the locus of a point if the sum of the squares of its distances

from the sides of an equilateral triangle of side 2 a is constant.

14. Show that the circle through the points (2, 4), (— 1, 2), (3, 0) is

orthogonal to the circle which is the locus of a point the ratio of whose

distances from the points (2, 4) and (— 1, 2) is 3. Sketch.

15. Show that the circles through two fixed points, say (-a, 0),

(a, 0), form a family like that of Ex. 8.

16. The locus of a point whose distances from the fixed points (—a, 0),

(a, 0) are in the constant ratio k (:^ 1) is the circle

x2 + 2/2 4- 2^-±-^ax + a- = 0.
1 — k2

Compare Ex. 9, p. 90. Show that, whatever k(:^ 1), this circle inter-

sects every circle of the family of Ex. 15 at right angles.

Parameters, in problems on loci it is often convenient to express

the coordinates x, y of the point describing the locus in terms of a third

variable and then to eliminate this variable. Thus, for any point on a

circle of radius a about the origin we have evidently

(a) X = a cos 0, y = a sin
<f> ;

eliminating <p by squaring and adding we find

^•2 ^ y2 - ^2.

The variable <p is called the parameter; the equations (a) are the

parameter equations of a circle about the origin.

17. The ends ^, jB of a straight rod of length 2 a move along two per-

pendicular lines ; find the locus of the midpoint of AB.

18. One end vl of a straight rod of length a describes a circle of radius a

and center O, while the other end B moves along a line through 0. Taking

this line as axis Ox and as origin, find the locus of the intersection of

OA (produced) with the perpendicular to the axis Ox through B.

19. Four rods are jointed so as to form a parallelogram ; if one side is

fixed, find the path described by any point rigidly connected with the op-

posite side.

20. An inversor is any mechanism for describing the inverse of a given

curve. Peaucellier's cell consists of a linked rhombus APBP' attached

by means of two equal links OA, OB to a fixed point 0. Show that this

linkage is an inversor, with O as center.



CHAPTER VII

COMPLEX NUMBERS

PART I. THE VARIOUS KINDS OF NUMBERS

100. Introduction. The process of finding the points of in-

tersection of a line and a circle (§ 86) involves the solution of

a quadratic equation. The solution of such a quadratic equa-

tion may involve the square root of a negative number. Thus

the roots of ic^ — 2a; + 3 = are x = l ±^—2.
The square root, or in fact any even root, of a negative num-

ber is called 201 imaginary number; and an expression of the

form a + V— 6 in which a is any real number and b any posi-

tive real number is called a complex number.

We shall first recall briefly the successive steps by which, in

elementary algebra, we are led from the positive integers to

other kinds of numbers.

101. Fundamental Laws of Algebra. The so-called natural

numbers, or positive integers 1, 2, 3, 4, • • • form a class of

things for which the operations of addition and midtiplication

have a clear and well-known meaning. These operations are

governed by the following laws :

(a) the commutative law for addition and for multiplication :

a-\-b = b i- a, ab = ba\

(p) the associative law for addition and for multiplication

:

(a + 6) -f c = a + (6 -f c), {ab)c = a{bc)
;

(c) the distributive law, connecting addition and multiplication :

{a -\- b) c = ac -\- be, a(b -\-c) = ab-\- ac.

110
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102. Inverse Operations. The result obtained by adding

or multiplying any two or more positive integers is alwaj^s

again a positive integer.

This is not true for the so-called inverse operations : subtrao-

tion, the inverse of addition, and division, the inverse of multi-

plication. To make these inverse operations always possible

the domain of positive integers is extended by introducing

:

(a) the negative numbers and the number zero
;

(6) the (positive and negative) rational fractions.

The relation between these various kinds of numbers is best

understood by imagining -j
i -si -i\ \o \i

[g p ^

the positive integers repre- Fig. 42

sented by equidistant points on a line, or rather by the distances

of these points from a common origin O (Fig. 42).

Negative numbers are then represented by equidistant points

on the opposite side of the origin; zero is represented by the

origin ; and fractions correspond to intermediate points.

103. Rational Numbers. The positive and negative inte-

gers, the rational fractions, and zero, form the domain of ra-

tional numbers. By adopting the well-known rules of signs the

operations of addition and multiplication and their inverses,

subtraction and division, can be extended to these rational num-

bers ; and all four of these operations, with the single exception

of division by zero, can be shown to be always possible in the

domain of rational numbers, so that any finite number of such

operations performed with a finite number of rational numbers

produces again a rational number.

In the domain of positive integers such linear equations as

a;-f-7 = 0, 5a; — 3 = cannot be solved. But in the domain of

rational numbers the linear equation ax-\-b = can always be

solved if a and b are rational and a is not zero.
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104. Laws of Exponents. In the domain of positive inte-

gers, we pass from addition to multiplication by denoting a

sum of h terms each equal to a by the symbol ah, called the

product of a and h. Similarly, we may denote a product of

b factors each equal to a by the symbol aJ* ; this operation is

called raising a to the bth poicer, or involution. By this defini-

tion, the symbol a^ has a meaning only when the exponent h is

a positive integer. But the base a may evidently be any

rational number. The laws of exponents, or of indices,

a^ ' a'' = ap+'^, a^ • 5^= (a^)p, {a^y = a^",

follow directly from the definition of the symbol a*. The re-

sult of raising any rational number to a positive integral power

is always a rational number.

105. The Inverses of Involution. It should be observed

that the symbol a^ differs from the symbols a + h and ah in

not being commutative (§ 101) ; i.e. in general a and h cannot

be interchanged:
a^ =/= 6", if h^ a.'

It follows from this fact that while addition and multiplication

have each but one inverse operation, involution has two

:

(a) If in the relation

a^ = G

h and c are regarded as known, the operation of finding a is

called extracting the hth root of c, or evolution, and is expressed

in the form

a= Vc.

(h) If in the same relation a and c are regarded as known,

the operation of finding h is called taking the logarithm of c to

the hase a and is indicated by

b = log„ c.

Logarithms will be discussed in Chapter XII ; for the present

we shall consider only the former inverse operation.
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106. Irrational Numbers. Even when a, h, and therefore c

are positive integers, the extraction of roots is often impossible,

not only in the domain of positive integers, bat even in the

domain of rational numbers. Thus, in so simple a case as

6 = 2, c = 2, we find that a = V2 is not a rational number, i e.

it is not the quotient of any two integers, however large. For,

suppose that V2 = h/k, where h and k are integers and the ra-

tional fraction h/k is reduced to its lowest terms ; then squaring

both sides, we find 2 = h^/k^. But the rational fraction h^/k"^

is also reduced to its lowest terms and consequently cannot

be equal to the integer 2.

We are thus led to a new extension of the number system

by including the results of evolution : any root of a rational

number that is not a rational number is called an irrational

number. The rational and irrational numbers together form

the domain of real numbers.

If numbers are represented by points on a line as in § 102,

the number V2 has a single definite point corresponding to it

on the line ; for, the segment representing it can be found as

the hypotenuse of a right triangle whose sides have the length 1.

It can be shown that a single definite point corresponds to

any given irrational number.

It thus appears that although the rational numbers, " crowd

the line," i.e. although between any two rational numbers, how-

ever close, we can insert other rational numbers, they do not

" fill " the line ; i.e. there are points on the line that cannot

be represented exactly by rational numbers.

107. Extension of Laws. A rigorous definition and dis-

cussion of irrational numbers requires somewhat long and com-

plicated developments. It will here suffice to state the result

that irrational numbers are subject to the same rules of operation

as are rational numbers.
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The fundamental laws of addition and multiplication (§ 101)

hold therefore for all real numbers, and so do the laws of signs

of elementary algebra. As regards the laws of exponents

(§104), they can be shown to hold when the bases are any real

numbers. Moreover, it can be shown that the symbol a^ has

a definite meaning even when the exponent h is any real num-

ber, and that the laws of exponents hold for such powers, pro-

vided only that the bases are positive. It is known from

elementary algebra how this can be done for rational exponents

by defining the symbols a° and a~"* as

a« = l, a-^ = —:
a*"

and it is shown in the theory of irrational numbers that the

latter definition can be used even when m is irrational.

Thus the laws of exponents (§ 104) hold for any real ex-

ponents provided the bases are positive.

108. Measurement. Historically, the gradual introduction

of rational fractions, of negative numbers, of irrational num-

bers, was determined very largely by the ajyplications of arith-

metic and algebra. Any magnitude that can be subdivided

indefinitely into parts of the same kind as the whole, and

hence can be "measured," leads naturally to the idea of the

fraction. Magnitudes that can be measured in two opposite

senses, like the distance along a line, the height of the ther-

mometer above and below the zero point, credit and debit, the

height of the water level above or below a fixed point, suggest

the idea of negative numbers. The incommensurable magnitudes

that occur frequently in geometry lead to the introduction of

irrational numbers. One of the principal advantages of algebra

consists in the remarkable fact that all these different kinds of

numbers are subject to the same simple laws of operation.
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109. Imaginary Numbers. As mentioned in § 107, there is

still a restriction, in the domain of real (i.e. rational and

irrational) numbers, to the use of the laws of exponents (§ 104) :

the square root of a negative number has no meaning in this

domain.

Thus, V— 2 is not a real number ; for, by the definition of

the square root, the square of V— 2 is — 2 ; but there exists

no real number whose square is — 2. In other words, such

simple equations as x^ + 2 = 0, a;^ — 2 a; + 3 = have no real

solutions. It has therefore been found of advantage to give one

further extension to the meaning of the term " number," by

including the even roots of negative numbers, under the name

of imaginary numbers.

110. The Imaginary Unit. Any even root of a negative

(rational or irrational) number is defined as an imaginary

number. Every such number can be reduced to the form

±V— a, where a is positive. It is customary to denote V—

1

by the letter / and call it the imaginary unit. Any imaginary

number ± V— a can therefore be written in the form

± V— a = ± Va i
;

that is, every imaginary number is a real multiple of the imag-

inary unit I. Notice that as i =V— 1 we always have

1-2 = - 1.

The algebraic sum of a real number and an imaginary num-

ber, i.e. the expression a + bi where a and b are real, is called

a complex number. Notice that the domain of complex num-

bers includes both real and imaginary numbers. For, the

complex number a + bi is real in the particular case when

6 = 0, it is an imaginary number if a = 0. The great advan-

tage of complex numbers lies in the fact that all the seven

fundamental operations of. algebra (viz. addition, subtraction,
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multiplication, division, involution, evolution, and logarithmi-

zation), with the single exception of division by zero, can be

performed on complex numbers, the result being always a

complex number ; i.e. if we denote by a, (3 any two complex

numbers, then a -\- 13, a — (3, a(3, a/^, a^, -v/cc, log^ a can all be

expressed in the form a + bi. It can then be shown that every

algebraic equation of the nth degree has 7i complex roots.

111. Imaginary Values in Analytic Geometry, in elemen-

tary analytic geometry we are concerned with "real" points and lines,

i.e. with points whose coordinates are real and with lines whose equations

have real coefficients. But it should be observed that points with com-

plex coordinates may lie on real lines and that lines with complex coeflQ-

cients may contain real points. Thus, the coordinates of the point

(2 + 3 i, 1 — 2i) satisfy the equation of the real line 2x + Sy— 7 = 0,

and the equation (I + 2 i)x — {2 -^ S i) y -{• 1 = is satisfied by the point

(3, 2). Calculations with imaginary points and lines may therefore lead

to results about real points and lines.

A rather striking example is afforded by the the theory of poles and

polars with respect to the circle. We have seen (§§ 93-95) that with

respect to a given circle every line of the plane (excepting those through

the center) has a real pole and every point (excepting the center) has a

real polar. If the line I intersects the circle in two points §i , ^2 » its

pole P can be found as the intersection of the tangents at Qi, Q2. If the

line I does not intersect the circle, this geometrical construction is im-

possible. But the analytic process of finding the points of intersection of

the line I with the circle can be carried through. The coordinates of the

points of intersection will be imaginary ; and hence the equations of the

tangents at these points will have imaginary coefficients. But the point

of intersection of these imaginary lines will be a real point ; viz. the pole

P of the line I and its real coordinates can be found in this way.

Thus to find the pole of the line y = 2 with respect to the circle

x^-^y^= l we obtain the imaginary points of intersection (VSi, 2) and

(— V3i, 2) ; the imaginary tangents at these points are therefore:

VSix -f- 2 y = 1, — VS ix + 2y = 1; these imaginary lines intersect in the

real point (0, ^); it is easy to show that this is the required pole.
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PART II. GEOMETRIC INTERPRETATION OF
COMPLEX NUMBERS

112. Representation of Imaginaries. The meaning of com-

plex numbers will best be understood from their graphical

representation.

We have seen (§ 102) that every real number a can be repre-

sented by a point ^ on a straight line on which an origin

and a positive sense have been selected. _ .

We shall call this line (Fig. 43) the

axis of real numbers, or briefly the real

axis. I I
o \ BealAxis

To represent the imaginary numbers

we draw an axis through O at right

angles to the real axis and call it the

axis of imaginary numbers, or briefly ^^'
'

the imaginary axis. The point A' on this axis, at the distance

OA' — a from the origin, can then be taken as representing

the imaginary number ai.

113. Representation by Rotation. This representation is

also suggested by the fundamental rule for dealing with im-

aginary numbers that i*= — 1. For, if a be any real number

and A its representative point on the real axis, the real num-

ber — a has its representative point A' situated symmetrically

to A with respect to on the real axis ; in other words, the

segment OA' which represents — a can be regarded as ob-

tained from the segment OA that rejjresents a by turning OA
through two right angles about 0. Thus the factor — 1 = t^

applied to the number a, or rather to the segment OA, turns

it about through two right angles. This suggests the idea

that the factor V— 1 = ?*, applied to a, may be interpreted as
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turning the segment OA through one right angle in the counter-

clockwise sense so as to make it take the position OA'. Indeed,

if the factor i be now applied to ai, i.e. to the segment OA', it

will turn OA' into OA" and produce ai^ = — a.

Turning OA" counterclockwise through a right angle, we

obtain the point A'" on the imaginary axis which represents

ai^ = — ai; and finally, turning OA"' counterclockwise through

a right angle we regain the starting point A which represents

ai^ = a.

114. Representation of Complex Numbers. A complex

number, i.e. an expression of the form

z=x + yi,

where x, y are real numbers while i is the imaginary unit

V— 1, is fully determined by the two real numbers x and y,

provided we know which of these is to be the real part. If

we take the real axis as axis Ox, the imaginary axis as axis

Oy, of a rectangular coordinate system

(Fig. 44), the numbers x, y determine

a definite point of the plane, and only

one. This point P{x, y) can therefore

be taken as representative of the com- ^ <? ^

plex number z—x-\- yi. ^ict. 44

This representation also agrees with the idea (§ 113) that the

factor i turns through a right angle. For if we lay off on the

real axis, or axis Ox, OQ = x, and on the same axis QR = y

we obtain OR = OQ + QR = x-\-y; and if we turn QR about

Q through a right angle into QP we obtain x + yi and reach

the point P.

To every complex number z = x -\- yi thus corresiDonds one and

only one point P(x, tj) ; to every point P(x, y) of the plane cor-

responds one and only one complex number z = x -{ yi.
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The real numbers, and only these, have their representative

points on the axis Ox-^ the imaginary numbers have theirs on

the axis Oy. The origin (0, 0) represents the complex num-

ber 0-{- iO = 0.

115. Correspondence of Complex Numbers to Vectors. It

should be recalled that strictly speaking (§ 102) a real number x

is represented, not by a point A of the real axis, but by the

segment OA = x. Similarly the complex number z=:x-{-yi is

represented, strictly speaking, not by the point P (Fig. 44), but

rather by the radius vector OP, taken with a definite direction

and sense. Thus the complex number z = x-\-yi represents a

vector (see §§ 19-20), whose rectangular components are x

and y. It will be shown below that the addition and subtrac-

tion of complex numbers follow exactly the laws of the com-

position of (concurrent) forces, velocities, translations, etc., in

the same plane.

116. Equality of Complex Numbers. Two complex num-

bers Z]^ = x^-\- y^i and Z2 = x^-{- y^i are called equal, if, and only

if, their representative points coincide, i.e. z^ = z^ if

x^ = X2 and yi = y^,

just as two forces are equal only when their rectangular com-

ponents are equal respectively.

If we apply the ordinary rules of algebra to the equation

^i + 2/i^* = ^2 4- yii

we obtain

Xi-X2 = (2/2 - yi)i-

Now the real number x^ — x^ cannot be equal to the imaginary

number {y^ — y^i unless ajj — x^^O and 2/2
—

2/i
= ; whence

again we find a^i = x^, y^ = y^.

It follows in particular that the complex number z = x -{- yi

is zero if, and only if, a; = and y = 0.
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EXERCISES

1. Locate the points which represent the following complex numbers :

(a) 4-3 i. (6) 2 i. (c) - 1 - i. (d) 4.

(e) A + .li. if) f-li. {g) -10-ti. {h) -ii.

2. Find the values of m and n in the following equations :

(a) {m - n) + (to + w - 2)z= 0. (6) (m2+w2-25) + (w-w-l)i=0.
(c) w + ni = 3 — 2 1. ((?) mm = m^ - w^ -j- 4 i.

3. Show that

(a) l3 =_i, (6) 1-5 3= i9^ (c) I'C + i^ = 0, (c?) 1-4 - l6 = 2.

4. Show that the following relations are true, n being any positive

integer

:

(a) i^' = \. (6) i^+^=-i. (c) i*«-?>+2 = 2.

5. Show that

(«) K— 1 + VS i) is a cube root of 1,

{h) J (4- 1 — y/Zi) is a cube root of — 1.

117. Addition of Complex Numbers. The sum of tivo

complex numbers Zi = Xi-\- y^i and Z2 — X2 + y^i is defined as the

complex number z= (xi-{- x^) -\- (2/1+2/2)* j
ii^ other words, if (Fig.

45) Pi is the point that represents Zi and P^ the point that rep-

resents Z2, then the point P that repre-

sents the sum z = Zi-^Z2 has for its ab-

scissa the sum of the abscissas of Pj

and P2 and for its ordinate the sum of

the ordinates of Pj and P.^. It appears

from the figure that this point P is the

fourth vertex of the parallelogram of

which the other three vertices are the origin and the points

P„P2.

118. Analogy to Parallelogram Law of Vectors. By com-

paring §§ 19, 20 it will be clear that the addition of two com-

y P

R^--^'/^\

«!
1 .~0

""^Qz <4 9

Fig. 45
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plex numbers consists in finding the resultant OP of their

representative vectors OP^, OPj.. The vectors may be thought

of as forces, velocities, translations, etc. In the case of trans-

lations this composition of two successive translations into a

single equivalent translation is particularly obvious.

While a real number «= OQ represents a translation along

the axis Ox*, an imaginary number yi a translation along the

axis O2/, a complex number z — x-\-yi can be interpreted as

representing a translation OP in any direction (Fig. 44). The

succession of two such translations % = a^ -|- y^ represented by

OPx (Eig. 45) and z.2, = x^-\- y^i represented by OP^ is equivalent

to the single translation z= (a?, -^x^ -f- (y^ H-//2)*' represented

by OP.

It follows that the addition of any number of complex

numbers (Fig. 46) whose

representative vectors are

OPi, OP2, OP3, OP4 can be

effected by forming the

Fia. 46

polygon 0PiP2'Ps'P; the

closing line OP is the rep-

resentative vector of the

sum
;
precisely as in finding

the resultant of concurrent

forces (§ 20).

119. Subtraction. The difference of two complex numbers

2;^ = iCi -f- y^i and 22 = ^2 + 2/2** *^ ^6-

fined as the complex number z = (a^j

— ^2) H- (2/1 — 2/2)*'- Its representative

point P is found geometrically by

laying off from P^ (Fig. 47) a seg-

ment PjP equal and opposite to

OP2, i.e. equal and parallel to P2O.
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120. Multiplication. The product of two complex yiumhers

Zi = Xi + 2/l^ and z^ = X2 + 2/2^' ^^ found by multiplying these two

expressions according to the ordinary rules of algebra and observ-

ing that 1*2 = — 1. We thus find :

z^z^ = (% + 2/iO(^'2 + ^20 = ^1^2 +^m + ^22/1* + 2/l2/2*^

= {^v«2 - 2/12/2) + (a^i2/2 + ^iV^h

which is a complex number. A geometric construction will

be given in § 124.

121. Conjugate Imaginaries. Two complex numbers that

differ only in the sign of the imaginary part are called con-

jugate complex numbers. Thus, the conjugate of 5-|-2i is

5 — 2 i ; that of — 3 — ^ is — 3 + i, etc. The radii vectores rep-

resenting two conjugate numbers are situated symmetrically

with respect to the real axis.

Tlie product of two conjugate complex numbers is a real

number; for

{x + yi){x - yi) =:x'^+ y\

Notice that the roots of a quadratic equation are conjugate

complex numbers.

122. Division. To form the quotient of two complex num-

bers we may render the denominator real, by multiplying both

numerator and denominator by the conjugate of the denomi-

nator. Thus

:

?i _ ^\ + y\i ^ (ag + .ViOfe — .VaO _ a?ia?2— aa?/2^' + ^'2y\i+ ViVi

2^2 3^2 4-2/2** (X2^-y.2i){X2 — y2i) X2+y2

= (^^&±M^\ 4- (
^2V\ — ^y^ i

\ x,^+y,' J \xi + yi
)'

Here also the result is a complex number. A geometric con-

struction is indicated in § 125.
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EXERCISES

1. Simplify the following expressions and illustrate by geometric

construction :

(a) (3-60 + (4-20. (6) (4 - 3i)-(2 + i).

(c) (6+0 + (3-20-(0. (d) (2-30-(-l+0-(3 + 50.

(e) (4)-(30. (/) (0 + (3-2i)-(6).

2. Write the following products as complex numbers and locate the

corresponding points :

(a) (V5 + iV6)(\/6+iV5). (6) (3-zV8)(V3-fiV2).

(c) (vrTT-vn^)2. (d) (Va-V^^)3.
3. Show that

. s l + 2i l-2i ^ 3 (&) (X + 2/0^ - (a; - 2/0^ = 4a;?/i.

*^ M + i 1-1 (c) (ix+yiy + <ix-yiy = 2(x'^ + f)-12x^y^.

4. Write the following quotients as complex numbers and locate the

corresponding points

:

(a)
2 + 3i

4-i
(^)^-^^ (c)

^-3\
^ ^ 6 + 3i

(1 + 0(1 + 20(1 + 30
(0 ' . (/) - ^

.

l + 4i ^ ^ -7+2i '^'^^3-4i
(d)

5. Verify by geometric construction that the sum of two conjugate

complex numbers is a real number and that the difference is an imaginary

number.

6. Evaluate the following expressions for ^i = 3 + 4 i and Z2 = — 2 + 6i

and check by geometric construction

:

(a.) 01-6. (&) 2^2 + 3. (c) 6-501. (d) Si-{-2zi.

(e) 2i-\zi. (/) 2-202. {g) 1(1-^1). {h) -Si-z^.

(0 01+2 02. U) 3 01 + 02. (fc) 01-2 02. (l) Zo-lZi.

(??i) 01+ 502— 4 i. (w) 02—^01 + 3. (o) 5 — 01 — 02. (p)02 — 6 — f0i.

7. Let Xi and ri represent the projections of a force Fi on the axes

of X and y, respectively, and X2 and F2 those of a second force F2. Show,

by the parallelogram law, that the projections on the axes of the result-

ant (or sum) of Fi and F2 are Xi + X2 and Yi + T2.

8. From Ex. 7, show that the correct results are obtained if Fi is

represented by Xi + Yii, F2 by X2 + ¥21, and their resultant by

Fi-{-F2= (Xi + FiO + (X2 + Tzi) = (Xi + X2) + ( Ti + ¥2)1.
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123. Polar Representation. The use of the polar coordinates r,

of the representative point P{Xj y) leads to simple

interpretations of multiplication, division, involution,

and evolution.

The distance OP = r (Fig. 48) is called the modulus

or absolute value of the complex number ; the vec-

torial angle is sometimes called the argument, phase

^

or amplitude.
Fig. 48

Since

we can write

The right-hand member of this equation is the polar form of the complex

number z = x -\- yi.

x = r cos and y = r &m. 0,

z — X -\-yi = r(cos + i sin 0)

.

124. Products in Polar Form. The product of two complex

numbers z\ = ri(cos 0i + i sin 0i) and 02 = »*2(cos 02 + i sin 02) is

0i2r2=?'i(cos0i+tsin0i)r2(cos02+ isin02)

=rir2[(cos0icos02— sin0isin02) +i(sin 0i cos02+cos0i sin 02)]

=rir2[cos(0i + 02) + isin(0i + 02)].

This shows that the modulus of the product of two complex numbers is

the product of the moduli, the amplitude of the product is the sum of the

amplitudes, of the factors.

The point P that represents the product of the complex numbers repre-

sented by the points Pi and P2 (Fig. 49) can be constructed as follows

:

Let Po be the point on the axis Ox at unit distance

from the origin and draw the triangle OPqPi
;

on OP2 construct the similar triangle OP2P. The

point P thus located is the required point. For,

by construction the angle P2OP=0i, hence the

angle PoOP=: 01 + 02- Moreover, as the triangles

OPoPi and OP2P are similar, their sides are pro-

portional, i.e.

1 : n = r2 : OP, whence OP = rir2.

Fig. 41)

125. Quotients in Polar Form. For the quotient of the two

complex numbers zi = ri(cos 0i + i sin 0i) and 02 = r2(cos 02 + i sin 02)

we find by making the denominator real

:
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£i _ n (cos 01 + i sin 0i) _ ri(cos <pi + i sin 0i) (cos 02 — i sin 02)

«2 >'2(cos 02 + I sin 02) r2(cos 02 + i sin 02) (cos 02 — i sin 02)

_ri (cos 01 cos 02 4- sin 0i sin 02) + ^^(sin 0i cos </)2— cos 0i sin ^2)

r2 cos2 02 + sin2 02

= ^ [cos (01 - 02) +1 sin (01 -02)].
r2

Hence the modulus of the quotient z — zi/z^ is the

quotient of the moduli, the amplitude is the differ-

ence of the amplitudes of Zi and z^. Evidently the

point P that represents the quotient z = Z1/Z2

Fig. 50) can be located by reversing the geometric

construction given in § 124; i.e. by constructing

on the unit segment OPq the triangle OPqP similar

to the triangle OP2P1.

EXERCISES

1. Write the following complex numbers in polar form :

(a) 2 + 2V3 i. (&) - 3 + 3V3 i. (c) 6-6 i. (d) - 5 i.

(e) 7. (/) -8. (^) 5\/3-5i. (h) -10-lOi.

2. Write the following complex numbers in the form x + yi:

(a) 3(cos30° + isin30^).

(c) 10(cos I TT + i sin I tt) .

(e) V2(cosi7r + isin^Tr).

(g) 7(cosO -f isinO).

(i) 2 V3(cos I w + 1 sin I tt).

(k) ll(cos ^ TT + I sin I w).

(6) 5(cos I IT -\- i sin ^ -it) .

(d) 4(cos I TT + I sin I tt).

(/) V3(cos f TT + I sin I tt) .

(h) 5(cos7r + isin7r).

(j) 5V2 (cos I TT + 1 sin I tt) .

(0 8(cos75° + isin75°).

3. Put the following complex numbers in polar form, perform the

indicated multiplication or division, and write the result in the form

X + yi' Check by algebra and illustrate by geometry.

(a) (2V3+2 0(3 4-3V3 0. (^) (1 + 0(2 + 20-

(c) (-2-20(5 + 50-
(e) (1+V30(1-V30

2VS-2i.

U)

bi

1+i
\-i

(h)

(k)

4i

(d) (_4 + 4V3 0(-3-3\/3 0-

(/) (-2)(-3 0.

-7
5+ 5i

1

- \/3 - i

(O
3 + 3V3 4

(0 —
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4. Show that the modulus of the product of the complex numbers

a + hi and c + di is y/(^a^ + b'^)(^c^ + d^).

6. Show by geometric construction that the product of two conjugate

complex numbers is a real number.

6. Show how to locate by geometric construction the point which

represents the reciprocal of a complex number.

7. Show that the point P that represents a complex number z and

the point P' that represents the conjugate of the reciprocal \/z are inverse

points with respect to the unit circle about the origin.

8. With respect to the unit circle about the origin, find the complex

numbers representing the points inverse to

(a) 3 + 4i. (6) 3+V^^. (c) - 5 + 3 i. (d) 1 - 6 i.

9. Show that the ratio of two complex numbers whose amplitudes

differ by ± | tt is an imaginary number.

10. Show that the ratio of two complex numbers whose amplitudes

are equal or differ by ± t is a real number.

126. De Moivre'S Theorem. The rule for multiplying two com-

plex numbers (§ 124) gives at once for the square of a complex number

z = r(cos <f> + i sin 0)

:

z^ = [r(cos0 + isin0)]2 = r^(^cos2 + isin2 0).

Multiplying both members by ^ = r(cos + i sin 0) we find for the

cube

:

z^ = [r(cos + 1 sin 0)]^ = r3(cos 3 + i sin 3 0)

.

This suggests that we have generally for the ?ith power of 0, n being

any positive integer

:

zn —\r (cos + 1 sin 0)]" = r'»(cos n + i sin n 0).

This is known as de Moivre's formula.

To complete the formal proof we use mathematical induction (§ 62)

.

Assuming the formula to hold for some particular value of w, it is at once

shown to hold for w+ 1, by multiplying both members by

z = »'(cos0 + isin0)

which gives

0«+i=[r(cos0 + I sin 0)]"+^ = r"+i[cos (w+ l)0 + isin (w + l)0].

As the formula holds for w = 2, it holds for n = 3, and hence for w = 4, etc.,

i.e. for any positive integer.



VII, § 128] COMPLEX NUMBERS 127

127. Generalization of De Moivre's Theorem. De Moivre's

formula can be shown to hold for any real exponent n. That it holds for

a negative integer is seen as follows :

If in the formula for the quotient z = Zi/z2 (§ 126) we put ri = 1,

01 = 0, we find

— = — (cos 02 — i sin 02),

or dropping the subscript 2 :

- = - (cos
<t>
— i sin 0)

,

z r

If we raise this complex number to the nth power {n being a positive

integer) , which can be done by § 126, we find

(i)'
z-^ =— (cos«0 — I sin w0),

which proves de Moivre's formula for a negative integral exponent.

If in de Moivre's formula (§ 126) we put

a
ntjy = d, 1"^ = p, and hence = -, r = v^,

n

where y/p is the positive nth root of the real number p, we obtain

I

\//)f cos- + /sin-
I I

=/)(cos^ + isin 0),

i.e. [/)(cos d + i sin 6)^= Vplcos - + i sin-V
\ n n)

This shows that de Moivre's formula holds when the exponent is of the

form \/n. The extension to the case when the exponent is any rational

fraction is then obvious.

128. Imaginary Roots. The last formula gives a means of finding

an will root of any real or complex number. To find all the roots of a

complex number z = p(cos 6 -\- i sin d) we must observe that as

cos d = cos (6 + 2 TTw), sin d = sin (^ + 2 irm),

where m is any integer, the number z can be written in the form

z = p[cos (^ -f 2 7rm) + / sin (^ + 2 Trm)],

so that by § 127 its roots are given by
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cos ^±-2^+ I sin ^±1^

If in this expression we give to m successively all integral values, it takes

just n different values, viz. those for 7>i = 0, 1, 2, •••
, n — 1 ; therefore any

complex number z = p(cos 6 -\- i sin 6) lias n roots, viz.

:

Vpfcos^ + isin^V ^pfcos^^t^+isini±^),
\ n 111 V '* *i '

.. Vp[i + (n-l)2 + i sin
g + (H-l)27r '

These n roots all have the same modulus \/p, while the amplitudes differ

by 2 ir/n. Hence the points representing these n

roots lie on a circle of radius Vp about the origin

and divide this circle into n equal parts.

For example, the three cube roots of 8 i are found

as follows. In polar form

f

+ 8 I = 8(cos ^ TT + i sin I tt)
;

by de Moivre's formula (§ 127) we have

[8(cos ^ TT + z sin ^ tt)] 3

= 2[cos iZ_i_2= + i sin i^^Jl^jmJ,

= 2[cos (i TT + f irm) + i sin (^ tt + | Trm)]
;

w = gives the root

:

w = 1 gives the root : 2(cos f tt + i sin f tt) = 2(— ^\/3+i \) = — VS + i
;

w = 2 gives the root : 2(cos | tt + i sin | tt) = 2(0 + i ( - 1)) = — 2 i.

If we put w = 3, we get the first root again, wi = 4 gives the second root,

and so on. Thus there are three distinct cube roots of 8 i, viz. VS + i,

\/3 + 1, — 2 i. These roots are represented by the points Pi, P2, Pa*

respectively (Fig. 51).

Fig. 61
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129. Square Roots. The particular problem of finding the square

root of a complex number a + &i can also be solved by observing that the

problem requires us to find a complex number x + yi such that

a + 6i = (x + yiy.

Expanding the square and equating real and imaginary parts, we find for

the determination of x and y the two equations

x^-y^=a, 2 xy = h.

Eliminating y between these two equations, we obtain

a;2 -— =a ; that is, a;* - ax2 - i fo2 _ q •

whence Xi^ = |(a + Va^ + h-), x-^ = ^(a - Va^ + 62).

Since x is to be a real number and hence x^ must be positive, and as

a<A/a2+62 (unless 6= 0, which ^ould mean that the given number a+ bi

is real), we must take Xi2 and not X2^. Hence

x=± v|(a+Va2+62).

These values of x are zero only when b=0 and a < ; for then Va^ = — a.

In this particular case we find y = ±V— a, and hence

Va + bi =± V— a i.

In the general case, when & ^t 0, we find from the equation 2xy = b for

each of the two values of x one value of y.

' EXERCISES

1. Show how to locate the square of a complex number by geometric

construction. Locate the cube.

2. Show geometrically that 8i (Fig. 51) is the product of the numbers

represented by the points Pi, P2, P3.

3. For zi = l -\-2i, Z2—-2 — i show that z{^ — z^^ ={z\ + 2^2) (2^1— 02)

and illustrate geometrically.

4. For the same numbers verify and illustrate geometrically that

{Z\ — ZiY -Z^^2 ZxZi + 02^.

6. Show how to locate the points that represent the square roots of a

complex number.

6. Locate by geometric construction in two "ways the points which

represent [r(cos + i sin 0)]^.

K
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7. Put the following complex numbers in polar form, perform the in-

dicated operations, and check by geometric construction

:

(a) (1 + V3i)2. (b) (-1 + 0^. (c) (-V3-i)2.

id) (V3+ i)^. (e) (- 1)^. (/) (
-0^.

(g) Vl+V3i. (/i) -yZ-l-y/Si. (i) ^-2-\-2VSi.

U) ^/-'^-Su (A) v/-4-h4i. (Z) ^/6il.

(m) V'^Hol. (w) \/87. (o) V(-3i)».

8. Find the square roots of each of the following complex numbers

by using the method of § 129

:

(a) 7 + 24 i. (6) 4 1. (c) -2(8 + 151).

(d) - 16. (e) j\(5 - 12 i). (/) 4 a6 + 2(a2 - &2)i-.

(gf) _ 2[2 a& + (a2 - 62) ^-j. (^) _ 4 ^2^,2 4. 2(0* - 6*) i.

9. Find the three cube roots of unity and show that either complex

root is the square of the other, i.e. if one complex root of unity is denoted

by w, the other is w2. The three cube roots of unity then are 1, w, u^.

10. If 1 , w, w2 are the cube roots of unity (see Ex. 9) show that

:

(a) 1 = w^ = w^ = w^", n being an integer.

(6) l + w + a>2 = 0.

(C) (1 + w2)4 = W.

(d) (a;i> + a;2g) (0,2^ 4. ^^g) (p^ g) ^ p8 + ^3.

(e) (1 _a; + w2)(l + w-a,2) ^4.

(/) (1 _ w + a;2) (1 - 0,2 4- 0,4) (1 _ 0,4 + w8) = _ 8 0,.

11. Prove de Moivre's formula for n any rational fraction, i.e. show

that, if p, g, w, are integers,

[r(cos + i sin 0)]^ = /.« fcos^^Jl^^ + I sin£^±l^l
L g g J

12. Show by geometric construction that the sum of the three cube

roots of any number is equal to zero ; that the sum of the four fourth

roots is zero.

13. Solve the following equations and locate the points which repre-

sent the roots

:

(a)a:2-l=0. • (6) x^ + 1 = 0. (c) x* - 1 = 0. (d)x^-l=0.
(e) a:« - 1 = 0. ( f) x^ - 27 = 0. (g) x^ + 1=0. (/i) x* + 16 = 0.

(i) x5 + 32 = 0. (j) x2 + a2 = 0. (A;) x^ + ^3 = 0. (0 x^ - 1 = 0.



CHAPTER VIII

POLYNOMIALS. NUMERICAL EQUATIONS

PART I. QUADRATIC FUNCTION— PARABOLA

130. Linear Function. As mentioned in § 28, an expression

of the form mx + h, where m and h are given real numbers

(m=fzO) while ic may take any real value, is called a linear

function of x. We have seen that this function is represented

graphically by the ordinates of the straight line

y = mx 4- b
;

b is the value of y for x = 0, and m is the slope of the line, i.e.

the rate of change of the function y with respect to x.

131. Quadratic Function. Parabola. An expression of

the form aa^ -\-bx + c in which a ^ is called a quadratic func-

tion of X, and the curve

y = ax"^ -\-bx-{-Cj

whose ordinates represent the function, is called a parabola.

If the coefficients a, b, c are given numerically, any number

of points of this curve can be located by arbitrarily assigning

to the abscissa x any series of values and computing from the

equation the corresponding values of the ordinates. This

process is known as plotting the curve by points ; it is some-

what laborious; but a study of the nature of the quadratic

function will show that the determination of a few points is

sufficient to give a good idea of the curve.

131
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Fig. 52

132. The Form y = ax". Let us first take 6 = 0, c = ; the

resulting equation

(1) y = ax"^

represents a parabola which passes through the origin, since

the values 0, satisfy the equation. This x>ardbola is symmet-

ric ivith respect to the axis Oy ; for, the values of y correspond-

ing to any two equal and opposite values of x are equal. This

line oi symmetry is called the axis of the

parabola ; its intersection with the parab-

ola is called the vertex.

We may distinguish two cases accord-

ing as a > or a < ; if a = 0, the equa-

tion becomes 2/ = 0, which represents the

axis Ox.

(1) If a > 0, the curve lies above the axis Ox. For, no matter

what positive or negative value is assigned to x, y is positive.

Furthermore, as x is allowed to increase in absolute value, y

also increases indefinitely. Hence the parabola lies in the first

and second quadrants with its vertex at

the origin and opens upward, i.e. is con-

cave upward (Fig. 52).

(2) If a<0, we conclude, similarly,

that the parabola lies below the axis Ox,

in the third and fourth quadrants, with

its vertex at the origin and opens down-

ward, i.e. is concave downward (Fig. 53).

Draw the following parabolas:

y = x',y = ^x',y^-^o?,y^\x'.

133. The General Equation. The curve represented by the

more general equation

(2) y = ojx? + hx •{-

c

differs from the parabola y — a^? only in position. To see this

Fig. 53
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we use the process of completing the square in x\ i.e. we

write the equation in the equivalent form

y

I.e.

y-

If we put

7.+ ^) = K''^^)-4

^'

2 a 4 a Fig. 54

the equation becomes

y — k = a(x — hy,

and it is clear (§ 13) that, with reference to parallel axes

OiXi, Oi2/i through the point Oi (Ji, k) the equation of the

curve is y-^ = ax^ (Fig. 54). The parabola (2) has therefore

the same shape as the parabola y = ax"^ ; but its vertex lies at

the point {h, k), and its axis is the line x = h. The curve

opens upward or downward according as a > or a < 0.

134. Nature of the Curve. To sketch the parabola (2)

roughly, it is often sufficient to find the vertex (by completing

the square in x, as in § 133), and the intersections with the axes.

The intercept on the axis Oy is obviously equal to c. The in-

tercepts on the axis Ox are found by solving the quadratic

equation

ax"^ -{- bx -j- c = 0.

We have thus an interesting interpretation of the roots of any

quadratic equation : the roots of ax^ -f- 6rc + c = are the

abscissas of the points at which the parabola (2) intersects

the axis Ox. The ordinate of the vertex of the parabola

is evidently the least or greatest value of the function

y = ax^ -\-hx-\-c according as a is greater or less than zero.
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EXERCISES

1. With respect to the same coordinate axes draw the curves y = ax^

for a=2^ f, 1, I, 0, — ^, — 1, — |, — 2. What happens to the parabola

y = ax^ as a changes ?

2. Determine in each of tlie following examples the value of a so that

the parabola y = ax^ will pass through the given point

:

(a) (2,3). (6) (-4,1). (c) (-2, -2). (d) (3,-4).

3. A body thrown vertically upward in a vacuum with a velocity of v

feet per second will just reach a height of h feet such that h = ^^^ v^.

Draw the curve whose ordinates represent the height as a function of the

initial velocity.

(a) With what velocity must a ball be thrown vertically upward to rise

to a height of 100 ft. ?

(6) How high will a bullet rise if shot vertically upward with an ini-

tial velocity of 800 ft. per sec. , the resistance of the air being neglected ?

4. The period of a pendulum of length I {i.e. the time of a small

back and forth swing) is r= 2iry/l/g. Take g = S2 ft./sec. and draw

the curve whose ordinates represent the length I of the pendulum as a

function of the period T.

(a) How long is a pendulum that beats seconds (i.e. of period 2 sec.) ?

(6) How long is a pendulum that makes one swing in two seconds ?

(c) Find the period of a pendulum of length one yard.

5. Draw the following parabolas and find their vertices and axes

:

(a) y = lx^-x + 2. (h) y = -lx^ + x. (c) y = 5x^ + lbx + 3.

(d) y = 2-x-x^ (e) 2/ = a;2 - 9. (f)y = -9- x\

(^) y=3a;2_6« + 5. (/i) y = |a;2 + 2a; - 6. {i) x'^ - 2x -y = ()

.

6. What is the value of h if the parabola y = x^ -\- bx — 6 passes

through the point (1, 5) ? of c if the parabola y = x!:^ --Qx -\- c passes

through the same point ?

7. Suppose the parabola y = ax^ drawn ; how would you draw y =

a (x+2)2 ? y = a(x-7)2 ? y = ax2 + 2 ? y = a.r2 - 7 ? y = ax2+ 2x4-3?

8. What happens to the parabola y = ax'^ + hx + c as c changes ?

For example, take the parabola y = x2 — x + c, where c = — 3, — 2, — 1,

0, 1, 2, 3.
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9. What happens to the parabola y = ax- + bx -\- c as a changes ?

For example, take y = ax'^ — x — 6, where « = 2, 1, |, 0, — ^, — 1, — 2.

10. (a) If the parabola y = ax^ + bx is to pass through the points

(1, 4), (— 2, 1) what must be the values of a and b ? (6) Determine the

parabola y = ax^ + bx + c so as to pass through the points (1, ^), (3, 2),

(4, f ) ; sketch.

11. The path of a projectile in a vacuum is a parabola with vertical

axis, opening downward. With the starting point of the projectile as

origin and the axis Ox horizontal, the equation of the path must be of the

form y = ax^ + bx. If the projectile is observed to pass through the points

(30, 20) and (50, 30), what is the equation of the path? What is the

highest point reached ? Where will the projectile reach the ground ?

12. Find the equations of the parabolas determined by the following

conditions

:

(a) the axis coincides with Oy, the vertex is at the origin, and the

curve passes through the point (—2, — 3) ;

(6) the axis is the line x = 3, the vertex is at (3, — 2), and the curve

passes through the origin
;

(c) the axis is the line aj =— 4, the vertex is (— 4, 6), and the curve

passes through the point (1, 2).

13. Sketch the following parabolas and lines and find the coordinates

of their points of intersection :

(a) y = 6x%y = 'Jx-\-S. (^b) y = 2 x^ - 3x, y = x -\- 6. »

(c) y = 2-3x^,y = 2x-\-S. (d) y = S -\- x- x^, x + y - 4 = 0.

14. Sketch the following curves and find their intersections

:

(a) x2 + y2 = 25, y = |x2. (&) x:^-\-y2-6y = 0,y = ^x^-2x + e.

15. The ordinate of every point of the line y :^ | a; + 4 is the sum of

the corresponding ordinates of the lines y = ^x and y = 4. Draw the last

two lines and from them construct the first line.

16. The ordinate of every point of the parabola y = lx^ + ^x— 1 is

the sum of the corresponding ordinates of the parabola y = ^x^ and the

line y = ^x — l. From this fact draw the former parabola.

17. The ordinate of every point of the parabola y = ^x^ — x + Sis the

difference of the corresponding ordinates of the parabola y = ^x^ and the

line 2/ = X — 3, In this way sketch the former parabola.
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18. Suppose the parabola y = ax^ + bx -^ c drawn, how would you

sketch the following curves ? Are these curves also parabolas ?

(a) y = a(x-\- hY + h{x + h)+c,h> 0.

(&) y = a(x- 2)2 + 5(x - 2) + c.

(c) 2/ = a(2x)2 + 6(2a;)4-c.

(d) y = a(^\xy + b(i\x)+c.

19. Find the values of x for which the following relations are true :

(a) a:2 _ a; - 12 < 0. (6) 12-a;-a:2>0.

(c) 3x2 + 6a;-2^0. {d) 5 + 13x-6x2^0.

(e) «2_5>3a; + 6. (/) x2-5<3x + 5.

20. Show that the equation of the parabola y = ax'^ -\- hx -{ c that

passes through the points {x\
, yi), (x^

, ^2), (a^3
, yi) may be written in

the form
y x^ X \

yi :«i2 a:i 1

2/2 3^2^ X2 1

2/3 X32 X3 1

(a) Show that if the minor of x'^ vanishes, the three given points lie on

a line.

(6) What conclusion do you draw if the minor of y vanishes ?

(c) To what does this determinant reduce if the origin is one of the

given points ?

135. Sjonmetry. Two points P^ , P^ are said to be situated

symmetrically with respect to a line Z, if I is the perpendicular

bisector of P^P^ ; this is also expressed by saying that either

point is the reflection of the other in the line I.

Any two plane figures are said to be symmetric with respect

to a line I in their plane if either figure is formed of the reflec-

tions in I of all the points of the other figure. Each figure is

then the reflection of the other in the line I. Two such figures

are evidently brought to coincidence by turning either figure

about the line I through two right angles. Thus, the lines

2/ = 2 ic -h 3 and y = — 2x — S are symmetric with respect to

the axis Ox.
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A line / is called an axis of symmetry (or simply an axis) of

a figure if the portion of the figure on one side of I is the

reflection in I of the portion on the other side. Thus, any

diameter of a circle is an axis of symmetry of the circle.

What are the axes of symmetry of a square ? of a rectangle ?

of a parallelogram ?

In analytic geometry, symmetry with respect to the axes of

coordinates, and to the lines y=±x,isoi particular importance.

It is readily seen that if a figure is symmetric with respect

to both axes of coordinates, it is symmetric with respect to the

origin^ i.e. to every point Pi of the figure there exists another

point Pg of the figure such that the origin bisects PiP^. A
point of symmetry of a figure is also called center of the figure.

EXERCISES

1. Give the coordinates of the reflection of the point (a, &) in the

axis Ox ; in the axis Oy ; in the line y = X] in the line y = 2 x ; in the

line y =— X.

2. Show that when x is replaced by — x in the equation of a given

curve, we obtain the equation of the reflection of the given curve in the

y-axis.

3. Show that when x and y are replaced by y and x, respectively, in the

equation of a given curve, we obtain the equation of the reflection of the

given curve in the line y = x.

4. Sketch the lines y = — 2x + 6 and x = — 2.y -\- 5 and find their

point of intersection.

6. Sketch the parabolas y = x^ and x= y^ and find their points of in-

tersection.

6. Find the equation of the reflection of the line 2x — 3y-|-4 = 0in

the line y = x; in the axis Ox; in the axis Oy ; in the line y— —x.

7. What is the reflection of the line x = a in the line y = x? in the

axes?

8. Find and sketch the circle which is the reflection of the circle

x2 -I- y2 _ 3 ^ _ 2 = in the line y = x, and find the points in which the

two circlea intersect.
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9. Find the circle which is the reflection of the circle x^ -\-y'^ —ix +3
= in the line y = x; in the coordinate axes. Sketch all of these

circles.

10. What is the general equation of a circle which is its own reflection

in the line y = x? in the axis Ox ? in the axis Oy '? What circle is its

own reflection in all three of these lines ?

11. What is the equation of the reflection of the parabola y =—x^ + 4:

in the line y = x? in the line y = — x? Are these reflections parabolas ?

12. What is the reflection of the parabola ?/ = 3 ic'-^ — 5 x + 6 in the axis

Ox ? in the axis Oy ? Are these reflections parabolas ?

13. By drawing accurately the parabolas y -\- x^ = 1, x -{- y^ = 11, find

approximately the coordinates of their points of intersection.

14. If the Cartesian equation of a curve is not changed when x is re-

placed by — X, the curve is symmetric with respect to Oy ; if it is not

changed when y is replaced by — y, the curve is symmetric with respect

to Ox ; if it is not changed when x and y are replaced by — x and — y,

respectively, the curve is symmetric with respect to the origin ; if it is

not changed when x and y are interchanged, the curve is symmetric with

respect to y = x.

136. Slope of Secant. Let P(a;, y) be any point of the

parabola

(1) y = ax\

If Pi(xi , 2/i) be any other point of

this parabola so that

(2) 2/1 = ctx,^

the line PPi (Fig. 55) is called a

secant.

For the slope tan Oj of this secant

we have from Fig. 55

:

(3)

or, substituting for y and i/i their values :

(4) tan «i = ^W - ^') ^ a{x + x^)
Xy— X ^r—:

r

SQi x^ — X Aa;
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137. Slope of Tangent. Keeping the point P (Fig. 6b)

fixed, let the point Pi move along the parabola toward P; the

limiting position which the secant PP^ assumes at the instant

when Pi passes through. P is called the tangent to the parabola

at the point P.

Let us determine the slope tana of this tangent. As the

secant turns about P approaching the tangent, the point Qi ap-

proaches the point Q, and in the limit OQi = Xi becomes OQ=x.
The last formula of § 136 gives therefore tan a if we make

Xi = x:
tan a = 2

The slope of the tangent at P which indicates the '• steep-

ness " of the curve at P is also called the slojje of the parabola

at P. Thus the slope of the parabola y = ax^ at any point

whose abscissa is a; is =2 ax-, notice that it varies from point

to point, being a function of x, while the slope of a straight

line is constant all along the line.

The knowledge of the slope of a curve is of great assistance

in sketching the curve because it enables us, after locating

a number of points, to draw the tangent at each point. Thus,

for the parabola ?/ = | aj^ we find tan a = ^x ; locate the points

for which a? = 0, 1, 2, — 1, — 2, and draw the tangents at these

points ; then sketch in the curve.

138. Derivative. If we think of the ordinate of the parab-

ola y = ax^ as representing the function ax^, the slope of the

parabola represents the rate at which the function varies with

X and is called the derivative of the function ax"^. We shall

denote the derivative of y by y'. In § 137 we have proved

that the derivative of the function

y = ax^,

is y' = 2 ax.
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The process of finding the derivative of a function, which is

called differentiation, consists, according to §§ 136-137, in the

following steps : Starting with the value y= ax^ of the func-

tion for some particular value of x (say, at the point P, Fig. 55),

we give to x an increment x^—x= ^x (compare § 9) and

calculate the value of the corresponding increment y^—y^Ay
of the function. Then the derivative ?/' of the function y is the

limit that Ay / Ax approaches as Ax approaches zero. In the

case of the function y = aa^ we have

Ay=y^-y = a{x^^ - x"^) = a[(x + Axy - a;^] = a[2 xAx + (Axy^
;

hence — = a(2 x + Ax).
Ax ^ ^ ^

The limit of the right-hand member as Ax approaches zero

gives the derivative

:

y' = 2ax.-

Thus, the area y of a circle in terms of its radius x is

y = irx^.

Hence the derivative y', that is the slope of the tangent to the curve that

represents the equation y = ttx^, is

y' =2 irx.

This'represents (§ 137) the rate of increase of the area y with respect to x.

Since 2 ira; is the length of the circumference, we see that the rate of in-

crease of the area y with respect to the radius x is equal to the circumfer-

ence of the circle.

139. Derivative of General Quadratic Function. By this

process we can at once find the derivative of the general quad-

ratic function y = aa^ -{- bx -\- c (§ 131), and hence the slope of

the parabola represented by this equation. We have here

Ay = a(x + Axy -f- b(x -f- Ax) -{-c — {ax^ -\-hx-\-c)

= 2 axAx -\- a{Axy -\- bAx
;

hence — = 2 ax-{-b -\- aAx.
Ax
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The limit, as Ax becomes zero, is 2ax-\- b; hence the deriva-

tive of the quadratic function y =.ax^ -\-hx-\- cis

y^ =2ax + h.

140. Maximum or Minimum Value. It follows both from

the definition of the derivative as the limit of Ap/Ax and from

its geometrical interpretation as the slope, tana, of the curve

that if, for any value of x, the derivative is positive, the function,

i.e. the ordinate of the curve, is {algebraically) increasing; if

the derivative is negative, the function is decreasing.

At a point where the derivative is zero the tangent to the curve

is parallel to the axis Ox. The abscissas of the points at which

the tangent is parallel to Ox can therefore be found by equat-

ing the derivative to zero. In this way we find that the

abscissa of the vertex of the parabola y = ax^ -|- 6a; -f c is

b

2a
which agrees with § 133.

We know (§ 133) that the parabola y = ax^ -\-bx-^ c opens

upward or downward according as a is > or < 0. Hence the

ordinate of the vertex is a minimum ordinate, i.e. algebraically

less than the immediately preceding and following ordinates, if

a > ; it is a maximum ordinate, i.e. algebraically greater than

the immediately preceding and following ordinates, if a < 0.

We have thus a simple method for determining the max-

imum or minimum of a quadratic function ax"^ -i-bx-^- c; the

value of X for which the function becomes greatest or least is

found by equating the derivative to zero ; the quadratic func-

tion is a maximum or a minimum for this value of x according

as a< or > 0.
'

Thus, to determine the greatest rectangular area that can be inclosed

by a boundary (e.g. a fence) of given length 2 k, let one side of the
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rectangle be called x ; then the other side \^ k — x. Hence the area A of

the rectangle is

A = x{k — .r) = kx — x^.

Consequently the derivative of ^ is k — 2 x. If we set this equal to

zero, we have 2x = k, whence x — k 12. It follows that k — x — k I2\

hence the rectangle of greatest area is a square

EXERCISES

1. Locate the points of the parabola ?/ = x-^ — 4 x + | whose abscissas

are — 1, 0, 1, 2, 3, 4, draw the tangents at these points, and then sketch

in the curve.

2. Sketch the parabolas 4 y = — x'-^ + 4 x and ?/ = x^ — 3 by locating

the vertex and the intersections with Ox and drawing the tangents at

these points.

3. Is the function y = 5(x'-^ — 4 x + 3) increasing or decreasing as x

increases from x — \'> from x = | ?

4. Find the least or greatest value of the quadratic functions :

(a) 2x-2-3x + 6. (6)8-6x-x2. (c)x2-5x-5.
(d) 2-2x-x2. (e)4+x-^x'2. (/) 5 x2 - 20x + 1.

5. Find the derivative of the linear function y = mx -\- h.

6. The curve of a railroad track is represented by the equation

?/ = I x2, the axes Ox, Oy pointing east and north, respectively ; in what

direction is the train going at the points whose abscissas are 0, 1, 2, — ^ ?

7. A projectile describes the parabola y = jx—Sx^, the unit being the

mile. What is the angle of elevation of the gun ? What is the greatest

.

height ? Where does the projectile strike the ground ?

8. A rectangular area is to be inclosed on three sides, the fourth side

being bounded by a straight river. If the length of the fence is a con-

stant kj what is the maximum area of the rectangle ?

9. Let e denote the error made in measuring the side of a square of

100 sq. ft. area, and E the corresponding error in the computed area.

Draw the curve representing E as ^ function of e.

10. A rectangle surmounted by a semicircle has a total perimeter of 100

inches. Draw the curve representing the total area as a function of the

radius of the semicircle. For what radius is the area greatest ?
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Fig. 56
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PART II. CUBIC FUNCTION

141. The Cubic Function. A function

of the form aoX^ + a^x^ + ago; + ctg is called

a cubic function of x. The curve repre-

sented by the equation

y = aox^ -f aiO^ -I- a^x + dg

can be sketched by plotting it by points

(§ 131).

For example, to draw the curve repre-

sented by the equation

y z=: OC^ — 2 X^ — 5 X + 6,

we select a number of values of x and com-

pute the corresponding values of y :

a;=-3-2-101 2

2/=- 24 860-4
These points can then be plotted and connected by a smooth

curve which will approximately represent the curve corre-

sponding to the given equation (Fig. 56).

142. Derivative. The sketching of such a cubic curve is

again greatly facilitated by finding the derivative of the cubic

function; the determination of a few points, with their tan-

gents, will suffice to give a good general idea of the curve.

To find the derivative of the function y = aoX^ -f aiO^ + a.^

-f-ttg the process of § 138 should be followed. The student

may carry this out himself; he will find the quadratic function

y' = 3 aifii^ -f- 2 ciiX + ag-

143. Maximum or Minimum Values. The abscissas of

those points of the curve at which the tangent is parallel to

the axis Ox are again found by equating the derivative to

zero; they are therefore the roots of the quadratic equation
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3 a^ + 2 ajflj + cfca = 0.

If at such a point the derivative passes from positive to nega-

tive values, the curve is concave doiv7iivard, and the ordinate

is a maximum; if the derivative passes from negative to posi-

tive values, the curve is concave upward, and the ordinate is

a minimum.

144. Second Derivative. The derivative of a function of

X is in general again a function of x. Thus for the cubic

function y = a^T?+ aiX^ + a^ + a^ the derivative is the quad-

ratic function ^f ^ 3 ^^ ^2a,x + a,.

The derivative of the first derivative is called the second deriva-

tive of the original function ; denoting it by y", we find (§ 139)

?/" = 6 (Xo^ + 2 ay.

As a positive derivative indicates an increasing function,

while a negative derivative indicates a decreasing function

(§ 140), it follows that if at any point of the curve the second

derivative is positive, the first derivative, i.e. the slope of the

curve, increases
;
geometrically this evidently means that the

curve there is concave upward. Similarly, if the second de-

rivative is negative, the curve is concave downward. We have

thus a simple means of telling whether at any particular point

the curve is concave upward or downward.

It follows that at any point where the first derivative van-

ishes, the ordinate is a minimum if the second derivative is

positive ; it is a maximum if the second derivative is negative.

145. Points of Inflexion. A point at which the curve

changes from being concave downward to being concave up-

ward, or vice versa, is called a point of inflexion. At such a

point the second derivative vanishes.

Our cubic curve obviously has but one point of inflection,

viz. the point whose abscissa is ic = — ai/(3 a^).
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EXERCISES

1. Find the first and second derivatives of y w^hen

:

(a) ?/ = 6 x3 - 7 x2 - X + 2. (6) y = 20 + 4 x - 5 a;2 - x^.

(c) 10?/ = x3-5x2+3x + 9. {d) ?/ = (x-l)(x-2)(x-3).
(e) 2/ = x2(x + 3). (/) 7?/ = 3x-2x(x2-l).

2. Sketch the curve y = (x— 2) (x + 1) (x + 3), observing the sign of y

between the intersections with Ox, and determining the minimum, maxi-

mum, and point of inflection.

3. In the curve y = acfifi -\- aix^ + a2X + as, what is the meaning of as ?

4. Sketch the curves : »

(a) 5yz=(x-l)(x + 4)2.
, (6) y=(x-3)3.

(c) 6 y = 6 + X + x2 - x8. (d) y = x^-i x.

(e) Sy = 6 x2 - x^. (/) y = x^ - 3 x2 + 4 x - 5.

5. Draw the curves y = x, y = x^, y = x^, with their tangents at the

points whose abscissas are 1 and — 1.

6. Find the equation of the tangent to the curve 14 y = 5 x^ — 2 x2

+x — 20 at the point whose abscissa is 2.

7. At what points of the curve y =x^ — ^x^ + S are the tangents

parallel to the line ?/=—3x+5?
8. Are the following curves concave upward or downward at the

indicated points ? Sketch each of them.

(a) y = 4x3-6x, atx = 3. (b) 3y = 5x - 3 x^, at x =- 2.

(c) y = x3 - 2 x2 + 5, at X = i. (c?) 2 y = x^ - 3 x2, at x = 1.

(e) y = 1 -x-x^, atx = 0. (f) 10yz=x^+x^-l6x-{-6,a,tx=-^.

9. Show that the parabola y = ax^ +bx -^ c is concave upward or

concave downward for all values of x according as a is positive or negative.

10. The angle between two curves at a point of intersection is the

angle between their tangents. Find the angles between the curves y = x^

and y = x^ at their points of intersection.

11. Find the angle at which the parabola y = 2x2 — 3x — 5 intersects

the curve y = x^ 4- 3 x — 17 at the point (2, — 3).

12. The ordinate of every point of the curve y = x^ + 2 x2 is the sum of

the ordinates of the curves y = x^ and y = 2x^. From the latter two

curves construct the former.

L
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13. From the curve y = x^ construct the following curves

:

(a) y=4:X^. {b) y = l- Y. (c) y = x^-2. (d) y = 2x^ + 4.

iij

14. Draw the curve 2y = x^ — Sx^ and its reflection in the line y = x.

What is the equation of this reflected curve ? What is the equation of

the reflection in the axis Oy ?

15. A piece of cardboard 18 inches square is used to make a box .by

cutting equal squares from the four corners and turning up the sides.

Draw the curve whose ordinates represent the volume of the box as a

function of the side of the square cut out. Find its maximum.

16. The strength of a rectangular beam cut from a log one foot in

diameter is proportional to (i.e. a constant times) the width and the

square of the depth. Find the dimensions of the strongest beam which

can be cut from the log. Draw the curve whose ordinates represent the

strength of the beam as a function of the width.

17. Show that the equation of a curve in the form y = ax^ + bx^ + ex + d

is in general determined by four points Pi (xi , yi), Po (X2
, 2/2), Ps (xs , ys),

P* (.Xi , ^4), and may be written in the form

y x^ x^ X 1

yi Xi^ xi^ xi 1

y2 X2^ X2^ X2 1

ys Xs'^ xs^ xs

= 0.

y^ Xa^ X4^ Xa

18. Find the equation of the curve in the form y = ax^ -\- bxJ^ -\- cx + d

which passes through the following points :

(a) (0,0), (2,-1), (-1,4), (3,4);

(6) (1,1), (3,-1), (0,5), (-4,1).

19. Show that every cubic curve of the form y = acfic^ + aix^ + a^x + a%

is symmetric with respect to its point of inflection.

146. Cubic Equation. The real roots of the cubic equation

a^ + a^o^ + ajOJ + ttg =
are the abscissas of the points at which the cubic curve

?y = a^"^ 4- a^Q^ + 0^2^ + ^3

intersects the axis Ox. This geometric interpretation can
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be used to find the real roots of a numerical cubic equation ap-

proximately : calculating * the ordinates for a series of values

of X (as in plotting the curve by points, § 141), or at least deter-

mining the signs of these ordinates, observe where the ordinate

changes sign. At least one real root must lie between any

two values of x for which the ordinates have opposite signs.

The first approximation so obtained can then be improved by

calculating ordinates for intermediate values of x.

Thus to find the roots of the cubic

a^4-ar^-16i»-f6 =
we find that

fora; = -5 -4-3-2-10 1 2 3 4

2/ is - + + +++--- +
The roots lie therefore between — 5 and — 4, and 1, 3 and

4. To find, e.g.y the root that lies between and 1, we find that

for a; = 0.1 0.2 0.3 0.4

2/is + + + + -
The root lies therefore between 0.3 and 0.4, and as the cor-

responding values of y are 1.317 and — 0.176, the root is

somewhat less than 0.4. As

fora;= 0.40 0.39 0.38

2/ = - 0.176 - 0.029 + 0.119

a more accurate value of the root is 0.39.

This process can be carried as far as we please. But it is

very laborious. We shall see in a later section (§ 170) how

it can be systematized.

EXERCISES

1. Find to three significant figures the real roots of the equations

:

(a) a;3 - 4 x2 + 6 = 0. {h) x^ + x'^ - x- \ = 0.

(c) a;3-3a:+l^=0. (d) x(x -l){x-2)=A.

* For abridged numerical multiplication and division see the note on p. 256.



148 PLANE ANALYTIC GEOMETRY [VIII, § 147

PART III. THE GENERAL POLYNOMIAL

147. Polynomials. The methods used in studying the

quadratic and cubic functions and the curves represented by

them can readily be extended to the general case of the poly-

nomial, or rational integral function, of the nth degree,

y = a^x" + a^sf"-^ + a^vf"-^ H \- a^_^x + a„

,

where the coefficients «„, a^, ••• a„ may be any real numbers,

while the exponent n, which is called the degree of the poly-

nomial, is a positive integer.

We shall often denote such a polynomial by the letter y or

by the symbol f{x) (read : function of x, or / of a;) ; its value

for any particular value of x, say x = Xy or x — h, is then de-

noted by /(iCi) or fQi), respectively. Thus, for x = we have

/(0) = a,.

148. Calculation of Values of a Poljmomial. In plotting

the curve y=f(x) by points (§§ 131, 141) we have to calculate

a number of ordinates. Unless f{x) is a very simple poly-

nomial this is a rather laborious process. To shorten it ob-

serve that the value /(x^) of the polynomial

f(x) = aox"" -}- ai«"-i -f •
. • -\-a^

for x = Xi can be written in the form

f{xi) =( ... {((aoXi + ai)xi-\-a2)Xi-i-as)Xi-\- \- a^_{)x-\- a,.

To calculate this expression begin by finding aQX^ -f a^ ; mul-

tiply by Xy and add a^
',
multiply the result by x^ and add a^

;

etc. This is best carried out in the following form

:

Oo % ttg • • • ct,t

Opa^ (a^Xy -f g^) x^

a^flOi -f ai (a^Xi -f- ai)Xi + ^g • • •

Eor instance, if

f(x) = 2 a^ - 3 «2 _ 12 a; + 5

= ((2a:-3)a;-12)a;-f-5,
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to find /(3) write the coefficients in a row and place 2x3 = 6

below the second coefficient ; the sum is 3. Place 3 x 3 = 9 be-

low the third coefficient ; the sum is — 3. Place 3x(— 3)= — 9

below the last coefficient; the sum, —4, is =/(3).

2-3-12 5

6 9 -9
2 3 _ 3 _4

This process is useful in calculating the values of y that cor-

respond to various values of x, as we have to do in plotting a

curve by points. It is also very convenient in solving an equa-

tion by the method of § 146.

EXERCISES

1. If /(«)= 5x3 _ ISx + 2, what is meant by /(a)? by f{x + A) ?

What is the value of /(O)? of /(2) ? of /(- 3 5)? of/(-l)?

2. Find the ordinates of the curve y = x* — x^ + 3 x^ — 12 x + 3 for

X = 3, - 9, - i.

3. Find the ordinates of 2 y = x* + 3 x^ - 20 x - 25 for x = 1, 2, 3, - 1,

-2.

4. Suppose the curve y =/(x) drawn ; how would you sketch :

(a) 2/=/(x-2)? {b) y= f(x+S)? (c) y= f(2x)? (d) y=f(-x)?

(e) y=f(^^y if)y=f(x)+5? (g) y =f(x-)-2x?

6. Calculate to three places of decimals the real roots of -the equations :

(a) x3 -f x2 = 100
; (&) x^ - 4 = ; (c) x^ - 7x + 7 = 0.

149. Derivative of the Polynomial. We have seen in the

preceding sections how greatly the sketching of a curve and

the investigation of a function is facilitated by the use of the

derivatives of the function. Thus, in particular, the first

derivative y' is the rate of change of the function y with x,

and hence determines the slope, or steepness, of the curve

y =f{x). We begin therefore the study of the polynomial by

determining its derivative. The method is essentially the
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same as that used in §§ 138, 139 for finding the derivative of

a quadratic function.

The first derivative y' of any function 2/ of a; is defined, as

in § 138, to be the limit of the quotient Ay/Ax as Aa; approaches

zero, Ay being the increment of

the function y corresponding to

the increment Ax of a? ; in symbols

:

y' lim^,
Ax=o Aa;

y

y^A 1 1^ // 1 IM 1 1 X^ / N .Q,

A
Fig. 57

Geometrically this means that y'

is the slope of the tangent of the

curve whose ordinate is y. For, Ay/Ax is the slope of the secant

PP, (Fig. 57) :

—^ = tan «!

;

Ax '

and the limit of this quotient as Aa; approaches zero, i.e. as P^

moves along the curve to P, is the slope of the tangent at P:

y' = tan a = lim~Awim -^
Ax=o Aa;

If the function y be denoted by /(«), then

Ay=f(x-\-Ax)-f(x)',
hence

y
^.^./XaH^A^WM^
Aa^ Aa;

150. Calculation of the Derivative. To find, by means of

the last formula, the derivative of the polynomial

y =f(^) = cto*" + «!«?"-' + • • • + a„,

we should have to form first /(a; 4- Aa;), i.e.

(x + Axy + a,{x-hAxy-^-\- ... -fa„,

subtract from this the original polynomial, then divide by Aa;,

and finally put Aa; = 0.
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This rather cumbersome process can be avoided if we

observe that a polynomial is a sum of terms of the form ax^

and apply the following fundamental propositions about

derivatives

:

(1) the derivative of a sum of terms is the sum of the deriva-

tives of the terms ;

(2) the derivative of ax"" is a times the derivative of x""

;

(3) the derivative of a constant is zero;

(4) the derivative of x"" is nx'^'K

The first three of these propositions can be regarded as

obvious ; a fuller discussion of them, based on an exact defi-

nition of the limit of a function, is given in the differential

calculus. A proof of the fourth proposition is given in the

next article.

On the basis of these propositions we find at once that the

derivative of the polynomial

y = ao.T" -f- aiO?""^ -f OoX'^'^ 4- . . . -f- a,,^iX + a„

is

y' = ao«a?"-^ + «! {n — 1) a;"-^ + ag {n — 2)a7"-^ 4- • • • + a„_i •

151. Derivative of ic»*. By the definition of the derivative

(§ 149) we have for the derivative of y = x'':

Aa^=0 Ax

Now by the binomial theorem (see below, § 152) we have

(x -f Axy = .T'» -h nx^'-'^Ax + ^^i'^ — ^)
a;»-2(Ax)- + ... -f (Aa;)%

and hence

{x -f Axy - X" = nx''-^Ax-\- ^(^' ~ -*^)

x"-2(Aic)2 -|- ... -f (Ax)\

Dividing by Ax and then letting Ax become zero, we find

y' =z 7ia;"~\
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EXERCISES

1. Find the derivatives of the following functions of x by means of

the fundamental definition (§ 149) and check by § 150 :

(a) x\ (b) x^ + x. (c) x^+6x-^.

(d) -6x3. (e) a;* -3x3. (y) rnx -\- b.

2. Find the derivatives of the following functions :

(a) 5x4-3x2 + 6x. (6) l-x + ^x^-^x^ (c) (x-2)3.

(d) (2x + 3)5. (e) 3(4^X- 1)3. (/) x'»+ax"-i+ 6x"-2.

3. For the following functions write the derivative indicated

:

(a) 5 x3 - 3 X, find y"'. (&) ax^ + 6x + c, find y'".

(c) x6, find y\ (^) «^^ + ^^^ + ex + (Z, find y''\

(e) ix6, find y". (/) ^a;6, find ?/-».

(g) xi2 _ g^xs, find y'". (h) (2 x - 3)^, find y'".

152. Binomial Theorem, in § 151 we have used the binomial

theorem for a positive integral exponent w, i.e. the proposition that

(1) (x + A)" = x« + wa;«-iA + Vlllsi^x»-%^ + ^(»-l)(y^-2) ^.n-g^^a

+ ... + ^iiLrA)-Ah-,
n !

The formula (1) can be proved by mathematical induction (§ 62). It

certainly holds for n = 2, since by direct multiplication we have

(X + /i)2 = x2 + 2x^1 + A2 = x2 + 2x^ + ^h^,
21

which agrees with (1) for n = 2.

Moreover, if the formula (1) holds for any exponent w, it holds for

n + 1. For, multiplying (1) by x -\- h in both members, we find

(X + h)^+^ =
xn+i + (n + l)xnh + (^ + ^^^ X-1A2 + ... + (n + l)n{n -1) .•• 1

^^^^^

which is the form that (1) assumes when n is replaced by n + 1.

153. Binomial Coefficients. The coefficients

2 ! ' (n-l)l
'

w

!

in the binomial formula (1) are called the binomial coefficients.
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The meaning of these coefficients will appear from another proof of the

formula, which is as follows : If n is a positive integer, we can write

(x + y^)" in the form

(x + hi){x + h2){x + hz){x + hi) ... {X + /i„),

where the subscripts are used simply for convenience to distinguish the

binomial factors ; i.e. it is understood that hi = h2 = hz= ••• = hn= h.

Each term in the expanded product is the product of n letters of which

one and only one is taken from each binomial factor. To form all these

terms we may proceed as follows :

(a) If we choose x from each of the n factors, we obtain as first term

of the expansion x^.

(b) If we choose x from n — 1 factors, the letter h can be chosen from

any one of the n factors, i.e. it can be chosen in „(7i ways (§ 64) ; this

gives

x'*-'^(hi 4- ^2 + ••• + ^n)i the number of terms being „Ci.

(c) If we choose x from n — 2 factors, the other two letters can be

chosen from any two of the n factors, i.e. in ^(h ways ; this gives

x^~^(hih2 + hihs 4- ••• + ^2^3 + •••)» ^^^ number of terms being „CV

(d) If we choose x from n — 3 factors, the other three letters can be

chosen from any three of the n factors, i.e. in nCs ways ; this gives

x>'-^(hihihz-\-hxh2h^ + ••• +^2^3^4 + •-•)» ^^^ number of terms being ^Cg.

Finally we have to choose no x and consequently an h from every factor,

which can be done in „C„=1 way ; this gives the last term

hihi -' K.

Now as ^1 = A2 = ••• =h„=h, we find the binomial expansion :

(X + h)^ = a:« + nCiX'*-!^ + rtCiX^-^h^ + ••• + nCn-lXh^'^ + nCrM.

Since, by § 64,

1 • Ji

this form agrees with that of § 152. It will now be clear why the

binomial coefficients are the numbers of combinations of n elements,

1, 2, 3, ••• at a time.
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The proof also shows that the binomial coefficients are equal in pairs,

the first being equal to the last, the second to the last but one, etc.

Finally it may be noted that, with cc = 1, ^ = 1 we obtain the following

remarkable expression for the sum of the binomial coefficients

:

EXERCISES

1. Show that in the expansion of (x— ^)'* by the binomial theorem the

signs of the terms are alternately + and —

.

2. If the binomial coefficients of the first, sec- 1

ond, third, fourth, etc., power of a binomial are 1 1

12 1
written down as in the horizontal lines of the

adjoining diagram, it will be observed that (ex- 14 6 4 1

cepting the ones) every figure is the sum of the 1 5 10 10 5 1

two just above it. Extend the triangle by this rule

to the 10th power, and prove the rule (see § 152). Pascal's Triangle

3. Expand by tne binomial theorem :

(a) {x + 2y)^
'

(6) (^'+1)'- (c) (2a-c)3.

00 (--^X- («) (a + b + cy. (/) {4:x-lyy.
\y x^J

(g) (H-2x)3-(l-2x)3. (^h) (l^xy^ (0 (^-^)*'-

(.0 (f-^-l)'- W (|--a^2)*. (0 (a + b-c-dy.

4. Write the term indicated :

(a) Fourth term in (a 4- by^. (d) Middle term in (x^ — y^y^.

(6) Fourth term in (a - by^. (e) A;th term in (x + hy.

(c) Tenth term in (x^ -f 4 y^y^. (/) kth term in (x - hy.

(g) Two middle terms in (a^ _ 2 b'^y.

(1 \2'^

a—
]

.

5. Show that the sum of the coefficients in the expansion of {x—hy is

zero when n is an odd integer.

6. Use the binomial formula to find {a) (1.02)6; (5) (3.97)«.
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154. Properties of the General Polynomial Curve. In plot-

ting the curve

y = OoX" 4- ajic""^ -h a2^"~^ H- •• • + «„

observe that (Fig. 58) :

(a) the intercept OB on the axis Oy

is equal to the constant term a„

;

(h) the intercepts OA^, OA^, •••on

the axis Ox are roots of the equation

y = 0, i.e.
'

Fig. 58

(c) the abscissas of the least and greatest ordinates are

found by solving the equation y' = 0, i.e. (§ 150)

every real root giving a minimum ordinate if for this root y"

is positive and a maximum ordinate if y" is negative

;

(d) the abscissas of the points of inflection are found by

solving the equation y" =^0, i.e.

n(w-l)ao^"-2+ ... +2a„_2 = 0,

every real root of this equation being the abscissa of a point

of inflection provided that y"'=^0. (If y'" were zero, y' might

not be a maximum or minimum, and further investigation

would be necessary.)

155. Continuity of Polynomials. It should also be ob-

served that the function y = a^pf + Oja;""^ + — + a„ is one-

valued, real, and finite for every x ; i.e. to every real and finite

abscissa x belongs one and only one ordinate, and this ordinate is

real and finite. Moreover, as the first derivative y' = noojc""^

+ ••• +«„_! is again a polynomial, the slope of the curve is

everywhere one-valued and finite.
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Thus, so-called discontinuities of the ordinate (Fig. 59) or of

the slope (Fig. 60) cannot occur : the curve y = a^'' 4- — -\- a„

is continuous.

Strictly defined, the continuity of the function y = a^"" + —
4- a„ means that, for every value of x, the limit of the function

is equal to the value of the function. The function y = a^fid^ + •••

4-a„ has one and only one value for any value x = x^j viz.

(^1 -\- •'• +^n- The value of the function for any other

value of X, say for oci + Ace, is a^i(Xl -f Aa?)'* + — + a„ which can

be written 'in the form aQXi" -\- — +a„-l- terms containing Aa;

as factor. Therefore as Aa; approaches zero, the function

approaches a limit, viz. its vahie for x=:Xi.

156. Intermediate Values. A continuous function, in

varying from any value to any other value, must necessarily

pass through all intermediate values. Thus, our polynomial

y = a(fic'' -f ..• -f a„, if it passes from a negative to a positive

value (or vice versa), must pass through zero. It follows

from this that heticeen any two ordinates of opposite sign the

curve y = aoX'* + ••• + ^„ must cross the axis Ox at least once.

It also follows from the continuity of the polynomial and

its derivatives that between any two intersections ivith the axis

Ox there must lie at least one maximum or minimum^ and be-

tween a maximum and a minimum there must lie a point of

inflection.

Ordinates at particular points can be calculated by the pro-

cess of § 148.
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EXERCISES

1. Sketch the following curves :

(a) y=(x-l)ix-2){x-S). (&) 4i/ = x4-l. (c) 10y = x^.

(d) 10y = x^-\-5. (e) iy={x-h2)%x^S). (/) y={x-lY.

2. When is the curve y = aox** + aix»-i + •••+«« symmetric with

respect to Oy ?

3. Determine the coefficients so that the curve y = aox'^ + aix^ + azx^

+ a^x + a4 shall touch Ox at (1, 0) and at (— 1, 0) and pass through

(0, 1), and sketch the curve.

4. Find the coordinates of the maxima, minima, and points of inflec-

tion and then sketch the curve 4 ^ = x"* — 2 x^.

5. Are the following curves concave upward or downward at the indi-

cated points ?

(a) 16^ = 16x4-8x2 + 1, atx=-l, - |, 0, |, 3.

(6) y=4:X-xS at X = - 2, 0, 1, 3.

(c) y = X", at any point ; distinguish the cases when n is a positive

even or odd integer.

6. What happens to the curves y = ax^ and y = ax^ as a changes ?

For example, take a = 2, 1, ^, 0, — |, — 1, — 2.

7. Find the values of x for which the following relations are true :

(a) x* - 6 x2 + 9 ^ 0. (6) (x - l)2(x2 - 4) ^ 0.

8. Show that the following curves do not cross the axis Ox outside of

the intervals indicated

:

(a) ?/ = x^ — 2 x2 4- 4x + 5, between — 2 and 2.

(&) i/ = x4-5x2 + 6x-3, -3 and 3.

(c) y = x3-x2 + 3x-3, Oand 1.

(d) y = x4 + x2 - 3 X + 2, and 1.

9. Those curves whose ordinates represent the values of the first,

second, etc., derivatives of a given polynomial are called the first, second,

etc., derived curves. Sketch on the same coordinate axes the following

curves and their derived curves :

(a) 6^=2x3-3x2- 12x. (b) y = (x- 2y(x + 1).

(c) y = (x+ 1)3. (d) 2 y = X* + x2 + 1.

10. At what point on Ox must the origin be taken in order that the

equation of the curve y = 2x^ — Sx^ — 12x — 5 shall have no term in x2 ?

no term in x ?
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PART IV. NUMERICAL EQUATIONS

157. Equations. Roots. In plotting the curves y — afpif +
••• + ^n (§ ^^^) i* is often desirable to solve equations of the form

(1) ao^;" + - + «„ = 0,

the coefficients «o> %> ••* «« being given real numbers and n any

positive integer. The solution of such numerical equations^

at least approximately, presents itself in many other prob-

lems. The roots of the equation (1) are also called the roots,

OY zeros, of the function a^fc'' -\- ••• +ot„-

It is understood that a^ 4^ since otherwise the equation

would not be of degree n. We can therefore divide (1) by a^

and write the equation in the form

(2) x^+x>^:ff-^-^ ... H-i),=0,

where p^=ia^/aQ, i>2=«2/«o? — i>,»
= «„/^o are given real numbers.

158. Relation of Coefficients to Roots. A\^e here assume

the fundamental theorem of algebra that every equation of the

form (2) has at least one root, say x = x^, which may be real or

imaginary. If we then divide the polynomial x^-\-p^x''~^-\ \-p^

by a; — Xy, we bbtain a polynomial of degree ii — 1 ; the equation

of the (n — l)th degree obtained by equating this polynomial to

zero must again have at least one root. Proceeding in this

way, we find that every equation of the form (2) has n roots,

which of course may be real or complex, and some of which

may be equal. It also appears that the equation (2) may be

written in the form

(3) {x - x^){x -x^"'{x- a;„) = 0,

where x^, x^, •.« x^ are the n roots, or performing the multiplica-

tion (§ 153)

:

(4) a;" - (a?! + . .
. -f x„)a;"-i -f- {x^x. + • • • + x^^^x^x"""^ -f • •

.

-|-(— 1)% ... 05^ = 0.
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Comparing the coefficients in (4) with those in (2), we find

:

Xi + -"+Xn = -pi,

i.e. if the coefficient of the highest power of a polynomial is

one, then the coefficient of a;"~^, with sign reversed, is equal to

the sum of the roots; the coefficient of x""'^ is equal to the sum

of the products of the roots two at a time ; minus the coefficient

of «'*"' is equal to the sum of the products of the roots three at

a time, etc.
;
plus or minus the constant term (according as n is

even or odd) is equal to the product of all the roots.

159. Equations with Integral Coefficients. The results of

the last article can often be used to advantage to find the roots

of a numerical equation (2) in which all the coefficients pi, "-p^

are integers. We then try to resolve the left-hand member

into linear factors of the form x — x,^; if this can be done, the

roots are the numbers x^.

The fact that the constant term j)^ in (2) is plus or minus

the product of the roots can be used in the same case by trying

to see whether any one of the integral factors of ± p^ satisfies

the equation.
EXERCISES

1. Findtherootsof : (a) x^ - 7 a;-}-6=0
; (&) a;3-2 x2-13a;-10=0

;

(c) x* - 1 = ; (d) x* - 7 x2 - 18 = ; (e) a;^ - 5 a;2 - 2 x + 24 = 0.

2. Form the equation whose roots are : (a) 2, — 2, 3
; (&) — 1, — 1, 1

;

(c) 0, V2, -V2; (d) -1, 1, i, -f.
3. For the equation x^ + pix^ + pox -\-p3 = determine the relation

between the coefficients when : (a) two roots are equal but opposite in

sign
; (6) the product of two roots is equal to the square of the third

;

(c) the three roots are equal.

4. Show that the sum of the n nth roots of any number is zero. What

about the sum of the products of the roots two at a time '? three at a time ?
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160. Imaginary Roots. In general, the real roots of a

numerical equation are of course not integers, nor even rational

fractions, but irrational numbers. In solving such an equation

the object is to find a number of decimal places of each root

sufficient for the problem in hand. Methods of approximation

appropriate for this purpose are given in the following articles.

The imaginary roots of the equation can be determined by

somewhat similar, though more laborious, processes. It will

here suffice to show that imaginary roots always occur in pairs

of conjugates ; that is, if an imaginary number a -\- pi is a root

of the equation (1) (with real coefficients), theii the conjugate

imaginary number a — /Si is a root of the same equation.

For, substituting a -j- ^i for x in (1) and collecting the real

and pure imaginary terms separately, we obtain an equation of

the form A-{-Bi = 0,

where A and B are real ; hence, by § 116, ^ = and B = 0.

If, on the other hand, we substitute in (1) a — /3^ for x, the

result must be the same except that i is replaced by — i; we

find therefore A — Bi = 0, and this is satisfied if A = and

^ = 0, i.e. if a -h (ii is a root.

It follows in particular that a cubic equation always has at

least one real root. Indeed, in the case of the cubic equation,

only two cases are possible : (a) the equation has three real

roots, which may of course be all different, or two equal but

different from the third, or all three equal
;

(b) the equation

has one real and two conjugate imaginary roots.

161. Methods of Approximation for Real Roots. If a good

sketch of the curve y = aQX''-\-, ••• + a„ were given, we could

obtain approximate values of the real roots of the equation

ao'K" 4- ••• +a^ =
by measuring the intercepts OA^j OA^, etc., made by the curve
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on the axis Ox (§ 154). If the curve is not given, we calculate

a number of ordinates for various values of x until we find

two ordinates of opposite sign ; we know (§ 156) that the curve

must cross the axis Ox between these ordinates, and therefore

at least one real root of the equation must lie between the

abscissas, say x^ and x^, whose ordinates are of opposite sign.

We can next contract the interval between which the root

lies by calculating intermediate ordinates. By this process a

root can be calculated to any desired degree of accuracy. But

the process is rather long and laborious. The calculation of

the ordinates is best performed by the process of § 148.

162. Interpolation. If the interval within which the root

has been confined is small, we can obtain, without calculating

further ordinates, a further approximation to the root by

replacing the curve in the interval by its secant, and finding

its intersection with the axis Ox.

Suppose (Fig. 61) that we have

found that a root lies between

OQy = Xy and 0Q2 = X2, the ordi-

nates QiPi = 2/1 and Q2P2 = 2/2 being

of opposite sign. Then Xi is ^. first

approximation to the root a;; and

if Qi and Q2 lie close together, the

intercept OQ made by the secant

PjPo on the axis Ox is a second approximation. Let us

calculate the correction Q^Q = h which must be added to

the first approximation x^ to obtain the second approximation

x^ + h.

The figure shows that QiQ/BP2 = PiQi/PiR, i-e.

Fig. 61

2/2-2/1
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hence the correction li is

7i = Out) —~ tJC-i LAtJu

^ 2/1 = - —2/1-
Vi - Vi ^y

This process, which is the same as that used in interpolating

in a table of logarithms, is known as the regula falsi, or rule

of false position.

163. Tangent Method. Another method for finding a correction

consists in using the intercept made on the axis Ox not by the secant but

by the tangent to the curve at Pi.

The correction Qi Q' = k is found

(Fig. 61) from the triangle PiQiQ', in

which the tangent of the angle at Q' is

equal to the value of the derivative yi'

at Pi. This triangle gives

k

hence k=— ^- .

y\'

yi .

k'

Fig. 61

Find by this method the roots of 0^ — 305+1=0.

164. Newton's Method of Approximation. After finding,

by § 161, a first approximation x^ to a root of the equation

(1) ao^" + a,x--' + . .
. + a„ = 0,

transfer the origin to the point (xi, 0). Thus (Fig. 62), if a

root lies between 3 and 4, transform the

equation to (3, 0) as origin, by replacing

a; by 3 -h h. An expeditious process for

finding the new equation in h, say

(2) 6o/i«4-M"-' + ••• + &„= 0,

will be given in §§165-167. Fig. 62
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As li is a proper fraction, its higher powers will be small,

so that an approximate value of h can be obtained from the

linear terms, i.e. by solving h,,_^h-\-h,^ =0, which gives h ap-

proximately = — 6„ / 6„_i. Hence we put

(3) h = -^-^k,

where A: is a still smaller proper fraction. If the approxima-

tion obtained from the linear terms should be too rough, we

may find a better approximation of h by solving the quadratic

K-2h'+K_,h + K = 0.

We next substitute the value (3) of h in (2) and proceed in

the same way with the equation in k. The process can be

repeated as often as desired ; the last division can be carried

to about as many more significant figures as have been obtained

before. The example in § 168 will best explain the work.

165. Remainder Theorem, if a polynomial f(x) = aox» +
aix^-^ 4- • . • + a„ of degree n be divided by x — h, there is obtained in

general a quotient Q, which is a polynomial of degree n — I, and a re-

mainder B :

^= Q +^, i.e. fix) = Q(x-h) + B.
X — h X — h

For X = h the last equation gives /(^) = B ; i.e. the value of the poly-

nomial for any particular value h of x is equal to the remainder B ob-

tained upon dividing the polynomial by x — h

:

fih) = aoh^ + -'--\-an = B.

This proposition is known as the remainder theorem.

166. Synthetic Division. As an example let us divide

f(x) = 2 x3 - 3 ic2 - 12 a; -I- 5

"by a; — 3. By any method we obtain the following result :

X — 3 x— S
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The elementary method is as follows :

2 a;8 - 6 x^

3 x2 - 12 X

3a;2_ 9a;

-3x + 5

- 3 X + 9

-4
This process can be notably shortened :

(a) As the dividend is a polynomial, it can be indicated sufficiently by

writing down its coefficients only, any missing term being supplied by a

zero

;

2 - 3 - 12 5

(5) As X in the divisor has the coefficient 1, the first terms of the

partial products need not be written ; the second terms it is more con-

venient to change in sign ; in other words, instead of multiplying by — 3

and subtracting, multiply by + 3 and add.

The whole calculation then reduces to the following scheme :

2-3-12 5[3

6 9-9
2 3-3-4

This is the same scheme as that in § 148. But it should be observed

that this method, known as synthetic division, gives not only the remain-

der — 4, i.e. /(3), but also the coefficients 2, 3, — 3 of the quotient.

167. Calculation of /(aj^ + h). if in /(x) = aox« + • • • + «„ we sub-

stitute x = Xi-{-h, we find

:

/(x) =/(xi + h) = ao(xi + h)^ + ai(xi + A)«-i + ••. + a«-i (xi + h) + a„.

Expanding the powers of Xi 4- A by the binomial theorem and arrang-

ing in descending powers of h we obtain a result of the form

/(x) =/(xi + h)=b^^ + hih^-^ + ••• 4- bn.ih + 6„.

To find the coefficients 6o, 6i,--- &„ of this expansion of /(xi + h) in

powers of h observe that as A = x — Xi we have

/(x) =/(xi + h) = bo{x - xi)« 4- l>i(x -^ xi)"-! + ••. + 6„_i(x - xi) + &«.

The last term, 6„, is therefore the remainder obtained upon dividing

f(x) by X— xi ; it is best found by synthetic division (§ 166). The quo-

tient obtained upon dividing /(x) by x — Xi is evidently 6o(x — xi)""^

+ &i(x — xi)''-^ 4- ••• 4 6„_i ; the last term, 6„_i, can again be obtained
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as the remainder upon division by x — xi. Proceeding in this way all

the coefiBcients 6„, b^-u ••• &i, &o can be found.

For the example of § 166 we have

2-3-12 5|3

6 9 -9
2 3 -3 -4

6 27

2 9

6

24

2 15

The result is : f{S-{-h)=2h^ + 15h'^ + 2^h- 4.

168. Example. The roots of the equation

2 a;3 _ 3 a;2 _ 12 X + 5 =

are readily found to lie between — 3 and — 2, and 1, 3 and 4. To

calculate the last of these we find by transferring the origin to the point

(3, 0) the following equation for the correction h to the first approxima-

tion, which is 3 (§ 167) :

The linear terms give h = 1/6 = 0.17; as the quadratic term, 15 h^, is

about 0.42 and 1/24 of this is 0.02, a somewhat better approximation is

h = 0.15. Substituting

Ji = 0.16 + hi,

we find: 2 15 24 -4
0.30 2.295 3.94425

2 15.30 26.295 -0.05575

.30 2.340

2 15.60 28.635

^
2 15.90

Hence the equation for hi is

2 hi^ + 15.90 hi^ + 28.635 hi - 0.06575 = 0.

The linear terms give ^ = 001947

As the quadratic term can influence only the 6th decimal place, we can

certainly take ^1 = 0.00195 and thus find the root 3.15195.
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169. Negative Roots. To find a negative root replace a; by — x

in the given equation, i.e. reflect the curve in the axis Oy.

To find a root greater than 10 replace x by 10 «, or 100 2;, etc., in the

given equation, and calculate z.

170. Horner's Process. W. G. Homer's method is essentially the

same as Newton's, inasmuch as it consists in moving the origin closer

and closer up to the root. But it calculates each significant figure

separately. Thus, for the example of § 168 we should proceed as follows:

As in §§ 167, 168, we diminish the roots of the equation

2x3-3x2_i2x + 5 =

by 3 so that the equation (as there shown) takes the form

2 a;3 + 15 a:2 + 24 X - 4 = 0.

The left-hand member changes sign between 0.1 and 0.2. We move there-

fore the origin through 0.1 to the right

:

2 15 24 -4
.2 1.52 2.552

2 15.2 25.52 -1.448

.2 1.54

2 16.4 27.06

.2

2 15.6

The new equation is 2 x^ + 15.6 x^ + 27.06 x - 1.448 = 0.

The left-hand member changes sign between 0.05 and 0.06 ; hence we

move the origin through 0.05

:

2 15.6 27.06 -1.448

.10 .785 1.39225

2 15.70 27.845 -0.05576

.10 .790

16.80 28.636

.10

2 15.90

The new equation is 2 x^ + 15.90 x^ + 28.636 x - 0.05575 = 0.

We can evidently go on in the same way finding more decimal places.

It should not be forgotten (§ 164) that after finding a number of significant
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figures in this way, about as many more can be found by simple division.

Thus, we have found x = 3.15 •••
; the linear terms of the last equation

give the correction 0.00195, so that x = 3.15195.

EXERCISES

1. Find: (a) the cube root of 67 ; (&) the fourth root of 19 ;
(c) the

fifth root of 7, to seven significant figures, and check by logarithms,

2. Newton used his method to approximate the positive root of

x^ — 2ic — 5=0; find this root to eight significant figures.

3. Find, to five significant figures, the root of the equation

x^ + 2.73 x^ = 0.375.

4. Find the coordinates of the intersections of the curve y

= {x- l)2(x+2) with the lines : (a) y = S; (6) y=l x+1; (c) y=}x-l.

5. After cutting off slices of thickness 1 in., 1 in., 2 in., parallel to

three perpendicular faces of a cube, the volume is 8 cu. in. What was

the length of an edge of the cube ?

6. Find the radius of that sphere whose volume is decreased 50%
when the radius is decreased 2 ft.

7. For what values of k will the lines kx + y + 2 = 0, x -\- ky — 1 = 0,

2x— y -{- k = pass through a common point ?

8. For what values of k are the following equations satisfied by other

values of x, y, z, to than 0, 0, 0, 0? kx + 2y-{-z — Sw = 0, 2x +ky + z

— w = 0, X— 2y-^kz-{-w = 0, x+7y — z + kw=0-

9. A buoy composed of a cone of altitude 6 ft. surmounted by a

hemisphere with the same base when submerged displaces a volume of

water equal to a sphere of radius 6 ft. Find the radius of the buoy.

10. Find, to four significant figures, the coordinates of the intersections

of the parabolas y -{- x^ = 7, x + y^ = U, Ex. 13, p. 138.

11. By applying Newton's method (§ 164) to both coordinate axes

simultaneously, find that intersection of the parabolas x^ — y = 4 and

X + y2 — 3 which lies in the first quadrant.

12. The segment cut out of a sphere of radius a by a plane through

its center and a parallel plane at the distance x from it has a volume

= irx(a:^ — iaj2); at what distance from its base must a hemisphere be

cut by a plane parallel to the base to bisect the volume of the hemisphere ?
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171. Expansion of f{x + h). The solution of numerical equa-

tions is based on the fundamental fact (§ 167) that if f(x) is a poly-

nomial, then f(x\ f K) can be expressed as a polynomial of the same

degree in A, and the coefficients Aq, J.i ,
••• J.„ of this polynomial can be

calculated. Thus, for

f(x) —a^p^ + aix^ + a-ix^ + a^x + a^
we have

:

/(i»i+ h) = «o (xi + hy + ai (xi + hy + aa (xi + hy+ as (xi + h)+a4
= «o^i* + <^i^i^ + «2a;i^ + asXi + a4

+ (4 aoXi^ + 3 aiXi^ + 2 a^xi + as)^

+ (6 aoXi2 + 3 aiXi + aa)^"^

+ (4aoXi + ai)/i3

+ ao^*.

Now this process is closely connected with that of finding the successive

derivatives of the polynomial. Thus we have for

f{x) = uqX'^ + aix^ + a20c^ + asx + at

the derivatives

:

f'{x) = 4 aoSc8 + 3 aix^ + 2a2X + as,

f"lx) = 12 aoic2 + 6 aix + 2 a2,

/'"(x) = 24aoa; + 6ai,

/-(x)=24ao,

all higher derivatives being zero. If in these expressions we put x = xi

and then multiply them respectively by 1 , /i, h^/2 ! , h^/S ! , h*/4: ! , and

add, we find precisely the above expression for /(xi + h); hence we have:

whenever /(x) is a polynomial of degree 4.

It can be proved in the same way that for a polynomial of degree n

we have

f(xi + h)=f(xO + f'ix^)h+^-^^h'^+--'+-^^^^^

This formula is a particular case of a general proposition of the differ-

ential calculus, known as Taylofs theorem. It shows that the value of a

polynomial for any value x = Xi -\- h can he found if we know the value of

the polynomial itself and of all its n derivatives for some particular

value xi of x. This property is characteristic for polynomials.



CHAPTER IX

THE PARABOLA

172. The Parabola. The parabola can be defined as the

locus of a point whose distance from a fixed point is equal to its

distance from a fixed line. The fixed point is called the focus,

the fixed line the directrix, of the parabola.

Let F (Fig. 63) be the fixed point, d the fixed line ; then

every point P of the parabola must satisfy

the condition
FP=:PQ,

Q being the foot of the perpendicular from

P to d. Let us take F as origin, or pole, and

the perpendicular FD from jP to the directrix

as polar axis, and let the given distance FD
= 2 a. Then FP =r and PQ = 2 a —r cos cf>.

The condition FP =PQ becomes therefore

r = 2 a — r cos cf>,

2a
I.e.

(1)
1 -f cos <|>

This equation, which expresses the radius vector of P as a

function of the vectorial angle </>, is the polar equation of the

parabola, when the focus is taken as pole and the perpendicular

from the focus to the directrix as polar axis.

173. Polar Construction of Parabolas. By means of the

equation (1) the parabola can be plotted by points. Thus, for

<^ = we find r = a as intercept on the polar axis. As <^

increases from the value 0, r continually increases, reaching

169
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the value 2 a for <^ = i tt, and becoming infinite as
<f>

ap-

proaches the vahie tt.

For any negative value of <^ (between and — tt) the radius

vector has the same length as for the corresponding positive

value of <^ ; this means that the parabola is symmetric with

respect to the polar axis.

The intersection A of the curve with its axis of symmetry

is called the vertex, and the axis of

symmetry FA the axis, of the parab-

ola. The segment BB' cut off by

the parabola on the perpendicular to

the axis drawn through the focus is

called the latus rectum; its length

is 4 a, if 2 a is the distance between

focus and directrix. Notice also that

the vertex A bisects this distance

FD so that the distance between focus

and vertex as well as that between vertex and directrix is a.

In Fig. 63 the polar axis is taken positive in the sense from

the pole toward the directrix. If the sense from the directrix

to the pole is taken as positive (Fig. 64), we have again with

F as pole FP= r, but the distance of P from the directrix is

2 a-\-r cos </>, so that the polar equation is now

(2) ^=.—^^-
^ ^ 1 — cos<^

We have assumed a as a positive number, 2 a denoting the

absolute value of the distance between the fixed point (focus)

and the fixed line (directrix). The radius vector r is then

always positive. But the equations (1) and (2) still represent

parabolas if a is a negative number, viz. (1) the parabola of

Fig. 64, (2) the parabola of Fig. 63, the radius vector r being

negative (§ 16),

Fig. G4
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Q
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Fig. 65

174. Mechanical Construction. A mechanism for tracing

an arc of a parabola consists of a right-

angled triangle (shaded in Fig. 65), one of

whose sides is applied to the directrix.

At a point R of the other side J?Q a

string of length i^Q is attached ; the other

end of the string is attached at the focus

F. As the triangle slides along the di-

rectrix, the string is kept taut by means

of a pencil at P which traces the parabola.

Of course, only a portion of the parabola can thus be traced,

since the curve extends to infinity.

175. Transformation to Cartesian Coordinates. To obtain

the cartesian equation of the parabola let the origin be taken

at the vertex, i.e. midway between the fixed line and fixed

point, and the axis Ox along the axis of the parabola, positive

in the sense from vertex to focus (Fig. Q>Q>). Then the focus

F has the coordinates a, 0, and the equation of the directrix is

X = —a. The distance FP of any point

P{x, y) of the parabola from the focus is

therefore V(a; — ay -f- 2/^ and the dis-

tance QP of P from the directrix is

a + x. Hence the equation is

{x-ay + y^={a^x)\

which reduces at once to

(3) 2/2 = 4 ax. Fig. 66

This then is the cartesian equation of the parabola, referred

to vertex and axis, I.e. when the vertex is taken as origin and

the axis of the parabola (from vertex toward focus) as axis Ox.

Notice that the ordinate at the focus (a, 0) is of length 2 a
;

the double ordinate B'B at the focus is the latus rectum (§ 173).
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176. Negative Values of a. In the last article the constant

a was again regarded as positive ; but (compare § 173) the equa-

tion (3) still represents a parabola when a is a negative number,

the only difference being that in this case the parabola turns its

opening in the negative sense of the axis Ox (toward the left

in Fig. 66). Thus the parabolas y^=4:ax and 2/2= — 4 ax are sym-

metric to each other with respect to the axis Oy (Ex. 14, p. 138).

The equation (3) is very convenient for plotting a parabola

by points. Sketch, with respect to the same axes, the parab-

olas : y^ = 16xj y^ = — 16 x, y^ = x, y^=z — Xj y'^=3xj y'^=z — \ x,

177. Axis Vertical. The equation

(4) x^^^ay,

which differs from (3) merely by the interchange of x and y,

evidently represents a parabola whose vertex lies at the origin

and whose axis coincides with the axis Oy. The parabolas (3)

and (4) are each the reflection of the other in the line y =x
(Ex. 14, p. 138). The equation (4) can be written in the form

1
y 4a

x\

As 1/4 a may be any constant, this is the equation discussed in

§132.

178. New Origin. An equation of the form (Fig. 67)

(5) (2/-/c)2 = 4a(a^-/0,

__Vi^-.

Q

Fig. 68

or of the form (Fig. 68)

(6) (x-hY = 4.a{y-k\
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evidently represents a parabola whose vertex is the point (^, k),

while the axis is in the former case parallel to Ox, in the latter

to Oy. For, by taking the point (/i, k) as new origin we can

reduce these equations to the forms (3), (4), respectively.

The parabola (5) turns its opening to the right or left, the

parabola (6) upward or downward, according as 4 a is positive

or negative.

179. General Equation. The equations (5), (6) as well as

the equations (3), (4) are of the second degree. Now the

general equation of the second degree (§ 79),

Ax^ + 2 Hxy -^By^-\-2Gx-{-2Fy-\-C=0,

can be reduced to one of the forms (5), (6) if it contains no

term in xy and only one of the terms in x"^ and y^, i.e. if H=
and either yl or jB is =0. This reduction is performed (as in

§ 80) by completing the square my ov x according as the equa-

tion contains the term in y"^ or x"^.

Thus any equation of the second degree, containing no term in

xy and only one of the squares x^, y"^, represents a parabola, whose

vertex is found by completing the square and whose axis is

parallel to one of the axes of coordinates.

EXERCISES

1. Sketch the following parabolas

:

(a) r = ? (6) r = — (c) r = a sec2 4 0.^ 1+COS0 ^ ^ 1-COS0

2. Sketch the following curves and find their intersections :

2 CL
(a) r = 8 cos <f>^ r = (6) r = a, r =

1 — cos 1 + cos

8 2 6E
(c) r = 4 cos 0, r = (d) r cos<p = 2 a, r =

1 4- cos ^
^

1 - cos

3. Sketch the following parabolas :

(a) (y-2y = S(x^6). (b) (x + Sy = b(S ^ y).

(c) x2 = 6(1/ + 1). (d) (y + 3)2 = - 3 X,
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4. Sketch each of the following parabolas and find the coordinates of

the vertex and focus, and the equations of the directrix and axis :

^ (a) y^-2y-3x-2 = 0. - (6) a;2 + 4 a; - 4 ?/ = 0.

(c) x'^-Ax + Sy + l =0. (d) Sx^-6x- y = 0.

(c) 8y'^-16y-^x + 6 = 0. (/) y2^y + x = 0.

(gr) x2 - X - 3 ?/ + 4 = 0. (/i) 8 ?/2 - 3x + 3 = 0.

6. Sketch the following loci and find their intersections :

' («) y = 2x, y = x2. (&) ?/^ = 4 ax, x + ?/ = 3 a.

(c) y^ = x + S, 2/2 = 6- X. (d) ?/2+4x+4=0, x2 + ?/2^41.

6. Sketch the parabolas with the following line^ and points as direc-

trices and foci, and find their equations

:

— (a) X - 4 = 0, (6, - 2). (6) y + 3 = 0, (0, 0).

(c) 2x + 5 = 0, (0, -1). (d) x = 0, (2, -3).

(e) 3y-l=0, (-2, 1). (/) x - 2 a = 0, (a, b).

7. Find the parabola, with axis parallel to Ox, and passing through

the points

:

— (a) (1,0), (5,4), (10, -6). (&) (-W, -5), (|, 0), (|, -3).

(c) (-1, 6), (3,1), (-V-,0).

8. Find the parabola, with axis parallel to Ojy, and passing through

the points

:

-•
(a) (0, 0), (-2, 1), (6, 9). (6) (1, 4), (4, - 1), (-3, 20).

^(c) (-2,1), (2, -7), (-3, -2).

9. Find the parabola whose directrix is the line 3x — 4y— 10 =
and whose focus is: (a) at the origin

;
(b) at (5, — 2). Sketch each of

these parabolas. When does the equation of a parabola contain an xy

term ?

10. Find the parabolas with the following points as vertices and foci

(two solutions)

:

-(a) (-3, 2), (-3, 5). (6) (2, 5), (- 1, 5).

(c) (- 1, - 1), (1, - 1). {d) (0, 0), (0, - a).

11. Show that the area of a triangle whose vertices Pi (xi, yi),

P2 {X2, 2/2), P3 (X3
, 2/3") are on the parabola 2/2 = 4 ax, may be expressed

by the determinant

1/. 1

= ^(^2 - 2/3) (^3 - yi){y2 -yi)'
o a

1
yi^ yi 1

8a 2/2^ 2/2 I

2/3^ 2/3 1
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12. The area J, of a cross-section of a sphere of radius B, at a distance

h from the surface, is given by the formula

A = 2Ilh-h^ h<B.

Reduce this equation to standard form A = kh^, where A and h differ

from A and h by constants. What is the meaning of A and h ?

13. Show that if the area A of the cross-section of any solid perpen-

dicular to a line Z, at a distance h from any fixed point P in Z, is a quad-

ratic function of h :

A = ah'^ + &A. -t- c
;

another point Q in I exists, such that

A = kh^,

where h denotes the distance from Q and A differs from J. by a constant.

14. If s denotes the distance (in feet) from a point P in the line

of motion of a falling body, at a time t (in seconds),

where g is the gravitational constant (32.2 approximately) and Sq is the

distance from P at the time Iq, show that this equation can be put in

the standard form

s = hgT,

where s denotes the distance from some other fixed point in the line of

motion and tis the time since the body was at that point.

15. The melting point t (in degrees Centigrade) of an alloy of lead and

zinc is found to be
t = 13S+ .S16x + .01125 x%

where x is the percentage of lead in the alloy. Reduce the equation to

standard form t = kx \ and show that x —x — U^ t = t — k, where h is

the percentage of lead that gives the lowest melting point, and k is the

temperature at which that alloy melts.

16. Show that the locus of the center of the circle which passes

through a fixed point and is tangent to a fixed line is a parabola.

17. Show that the locus of the center of a circle which is tangent to a

fixed line and a fixed circle is a parabola. Find the directrix of this

parabola.

18. Write in determinant form the equation of the parabola through

three given points, Pi{xx, ^/l), Pi{x2, 1/2), Psi^s, 2/3) with axis parallel

to a coordinate axis.
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180. Slope of the Parabola. The slope tan a of the parabola

2/2 = 4 aa;

at any point P (x, y) (Fig. 69) can be found (comp. § 137) by

first determining the slope

tan «!

=

y^^y

of the secant PP^ , and then letting

-f*i(^i? Vi) move along the curve up

to the point P(x, y). Now as Pj

comes to coincide with P, x^ becomes

equal to x, and y^ equal to y, so that

the expression for tan a^ loses its

meaning. But observing that P and

Pi lie on the parabola, we have y"^ = 4 ax and y^

hence y^ — y'^ = 4ta(x^ — x). Substituting from this relation

the value of x^ — x in the above expression for tan cti, we find

for the slope of the secant

:

4 axy^ , and

tan «i = 4 a -^—— =
1 o o

4a
2/i -r 2/1 + 2/

If we now let Pj come to coincidence with P so that y^ becomes

= y, we find for the slope of the tangent at P(x, y) :

(7)
, 2a
tana =

y

This slope of the tangent at P is also called the slope of the

parabola at P. The ordinate y of the parabola is a function of

the abscissa x ; and the slope of the parabola at P (x, y) is the

rate at which y increases with increasing £c at P; in other words,

it is the derivative y' of y with respect to x (compare § 138).

As by the equation of the parabola we have y = ± 2^ax, we

find:
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(8) 2/' = tana = ?^=±J«.
y ^x

The double sign in the last expression corresponds to the fact

that to a given value of x belong two points of the curve with

equal and opposite slopes.

I 181. Explicit and Implicit Functions. The result just obtained

that when 2/2 = 4 ax then the derivative of y with respect to x is

y

can he derived more easily by the general method of the differential cal-

culus. This requires, however, some preliminary explanations.

In the cases in which we have previously determined the derivative y'

of a function yotx this function was given explicitly ; i.e. the equation be-

tween X and y that represents the curve was given solved for ?/, in the

form y=f(x).

Our present equation of the parabola, ?/2 = 4 ax, is not solved for y

(though it could readily be solved for y by writing it in the form

y = ± 2y/ax) ; the same is true of the equation of the circle x^ + y^ = a^,

or more generally x^ + y'^ + ax -\- by -{- c = 0, and also of the general equa-

tion of the second degree (§79), Ax^+2 Hxy+ By^ +2 Gx + 2 Fy+G =0.

Such equations in x and y, whether they can be solved for y or not, are

said to give y implicitly as a function of x. For, to any particular value

of x we can find from such an equation the corresponding values of x

(there may be several values ; and they may be real or imaginary). Thus,

any equation between x and y, of whatever form, determines y as a func-

tion of X.

182. Derivatives of Implicit Fimctions. The differential cal-

culus shows that to find the derivative ?/' of a function y given implicitly

by an equation between x and y we have only to differentiate this equation

with respect to x, i.e. to find the derivative of each term, remembering

that y is a function of x. To do this in the simple cases with which we

shall have to deal we need only the following two propositions {A) and

(5), §§ 183, 184.

N
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183. (A) Derivative of a Function of a Function, if u is a

function of y, and y a function of x, the derivative of u with respect to x

is the product of the derivative of u with respect to y into the derivative y'

of y with respect to x.

For, as u is a function of y which itself is a function of x, u is also

a function of a;. If x be increased by Ax, y will receive an increment Ay

and u an increment Aw. We want to find the derivative of u with respect

to X, i.e. the limit of Au/Ax as Ax approaches zero. Now we can put

Am _ All Ay
.

Ax Ay Ax'

the limit of the first factor, Au/Ay, is the derivative of u with respect to

y, while the limit of the second factor. Ay/Ax, is the derivative y' of y

with respect to x.

Thus, ii u = y", we know (§ 151) that the derivative of ii with respect

to y is = ny'^~'^. But if u = «/", and ?/ is a function of x, we can also find

the derivative of u loith respect to x; by the proposition {A) it is

ny^~^ ' y' . For example, suppose that ?« = ?/^, where i/=:x2 — .Sx, so

that u = (x2 — 3 x)^. Then the ^/-derivative of u is 3 y'^
; but the x-de-

rivative of m is 3 ?/2 . y' = 3 y^{^ x - 3) = 3(x2 - 3 x)2(2 x - 3). This can

readily be verified by expanding (x'-^ — 3x)3 and differentiating the result-

ing polynomial in the usual way (§ 150).

184. {B) Derivative of a Product, if n and v are functions of x,

the derivative of uv is u times the derivative of v plus v times the deriva-

tive of u :

derivative of uv = nv' + vu'.

For, putting uv = y, we have to find the limit of Ay/Ax. When x is in-

creased by Ax, u receives an increment Am, v an increment Av, and the

increment Ay of y is therefore

Ay = {u + Au){v + Av) — uv
;

dividing by Ax, we find

^ = {n ^ Au){y ^ Av) - uv ^^A?;_^^Am_^Am^^_
Ax Ax Ax Ax Ax,

In the limit. Ay /Ax becomes «/', Av/Ax becomes u'; AujA.x becomes u\

and the last term vanishes because its factor At? becomes zero. Hence :

?/' 3= uv' + vuK



IX, § 185] THE PARABOLA 179
*

185. Computation of Derivatives of Lnplicit Functions.

We are now prepared to find the derivative of y when y is given im-

plicitly as a function of x by the equation y'^ = 4 aa;. We have only

to differentiate this equation with respect to a;, i.e. find the x-derivative

of each term, rememhering that y is a function of x. The term y^^ as

a function of a function, gives 2y y' ; the teiin 4 ax gives 4 a ; hence

we find

2 yy' =z 4: a, whence y' =—

,

y
as in § 180.

Similarly, we find by differentiating the equation of the circle

x2 +2/2= a2

that 2x+2yy' =0,

whence y' = — -;
y

i.e. the slope of the circle x^ + y^ = cfi at any point P(a;, y) is minus the

reciprocal of the slope of the radius through P.

If y is given implicitly as a function of x by the equation

x2+ 5x?/= 12,

which, as we shall see later, represents a hyperbola, we find the derivative

of «/, i.e. the slope of the hyperbola, by differentiating the equation and

applying to the second term the proposition {B) :

2x+6x-y' + ?/-5 = 0,

whence y/ ^ _ 5 y + 2 x ^_ y _ 2

5x . X b

EXERCISES

1. Find the derivative of u with respect to x for the following

functions

:

— (a) M = 2/2, when 1/ =3x — 5, (6) u = y^-\-'^y.,Yf\iQr).y—x^—2x.

-~{c) M= 2y3— 3?/2,when y=x^-^x. {d) u= ly^ — y, when y = x^.

2. Find the slope of the following parabolas at the point P(x, y) :

_(a)y^ = bx. (&) 2/2_5y + 6x+4 = 0. -(c) 3 2/2 = 4 x- 5.

3. Find y' for the following products

:

^(a) y =x\x^ + 6x). (6) y = (x + S)(x- 6).

(c) y = (x-a)(x-b)(x-c). (d) y =^ (x^ S)(2x + 1).
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4. Find the slope at the point P(a-, y) for each of the following circles

by differentiation ; compare the results with §§ 88, 89 :

(a) x2 + y2 = 12. (6) x^ + y^ + ax + by + c = 0.

(c) Ax"^ -h Ay^ -^ 2 Gx -\- 2 Fy + C = 0.

\6. Find -the slope y' for each of the following curves at the point

P(x, y) :

(a) xy = cCK (b) x^y - 6x -\- 4 = 0.

(c) u4x2 + 2 Hxy -{- By^ + 2Gx-\-2Fy+ C = 0.

186. Equation of the Tangent. As the slope of the

parabola
f- = 4.ax

at the point P{x,y) is 2a/y (§§180-185), the equation of the

tangent at this point is

F-2/ =— (X-a;),
y

where X, Y are the coordinates of any point of the tangent,

while Xj y are the coordinates of the point of contact. This

equation can be simplified by multiplying both sides by y

and observing that ?/^ = 4 ax ; we thus find

(9) yY=2a{x+X).
•Notice that (as in the case of the circle, § 89) the equation

of the tangent is obtained from the equation of the curve,

7/2 = 4 ax, by replacing y"^ hj yY,2 xhj x-{- X.

The segment TP (Fig. 70) of the tangent from its intersec-

tion T with the axis of the

parabola to the point of contact

P is called the leyigth of the

tangent at P; the projection TQ
of this segment TP on the axis

of the parabola is called the \
subtangent at P. Now, with ^i^- "^^

F=0, equation (9) gives X=—x, i.e. T0= OQ; hence the

subtangent is bisected by the vertex. This furnishes a simple
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construction for the tangent at any point P of the parabola if

the axis and vertex of the parabola are known.

187. Equation of the Normal. The normal at a point P
of any plane curve is defined as the perpendicular to the tan-

gent through the point of contact.

The slope of the normal is therefore (§ 27) minus the recip-

rocal of that of the tangent. Hence the equation of the normal

to the parabola is :

r-,=-A(x-.),
that is

:

(10) yX-^2aY={2a-\-x)y.

The segment PN of the normal from the point P{x, y)

on the curve to the intersection N of the normal with the axis

of the parabola is called the length of the normal at P; the

projection QN oi this segment P^on the axis of the parabola

is called the subnormal at P.

Now, with Y= 0, equation (10) gives X= 2 a -j- a;, and as

x=OQ, it follows that QN'—2a', i.e. the subnormal of the

parabola is constant, viz. equal to half the latus rectum.

188. Intersections of a Line and a Parabola. The inter-

sections of the parabola
7/2 = 4 aa;

with the straight line

y = mx -f b

are found by substituting the value of y from the latter in the

former equation

:

(mx -\-by = 4: ax,

or, reducing:

mV + 2 (m6 - 2 a) i» + &^ = 0.

The roots of this quadratic in x are the abscissas of the

points of intersection ; the ordinates are then found from

y = mx -f- b.
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It thus appears that a straight line cannot intersect a parabola

in more than two points. If the roots are imaginary, the line

does not meet the parabola; if they are real and equal, the

line has but one point in common with the parabola and is

a tangent to the parabola (provided m ^ 0).

189. Slope Equation of the Tangent. The condition for

equal roots is

(bm-2af = b'm\
which reduces to

m = «.

b

The point that the line of this slope has in common with the

parabola is then found to have the coordinates

2 a — bm b^
, , o i.

m^ a

As the slope of the parabola at any point {x, y) is (§ 180)

I/' = 2 a/y, the slope at the point just found is y' = a/b = m

;

i.e. the slope of the parabola is the same as that of the line

y = mx-\-b; this line is therefore a tangent. Thus, the line

(11) y = mx H

—

m
is tangent to the parabola y^ = 4: ax whatever the value of m.

This may be called the slope-form of the equation of the tangent.

Equation (11) can also be deduced from the equation (9), by

putting 2 a/y = m and observing that 2/^ = 4 ax.

190. Slope Equation of the Normal. The equation (10) of

the normal can be written in the form

2a 2a

or since by the equation (3) of the parabola x = y^/A a

:

Y=-JLx+ y + -^'
2a ^^^Sa'
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If we denote by n the slope of this normal, we have

:

71=-^, y = -2an, J--=-an\
2 a Sa^

so that the equation of the normal assumes the form

(12) r= nX-2a7i- an^.

This may be called the slope-form of the equation of the normal.

191. Tangents from an Exterior Point. The slope-form

(11) of the tangent shows that /rom any j^oint (x, y) of the plane

not more than two tangents can he drawn to the parabola 2/^ = 4 ax.

For, the slopes of these tangents are found by substituting in

(11) for X, y the coordinates of the given point and solving the

resulting quadratic in m. This quadratic may have real and

different, real and equal, or complex roots.

Those points of the plane for which the roots are real and

different are said to lie outside the parabola ; those points for

which the roots are imaginary are said to lie within the parab-

ola; those points for which the roots are equal lie on the

parabola.

The quadratic in m can be written

xm^ — ym -f- a = 0,

so that the discriminant is 2/^ — 4 ax. Therefore a point (x, y)

of the plane lies within, on, or outside the parabola according as

y^ — 4:ax is less than, equal to, or greater than zero.

Similarly, the slope-form (12) of the normal shows that not

more than three normals can be drawn from any point of the

plane to the parabola, since the equation (12) is a cubic for n

when the coordinates of any point of the plane are substituted

for X, Y. As a cubic has always at least one real root (§ 160),

there always exists one normal through a given point; but

there may be two or three.
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192. Geometric Properties. Let the tangent and normal

at P (Fig. 71) meet the axis at T, N; let Q be the foot of the

perpendicular from P to

the axis, D that of the per-

pendicular to the directrix

d ; and let be the vertex,

F the focus.

As the subtangent TQ is

bisected by (§ 186) and

J

the subnormal QN is equal

to 2 a (§ 187), while 0F=
a, it follows that F lies

midway between T and TV.

The triangle TPN being Fig. 71

right-angled at P and F being the midpoint of its hypotenuse,

it follows that ^^p_ ^rp_ ^-^

Hence, if axis and focus are given, the tangent and the normal

at any point P of the parabola are found by describing about

F a circle through P which will meet the axis at T and N.

As FP=DP, it follows that FPDT is a rhombus; the

diagonals PT and FD bisect therefore the angles of the

rhombus and intersect at right angles. As TP (like TQ) is

bisected by the tangent at the vertex, the intersection of these

diagonals lies on this tangent at* the vertex. The properties

just proved that the tangent at P bisects the angle between the

focal radius PF and the parallel PD to the axis and that the

perpendicular from the focus to the tangent meets the tangent on

the tangent at the vertex are of particular importance.

193. Diameters. It is known from elementary geometry that

in a circle all chords parallel to any given direction have their

midpoints on a straight line which is a diameter of the circle.
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Similarly, in a parabola, the locus of the midpoiyits of all chords

parallel to any given direction is a straight line, and this line

which is parallel to the axis

is called a diameter of the

parabola. To prove this, take

the vertex as origin and the

axis of the parabola as axis Ox

(Fig. 72) so that the equation

is / = 4 ax. Any line of given

slope m has the equation

y = mx 4- 6,

and with variable b this represents a pencil of parallel lines.

Eliminating x we find for y the quadratic

Fig. 72

r i^2/ +— = 0.
m m

The roots ^i, 2/2 are the ordinates of the points P,, P^ at

which the line intersects the parabola. The sum of the roots is

4 a
2/1 + ^2 =—

;

m
hence the ordinate \{yi + 2/2) of the midpoint P between P^ , P^

is constant (i.e. independent of x), viz. = 2 a/m, and independ-

ent of b. The midpoints of all chords of the same slope m
lie, therefore, on a parallel to the axis, at the distance 2 a/m

from it.

The condition for equal roots (§ 189) gives b = a/m. That

one of the parallels which passes through the point where the

diameter meets the parabola is, therefore,

, a
y = mx-^—]

m
by § 189 this is a tangent. Thus, the tangent at the end of a

diameter is parallel to the chords bisected by the diameter.

[^
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EXERCISES

1. Find and sketch the tangent and normal of the following parabolas

at the given points :

(a) 2^2 = 25 X, (2, 5). (b) Si/ =4x, {S, - 2). (c) y^ = 2x,{^,l).

(d) 5y^=12x,{l-2). (e) i/^ = x,{hl). (/) 452/2 = x, (5, 1).

2. Show that the secant through the points P(x, y) and Pi (xi , yi)

of the parabola i/2 = 4 ax has the equation 4:aX—(y+yi)Y+yyi = 0,

and that this reduces to the tangent at P when Pi and P coincide.

3. Find the angle between the tangents to a parabola at the vertex

and at the end of the latus rectum. Show that the tangents at the ends of

the latus rectum are at right angles.

4. Find the length of the tangent, subtangent, normal, and subnormal

of the parabola y'^ z=4xa,t the point (1, 2).

5. Find and sketch the tangents to the parabola y'^ = Sx from each

of the following points :

(a) (- 2, 3). (b) (- 2, 0). (c) (- 6, 0). (d) (8, 8).

6. Draw the tangents to the parabola y'^ =3x that are inclined to the

axis Ox at the angles : («) 30°, (6) 45^, (c) 135°, (d) 150° ; and find

their equations.

7. Find and sketch the tangents to the parabola ?/2 = 4 x that pass

through the point (—2, 2).

8. Find and sketch the normals to the parabola y^ = 6x that pass

through the points :

(«) (1,0). (6)(V-, -3). (c)(-V, -f). (^)(f,-|). (e) (0,0).

9. Are the following points inside, outside, or on the parabola

Sy^ = x? (a) (3,1). (5) (2, J), (c) (8, |). (c?) (10, f).

10. Show that any tangent to a parabola intersects the directrix and

latus rectum (produced) in points equally distant from the focus.

11. Show that the tangents drawn to a parabola from any point of the

directrix are perpendicular.

12. Show that the ordinate of the intersection of any two tangents to

the parabola y^ = i ax is the arithmetic mean of the ordlnates of the

points of contact, and the abscissa is the geometric mean of the abscissas

of the points of contact.
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13. Show that the sum of the slopes of any two tangents of the parab-

ola y^ = 4 ax is equal to the slope Y/Xof the radius vector of the point of

intersection (X, Y) of the tangents ; find the product of the slopes.

14. Find the locus of the intersection of two tangents to the parabola

2/2 = 4 ax, if the sum of the slopes of the tangents is constant.

-^ 15. Find the locus of the intersection of two perpendicular tangents to

a parabola ; of two perpendicular normals to a parabola.

16. Show that the angle between any two tangents to a parabola is

half the angle between the focal radii of the points of contact. %vCy^\ li**'/^.

17. From the vertex of a parabola any two perpendicular lines are

drawn ; show that the line joining their other intersections with the

parabola cuts the axis at a fixed point.

18. Find and sketch the diameter of the parabola y^ = 6x that bisects

the chords parallel to Sx — 2y-\-5 = 0; give the equation of the focal

chord of this system.

19. Find the system of parallel chords of the parabola y^ = Sx bisected

by the line y = S.

20. Find the diameter and corresponding chord of the parabola y^=^x
/ that pass through the point (5, —2) ; at what angle does this diameter

f* meet its chord ?

21. Show that the tangents at the extremities of any chord of a parab-

ola intersect on the diameter bisecting this chord. Compare Ex. 12.

22. Find the length of the focal chord of a parabola of given slope m.

23. Find the tangent and normal to the parabola x^ = 4 ay in terms of

the coordinates of the point of contact.

24. Find the angles at which the parabolas y^ = i.ax and x^ = 4ay
intersect.

25. If the vertex of a right angle moves along a fixed line while one

side of the angle always passes through a fixed point, the other side

envelopes a parabola (i.e. is always a tangent to the parabola) . The fixed

line is the tangent at the vertex, the fixed point is the focus of the

parabola.

26. Two equal confocal parabolas have the same axis but open in op-

posite sense ; show that they intersect at right angles.

X \rt
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27. If axis, vertex, and one other point of the parabola are given, ad-

ditional points can be constructed as follows : Let O be the vertex, P the

given point, and Q the foot of the perpendicular from P to the tangent

at the vertex ; divide QF into equal parts by the points A\, ^2, •••
; and

OQ into the same number of equal parts by the points By, P2, •••
; the

intersections of O^i, OA2, ••• with the parallels to the axis through Pi,

P2, ••• are points of the parabola.

28. If two tangents AP^ AP2 to a parabola with their points of con-

tact Pi, P2 are given and ^Pi, AP2 be divided into the same number of

equal parts, the points of division being numbered from Pi to A and from

A to P2, the lines joining the points bearing equal numbers are tangents

to the parabola. To prove this show that the intersections of any tangent

with the lines ^Pi, ^P2 divide the segments Pi^, J.P2 in the same

division ratio.

29. The shape assumed by a uniform chain or cable suspended between

two fixed points Pi, P2 is called a catenary ; its equation is not algebraic

and cannot be given here. But when the line P1P2 is nearly horizontal

and the depth of the lowest point below P1P2 is small in comparison with

P1P2, the catenary agrees very nearly with a parabola.

The distance between two telegraph poles is 120 ft. ; P2 lies 2 ft. above

the level of Pi ; and the lowest point of the wire is at 1/3 the distance be-

tween the poles. Find the equation of the parabola referred to Pi as

origin and the horizontal line through Pi as axis Ox ; determine the posi-

tion of the lowest point and the ordinates at intervals of 20 ft.

30. The cable of a suspension bridge assumes the shape of a parabola

if the weight of the suspended roadbed (together with that of the cables)

is uniformly distributed horizontally. Suppose the towers of a bridge

240 ft. long are 60 ft. high and the lowest point of the cables is 20 ft. above

the roadway ; find the vertical distances from the roadway to the cables

at intervals of 20 ft.

31. When a parabola revolves about its axis, it generates a surface called

a paraboloid of revolution ; all meridian sections (sections through the

axis) are equal parabolas. If the mirror of a reflecting telescope is such

a surface (the portion about the vertex) , all rays of light falling in parallel

to the axis are reflected to the same point ; explain why.
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194. Parameter Equations. Instead of using the cartesian

or polar equation of a curve it is often more convenient to

express x and y (or r and <^) each in terms of a third variable,

which is then called the parameter.

Thus the parameter equations of a circle of radius a about the

origin as center are

:

x = a cos </), y = a sin <j>,

<f)
being the parameter. To every value of <^ corresponds a

definite x and a definite y, and hence a point of the curve.

The elimination of
<f),

by squaring and adding the equations,

gives the cartesian equation x^-^y^ = o^.

Again, to determine the motion of a projectile we may observe

that, if gravity were not acting, the projectile, started with an

initial velocity v^ at an angle c to the horizon would have at the

time t the position

a; = Vo cos € • ^, ?/ = -Vo sin c • t,

the horizontal as well as the vertical motion being uniform.

But, owing to the constant acceleration g of gravity (down-

ward), the ordinate y is diminished by ^gt"^ in the time tj so

that the coordinates of the projectile at the time t are

x = Vi) cos c •
^, y — VQ^mc 't — ^ gt\

These are the parameter equations of the path, the parameter

here being the time t. The elimination of t gives the cartesian

equation of the parabola described by the projectile

:

y = Vota.n€'X- J^ x\
2 Vq cos^ c

195. Parameter Equations of a Parabola. For any parabola

2/2 = 4 dec we can also use as parameter the angle a made by the

tangent with the axis Ox-, we have for this angle (§ 180) :

, 2a
tana =—

;

y

it follows that y = 2a ctn a and hence x = y'^/A: a= a ctn^ a.
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The equations

X — a ctn^ a, y = 2 a ctn a

are paramenter equations of the parabola y^ = 4:ax; the elimina-

tion of cot a gives the cartesian equation.

196. Parabola referred to Diameter and Tangent. The

equation of the parabola y^ = 4iax preserves this simple form if instead of

axis and tangent at the vertex we take as

axes any diameter and the tangent at its end.

The equation in these oblique coordinates is

yi^ = 4 aixi ,

where ai = a/sin"^ a, a being the angle betvi^een

the axes, i.e. the slope angle at the tiq-w origin

Oi (Fig. 73).

To prove this observe that as the new origin

0\_ {h, k) is a point of the parabola i/2 = 4 ax

we have by § 195

h = a ctn* a, k = 2 a ctn a,

y

/r'^v */
y^ /

/uy
/" h\ / \ X
/" /

V
>

Fig. 73

a being the angle at which the tangent at Oi is inclined to the axis.

Hence, transferring to parallel axes through Oi, we obtain the equation

which reduces to

+ 2 a ctn ay = 4 a (x + a ctn^ «),

+ 4 a ctn cc . 1/ = 4 ax.

The relation between the rectangular coordinates x, y and the oblique

coordinates Xi , yi , both with Oi as origin, is seen from the figure to be

X = xi + yx cos a, y = yi sin a.

Substituting these values we find

yi^ sin2 ct + 4 a cos « • ?/i = 4 axi + 4 a!/i cos a.

I.e. 2/1^ = 4
a

sin 2 a
xi = 4 a\X\

if we put a/sin2 a — a\.
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The meaning of the constant ai appears by observing that

sin2 a tan2 ^j
ai =

ai is therefore the distance of the new origin 0\ from the directrix, or

what amounts to the same, from the focus F.

197. Area of Parabolic Segment. A parabola, together with

any chord perpendicular to its axis, bounds an area OPV^ (shaded in

Fig. 74). It was shown by Archimedes (about

250 B.C.) that this area is two thirds the area

of the rectangle PP'Q'Q that has the chord

P'P as one side and the tangent at the vertex

as opposite side. 'Yig. 74

This rectangle PP'Q'Q is often called (somewhat improperly) the cir-

cumscribed rectangle so that the result can be expressed briefly by saying

that the area of the parabola is 2/S of that of the circumscribed rectangle.

This statement is of course equivalent to saying that the (non-shaded)

area OQP is 1/3 of the area of the rectangle OQPB. In this form the

proposition is proved in the next article,

198. Area by Approximation Process. To obtain first an ap-

proximate value {A) for the area OQP (Fig. 75) we may subdivide the

area into rectangular strips of equal width,

by dividing OQ into, say, n equal parts

and drawing the ordinates ?/i , y^, •••?/«.

If the width of these strips is Aic so that

0Q = nAx, we have as approximate value

of the area

:

{A) = Aa; . ?/i + Ax . ?/2 + Fig. 75+ Ax . yn.

Now yi is the ordinate corresponding to the abscissa Ax ; ?/2 corresponds

to the abscissa 2 Ax, etc. ; ?/„ corresponds to the abscissa wAx = OQ.

Hence, if the equation of the curve is x^ = 4 ay., we have :

?/l=:-L(Ax)2, ?/2 = -1 (2 AX)2,
4a 4a 4a

(wAx)2.

Substituting these values we find :

{A) = (Ax)3

4a
(1+22 + 32+ ... + W2),
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By Ex. 3 6, p. 74,

1 + 22+ ... +yj2 i «(n + 1)(2 n 4- 1) = 1(2 n3 + 3 n^ + n) ;

hence (^) = IM'(2n3 + 3w2 + «)
^4 O,

(tiAx)

24
^Y2 +? + !).
a V n n^J

Now nAx = OQ = Xn^ the abscissa of the terminal point P, whatever the

number n and length Ax of the subdivisions. Hence, if we let the num-
ber n increase indefinitely, we find in the limit the exact expression A for

the area OQP:

12a 3 "'4a 3
XnV^

where y„ = Xn^/4 a is the ordinate of the terminal point P. As x^n is

the area of the rectangle OQPE, our proposition is proved.

The integral calculus furnishes a far more simple and more general

method for finding the area under a curve. The method used above

happens to succeed in the simple case of the parabola because we can

express the sum 1 + 2^ + 3^ + ••• + w^ in a simple form.

199. Area expressed in Terms of Ordinates. The area

(shaded in Fig. 76) between the parabola x^ = 4 a?/, the axis Ox, and the

two ordinates 2/1,^3, whose abscissas differ by y

2 Ax is evidently, by the formula of § 198,

^ = _l-(x33-Xi3) = J-[(xi + 2Ax)3-Xin
12 a 12 a

= j^ (6 xi2 + 12 XiAx + 8 (Ax)2).
1^ Gi

Fig. 76
This expression can be given a remarkably

simple form by introducing not only the ordinates y\ — XiV4 a, y% —

(xi + 2 Ax)2/4 a, but also the ordinate yi midway between yi and 1/3,

whose abscissa is x\ + Ax. For we have :

2/1+4^/2+^3 =i^[^i' + 4(xi + Ax)2 +(xi + 2 Ax)2]
4a

= J_r6xi2 + I2.X1AX + 8(Axj2].
4 a



IX, § 200] THE PARABOLA 193

y y.

P^
-^—^^ Xt

h m. X
Ax Ax

Fia. 77

We find therefore

:

^ = |Ax(yi + 4^/2 + ^3).

This formula holds not only when the vertex of the parabola is at the

origin, but also when it is at any point

(A, A;)
,
provided the axis of the parabola

is parallel to Oy.

For (Fig. 77), to find the area under

the arc F1P2P3 we have only to add to

the doubly shaded area the simply shaded

rectangle whose area is 2 kAx. We find

therefore for the whole area

:

\ Ax{yi + 4 «/2 + ys) + 2 A:Aa; = i Ax(yi + 4 ya + 2/3 + 6 fc)

= 1 Aa; [(2/1 + A;) + 4 (^2 + k) +(^3 + A;)],

where yi,y2, 2/3 are the ordinates of the parabola referred to its vertex,

and hence yi -\- k, y2 + k, ys -\- k the ordinates for the origin O.

We have therefore for any parabola whose axis is parallel to Oy :

A = l Ax(yi + 4?/2 + 2/3).

200. Approximation to any Area. Simpson's Rule. The

last formula is sometimes used to find an approximate value for the area

under any curve (i.e. the area bounded

by the axis Ox, an arc AB of the curve,

and the ordinates ofA and B, Fig. 78)

.

This method is particularly convenient

if a number of equidistant ordinates

of the curve are known, or can be

found graphically.

Let Ax be the distance of the ordi-

nates, and let 2/1,^2, ys be any three

consecutive ordinates. Then the doubly shaded portion of the required

area, between yi and 1/3, will be (if Ax is sufficiently small) very nearly

equal to the area under the parabola that passes through Pi , P2 , P3 and

has its axis parallel to Oy. This parabolic area is by § 199

= ^Aa;(yi+4?/2 +2/3).

The whole area under AB is a sum of such expressions. This method

for finding an approximate expression for the area under any curve is

o

Fig. 78
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known as Simpson's rule (Thomas Simpson, 1743) although the funda-

mental idea of replacing an arc of the curve by a parabolic arc had been

suggested previously by Newton.

Qj Ax Q; Ax Qj

Fig. 79

201. Area of any Parabolic Segment. As the equation of a

parabola referred to any diameter and the tangent at its end has exactly

the same form as when the parabola is referred to its axis and the tan-

gent at the vertex (§ 196) it can easily be shown that the area of any

parabolic segment is 2/3 of the area of the

circumscribed parallelogram. In this

statement the parabolic segment is under-

stood t0j.be bounded by any arc of the

parabola and its chord; and the circum-

scribed parallelogram is meant to have for

two of its sides the chord and the parallel

tangent while the other two sides are

parallels to the axis through the extremities of the chord (Fig. 79).

With the aid of this proposition Simpson's rule can be proved very

simply. For, the area of the parabolic segment P1P3P2 (Fig. 79) is then

equal to 2/3 of the parallelogram formed by the chord P1P2, the tangent

at P2, and the ordinates yi, ys (produced if necessary). This parallelo-

gram has a height = 2 Ax and a base = MP-z = ?/2 — i (2/1 + y^) ; hence

the area of P1P3P2 is

= § Aa; (2 2/2 - yi - 2/3) = i Ar [4 ?/2 - 2 (yi + 2/3)].

To find the whole shaded area we have only to add to this the area of

the trapezoid ^i§3P3Pi which is

= Ax(yi-\-y3).

Hence A = QiQsPsP^Pi = i Ax[4 y,

=
I-
Ax(yi -f 4 ^2 + yz) .

2(2/1 + 2/3) +3(?/i 4-2/3)]

EXERCISES

1. Show that the area of any parabolic segment is 2/3 of the area

of the circumscribed parallelogram.

2. In what ratio does the parabola y'^ = 4ax divide the area of the

circle (x — a)'^ + y^ = 4:a^?
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3. Find the area bounded by the parabola i/^ = 4 ax and a line of

slope m through the focus.

4. By a method similar to that used in finding the area of a parabola

(§ 198), find exactly the area bounded by the curve y = 0(fi, the axis Ox,

and the line x = a. Wliat is the area bounded by this same curve, the

axis Ox, and the lines x = a, x = b? What is the area bounded by the

curve y = x^ + c, the axis Ox, and the lines x = a, x = 6 ?

5. Find and sketch the curve whose ordinates represent the area

bounded by : (a) the line ?/ = | x, the axis Ox, and any ordinate, (&) the

parabola y = ^ x^, the axis Ox, and any ordinate.

6. Let Pi(xi, yi), P2(xi+ Ax, 2/2), P3(xi+ 2 Ax, ys) be three points of

a curve. Let A denote the sum of the areas of the two trapezoids formed

by the chords P1P2 , P2P3 , the axis Ox, and the ordinates yi, y^, ys- Let

B denote the area of the trapezoid formed by any line through P2, the

axis Ox, and the segments cut off on the ordinates yi, ys. Find the

approximation to the area under the curve given by each of the following

formulas: ^(iA + B), 1(2 A + B), l(A + 2B). Which of these gives

Simpson's rule ?

7. To find an approximation to the area bounded by a curve, the axis

Ox, and two ordinates, divide the interval into any even number of strips

of equal width and apply Simpson's rule to each successive pair. Show

that the result found is : the sum of the extreme ordinates plus twice the

sum of the other odd ordinates plus four times the sum of the even ordi-

nates, multiplied by one third the distance between the ordinates.

8. Find an approximation to the areas bounded by the following

curves and the axis Ox (divide the interval in each case into eight or

more equal parts) :

(a) 4y = 16- x\ (6) ?/ = (x + 3) (x - 2)2. (c) y=x'^- x*.

9. "The cross-sections in square feet of a log at intervals of 6 ft. are

3.25, 4.27, 5.34, 6.02, 6.83 ; find the volume.

10. The cross sections of a vessel in square feet measured at intervals

of 3 ft. are 0, 2250, 6800, 8000, 10200 ; find the volume. Allowing one

ton for each 35 cu. ft., what is the displacement of the vessel ?

11. The half-widths in feet of a launch's deck at intervals of 5 ft. are

0, 1.8, 2.6, 3.2, 3.3, 3.3, 2.7, 2.1, 1 ; find the area.
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202. Shearing Force and Bending Moment. A straight

beam AB (Fig. 80), of length I, fixed at one end ^ in a horizontal posi-

tion and loaded uniformlj' with w lb. per unit of length, will bend under

the load. At any point P, at the distance x from A, the efEect of the

load to(Z — x) that rests on PB is
^ ^

twofold

:

(a) If the beam were cut at P, yy^
this load, which is equivalent to a ^^
single force W = w{l — x) applied 'f^:A P B
at the midpoint of PP, would pull

''^
Fig. 80

W-wfl-x)

the portion PB vertically down.

This force which tends to shear off the beam at P is called the shearing

force F at P. Adopting the convention that downward forces are to be

regarded as positive, we have

F=w(l-x).

The shearing force at the various

points of AB is therefore repre-

sented by the ordinates of the

straight line CB (Fig. 81)

.

(6) If the beam were hinged at P, the effect of the load 110(1 — x) on PB
would be to turn it about P. As the force w{l — x) can be regarded as

applied at the midpoint of PP, this effect at P is represented by the

bending moment m = -\w{1- xy,

the minus sign arising from the convention of regarding a moment as

positive when tending to turn counterclockwise. As w{l — x) turns

clockwise about P, the moment is ^,^

negative. The curve DB repre-

senting the bending moments

(Fig. 82) is a parabola.

More briefly we may say that

the single force F=w{l — x)

applied at the midpoint of PB
is equivalent to an equal force

c

wl

P """"^^-1 '
-A

Fig. 81

^B

Fig. 82

at P, the shear F=w{l--x), together with the couple formed by -f-P

at the midpoint of PB and — P at P ; the moment of this couple is the

bending momentM = — \w{l — xy.
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203. Relation of Bending Moment to Shearing Force. For

any beam AB, fixed at one or both ends or supported freely at two or

more points, in a horizontal position, and loaded by any vertical forces,

the shearing force at any point P is defined as the algebraic sum of all the

forces (including the reactions of the supports) on one side of P, and the

bending moment at P as the algebraic sum of the moments of these forces

about P.

It may be noted that if the shear Pis constant, the bending moment is

a linear function of x (i.e. of the abscissa of P) ; if P (as in § 202) is a

linear function of x, M is a. quadratic function ; in either case the deriva-

tive of M with respect to x is equal to P

:

M' = F.

It follows that the bending moment is a maximum or minimum at any

point where the shear is zero.

EXERCISES

Determine P and M as functions of x for a horizontal beam AB of

length I and represent Pand ilf graphically :

1. "When the beam is fixed at one end A (cantilever) and carries

a single load W at the other end B.

2. When the beam is freely supported at its ends A, B and loaded

:

(a) uniformly with w lb. per unit of length
; (&) with a single load W at

the midpoint
;

(c) with a single load W at the distance a from A. De-

termine first the reactions at A and B.

3. When the beam is supported at the two points trisecting it and

carries : (a) a uniform load w lb. /ft.
; (&) a single load W a.t A and at B.

4. When the beam is supported at its ends and is loaded: (a) with

w lb. /ft. over the middle third
; (6) with w lb. /ft. over the first and third

thirds; (c) with w Ib./ft. over the first half and 2 to lb. /ft. over the

second half.

5. When the beam is fixed at A and carries w lb. /ft. over the outer

half.
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ELLIPSE AND HYPERBOLA

204. Definition of the Ellipse. The ellipse may be defined

as the locus of a point whose distances from two fixed points have

a constant sum.

If F^ , F2 (Fig. 83 are the fixed points, which are called the

foci, and if P is any point of the

ellipse, the condition to be satisfied ^"
by P is

F^P + F.P = 2 a.

The ellipse can be traced mechan-

ically by attaching at F^, F^ the

ends of a string of length 2 a . and Fig. 83

keeping the string taut by means of a pencil. It is obvious

that the curve will be symmetric with respect to the line i^ii^2>

and also with respect to the perpendicular bisector of F1F2.

These axes of symmetry are called the axes of the ellipse ; their

intersection is called the center of the ellipse.

205. Axes. The points A^, A2, B„ B2 (Figs. 83 and 84)

vrhere the ellipse intersects these axes are called vertices.

The distance ^2A of those vertices

that lie on the axis containing the

foci Fi, F2 is = 2 a, the length of

the string. For when the point P
in describing the ellipse arrives at

Ai, the string is doubled along

Fi Ai so that Fig. m
198



X, §2061 ELLIPSE AND HYPERBOLA 199

and since, by symmetry, A>F.2 =^ F^A^, we have

^2^2 + F^F^ + i^iA =AA = 2 a.

The distance A2A1 = 2 a, which is called the major axis, must

evidently be not less than the distance F2F1 between the foci,

which we shall denote by 2 c.

The distance B2B1 of the other two vertices is called the

minor axis and will be denoted by 2 b. We then have

for when P arrives at Bi, we have B^F^ = BiFi= a.

206. Equation of the Ellipse. If we take the center as

origin and the axis containing the foci as axis Ox, the equation of

the ellipse is readily found from the condition FiP-\-F2P= 2 a,

which gives, since the coordinates of the foci are c, and

- c,
:

^/{x - cf + 2/' 4- V(i^- + c)2 + ?y2 = 2 a.

Squaring both members we have

a;24.2/2_|_c2 4. V(aj24.^2_^c'_2 ex) {x'^-\-y'^^c^+2 ex)= 2 a^;

transferring x'^-\-y'^-\-G^ to the right-hand member and squaring

again, we find

i.e. (a2-c2) a;2 4.ay=aXa2-c2).

Now for the ellipse (§ 205) a^-c^=h\ Hence, dividing both

members by aW, we find

as the cartesian equation of the ellipse referred to its axes.

This equation shows at a glance : (a) that the curve is sym-

metric to Ox as well as to Oy
;

(b) that the intercepts on the

axes Ox, Oy are ±a, and ±b. The lengths a, b are called the

semi-axes.
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Solving the equation for y we find

h
(2) 2/ = ±-Va2-ar',

a

which shows that the curve does not extend beyond the vertex

A^ on the right, nor beyond A2 on the left.

If a and h (or, what amounts to the same, a and c) are given

numerically, we can calculate from (2) the ordinates of as

many points as we please. If, in particular, a — h (and hence

c = 0) the ellipse reduces to a circle.

EXERCISES

1. Sketch the ellipse of semi-axes a = 4, 6 = 3, by marking the ver-

tices, constructing the foci, and determining a few points of the curve

from the property FiP + F2P = 2 a. Write down the equation of this

ellipse, referred to its axes.

2. Sketch the ellipse x'^/W + y^/9 = 1 by drawing the circumscribed

rectangle and finding some points from the equation solved for y.

3. Sketch the ellipses : (a) x^+2y'^ = l. (6) Sx^-hl2y^ = 5.

(c) 8 a:2 -}- 3 y2 = 20. (d) x^ -^ 20 y^ = 1.

4. If in equation (1) a < ft, the equation represents an ellipse whose

foci lie on Oy. Sketch the ellipses :

(a) ^-1-1^=: 1. (6) 20 x2
-H ?/2 = 1. (c) 10 x2

-H 9 2/2 = 10.
4 16

5. Find the equation of the ellipse referred to its axes when the foci

are midpoints between the center and vertices.

6. Find the product of the slopes of chords joining any point of an

ellipse to the ends of the major axis. What value does this product

assume when the ellipse becomes a circle ?

7. Derive the equation of the ellipse with foci at (0, c), (0, -c), and

major axis 2 a.

8. Write the equations of the following ellipses : (a) with vertices

at (5, 0), (- 5, 0), (0, 4), (0, - 4) ;
(b) with foci at (2, 0), (- 2. 0),

and major axis 6.

9. Find the equation of the ellipse with foci at(l, 1), (—1, — 1),

and major axis 6, and sketch the curve.
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207. Definition of the Hyperbola. The hyperbola can be

defined as tJie locus of a point whose distances from two fixed

points have a coyistant difference.

The fixed points F^, F^ are again called the foci; if 2 a is

the constant difference, every point P of the hyperbola must

satisfy the condition

F^P-FJ'=±2a.

Notice that the length 2 a must here be not greater than the

distance F^F^ = 2 c of the foci.

The curve is symmetric to the line FiF^ and to its perpen-

dicular bisector.

A mechanism for tracing an arc of a hyperbola consists of

a straightedge F^Q (Fig. 85) which turns about one of the

foci, F2 ; a string, of length F2Q — 2a, is fastened to the

">

Fig. 85

straightedge at Q and with its other end to the other focus,

Fi. As the straightedge turns about F2, the string is kept

taut by means of a pencil at P which describes the hyperbolic

arc. Of course only a portion of the hyperbola can be traced

in this manner.

208. Equation of the Hyperbola. If the line F2F1 be taken

as the axis Ox, its perpendicular bisector as the axis Oy, and if

F2F1 = 2 c, the condition F^P- F^P= ± 2 a becomes (Fig. 86) :

V(x-\-cy-\-f-V(x^cy-hy'=±2a,
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Squaring both members we find

[X, § 208

squaring again and reducing as in § 206, we find exactly the

same equation as in § 206

:

Fig. 86

But in the present case c ^ a, while for the ellipse we had

c < a. We put, therefore, for the hyperbola

the equation then reduces to the form

which is the cartesian equation ofthe hyperbola referred to its axes.

209. Properties of the Hjrperbola. The equation (3) shows

at once: (a) that the curve is symmetric to Ox and to Oy;

(b) that the intercepts on the axis Ox are ± a, and that the

curve does not intersect the axis Oy.

The line F2F1 joining the foci and the perpendicular bisector

of F2F1 are called the axes of the hyperbola ; the intersection

of these axes of symmetry is called the center.

The hyperbola has only two vertices, viz. the intersections

Ai , A2 with the axis containing the foci.
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The shape of the hyperbola is quite different from that of

the ellipse. Solving the equation for y we have

(4) 2/=±-Va^-a^

which shows that the curve extends to infinity from A^^ to the

right and from A^ to the left, but has no real points between

the lines x = a, x = — a.

The line F2F1 containing the foci is called the transverse

axis; the perpendicular bisector of F2F1 is called the conjugate

axis. The lengths a, h are called the transverse and conjugate

semi-cfiXes.

In the particular case when a=b, the equation (3) reduces to

a? — y^ = a^,

and such a hyperbola is called rectangular or equilateral

210. Asymptotes. In sketching the hyperbola (3) or (4) it

is best to draw first of all the two straight lines

i.e.

(5) 2/=±^^,

which are called the asymptotes of the hyperbola.

Comparing with equation (4) it appears that, for any value

of X, the ordinates of the hyperbola (4) are always (in absolute

value) less than those of the lines (5) ; but the difference

becomes less as x increases, approaching zero as x increases in-

definitely.

Thus, the hyperbola approaches its asymptotes more and

more closely, the farther we recede from the center on either

side, without ever reaching these lines at any finite distance

from the center.
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EXERCISES

1. Sketch the hyperbola x'^/XQ — y-2/4 = 1, after drawing the asymp-

totes, by determining a few points from the equation solved for y ; mark

the foci.

2. Sketch the rectangular hyperbola cc^ — 2/2 — 9, Why the name

rectangular ?

3. With respect to the same axes draw the hyperbolas

:

(a) 20x2 _ 2/2 = 12. (6) a;2 - 20 2/2 = 12. (c) x^ - y"^ = 12.

4. The equation — x2/a2 + y'^/h'^ = 1 represents a hyperbola whose

foci lie on the axis Oy. Sketch the curves :

(a) -3x2 + 42/2 = 24. (^b) x^- Sy^ + 1S = 0. (c) ^2 - 2/^ + 16 = 0.

6. Sketch to the same axes the hyperbolas :

^_y2=l ^_2/2=_i.
9 ^ ' 9 ^

Two such hyperbolas having the same asymptotes are called conjugate.

6. What happens to the hyperbola a;2/a2 _ 2/2/52 = 1 as a varies ? as

b varies ?

7. The equation a;2/a2 — y^/b^ = k represents a family of similar

hyperbolas in which k is the parameter. What happens as k changes

from 1 to — 1 ? What members of this family are conjugate ?

8. Find the foci of the hyperbolas :

(a) 9 x2 - 16 ^2 = 144. (5) 3 a;2 _ y2 = 12.

9. Find the hyperbola with foci (0, 3), (0, — 3) and transvei-se axis 4.

10. Find the equation of the hyperbola referred to its axes when the

distance between the vertices is one half the distance between the foci.

11. Find the distance from an asymptote to a focus of a hyperbola.

12. Show that the product of the distances from any point of a hyper-

bola to its asymptotes is constant. .

13. Find the hyperbola through the point (1, 1) with asymptotes

y = ±2x.

14. Find the equation of the hyperbola whose foci are (1, 1),

(—1, — 1), and transverse axis 2, and sketch the curve.
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211. Ellipse as Projection of Circle. If a circle be turned

about a diameter A2Ai = 2a through an angle c(<|-7r) and

then projected on the original plane, the projection is an

ellipse.

For, if in the original plane we take the center as origin

and OAi as axis Ox (Fig. 87), the

ordinate QP of every point P of

the projection is the projection of

the corresponding ordinate QP^ of

the circle; i.e.

QP= QPi cos £. Fio. 87

The equation of the projection is therefore obtained from the

equation
' x'^-\- 1/^ = 0^

of the circle by replacing y by y/cos c. The resulting equation

COS^c

represents an ellipse whose semi-axes are a, the radius of the

circle, and b — a cos e, the projection of this radius.

212. Construction of Ellipse from Circle. We have just

seen that, if a > &, the ellipse

a' ¥

can be obtained from its circumscribed circle x^ + y^ = a'^hj re-

ducing all the ordinates of this circle in the ratio b/a. This

also appears by comparing the ordinates

y = ±Wa'-x'
a

of the ellipse with the ordinates y = ± Va^ — x"^ of the circle.
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But the same ellipse can also be obtained from its inscribed

circle x^-\-y'^= W by increasing each abscissa in the ratio a/h,

as appears at once by solving for x.

It follows that when the semi-axes a, h are given, points of

the ellipse can be constructed by drawing concentric circles of

radii a, h and a pair of perpendicular diameters (Fig. 88) ; if

y

any radius meets the circles at P^, P^ ? the intersection P of

the parallels through P^ , P^, to the diameters is a point of the

ellipse.

213. Tangent to Ellipse. It follows from § 211 that if

P (x, y) is any point of the ellipse and P^ that point of the cir-

cumscribed circle which has the same abscissa, the tangents at

P to the ellipse and at P^ to the circle must meet at a point T on

the major axis (Fig. 89).

For, as the circle is turned about A^Ai into the position in

which P is the projection of Pj , the tangent to the circle at Pj

is turned into the position whose projection is PT, the point T
on the axis remaining fixed.
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The tangent XiX+ yiY= o? to the circle at P^ [x^
, 2/1) meets

the axis Ox at the point T whose abscissa is

Hence the equation of the tangent 2XP{x, y) to the ellipse is

X Y 1

x y 1

1
0,

t.e. yX-fx--]Y-a^^ = 0;
\ xj X

dividing by a^y/x and observing that, by the equation of the

ellipse, a;2 — a^ = — (a'^/b'^)y'^ we find

(6)
a2
^ 52

as equation of the tangent to the ellipse

a"" b^

at the point P(x, y).

-214. Slope of Ellipse. It follows from the equation of the

tangent that the slope of the ellipse at any point P{x, y) is

¥x
tan a = —

a'y

The slope being the derivative y' can be found more directly by differ-

entiating the equation (1) of the ellipse (remembering that y is a function

of X, compare §§ 181-185) ; this gives

whence

2^ + 2^1^ = 0,
a2 62

?/' = tan «=- — -.

The equation (6) of the tangent is readily derived from this value of

the slope.
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215. Eccentricity. For the length of the focal radius F^P
of any point P(x,y) of the ellipse (1) we have (Fig. 90),

since a^ — 6^ = c^

:

Fj^=(x-cy-{-y^={x-cy-\--^{a''-x')=\(a'-- 2 a'^cx-^d'x''),

whence F,P=± a x\
a J

The ratio c/a of the distance 2 c of the foci to the major

axis 2 a is called the (numerical)

eccentricity of the ellipse. De-

noting it by e we have

FiP=±(a — ex)j

and similarly we find

F,P=±(a + ex).

For the hyperbola (3) we find in the same way, if we again

put e = c/a, exactly the same expressions for the focal radii

F^P, F2P(m absolute value). Bat as for the ellipse c^^a"^— ¥
while for the hyperbola c^ = a^-{-¥ it follows that the eccentrio-

ity of the ellipse is always a proper fraction becoming zero only

for a circle, while the eccentricity of the hyperbola is always greater

than one. . V

216. Equation of Normal to Ellipse. As the normal to a

curve is the perpendicular to its tangent through the point of

contact, the equation of the normal to the ellipse (1) at the point

P{x, y) is readily found from the equation (6) of the tangent as

lX-^T=xy(^-^\ =^
¥ a" \b^ ay aW

xy,

I.e. «'x-^r=c^
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Tlie intercept made by this normal on the axis Ox is there-

fore

ON=—x = e'^x.

From this result it appears by § 215 that (Fig. 91)

F^N= c + e^ic = e(a -\-ex)=ze- F,P,

F^N= c - e^a; = e(a -ex)=e' F^P-,

hence the normal divides the dis-

tance F^Fi in the ratio of the

adjacent sides F2P, F^P of the

triangle F.PF^. It follows that

the normal bisects the angle between

the focal radii PFi , PF^ ; in other words, the focal radii are

equally inclined to the tangent.

217. Construction of any H3rperbola from Rectangular

Hyperbola. The ordinates (4),

Fig. 91

y = ±--yx^—a\
a

of the hyperbola (3) are b/a times the corresponding ordinates

y = ± Va^ — a^

of the equilateral hyperbola (end of § 209) having the same

transverse axis. When 6 < a, we can put b/a = cos € and re-

gard the general hyperbola as the projection of the equilateral

hyperbola of equal transverse axis. When 6 > a, we can put

a/b = cos c so that the equilateral hyperbola can be regarded as

the projection of the general hyperbola.

In either case it is clear that the tangents to the general and

equilateral hyperbolas at corresponding points (i.e. at points

having the same abscissa) must intersect on the axis Ox.
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218. Slope of Equilateral Hyperbola. To find the slope of

the equilateral hyperbola

x'2 - y^ = a\

observe that the slope of any secant joining the point P(x,y)

and Fi{xi, y^) is {y^ — y)/{x^—x), and that the relations

y''=x^-a?,

yi^ = Xi^-a^

give f- - y,^ = X'' - x,\ i.e. (y - y,)(y + y,) =(x-x,)(x+ x^),

whence l^Uh^xJ^^
x-xi y + yi

Hence, in the limit when P^ comes to coincidence with P, we
find for the slope of the tangent at P(x, y) :

tan a = ~'

y

The equation of the tangent to the equilateral hyperbola is

therefore

y

i.e. since x^ —y'^ = a?:

xX-yY=a\

219. Tangent to the Hyperbola. It follows as in § 213 that

the tangent to the geyieral hyperbola (3) has the equation

(7) ^-^=1.

The slope of the hyperbola (3) is therefore

y^x
tan a =

a^y

This slope might of course have been obtained directly by differen-

tiating the equation (3) (compare § 214).
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Notice that the equations (6), (7) of the tangents are obtained

from the equations (1), (3) of the curves by replacing aj^, ip- by

xX^ yY, respectively (compare §§ 89, 186).

It is readily shown (compare § 216) that for the hyperbola

(3) the tangent meets the axis Ox at the point T that divides

the distance of the foci F^F^ proportionally to the focal radii

F^P, FiP, so that the tangent to the hyperbola bisects the angle

between the focal radii.

EXERCISES
\ U

1. Show that a right cylinder whose cross-section (i.e. section at

right angles to the generators) is an ellipse of semi-axes a, b has two

(oblique) circular sections of radius a ; find their inclinations to the

cross-section.

2. Derive the equation of the normal to the hyperbola (3)

.

3. Find the polar equations of the ellipse and hyperbola, with the

center as pole and the major (transverse) axis as polar axis.

4. Find the lengths of the tangent, subtangent, normal, and sub-

normal in terms of the coordinates at any point of the ellipse.

5. Show that an ellipse and hyperbola with common foci are

orthogonal.

6. Show that the eccentricity of a hyperbola is equal to the secant

of half the angle between the asymptotes.

7. Express the cosine of the angle between the asymptotes of a

hyperbola in terms of its eccentricity.

8. Show that the tangents at the vertices of a hyperbola intersect the

asymptotes at points on the circle about the center through the foci.

9. Show that the point of contact of a tangent to a hyperbola is the

midpoint between its intersections with the asymptotes.

10. Show that the area of the triangle formed by the asymptotes and

any tangent to a hyperbola is constant.

11. Show that the product of the distances from the center of a hyper-

bola to the intersections of any tangent with the asymptotes is constant.

12. Show that the tangent to a hyperbola at any point bisects the angle

between the focal radii of the point. [>^'l^ 4 tUy i^w^X-r^
/^ Z^^

,,
jJHi^
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13. As the sum of the focal radii of every point of an ellipse is con-

stant (§ 204) and the normal bisects the angle between the focal radii

(§ 216), a sound wave issuing from one focus is reflected by the ellipse

to the other focus. This is the explanation of " whispering galleries."

Find the semi-axes of an elliptic gallery in which sound is reflected from

one focus to the other at a distance of 69 ft. in 1/10 sec. (the velocity of

/ sound is 1090 ft./sec).

14. Show that the distance from any point of an equilateral hyperbola

to its center is a mean proportional to the focal radii of the point.

15. Show that the bisector of the angle formed by joining any point

of an equilateral hyperbola to its vertices is parallel to an asymptote.

16. For the ellipse obtained by turning a circle of radius a about a

diameter through an angle e and projecting it on the plane of the circle,

show that the distance between the foci is = 2 a sin e ; in particular,

show that the foci of a circle are at the center.

17. Show that the tangents at the extremities of any diameter (chord

through the center) of an ellipse or hyperbola are parallel.

18. Let the normal at any point Pof an ellipse referred to its axes cut

the coordinate axes at Q and B ; find the ratio PQ/PB.

19. Show that a tangent at any point of the circle circumscribed about

an ellipse is also a tangent to the circle with center at a focus and radius

equal to the focal radius of the corresponding point of the ellipse.

20. Show that the lines joining any point of an ellipse to the ends of

the minor axis intersect the major axis (produced) in points inverse with

respect to the circumscribed circle.

21. Show that the product of the ^/-intercept of the tangent at any

point of an ellipse and the ordinate of the point of contact is constant.

22. Show that the normals to an ellipse through its intersections with

a circle determined by a given point of the minor axis and the foci pass

through the given point.

23. Find the locus of the center of a circle which touches two fixed

non-intersecting circles.

24. Find the locus of a point at which two sounds emitted at an inter-

val of one second at two points 2000 ft. apart are heard simultaneously.
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220. Intersections of a Straight Line and an Ellipse.

The intersections of the ellipse (1) with any straight line are

found by solving the simultaneous equations

y = mx -\- k.

Eliminating y, we find a quadratic equation in x :

{w?a^ + lf)x^ + 2 mka?x + {k^ - h'^)a' == 0.

To each of the two roots the corresponding value of y results

from the equation y = mx + k.

Thus, a straight line can intersect an ellipse in not more than

two points.

221. Slope Form of Tangent Equations. If the roots of

the quadratic equation are equal, the line has but one point in

common with the ellipse and is a tangent.

The condition for equal roots is

m'^k'^a^ = (m^a"" + b''){k'' - b%
whence k = ± Vm'^a^ -\- ¥.

The two parallel lines

(8) y = mx± Vm^a^ + 6^

are therefore tangents to the ellipse (1), whatever the value of

m. This equation is called the slope form of the equation of a

tangent to the ellipse.

It can be shown in the same way that a straight line cannot

intersect a hyperbola in more than two points, and that the

two parallel lines

y = mx ± Vm^a^ — b^

have each but one point in common with the hyperbola (3).

222. The condition that a line be a tangent to an ellipse or

hyperbola assumes a simple form also when the line is given

in the general form
Ax-hBy-\-C=0.
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Substituting the value of y obtained from this equation in

the equation (1) of the ellipse, we find for the abscissas of the

points of intersection the quadratic equation

:

{A^o? + B^W)x' H- 2 ACa^x + (C^ -B'¥)a^ = 0;

the condition for equal roots is

which reduces to

The line is therefore a tangent whenever this condition is

satisfied.

When the line is given in the normal form,

X cos p-\-ysm p = p,

the condition becomes

p2 = a2cos2;8-h62sin2^.

223. Tangents from an Exterior Point. By § 221 the line

y = mx + y/m'^a^ + b^

is tangent to the ellipse (1) whatever the value of m. The condition that

this hne pass through any given point (xi , yi) is

yi = mxi + Vm^a^ + b^
;

transposing the term mxi, and squaring, we find the following quadratic

equation for m :

to2xi2 - 2 mxiyi + yi^ = mH^ + 6^

I.e.* W - a^)w*^ - 2 ^i^iwi + y^ - &2 = 0.

The roots of this equation are the slopes of those lines through ix\ , y{)

that are tangent to the ellipse (I).

Thus, not more than two tangents can be drawn to an ellipse from any

point. Moreover, these tangents are real and different, real and coin-

cident, or imaginary, according as
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This condition can also be written in the form

6%i2 + a^y{^ = a2&2,

I.e.
Xi'

Hence, to see whether real tangents can be drawn from a point (xi , yi)

to the ellipse (1) we have only to substitute the coordinates of the point

for X, y in the expression

if the expression is zero, the point (xi, yi) lies on the ellipse, and only

one tangent is possible ; if the expression is positive, two real tangents

can be drawn, and the point is said to lie outside the elHpse ; if the expres-

sion is negative, no real tangents exist, and the point is said to lie within

the ellipse.

These definitions of inside and outside agree with what we would

naturally call the inside or outside of the ellipse. But the whole discus-

sion applies equally to the hyperbola (3) where the distinction between

inside and outside is not so obvious.

224. Symmetry. Since the ellipse, as well as the hyperbola,

has two rectangular axes of symmetry, the axes of the curve,

it has a center, the intersection of these axes, i.e. sl point of

symmetry such that every chord through this point is bisected

at this point (compare § 135). Analytically this means that

since the equation (1), as well as (3), is not changed by replac-

ing a; by — x, nor by replacing yhj—y, it is not changed by

replacing both x and y by — x and — ?/, respectively. In other

words, if {x, y) is a point of the curve, so is (— a?, — y). This

fact is expressed by saying that the origin is a point of sym-

metry, or center.

225. Conjugate Diameters. Any chord through the center

of an ellipse or hyperbola is called a diameter of the curve.
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Just as in the case of the circle, so for the ellipse the locus

of the midpoints of any system of parallel chords is a diameter.

This follows from the corresponding property of the circle

because the ellipse can be regarded as the projection of a

circle (§211). But this diameter is in general not perpen-

dicular to the parallel chords ; it is said to be conjugate to the

diameter that occurs among the parallel chords. Thus, in Fig.

92, P'Q' is conjugate to PQ (and vice versa).

Fig. 92

To find the diameter conjugate to a given diameter y = mx.

of the ellipse (1), let y=mx-\-khe any parallel to the given

diameter. If this parallel intersects the ellipse (1) at the real

points (flJi, ?/i) and (ajg, 2/2)? t^ie midpoint has the coordinates

^(xi + X2), i(2/i + 2/2)- The quadratic equation of § 220 gives

1 , , V ma^k
X = — (X-, -\- Xo) = ^7

•

If instead of eliminating y we eliminate x, we obtain the quad-

ratic equation

(m^a^.+b^)y^ - 2 kh'y + (k^ - m^a^)b^ = 0,

whence
1, , . b^k

Eliminating k between these results, we find the equation of the

locus of the midpoints of the parallel chords of slope m :
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(9) . y = -^x.

If m = tan a is the slope of any diameter of the ellipse (1),

the slope of the conjugate diameter is

mj = tan cti = -•

ma^

The diameter conjugate to this diameter of slope m^ has there-

fore the slope

_ 6^ _ ^' _

\ mo?)

i.e. it is the original diameter of slope m (Fig. 92). In other

words, either one of the diameters of slopes m and m^ is conjugate

to the other ; each bisects the chords parallel to the other.

226. Tangents Parallel to Diameters. Among the parallel

lines of slope m, y = mx 4- Jc, there are two tangents to the

ellipse, viz. (§ 221) those for which

7c = ±VmM + ^,

their points of contact lie on (and hence determine) the conju-

gate diameter. This is obvious geometrically; it is readily

verified analytically by. showing that the coordinates of the

intersections of the diameter of slope — li^/ma^ with the

ellipse (1) satisfy the equations of the tangents of slope m, viz.

y = mx ± ^m^a^ -f 6^.

The tangents at the ends of the diameter of slope m must of

course be parallel to the diameter of slope m-^. The four tan-

gents at the extremities of any two conjugate diameters thus

form a circumscribed parallelogram (Fig. 92).

The diameter conjugate to either axis of the ellipse is the

other axis ; the parallelogram in this case becomes a rectangle.
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227. Diameters of a Hyperbola. For the hyperbola the

same formulas can be derived except that ¥ is replaced

throughout by — 11^. But the geometrical interpretation is

somewhat different because a line y = mx meets the hyperbola

(3) in real points only when m < b/a.

Fig. 93

The solution of the simultaneous equations

y = 7nx,

gives :

b'^x'^ ay = a^b^

x = ±
ab

V62
y=± mob

m^a^ Vb' 7n^a^

These values are real if m<b/a and imaginary if m>b/a
(Fig. 93). In the former case it is evidently proper to call the

distance PQ between the real points of intersection a diameter

of the hyperbola ; its length is

PQ = 2 VS^+7^ = 2 «* ^i^+MT.

If m>b/a, this quantity is imaginary; but it is customary to

speak even in this case of a diameter, its length being defined

as the real quantity

^ rn^a^ — b^

By this convention the analogy between the properties of the

ellipse and hyperbola is preserved.
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228. Conjugate Diameters of a Hyperbola. Two diameters

of the hyperbola are called conjugate if their slopes 7n, mi are

such that

mrrii =—

One of these lines evidently meets the curve in real points, the

other does not.

If m < b/a, the line y = mx, as well as any parallel line,

meets the hyperbola (3) in two real points, and the locus of the

midpoints of the chords parallel to y = mx is found to be the

diameter conjugate to y — mx, viz.

y = miX =—- X.
ma^

If m > b/a, the coordinates a^, yi and ajg, 2/2 of the intersec-

tions of y=zmx with the hyperbola are imaginary; but the

arithmetic means ^ (X1 + X2), ^(?/i + ?/2) ^i'^ real, and the locus

of the points having these coordinates is the real line

b'
y = miX =— X.

ma^

It may finally be noted that what was in § 227 defined as

the length of a diameter that does not meet the hyperbola

in real points is the length of the real diameter of the hyper-

bola

• -^ + ^' = 1;
d? b""

two such hyperbolas are called conjugate.
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229. Parameter Equations. Eccentric Angle. Just as the

parameter equations of the circle x"^ -\- y"^ = o? are (§ 194)

:

ic = a cos ^, y = a sin 0,

so those of the ellipse (1) are

ic = a cos dy y=h sin d,

and those of the hyperbola (3) are

a: = a sec ^, y =h tan 6.

In each case the elimination of the parameter $ (by squaring

and then adding or subtracting) leads to the cartesian equation.

The angle 6, in the case of the

circle, is simply the polar angle of

the point P (x, y). In the case of the

ellipse, as appears from Fig. 94

(compare § 212), 6 is the polar angle

not of the point P {x, y) of the ellipse,

but of that point Pi of the circum-r

scribed circle which has the same

abscissa as P, and also of that point

Pg of the inscribed circle which has the same ordinate as P.

This angle 6 = xOP^ is called the eccentric angle of the point

P (a;, y) of the ellipse.

In the case of the hyperbola the eccentric angle 6 determines

the point P(x, y) as follows (Fig. 95). Let a line through

inclined at the angle 6 to the trans-

verse axis meet the circle of radius

a about the center at A, and let the

transverse axis meet the circle of

radius h about the center at B. Let

the tangent at A meet the transverse

axis at A' and the tangent at B meet

the line OA at B'. Then the parallels to the axes through^'

and B' meet at P.

Fig. 94

Fig. 05
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230. Area of Ellipse. Since any ellipse of semi-axes a, b

can be regarded as the projection of a circle of radius a,

inclined to the plane of the ellipse at an angle € such that

cos € = b/a, the area A of the ellipse is ^ = vd^ cos c = -n-ab.

EXERCISES

1. Find the tangents to the ellipse x^ + iy^ = 16, which pass through

the following points

:

(a) (2, V3), (b) (-3,iV7), (c) (4,0), (d) (-8,0).

\ 2. Find the tangents to the hyperbola 2 x^ — S y^ = IS, which pass

through the following points :

(a) (-6, 3V2), (&) (-3,0), (c) (4, -V5), (d) (0,0).

,-^ 3. Find the intersections of the line x — 2y = 7 and the hyperbola

x^-y^ = 5.

4. Find the intersections of the line Sx + y — 1 = and the ellipsQ

x^ + 4y^ = 65.

. ;
^'5. For what value of k will the line y = 2x + khe 3, tangent to the

hyperbola ic2-4y2-4 = 0?
-^ 6. For what values of m will the line y=7nx + 2 be tangent to the

ellipse x2 + 4 2/2 _ 1 = ?

7. Find the conditions that the following lines are tangent to the hy-

perbola x2/a2 - 1/2/62 = 1 .

(a) Ax + By -{- C = 0, (b) xcos^ + y sin p =p.
8. Are the following points on, outside, or inside the ellipse ^2+4 y2=4p

(«) (1,1), (b) (I, -i), (c) (-i, -I).
9. Are the following points on, outside, or inside the hyperbola

9x2-2/2 = 9? (^a) (f, -I), (6) (1.35,2.15), (c) (1.3,2.6).
~^ 10. Find the difference of the eccentric angles of points at the extremi-

ties of conjugate diameters of an ellipse.

11. Show that conjugate diameters of an equilateral hyperbola are

equal.

f- 12. Show that an asymptote is its own conjugate diameter.

- 13. Show that the segments of any line between a hyperbola and its

asymptotes are equal.

- 14. Find the tangents to an ellipse referred to its axes which have

equal, intercepts.
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15. What is the greatest possible number of normals that can be drawn

from a given point to an ellipse or hyperbola ?

16. Show that tangents drawn at the extremities of any chord of an

ellipse (or hyperbola) intersect on the diameter conjugate to the chord.

17. Show that lines joining the extremities of tlie axes of an ellipse

are parallel to conjugate diameters.

18. Show that chords drawn from any point of an ellipse to the ex-

tremities of a diameter are parallel to conjugate diameters.

19. Find the product of the perpendiculars let fall to any tangent from

the foci of an ellipse (or hyperbola).

20. The earth's orbit is an ellipse of eccentricity .01677 with the sun

at a focus. The mean distance (major semi-axis) between the sun and

earth is 93 million miles. Find the distance from the sun to the center

of the orbit.

21. Find the sum of the squares of any two conjugate semi-diameters

of an elUpse. Find the difference of the squares of conjugate semi-diam-

eters of a hyperbola.

22. Find the area of the parallelogram circumscribed about an ellipse

with sides parallel to any two conjugate diameters.

23. Find the angle between conjugate diameters of an ellipse in terms

of the semi-diameters and semi-axes.

24. Express the area of a triangle inscribed in an ellipse referred to

its axes in terms of the eccentric angles of the vertices.

25. The circle which is the locus of the intersection of two perpendicu-

lar tangents to an ellipse or hyperbola is called the director-circle of the

conic. Find its equation : {a) For the ellipse. (&) For the hyperbola.

26. Find the locus of a point such that the product of its distances

from the asymptotes of a hyperbola is constant. For what value of this

constant is the locus the hyperbola itself ?

27. Find the locus of the intersection of normals drawn at correspond-

ing points of an ellipse and the circumscribed circle.

28. Two points J., J5 of a line I whose distance is AB = a move along

two fixed perpendicular lines ; find the path of any point P of I.



CHAPTER XI

CONIC SECTIONS— EQUATION OF SECOND DEGREE

PART I. DEFINITION AND CLASSIFICATION

231. Conic Sections. The ellipse, hyperbola, and parabola

are together called conic sections, or simply conies, because

the curve in which a right circular cone is intersected by any

plane (not passing through the vertex) is an ellipse or hyper-

bola according as the plane cuts only one of the half-cones or

both, and is a parabola when the plane is parallel to a gener-

ator of the cone. This will be proved and more fully dis-

cussed in §§ 239-243.

232. General Definition. The three conies can also be

defined by a common property in the plane : the locus of a point

for ivhich the ratio of its distances from a fixed point and from

a fixed line is constant is a conic, viz. an ellipse if the constant

ratio is less than one, a hyperbola if

the ratio is greater than one, and a

parabola if the ratio is equal to one.

We shall find that this constant

ratio is equal to the eccentricity e — cja

as defined in § 215. Just as in the

case of the parabola for which the

above definition agrees with that of

§ 172, we shall call the fixed line d^ directrix, and the fixed

point jPj focus (Fig. 96).

223

y

L

^
__$

/f i D X
Fi <---,K.- --^

iLy d,

Fig. 96
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233. Polar Equation. Taking the focus 2<\ as pole, the

perpendicular from Fi toward the directrix d^ as polar axis,

and putting the given distance F^D = q, we have FiP= r,

PQ = q — r cos <j>, r and <^ being the polar coordinates of any

point P of the conic. The condition

to be satisfied by the point P, viz.

FiP/PQ==e, i.e. F^P^e-PQ becomes,

therefore,

e(g — rcos <^),

whence r =
1 4- e cos <^ Fia. 96

y

L '% __«

/f D X
Fi c— -,k-
iL? d,

This then is the polar equation of a conic if the focus is taken

as pole and the perpendicular from the focus toward the directrix

as polar axis.

It is assumed that the distance q between the fixed point

and fixed line is not zero; the ratio e, i.e. the eccentricity of

the conic, may be any positive number.

234. Plotting the Conic. By means of this polar equation

the conic can be plotted by points when e and q are given.

Thus, for <^ = and <^ = tt, we find eq/{l -\- e) and eq/{l — e) as

the intercepts F^A^ and F1A2 on the polar axis ; A^, A2 are the

vertices. For any negative value of cf> (between and — tt)

the radius vector has the same length as for the same positive

value of <fi. The segment LL' cut off by the conic on the per-

pendicular to the polar axis drawn through the pole is called

the latus rectum; its length is 2 eg. Notice that in the ellipse

and hyperbola, i.e. when e ^1, the vertex Ai does not bisect

the distance FiD (as it does in the parabola), but that

F^Ai/A^D = e.
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If in Fig. 96, other things being equal, the sense of the

polar axis be reversed, we obtain

Fig. 97. We have again F^P= r ; but

the distance of P from the directrix

di is QP= q -\- r cos
<f),

so that the

polar equation of the conic is now

:

._ ^1

1 — e cos
<f>

y P.
Q ~L^

J)

1 \

aA \

di

^ gr-U- > ^

Fig. 97

235. Classification of Conies. For e = 1, the equations of

§§ 233-234 reduce to the equations of the parabola given in

§§ 172, 173. It remains to show that for e < 1 and e > 1

these equations represent respectively an ellipse and a hyper-

bola as defined in §§ 204, 207.

To show this we need only introduce cartesian coordi-

nates and then transform to the center^ i.e. to the midpoint

between the intersections ^i, A^ of the curve with the polar

axis.

236. Transformation to Cartesian Coordinates. The equa-

tion of § 233,
T — e{q — r cos <^)

becomes in cartesian coordinates, with the pole F^ as origin

and the polar axis as axis Ox (Fig. 96)

:

VaJ^ -\-y^= e{q — a;),

or rationalized

:

(1 - e2).'c2 + 2 eV + / = e'^'.

The midpoint O between the vertices A-^, A^ at which the

curve meets the axis Ox has, by § 234, the abscissa

this also follows from the cartesian equation, with 2/ = 0.



226 PLANE ANALYTIC GEOMETRY [XI, § 237

237. Change of Origin to Center. To transform to paral-

lel axes through this point we have to replace x by

X — e^q/(l — e^) ; the equation in the new coordinates is there-

fore

and this reduces to

r'
i.e.

g2g2 ^2^2

(1 - 6^)2 l-e2

If e < 1 this is an ellipse with semi-axes

1 - e^ vnr^'
if e > 1 it is a hyperbola with semi-axes

238. Focus and Directrix. The distance c (in absolute value)

from the center O to the focus F^ is, as shown above, for the

ellipse „

c =—^- = ae,
1 — e^

for the hyperbola

e — \

The distance (in absolute value) of the directrix from the

center is for the ellipse, since g = a(l — e^)/e = a/e — ae :

and for the hyperbola, since q = ae — a/e

:

OD = c-q = ae-ae-\-- = --
e e
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It is clear from the symmetry of the ellipse and hyperbola

that each of these curves has two foci, one on each side of the

center at the distance ae from the center, and two directrices

whose equations are a; = ± a/e.

EXERCISES

1. Sketch the following conies :

2 + 3 COS 2 + cos 1 — 2 cos

2. Sketch the following conies and find their foci and directrices :

(a) ic2 + 4 1/2 = 4, (ft) 4 x2 + 1/2 _ 4^

(c) a:2 _ 4 ^2 :^ 4^ (ri) 4x2 - 2/2 = 4,

(e) 16 x2 + 25 2/2 = 400, (/) 9 a;2 - 16 2/2 = 144,

(^) 9 a;2 - 16 y^ + 144 = 0, (/t) x2 - 1/2 = 2.

3. Show that the following equations represent ellipses or hyperbolas

and find their centers, foci, and directrices

:

(a) x2 + 32/2-2x+6?/ + l =0, (6) 12x2 - 41/2 - 12x - 9 = 0,

(c) 5x2 + y2 + 20x + 15 = 0, {d) 5x2-42/2 + 8?/ + 16 = 0.

4. Find the length of the latus rectum of an ellipse and a hyperbola

in terms of the semi-axes.

5. Show that the intersections of the tangents at the vertices with

the asymptotes of a hyperbola lie on the circle about the center passing

through the foci.

6. Show that when tangents to an ellipse or hyperbola are drawn

from any point of a directrix the line joining the points of contact passes

through a focus.

7. From the definition (§ 232) of an ellipse and hyperbola, show that

the sum and difference respectively of the focal radii of any point of the

conic is constant.

8. Find the locus of the midpoints of chords drawn from one end of :

(a) the major axis of an ellipse
; (&) the minor axis.

9. The eccentricity of an ellipse with one focus and corresponding

directrix fixed is allowed to vary; show that the locus of the ends of the

minor axis is a parabola.

10. Find the locus of § 232 when the fixed point lies on the fixed line.
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239. The Conies as Sections of a Cone. As indicated by

their name the conic sections, i.e. the parabola, ellipse, and

hyperbola, can be defined as the curves in which a right circu-

lar cone is cut by a plane (§ 231).

In Figs. 98, 99, 100, Fis the vertex of the cone, ^ CVC'= 2 a

the angle at its vertex ; OQ indicates the cutting plane, CVC
that plane through the axis of the

cone which is perpendicular to the

cutting plane. The intersection

OQ of these two planes is evidently

an axis of symmetry for the conic.

The conic is a parabola, ellipse,

or hyperbola, according as OQ is

parallel to the generator VC of the

cone (Fig. 98), meets VC at a point

O' belonging to the same half-cone

as does O (Fig. 99), or meets FO'

at a point 0' of the other half-cone (Fig. 100).

COQ be called p, the conic is

Fig. 98

If the angle

a parabola if /3 = 2 a (Fig. 98),

an ellipse if ^ > 2 a (Fig. 99),

a hyperbola if ^ < 2 a (Fig. 100).

In each of the three figures CO represents the diameter 2 r

of any cross-section of the cone {i.e. of any section at right

angles to its axis). We take O as origin, OQ as axis Ox, so

that (Fig. 98) OQ. = x, QP=y are the coordinates of any point

P of the conic.

As QP is the ordinate of the circular cross-section CPC'P'

we have in each of the three cases :

y2^Qp2^CQ'QC\
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240. Parabola. In the first case (Fig. 98), when y8 = 2 a so

that OQ is parallel to VC, the expression

X OQ OQ ^

is constant, i.e. the same at whatever distance from the vertex

we may take the cross-section CPC'P'. For, QO is equal to

the diameter OB = ^r^ of the cross-section through 0, and

CQ/OQ = CC'I VC = 2 r/r esc « = 2 sin a.

Hence, denoting the constant r^ sin a by p we have

CQ
OQ

QC = 4 ?o sin a =4p.

The equation of the conic in this case, referred to its axis OQ
and vertex 0, is therefore

y^ = 4:px.

Notice that as p = Tq sin a the focus is

found as the foot of the perpendicular

from the midpoint of OB on OQ.

241. Ellipse. In the second case

(Fig. 99), i.e. when ^ > 2 a, if we put

Oa = 2a,

it can be shown that

f ^ QP'
x{2a-x) OQ-QO'

Fig. 99

is constant. For we have QP^ = CQ • QC and from the tri-

angles CQO, QCa, observing that ^ QaC = fi-2a:

9Sl = si")g QC' ^ sin(^-2ct)

OQ sin(i7r-a)' QO' sin(^7r + a)'
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QP' _ sin )8sin(/3-2a)

OQ • qa cos^ a

an expression independent of the position of the cross-section

CO.
Denoting this positive constant by h^, we find the equation

y^ = k'^x(2 a — x),

(x-ay
^

y' ^^
i.e.

ikaf

which represents an ellipse, with semi-axes a, ka and center

(a, 0).

242. Hyperbola. In the third case

(Fig. 100), proceeding as in the second

and merely observing that now

qO' = -{2a + x\

we find the equation

y'^ = k^x{2a-\-x),

I.e.
(x-ha)'

(fca)

which represents a hyperbola, with

semi-axes a, ka and center (—a, 0).

Fig. 100

243. Limiting Cases. As the conic is an ellipse, hyperbola,

or parabola according as /8 > 2 a, < 2 a, or = 2 a, it appears

that ih.Q parabola can be regarded as the limiting case of either

an ellipse or a hyperbola whose center (the midpoint of OCy)

is removed to infinity.

On the other hand, if in the second case, /? > 2 a (Fig. 99),



XI. §2431 CONIC SECTIONS 231

we let p approach tt, or if in the third case, p <2 a (Fig. 100),

we let p approach 0, the cutting plane becomes in the limit a

tangent plane to the cone. • It then has in common with the

cone the points of the generator VC, and .these only. A single

straight line can thus appear as a limiting case of an ellipse or

hyperbola.

Finally we obtain another class of limiting cases, or cases of

degeneration, of the conies if, in any one of the three cases,

we let the cutting plane pass through the vertex V of the

cone. In the first case, (3 = 2 a, the cutting plane is then tan-

gent to the cone so that the parabola also may degenerate into

a single straight line. In the second case, ^ > 2 a, if /8 ^ tt,

the ellipse degenerates into a single point, the vertex V of the

cone. In the third case, /3 < 2 a, if /? ^ 0, the hyperbola de-

generates into two intersecting lines.

The term conic section, or coiiic, is often used as including

these limiting cases.

EXERCISES

1. For what value of /S in the preceding discussion does the conic be-

come a circle ? .

2. A right circular cylinder can be regarded as the limiting case of a

right circular cone whose vertex is removed to infinity along its axis

while a certain cross-section remains fixed. The section of such a cylin-

der by a plane is in general an ellipse ; in what case does it degenerate

into two parallel lines ?

3. The conic sections were originally defined (by the older Greek

mathematicians, in the time of Plato, about 400 b.c.) as sections of a

cone by a plane at right angles to a generator of the cone ; show that the

section is a parabola, ellipse, or hyperbola according as the angle 2 a at

the vertex of the cone is = | tt, < | tt, > | tt.

4. Show that the spheres inscribed in a right circular cone so as to

touch the cutting plane (Figs. 98, 99, 100) touch this plane at the foci of

the conic.
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PART II. REDUCTION OF GENERAL EQUATION

244. Equations of Conies. We have seen in the two pre-

ceding chapters that hy selecting the coordinate system in a con-

venient way the equation of a parabola can be obtained in the

simple form .

y^=z4:px,

that of an ellipse in the form

a-'^b^-^'

and that of a hyperbola in the form

a^ ¥

When the coordinate system is taken arbitrarily, the carte-

sian equations of these curves will in general not have this

simple form ; but they will always be of the second degree.

To show this let us take the common definition of these curves

(§ 232) as the locus of a point whose distances from a fixed

point and a fixed line are in a constant ratio. With respect to

any rectangular axes, let x^
, 2/1 be the coordinates of the fixed

point, ax -{-by -\- c = the equation of the fixed line, and e the

given ratio. Then by §§9 and 56 the equation of the locus is

or, rationalized

:

{x - x,y+ {y - y,y = -^ (ax -hby-h c)\
a^ -j- 0^

It is readily seen that this equation is always of the second

degree; i.e. that the coefiicients of a;^, y"^, and xy cannot all

three vanish.
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245. Equation of Second Degree. Conversely, every eq\ia-

tion of the second degree, i.e. every equation of the form (§ 79)

(1) Ax" + 2 Hxy -^ By"" + 2 Gx-\-2 Fy \- C = 0,

where A, H, B are not all three zero, in general represents a

conic. More precisely, the equation (1) may represent an

ellipse, a hyperbola, or a parabola; it may represent two

straight lines, different or coincident ; it may be satisfied by

the coordinates of only a single point; and it may not be

satisfied by any real point.

Thus each of the equations

a^ - 3 / = 0, xy =
evidently represent two real different lines ; the equation

ic2_2a; + l =
represents a single line, or as it is customary to say, two coin-

cident lines ; the equation

a;2 + ?/' =
represents a single point, while

is satisfied by no real point and is sometimes said to represent

an "imaginary ellipse."

The term conic is often used in a broader sense (compare § 243)

so as to include all these cases ; it is then equivalent to the

expression "locus of an equation of the second degree.'^

It will be shown in the present chapter how to determine

the locus of any equation of the form (1) with real coefficients.

The method consists in selecting the axes of coordinates so as

to reduce the given equation to its most simple form.

246. Translation of Axes. The transformation of the

equation (1) to its most simple form is very easy in the par-

ticular case ichen (1) contains no term in xy, i.e. when H = 0.

Indeed it suffices in this case to complete the squares in x and y

and transform to parallel axes.
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Two cases may be distinguished:

(a) 11=0, A =^ Oj B =^0, so that the equation has the form

(2) Ax"" -\- By^ -}- 2 Gx + 2 Fy + C= 0.

Completing the squares in x and y (§ 80), we obtain an equation

of the form
A {X - hf -\-B{y- kf = K,

where ^ is a constant ; upon taking parallel axes through the

point {h, k) it is seen thatxthe locus is an ellipse, or a hyper-

bola, or two straight lines, or a point, or no real locus, accord-

ing to the values of A, B, K.

(h) H=0, and either ^= or J.=0, so that the equation is

(3) Ax'' + 2Gx + 2Fy-{- 0=0, or By' -h2Gx -\-2Fy + G=0.

Completing the square in x or y, we obtain

(x-hy=p(y-k), or (y -kf = q{x-h)',

with (h, k) as new origin we have a parabola referred to vertex

and axis, or two parallel lines, real and different, coincident, or

imaginary.

It follows from this discussion that the absence of the term in

xy indicates that, in the case of the ellipse or hyperbola, its axes,

in the case of the parabola, its axis and tangent at the vertex, are

parallel to the axes of coordinates.

EXERCISES

1. Reduce the following equations to standard forms and sketch the

loci

:

*

(a) 2 2/2 _ 3 a; + 8 1/ + 11 = 0, (b) x^ + ^y^ - 6x + iy + 6 = 0,

(c) 6 x2 + 3 ?/2 - 4 a: + 2 y + 1 = 0, (d) x^ - 9y^ - 6x + ISy = 0,

(e) 9 a;2 + 9 2/2 - 36 x+6 ?/+ 10= 0, (/) 2 j:^ - iy"^ + 4 x + 4y - 1 = 0,

(9) x2 + i/2_2x + 22/-H3 = 0, (h) 3x2 - 6x + y + 6 = 0,

(0 x2 - ?/2 _ 4 X - 2 ?/ + 3 = 0, (j) 2 x2 - 5 X + 12 = 0,

(A;) 2 x2 - 5 X -}- 2 = 0, (0 y-^ - 4 y + 4 = 0.
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2. Find the equation of each of the following conies, determine the

axis perpendicular to the given directrix, the vertices on this axis (by

division-ratio), the lengths of the semi-axes, and make a rough sketch

in each case :

(a) with x — 2 = as directrix, focus at (6, 3), eccentricity |

;

(i!>) with 3x-|-4y— 6 = 0as directrix, focus at (5, 4) , eccentricity |

;

(c) with X — ?/ — 2 = 0as directrix, focus at (4, 0), eccentricity |.

3. Find the axis, vertex, latus rectum, and sketch thfe parabola with

focus at (2, — 2) and 2a: — 3 y — 5 = as directrix (see Ex. 2).

4. Prove the statement at the end of § 244.

5. Find the equation of the ellipse of major axis 5 with foci at (0, 0)

and (3, 1).

247. Rotation of Axes. If the right angle xOy formed by

the axes Ox, Oy be turned about the origin through an

angle d so as to take the new position x^Oy^ (Fig. 101), the

relation between the old coordinates OQ = x, QP = y of any

point P and the new coordinates OQi^x^, QiP=yi of the

same point P are seen from the figure to be

< x = Xi cos — yi sin 0,

[ y = x^ sin + .Vi cos 6.

By solving for x^
, y^ , or again from Fig. 101, we find

j x'l = X cos 6 -\-y sin 9,

\y^ = — X ^\n 6 + y cos 6.

If the cartesian equation of any curve referred to the axes

(4)

(4')
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Ox, Oy is given, the equation of the same curve referred to the

new axes Ox^ , Oyi is found by substituting the values (4) for

X, y in the given equation.

248. Translation and Rotation. To transform from any

rectangular axes Ox, Oy (Fig. 102) to any other rectangular

y

1y,.k
h

\
\

1 X
jt

Fia. 102

axes OxX^ , O^y-^ , we have to combine the translation 00^

(§ 13) with the rotation through an angle 6 (§ 247).

This can be done by first transforming from Ox, Oy to the

parallel axes Oyx\ O^y' by means of the translation (§ 13)

x = x^ -\-h,

y = y'-\- ^,

and then turning the right angle x'Oiy' through the angle

= x'OiXi , which is done by the transformation (§ 247)

x' = Xi cos 6 — yi sin 6,

2/' = iCi sin + yi cos 6.

Eliminating x', y', we find

x = XiC0s6 — 2/i sin 6 -{-h,

y = Xi sin 0-\-yi cos $ + lc.

The same result would have been obtained by performing

first the rotation and then the translation.

It has been assumed that the right angles xOy and x^Oy^ are

superposable ; if this were not the case, it would be necessary

to invert ultimately one of the axes.

(5)
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EXERCISES

1. Find the coordinates of each of the following points after the axes

have been rotated about the origin through the indicated angle

:

(a) (3, 4), ^T. (&) (0, 5),i7r.

(c) (-3, 2), <? = tan-i|. (d) (4,-3),^^-

2. K the origin is moved to the point (2, -r- 1) and the axes then

rotated through 30"^, what will be the new coordinates of the following

points?
(a) (0,0). (6) (2,3). (c) (6,-1).

3. Find the new equation of the parabola y^ = i ax after the axes have

been rotated through : (a) ^tt
,

(b) ^tt
,

(c) tt .

— 4. Show that the equation x^ + y'^ = a^ is not changed by any rotation

of the axes about the origin. Why is this true ?

5. Find the center of the circle {x— a)^ + y^ —a'^ after the axes have

been turned about the origin through the angle Q. What is the new

equation ?

- 6. For each of the following loci rotate the axes about the origin

through the indicated angle and find the new equation

:

/(a) x2-i/2 + 2=0, Itt. (6) x^-y'^ = a\\ir.

I (c) 2/ = mx + 6, = tan-i m. (d) 12x^ - 7 xy - 12y^ = 0, d = t&n-^l-

Oi

7. Through what angle must the axes be turned about the origin so

that the circle x^-^-y^ — Sx + iy — 6 = will not contain a linear term

in x?

8. Suppose the right angle XiOyi (Fig. 101) turns about the origin at

a uniform rate making one complete revolution in two seconds. The

coordinates of a point with respect to the moving axes being (2, 1), what

are its coordinates with respect to the fixed axes xOy at the end of :

(a) i sec. ? (b) f sec. ? (c) 1 sec. ? (d) 1^ sec. ?

9. In Fig. 101, draw the line OP, and denote Z QOP by <f>. Divide

both sides of each of the equations (4) by OP and show that they are

then equivalent to the trigonometric formulas for cos (^ + 0) and

sin (d + <p).
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249. Removal of the Term in xy. The general equation

of the second degree (1), § 245, when the axes are turned about

the origin through an angle ^ (§ 247), becomes :

A (a^i cos 6 — yi sin fff

+ 2 H(x^ cos d~ 2/i sin 6) {x^ sin O + yi cos 6)

+ J5(a;i sin (9 + 2/1 cos ^)2

+ 2 G{Xy^ cos d — yi sin $)

+ 2 F{x^ sin ^ + 2/i cos ^) + (7= 0.

This is an equation of the second degree in x^^ and y^ in

which the coefficient of x^y^ is readily seen to be

— 2^cos^sind+ ^JBsin^cos^ + 2^(cos2(9-sin2^)

= {B- A) sin 2 ^ + 2 fi^cos 2 6.

It follows that if the axes be turned about the origin

through an angle 6 such that

(JS -^) sin 2 ^H- 2 ITcos 2 ^ = 0,

i.e. such that r

2H
(6) tan 2^

A-B'
the equation referred to the new axes will contain no term in

x^y^ and can therefore be treated by the method of § 246.

According to the remark at the end of § 246 this means

that the new axes Oa^i, Oyi, obtained by turning the original

axes Ox, Oy through the angle found from (6), are parallel

to the axes of the conic (or, in the case of the parabola, to the

axis and the tangent at the vertex).

The equation (6) can therefore be used to determine the

directions of the axes of the conic; but the process just indicated

is generally inconvenient for reducing a numerical equation of

the second degree to its most simple form since the values of

cos and sin 6 required by (4) to obtain the new equation are

in general irrational.



XI, §250] EQUATION OF SECOND DEGREE 239

EXERCISES

1. Through what angle must the axes be turned about the origin to

remove the term in xy from each of the following equations ?

(a) 3;:c2+2\/3a;?/+?/2_3a;+4?/-10=0. (6) x;^ + 2y/Ixy + 1 y'^-\^ = 0.

(c) 2x2- 3a;?/ + 2^/2 + x- 2/ +7=0. {d)xy = 2a'^.

2. Reduce each of the following equations to one of the forms in § 244 :

(a) xy = -% (6) 6 x2 - 5 xy - 6 2/2 = 0.

(c) 3x2-10x^ + 32/2 + 8 = 0. {d) 13x2 - lOxy + 13^2 _ 72 = o.

250. Transformation to Parallel Axes. To transform the

general equation of the second degree (1), § 245, to parallel

axes through any point (x^, y^), we have to substitute (§ 13)

x = x' + Xq, y=y' + yo,

the resulting equation is

Ax'' + 2 Hxy 4- By'' + 2 (Ax, + Hy, + G) a/

+ 2(J7a^o + 52/o+ i^)/ + C" = 0,

where the new constant term is

(7) e = Ax,' + 2Hx,y,^By,' + 2Gx,-^2Fy,-\-a

It thus appears that after any trarislation of the coordinate

system

:

(a) the coefficients of the terms of the second degree remain

unchanged

;

(b) the new coefficients of the terms of the first degree are

linear functions of the coordinates of the new origin

;

(c) the new constant term is the result of substituting the

coordinates of the new origin in the left-hand member of the

original equation.
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251. Transformation to the Center. The transformed equa-

tion will contain no terms of the first degree, i.e. it will be of

the form _, -

(8) Ax"' + 2 H^y' + By"' -^ C = 0,

if we can>gelect the new origin {x^^ y^) so that

.gs / Ax,-{-Hy,+ G = 0,

^^ Hx, + By, + F^O.
This is certainly possible whenever

A H

and we then find :

no^ X -FH-GB ^ OH-FA
^ ^ "^ AB-H^' -^^ AB- 11^

As the equation (8) remains unchanged when x', y' are

replaced by — x\ — y', respectively, the new origin so found is

the center of the curve (§ 224). The locus is therefore in

this case a central conic, i.e. an ellipse or a hyperbola; but it

may reduce to two straight lines or to a point (see § 254). It

might be entirely imaginary, viz. if ^= ; but the case when

11=0 has already been discussed in § 246.

We shall discuss in § 256 the case in which AB — H^ = 0.

252. The Constant Term and the Discriminant. The cal-

culation of the constant term C can be somewhat simplified

by observing that its expression (7) can be written

C =(Ax,-{- H7j, + G)x,-h(Hx, + By, + F)y,-\- Gx,-\- Fy,-^ C,

i.e., owing to (9),

(11) C'=:Gx,-\-Fy,-^a

If we here substitute for x^, y^ their values (10) we find :

GFII- G^B + FGH- F^A -f- ABC- H'CC AB-H'
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The numerator, which is called the discriminant of the equa-

tion of the second degree and is denoted by D, can be written

in the form of a symmetric determinant, viz.

A H G
D= H B F '

G F C

If we denote the cofactors of this determinant by the corre-

sponding small letters, we have

^0 — J ?/o — ' ^ —
C C C

Notice that the coefficients of the equations (9), which deter-

mine the center, are given by the first two rows of Z>, while the

third row gives the coefficients of C" in (11).

253. Homogeneous Function of Second Degree. The nota-

tion for the coefficients in the equation of the second degree arises from

the fact that the left-hand member of this equation can be regarded as

the value for 2; = 1 of the general homogeneous function of the second

degree, viz.

/(a;, y, z) = Ax'^ + By'^ -\- Cz^ + 2 Fyz + 2Gzx-{-2 Hxy.

If in this function x alone be regarded as variable while y and z are

treated as constants, the derivative with respect to x is

fj =2{Ax-\-Hy + Gz)',

if y alone, or z alone, be regarded as variable, we find similarly

fy' = 2{Hx + By + Fz),

f^' = 2{Gx + Fy+Cz).

These partial derivatives of the homogeneous function /(x, y, z) with

respect to a;, ?/, 2, respectively, are linear homogeneous functions of aj, y, z^

and it is at once verified that

i.e. the homogeneous function of the second degree is equal to half the sum

of the products of its partial derivatives by x, y, z.
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The left-hand members of the equations (0) are IfJixQ, yo , 1),

i/i/'C^o, Vqi !)• Hence the equations for the center can he obtained by

differentiating /(x, y, 0), or what amounts to the same, the left-hand

member of the equation of the second degree, with respect to x alone and

y alone.

The symmetric determinant

D

formed of the coefificients of ^/x', \fy -, \fz is called the discriminant of

f(x, y, z) ; and this is also the discriminant of the equation of the second

degree (§252). As f= i(fjx + fy'y -\-f,'z) andfJ{xo, yo, 1) = 0,

fy'(oco , yo, 1) = it follows that

C =f(xo , 1/0 , 1) = lf^'(xo , yo , 1) = Gxo -{-Fyo + C.

^ 254. Straight Lines. After transforming to the center, i.e.

obtaining the equation (8), we must distinguish two cases

according as G' = or C'=^0. The condition C' = means

by (7) that the center lies on the locus ; and indeed the homo-

geneous equation

represents two straight lines through the new origin (a^o , 2/0)

(§ 59). The separate equations of these lines, referred to

the new axes, are found by factoring the left-hand member.

As we here assume (§ 251) that AB — H^=^0, and H^O, the

lines can only be either real and different, or imaginary. In

the latter case the point (a;„
, y^) is the only real point whose

coordinates satisfy the original equation.

255. Ellipse and Hyperbola. If C =^0 we can divide (8)

by — C so that the equation reduces to the form

(12) ax' + 2hxy-\-by- = l.

This equation represents an ellipse or a hyperbola (since we

assume h=^0). The axes of the ellipse or hyperbola can be

found in magnitude and direction as follows.
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Fig. 103

If an ellipse or hyperbola, with its center, be given graphi-

cally, the axes can be constructed by inter-

secting the curve with a concentric circle

and drawing the lines from the center to

the intersections; the bisectors of the

angles between these lines are evidently

the axes of the curve (Fig. 103).

The intersections of the curve (12) with

a concentric circle of radius r are given by

the simultaneous equations

aa;2 H- 2 lixy -f h]f- = 1, ^-{-if^r^'^

dividing the second equation by r^ and subtracting it from the

first, we have

(13) ^a-iy + 2/10^7/ -f ^6
-iy^ = 0.

This homogeneous equation represents two straight lines

through the origin, and as the equation is satisfied by the

coordinates of the points that satisfy both the preceding equa-

tions, these lines must be the lines from the origin to the inter-

sections of the circle with the curve (12). If we now select r

(14)

(14-)

a —

so as to make thejbwo lines (13) coincide, they will evidently

coincide with one or the other of the axes of the curve (12).

The condition for equal roots of the quadratic (13) in y/x is

This equation, which is quadratic in l/r^ and can be written

determines the lengths of the axes. If the two values found for

ir are both positive, the curve is an ellipse ; if one is positive

'-(aH-6)i + a6-7i2 = 0,
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and the other negative, it is a hyperbola ; if both are negative,

there is no real locus.

Each of the two values of 1/r^ found from (14'), if substi-

tuted in (13), makes the left-hand member, owing to (14), a

complete square. Tlie equations of the axes are therefore

\a-h^±yjf>-^y = 0,

or, multiplying by Va — l/r^ and observing (14) :

a ]x -h hy = 0.

256. Parabola. It remains to discuss the case (§ 251) of the

general equation of the second degree.

Ax'' + 2 Hxy + By^ + 2Gx + 2 Fy +0 = 0,

in which we have ^^ _ jj2 _ q

This condition means that the terms of the second degree form

a perfect square :

Ax"" + 2 Hxy + By^ = (VAx + VSyy.

Putting V^ = a and V^ = 6 we can write the equation of the

second degree in this case in the form

(1 5) (ax + byf = -2Gx-2Fy-a
If G and F are both zero, this equation represents two parallel

straight lines, real and different, real and coincident, or im-

aginary according as (7 < 0, C = 0, (7 > 0.

If G and F are not both zero, the equation (15) can be inter-

preted as meaning that the square of the distance of the point

(x, y) from the line

(16) ax-}-by =

is proportional to the distance of (cc, y) from the line

(17) 2Gx + 2Fy-^C=0.

Hence if these lines (16), (17) happen to be at right angles, the
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locus of (15) is Si parabola, having the line (16) as axis and the

line (17) as tangent at the vertex.

But even when the lines (16) and (17) are not at right angles

the equation (15) can be shown to represent a parabola. For

if we add a constant k within the parenthesis and compensate

the right-hand member by adding the terms 2 aJcx -f- 2 bky + 7c^,

the locus of (15) is not changed ; and in the resulting equation

(18) (ax + by + kf = 2(ak - G)x -f 2(bk - F)y -{-k^-C

we can determine k so as to make the two lines

(19) ax + by-^k = 0,

(20) 2(ak - G)x + 2{bk -F)y + k^-C=0
perpendicular. The condition for perpendicularity is

a{ak - G) -\-b{bk - F) = 0,

whence

(21) k^^^±^.

With this value of k, then, the lines (19), (20) are at right

angles ; and if (19) is taken as new axis Ox and (20) as new

axis Oy^ the equation (18) reduces to the simple form

y^ = px.

The constant p, i.e. the latus rectum of the parabola, is found

by writing (18) in the form

fax 4- &y + ^\_

2V(afc - Gf + i^k - Fy- 2{ak - G)x+ 2{bk~F)y-\-k''- (7
.

«'+&' * 2V(ak-Gy + (bk-Fy
hence

Substituting for k its value (21) we can reduce it to

^ 2(aF-bG)

{a'-\-¥)^
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EXERCISES

1. Find the equation of each of the following loci after transforming

to parallel axes through the center

:

(a) Sx^-4xy-y'^-Sx-iy + 7 = 0.

(6) 6 x^ + 6 xy -\- y^ + 6 X - 4: y — 6 = 0.

(c) 2 x^ -\- xy - 6 y^ — 7 X — 7 y -\- 5 = 0.

(d) x'^ - 2 xy - y^ -\- i X - 2y - 8 = 0.

2. Find that diameter of the conic Sx^ — 2xy—4:y'^+6x—4:y -^-2=0

(a) which passes through the origin, (&) which is parallel to each co-

ordinate axis.

3. For what values of k do the following equations represent straight

lines ? Find their intersections.

ia) 2x^ - xy-Sy'^-6x + 19y + k = 0.

(6) kx^ + 2 xy -{- y^ - X - y - 6 = 0.

(c) S x:^ - 4 xy + ky^ + S y - S = 0.

(d) x^-^2y^ + 6x-4y + k = 0.

4. Show that the equations of conjugate hyperbolas x^/a^—y^/b'^= ±1
and their asymptotes x^/a^—y'^/b^ = 0, even after a translation and rota-

tion of the axes, will differ only in the constant terms and that the con-

stant term of the asymptotes is the arithmetic mean between the constant

terms of the conjugate hyperbolas.

5. Find the asymptotes and the hyperbola conjugate to

2x^ — xy - 15y-^ + X+ 19y + 16=0.

6. Find the hyperbola through the point (—2, 1) which has the lines

2x — y+l = 0, 3x4-2?/ — 6 = as asymptotes. Find the conjugate

hyperbola.

7. Show that the hyperbola xy = a^ is referred to its asymptotes as

coordinate axes. Find the semi-axes and sketch the curve. Find and

sketch the conjugate hyperbola.

8. The volume of a gas under constant temperature varies inversely

as the pressure (Boyle's law), i.e. vp = c. Sketch the curve whose ordi-

nates represent the pressure as a function of the volume for different

values of c ; e.g. take c = 1, 2, 3.

9. Sketch the hyperbola (x — a)(y — b) = c^ and its asymptotes. In-

terpret the constants a, b, c geometrically.
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10. Sketch the hyperbola xy-\-Sy — 6 = and its asymptotes.

11. Find the center and semi-axes of the following conies, write their

equations in the most simple form, and sketch the curves :

^(a) 6 x^ - 6 xy + 5 y^ + 12y/2 X - W2y + 8 = 0.

^ (6) x2 - 6\/8 xi/ - 6 ^/2 - 16 = 0. (c) x'^ -{- xy -{- y^ - Sy + Q = 0.

(d) 13x^-QV3xy + 7y^-M = 0.

^ (e) 2 x2 - 4 X2/ + ?/2 4- 2 X - 4 ?/ - f = 0.

^ (/) 3 x2 + 2x2/ + 2/2 + 6x + 4 ?/ + I = 0.

12. Sketch the following parabolas :

(a) x2 _ 2V3xy + 3 «/2 - 6V3 x -6y = 0.

(&) x2 - 6 xy + 9 «/2 - 3 X + 4y - 1 = 0.

13. Show that the following combinations of the coefficients of the

general equation of the second degree are invariants (i.e. remain un-

changed) under any transformation from rectangular to rectangular axes

:

(a) A + B. (6) AB - H^. (c) (A - ^)2 + 4 iI2.

14. Show that x2 + y^ = a^ represents a parabola. Sketch the locus.

15. Find the parabola with x + y = as directrix and (^ a, | a) as

focus.

16. Let five points A, B, C, D, E be taken at equal intervals on a

line. Show that the locus of a point P such that AP EP = BP • DP is

an equilateral hyperbola. (Take G as origin.)

17. The variable triangle AQB is isosceles with a fixed base AB.

Show that the locus of the intersection of the line AQ with the perpen-

dicular to QB through B is an equilateral hyperbola.

18. Let ^ be a fixed point and let Q describe a fixed line. Find the

locus of the intersection of a line through Q perpendicular to the fixed

line and a line through A perpendicular to AQ.

19. Find the locus of the intersection of lines drawn from the extrem-

ities of a fixed diameter of a circle to the ends of the perpendicular

chords.

20. Show by (14'), §255, that if the equation of the second degree

represents an ellipse, parabola, hyperbola, we have, respectively,

^S - If2 ^ 0, = 0, < 0. .



CHAPTER XII

HIGHER PLANE CURVES

PART I. ALGEBRAIC CURVES

257. Cubics. It has been shown (§ 30) that every equation

of the first degree,

H- a^x + 6i2/ = 0,

represents a straight line; and (§ 245) that every equation of

the second degree,

Oo

+ a^x + biy

+ a^"^ 4- h^y + C22/2 = 0,

either represents a conic or is not satisfied by any real points.

The locus represented by an equation of the third degree,

4- a^x^ + h^y -f- c^"^

+ a^a? -f h^'^y + c^xy"^ + d^^= 0,

I.e. the aggregate of all real points whose coordinates x, y satisfy

this equation, is called a cubic curve.

Similarly, the locus of all points that satisfy any equation of

the fourth degree is called a quartic curve; and the terms quintic,

sextic, etc., are applied to curves whose equations are of the

Jifthj sixth, etc., degrees.

Even the cubics present a large variety of shapes; still

more so is this true of higher curves. We shall not discuss

such curves in detail, but we shall study some of their properties.

248
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258. Algebraic Curves. The general form of an algebraic

equation of the .nth degree in x and y is

+ a^x -{-b^y

(1) + a^^ -f- b^xy + Cojy^

-\-a^-{- b^x^y 4- c^y"^+d^

+ a^x"" + b^x^-^y + ...4- Kxtj^-'^+ l^y"" = 0.

The coefficients are supposed to be any real numbers, those in

the last line being not all zero. The number of terms is not

more than 1 + 2 + 3 + ... +(n + 1) = i(n + l)(n + 2).

If the cartesian equation of a curve can be reduced to this

form by rationalizing and clearing of fractions, the curve is

called an algebraic curve of degree n.

An algebraic curve of degree n can be intersected by a

straight line,

Ax-\- By-h C=0,

in not more than n points. For, the substitution in (1) of the

value of y (or of x) derived from the linear equation gives an

equation in x (or in y) of a degree not greater than n ; this

equation can therefore have not more than n roots, and these

roots are the abscissas (or ordinates) of the points of intersec-

tion.

We have already studied the curves that represent the poly-

nomial function

y=ao+ aiX-{-a^-\ hotna^";

such a curve is an algebraic curve, but it is readily seen by
comparison with the preceding equation that this equation is

of a very special type, since it contains no term of higher de-

gree than one in y. Such a curve is often called a parabolic

curve of the nth degree.
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259. Transformation to Polar Coordinates. The cartesian

equation (1) is readily transformed to polar coordinates by sub-

stituting

X = r cos <^, y = r sin <^

;

it then assumes the form

:

+ (aj cos 4* -\-hi sin <^)?'

(2) -f (as cos^ <\>-{-h.2 cos <^ sin
<J!)
+ Cg sin^ <l>)r^

+ (ttg cos^ <^ H- &3 cos^ <^ sin <^ -h Cg cos <j> sin^ <^ + c^s sin' <^)r^

+ (a„ cos" <^+ &„ cos"~^ <^ sin <j>+ +fc„cos<^sin"-^ <^-f/^ sin'* </>)?•»

= 0.

If any particular value be assigned to the polar angle <^, this

becomes an equation in r of a

degree not greater than n. Its

roots ri, r^,'" represent the in-

tercepts OPi, OP2, " (Fig. 104)

made by the curve (2) on the line

y = tan <^ • x. Some of these

roots may of course be imaginary,

and there may be equal roots. Fig. 104

260. Curve through the Origin. The equation in r has at

least one of its roots equal to zero if, and only if, the constant

term ao is zero. Thus, the necessary and sufficient condition that

the origin he a point of the curve is aQ = 0.

This is of course also apparent from the equation (1) which

is satisfied by ic = 0, 2/ = if, and only if, ao = 0.

261. Tangent Line at Origin. The equation (2) has at

least two of its roots equal to zero if ao = and ai cos <^ +
61 sin

<f>
= 0. If ai and bi are not both zero, the latter condition
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can be satisfied by selecting the angle <^ properly, viz. so that

tan<^ = -^.

The line through the origin inclined at this angle <^ to the

polar axis is the tangent to the curve at the origin (Fig. 105).

Its cartesian equation is 2/ = tan <^'X — — (a^/h^x, i.e.

(3) a^x H- h^y = 0.

Thus, if tto = while Oi , by are not both zero, the curve has

at the origin a single tangent ; the origin is therefore called

a simple, or ordinary, point of the curve.

In other words, if the lowest terms in

the equation (1) of an algebraic curve

are of the first degree, the origin is a

simple point of the curve, and the equa-

tion of the tangent at the origin is ob-

tained by equating to zero the terms of

the first degree. Fig. 105

262. Double Point. The condition aicos <^+ ^i sin <^ =
necessary for two zero roots is also satisfied if «! = and &i = ;

indeed, it is then satisfied whatever the value of <^. Hence, if

a^ = 0, % = 0, 61 = 0, the equation (2) has at least two zero

roots for any value of <^. If in this case the terms of the

second degree in (1) do not all vanish, the curve is said to

have a double point at the origin. Thus, the origin is a double

l)oint if, and only if, the loivest terms in the equation (1) are of

the second degree.

263. Tangents at a Double Point. The equation (2) will

have at least three of its roots equal to zero if we have ao = 0,

ttj = 0, 61 = and

Oa cos'^ <^ 4- 62 cos <^ sin <^ + Cg sin^ <^ = 0.
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K a^, 63, C2 are not all zero, we can find two angles satisfying

this equation which may be real and different, or real and

equal, or imaginary. The lines drawn at thjese angles (if real)

through the origin are the tangents at the double point.

Multiplying the last equation by 7^ and reintroducing carte-

sian coordinates we obtain for these tangents the equation

(4) tta^J^ + b^y -\- c^y^ = 0.

Thus, if the loivest terms in the equation (1) are of the second

degree^ the origin is a double point, and these terms of the second

degree equated to zero represent the tangents at the origin.

264. Types of Double Point, (a) If the two lines (4) are

real and different, the double point is

called a node or crunode ; the curve then

has two branches passing through the

origin, each with a different tangent

(Fig. 106). ^
(b) If the lines (4) are coincident, i.e.

if ttg^ + b<p:y + c^y"^ is a complete square, Fig. 106

the double point is called a cusp, or spinode; the curve then

has ordinarily two real branches tangent to

one and the same line at the origin (Fig. 107

represents the most simple case).

(c) If the lines (4) are imaginary, the

double point is called an isolated point, or

an acnode; in this case, while the coordi-

nates 0, of the origin satisfy the equation

of the curve, there exists about the origin

a region containing no other point of the

curve, so that no tangents can be drawn

through the origin (Fig. 108).

J^
FiQ. 107

Fig. 108
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It should be observed that, for curves of a degree above

the third, the origiu in case (b) may be an isolated point ; this

will be revealed by investigating the higher terms (viz. those

above the second degree).

265. Multiple Points. It is readily seen how the reasoning

of the last articles can be continued although the investigation

of higher multiple points would require further discussion.

The result is this : If in the equation of an algebraic curve, when

rationalized and cleared of fractions, the lowest terms are of

degree k, the origin is a k-tuple point of the curve, and the tan-

gents at this point are given by the terms of degree k, equated

to zero.

To investigate whether any given point (xi , y^ of an alge-

braic curve is simple or multiple it is only necessary to trans-

fer the origin to the point, by replacing xhy x + x^^ and y by

y + Vij and then to apply this rule.

EXERCISES

1. Determine the nature of the origin and sketch the curves :

{a) y = x'^~-2x. (b) x^ = 4y-y\ (^c) {x + a)(y + a) = a"^.

(d) ?/2 = a;2(4-x). {e)y^ = 3^. (f) x^ + y'^ = xK

(g) y^ = x^ + 7?. (h) x^ - 3 axy -\-y^ = 0. (i) x*- y* + 6 xy^ = 0.

2. Determine the nature of the origin and sketch the curve (y—x^y=x^,
for: (a) n = l. (6) n = 2. (c) w = 3. (d) w = 4.

3. Locate the multiple points, determine their nature, and sketch the

curves

:

(a) y^ = x{x + S)^. (b) (y-3)2 = a;-2. (c) (y ^ 1)^ = (x - S)\

(c?)y8=(x + l)(x-l)2.

4. Sketch the curve y'^={x — a)(x — b){x—c) and discuss the multi-

ple points when

:

(a) 0<a<6<c. (6) 0<a<& = c. (c) 0<a = 6<c. {d) 0<a = b = c.
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PART 11. SPECIAL CURVES
DEFINED GEOMETRICALLY OR KINEMATICALLY

266. Conchoid. A fixed point and a fixed line I, at the

distance a from O, being given, the radius vector OQ, drawn from
to every point Q of I, is produced by a segment QP= b of con-

stant length; the locus of P is called the conchoid of Nicomedes.

For as pole and the perpendicular to I as polar axis the

equation of lis ri = a/ cos <^ ; hence that of the conchoid is -X

If the segment QP be laid off in the opposite sense we obtain

the curve

r = b
cos <^

which is also called a conchoid. Indeed, these two curves

are often regarded as merely two branches of the same

curve. Transforming to cartesian coordinates and rationaliz-

ing, we find the equation

(«-a)2(a;2-t-2/2) = 6V,

which represents both branches. Sketch the curve, say for

b = 2 a, and for b = a/2, and determine the nature of the origin.

267. Limacon. If the line I be replaced by a circle and the

fixed point be taken 07i the circle, the locus of P is called

Pascal's limacon.

For as pole and the diameter of the circle as polar axis

the equation of the circle, of radius a, is r^ = 2 a cos <^ ; hence

that of the limaqon is :

^ ^^--^^

r = 2 a cos
<f>

-\- b. t/y^
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If h = 2a the curve is called the cardioid ; the equation

then becomes
r = 4 a cos^ ^ 4*.

Sketch the limaqons for 6 = 3 a, 2 a, a ; transform to car-

tesian coordinates and determine the character of the origin.

268. Cissoid. 00' = a being a diameter of a circle, let any

radius vector drawn from meet the circle and its tangent at 0'

at the points Q, D, respectively; if on this radius vector we lay

off OR = QD, the locus of E is called the cissoid of Diodes.

With as pole and 00' as polar axis, we have

OD = a/cos
<f),
OQ = a cos <^

;

the equation is therefore

= fi( cos A 1= a
\cos <j> J

_^ sin'<^
^

cos (^'

or in cartesian coordinates

2 ^
Fig. 109

If instead of taking the difference of the radii vectores of the

circle and its tangent, we take their sum we obtain the so-called

companion of the cissoid,

r = a(cos <^ 4- sec <^),

I.e.

Sketch this curve.

2/2 = x'
2a —

X

x — a

IL 269. Versiera. With the data of § 268, let us draw through

Q a parallel to the tangent, through R a parallel to the diameter

;

the locus of the point of intersection P of these parallels is

called the versiera (wrongly called the " witch of Agnesi ").



256 PLANE ANALYTIC GEOMETRY [XII, § 269

We have evidently with as origin and 00' as axis Ox

x = a cos^
<l>, y = o. tan <^,

whence eliminating <^

:

a?
x =

2/2 -+- a2

If we replace the tangent at 0' by any

perpendicular to 00' (Fig. 110), at the ^

distance h from 0, we obtain the curve

x = a cos^ <^, y = b tan <j>,

which reduces to the versiera for b = a.

Sketch the versiera, and the last curve for 6 = i a.

Fig. 110

270. Cassinian Ovals. Lemniscate. Two fixed points F„

F2 being given it is known that the locus of a point P is :

> VK"^

Fig. Ill

(a) a circle if FiP/F.,P = const. (Ex. 7, p. 90);

(6) an ellipse if F^P-^-F^P^z const. (§ 204)

;

(c) a hyperbola if i^iP- i?^2^= const. (§ 207).

The locus is called a Cassinian oval if JF\P • FgP= const. If
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we put FiF2 = 2a, the equation, referred to the midpoint

between F^ and F2 as origin and OF2 as axis Ox, is

lix + af 4- /] [.{X - af + 1/^ = T^'-

In the particular case when k = a^ the curve passes through

the origin and is called a lemniscate. The equation then re-

duces to the form

{x^ + y^y^2a\x^-y%

which becomes in polar coordinates

r" = 2a2 cos 2 <^.

Trace the lemniscate from the last equation.

271. Cycloid. The common cycloid is the path described by

any point P of a circle rolling over a straight line (Fig. 112).

If A be the point of contact of the rolling circle in any posi-

tion, the point of the given line that coincided with the point

P of the circle when P was point of contact, it is clear that

the length OA must equal the arc AP=a6, where a is the

radius of the circle, and 6= "^ACP the angle through which

the circle has turned since P was at O. The figure then shows

that, with O as origin and OA as axis Ox

:

X = OQ = aO — a sin 0, y = a — a cos 6.

These are theparameter equations of the cycloid. The curve has
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an infinite number of equal arches, each with an axis of sym-

metry (in Fig. 112, the line x = ird) and with a cusp at each

end. Write down the cartesian equation.

272. Trochoid. The path described by any point P rigidly

connected with the rolling circle is called a trochoid. If the

Fig. 113. —The Trochoids

distance of P from the center C of the circle is 6, the equations

of the trochoid are

x=^ad — b sin $, y = a — h cos 6.

Draw the trochoid for h = \a and for 6 = | a.

273. Epicycloid. The path described by any point P of a

circle rolling on the outside of a fixed circle is called an epicy-

cloid (Fig. 114).

Let be the center, h the

radius, of the fixed circle, C the

center, a the radius, of the rolling

circle; and let Aq be that point

of the fixed circle at which the

describing point P is the point

of contact. Put A^OA = <^, ACP
= 6. As the arcs AAq and AP
are equal, we have

6<^ = ad.

Fig. 114
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With as origin and OAq as axis of x we have

a; = (a H- b) cos
<f>
+ a sin [^ — (| rr — <^)],

2/ = (a 4- 6) sin <^ — « cos [^ — (|- TT — <^)],

i.e, x = (a-\-b) cos <^ — a cos <^,

2/ = (a + o) sm <^ — a sin —!—
<f>.

274. Hypocycloid. If the circle rolls on the inside of the

fixed circle, the path of any point of the rolling circle is called

a hypocycloid. The equations are obtained in the same way

;

they differ from those of the epicycloid merely in having a re-

placed by — a

:

X = (b — a) cos
<f>

-\- a cos
"~ ^

<^,

CL

y = (b — a) sin <^ — a sin
~ ^

<^.

Show that : (a) for b = 2a the hypocycloid reduces to a

straight line, and illustrate this graphically
; (6) for b = 4:a the

equations become

a;= 3 a cos <^-|- a cos 3
<f>
— a cos' </>,

2/ = ^ <^ sin <^— a sin 3 <^ = asin' <^,

whence x^-\-y^ = a^-^

sketch this four-cusped hypocycloid.

^ b EXERCISES

1. Sketch the following curves: (a) Spiral of Archimedes r = a<f>;.

(6) Hyperbolic spiral r(^ a ;
(c) Lituus r^^ = a^.T^

.2. Sketch the following curves : (a) r = a sm<p
; (6) r = a cos

;

^cj) r = a sin 2
; (^r = a cos 2

;
(e) r = a cos 3

; (/) r = a sin 30 ;

(g) r = acos4 0; (T^ r = a sin 4 0.

3. Sketch with respect to the same axes the Cassinian ovals (§ 270)

for a = 1 and k = 2, 1.5, 1.1, 1, .75, .6, 0.
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4. Let two perpendicular lines AB and CD intersect at 0. Through

a fixed point Q of AB draw any line intersecting CD at E. On this line

lay off in both directions from B segments BP of length OB. The locus

of P is called the strophoid. Find the equation, determine the nature of

O and Q, and sketch the curve.

5. Show that the lemniscate (§ 270) is the inverse curve of an equi-

lateral hyperbola with respect to a circle about its center.

6. Show that the strophoid (Ex. 4) is the curve inverse to an equilat-

eral hyperbola with respect to a circle about a vertex with radius equal

to the transverse axis.

7. Show that the cissoid (§ 268) is the curve inverse to a parabola

with respect to a circle about its vertex.

8. Find the curve inverse to the cardioid (§267) with respect to a

circle about the origin.

9. Transform the equation

a (s;2 + y2) ^ r^z

to polar coordinates, indicate a geometrical construction, and draw the

curve.

10. A tangent to a circle of radius 2 a about the origin intersects the

axes at T and 2^, find and sketch the locus of the midpoint P between T
and T'.

11. From any point Q of the line x = a draw a line parallel to the axis

Ox intersecting the axis Oy at C Find and sketch the locus of the foot

of the perpendicular from O on OQ.

12. The center of a circle of radius a moves along the axis Ox. Find

and sketch the locus of the intersections of this circle with lines joining

the origin to its highest point.

13. The center of a circle of radius a moves along the axis Ox. Find

and sketch the locus of its points of contact with the lines through the origin.

14. The center of a circle of radius a moves along the axis Ox. Its in-

tersection with the axis nearer the origin is taken as 'the center of another

circle which passes through the origin. Find and sketch the locus of the

intersections of these circles.
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PART III. SPECIAL TRANSCENDENTAL CURVES

275. The Sine Curve. The simple sine curve, y = sin x,

is best constructed by means of an auxiliary circle of radius

one. In Fig. 115, OQ is made equal to the length of the arc

OA = X ; the ordinate at Q is then equal to the ordinate BA of

the circle.

y

Fig. 115

Construct one whole j^enod of the sine curve, i.e. the portion

corresponding to the whole circumference of the auxiliary

circle ; the width 2 ^ of this portion is called the period of the

function sinx.

The simple cosine curve, y = cos x, is the same as the sine

curve except that the origin is taken at the point (^tt, 0).

The simple tangent curve, y = tan x, is derived like the sine

curve from a unit circle. Its period is tt.

276. The Inverse Trigonometric Curves. The equation

y = sin a; can also be written in the form

X = sin~^ y, or a; = arc sin y.

The curve represented by this equation is of course the same

as that represented by the equation y = sin x.

But if X and y be interchanged, the resulting equation

X = sin y, or y = sin~^ x, y — arc sin x,

represents the curve obtained from the simple sine curve by

reflection in the line y=x(^ 135).
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Notice that the trigonometric functions sin x, cos x, tan x, etc.,

^re one-valued, i.e. to every value of x belongs only one value

of the function, while the inverse trigonometric functions sin~^ a;,

cos~^a7, tan~^a?, etc., are many-valued; indeed, to every value of

X, at least in a certain interval, belongs an infinite number of

values of the function.

EXERCISES

1. From a table of trigonometric functions, plot the curve y = sinx.

2. Plot the curve y = sinx by means of the geometric construction

of §275.

3 Plot the curve y = cosx (a) from a table
; (6) by a geometric con-

struction similar to that of § 275.

4. Plot the curve y = tan x from a table.

5. Plot each of the curves

(a) y = sm2 x. (d) y = sec x.

(6) y = 2 cos 3 a;. {e) y = ctn 2 x.

(c) y = 3 tan (x/2). (/) y = 2 tan 4 x.

6. Plot each of the curves

(a) y = sin-i x. (6) y = cos-i x. (c) y = tan-i x.

7. By adding the ordinates of the tw^o curves y = sin x and y = cos x,

construct the graph oi y = sin x + cos x.

8. Draw each of the curves

(a) y zzsiux + 2 cos x. (c) y = secx-{- tan x.

(6) y = 2 sin x + cos(x/2). (d) ?/ = sin x + 2 sin 2 x + 3 sin 3x.

9. The equation x = sin t, where t means the time and x means the

distance of a body from its central position, represents a Simple Harmonic

Motion. From the graph of this equation, describe the nature of the

motion.

277. Transcendental Curves. The trigonometric and in-

verse trigonometric curves, as well as, in general, the cycloids

and trochoids, are transcendental curves, so called because the

relation between the cartesian coordinates x, y cannot be ex-

pressed in finite form {i.e. without using infinite series) by
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means of the algebraic operations of addition, subtraction, mul-

tiplication, division, and raising to a power with a constant

exponent.

278. Logarithmic and Exponential Curves. Another very

important transcendental curve is the exponential curve

y = «^

and its inverse, the logarithmic

curve 1

y = log« X,

where a is any positive constant

(Fig. 116). A full discussion

of these curves can only be given

in the calculus. We must here

confine ourselves to some special

cases and to a brief review of the

fundamental laws of logarithms.

279. Definitions. The logarithm 6 of a number c, to the

base a (positive and ^ 1), is defined as the exponent b to which

the given base a must be raised to produce the number c

(§ 105) ; thus the two equations

a^ = c and b = log„ c

express exactly the same relation between b and c. It follows

that a'"""'' = c, whatever c.

If in the first law of exponents (§ 104), a^a'' = a^'^'^, we put

aP=Py a«= Q, a'+«=iV, so that PQ=N, we find since p=loga P,

q = loga Q,p + q = loga ]sr= log, pq -.

(1) log„PQ = log,P+log„Q.

Similarly we find from a^/a*^ = a^'" :

P
(2) loga ^= log. P-l0g„Q.
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If in the third law of exponents (§ 104), (a^y = a^", we put

.a** = P, aP" = M, so that P"" = M, we find since p = log„ P,

pn = log„ M:

(3) log„(P") = nlog,P.

These laws (1), (2), (3) of logarithms are merely the trans-

lation into the language of logarithms of the first and third

laws of exponents.

280. Napierian or Natural Logarithms. In the ordinary

tables of logarithms the base is 10, and for numerical calcula-

tions these common logarithms (Briggs' logarithms) are most

convenient. In the calculus it is found that another system

of logarithms is better adapted to theoretical considerations

;

the base of this system is an irrational number denoted by e,

6 = 2.718281828 ...,

and the logarithms in this system are called natural logarithms

(or Napierian, or hyperbolic, logarithms).

281. Change of Base. Modulus. To pass from one system

of logarithms to another observe that if the same number N has

the logarithm p in the system to the base a and the logarithm

g in the system to the base b so that

a^ = N, p= log„ N, h" = N, q= log, N,

then q = logj, N= log^ a^=p log^, a,

by (3); i.e.

,(4) iogi^=log„^.logj,a.

Hence if the logarithms of the system with the base a are

known, those with the base b are found by multiplying the

logarithms to the base a by a constant number, logj,a.

Thus taking a = 10, b = e, we have

(4') log,iV^=log,o^^.log,10;
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i.e. to find the natural logarithm of any number we have merely

to multiply its common logarithm by the number

log, 10 = 2.30258 509 ....

The reciprocal of this number,

M= —i— = 0.43429 448 • •

.,
logg 10

i.e. the factor by which the natural logarithms must be multi-

plied to produce the common logarithms, is called the modulus

of the common system of logarithms.

In any system of logarithms, the logarithm of the base is

always equal to 1, by the definition of the logarithm (§ 279).

Hence, if in (4) we take iV"= &, we find

(5) log„6 .log,a = l.

In particular, with a = 10, 6 = e we have

(5') log.oe. log, 10 = 1;

i.e. the modulus M of the common logarithms is

Jf= —i— = logio e = 0.43429 448 ... .

log, 10

EXERCISES

1. From a table of logarithms of numbers, draw the curve y = logio x.

2. By multiplying the ordinates of the curve of Ex. 1 by 3, construct

the curve y = S logio x.

3. From the figure of Ex. 1, construct the curve y = 10* by reflection

of the curve of Ex. 1 in the line y = x.

4. Draw the curve y = ^ logio x by the process of Ex. 2. Show that it

represents the equation y = logioo x, since

y = logioo X = logioo 10 X logic x = ^ logic X.

5. Find logio 7 from a table. Construct the curve

y = logy X = logioa; ^ logio 7

by the process described in Ex. 2 and Ex. 4.

6. Given logic e = M= .43+, draw the curve

y = log, X = logic X ^ logic e.
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PART IV. EMPIRICAL EQUATIONS

282. Empirical Formulas. In scientific studies, the rela-

tions between quantities are usually not known in advance,

but are to be found, if possible, from pairs of numerical values

of the quantities discovered by experiment.

Simple cases of this kind have already been given in §§ 15,

29. In particular, the values of a and h in formulas of the

type y = a-{-bx were found from two pairs of values of x and y.

Compare also § 34.

Likewise, if two quantities y and x are known to be connected

by a relation of the form y = a-\-bx-\- cx"^, the values of a, b, c

can be found from any three pairs of values of x and y. For,

if any pair of values of x and y are substituted for x and y

in this equation, we obtain a linear equation for a, b, and c.

Three such equations usually determine a, b, and c.

In general the coefficients a, b, c, •••, Z in an equation of the

^^
y z= a -\- bx -\- cx"^ -\- "

' -\- Ix""

can be found from any n + 1 pairs of values of x and y.

283. Approximate Nature of Results. Since the measure-

ments made in any experiment are liable to at least small

errors, it is not to be expected that the calculated values of

such coefficients as a, &, c, • • • of § 282 will be absolutely accu-

rate, nor that the points that represent the pairs of values of

X and y will all lie absolutely on the curve represented by the

final formula.

' To increase the accuracy, a large number of pairs of values

of X and y are usually measured experimentally, and various

pairs are used to determine such constants as a, &, c, --of § 282.

The average of all the computed values of any one such con-

stant is often taken as a fair approximation to its true value.
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284. Illustrative Examples.

Example 1. A wire under tension is found by experiment to stretch

an amount I, in thousandths of an inch, under a tension T, in pounds, as

follows :
—

T in pounds 10 15 20 25 30

I in thousandths of an inch . 8 12.5 15.5 20 23

Find a relation of the form I = kT (Hookers Law) which approx-

imately represents these results.

First plot the given data on squared paper, as in the adjoining figure.

dU '~' —— "" "" "~* "" ""
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./
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/
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/
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^

5 /
/

/
/

/
/

\s \ n \ "i 7 2 5 .-"in 7s^

Fig. 117

Substituting ? = 8, T = 10 in ? = A:r, we find A; = .8. From I = 12.5,

T — 15, we find k = .833. Likewise, the other pairs of values of I and T
give, respectively, k = .775, k = .8, k= .767. The average of all these

values of A; is A: = .795 ; hence we may write, approximately,

I = .795 T.
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This equation is represented by the line in Fig. 117 ; this line does not

pass through even one of the given points, but it is a fair compromise be-

tween all of them, in view of the fact that each of them is itself probably

slightly inaccurate.

Example 2. In an experiment with a Weston Differential Pulley

Block, the effort E^ in pounds, required to raise a load IF, in pounds, was

found to be as follows :

w 10 20 30 40 50 60 70 80 90 100

E 3i 4| 6i n 9 101 12i 13f 15 161

Find a relation of the form E
with these data.

aW +h that approximately agrees

[Gibson]

These values may be plotted in the usual manner on squared paper.

They will be found to lie very -^

nearly on a straight line. If E
is plotted vertically, h is the in-

tercept on the vertical axis, and

a is the slope of the line ; both

can be measured directly in the

figure.

To determine a and h more

exactly, we may take various

points that lie nearly on the

line. Thus {E = Q\, pr=30)
and {E = 16^, W = 100) lie

nearly on a line that passes close

to all the points. Substituting in the equation E = aW -^ h ^e obtain

6| = 30a + 6, 16J = 100a+&

whence a = 0.146, h = 1.86. Hence we may take

E= 0.146 Tr+ 1.86

approximately. Other pairs of values of E and W may be used in like

manner to find values for « and 6, and all the values of each quantity may

be averaged.
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Example 3. If 6 denotes the melting point (Centigrade) of an alloy

of lead and zinc containing x per cent of lead, it is found that

X = % lead 40 50 60 70 80 90

^ = melting point .... 186° 205° 226° 250° 276° 304°

Find a relation of the form 6 = a -{• bx + cx^ that approximately expresses

these facts. [Saxelby]

Taking any three pairs of values, say (40, 186), (70, 250), (90, 304),

and substituting in d = a -\- bx -]- cx^ we find

186 = « + 40 6 + 1600 c,

260= a + 70 b + 4900 c,

304 = a + 90 6 + 8100 c,

whence a = 132, b = .92, c = .0011, approximately ; whence

e = 132 + .92x+ .0011x2.

Other sets of three pairs of values of x and y may be used in a similar

manner to determine «, 6, c ; and the resulting values averaged, as above.

EXERCISES

1. In experiments on an iron rod, the amount of elongation I (in thou-

sandths of an inch) and the stretching force p (in thousands of pounds)

were found to be {p = 10, l=S), (p = 20, Z = 15), (p = 40, Z = 31).

Find a formula of the. type l=k-p which approximately expresses these

data. Ans. k = .775.

2. The values 1 in. =2.5 cm. and 1 ft. =30.5 cm. are frequently

quoted, but they do not agree precisely. The number of centimeters, c,

in i inches is surely given by a formula of the type c = ki. Find k ap-

proximately from the preceding data.

3. The readings of a standard gas-meter S and those of a meter T being

tested on the same pipe-line were found to be (<S'=3000, r=0), (*9=3510,

T = 500), (S = 4022, T = 1000) . Find a formula of the type T= aS+ b

which approximately represents these data.

4. An alloy of tin and lead containing x per cent of lead melts at the

temperature d (Fahrenheit) given by the values (a: = 25%, ^ = 482°),

(x = 50%, d = 370°), (ic = 75%, d = 356°). Determine a formula of the

type 6 = a + bx + cx^ which approximately represents these values.
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5. The temperatures d (Centigrade) at a depth d (feet) below the sur-

face of the earth in a mine were found to be <? = 100, 6 = 15.7°
; d = 200,

^=16.5 ; d=300, ^=17.4. Find a relation of the form d=a-\-bd between

e and d.

6. Determine a line that passes reasonably near each of the three

points !(2, 4), (6, 7), (10, 9). Determine a quadratic expression

y=a+ hx-\-cx^ that represents a parabola through the same three points.

7. Determine a parabola whose equation is of the form y= a-}-bx-\-cx^

that passes through each of the points (0, 2.5), (1.5, 1.5), and (3.0, 2.8).

Are the values of «, &, c changed materially if the point (2.0, 1.7) is

substituted for the point (1.5, 1.5) ?

8. If the curve y = sinx is drawn with one unit space on the ic-axis

representing 60^, the points (0, 0), (^, J), (I2, 1) lie on the curve. Find a

parabola of the form y=a-\-bx-{-cx^ through these three points, and draw

the two curves on the same sheet of paper to compare them.

285. Substitutions. It is particularly easy to test whether

points that are given by an experiment really lie on a straight

line ; that is, whether the quantities measured satisfy an equa-

tion of the form y = a-\-bx. This is done by means of a trans-

parent ruler or a stretched rubber band.

For this reason, if it is suspected that two quantities x and

y satisfy an equation of the form

y = a + bx\

it is advantageous to substitute a new letter, say u, for x^ :

u = x^j y = a -{- bu

and then plot the values of y and u. If the new figure does

agree reasonably well with some straight line, it is easy to find

a and 6, as in § 284.

Likewise, if it is suspected that two quantities x and y are

connected by a relation of the form

2/ = a -f 6 • - or xy = ax-{-bf
X

it is advantageous to make the substitution u = 1/x.
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Other substitutions of the same general nature are often

useful.

In any case, the given values of x and y should he plotted first

unchanged, in order to see what substitution might he useful,

286. Illustrative Example. If a body slides down an inclined

plane, the distance s that it moves is connected with the time t after it

starts by an equation of the form s = kP: Find a value of k that agrees

reasonably with the following data :

s, in feet 2.6 10.1 23.0 40.8 63.T

t, in seconds 1 2 3 4 5

In this case, it is not necessary to plot the values of s and t themselves,

because the nature of the equation, s = kt'^^ is known from physics.

Hence we make the substitution t^ = u, and write down the supple-

mentary table

:

s, in feet 2.6 10.1 23.0 40.8 63.7

w (or «2) 1 4 9 16 25

These values will be found to give points very nearly on a straight line

whose equation is of the form s = ku. To find k, we divide each value of

s by the corresponding value of u ; this gives several values of k

:

k 2.6 2.525 2.556 2.55 2.548

The average of these values of k is approximately 2.556 ; hence we may
write s = 2.556 m, or s = 2.556 t^.

EXERCISES

1. Find a formula of the type u = kv^ that represents approximately

the following values :

"

tt 3.9 15.1 34.5 61.2 95.5 137.7 187.4t;12 34567
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2. A body starts from rest and moves s feet in t seconds according to

the following measured values :

s, in feet 3.1 13.0 30.6 50.1 79.5 116.4

t, in seconds 5 1 15 2 2.5 3

Find approximately the relation between s and t.

3. The pressure p, measured in centimeters of mercury, and the volume

V, measured in cubic centimeters, of a gas kept at constant temperature,

were found to be :

145 155 165 178 191

L17.2 109.4 102.4 95.0 88.6p

Substitute u for l/u, compute the values of m, and determine a relation

of the form p = ku; that is, p = k/v.

4. Determine a relation of the form y = a + bx^ that approximately

represents the values

:

X 1 2 3 4 5 6 7

y 14.1 25.2 44.7 71.4 105.6 147.9 197.7

287. Logarithmic Plotting. In case the quantities y and x

are connected by a relation of the form

y = kx%

it is advantageous to take logarithms (to the base 10) on both

sides

:

log y = log Tex"" = log k -{-n log x,

and then substitute new letters for log x and log y

:

u = log Xj V — log y.

For, if we do so, the equation becomes

v = l -{- nu,

where I = log k.
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If the values of x and y are given by an experiment, and if

u = log X and v = log y are computed, the values of u and v

should correspond to points that lie on a straight line, and the

values of I and n can be found as in § 284. The value of k

may be found from that of /, since log k= l.

Example 1. The amount of water A, in cu. ft. that will flow per

minute through 100 feet of pipe of diameter d, in inches, with an initial

pressure of 50 lb. per sq. in., is as follows :

d 1 1.5 2 3 4 6

A] 4.88 13.43 27.50 75.13 152.51 409.54

Fmd a relation between A and d.

Let u = \ogd, V = log A ; then the values of u and v are

u = \ogd . . . 0.000 0.176 0.301 0.477 0.602 0.778

v = \ogA. . . 0.688 1.128 1.439 1.876 2.183 2.612

:::::::::::: :::::::::::-5=:::::::

i .2 .3 4 .5

Fig. 119

j6 .7 .8

These values give points in the (u, v) plane that are very nearly on

a straight line ; hence we may write, approximately,

V = a+ bu,

where a and b can be determined directly by measurement in the figure,

T
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or as in § 284. If we take the first and last pairs of values of u and v, we

find

.688 = a + 0,

2.612 = a + .778&.

Solving these equations, we find approximately, a = .688, b = 2.473,

and we may vvrrite

V = .688 + 2.473 u or log A = .688 + 2.473 log d.

Since .688 = log 4.88,

the last equation may be wrritten in the form

log A = log 4.88 + 2.473 log d

= log(4.88c?2-*78)

whence ^ = 4.88 (?2.473.

Slightly different values of the constants may be found by using other

pairs of values of u and v.

288. Logarithmic Paper. Paper called logarithmic paper

may be bought that is ruled in lines whose distances, horizon-

tally and vertically, from one point (Fig. 120) are propor-

tional to the logarithms of the numbers 1, 2, 3, etc.

Such paper may be used advantageously instead of actually

looking up the logarithms in a table, as was done in § 287.

For if the given values be plotted on this new paper, the result-

ing figure is identically the same as that obtained by plotting

the logarithms of the given values on ordinary squared paper.

Example. A strong rubber band stretched under a pull of p kg.

shows an elongation of E cm. The following values were found in an ex-

periment :

p 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 6.0 6.0 7.0

E 0.1 0.3 0.6 0.9 1.3 1.7 2.2 2.7 3.3 3.9 5.3 6.9

[RiGGS]

If these values are plotted on logarithmic paper as in Fig. 120, it is evi-

dent that they lie reasonably near a straight line, such as that drawn.



XII, § 288] EMPIRICAL EQUATIONS 275

By measurement in the figure, the slope of this line is found to be 1.6

approximately. Hence if m = log j? and v = log ^ we have

where I is a constant not yet determined ; whence

log^=:Z + 1.6 1ogp

or E = A.pi-6,

<n^ltf_... 7:
. t
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Fig. 120.— Elongation of a Rubber Band

where Z = log A;. If j? = 1, JS' = A: ; from the figure, if p = 1, ^ = .3
;

hence A: = .3, and
E = .3j!)l-6.

The use of logarithmic paper is however not at all essential

;

the same results may be obtained by the method of § 287.
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EXERCISES

1. In testing a gas engine corresponding values of the pressure p^ meas-

ured in pounds per square foot, and the volume v, in cubic feet, were

obtained as follows : v = 7.14, p = 54.6 ; 7.73, 50.7 ; 8.59, 45.9. Find

the relation between p and v (use logarithmic plotting).

Ans. p = 387.6 v-^^, orpv^ = 387.6.

2. Expansion or contraction of a gas is said to be adiabatic when no

heat escapes or enters. Determine the adiabatic relation between pressure

p and volume v (Ex. 14) for air from the following observed values

:

p = 20.54, V = 6.27 ; 25.79, 5.34 ; 54.25, 3.15.

Ans. pv^-'^ = 273.5.

3. The intercollegiate track records for foot-races are as follows,

where d means the distance run, and t means the record time :

d 100 yd. 220 yd. 440 yd. 880 yd. 1 mi. 2 mi.

t 0:09| 0:21^ 0:48 l:54f 4:15f 9:24|

Plot the logarithms of these values on squared paper (or plot the

given values themselves on logarithmic paper). Find a relation of the

form t = kd\ What should be the record time for a race of 1320 yd. ?

[See Kennelly, Popular Science Monthly, Nov. 1908.]

4. Solve the Example of § 288 by the method of § 287.

5. Each of the following sets of quantities was found by experiment.

Find in each case an equation connecting the two quantities, by §§ 287-

288.

(a) V

P

1

137.4

2

62.6

3

39.6

4

28.6

5

22.6

(6) u

V

12.9

63.0

17.1

27.0

23.1

13.8

28.5

8.5

3.0

6.9

(c) e

c

82^^

2.09

212°

2.69

390°

2.90

570°

2.98

750°

3.09

1100^

3.28



SOLID ANALYTIC GEOMETRY

CHAPTER XIII

COORDINATES

289. Location of a Point. The position of a point in three-

dimensional space can be assigned without ambiguity by giv-

ing its distances from three mutually rectangular planes, pro-

vided these distances are taken with proper signs according as

the point lies on one or the other side of each plane.

The three planes, each perpendicular to the other two, are

called the coordinate planes ; their common point (Fig. 121)

is called the origin. The three

mutually rectangular lines Ox,

Oy, Oz in which the planes in-

tersect are called the axes of

coordinates; on each of them

a positive sense is selected

arbitrarily, by affixing the

letter x, y, z, respectively.

The three coordinate planes,

Oyz, Ozx, Oxy, divide the whole

of space into eight compartments called octants. The first

octant in which all three coordinates are positive is also called

the coordinate trihedral.

If P', P", P'" are the projections of any point P on the

coordinate planes Oyz, Ozx, Oxy, respectively, then P'P=x,

P"P = y, P'"P= z are the rectangular cartesian coordinates of

277

/! /1 ^y
z

?/"--
• ""-^VQ' y

Fig. 121
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P. If the planes through P parallel to Oyz, Ozx, Oxy intersect

the axes Ox, Oy, Oz in Q', Q", Q'", the point P is found from

its coordinates x, y, z by passing along the axis Ox through the

distance 0Q'= x, parallel to Oy through the distance Q'P"=yj

and parallel to Oz through the distance P"P=z, each of

these distances being taken with the proper sense.

Every point in space has three definite real numbers as coordi-

nates; conversely, to every set of three real numbers corresponds

one and 07ily one point.

Locate the points : (2, 3, 4), (- 3, 2, 0), (5, 0,-3), (0, 0, 4),

(0,-6,0), (-5, -8, -2).

290. Distance of a Point from the Origin. For the distance

OP—r (Fig. 121) of the point P{x, y, z) from the origin we

have, since OP is the diagonal of a rectangular parallelepiped

with edges OQ' =x, OQ" =y, OQ"' = z:

M ^

t r

r = -\Qi9' + 2/^ + z^.

291. Distance between two Points. The distance between

the two points Pj (aJi,2/i>^i) ^^^ A
(^2 ) 2/2 J ^2) can be found if the coordi-

nates of the two points are given.

For (Fig. 123), the planes through P^

and those through P^ parallel to the

coordinate planes bound a rectangular

parallelepiped with P^Pi = d as di-

agonal ; and as its edges are

PiQ = x^-x,, PiR=y2-yi
we find

d = V(^2 - ^if + (2/2 - ViY + (^2 - ^if-

292. Oblique Axes. The position of a point P in space can also

be determined with respect to three axes not at right angles. The coor-

dinates of P are the segments cut off on the axes by planes through P

Fig. 122

PS = z.
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parallel to the coordinate planes. In what follows, the axes are always

assumed to be at right angles unless the contrary is definitely stated.

EXERCISES

1. What are the coordinates of the origin ? What can you say of the

coordinates of a point on the axis Ox ? on the axis Oij ? on the axis Oz ?

2. What can you say of the coordinates of a point that lies in the

plane Oxy ? in the plane Oyz ? in the plane Ozx ?

3. Where is a point situated when a; = ? when = 0? when

x = y = 0? when y = z'} when x = 2? when = — 3 ? when x = 1

,

2/ = 2?

4. A rectangular parallelepiped lies in the first octant with three of

its faces in the coordinate planes, its edges are of length a, &, c, respec-

tively ; what are the coordinates of the vertices ?

5. Show that the points (4,3, 5), (2, -1,3), (0,1,7) are the

vertices of an equilateral triangle.

6. Show that the points (- 1, 1, 3), (— 2, — 1, 4), (0, 0, 5) lie on a

sphere whose center is (2, — 3, 1). What is the radius of this sphere ?

7. Show that the points (6, 2, - 5), (2, - 4, 7), (4, - 1, 1) lie on a

straight line.

8. Show that the triangle whose vertices are (a, 6, c)
, (6, c, a)

,
(c, a, 6)

is equilateral.

9. What are the coordinates of the projections of the point (6, 3, — 8)

on the axes of coordinates ? What are the distances of this point from the

coordinate axes ?

10. What is the length of the segment of a line whose projections on

the coordinate axes are 5, 3, and 2 ?

11. What are the coordinates of the points which are symmetric to

the point (a, 6, c) with respect to the coordinate planes ? with respect to

the axes ? with respect to the origin ?

12. Show that the sum of the squares of the four diagonals of a rec-

tangular parallelepiped is equal to the sum of the squares of its edges.
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293. Projection. The projection of a point on a plane or

line is the foot of the perpendicular let fall from the point on

the plane or line. The projection of a rectilinear segment AB
on a plane or line is the intercept A'B' between the feet of the

perpendiculars AA', BB' let fall from A, B on the plane or

line. If a is one of the two angles made by the segment with

the plane or line we have

A'B' = AB cos a.

In analytic geometry we have generally to project a vector,

i.e. a segment with a definite sense, on an axis, i.e. on a line

with a definite sense (compare § 19). The angle a is then

understood to be the angle between the positive senses of

vector and axis (both being drawn from a common origin).

The above formula then gives the projection with its proper

sign.

Thus, the segment OP (Fig. 121) from the origin to any

point P(x, y, z) can be regarded as a vector OP. Its projec-

tions on the axes of coordinates are

the coordinates x, y, z of P. These

projections are also called the rec-

tangular components of the vector OP,

and OP is called the resultant of the

components OQ', OQ", OQ'", or also

of OQ', qP'", P"'P.

Similarly, in Fig. 123, if P^P^ be Fig. 123

regarded as a vector, the projections of this vector P^P^ on the

axes of coordinates are the coordinate differences x^ — x^,

2/2 — 2/i ) 2^2 — 2i . See § 298.

294. Resultant. The proposition of § 19 that tlie sum of

the projections of the sides of an open polygon on any axis is

<?" r
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equal to the projectioyi of the dosing side on the same axis and

that of § 20 that the projection of the resultant is equal to the

sum of the projections of its components are readily seen to hold

in three dimensions as well as in the plane. Analytically

these propositions follow by considering that whatever the

points P,{x^, 2/1, z^), P,(X2, y^, z^), ••• P„K , y^, z^) in space,

the sum of the projections of the vectors PyPi, P-iP^, ••• Pn-i^n

on the axis Ox is :

(x^-x,)-{-{x,-x,)-i- •.. -\-(x^-x^_i)= x^-Xij

where the right-hand member is the projection of the closing

side or resultant PiP„ on Ox. Any line can of course be taken

as axis Ox.

295. Division Ratio. Two points P-i{x^, y^ z{) and

Pi (^2 J 2/2 ) ^2) being given by their

coordinates, the coordinates x, y, z

of any point P of the line PyP^

can he found if the division ratio

P^P/P^p2 = k is known in ivhich

the point P divides the segment

P,P, (Fig 124).

Let Qi, Q, Qabe the projections

of Pj, P, P2 on the axis Ox-, as

Q divides Q1Q2 in the same ratio k in which P divides P1P2,

we have as in § 3 :

X =^ X-^ ~\~ K (3/2 — "^1/*

Similarly we find by projecting on Oy, Oz

:

2/ = 2/1 + A: (2/2 - yO, z = Zi + k(z, - z^).

If k is positive, P lies on the same side of P^ as does Pg ; if

k is negative, P lies on the opposite side of Pj (§ 3).

Fig. 124
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296. Direction Cosines. Instead of using the cartesian

coordinates x, y, z to locate a point P (Fig. 125) we can also

use its radius vector r = OP, i.e. the length of the vector drawn

from the origin to the point, and its direction cosines, i.e. the

cosines of the angles a, /3, y, made

by the vector OP with the axes Ox,

Oy, Oz. We haye evidently

ic = f cos a, 2/ = r cos p, z = r cos 7.

As a line has two opposite senses

we can take as direction cosines jY V

of any line parallel to OP either Fig. 125

cos a, cos p, cos y, or — cos a, — cos
ft,
— cos y.

The direction cosines cos a, cos ft, cos y of a vector OP are

often denoted briefly by the letters Z, m, n, respectively, so

that the coordinates of P are

x—lr, y = mr, z = nr.

The direction cosines of any parallel line are then I, m, n

or —I, —m, — n.

297. Pythagorean Relation. The sum of the squares of the

direction cosines of any line is equal to one.

For, the equations of § 347 give upon squaring and adding

since 7? -\-
y"^

-\- z^ = r"^

:

cos'^ ct + cos^ P + cos^ 7 = 1?

or

Z2 + m2 4- ^i' = 1

;

and this still holds when I, m, n are replaced by —l,—m,— n.

Since this result is derived directly from the Pythagorean

Theorem of geometry, it may be called the Pythagorean Rela-

tion between the direction cosines. Notice that I, m, n can be

regarded as the coordinates of the extremity of a vector of

unit length drawn from the origin parallel to the line.
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EXERCISES

1. Find the length of the radius vector and its direction cosines for

each of tlie following points : (5, - 3, 2); (- 3, - 2, 1); (- 4, 0, 8).

2. The direction cosines of a line are proportional to 1, 2, 3; find

their values.

3. A straight line makes an angle of 30*^ with the axis Ox and an

angle of 60° with the axis Oy ; what is the third direction angle ?

4. What is the direction of a line when Z = ? when Z = w = ?

5. What are the direction cosines of that line whose direction angles

are equal ?

6. What are the direction cosines of the line bisecting the angle

between two intersecting lines whose direction cosines are Z, w, n and I
,

to', w', respectively ?

7. Find the direction cosines of the line which bisects the angle

between the radii vectores of the points (3, — 4, 2) and (— 1, 2, 3).

8. Three vertices of a parallelogram are (4, 3, —2), (7, — 1, 4),

(—2, 1, — 4); find the coordinates of the fourth vertex (three solutions).

9. In what ratio is the line drawn from the point (2, — 5, 8) to the

point (4, 6,-2) divided by the plane Ozx ? by the plane Oxy ? At what

points does this line pierce these coordinate planes ?

10. In what ratio is the line drawn from the point (0, 5, 0) to the

point (8, 0, 0) divided by the line in the plane Oxy which bisects the

angle between the axes ?

11. Find the coordinates of the midpoint of the line joining the points

(4, — 3, 8) and (6, 5, — 9) . Find the points which trisect the same segment.

12. If we add to the segment joining the points (4, 1, 2) and (—2,

5, 7) a segment of twice its length in each direction, what are the coordi-

nates of the end points ?

13. Find the coordinates of the intersection of the medians of the tri-

angle whose vertices are Pi (xi
, yi , Zx), Ti {xi^ yi, zt), Tz (xs , yz , zz).

14. Show that the lines joining the midpoints of the opposite edges

of a tetrahedron intersect and are bisected by their common point.

16. Show that the projection of the radius vector of the point

P(x, «/, z) on a line whose direction cosines are l\ to', w' is Vx -f- m^y + n^z.
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r

"298. Projections. Components of a Vector. If two points

-PiC^'ij Viy ^\) and P2('^"2) ?/2j ^2) are given by their coordinates,

the projections of the vector, P1P2 on

the axes, or what amounts to the

same, on parallels to the axes drawn

through Pj (Eig. 126), are evidently

(§ 293) : •

PyQ = X2-x,, P,R = ^2 - 2/1,

P^S = Z2 — Zi.

These projections, or also the vectors

PiQ, QN,NP2y are called the rectangular components of the

vector P1-P2 > or its components along the axes.

If d is the length of the segment PiPo , its direction cosines Z,

m, n are since P^Q is perpendicular to P^Q, P2R to P^E, P2S

to P,S:

Fig. 126

1 = 3/2 ?/o — V,

These relations can also be written in the form

:

X2—Xy ^ ^2 — .Vl ^ ^2— '^! ^ fl

I m n

(li,m2,nt)

299. Angle between two Lines. Iftlie directions of two lines

are given by their direction cosines li , mi , n^ and I2 , ^2 , ng , the

angle ij/ between the two lines is given

by the formula

cos x|/ = I1I2 + mitn^2 -I- nin2-

For, drawing through the origin

two lines of direction cosines li , mi ,

ni and ^2 > ^2 > ^2 and taking on the jj/^ ^'

former a vector OPi of unit length, Fig- 127

the projection OP of OPi on the other line is equal to the

r /

/ ^v^^ ^^l^miMii

£^>-'''^V y

5^\Jy
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cosine of the required angle ij/. On the other hand, OPi has

h) *^i) % ^s components along the axes ; hence, by § 294

:

cos {{/ = I1I2 + mimg + 711112.

Two intersecting lines (or any two parallels to them) make

two angles, say xf/ and ir — \p. But if the direction cosines of

each line are given, a definite sense has been assigned to each

line, and the angle between the lines is understood to be the

angle between these senses.

300. Conditions for Parallelism and for Perpendicularity.

If, in particular, the lines are parallel, we have either l^ == I2,

mi = m2 , Til = 712, or li = — 12, 771^ = — m2, tii = — Wj ; hence in

either case l,^ni,^7i.

This then is the condition of parallelism of two lines whose

direction cosines are ^1, m^, n^ and I2, m,, 712.

If the lines are perpendicular, i.e. if j/^=i7r, we have

cos 1/^ = 0; hence the condition of perpendicularity of two lines

whose direction cosines are li, mi, n^ and I2 , m2, 712 is

I1I2 + mim2 + ni7i2 = 0.

301. The formula of § 299 gives

sm2 xp = 1 - cos2 xf/ = 1 — (I1I2 4-mim2 + ^1^2)^.

As (§ 297) (Zi2 + mi2 + ni^)(l2^ + m2^ + n2'^)= 1, we can write this ex-

pression in the form

sin2 xl/ = ^^^ "^ *^^^ "^ ^^^ ^^^2 '^ ''^^'"^^ "* '*^^2

hh 4- mim2 + nin2 l-^ + m-^ + ^2^

which, by Ex. 3, p. 45, can also be expressed as follows :

h WI2I

The direction (I, m, w) perpendicular to two given different directions

(l\ , wi , ni) and (^2 , W2 , W2) is found by solving the equations (§ 300)

III + m\m + Jiiw = 0,

hi + wi2W + n2n = 0,

sin^i//
mi ?ii

•i n\ h
+ +

m2 ^2 W2 ^2
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whence
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{ m n

mi Wl 7ll h h mi

W2 W2 W2 h h W2

If we denote by k the common value of these ratios, we have

h mi

h Wi2

1 = mi wi

W2 W2

Wl ii

W2 Z2

substituting these values in the relation (§ 297) P- + m^ + ^2 _ 1 and,

observing the preceding value of sin ^, we find

:

l=±

mi ni

m^ 712 m =±
li mi

h Wl2

sin ^ sin \p

where \p is the angle between the given directions.

sin^

302. Three directions (Zi, wii, Wi), (Z2, wi2, ih), (Izi WI3, W3) are com-

planar, i.e. parallel to the same plane, if there exists a direction (Z, m, w)

perpendicular to all three. This will be the case if the equations

hi + wiim + Tiin = 0,

hi + W2m + n2n — 0,

?3? + wi3m +[?i3n =

have solutions not all zero ; hence the condition of complanarity

h mi ni

h mi 112.

h mz Wa

EXERCISES

1. Find the length and direction cosines of the vector drawn from the

point (5, —2, 1) to the point (4, 8, — 6) ; from the point (a, &, c) to the

point (— a, —6, — c) ; from (— a, —h, — c) to (a, ?), c).

2. Show that when two lines with direction cosines ?, w, 7i and

l\ w', 7i', respectively, are parallel, IV + wi>^' + wn' =±1. 2

3. Show that when two lines with direction cosines proportional to

a, 6, c, and a', 6', c', are perpendicular aa' + &&'+ cc' = ; and when the

lines are parallel a/a' =h/h' = c/c'.

4. Show that the points (5, 2, -3), (6, 1, 4), (-2, -3, 6),

(—1, — 4, 13) are the vertices of a parallelogram.
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5. Show by direction cosines that the points (6, —3, 5), (8, 2, 2),

(4, —8, 8) lie in a line.

6. Find the angle between the vectors from (5, 8, — 2) to (—2, 6,-1)

and from (8, 3, 5) to (1, 1, -6).

7. Find the angles of the triangle whose vertices are (5, 2, 1),

(0,3, -1),(2, -1,7).

8. Find the direction cosines of a line which is perpendicular to two

lines whose direction cosines are proportional to 2, —3, 4, and 5, 2, —1,

respectively.

9. Derive the formula of § 299 by taking on each line a vector of unit

length, OPi and OP2, and expressing the distance P1P2 first by the

cosine law of trigonometry, then by § 292, and equating these expressions.

10. Find the rectangular components of a force of 12 lb. acting along

a line inclined at 60° to Ox and at 45° to Oy.

11. Find the resultant of the forces OPi, OP2, OP3, OP4 if the co-

ordinates of Pi, P2, P3, P4, with O as origin, are (3, —1, 2), (2, 2,-1),

(-1,2,1), (-2, 3, -4).

12. If any number of vectors, applied at the origin, are given by the

coordinates x, y, z of their extremities, the length of the resultant H is

\/(Sx)2 + {^yy^ + (Ss)"-^ (see Ex. 9, p. 21), and its direction cosines

are S xjB, S yjB, S zIB.

13. A particle at one vertex of a cube is acted upon by seven forces

represented by the vectors from the particle to the other seven vertices
;

find the magnitude (length) and direction of the resultant.

14. If four forces acting on a particle are parallel and proportional to

the sides of a quadrilateral, the forces are in equilibrium, i.e. their resultant

is zero. Similarly for any closed polygon.

303. Translation of Coordinate Trihedral. Let x, y, z be

the coordinates of any point P with respect to the trihedral

formed by the axes Ox, Oy, Oz (Fig. 128). If parallel axes

^i^ij ^lVu ^1% t)6 drawn through any point Oi(a, 6, c), and if

^j> 2/ij ^1 ^^^ the coordinates of P with respect to the new tri-
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hedral OxX{y^Zi, then the relations between the old coordinates

X, y, z, and the new coordinates Xy, y^, z^ of one and the same

point P are evidently

x = a-}-x^, y = b + 7ji, z = c + z^.

The coordinate trihedral has thus

been given a translation, represented

by the vector 00^^. This operation

is also called a transformation to

parallel axes through Oi- Fig. 128

. 304. Area of a Triangle. Any two vectors OPi, OP2 drawn from

the origin determine a triangle OP1P2, whose area A can easily be ex-

pressed if the lengths ri , r2 and direction cosines

of the vectors are given. For, denoting the angle

Pi OP2 by \p we have for the area A r

A = \ riTi sin ^,

where sin ^ can be expressed in terms of the direc-

tion cosines by § 301.

yQz

Fig. 129

305. Moment of a Force. Such areas are used in mechanics to

represent the moments of forces. The moment of a force about a point O
is defined as the product of the force into the

perpendicular distance of from the line of

action of the force. Thus, if the vector P1P2

(Fig. 130) represent a force (in magnitude,

direction, and sense) the'moment of this force

about the origin is equal to twice the area

of the triangle OP1P2, i.e. to the area of the

parallelogram OP1P2P3, where OP3 is a vector

equal to the vector P1P2. Fig. 130

It is often more convenient to represent this moment not by such an

area, but by a vector OQ, drawn from O at right angles to the triangle,

and of a length equal to the number that represents the moment. If the

body on which the force acts could turn freely about this perpendicular

the moment would represent the turning effect of the force P1P2.
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The 'sense of this vector that represents the inoiuent is taken so as to

make the vector point toward that side of the plane of the triangle from

which the force P1P2 is seen to turn counterclockwise.

306. If we square the expression found in § 304 for the area of the

triangle OP1P2 and substitute for sin'^^j/ its value from § 301, we find :

A^ = \n^r2^(^
mi Wi 2 ni h 2 h mi

m2 nz
+

Wo h "
I2 m2 1

Hence A^ is the sum of the squares of the three quantities

Ax = i riVi
mi Wi

1712 W2
A,

ni h
n.2 h

A^=\ rira

which have a simple geometrical and mechanical interpretation. For, as

the coordinates of Pi , Po are

xi = hn, yi = wiiri, zi = niVi,

Xi = hr2', y2 = m2r2, Z2 = ^2^2,

we have, e.g.,

A.= l
hn rrnn

hrz wi2r2
= i

xi yi

X2 2/2

and as Xi , yi and X2 , 2/2 are the coordinates of the projections ^1 , ^2 of

Pi , P2 on the plane Oxy, Az represents (§ 12) the area of the triangle

0Q\Q2-, i-e. the projection on the plane Oxy of the area OP1P2. Sim-

ilarly, Aj. and Ay are the projections of the area OP1P2 on the planes

Oyz and Ozx, respectively. As any three mutually rectangular planes

can be taken as coordinate trihedrals, our formula A^ = A^ + A^ + A^
means that the square of the area of any triangle is equal to the sum of

the squares of its projections on any three mutually rectangular planes.

In mechanics, 2 A^ is the moment of the projection Qi Q2 of the force

P1P2 about 0, or what is by definition the same thing, the moment of

P1P2 about the axis Oz. Similarly, for 2^^, 2 Ay. The proposition

means, therefore, that the moments of P1P2 about the axes Ox, Oy, Oz

laid off as vectors along these axes can be regarded as the rectangular

components of the moment of P1P2 about the point ; in other words,

2 ^,, 2 Ay, 2 Ag are the components along Ox, Oy, Oz of that vector

2 ^ (§ 305) which represents the moment of P1P2 about O.

u
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307. Polar Coordinates. The position of any point P {¥\\

131) can also be assigned by its

radius vector OP=r, i.e. the dis-

tance of P from a fixed origin or

pole O, and two angles : the colati-

tude 6, i.e. the angle NOP made

by OP with a fixed axis ON, the

2)olar axis, and the longitude
(f>,

i.e. the angle AOP' made by the

plane of 9 with a fixed plane

NOA through the polar axis, the

initial meridian plane.

A given radius vector r confines the point P to the sphere

of radius r about the pole 0. The angles and <^ serve to

determine the position of P on this sphere. This is done as

on the earth's surface except that instead of the latitude, which

is the angle made by the radius vector with the plane of the

equator AP', we use the colatitude or polar distance = NOP.
The quantities r, 6, and <^ are the polar or spherical coordi-

nates of P. After assuming a point as pole, a line ON
through 0, with a definite sense, as polar axis, and a (half-)

plane through this axis as initial meridian plane, every point

P has a definite radius vector r (varying from zero to infinity),

colatitude 6 (varying from to tt), and a definite longitude <^

(varying from to 2 tt). The counterclockwise sense of rotation

about the polar axis is taken as the positive sense of <^.

308. Transformation from Cartesian to Polar Coordinates-

The relations between the cartesian coordinates x, y, z and the

polar coordinates r, 6, <j> of any point P appear directly from

Fig. 132. If the axis Oz coincides with the polar axis, the

plane Oxy with the equatorial j^lane, i.e. the plane through the
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pole at right angles to the polar axis, while the plane Ozx is

taken as initial meridian plane, the pro- ^

jections of OP= r on the axis Oz and ^

on the equatorial plane are

OR = rGO^e, OQ = r sine.

Projecting OQ on the axes Ox, Oy,we

find Fig. 132

x=r sin 6 cos <^, y = r sin 6 sin <^, z = r cos 6.

Also r= Vx^-\-y^ -\- Z-, cosO = — ^
tan<^ = '^.

Va^ -h y2 ^ ;32 X

EXERCISES

1. Find the area of the triangle whose vertices are (a, 0, 0), (0, 6, 0),

(0, 0, c).

2. Find the area of the triangle whose vertices are the origin and the

points (3, 4, 7), (- 1, 2, 4).

3. Find the area of the triangle whose vertices are (4, — 3, 2),

(6,4,4), (-5, -2, 8).

4. The cartesian coordinates of a point are 1, VS, 2\/3 ; what are its

polar coordinates ?

5. If r = 5, = i TT, = ^ TT, what are the cartesian coordinates ?

6. The earth being taken as a sphere of radius 3962 miles, what are

the polar and cartesian coordinates of a point on the surface in lat. 42° 17'

N. and long. 83° 44' W. of Greenwich, the north polar axis being the axis

Oz and the initial meridian passing through Greenwich ? What is the

distance of this point from the earth's axis ?

7. Find the area of the triangle whose vertices are (0, 0, 0) , (ri, 0i, 0i),

(ra, 02, 02).

8. Express the distance between any two points in polar coordinates.

9. Find the area of any triangle when the cartesian coordinates of the

vertices are given.

10. Find the rectangular components of the moment about the origin

of the vector drawn from (1, — 2, 3) to (3, 1, — 1).



CHAPTER XIV

THE PLANE AND THE STRAIGHT LINE

PART I. THE PLANE

309. Locus of One Equation. In plane analytic geometry

any equation between the coordinates a:, y or r, <^ of a point in

general represents a plane curve. In particular, an equation of

the first degree in x and y represents a straight line (§ 30);

an equation of the second degree in x and y in general repre-

sents a conic section (§ 245).

In solid analytic geometry any equation between the coordi-

nates ic, y, z or ?', d, <^ of a point in general represents a surface.

Thus, if any equation in x, y, z,

F{x,y,z) = 0,

be imagined solved for z so as to take the form

2;=/(a;, y),

we can find from this equation to every point (a;, y) in the

plane Oa^j one or more ordinates z (which may of course be

real or imaginary), and the locus formed by the extremities of

the real ordinates will in general form a surface. It may how-

ever happen in particular cases that the locus of the equation

F(x, y, z)= 0, i.e. the totality of all those points whose coordi-

nates x, yj z when substituted in the equation satisfy it, con-

sists only of isolated points, or forms a curve, or that there are

no real points satisfying the equation.

Similar considerations apply to an equation in polar

coordinates

F(r, $,<!>) =0.

202
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310. Locus of Two Simultaneous Equations. Two simulta-

neous equations in x, y, z (or in the polar coordinates r, 6, </>)

will in general represent a curve in space, namely, the inter-

section of the two surfaces represented by the two equations

separately.

Thus, in the present chapter, we shall see that an equation of

the first degree in x, y, z represents a plane and that therefore

two such equations represent a straight line, the intersection of

the two planes. In chapters XV and XVI we shall discuss

loci represented by equations of the second degree, which are

called quadric surfaces.

311. Equation of a Plane. Every equation of the first degree

in X, y, z represents a plane. The plane is defined as a surface

such that the line joining any two of its points lies completely

in the surface. We have therefore to show that if the general

equation of the first degree

(1) Ax-{-By-\-Cz+D =

is satisfied by the coordinates of any two points Pi(x^y y^ z^

and P2fe> Vi) %)> ^•^' if

^ + ^yi + Czi + Z> = 0,

Ax^-\-By^+Cz^-\-D=^0,

then (1) is satisfied by the coordinates of every point

P{x, y, z) of the line PiP^.

Now, by § 295, the coordinates of every point of the line

P^Pi can be expressed in the form

x = x^-\-k(x^-x;), y = yi + k(y2~yi), z = Zj + A:(% - Zj),

where k is the ratio in which P divides PiP^j i-e.

k = P,P/P,P,.

We have therefore to show that

A[x^ + kix^ - a^)] + B[y^ +k{y, -yO] + C[_z,-\-k{z,-z,)-] +/)=0,

(2)
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whatever the value of k. Adding and subtracting kD, we can

write this equation in the form

(1 - k)(Ax,-{- By^-^ Cz:, + D) -i-kiAx^-^ By,-{- Cz2-\- D) :=0',

and this is evidently true for any k, owing to the conditions (2).

312. Essential Constants. The equation (1) will still rep-

resent the same plane when multiplied by any constant differ-

ent from zero. Since A, h, C cannot all three be zero, we

can divide (1) by one of these constants ; it will then contain

not more than three arbitrary constants. We sa}^ therefore

that the general equation of a plane contains th7'ee essential

C07istants. This corresponds to the geometrical fact that a

plane can, in a variety of ways, be determined by three condi-

tions, such as the conditions of passing through three points,

etc.

313. Special Cases. If, in equation (1), D = 0, the plane

evidently passes through the origin.

If, in equation (1), 0=0, so that the equation is of the

form
Ax + By-\-D = 0,

this equation represents the plane perpendicular to the plane

Oxy and passing through the line whose equation in the

plane Oayy is xlx -i-By -\- D = 0. For, the equation Ax + By

-h Z> = is satisfied by the coordinates of all points (x, y, z)

whose x and y are connected by the relation Ax -\-By -\-D =
and whose z is arbitrary, but it is not satisfied by the coordi-

nates of any other points. Similarly, if ^ = in (1), the plane

is perpendicular to Ozx ; if ^ = 0, the plane is perpendicular to

Oyz.

If 5 = and 0=0 in (1), the equation obviously represents

a plane perpendicular to the axis Ox ; and similarly when

and A, or A and B are zero.
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Notice that the line of intersection of (1) with the plane

Oxy, for instance, is represented by the simultaneous equations

Ax + By-\-Cz + D=^0,z = (i.

314. Intercept Form, li D^O the equation (1) can be

divided by Z>; it then assumes the form

D D^ D
If A, B, C are all different from zero, this equation can be

written

^
I

y
I

^ ^1
-D/A^ -D/B^ -D/C '

or, putting - D/A = a, - D/B = b, - D/C= c

:

(3) ^ + | + ?=1.
a b c

In this equation, called the intercept form of the equation

of a plane, the constants a, b, c are the intercepts made by the

plane on the axes Ox, Oy^ Oz respectively. For, putting, for

instance, y = and z = 0, we find x = a\ etc.

315. Plane through Three Points. If the plane

Ax + By+Cz + D =
is to pass through the three points Px{x^, yi, Zi), ^2(^2? 2/2? %)>

Ps(xs, 2/3, 23), the three conditions
' Ax, + By,-\-Cz,+D=0,

Ax,^ + %2 + Cz. 4- Z) = 0,

Ax, + By,-^Cz, + D =
must be satisfied. Eliminating A, B, (J, D between the four

linear homogeneous equations (compare § 75) we find the equa-

tion of the plane passing through the three points in the form

X y z 1

^1 2/1 ^i 1

»2 2/2 2, 1

•^3 2/3 '^Z
-I

= 0.
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EXERCISES

1. Find the intercepts made by the following planes :

(a) 4 a; + 12 ?/ + 3 ;2 = 12 : (b) 15 x - 6 1/ + 10 ^ + 30 = ;

(c) x-y -\-3-l=0; (d) x-^2y -\-S.z + 4 = 0,

2. Interpret the following equations

:

(a) x+y + z = l; (b) 6y - ^ z = 12
;

(c) x + y=0; (d) 6y + l2=0.

'"
3. Find the plane determined by the points (2, 1, 3), (1, —5,0),

(4,6, -1).

4. Write down the equation of the plane whose intercepts are 3, 2, — 5.

5. Find the intercepts of the plane passing through the points

(3, -1,4), (6,2,-3), (-1, -2, -3).

6. If planes are parallel to and a distance a from the coordinate planes,

what are their intercepts ? What are their equations ?

7. Show that the four points (4,3,3), (4,-3,-9), (0,0,3),

(2, 1, 2) lie in a plane and find its equation.

316. Normal Form. The position of a plane in space is

fully determined by the length p = ON (Fig. 133) of the per-

pendicular let fall from the origin

on the plane and the direction co-

sines I, m, n of this perpendicular

regarded as a vector ON. Let Pbe
any point of the plane and OQ=x,
QR = y, HP— z its coordinates ; as

the projection of the open polygon

OQRP on ON is equal to ON
(§ 294) we have

(4) Ix -\- my -\- nz = p.

This equation is called the normal form of the equation of a

plane. Observe that the number p is always positive, being

the distance of the plane from the origin, or the length of the

vector ON Hence Ix + my -\- nz is always positive.

Fig. 133
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317. Reduction to the Normal Form. The equation Ax +
By -{- Cz -\- D = is in general not of the form lx+my+nz=p
since in the latter equation the coefficients of x, y, z, being the

direction cosines of a vector, have the property that the sum

of their squares is equal to 1, while A^-\-B--{- C^ is in general

not equal to 1. But the general equation can be reduced to

the normal form by multiplying it by a constant factor k

properly chosen. The equation

kAx + kBy + kCz + kD =
evidently represents the same plane as does the equation

Ax + By H- Cz + D = 0; and we can select k so that

{kAy + (kBf + (kCy = 1, viz. k= ^

±VA'-\-B^-\-C^

As in the normal form the right-hand member p is positive

(§ 316) the sign of the square root should be selected so that

kD becomes negative.

The normal fonn is therefore obtained by dividing the equation

Ax + By -\- Gz-^D = Oby ± VA^ + B^ -^ G^ according as D is

negative or positive.

It follows at the same time that the direction cosines of any

normal to the plane Ax -\- By + Cz -\- D = are proportional

to Ay Bf C, viz.

;
A B1= , m =

±V^2 + 52+ C2 ± V^2_^52_^02

±VA''-\-B'-\- (?

and that the distance of the plane from the origin is

P
± VA? -f-

52 ^ C2

the upper sign of the square root to be used when D is nega-

tive, the lower when D is positive.
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Fig. 134

318. Distance of Point from Plane. Let Ix -{- my -i-nz =p
be the equation of a plane in the normal form, Pi{xi, y^, z^

any point not on this plane (Fig. 134). The projection OS of

the vector OP^ on the normal to the

plane being equal to the sum of the

projections of its components 0Q =
Xij QR = 2/i, RP\ = 2;i,

we have

OS = lx^-\- myi + nzi.

Hence the distance d of Pi from the

plane, which is equal to NS, will be

d = OS — 0N= Ix^ + myi + nzy^ — p.

If this expression is negative, the point P^ lies on the same

side of the plane as does the origin ; if it is positive, the point

Pi lies on the opposite side of the plane. Any plane thus di-

vides space into two regions, in one of which the distance of

every point from the plane is positive, while in the other the

distance is negative. If the plane does not pass through the

origin, the region containing the origin is the negative region

;

if it does, either side can be taken as the positive side.

To find the distance of a point Pi(.'«i, y^ Zi) from a plane

given in the general form

Ax-\-By + Cz-{-D = 0,

we have only to reduce the equation to the normal form

(§ 317) and then to substitute for x, y, z the coordinates Xi, yi,

Zi of Pi; thus

^ ^ ^Xi + By, + Cz^^- D

the square root being taken with + or — according as D is

negative or positive.

Notice that d is the distance from the plane to the point

Pi , not from Pi to the plane.
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319. Angle between Two Planes. As two intersecting

planes make two angles whose sum = tt, we shall, to avoid any

ambiguity, define the angle between the planes as the angle

between the perpendiculars (regarded as vectors) drawn from

the origin to the two planes.

If the equations of the planes are given in the normal form,

kx + m^ + n^z = pi,

l^ + m^ + n.^ = 2)2,

we have, by § 299, for the angle if/ between the planes

:

cos \p = IJ2 + wi^ma + ri^ng.

If the equations of the planes are in the general form,

A^ + B^ + C2Z +A = 0,

we find by reducing to the normal form (§ 317)

:

cos l{/ = A,A,-\-B,B2+C,C,

± VA' + B,' + 0^2 . ± VA^ + ^^2 + c^2

320. Bisecting Planes. To find the equations of the two

planes that bisect the angles formed by two intersecting planes

given in the normal form,

liX + Miy + n^z —pi = 0, l^-\- m<^ + n2Z — pg = 0,

observe that for any point in either bisecting plane its distances

from the two given planes must be equal in absolute value.

Hence the equations of the required planes are

l^x + m^y -\-n^z—p^ = ± Q^ + m^ + n^z — ^2)-

To distinguish the two planes, observe that for the plane that

bisects that pair of vertical angles which contains the origin

the perpendicular distances are in the one angle both positive,

in the other both negative; hence the plus sign gives this

bisecting plane.
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If the equations of the planes are given in the general form,

first reduce the equations to the normal form (§ 317).

EXERCISES

1. A line is drawn from the origin perpendicular to the plane

a; — ?/ — 50 — 10 = 0; what are the direction cosines of this line ?

2. Find the distance from the origin to the plane 2x + 2?/ — = 6.

3. Find the distances of the following planes from the origin :

(a)3a'-4y + 50-8 = O, {h) x + y+ z = {),

(^c) 2y -^z = S, (d) 3x-^y + 6 = 0.

4. Find the distances from the following planes to the point

(2, 1, - 3) :

(a) 3 X + 5 1/ - 6 = 8, (&) 2x-Sy - z = 0, (c) x + y + z=0.
5. Find the plane through the point (4, 8, 1) which is perpendicular

to the radius vector of this point ; also the parallel plane whose distance

from the origin is 10 and in the same sense.

6. Find the plane through the point (— 1, 2, — 4) that is parallel to

the plane ix — Sy + 2z = 8; what is the distance between these planes ?

7. Find the distance between the planes 4x — 5?/ — 2^ = 6, 4lX — 6y

-20 + 8 = 0.

8. Are the points (6, 1, — 4) and (4, — 2, 3) on the same side of the

plane 2x + Sy - 5z + 1 =0?

9. Write down the equation of the plane equally inclined to the axes

and at the distance p from the origin.

10. Show that the relation between the distance p from the origin to a

plane and the intercepts a, &, c is 1/a^ + 1/b^ 4- 1/c^ = 1/p^.

11. Show that the locus of the points equally distant from the points

Pi(xi, ?/i, 0i) and Po^x-y, 2/2, ^2) is a plane that bisects P1P2 at right

angles.

12. Find the equations of the planes bisecting the angles: (a) between

the planes x + y -{- z-3=0, 2x-3i/H- 4^ + 3 = 0; (6) between the

planes 2x — 2y — z = 8,x-\-2y — 2z = 6.



XIV, § 321] THE PLANE 301

321. Volume of a Tetrahedron. The volume of the tetrahe-

dron whose vertices are the points Pi(x^, yi, Zy), Pz^x^, 2/2? ^2)^

^(•^*3) 2/3) h)) Pii^if 2/4) ^a) can be expressed in terms of the

coordinates of the points. The equation of the plane deter-

mined by the points P2 , P3 , P4 is (§ 315)

X y z 1

^2 2/2 Z2 1

•^3 y^ ^3 1

^4 yi z, 1

Now the altitude d of the tetrahedron is the distance from this

plane to the point P^ (x^
, y^ , z^), i.e. (§ 318)

2/1 ^i 1

= 0.

2/2 ^2 1
2

2^2 ^2 1 2
«2 2/2 1

yz Zz 1 + 2:3 X3 1 + a^3 2/3 1

2/4 2:4 1 Z, X, 1 ^4 2/4 1

(^=

But the denominator is seen immediately to represent twice

the area of the triangle with vertices P^, P^, P^ (Ex. 9, p. 291),

i.e. twice the base of the tetrahedron. Denoting the base by jB,

we then have
Xl 2/1 Zy 1

^'2 2/2 ^2 1

^Z 2/3 2!3 1

X, 2/4 2:4 1

The volume of the tetrahedron is V= ^Bd, and therefore

Xy 2/1 ^1 1

2 2/2 '^2 -^

•^3 2/3 2!3 1

X, 2/4 ^4 1

2Bd
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322. Simultaneous Linear Equations. Two simultaneous

equations of the first degree,

A^ + B^y + (7,2 -hA = 0,

represent in general the line of intersection of the two planes

represented by the two equations separately. For, the coordi-

nates of every point of this line, and those of no other point,

satisfy both equations. See § 310 and §§ 326-327.

Three simultaneous equations of the first degree,

A,x-{-B,y-\-G,z + D, = 0,

A^ + B^-\- C.Z +A = 0,

A,x + B,y + Csz +A = 0,

determine in general the point of intersection of the three

planes. The coordinates of this point are found by solving

the three equations for x, y, z. But it may happen that the

three planes have no common point, as when the three lines of

intersection are parallel, or when the three planes are parallel

;

and it may happen that the planes have an infinite number of

points in common, as when two of the planes, or all three,

coincide, or when the three planes pass through one and the

same line.

Four planes will in general have no point in common. If they do, i.e.

if there exists a point (xi , yi , zi) satisfying the four equations

Aixi + Bm + C\zi + i)i = 0,

A2X1 + BiVi + 02^1 + Z)2 = 0,

Asxi + Bm + GzZi + Z>3 = 0,

A^Xi + BaVi + C4Z1 + 2)4 = 0,

1 between these equations so that we find

= 0.

can eliminate xi , yi, ^u 1 between th

condition
A, Bi Ci Di

A2 B2 C2 D2

As Bs Cs D,

A, B, C4 2>4
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EXERCISES

1. Find the volume of the tetrahedron whose vertices are (0, 0, 0),

(a, 0,0), (0, &, 0), (0, 0, c).

2. Find the volumes of the tetrahedra whose vertices are the following

points :

(a) (7, 0, 6), (3, 2, 1), (- 1, 0, 4), (3, 0, - 2).

(6) (3, 0, 1), (0, - 8, 2), (4, 2, 0), (0, 0, 10).

(c) (2, 1, - 3), (4, - 2, 1), (3, -7, - 4), (5, 1, 8).

3. Find the coordinates of the points in which the following planes

intersect

:

(a) 2x + 67J -^ z ~2 = 0, x + 6y + z = 0, 3x— 3?/ + 2^— 12=0.

(6) 2x+y+z=a+ b+ c, ix—2 y-^z=2 a-2b+ c, 6x~y=Sa-b.
"^ 4. Show that the four planes 6x — 3y — z = 0, 4:X — 2y-\-z = S,

Sx + 2y — 6z = 6, x -{- y + z = 6 pass through the same point. What
are the coordinates of this point ?

~ - 5. Show that the four planes 4:X + y-\-z + 4: = 0, x-\-2y — z + S=0,
y— 6z + li = 0, x + y + z — 2 = have a common point.

6. Show that the locus of a point the sura of whose distances from

any number of fixed planes is constant is a plane.

323. Pencil of Planes. All the planes that pass through

one and the same line are said to form a pencil of planes, and

their common line is called the axis of the pencil.

If the equations of any two non-parallel planes are given,

say

A,x + B,y + C,z -h A = 0,

A2X + ^22/ + O2Z 4-A = 0,

then the equation of any other plane of the pencil having their

intersection as axis can be written in the form

(2) {A,x + B,y + G,z + A) + A:(^2aj + A2/ + O^z + A) = 0,

where /c is a constant whose value determines the position of

the plane in the pencil.

For, this equation (2) being of the first degree in x, y, z

certainly represents a plane ; and the coordinates of the points
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of the line of intersection of the two given planes (1), since

they satisfy each of the equations (1), must satisfy the equa-

tion (2) so that the plane (2) passes through the axis of the

pencil.

324. Sheaf of Planes. All the planes that pass through

one and the same point are said to form a sheaf of planes, and

their common point is called the center of the sheaf.

If the equations of any three planes, not of the same pencil,

are given, say

A^x + ^22/+ 022; +A = 0,

A,x-\-B,y-\-C,z-\-D, = 0,

then the equation of any other plane of the sheaf having their

point of intersection as center can be written in the form

(A,x + B,y + C,z 4- A) + ^i (A,x + B,y + C,z + A)
+ k, {A,x+ B^ 4- C,z + A) = 0,

where ki and k2 are constants whose values determine the

position of the plane in the sheaf.

The proof is similar to that of § 323.
*

325. Non-linear Equations Representing Several Planes.

When two planes are given, say

A,x + B,y + C,z-^Di = 0,

A^ + B^ + Cz + D^^O,
then the equation

(A,x + B,y -f C,z -f- D,)(A,x + B,y + 0,z -f A)= 0,

obtained by equating to zero the product of the left-hand mem-

bers (the right-hand members being reduced to zero), is satis-

fied by all the points of the first given plane as well as all the

points of the second given plane, and by no other points.

The product equation is therefore said to represent the two

given planes. The equation is of the second degree.
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Similarly, by equating to zero the product of the left-hand

members of the equations of three or more planes (the right-

hand members being zero) we obtain a single equation repre-

senting all these planes. An equation of the nth degree may,

therefore, represent n planes ; it will do so if its left-hand mem-

ber can be resolved into n linear factors with real coefficients.

EXERCISES

1. Find the plane that passes through the line of intersection of the

planes 5x — 32/4-4^ — 35=0, x + y — z -.-O and through (4, — 3, 2)

.

— 2. Show that the planes 3x — 22/ + 5 + 2=0, ic + ?/ — — 5 = 0,

6a; + 2/ + 20— 13 = belong to the same pencil.

3. Show that the following planes belong to the same sheaf and find

the coordinates of the center of the sheaf : 6a; + y — 42r = 0, x + |/ + = 5,

2x — 4:y-z = 10,2x + Sy+z = 4.

4. What planes are represented by the following equations ?

(a) a;2-6x + 8 = 0, (&) ^2_9 = o, (c) x'^ - z^ = 0, {d) x'^-4xy = 0.

5. Find the cosine of the angle between the following pairs of planes

:

(a) 4:X-Sy-z=6, x-\-y~z=8
; (6) 2x4-7 ^+4^=2, x-9y-2 0=12.

6. Show that the following pairs of planes are either parallel or

perpendicular

:

(a) Sx-2y+6z=0,2x+Sy=S; (b) 6x+2y-z=6, lOx+iy-2 e=S;
(c) x + y-2z = S,x+y-\-z= ll; (d) x- 2y - z = S, Sx -6y-S z=6.

7. Find the plane that is perpendicular to the segment joining the

points (3, — 4, 6) and (2, 1, — 3) at its midpoint.

8. Show that the planes Aix + Biy + Ciz + Di=0, Aix + B^y + C^z

-f-jD2 = are parallel (on the same or opposite sides of the origin) if

AxA2 + BxB2+CiC2 ' _^^
VAi^ + J?i2 + 0/ VA2^ + B2^ + CV

9. A cube whose edges have the length a is referred to a coordinate

trihedral, the origin being taken at the center of a face and the axes par-

allel to the edges of the cube. Find the equations of the faces.
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X y z 1

Xx 2/1 Zx 1

X2 2/2 02 1

A B G

10. Show that the plane through the points Pi(xi, yi , z{) and

^1 (Xi, 1/2, Z2) and perpendicular to the plane Ax -^ By -\- Cz + D =
can be represented by the equation

= 0.

11. Find those planes of the pencil 4a; — 3^ + 5^ = 8, 2x + Sy — z = 4:

which are perpendicular to the coordinate planes.

12. Find the plane that is perpendicular to the plane 2x + Sy — z = l

and passes through the points (1, 1, — 1), (3, 4, 2).

13. Find the plane that is perpendicular to the planes 4a; — 3^ + = 6,

2aj + 3?/ — 5^=4 and passes through the point (4, —1,5).

14. Show that the conditions that three planes AiX+ Biy+ Ciz+ Z)i =0,

A2X + B2y + C2Z + i>2 == 0, AzX + Bay + C^z + D3 = belong to the same

pencil, are

Ai+k A2 _ Bi + kB2 _ Ci+kC2 _ D\ + k D2
.

As B3 O3 2>3

or, putting these fractions equal to s and eliminating k and s,

B, Ci 2>i

B2 O2 D2 =
B, O3 2>3

D2

2>3

Ax Di Ax Bx Ax Bx Cx

A2 = D2 A2 B2 = A2 B2 O2 =0.

A3 Dz A3 B3 A3 B3 C3

(Verify Ex. 2 by using these conditions.

)

15. Find the equations of the faces of a right pyramid, with square

base of side 2 a and with altitude h, the origin being taken at the center

of the base, the axis Oz through the opposite vertex and the axes Ox, Oy

parallel to the sides of the base.

16. Homogeneous substances passing from a liquid to a solid state tend

to form crystals ; e.g. an ideal specimen of ammonium alum has the form

of a regular octahedron. Find the equations of the faces of such a crystal

of edge a if the origin is taken at the center and the axes through the

vertices, and determine the angle between two faces.

17. Find the angles between the lateral faces of a right pyramid whose

base is a regular hexagon of side a and whose altitude is h.
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PART II. THE STRAIGHT LINE

326. Determination of Direction Cosines. Two simulta-

neous linear equations (§ 322),

(1) AiJC+By+Cz-\-I)=0, A'3c+B'ij+C'z-{-I)'=0,

represent a line, namely, the intersection of the two planes

represented by the two equations separately, provided the two

planes are not parallel.

To obtain the direction cosines I, m, n of this line observe

that the line, since it lies in each of the two planes, is perpen-

dicular to the normal of each plane. Now, by § 317 the direc-

tion cosines of these normals are proportional to A, B, C and

A', B', C, respectively. We have therefore

Al + Bm-j-Cn = 0, A'l -j- B'm -{- C'n = 0,

whence

l:m:7i =
BC
B'C'l

CA
C'A'

AB
A'B'

The direction cosines themselves are then found by dividing

each of these determinants by the square root of the sum of

their squares.

327. Intersecting Lines. The two lines

A^x -f B,y + C,z + A = 0, ]

A,'x-\-B,'y-rC,'z-}-D,'=0 J I A^'x+B^'y^ C^z-^D^ =

will intersect if, and only if, the four planes represented by

these equations have a common point. By § 322, the condition

for this is

A^ B, C, A
A,' B,' C A
A2 X>2 C2 -U2

A^ Bi C^ A' "'I'

= 0.
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328. Special Forms of Equations. For many purposes it is

convenient to represent a line by means of one of its points

and its direction cosines, or by means of two of its points.

Let the line be called X.

If (^a, 2/i> %) is a given point of A. and I, m, n are the direc-

tion cosines of A, then every point (x, y, z) of A. must satisfy

the relations (§ 298) :

^ ^
I m n

'

In these equations, Z, m, n, can evidently he replaced by any

three numbers proportional to I, m, n. Thus, if (^2, y2, z.,) be

any point of A, different from (a^, 2/1, ^j), we have the continued

proportion

0^2 — ajj : 2/2
—

2/1 : 2!2 — 2i = Z : m : n

;

hence the equations of the line through the two points (x^
, 2/1 j ^1)

and (X2
, 2/2 , Z2) are

:

(3)
00-iCt ^ y-Vi ^ g-^i ^

i»2-«i 2/2-2/1 «2-«i*

If, for the sake of brevity, we put x^— x^ = a, 2/2 — 2/i
= ^>

Z2— Zi=: c, we can write the equations of the line in the form

^ a b c '

where a, b, c, are proportional to I, m, n, and can be regarded as

the components of a vector parallel to the line.

The equations (3) also follow directly by eliminating k be-

tween the equations of § 295, namely,

(5) a?=a?i-f-A;(a?2-a5i), y=y^^k{y^-y{), z=z^-]-Jc(z^-z{).

These equations which, with a variable h, represent any point

of the line through (iCi
, 2/1 , ^j) and {x^

, 2/2 > ^2) are called the

parameter equations of the line.
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329. Projecting Planes of a Line. Each of the forms (2),

(3), (4), which are not essentially different, furnishes three

linear equations ; thus (4) gives :

y
c a

Vihe c a ah
but these three equations are equivalent to only two, since from

any two the third follows immediately.

The first of these equations, which

can be written in the form

cy-hz-{cyy-hz;)=0,

represents, since it does not contain x

(§ 313), a plane perpendicular to the

plane 0?/2; and as this plane must con-

tain the line X it is the plane CCA
that projects \ on the plane Oyz (Fig. 135). Similarly the other

two equations represent the planes that project \ on the co-

ordinate planes Ozx and Oxy. Any two of these equations

represent the line X as the intersection of two of these pro-

jecting planes.

At the same time the equation

Fig. 135

can be interpreted as representing a line in the plane Oyz,

viz. the intersection of the projecting plane with the plane

£C = 0. This line {AC in Fig. 135) is the projection X^ of X on

the plane Oyz. As the other two equations (4) can be inter-

preted similarly it appears that the equations (2), (3), or (4)

represent the line X by means of its projections A^., X^, A, on

the three coordinate planes, just as is done in descriptive

geometry. Any two of the projections are of course sufficient

to determine the line.
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330. Determination of Projecting Planes. To reduce the

equations of a line A given in the form (1) to the form (4) we

have only to eliminate between the equations (1) first one of

the variables x, y, z, then another, so as to obtain two equa-

tions, each in only two variables (not the same in both).

The process will best be understood from an example. The

line being given as the intersection of the planes

(a) 2x-3y-\-z + 3=:0,

{b) x-\-y-j-z-2 = 0,

eliminate z by subtracting (b) from (a) and eliminate x by

subtracting (6), multiplied by 2, from (a) ; this gives the line

as the intersection of the planes

x — 4:y -\-5 = 0j

-5y-^z + 7 = 0,

which are the projecting planes parallel to Oz and Ox, i.e. the

planes that project the line on Oxy and Oyz. Solving for y

and equating the two values of y we find

:

x-\-5 _y _ z — T

4 "1"" -5*

The line passes therefore through the point (—5, 0, 7) and

has direction cosines proportional to 4, 1, — 5, viz.

,4 1 5
I
—

, m
V42 V42 V42

EXERCISES

1. Write the equations of the line through the point (— 3, 1, 6) whose

direction cosines are proportional to 3, 5, 7.

2. Write the equations of the line through the point (3, 2 — 4) whose

direction cosines are proportional to 5, — 1, 3.

3. Find the line through the point (a, 6, c) that is equally inclined

to the axes of coordinates.
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4. Find the lines that pass through the following pairs of points

:

. (a) (4, - 3, 1), (2, 3, 2), (&) (- 1, 2, 3), (8, 7, 1),

(c) (-2,3, -4), (0,2,0), (d) (-1, -5, -2),, (-3,0,-1),

and determine the direction cosines of each of these lines.

5. Find the traces of the plane 2 x — 3 «/ - 4 ^ = 6 in the coordinate

planes.

^ 6. Write the equations of the\me2x-Sy+ 5 z~6=^0,x—y+2z-S=0

in the form (4) and determine the direction cosines.

7. Put the line 4:X — Sy — 6 = 0, x-y-z-4: = in the form (4)

and determine the direction cosines.

8. Find the line through the point (2, 1,-3) that is parallel to the

]ine2x-Sy-\-4z-6 = 0, 6x + y-2z-S = 0.

9. What are the projections of the line 5x — 3?/ — 7^; — 10 = 0,

X -\-y — S z +6 = on the coordinate planes

?

10. Obtain the equations of the line through two given points by-

equating the values of k obtained from § 295.

11. By § 317, the direction cosines of any line are proportional to the

coefficients of x, y, and z in the equation of a plane perpendicular to the

line. Find a line through the point (3, 5, 8) that is perpendicular to the

plane 2x + i/ + 30 = 5.

331. Angle between Two Lines. The cosine of the angle ^p be-

tween two lines whose direction cosines are h, mi, wi and h, rrn, nz is,

by § 299,
cos \p = hh + W2im2 + wiW2.

Hence if the lines are given in the form (4) , say

x-xi _ y — y i _ z - zi x-xi _ y — yt _ z — zt

«i &i c'l ai 62 C2

we have

cos V =

.

^^^^ "^ ^^^2 "•" ^^^2

± Vai2 + &i2 + ci2 . ± Va22 + 62^ + C22

If the lines are parallel, then

ai_ &i _ci.

a2, 02 C2

if they are perpendicular, then

aia2 + 61&2 + C1C2 = ;

and vice versa*
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Let the line and plane332. Angle between Line and Plane.

be given by the equations

x — xi _ y- y\ _ z — zi

a h c '

Ax-\- By + Cz-\r D = (i.

The plane of Fig. 136 represents the plane

through the given line perpendicular to the given

plane. The angle /3 between the given line and

plane is the complement of the angle a between the line and any perpen-

dicular PiV to the plane. Hence

.„«_ aA-^hB-\-cC

Fig. 136

± v/a2 + 6-2 + C2 . ± V^2 + ^2 + (72

The (necessary and sufficient) condition for parallelism of line and

plane is

aA + hB + cC = 0\

the condition of perpendicularity is

a_ _h _ c^

A~ B~ G

333. Line and Plane Perpendicular at Given Point. If the

plana Ax + By -{ Cz -{ D = Q

passes through the point Pi(xi
, yi , zi), we must have

Axi + Byx + Czx + D = ^.

Subtracting from the preceding equation, we have as the equation of

any plane through the point Pi(xi, yi, z\) :

A(x - xi) + Biy - yx) + C{z - zi) = 0.

The equations of any line through the same point are

x — xi _ y -yi _ z — zi
^

a b c

If this line is perpendicular to the plane, we must have (§ 332) : a/A =

b/B = c/C. Hence the equations

x — xi_y—yi_z — zi

represent the line through Pi(iCi, yi, zi) perpendicular to the plane

Aix - xi) + Biy - 2/0 + C{z - zi) = 0.
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If the equations of

Fig. 137

334. Distance of a Point from a Line.

the line X are given in the form

x—xi _ y — yi _ z — zi
"

I m n

where {xi , yi , z\) is a point Pi of X (Fig.

187), the distance d = QP2 of the point

•P2(a;2, ^2, Z2) from X can be found from

the right-angled triangle Pi QP2 which gives

cP = FiP2^ - PiQ^,

by observing that

P1P22 = (X2 - XiY + (2/2 -yi)2 + (Z2 - Zi)\

while PiQ is the projection of P1P2 on X. This projection is found

(§ 294) as the sum of the projections of the components X2 — xu y'z — yu
Z2 — z\ of P1P2 on X :

PiQ = 1(X2 — xi) + m(y2 - y\) + n{z2 - z{).

Hence

(?2=:(a;2-xi)2+ (y2-2/i)2+ (^2-^i)2-[Z(a;2-xi)+m(?/2-yi) +n{z2-z{)Y'

335. Shortest Distance between Two Lines. Two lines

Xi , X2 whose equations are given in the form

- 2/1 _ Z—Zi X-X2 _ y — y2 _ Z- Z2X — X\

h mi W2 W2

will intersect if their directions {h , mi , ni), (I2-, wi2, n2), and the direc-

tion of the line joining the points {x\
, yi , z{)^ (x.2

, 2/2 , ^2) are complanar

(§302), i.e. if

X2 — Xi 2/2 - 2/1 Z2 - Z\

l\ m\ n\

I2 WI2 W2

If the lines Xi , X2 do not intersect, their shortest distance d is the dis-

tance of P2(aj2, ^2, Z2) from the plane through Xi parallel to X2. As this

plane contains the directions of Xi and X2 , the direction cosines of its nor-

mal are (§ 301) proportional to

mi ni ni h h mi

m2 «2
»

n2 h
5

I2 m2
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and as it passes through Pi {xi
, yi , ^i) its equation can be written in the

form
x — xi y — yiz — zi

h wii wi = 0.

h Wl2 W2

Hence the shortest distance of the lines Xi, X2 is :

d =

V

X2 -xi y2- yi Z2--^1

h Wli Wi

h m2 W2

n

n

il Wi

l2 W2

2

+
ni Zi

W2 h

2

+
h

h

mi

m2

As the denominator of this expression is equal to sirn/' (§ 301), we have

X2 — Xi ?/2 — 2/1 2;2 - ^1

d sin xp = li mi ui

I2 Wl2 W2

EXERCISES

—'" 1. Find the cosine of the anojle between the lines

X ^-yj:zA-^±l^ ^ l_ y -3 _ g + 3

-1 2 32 3 4

2. Find the angle between the lines 3x — 2?/ + 42 — 1 = 0,

2x + y— 3^ + 10 = 0, and x-\-y -\- z = Q, 2x + 3y-5;s = 8.

3. Find the angle between the lines that pass through the points

(4, 2, 5), (- 2, 4, 3) and (- 1, 4, 2), (4, - 2, - 6).

4. Find the angle between the line

a; + l _ y-2 _ g+ 10

3 -5 3

and a perpendicular to the plane 4a: — 3?/ — 2^ = 8.

6. In what ratio does the plane 3x— 4i/ + 65; — 8 = divide the

segment drawn from the origin to the point (10, — 8, 4).

6. Find the plane through the point (2, — 1, 3) perpendicular to the

line

x — '6 y + 2 _z — 7
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7. Find the plane that is perpendicular to the line ^x-{-y — z=6,

3x + 4?/ + 82+ 10 =0 and passes through the point (4, —1,3),

*— 8. Find the plane through the origin perpendicular to the line

Sx-2y + z=6, Sx + y -4z = S.

9. Find the plane through the point (4, — 3, 1) perpendicular to the

line joining the points (3, 1, — 6), (— 2, 4, 7).

10. Find the line through the point (2, — 1, 4) perpendicular to the

plane x — 2y-\-4:Z = 6.

""
11. Show that the lines x/S = y/ —1 = z/—2 and x/4: — y/6 = z/S are

perpendicular.

— 12. Show that the lines

^izi = L+2^£j::^ ^^^ x-2^y-S^ z1-2 3 _2 4 -6
are parallel.

— 13. Find the angle between the line 3 ic — 2 y — ^ = 4, 4 a; + 3 ?/ — 3 ^ = 6

and the plane x -\-y -\- z — %.

14. Find the lines bisecting the angles between the lines

X— O' - V - h _ z — c ^^^^ x — a __ y— h _ z — c

h nil ni h m^ nt

15. Find the plane perpendicular to the plane Zx — ^y — z — Q and

passing through the points (1, 3, — 2), (2, 1, 4).

16. Find the plane through the point (3, — 1, 2) perpendicular to the

line 2x — 3y — 42; = 7, x-\- y — 2z = ^.

17. Find the plane through the point (a, 6, c) perpendicular to the

line Axx + Bxy + Cxz + Z)i = 0, Aix + Bty + Ciz + Z>2 = 0.

18. Find the projection of the vector from (3, 4, 5) to (2, — 1, 4) on the

line that makes equal angles with the axes ; and on the plane

2x-3?/ + 4^=6.

19. Find the distances from the following lines to the points indicated

:

^""^ 1 =^ = 4^' (0,0,0);

(6) 2x + y-5r = 6, a:-?/ + 4^ = 8, (3, 1,4);

(c) 2a; + 32/ + 50 = l, 3x-6?/ + 3;?=0, (4, 1, -2).
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20. Show that the equation of the plane determined by the line

x — xi _ y — yi _ z — zi

a b c

and the point P2 (xz , 1/2 , ^2) can be written in the form

0.

X -xi y —yi z -z\

xi -x\ yi — 7/1 zi — zi

a b c

21. Find the plane determined by the intersecting lines

x-3^y-6^ z + l and'^~^ = y~^ = ^ + ^

4 3 2 1 2 3 *

22. Find the plane determined by the line

x-xi _ y — yi _ z ~ zi

a b c ^

and its parallel through the point P2 (X2
, 2/2 , ^2).

23. Given two non-intersecting lines

x — xi _ y — yi _ z - z\ x — xi _ y -yi _ z — zi .

a\ b\ c\ at 62 C2

find the plane passing through the first line and a parallel to the second
;

and the plane passing through the second line and a parallel to the first.

24. What is the condition that the two lines of Ex. 23 intersect ?

25. Find the distance from the diagonal of a cube to a vertex not on

the diagonal.

26. Find the distance between the lines given in Ex. 23.

27. Show that the locus of the points whose distances from two fixed

planes are in constant ratio is a plane.

28. Show that the plane (w — n)x + (n — Z)?/ + (Z — m)z = contains

the line x/l = y/m = z/n and is perpendicular to the plane determined by

the lines x/m = y/n = z/l and x/n = y/l = z/m.



CHAPTER XV

^ THE SPHERE

336. Spheres. A sphere is defined as the locus of all those

points that have the same distance from a fixed point.

Let CQi, j, k) denote the center, and ?• the radius, of a sphere

;

the necessary and sufficient condition that any point F(x, y, z)

has the distance r from C{1i,j, k) is

(1) {x - hY + {y -jY -viz- ky = rK

This then is the cartesian equation of the sphere of center

C(h, j, k) and radius r.

If the center of the sphere lies in the plane Oxy^ the equa-

tion becomes
(x-hy-\-{y-jy + z'=r\

If the center lies on the axis Ox, the equation is

(x-hf+y^-\-z'^ = r\

The equation of a sphere about the origin as center is

:

x2 + i/2 + s2 = r2.

337. Expanded Form. Expanding the squares in the equa-

tion (1), we find the equation of the sphere in the form

3(? + y^-\-z^-2hx-2jy-2kz-\-h''-^f-{-¥-r''=:0.

This is an equation of the second degree in x, y, z; but it is of

a particular form.

The general equation of the second degree in x, y, z is

Ax^ + By^ -\-Cz^ + 2Dyz-{-2Ezx-\-2 Fxy

+ 2Gx-^2Hy-\-2Iz-^J=0;
317
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i.e. it contains a constant term J-, three terras of the first

degree, one in x, one in y, and one in z ; and six terms of the

second degree, one each in x^, y^, z"^, yz, zx, and xy.

If in the general equation we have

D = E = F=0, A = B=C=itO,

it reduces, upon division by A, to the form

x^ + f + z^ +^x + ^-^y + ?^z +^= 0,

which agrees with the above form of the equation of a sphere,

apart from the notation for the coefficients.

338. Determination of Center and Radius. To determine

the locus represented by the equation

(2) Ax-'-\- Ay^ -^ Az^ + 2 Gx-\-2 By -{-2 Iz + J=:0,

where A, G, Hy 7, J, are any real numbers while ^ ^^ 0, we

divide by A and complete the squares in x, y, z\ this gives

(-!J-('-3"+('+3)"
The left side represents the square of the distance of the point

(x, y, z) from the point (— GjA^ — H/A, — I/A) ; the right

side is constant. Hence, if the right side is positive, the equa-

tion represents the sphere whose center has the coordinates

and whose radius is

r^-^G'^^H^ + P-AJ.A
If, however, G"^ -\- A"^ + I^ < AJ, the equation is not satisfied by

any point with real coordinates. If G^ -\-
H^

-{• I'^ = AJ, the

equation is satisfied only by the coordinates of the point

{-G/A,-H/A,-I/A).
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n

Thus the equation of the second degree

Ax^ + By"^ -f- C22 + 2 Dyz + 2 Ezx + 2 Fxy

+ 2Gx^2Hy-{-2Iz-\-J=0,

represents a sphere if, and orily if

A=:B=C^O, D = E = F=0, G^-\-H^-\-P>AJ.

339. Essential Constants. The equation (1) of the sphere

contains four constants : h, j, k, r. The equation (2) contains

five constants of which, however, only four are essential since

we can divide out by one of these constants. Thus dividing

by A and putting 2 G/A = a, 2 H/A = h, 2 I/A = c, J/A = d,

the general equation (2) assumes the form

x"^ + y^ + z"^ -\- ax -{- by -^ cz + d = Oy

with only the four essential constants a, b, c, d.

This fact corresponds to the possibility of determining a

sphere geometrically, in a variety of ways, by four conditions.

340. Sphere through Four Points. To find the equation of the

sphere passing through four points Fi(zi, ?/i, ^i), P2(X2, y^-, ^2),

^3(353, ^3, ^3), P^(Xi, y4, Z4), observe that the coordinates of these points

• must satisfy the equation of the sphere

^2 _|_ ^2 ^ ^2 ^(j^x +by +CZ + d = 0;
i.e. we must have

xi^ + Vi^ + z^ + axx + byx + csri + d = 0,

X'^ + y<^ + zci^ + ax2 + byi -^czi-^-d-^,

x-^ 4- yz^ + z^^ + axi + hyz + C23 + (^ = 0,

x^ + y^ + z^ + ax4 + by4 -\- cz^^-d-^.

As these five equations are linear and homogeneous in 1, a, &, c, (?, we

can eliminate these five quantities by placing the determinant of their

coefficients equal to zero. Hence the equation of the desired sphere is

aj2 ^ y2 _J.
^2 a; y ^

x^^y^^z^ xx y\ zi 1

X2^ + y2^ + Z2^ X2 y2 ^2 1

Xz^ + yz^ + zz^ xz yz zz 1

X4^ + 2/4^ + Z4^ Xa 2/4 Z4 1
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EXERCISES

1. Find the spheres with the following points as centers and with the

indicated radii

:

"^
(a) (4, -1,2), 4; (6) (0,0, 4), 4; (c) (2,-2, 1), 3; (d) (3, 4, 1), 7.

2. Find the following spheres

:

- (a) with the points (4, 2, 1) and (3, — 7, 4) as ends of a diameter
;

— (6) tangent to the coordinate planes and of radius a
;

(c) with center at the point (4, 1, 5) and passing through (8, 3, — 5).

3. Find the centers and the radii of the following spheres :

(a) a;2 + ?/2 + ;s2 _ 3 X + 5 y - 6 ^ + 2 = 0.

- (6) a:2 + 2/2 + ^2 _ 2 6a; + 2 cs - &2 _ c2 = 0.

(c) 2 x2 + 2 y2 + 2 ^2 ^ 3 X - y + 5 - 11 = 0.

(d) x^ + y^-\- z^-x-y - z = 0.

__ 4. Show that the equation A{x^ -i-
y^ + z^) +2 Gx + 2 Hy -\- 2 Iz +J

= 0, in which J is variable, represents a family of concentric spheres.

5. Find the spheres that pass through the following points :

— (a) (1, 1, 1), (3, - 1, 4), (- 1, 2, 1), (0, 1, 0).

(6) (0, 0, 0), (a, 0, 0), (0, 6, 0), (0, 0, c).

(c) (0, 0, 0), (- 1, 1, 0), (1, 0, 2), (0, 1, - 1).

(d) (0,0, 0), (0,0,4), (3,3,3), (0,4,0).

6. Find the center and radius of the sphere that is the locus of the

points three times as far from the point (a, 6, c) as from the origin.

— 7. Show that the locus of the points, the ratio of whose distances from

two given points is constant, is a sphere except when the ratio is unity.

— 8. Find the positions of the following points relative to the sphere

jc2 + ?/2 + ;s2_4a; + 4y-2;s = 0; (a) the origin, (6) (2, -2, 1),

(c) (1,1,1), (d) C3, -2,1).

9. Find the positions of the following planes relative to the sphere

x2 4-«/2+02 + 4x-3?/ + 6« + 5 = O:

(a) 4:X-\-2y + z + 2 = 0, (b)Sx-y-^z + 6 = 0.

10. Find the positions of the following lines relative to the sphere of

Ex. 9 : (a)2x-y + 2z + 7 = 0, Sx- y-z -10 = 0.

(by Bx + 8y + z -9=0, x-8y-{-z-\-n = 0.

11. Find the coordinates of the ends of that diameter of the sphere

x^ + y^ + z'^ — 6x — 6y-\-4iZ — QQ = 0, which lies on the line joining the

origin and the center.



XV, § 342] THE SPHERE 321

341. Equations of a Circle. In solid analytic geometry a

curve is represented by two simultaneous equations (§ 310),

that is, by the equations of any two surfaces intersecting in

the curve. Thus two linear equations represent together the

line of intersection of the two planes represented by the two

equations taken separately (§§322, 326).

A linear equation together with the equation of a sphere,

^ ^
x^ \- y"^ \- z^ ^ ax -\- by -\- cz -\- d = (),

represents the locus of all those points, and only those points,

which the plane and sphere have in common. Thus, if the

plane intersects the sphere, these simultaneous equations rep-

resent the circle in which the plane cuts the sphere; if the

plane is tangent to the sphere, the equations represent the

point of contact; if the plane does not intersect or touch

the sphere, the equations are not satisfied simultaneously by

any real point.

342. Sections Perpendicular to Axes. Projecting Cylinders.

In particular, the simultaneous equations

(4) z = Tc, ic2 + 2/2 + ;s2 ^ 7-2

represent, if A: < r, a circle about the axis Oz {i.e. a circle

whose center lies on Oz and whose plane is perpendicular to

Oz). If the value of z obtained from the linear equation be

substituted in the equation of the sphere, we obtain an equation

in X and y, viz. „ „ „ ,

«

which represents (since z is arbitrary) the circular cylinder,

about Oz as axis, which projects the circle (4) on the plane

Oxy. Interpreted in the plane Oxy, i.e. taken together with

2 = 0, this equation represents the projection of the circle (4)

on the plane Oxy.

Similarly if we eliminate x ov y ot z between the equations
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(3) we obtain an equation in y and z, z and x, or x and ?/, rep-

resenting the cylinder that projects the circle (3) on the plane

Oyz, Ozx, or Oxy, respectively.

343. Tangent Plane. The tangent plane to a sphere at any

point Pi of the sphere is the plane through P^ at right angles

to the radius through Pj

.

For a sphere whose center is at the origin,

^ + y"^ -\-z'^ = r^,

the equation of the tangent plane at P\{x-^, yi, Zi) is found by

observing that its distance from the origin is r and that the

direction cosines of its normal are those of OPi, viz. Xi/r,

yi/r,Zi/r. Hence the equation

(5) x^x + 2/i2/ + ^iZ = r\

If the equation of the sphere is given in the general form

A{x^ +y''+z'')+2 0x + 2Hy -\-2Iz ^ J=0,
we obtain by transforming to parallel axes through the center

the equation

the tangent plane at P^ix^, 2/1 ? %) ^^^^^ is

a^ia^ + 2/12/4- ^1^ =^ + ^, +^--
Transforming back to the original axes, we have

:

(--S(-S)*('-!)("!)H-3(-i)

A^ A^ A^ a'

Multiplying out and rearranging, we find that the equation of

the tangent plane to the sphere

Aix" + y"" + z'') + 2 Qx + 2 Hy -\-2 Iz + J=
at the point Pi (fl?i, 2/1? ^\) is

(6) A{x^x-\-yiy+z^z)^-0(x,^x) +H{y,^y)+I{z^+ z)+ J= 0.
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344. Intersection of Line and Sphere. The intersections

of a sphere about the origin,

x^ -\- y^ -{- z"^ = r^,

with a line determined by two of its points Pi(xi,yi, Zi) and

PgC^aj Vi) ^2)) and given in the parameter form [(5), § 328]

x = Xi + k{x2-x{), y = yi-\-Jc(y2-yi), z=z^-\-'k{z2-z{),

are found by substituting these values of ic, ?/, z in the equation

of the sphere and solving the resulting quadratic equation in k

:

[x, + J€(x, - x,)Y + [?A + k(y2 - yi)Y + [^1 + k(z, - z{)Y = r\

which takes the form

\_(x^ - a;i)2 -h {y, - y^y + (z^ - z^y^ k^ + 2 [x, {x^ - x,) -\- y^ {y^ - y,)

The line P1P2 will intersect the sphere in

two different points, be tangent to the

sphere, or not meet it at all, according as

the roots of this equation in k are real and

different, real and equal, or imaginary ; i.e.

according as

where d denotes the distance of the points Pi and Pg. Divid-

ing by d^, we can write this condition in the form

r' - \x,^ + 2/1^ + z,^ - U""-^' + 2/1^^' + ^i^-^'Y] I ^>

where by § 334 the quantity in square brackets is the square

of the distance 8 from the line P1P2 to the origin (Fig. 139).

Our condition means therefore that the line P1P2 meets the

sphere in two different points, touches it, or does not meet it

at all according as

which is obvious geometrically.
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345. Tangent Cone. The condition for the line P^P^ to be

tangent to the sphere is (§ 344) :

W+ yi'+z,'-r')l(x,-x,y + (2/2 - ^i)^ + (^2 - ^i)'].

To give this expression a more symmetric form let us put, to

abbreviate,

X1X2 + 2/1^2+ 2;i2;2 = p, a^i' + 2/1' + ^i" = gu ^2' + 2/2' 4- ^2' = 92,

so that the condition is

(p-qiY. = (qi-r'){q,-2p + q2)y

i.e. p^ — 2 r^p = q^q^ — r'^q^ — r^^g
5

adding r* in both members, we have

i.e.

{x^X2 + 2/12/2 + z,z^ - r')' = (a?i' -f 2/1' + =2i' - r'){x^^ + 2/2' + ^2' - r").

Now keeping the sphere and the point Pj fixed, let Pg vary

subject only to this condition, i.e. to the

condition that P^P^ shall be tangent to

the sphere; the point Pg, which we shall

now call P{x^ y, z) is then any point of

the cone of vertex Pj tangent to the cone. ?i

Hence the equation of the cone of vertex Fia. 139

-f*i(^i f 2/1 J ^1) tangent to the sphere x^ + y^ -\-
z'^ = r^ is

i^i' + 2/1' + ^1' - r'Xx' + 7f-\-z'-r') = {xix + 2/12/ + z,z - r^f.

If, in particular, the point Pi is taken on the sphere so that

^\ + yi + z-^ = r^, the equation of the tangent cone reduces to

the form
^,^ + y,y + ,,, = ^,

which represents the tangent plane at P^.

346. Inversion. A sphere of center and radius a being given,

we can find to every point P of space (excepting 0) one and only one
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point P' on OP (produced if necessary) such that

OP' OP' = aK

The points P, P' are said to be inverse to each other with respect to the

sphere (compare § 91).

Taking rectangular axes through 0, we find as the relations between

the coordinates of the two inverse points P(x, y, z) and P'{x\ y', z') if

we put OP = r = Va:2 + y^ + z^. OP' = r' = v'x'=^ + y'^ + z'^ :

x_y' _z' _r' _ rr' _ a^
.

X y z r f^ r'^

'

hence x' - ^"^ y'-—^ z'

-

^ •hence ^-^2 + ^2 + ^2' ^"^2 + ^2 + ^2' ^-:,2 + ^2 + ^2'

and similarly

y =
x'-^ -^ y'^ -}-

z'^
x'-2 + y'-^ + z'-^ x''^ + y'^ + z'-^

These equations enable us to find to any surface whose equation is given

the equation of the inverse surface, by simply substituting for x, y, z

their values.

Thus it can be shown, that by inversion every sphere is transformed

into a sphere or a plane. The proof is similar to the corresponding propo-

sition in plane analytic geometry (§ 92) and is left as an exercise.

EXERCISES

1. Find the radius of the circle which is the intersection : (a) of the

plane y = Q with the sphere x^ + y^ -\- z^ — 6y = ; (6) of the plane

2x—Sy + z-2 = with the spherfe x^ + y'^ + z^ -6x + 2y - lb = 0.

2. A line perpendicular to the plane of a circle through its center is

called the axis of the circle. Find the circle : (a) which lies in the plane

z = 4:, has a radius 3 and Oz as axis
; (6) which lies in the plane 2/ = 5,

has a radius 2 and the line x — 3 = 0, — 4=0 as axis.

3. Find the circles of radius 3 on the sphere of radius 4 about the

origin whose common axis is equally inclined to the coordinate axes.

4. Does the line joining the points (2, — 1, — 6), (- 1, 2, 3) intersect

the sphere x^ + y'^ + z^ = 10? Find the points of intersection.
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5. Find the planes tangent to the following spheres at the given

points : (a) x'^ + y^ -{-
z'^ -Sy - 5z ~2 = 0, at (2, - 1, 3) ;

(6) a;2 + 2/2 4. 2.2 _|_ 2 X - 6 y + 2! -1 = 0, at (0, 1, - 3) ;

(c) S{x^-\-y^ + z^)-5x + 2y - z = 0, at the origin
;

(d) a;2 + y2 ^z'^^ax- by -cz = 0, at (a, 6, c).

6. Find the tangent cone : (a) from (4, 1, — 2) to x^ -\- y^ -\- z^ = Q
;

(&) from (2 a, 0, 0) to x^ + y^ + z^ = a^] (c) from (4, 4, 4) to x^ + if

+ «2 _ 16 ; (e^) from (1, - 5, 3) to x^ + y^-\-z'^ = 9.

7. Find the cone with vertex at the origin tangent to the sphere

(x-2ay-\-y^ + z^ = a^.

8. Show that, by inversion with respect to the sphere x^ -\- y'^ + ^2 _ ^52^

every plane (except one through the center) is transformed into a sphere

passing through the origin.

9. With respect to the sphere x"^ -} y^ + z^ = 25, find the surfaces in-

verse to (a) x = 6, (6) x-y = 0, (c) 4 (x^ + y^ -\- z^)-20 x-25 = 0.

10. Show that by inversion with respect to the sphere ^2 -]- y^ -} z^ = cfi

every line through the origin is transformed into itself.

11. With respect to the sphere x'^ -\-y'^ -\- z^ = a^, find the surface in-

verse to the plane tangent at the point Pi (xi , yi , Zi).

12. Show that all spheres with center at the center of inversion are

transformed into concentric spheres by inversion.

13. What is the curve inverse to the circle a;2 -f y2 _|_ ^2 _ 25, = 4,

with respect to the sphere a;2 + ^2 _|_ ^2 _ iq 9

347. Poles and Polars. Let P and P> be inverse points with

respect to a given sphere ; then the plane tt through P', at right angles to

OP ( being the center of the sphere) , is called the polar plane of the

point P, and P is called the pole of the plane tt, with respect to the

sphere.

With respect to a sphere of radius a, with center at the origin^

ic2 + 2/2 + 2^2 = a^,

the equation of the polar plane of any point P\ {x\
, y^ Z\) is readily

found by observing that its distance from the origin is a2/ri, and that the
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direction cosines of its normal are equal to xi/n, yi/n, z\fr\<^ where

r^ = xi'^^- y-^ + Z'^ ; the equation is therefore

x\x + y\y + z\.z = a2.

If, in particular, the point Pi lies on the sphere, this equation, by § 343

(5), represents the tangent plane at Pi. Hence the polar plane of any

point of the sphere is the tangent plane at that point ; this also follows

from the definition of the polar plane.

348. With respect to the same sphere the polar planes of any two

points Pi(a;i , yi , zi) and P2(iC2
, 1/2 , Z2) are

xix + yiy + ziz = a2 and X2X + y2y + z^z = a^.

Now the condition for the polar plane of Pi to pass through P2 is

a^ia;2 + ym + Z1Z2 = <jfi
;

but this is also the condition for the polar plane of P2 to pass through Pi.

Hence the polar planes of all the points of any plane w (not passing

through the origin 0) pass through a common point, namely, the pole

of the plane ir ; and conversely, the poles of all the planes through a com-

mon point P lie in a plane, namely, the polar plane of P.

349. The polar plane of any point P of the line determined by two

given points Pi(xi , yi , zi) and P2(a;2 , t/2 , Z2) (always with respect to the

same sphere x^ -{ y^ + z^ = a^) is

Ixi + k(X2 -xi)]x-{- [yi + k(^y2 - yi)]y + [zi+ k{z2 - zi)'[z = a\

This equation can be written in the form

k.

xix + yxy + ziz — a'^ + -—- {X2X + y2y + Z2Z — a^) = 0,
1 — fC

which for a variable k represents the planes of the pencil whose axis is the

intersection of the polar planes of Pi and P2. Hence the polar planes of

all the points of a line X pass through a common line ; and conversely,

the poles of all the planes of a pencil lie on a line.

Two lines related in this way are called conjugate lines (or conjugate

axes, reciprocal polars). Thus the line P1P2

x-x\ _ y —yx _ z - z\

X2 - Xi 2/2 — yx Z2 — Zx
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and the line xix + yiy + ziz = a'^,

X2X + ViV + ZiZ = a^

are conjugate with respect to the sphere x^ + y2 ^ ^2 _ ^^2,

As the direction cosines of these lines are proportional to

X2 — X1, yi- y\, ^2 - zi

and
yi zi

2/2 ^2

\x\ y\\

I

Xi yi
\

Z\ X\

Z2 Xl

respectively, the two conjugate lines are at right angles (§ 331).

350. By the method used in the corresponding problem in the plane

(§ 95) it can be shown that the polar plane of any point P\{x\
, y\ , z\)

with respect to any sphere

^(^2 + 1/2 _|_ 2;2) + 2 G^X + 2 ^2/ + 2 /^ + ^"1=

is

A{xxx + yxy + zxz) + G{xx + x) + H{yx + y) + I{zx + 0) + jr = 0.

351. Power of a Point, if in the left-hand member of the equation

of the sphere
(X - Kf + (2/ - j)2 + (^ - kY - r2 =:

we substitute for x, ?/, 0, the coordinates xi , yi , ^1 of any point not on

the sphere, we obtain an expression (xi — uy + (yi — j)2+ (s^i — A;)2 — r2

different from zero which is called the power of the point Pi (xi
^ yi, zi^

with respect to the sphere.

As (xi — 7i)2 + (yi — j)2 + (zi - A:)2 is the square of the distance d be-

tween the point Pi and the center C of the sphere, we can write the

power of Pi briefly

<Z2 - r2

;

the power of Pi is positive or negative according as Pi lies outside or

within the sphere. For a point Pi outside, the power is evidently the

square of the length of a tangent drawn from Pi to the sphere.

352. Radical Plane, Axis, Center. The locus of a point whose

powers with respect to the two spheres

a:2 + ?/2 + 22 + a^x + biy + ciz + cZi = 0,

x^+y^ + z^ + aix + biy + C2Z ^ d2 = Q

are equal is evidently the plane

(ai — a2)x + (5i — h2)y + (ci - C2)z + tZi — ^2 = 0,

which is called the radical plane of the two spheres. It always exists un-

less the two spheres are concentric.
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It is easily proved that the three radical planes of any three spheres

(no two of which are concentric) are planes of the same pencil (§ 323) ;

and hence that the locus of the points of equal power with respect to

three spheres is a straight line. This line is called the radical axis of the

three spheres ; it exists unless the centers lie in a straight line.

The six radical planes of four spheres, taken in pairs, are in general

planes of a sheaf (§ 324) . Hence there is in general but one point of

equal power with respect to four spheres. This point, the radical center

of the four spheres, exists unless the four'centers lie in a plane.

353. Family of Spheres. The equation

represents a family^ or pencil, of spheres^ provided k ^—1. If the two

spheres
x2 + 2/2 + z^ + «ix + hiy + ciz + (^i = 0,

X2 + ?/2 + 2r2 + a2.X + b^y + C2^ -h ^2 =

intersect, every sphere of the pencil passes through the common circle of

these two spheres. If ^• =— 1, the equation represents the radical plane

of the two spheres.

EXERCISES

1. Find the radius of the circle in which the polar plane of the point

(4, 3, — 1) with respect to x:^-\-y'^-\-z^ = 16 cuts the sphere.

2. Find the radius of the circle in which the polar plane of the point

(5, — 1, 2) with respect to x'^ -{ y'^ + z"^ — 2x + ^y = ^ cuts the sphere.

3. Show that the plane 3ic + ?/— 4s = 19 is tangent to the sphere

x'^ + y^ + z'^ — 2x — ^y — Qz— \2,=0^ and find the point of contact.

4. If a point describes the plane 4 x — 5 ?/ — 3 a: = 16, find the coordi-

nates of that point about which the polar plane of the point turns with

respect to the sphere aj2 -f y2 ^ ^2 = 16.

5. If a point describes the plane 2a: + 3y + 5! = 4, find that point

about which the polar plane of the point turns with respect to the sphere

x2 + y2 _|_ 2-2 _ 8.

6. If a point describes the line ^ ~ = ^-i— = ^
~

, find the equa-
o 5 — 2i

tions of that line about which, the polar plane of the point turns with
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respect to the sphere x^ + y^ + z^ = 25. Show that the two lines are

perpendicular.

7. If a point describe the line 2x-Sy-\-iz = 2, x + y -{- z = S, find

the equations of that line about which the polar plane of the point turns

with respect to the sphere x"^ + y^ -{- z'^ = 16. Show that the two lines are

perpendicular.

8. Find the sphere through the origin that passes through the circle

of intersection of the spheres x^ -\- y'^+z"^ — 3 x -^ i y — 6 z — 8 = 0, x^-\-y'^

-{- z^ - 2 X + y ~ z - 10 = 0.

9. Show that the locus of a point whose powers with respect to two

given spheres have a constant ratio is a sphere except when the ratio is

unity.

10. Show that the radical plane of two spheres is perpendicular to the

line joining their centers.

11. Show that the radical plane of two spheres tangent internally or

externally is their common tangent plane.

12. Find the equations of the radical axis of the spheres x^ -\- y^+ z^

-Sx-2y -z-^ = 0, x'^+y^ + z^+5x-Sy-2z-S = 0, x^ + ^a

+ 02 _ 16 = 0.

13. Find the radical ^center of the spheres x^ -\-y'^ + z^ — 6 x -{- 2y
- ;2 + 6 = O; 5C2 + ?/2 + 02 _ 10 = 0, X2 + 1/2 + 02 + 2 x - 3 y + 5 2! - 6 = 0,

x^ + y^ -{- z^ - 2x + 4 y - 12 =0.

14. Show that the three radical planes of three spheres are planes of

the same pencil.

15. Two spheres are said to be orthogonal when their tangent planes

at every point of their circle of intersection are perpendicular. Show

that the two spheres x^ -}-y^-^ z^ + aix + biy + Ciz + t^i = 0, x2 -\- y"^ + z'^

+ a^x + hiy + C20 + 0^2 = are orthogonal when aia^ + 6160 + C1C2

= 2(di + (?2).

16. Write the equation of the cone tangent to the sphere x^ + y'^ \-

-5.2 — 1.2 ^itii vertex (0, 0, z\). Divide this equation by zi^ and let the

vertex recede indefinitely, i.e. let 01 increase indefinitely. The equation

a;2 4- 2/2 = |.2^ thus obtained, represents the cylinder with axis along the

axis Oz and tangent to the sphere x^ 4- y'^ -\- z^ = r'^.
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17. In the equation of the tangent cone (§ 345) write for the

coordinates of the vertex xi = nh , l/i = nnii , zi = rini ; divide the equa-

tion by n^ and let n increase indefinitely, i.e. let the vertex of the cone

recede indefinitely. The tangent cone thus becomes a tangent cylinder

with axis passing through the center of the sphere and having the direc-

tion cosines h, mi, ni. Show that this tangent cylinder is

(hx + miy + nizy^ - {x^ + y^ + z^ - r^) = 0.

18. From the result of Ex. 17, find the cylinder with axis equally

inclined to the coordinate axes which is tangent to the sphere x^ -\- y^

-\-z^ = r2.

19. From the result of Ex. 17, find the cylinders with axes along the

coordinate axes which are tangent to the sphere x'^ -{-y"^ + z^ = r^.

20. Find the cylinder with axis through the origin which is tangent to

the sphere x^ -{-y'^ + z'^ — 4:X + 6y — S = 0.

21. Find the family of spheres inscribed in the cylinder

{Ix + my-\- nzy - (x?- -\-y^-\-z'^- r^) = 0.

22. Find the cylinder with axis having direction cosines Z, m, n which

is tangent to the sphere (x — h)'^ +(y — j)'^ -\-{z — k)^ = r^.

23. Show that as the point P recedes indefinitely from the origin along

a line through the origin of direction cosines Z, m, n, the polar plane of P
with respect to the sphere x^ -f y'^ + z^ = a^ becomes ultimately Ix + my

+ nz = 0.



CHAPTER XVI

QUADRIC SURFACES

354. The Ellipsoid. The surface represented by the

equation

is called an ellipsoid. Its shape is best investigated by tak-

ing cross-sections at right angles to the axes of coordinates.

Thus the coordinate plane Oyz whose equation is ic = in-

tersects the ellipsoid in the ellipse

Any other plane perpendicular to the axis Ox (Fig. 140), at

y

Fig. 140

the distance h ^ a from the plane Oyz intersects the ellipsoid

in an ellipse whose equation is

7i'

^2 + ^2--^ .2'

I.e. f

K'-S) -(•--:)

= 1.

332
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Strictly speaking this is the equation of the cylinder that pro-

jects the cross-section on the plane Oyz. But it can also be

interpreted as the equation of the cross-section itself, referred

to the point Qi, 0, 0) as origin and axes in the cross-section

parallel to Oy and Oz.

Notice that as h < a, Jv^/a^, and hence also 1 — h^/a"^, is a posi-

tive proper fraction. The semi-axes 6Vl — h^/a^, cVI — h'^/a'^

of the cross-section are therefore less than b and c, respec-

tively. As h increases from to a, these semi-axes gradually

diminish from b, c to 0.

355. Cross-Sections. Cross-sections on the opposite side

of the plane Oyz give the same results ; the ellipsoid is evi-

dently symmetric with respect to the plane Oyz.

By the same method we find that cross-sections perpendicu-

lar to the axes Oy and Oz give ellipses with semi-axes dimin-

ishing as we recede from the origin. The surface is evidently

symmetric to each of the coordinate planes. It follows that

the origin is a center, i.e. every chord through that point is

bisected at that point. In other words, if (x, y, z) is a point

of the surface, so is {—x, —y, —z). Indeed, it is clear from

the equation that if {x, y, z) lies on the ellipsoid, so do the

seven other points {x, y, -2), {x, -y, z), {-x, y, z), {x, -y, -z),

(—x,y, —z), (—X, —y, z), {—x,—y,—z). A chord through

the center is called a diameter.

It follows that it suffices to study the shape of the portion of

the surface contained in one octant, say that contained in the tri-

hedral formed by the positive axes Ox, Oy, Oz ; the remaining

portions are then obtained by reflection in the coordinate planes.

The ellipsoid is a dosed surface; it does not extend to in-

finity ; indeed it is completely contained within the parallel-

epiped with center at the origin and edges 2 a, 2 &, 2 c, parallel

to Ox, Oy, Oz, respectively.
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356. Special Cases. In general, the semi-axes a, h, c of the

ellipsoid, i.e. the intercepts made by it on the axes of coordi-

nates, are different. But it may happen that two of them, or

even all three, are equal.

In the latter case, i.e. if a = h = c, the ellipsoid evidently

reduces to a sphere.

If two of the axes are equal, e.g. if & = c, the surface

a" ¥ b^

Fig. 141

is called an ellipsoid of revolution because it can be generated

by revolving the ellipse

y\

about the axis Ox (Fig. 141).

Any cross-section at right angles

to Ox, the axis of revolution, is a ^

circle, while the cross-sections at

right angles to Oy and Oz are

ellipses. The circular cross-section in the plane Oyz is called

the equator; the intersections of the surface with the axis of

revolution are the poles.

If a > 6 (a being the intercept on the axis of revolution),

the ellipsoid of revolution is called prolate; if a < b, it is

called oblate. In astronomy the ellipsoid of revolution is

often called spheroid, the surfaces of the planets which are

approximately ellipsoids of revolution being nearly spherical.

Thus for the surface of the earth the major semi-axis, i.e. the

radius of the equator, is 3962.8 miles while the minor semi-

axis, i.e. the distance from the center to the north or south

pole, is 3949.6 miles.
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367. Surfaces of Revolution. A surface that can be gen-

erated by the revolution of a plane curve about a line in the

plane of the curve is called a surface of revolution. Any such

surface is fully determined by the generating curve and the

position of the axis of revolution with respect to the curve.

Let us take the axis of revolution as axis Ox, and let the

equation of the generating curve be

As this curve revolves about Ox, any

point P of the curve (Fig. 142) de-

scribes a circle about Ox as axis,

with a radius equal to the ordinate

f{x) of the generating curve. For

any position of P we have therefore

and this is the equation of the surface of revolution.

Thus if the ellipse

a^ h-'

revolves about the axis Ox, we find since y = ± (b/a) Va'

for the ellipsoid of revolution so generated the equation

Fig. 142

a;2

a
x^),

which agrees with that of § 356.

Any section of a surface of revolution at right angles to the

axis of revolution is of course a circle ; these sections are called

parallel circles, or simply parallels (as on the earth's surface).

Any section of a surface of revolution by a plane passing

through the axis of revolution is called a meridian section ;

it consists of the generating curve and its reflection in the axis

of revolution.
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EXERCISES

— 1. An ellipsoid has six /oci, viz. the foci of the three ellipses in which

the ellipsoid is intersected by its planes of symmetry. Determine the

coordinates of these foci : (a) for an ellipsoid with semi-axes 1, 2, 3

;

(6) for the earth (see §356) ; (c) for an ellipsoid of semi-axes 10, 8, 1

;

(d) for an ellipsoid of semi-axes 1, 1, 5.

2. Show that the intersection of an ellipsoid with any plane actually

cutting the ellipsoid is an ellipse by proving that the projection of this

curve of intersection on each coordinate plane is an eUipse.

3. Assuming a> &> c in the equation of § 354 find the planes through

Oy that mtersect the ellipsoid in circles.

'- " 4. Find the equation of the paraboloid of revolution generated by the

revolution of the parabola y'^ = 4: ax about Ox.

6. Find the equation of a torus, or anchor-ring, i.e. the surface

generated by the revolution of a circle of radius a about a line in its plane

at the distance b> a from its center.

6. Find the equation of the surface generated by the revolution of a

. circle of radius a about a line in its plane at the distance & < a from its

center. Is the appearance of this surface noticeably different from the

surface of Ex. 5 ?

7. Show what happens to the surface of Ex. 6 when 6 = 0; when & = a.

8. Find the equation of the surface generated by the revolution of the

parabola y^ = 4tax about: (a) the tangent at the vertex; (&) the latus

rectum.

"*
9. Find the equation of the surface generated by the revolution of the

hyperbola xy = a^ about an asymptote.

10. Find the cone generated by the revolution of the line y = mx -{- b

about: (a) Ox, (6) Oy.

11. How are the following surfaces of revolution generated ?

(a) y^+z^=x^. (&) 2x^+2y^-^z=0. (c) x^-\-y^-z'^-2x+i = 0.

12. Find the equation of the surface generated by the revolution of

the ellipse x^ + 4 ?/2 — 4 x = : (a) about the major axis
;

(b) about the

minor axis
; (c) about the tangent at the origin.
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358. Hyperboloid of One Sheet. The surface represented

by the equation

= 1
a" y^ &

is called a hyperboloid of one sheet (Fig. 143). The intercepts

Fig. 143

on the axes Ox, Oy are ±a, ± 6 ; the axis Oz does not intersect

the surface.

359. Cross-Sections. The plane Oxy intersects the surface

in the ellipse

cross-sections perpendicular to Oz give ellipses with ever-in-

creasing semi-axes.

The planes Oyz and Ozx intersect the surface in the hyperbolas

Any plane perpendicular to Ox, at the distance h from the

origin, intersects the hyperboloid in a hyperbola, viz.

f z'
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As long as /i < a this hyperbola has its transverse axis parallel

to Oy while for h > a the transverse axis is parallel to Oz ; for

h = a the equation reduces to y'^/h'^ — z^/c^ = and represents

two straight lines, viz. the parallels through (a, 0, 0) to the

asymptotes of the hyperbola y^/b"^ — z^/x^ = 1 which is the

intersection of the surface with the plane Oyz.

Similar considerations apply to the cross-sections perpen-

dicular to Oy.

The hyperboloid has the same properties of symmetry as the

ellipsoid (§ 355) ; the origin is a center, and it suffices to inves-

tigate the shape of the surface in one octant.

360. Hyperboloid of Revolution of one Sheet. If in the

hyperboloid of one sheet we have a = b, the cross-sections per-

pendicular to the axis Oz are all circles so that the surface can

be generated by the revolution of the hyperbola

about Oz. Such a surface is called a hyperboloid of revolution

of one sheet.

361. Other Forms. The equations

^-^' + - = 1 -^ + ^' + ?! = l
a2 b^ d" ' a^ b"" c^

also represent hyperboloids of one sheet which can be investi-

gated as in §§ 358-360. In the former of these the axis Oy, in

the latter the axis Ox, does not meet the surface.

Every hyperboloid of one sheet extends to infinity.

362. Hyperboloid of Two Sheets. The surface represented

by the equation

a"- ¥ c2~

is called a hyperboloid of two sheets (Fig. 144).
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The intercepts on Ox are ± a ; the axes Oy, Oz do not meet

the surface.

363. Cross-Sections. The cross-sections at right angles to

Ox, at the distance h from the origin are

2/' 2;2 _

.

(-S) C2fl

these are imaginary as long as 7i < a;

for h>a they are ellipses with ever-

increasing semi-axes as we recede from

the origin.

The cross-sections at right angles to Oy

and Oz are hyperbolas.

The hyperboloid of two sheets, like that of one sheet and

like the ellipsoid, has three mutually rectangular planes of

symmetry whose intersection is therefore a center.

The surfaces

Fig. 1M

_^ _,]r ^—i ^^^yiA-^—i

are hyperboloids of two sheets, the former being met by Oy,

the latter by Oz, in real points.

The hyperboloid of two sheets extends to infinity.

364. Hyperboloid of Revolution of Two Sheets. If & = c

in the equation of § 362, the cross-sections at right angles to Ox

are circles and the surface becomes a hyperboloid of revolution

of two sheets.
.

365. Imaginary Ellipsoid. The equation

_x^ _y^ _z^ _A

is not satisfied by any point with real coordinates. It is some-

times said to represent an imaginary ellipsoid.
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366. The Paraboloids. The surfaces

a;2 7/2_

a- 0^ a^ W

which are called the elliptic paraboloid (Fig. 145) and hyper-

bolic paraboloid (Fig. 146), respectively, have each only two

planes of symmetry, viz the planes Oyz and Ozx. We here

assume that c^O. The cross-sections at right angles to the

Fig. 145 Fig. 146

axis Oz are evidently ellipses in the case of the elliptic parab-

oloid, and hyperbolas in the case of the hyperbolic paraboloid.

The plane Oxy itself has only the origin in common with the

elliptic paraboloid ; it intersects the hyperbolic paraboloid in

the two lines x'^/a'^ — y'^/b^ = 0, i.e. y = ± bx/a.

The intersections of the elliptic, paraboloid (Fig. 145) with

the planes Oyz and Ozx are parabolas with Oz as axis and as

vertex, opening in the sense of positive 2 if c is positive, in the

sense of negative 2; if c is negative. Planes parallel to these

coordinate planes intersect the elliptic paraboloid in parabolas

with axes parallel to Oz, but with vertices not on the axes Ox,

Oy, respectively.

For the hyperbolifc paraboloid (Fig. 146), which is saddle-

shaped at the origin, the intersections with the planes Oyz and
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Ozx are also parabolas with Oz as axis ; if c is positive the

parabola in the plane Oyz opens in the sense of negative z, that

in the plane Ozx opens in the sense of positive z. Similarly

for the parallel sections.

367. Paraboloid of Revolution. If in the equation of the

elliptic paraboloid we have a=b, it reduces to the form

x^-\-y^ = 2pz.

This represents a surface of revolution, called the paraboloid of

revolution. This surface can be regarded as generated by the

revolution of the parabola y'^ = 2pz about the axis Oz.

368. Elliptic Cone. The surface represented by the equation

x^ y^ =

is an elliptic cone, with the origin as vertex and the axis Oz as

axis (Fig. 147).

The plane Oxy has only the origin in

common with the surface. Every parallel

plane z = k, whether Jc be positive or negative,

intersects the surface in an ellipse, with

semi-axes increasing proportionally to k.

The plane Oyz, as well as the plane Ozx,

intersects the surface in two straight lines

through the origin. Every plane parallel to

Oyx or to Ozx intersects the surface in a

hyperbola. Fig. 147

369. Circular Cone. If in the equation of the elliptic cone

we have a = b, the cross-sections at right angles to the axis Oz

become circles. The cone is then an ordinary circular cone, or
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cone of revolution, which can be generated by the revolution

of the line y = (^a/c)z about the axis Oz. Putting a/c = m we
can write the equation of a cone of revolution about Oz, with

vertex at 0, in the form

370. Quadric Surfaces. The ellipsoid, the two hyper-

boloids, the two paraboloids, and the elliptic cone are called

quadric surfaces because their cartesian equations are all of

the second degree.

Let us now try to determine, conversely, all the various loci

that can be represented by the general equation of the second

degree

Ax^ + By^ + (7^2 + 2 Dyz + 2 Ezx + 2 Fxy

+ 2 6x-{-2Hy + 2Iz-{-J=0.

In studying the equation of the second degree in x and y

(§ 249) it was shown that the term in xy can always be

removed by turning the axes about the origin through a cer-

tain angle. Similarly, it can be shown in the case of three

variables that by a properly selected rotation of the coordinate

trihedral about the origin the terms in yx, zx, xy can in general

all be removed so that the equation reduces to the form

(1) Ax^ + Bi/^ + Cz^ +2Gx + 2Hy+2Iz-{-J-=0.

• This transformation being somewhat long will not be given

here. We shall proceed to classify the surfaces represented

by equations of the form (1).

371. Classification. The equation (1) can be further sim-

plified by completing the squares. Three cases may be distin-

guished according as the coefficients A, B, C are all three differ-

ent from zero, one only is zero, or two are zero.



XVI, §371] QUADRIC SURFACES 343

Case (a) : ^ ^ 0, jB ^ 0, C ^0. Completing the squares in

Xf y, z we find

Referred to parallel axes through the point (— G/A, — H/B,
— I/C) this equation becomes

(2) Ax''-\-Bf-]-Cz^ = J,.

Case (6) : A=^0,B^O, (7=0. Completing the squares in x

aud y we find

If /^ we can transform to parallel axes through the point

(—G/Aj — H/B, J2/2 1) so that the equation becomes

(3) Ax" + By^+2Iz = 0.

If, however, 7=0, we obtain by transforming to the point

(-G/A, -II/B,0)

(3') Aa^-\-By'=J,.

Case (c) : A^O, B = Of C = 0. Completing the square in

x we have

A(x-{-^\2Hy + 2Iz = ^-J=J,.

If H and I are not both zero we can transform to parallel

axes through the point (— G/A, J^/2 H, 0) or through (— G/A,

0, J3/2 /) and find

(4) Ax'-\-2Hy + 2Iz = 0.

If 7r= and /= we transform to the point (— G/A, 0, 0)

so that we find

(4') Ax'^J,,
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372. Squared Terms all Present. Case (a). We proceed to

discuss the loci represented by (2). If J^ 4^ 0, we can divide

(2) by J^ and obtain :

(a) if ^/t/i, 5/t7i, (7/Ji are positive, an ellipsoid (§ 354)

;

(fi) if two of these coefficients are positive while the third

is negative, a hyperboloid of one sheet (§ 358)

;

(y) if one coefficient is positive while two are negative, a

hyperboloid of tivo sheets (§ 362);

(8) if all three coefficients are negative, the equation is not

satisfied by any real point (§ 365)

;

If Ji = the equation (2) represents an elliptic cone (§ 368)

unless A, B, C all have the same sign, in which case the origin

is the only point represented.

373. Case (b). The equation (3) of §371 evidently fur-

nishes the two paraboloids (§ 366) ; the paraboloid is elliptic if

A and B have the same sign ; it is hyperbolic if A and B are of

opposite sign.

The equation (3') since it does not contains and hence leaves

z arbitrary represents the cylinder, with generators parallel to Oz,

passing through the conic Ax^ -f- By"^ = ./g. As A and B are

assumed different from zero, this conic is an ellipse if A/J2 and

and B/J2 are both positive, a hyperbola if A/J^ and B/Jc, are of

opposite sign, and it is imaginary if A/J2 and B/J<^ are both

negative. This assumes Jg ^ 0. If J^ = 0, the conic degen-

erates into two straight lines, real or imaginary ; the cylinder

degenerates into two planes if the lines are real.

374. Case (c). There remain equations (4) and (4'). To sim-

plify (4) we may turn the coordinate trihedral about Ox through

an angle whose tangent is — H/I-, this is done by putting

Bf + Hz' - Hy' + Iz'
x = x\ y= -^ z — — ^

;

^H^+P v'H^ + P
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our equation then becomes

It evidently represents a parabolic cylinder, with generators

parallel to Oy.

Finally, the equation (4') is readily seen to represent two

planes perpendicular to Ox, real or imaginary, unless t/3 =
in which case it represents the plane Oyz.

EXERCISES

1. Name and locate the following surfaces :

{a) x^-{-2y^ + Sz^ = 4. (b) x^ + y^ - 5z - 6 = 0.

(c) x'^ - y^ -\- z^ = 4. (d) x^-y^ + z^ + Sz + 6 = 0.

(e) 2?/2 -4^2 _ 5=3 0. (/) 2x2 + 2/2 + 3^2 + 5 = 0.

(g) 6^2 + 2 x2 = 10. (h) z^-9 = 0.

(0 x2 - y + 1 = 0. (j) x^-'y^-z^ + Qz = 9.

(k) x2 + 3 ?/2 + 2;2 + 4 + 4 = 0. (I) z'^ + ?/;- 9 = 0.

2. The cone
x2/a-^ + 2/2/6-2 _ 2-2/02 =

is called the asymptotic cone of the hyperboloid of one sheet

x2/a2 + yl/yZ _ 22/c2 = 1.

Show that as z increases the two surfaces approach each other, i.e. they

bear a relation similar to a hyperbola and its asymptotes.

3. What is the asymptotic cone of the hyperboloid of two sheets ?

4. Show that the intersection of a hyperboloid of two sheets with any

plane actually cutting the surface is an ellipse, parabola, or hyperbola.

Determine the position of the plane for each conic.

5. Show that in general nine points determine a quadric surface and

that the equation may be written as a determinant of the tenth order

equated to zero.

6. Show that the surface inverse to the cylinder x'^ \- y"^ = a"^^ with

respect to the sphere ^2 + ^/^ + ^2 — ^2^ jg ^\^q torus generated by the rev-

olution of the circle {y — a/2y^ -\- z"^ = a?- about the axis Ox.

7. Determine the nature of the surface xyz = a^ by means of cross-

sections.
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375. Tangent Plane to the Ellipsoid. The plane tangent

to the ellipsoid

a" b^ c^

can be found as follows (compare §§ 344, 345). The equa-

tions of the line joining any two given points (x^, y^, z^) and

{^2,y2,^2) are

x = x^ + 'k{x^-x;)y y = yi-\-k(y^-yi), z = Zi-\-k(z2-Zi).

This line will be tangent to the ellipsoid if the quadratic

in k

o? ¥ (?

has equal roots. Writing this quadratic in the form

1_ a^ b^ c2 J

oFxiix^-x,) yifa-yi)
I

gife-gQ "];,
I

W
I

yi" .^i' i\=()"^
[ a2 -^ 52 ^ c2 J ^\a''^b'^c\ J

'

we find the condition

[(
"

52 ^2

_r(x^ - x,y O/2 - yiY _, fe - ZiYlf^i^ j_^ 4. 5l _ 1

V

\_ a" 6^ "^ c2 JVa2
"^

62 ^ c2 J

If now we keep the point {Xi , 2/1 , 2!i)
fixed, but let the point

(X2, yz, Z2) vary subject to this condition, it will describe the

cone, with vertex (x^
, 2/1 , ^i), tangent to the ellipsoid ; to indi-

cate this we shall drop the subscripts of X2, 2/2, Z2. If, in

particular, the point (xi , 2/1 , z^) be chosen on the ellipsoid, we

have
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and the cone becomes the tangent plane. The equation of the

tangent plane to the ellipsoid at the point {x^
, y^ , z^ is, therefore :

a" we'
376. Tangent Planes to Hyperboloids. In the same way

it can be shown that the tangent planes to the hyperboloids

a"" h^ c2~ ' a2 y- c2~

at (aji , 2/i , 2i) are

a2 62 f.1
' ^2 ^2 ^2

By an equally elementary, but somewhat longer, calculation

it can be shown that the tangent plane to the quadric surface

Ax^ -\- By^ -\- Cz^ -{-2 Dyz -{-2 Ezx-^2 Fxy

-\-2Gx-\-2Hy + 2Iz^J=0
at (xi , 2/i , Zi) is

:

AxiX + Byiy + Cz^z + D {y^z + z^y) + E (z^x + x^z) -\- F{x,y + ^/lO;)

-{.G(x,-{-x)-^ H{y, + y)-\- I(z, + z) + J= 0.

In particular, the tangent planes to the paraboloids

t + t^2cz, ''--t = 2cz
a" b^ ' a2 52

are

^2 ^ 52 ^ ' ^ ^'
a2 62 V 1

-r ;

377. Ruled Surfaces. A surface that can be generated by

the motion of a straight line is called a ruled surface; the line

is called the generator.

The plane is a ruled surface. Among the quadric surfaces

not only the cylinders and cones but also the hyperboloid of

one sheet and the hyperbolic paraboloid are ruled surfaces.
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378. Rulings on a Hyperboloid of One Sheet. To show

this for the hyperboloid

a^ h"- & '

we write the equation in the form

62 c2

x^

and factor both members :

»+'
)e-9-^3('-3-

It is then apparent that any point whose coordinates satisfy

the two equations

^ + 5==;fcfl+^\
^_^-l

1

-

/cV a

where A; is an arbitrary parameter, lies

on the hyperboloid. These two equa-

tions represent for every value of A: (^ 0)

a straight line. The hyperboloid of one

sheet contains therefore the family of

lines represented by the last two equa-

tions with variable A;.

In exactly the same way it is shown that the same hyper-

boloid also contains the family of lines

c V aj c k\ aJ

Thus every hyperboloid of one sheet contains two sets of recti-

linear generators (Fig. 148).

Fig. 148
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379. Rulings on a Hyperbolic Paraboloid. The hyperbolic

paraboloid (Fig. 149)

also contains tivo sets of recti-

linear generators, namely,

^ + l = k.2cz, 2-1 = 1

a b a k

and

a b a b 7c' Fig. 149

EXERCISES

1. Derive the equation of the tangent plane to :

(a) the elliptic paraboloid
;

(b) the hyperbolic paraboloid

;

(c) the elliptic cone.

2. The line perpendicular to a tangent plane at a point of contact is

called the normal line. Write the equations of the tangent planes and

normal lines to the following quadric surfaces at the points indicated

:

(a) xy9 + yyi - 02/16 = 1, at (3, - 1, 2) ;

(6) x2 + 2 2/2 + 02 = 10, at (2,1, -2);
(c) x2 + 2 ?/2 - 2 ^2 = 0, at (4, 1, 3) ;

(d) x^-Sy^-z = 0, at the origin.

3. Show that the cylinder whose axis has the direction cosines I, m, n

and which is tangent to the ellipsoid od^a^ + y^/b^ -f z^/c^ = 1, is

W b'^ cy W b^ d'JW b'^ c^ I

4. Show that the plane Ix + my -{- nz = y/'V-a^ + ?n2&2 + ^12^2 jg tangent

to the ellipsoid x'^la'^ + 2/2/52 + ^ij^fi _ 1.

5. Show that the locus of the intersection of three mutually perpen-

dicular tangent planes to the ellipsoid x^ja'^ + ?/2/62 _^ ^2/^2 = 1, is the

sphere (called director sphere) x^ + y^ +z^ = a^ + 62 _|. ^2.
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6. Show that the elliptic cone is a ruled surface.

7. Show that any two linear equations which contain a parameter

represent the generating line of a ruled surface. What surfaces are gen-

erated by the following lines ?

(a) x-y + kz = 0,x + y-z/k = {i\ (6) 3 a; - 4 y ^ A:, (3 a;+4 y)k= \
;

(c) X — y + 3 A-^ = 3 A;, k{x -\-y)— z = 3.

8. Show that every generating line of the hyperbolic paraboloid

or^/cfi — y'^b^ = 2 cz is parallel to one of the planes x^/a^ — y^/b^ = 0.

380. Surfaces in General. When it is required to deter-

mine the shape of a surface from its cartesian equation

the most effective methods, apart from the calculus, are the

transformation of coordinates and the taking of cross-sections,

generally (though not necessarily always) at right angles to

the axes of coordinates. Both these methods have been ap-

plied repeatedly to the quadric surfaces in the preceding

articles.

381. Cross-Sections. The method of cross-sections is ex-

tensively used in the applications. The railroad engineer de-

termines thus the shape of a railroad dam ; the naval architect

uses it in laying out his ship ; even the biologist uses it in con-

structing enlarged models of small organs of plants or animals.

382. Parallel Planes. When the given equation contains

only one of the variables x, y, z, it represents of course a set of

parallel planes (real or imaginary), at right angles to one of

the* axes. Thus any equation of the form

F{x)=0

represents planes at right angles to Ox, of which as many are

real as the equation has real roots.
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383. Cylinders. When the given equation contains only two

variables it represents a cylinder at right angles to one of the

coordinate planes. Thus any equation of the form

F{x,y)=0

represents a cylinder passing through the curve F{x, y) = in

the plane Oxy, with generators parallel to Oz. If, in particular,

F(x, y) is homogeneous in x and y, i.e. if all terms are of the

same degree, the cylinder breaks up into planes.

384. Cones. When the given equation F(x, y, 2)=0 is

homogeneous in x, y, and z, i.e. if all terms are of the same

degree, the equation represents a general cone, with vertex at

the origin. For in this case, if {x, y, z) is a point of the sur-

face, so is the point (lex, ky, kz), where k is any constant; in

other words, if P is a point of the surface, then every point of

the line OP belongs to the surface ; the surface can therefore

be generated by the motion of a line passing through the origin.

385. Functions of Two Variables. Just as plane curves are

used to represent functions of a single variable, so surfaces can

be used to represent functions of two variables. Thus to obtain

an intuitive picture of a given function f{x, y) we may con-

struct a model of the surface

such as the relief map of a mountainous country. The ordi-

nate z of the surface represents the function.

386. Contour Lines. To obtain some idea of such a surface

by means of a plane drawing the method of contour lines or

level lines can be used. This is done, e.g., in topographical

maps. The method consists in taking horizontal cross-sections

at equal intervals and projecting these cross-sections on the hori-

zontal plane. Where the level lines crowd together the surface

is steep ; where they are relatively far apart the surface is flat.
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EXERCISES

1. What surfaces are represented by the following equations ?

(a) Ax-{-By+C = 0.

(c) y^-\-z^ = a^.

(e) zx = a^.

(g) x^-Sx^-x+S = 0.

(0 y = x^ - X - e.

(k) x^ + 2 ?/2 = 0.

(m) x'^-y^ = z^

(0) (x-l){y-2)(z-S) = 0.

(b) xcos^ -\- ysinp =p.
(d) z^-x^ = a^

(/) z^ = 4ay.^

(h) xyz = 0,

U) yz^-9y = 0.

(I) a;2 = yz.

(n) y2 + 2z'^-\-4zx = 0.

(p) a;3 -f y3 — 3 xyz = 0.

2. Determine the nature of the following surfaces by sketching the

contour lines

:

(a) z=:x-{-y. (b) z = xy. (c)z = y/x. (d) z =x^ -^y^.

(e) z=x^-y^-\-4. (f)z = x^. (g) z=x'^-\-y^-4:X. (h)z = xy-x.
{i) z = 2\ (j) y=z'^-ix. {k)y = Sz^ + x^. {l)z=nx+y'\

3. The Cassinian ovals (§ 270) are contour lines of what surface ?

4. What can be said about the nature of the contour lines of a sur-

face z =f{x) ? Discuss in particular : (a) z = x^ — 9
;

(b) z = x^ — 8
;

(c) y = z^ + 2z.

387. Rotation of Coordinate Trihedral. To transform the

equation of a surface from one coordinate trihedral Oxyz to another

Ox'y'z', with the same origin O, we

must find expressions for the old co-

ordinates X, y, z of any point P in terms

of the new coordinates x', y', z'. We
here confine ourselves to the case when

each trihedral is trirectangular ; this is

the case of orthogonal transformation,

or orthogonal substitution.

Let li, wi, wi, be the direction cosines

of the new axis Ox' with respect to the

old axes Ox, Oy, Oz (Fig. 150) ; similarly

h, m2, W2 those of Oy', and Z3, ma, W3 those of Oz'.

the scheme

Fig. 150

This is indicated by
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x' y' 0'

h h h'
Wli m2 mz

ni W2 tiz

which shows at the same time that then the direction cosines of the old

axis Ox with respect to the new axes Ox', Oy' ^ Oz' are Zi, ^2, h, etc.

388. The nine direction cosines h, h, ••• n^ are sufficient to determine

the position of the new trihedral Ox'y'z' with respect to the old. But

these nine quantities cannot be selected arbitrarily ; they are connected by

six independent relations which can be written in either of the equivalent

forms

h^ + wii2 + n{^ = 1, ^2^3 + m^mz + ruiiz = 0,

(1) ^2^ + ^2'-^ + «2^ = 1, hh -h ms^ni + n^ni — 0,

h^ + rriz^ + W32 = 1, hh + Wim2 + W1W2 = 0,

or

h^ + h^ + ?3^ = 1, wini + W2W2 + wisws = 0,

(1') wii2 + W22 + W32 = 1, mh + n2h + nsh = 0,

Wl^ + W2^ + W32 = 1

,

ZlWi + l2'm2 + ?3W»3 = 0.

The meaning of these equations follows from §§ 297 and 300. Thus

the first of the equations (1) expresses the fact that h, mi, ui are the

direction cosines of a line, viz. Ox' ; the last of the equations (1') ex-

presses the perpendicularity of the axes Ox and Oy ; and so on.

389. If X, y, z are the old, x', y', z' the new coordinates of one and

the same point, we find by observing that the projection on Ox of the

radius vector of P is equal to the sum of the projections on Ox of its

components x', y', z' (§ 294), and similarly for the projections on Oy

and Oz :

X = hx' + hy' + hz',

(2) y = mix' + mzy' + W30',

z = mx' + n^y' + n^z'.

Indeed, these relations can be directly read off from the scheme of

direction cosines in § 387.

Likewise, projecting on Ox', Oy', Oz', we find

x' = hx + miy + niz,

(2') yi = I2X + TO22/ -I- n2Z,

z' = Izx + m^y + mz.

2a
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As the equations (2), by means of which we can transform the equation

of any surface from one rectangular system of coordinates to any other

with the same origin, give x, y, z as linear functions of x',y', z', it follows

that such a transformation cannot change the degree of the equation of

the -surface.

390. Th-fe equation (2') must of course result also by solving the equa-

tions (2) for x', y', z', and vice versa. Putting

h h h
nil Wi2 wi3 = D,

ni Ui nz

solving (2) for x', y\ z', and comparing the coefficients of x, y, z with

those in (2') we find the following relations :

I)h = m^nz — W3W2, Bmi = n^h — Ush, Dni = hm^ — hm^i etc.

Squaring and adding the first three equations (compare Ex. 3, p. 45)

and applying the relations (1) we find : D^ = \.

By § 321, D can be interpreted as six times the volume of the tetrahe-

dron whose vertices are the origin and the points x', y', z' in Fig. 150, i.e.

the intersections of the new axes with the unit sphere about the origin.

The determinant gives this volume with the sign + or — according as the

trihedral Ox'y'z' is superposable or not (in direction and sense) to the

trihedral Oxyz (see § 391). It follows that D =±1 and

h = ± {rmnz — mz7i2), mi = ± {n2h — n^h), Wi = ± (^2^3 — ^3^2),

?2 =± (W3W1 — miWs), W2 =± (WsZi - W1Z3), W2 = ± (^3^11 — Zim3),

l3=± (miW2— m2ni), W3 =± (nih — W2?i), m =± {hm2— hmi),

the upper or lower signs to be used according as the trihedrals are super-

posable or not.

391. A rectangular trihedral Oxijz is called right-handed if the rotation

that turns Oy through 90° into Oz appears counterclockwise as seen from

Ox ; otherwise it is called left-handed. In the present work right-handed

sets of axes have been used throughout.

Two right-handed as well as two left-handed rectangular trihedrals are

superposable ; a right-handed and a left-handed trihedral are not super-

posable. The difference is of the same kind as that between the gloves

of the right and left hand.

Two non-superposable rectangular trihedrals become superposable upon

reversing one (or all three) of the axes of either one.
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392. The fact that the nine direction cosines are connected by six rela-

tions (§ 388) suggests that it must be possible to determine the position of

the new trihedral with respect to the old by only three angles. As such

we may take, in the case of superposable trihedrals, the angles 0, 0, \}/,

marked in Fig. 160, which are known as Eulefs angles.

The figure shows the intersections of the two trihedrals with a sphere

of radius 1 described about the origin as center. If OiVis the intersection

of the planes Oxy and Ox'y', Euler's angles are defined as

d = zOz', <t>
= NOx', \p = xON.

The line ON is called the line of nodes^ or the nodal line.

Imagine the new trihedral Ox'y'z' initially coincident with the old

trihedral Oxyz, in direction and sense. Now turn the new trihedral

about Oz in the positive (counterclockwise) sense until Ox' coincides with

the assumed positive sense of the i^odal line ON; the amount of this

rotation gives the angle \^. Next turn the new trihedral about ON in the

positive sense until the plane Ox'y' assumes its final position ; this gives

the angle 6 as the angle between the planes Oxy and Ox'y\ or the angle

zOz' between their normals. Finally a rotation of the new trihedral

about the axis Oz\ which has reached its final position, in the positive

sense until Ox' assumes its final position, determines the angle 0.

393. The relations between the nine direction cosines and the three

angles of Euler are readily found from Fig. 150 by applying the fundamen-

tal formula of spherical trigonometry cos c = cos a cos 6 + sin a sin h cos 7
successively to the spherical triangles

xNx'^ xNy', xNz'^

yNx', yNy', yNz',

zNx'^ zNy'^ zNz'.
We find in this way :

li = cos xj/ cos — sin ^ sin (p cos 6,

mi = sin \{/ cos
<f) -f cos xj/ sin cos ^,

wi = sin sin 0,

?2 = — cos i/' sin — sin \// cos cos 0, Z3 = sin ^ sin 0,

m2=— sin 1^ sin + cos ^ cos cos 0, mz=— cos \p sin 0^

ni = cos sin 0, m = cos 0.



APPENDIX

NOTE ON ABRIDGED NUMERICAL MULTIPLICATION
AND DIVISION

1. In multiplying two numbers it is convenient to write the

multiplier not below but to the right of the multiplicand in

the same line with it, and to begin the formation of the par-

tial products with the highest figure (and not with the lowest).

The most important part of the product is thus obtained first.

The partial products must then be moved out toward the right

(and not to the left). Thus

:

35702

285616

24991

4

71

17

87025

404

8510

310696 6550

2. "Long" multiplications like the above rarely occur in

practice. Generally we have to multiply two numbers known

only approximately, to a certain number of significant figures.

Suppose we want to find the product of 3.5702 and 8.7025, five

significant figures only being known. It is then useless to

calculate the figures to the right of the vertical line in the

scheme above. To omit this useless part we proceed as fol-

lows. In multiplying by 8, place a dot over the last figure 2

of the multiplicand ; in multiplying by 7, place a dot over the

of the multiplicand, beginning the multiplication with this

figure (adding, however, the 1 which is to be carried from the

preceding product 7x2); then to indicate the multiplication

by simply place a dot over the 7 of the multiplicand; the

356



APPENDIX 357

multiplication by 2 has then to begin at the 5 of the multipli-

cand. Thus we obtain

:

3.5702 1 8.7025

28 5616

2 4991

71

18

31.0696

The last figure so found is slightly uncertain, just as the

last figures of the^given numbers generally are.

3. In division it is most convenient to place th^^ivisor to

the right of the dividend. Thus

3.1416 =-8.9070227.9823

25 1328

2 8495

2 8274

220

219

4

600

912

68800

62832

To cut off the superfluous part to the right of the vertical

line, subtract the first partial product as usual ; then cut off

the last figure from the divisor and divide by the remaining

portion
;
go on in this way, cutting off a figure from the divisor

at every new division until the divisor is used up. Thus

:

27.9823 |3J^ = 8.90701

25 1328

2 8495

2 8274

221

220

1





ANSWERS

[Answers which might in any way lessen the vahie of the Exercise are not

given.]

Pages 9-10. 5. 2| miles. 16. 173.9 ft.

Pages 13-14. 3. 22. 4. ^(pc + c« + ab).

7. K«^ + 2 6c - 2 ca - b'^) = K« - &)(« + b -2c).

Pages 17-18. 4. |rir2 sin (02 - 0i)-

5. I[r2r3 sin (03 - 02) + nn sin (0i - 03) + rir2sin (02- 0i)].

6. —^'^^^cosi^(02 — 0i). 7. rcos0 = X + y cos w, rsin0 = ysin w.
•J'l + r2

Page 22. 17. They intersect at [\(xi-\-X2-{-x^+ Xi), ^(^1+^2+2/3+2/4)].

20. [i(a;i +X2 + X3), i(yi + 2/2 + 2/3)].

Page 35. 21. P = 1000(1 + r) ; P = 1000 + 60 n.

Page 38. 14. No.

Page 45. 1. (e) sin2j3; (/) a2a3+ «3«i + «ia2.

8. (&) (4, 3), (4, - 3), (- 4, 3), (- 4, - 3) ;
(d) (3, - 2) ;

(e) (±i, ±3); (/) (t,
i)-.

Pages 48-49. 1. (a) ; (6) ; (c) -113; (d) -5; (e) 1.

4. (a) (2, - 1, 3) ; (6) (83/41, - 81/41, - 35/41) ;
(c) (- 5, 3, - 2) ;

id) (±3, i2, ±4); (e) (±1, ±1, ±1); (/) (1,0,-3).

Page 53. 1. (a) ; (6) - 180; (c) -27846; ((?) 7728; (e) 36;

(/) 550.

Page 57. 6. (27/2, -77/2).

Pages 59-60. 6.640/39. 9. (&1W2 - 62^1)2/2 mim2(wii - m2).

10. (3, i).

Pages 65-66. 2. (a) r sin = ± 5
; (6) r cos = ± 4

;

(c) rcos(0- f 7r)= ± 12.

3. = 0, rsin = 9, = ^ TT, r cos = 6. 14. 8464/85.

19. (- 5, - 10). 21. X = 1 (by inspection), 4x - 3y -\- 16 =0.

359
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Page 68. 4. K^ - ab = 0.

<

Page 69. 1. tan-i ^^^' ~ ^^
; a= -b, h^=ab.

'

a -i- b

4. [mi(62 — &)— W2(&i — 6)]^/2mim2(m2 — «ii).

6. r(2 cos - 3 sin 0) + 12 = 0.

10. 1 hr. 10 m. ; 176 miles from Detroit.

Page 75. 6. 560. 7. 120. 8. 65200. 9. 60 ; 24, 36.

10. 487635, 32509, 1653.

11. „C'i„, when n is even
;
„C'|(^_j^ = «^^cn+i)'

^^^" " ^^ ^^^*

12. 66." 13. 120.

Pages 82-83. 2. aox^ + aix^ + a2X + as- 4. 8 abed.

6. (a) a; = 2, ?/=-!, 0=2, 10 = 3; (&) x = 1, y = 3, 5r = 2, lo = - 1.

7. (a) No; (b) Yes.

8. cos^ a + cos2 /3 + cos'^ y + 2 cos « cos /3 cos 7 pi-

pages 85-86. 2. (a) ABG+2FGH-AF^-BG-^-CH^]
(b) x^ + i/2 + 0-^ - 2(2/5 + 0X + xy)

;
(c) - (x^ + i/^ + 0^) ;

(e) 4.

7. («) l+a2 + 62 + c2. ^5) (a(^ + c/- &e)2
;

(c) (a(? + fte + c/)'^.

Pages 90-91. 6. x'^ + tf - 96x- 6iy { 2408 = ; 31.8 ft. or 66.3 ft.

8. a;2 + ?/2 - 16 X + 8 ?/ + 60 = 0. 9. A circle except for k =±l.

10. a;2 _|. y2 _,_ 4 L±A% 4- 4 = 0.

1 — k^

Page 92. 2. (a) 7-2-20 r sin 0+75=0 ;

(6) f^ -12 r cos (0 - i tt) 4- 18 = ; (c) r + 8 sin = 0.

Page 94. 8. ^2 - 6 a: + 28 = 0. 9. x'^ + 2 pwx + gm^ = 0.

Page 96. 3. (-6, -1), (29/106, 42/53).

7. 8a;-4?/-ll±15\/2 = 0. t^

Page 98. 3. (xi - h) {x - h) + {yi - k) (y - k) = r^.

7. i-r^A/C-rW/C), 8. (2,1).

Page 100. 6. {x - 79/38)2 + (y - 55/38)2 = (65/38)2.

8. ^2 + ?/2 + 4 X — 2 ?/ - 15 = 0.

Page 105. 1. (c) Polar lies at infinity.

Pages 108-109. 3. Let L, M be the intersections of the circle with

CPi, then ^2 ~ r2 = LPi - MPi.
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6. (c) 2x24-2y2_|.22x+6?/+15=0, 2x2+2?/2_i0x-10?/-25=0.

12. If the vertices of the square are (0, 0), (a, 0), (0, a), (a, a) and A;2

is the constant, the locus is 2 x2 + 2 ?/2 — 2 ax - 2 ai/ + 2 a2 - ^2 = ;

^•>a; |aV6.
13. If the vertices of the triangle are (a, 0), (—a, 0), (0, aV3) and

A;2 is the constant, the locus is 3 x2 + 3 y2 _ 2VS a?/ + 3 a2 - 2 A:2 = 0.

Page 126. 8. (a) (3 + 4i)/25; (&) (3 + VrO/14 ;

(c) (-6 + 30/34; (c?) (1-6 0/37.

Page 130. 7. (^) ±K^^+v'20; {h.) v^2(cos80°+isin80°),

\/2(cos 200° + i sin 200=), ^2(cos 320° + i sin 320°).

Pages 135-136. 10. (a) 2 ?/ = 3 x2 + 5 x
;

(6) 12 ?/ = - 5 x2 + 29 X - 18.

11. 300 y = - x2 + 230 x ; 44.1 ft. above the ground ; 230 ft. from the

starting point.

20. (6) No parabola of the form y = ax^ + 6x + c is possible.

Page 138. 13. (2,3), (-1.8,3.6), (3.1, -2,8), (-3.3,-3.8).

Page 142. 6. East, East 33° 41' North, East 53° 8' North, East 18°

26' South.

10. 100/(9r+4).

Pages 145-146. 10. 0, 8° 8'. 11. 7° 29'.

15. When the side of the square is 3 in.

18. (a) 6 y = x8 + 6 2ic - 19 X
; (6) 7 y = 2 x^ - x2 - 29 x + 36.

Page 147. 1. (a) -1, 3.62, 1.38; (6) -1.45, -.403, .855
;

(c) -1.94, .558, 1.38; (d) 2.79.

Page 154. 4. (d) -252xM; (d) ^0 a%^ - SO a^b^
;
(h) 27/a25.

Page 159. 3. (a) PiP2=Ps; (&) Pi^Ps=P2^ ;
(c) pi^=27 p2^=7292-)s\

Page 162. 1. - 1.88, 1.53, .347.

Page 167. 1. (a) 4.06155
;

(b) ±2.08779; (c) 1.475773.

2. 2.0945514. 3. .34899.

4. (a) (1.88, 3), (- 1.53, 3), (- .347, 3) ;

(b) (.309, 1.10), (1.65, 1.55), (-1.96, .347) ;
(c) (-2.106, -1.0266).

5. 3.39487 in. 6. 9.69579 ft. 7. - 2, 1 ± VS.

8. .22775, 3.1006. 9. 5.4418 ft.

10. (2, 3), (- 1.848, 3.584), (3.131, - 2.805), (- 3.383, - 3.779).

11. (2.21, .89). 12. .34729 a.
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Pages 173-174. 2. (a) (4, i tt), (4, | tt)
;

(b) (a, ^ tt), (a, | tt)
;

(c)(4, 0); (d) (4aa'r), (4 a, fTr).

7. (a) 2/2 - 4 x + 4 = ; (6) 14 2/2 - 45 X + 52 ?/ + 60 = 0.

8. (6) a;2 - 10 a; - 3 2/ + 21 = ; (c) ^2 + 2 a; + y - 1 = 0.

9. The equation of a parabola contains an xy term when its axis is oblique

to a coordinate axis.

Pages 179-180. 1. (a) 18 a; - 30
;

(5) 6 x5 - 30 X* + 48 x3 - 24 ic2 + 8 X - 8.

2. (a) y'=5/2y; (b) y' = 6/(5 - 2 y) ;
(c) y' = 2/Sy.

5. (a)y'=-y/x; (b) y' = (6 - 2 xy) /x^
;

(c) 2/'=-(^x + iry + G^)/(£rx + 5y + i?').-

Pages 186-188. 8. («) 2/=0
; (6) 2a:+2i/-9=0, 2a;-|/-18=0;

(c) 2 X + 2 y - 9 = 0, 8 X + 16 y - 27 = 0, 24 X - 16 2/ - 153 = ;

(d) 8 X - 16 2/
- 27 = 0.

14. Directrix. 15. y'^ = a{x-3a). 22. 1^(1 + m2).
m2

29. a:2-80x-2400?/ = 0; 0, - |, - |, - i 0, f, 2.

30. x2 = 360(2/ -20).

Pages 194-195. 2. (3 7r-4)/6 7r. 3. § a2 (1±!^.

8. («) 64/3; (6) 625/12; (c) 1/12. 9. 123.84 ft^. 10. 1794i tons.

11. 199.4 ft2.

Page 197. To obtain the following solutions, take the origin at one

end of the beam and the axis Ox along the beam.

1. F- W, M= W(x-l). 2. F=io(^l-x), M:= ^w(l-x)x,

3. (a) Fi=-wx, Mi= -^wx^; F2=w{ll—x), M2=-iw{^P—lx+x^);
Fi = w{l-x), Mz=-\w{l-xy)
{b) Fi=-W, Mi=-Wx', F2 = 0', M.2=-\Wl]
Fs= W,M3=-W(il-x).
4. (a) Fi = lwl, Mi = lwlx', F2 = io(^l — x),

M2=-^ w?(a;2 -lx-\-\l^); i^s = - i wjZ, ^3 = z '^K^ - ^)'

Page 200. 9. 8^2 - 2 xy + 8 y2_ 63 = 0.

Page 204. 10. 3 x2 - ?/2 = 3 a^. 11. b. 14. 2 xy = 1.

Pages 211-212. 2. ^X4-^V=c2. 13. 54.5 ft., 42.2 ft. 18.62/^2.
x y

23. An ellipse or hyperbola according as one circle lies within or without

the other circle.
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Pages 221-222. 7. (a) A'a^ - B^b^ = C^

;

(&) rt2cos2/3- &2sin2/3=i)2.

19. 62, 21. a2 + 62 . ^2 _ 62.

22. 4ab. 23. sin-i (a6/a'6')-

25. (a) a;2 + 2/2 = oj2 + 62
; (&) ^2 + 2/2 = ^2 _ ^2.

Page 22?! 3. (a) (1, -1), (1±V2, -1), a;=li|V2;

(&) (i,0), (1,0), (-|,0),:r. = 0,a; = l.

4. 2 62/a. 8. (a) a2j,2 ^^ ft2j;(« _ a^)
; (&) b'^x^ = a^y{b - y).

10. Two straight lines.

Page 235. 2. (a) Vertices (5, 3), (8, 3); semi-axes 3/2, V2.

(6) Vertices (4, 8/3), (8, 8) ; semi-axes 10/3, 5\/3/3.

(c) vertices (17/6, 7/5), (1, 3) ; semi-axes \/65/5, \/l3/2.

3. 3a: + 2?/-2=0; (21/13, -37/26), 10/Vl3.

Page 237. 5. (acosd, — asind), x^ -{-
y'^ — 2 a(xcose — ysine) = 0.

Pages 246-247. 2. (a) 3x-142/=0; (b) y= -S/l3, x=-14/13.

6. 2 x2 - xy - 15 2/2 -I- X + 19 2/ - 6 = 0,

2 x2 - iC2/ - 15 2/2 + X -^ 19 2/
- 28 = 0.

6. 6 x2 + icj/ - 2 2/2 - 9 x -t- 8 2/
- 46 = 0,

6 a;2 -H a;2/ - 2 y2 _ 9 a; + 8 2/ + 34 = 0.

11. (a) a:2/4 + y^ = 1
; (6) x2/4 - 2/V2 = 1

;
(c) 3 x2 + ^2 _,_ ^ = ;

((?) a;2/16 +_2/V4 = 1 ;
_(e) (3 + Vl7)x2 -}- (3 - Vl7)2/2 = 4

;

(/) (2-hV2)x2-H(2-V2)y2 = l.

15. x^ + yi= a^.

19. Equilateral hyperbola.

Page 253. 2. («) Simple point
; (6) node

;
(c) cusp

;
(d) cusp.

4. (a) None
; (6) node at (6, 0) ;

(c) isolated point at (a, 0) ;

(d) cusp at (a, 0).

Page 260. 4. r = a(sec <f> ± tan 0) or (x — a)y2 _^ 3.2(-a. ^_ q,) _ q.

10. x22/2 zz a2(a;2 4. ^2). 11. Cissoid (a - x)y^ = x^.

12. 2/(x2-l-2/2) = a(x2-2/2). 13. r = actn0.

14. (x2 -H 2/2)2 _ 4 «a;(x2 - 2/2).

Page 283. 6. ^ + ^^

etc.

V2(l + ZZ' -l-mm' + 7i«')

13. ^ (xi + X2 + X3), i (yi + ^2 + ys), i (^1 + 2^2 + Z3).

Page 287. 6. cos-i (7/3V29).
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Page 291. 2. ^V465. 3. ^269.

6. (3962, 47^ 43', 276° 16'), (320, - 2914, 2666), 2931.

7. I riViVl —[cos di cos 62 + sin Oi sin 62 cos (<pi — 02)]"^

02)+ cosfli cos ^2].8. y/ri^ + rz^ — 2 rir2 [sin di sin ^2 cos (0i

10. - 1, 10, 7.

Page 296. 3. 39 a: - 10 ?/ + 7 - 89 = 0.

5. 97/28, - 97/49, - 97/9. 7. Sx - 4:y + 2 z- 6 = 0.

Page 300. 5. 4ic + 8?/ + 2; = 81, 4x-|-8a; + ^ = 90.

Page 303. 2. (a) 56/3; (ft) 0; (c) 19/3.

Page 306. 12. Sx-2y = l. 13. 6a; + 11 ?/ + 90 = 58.

16. 70° 31'. 17. cos-i(2/i-^ + 3rt2)/(4/i2_|.3«2).

Pages 314-316. 3. 69° 29'. 19. (a) V637l9; (ft) V194/33.

21. X - 2 y + ^ + 8 = 0.

X2 — Xi 2/2 — 2/1 ;22 - i^l

24. ai fti ci =0.

a2 ft2 C2

Page 320. 11. ( - 3, - 3, 2), (9, 9, - 6).

Pages325-326. 4. (1, 0, - 3), (- 9/11, 20/11, 27/11).

7. a:2 - 3 y^ - S z^ = 0. 13. 25(^2 + y^ + z^) = 16^, 25 = 64.

Pages 329-331. 4. (4,-5,-3). 5. (4,6,2).

6. ^x + 2y - z = 25,2x~3y -\-z + 25 = 0.

20. 9ic2 + 4?/2 + 1.3 2;2 + 2 X2/ - 273 = 0.

21. (x - ZA:)2 + (^ - mky^ + (s - wA;)2 = r2.

22. ll{x-\-h)+m{y-\-j) + n{zi-k)Y-[{x+hy-\-{y-hj)^+(z+ k)^-r'2]=0.

Page 336. 3. Va^ - c2 x ± Vft2 - c2 = 0.

6. (a;2 + ^2 + ;22 _ «2 _ ft2)2 _ 4 52(q;2 _ ^2) ^ Q.

8. (a) 16a2(a;2 4-;32) = y4. (&) 16 a2[(x + a)2 + 02] = (4a2 - y2)2.

9. y^{x^ + z^)=a^.
^
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Abscissa, 1, 4.

Absolute value, 124.

Acnode, 252.

Adiabatic expansion, 276.

Algebraic curves, 249-253.

Amplitude, 16, 124.

Angle between line and plane, 312

;

between two lines, 58, 284, 311;
between two planes, 299.

Anomaly, 16.

Area of ellipse, 221 ; of parabolic

segment, 191-195; of triangle, 11,

12, 56, 288 ; under any curve, 193.

Argument, 124.

Associative law, 110.

Asymptotes, 203.

Axes of coordinates, 4, 277 ; of ellipse,

198 ; of hyperbola, 202.

Axis, 18 ; of parabola, 132, 170 ; of

pencil, 303 ; of symmetry, 137.

Azimuth, 16.

Bending moment, 196-197.

Binomial coefficients, 152-154 ; the-

orem, 152-154.

Bisecting planes, 299.

Bisectors of angles of two lines, 64.

Cardioid, 255.

Cartesian coordinates, 16.

Cartesian equation of conic, 225 ; of

ellipse, 199 ; of hyperbola, 202 ; of

parabola, 171.

Cartesius, 17.

Cassinian ovals, 256, 259.

Catenary, 188.

Center of ellipse, 198, 215; of hyper-
bola, 202, 215 ; of inversion, 101

;

of pencil, 67; of sheaf, 304; of

symmetry, 137.

Centroid, 22.

Chord of contact, 103.

Circle, 87-109 ; in space, 321.

Circular cone, 341.

Cissoid, 255.

Classification of conies, 225 ; of

quadric surfaces, 342-345.

Clockwise, 11.

Cofactors, 52, 80.

Colatitude, 290.

Column, 41, 47.

Combinations, 73-75.

Common chord, 107 ; logarithms, 264.

Commutative law, 110.

Completing the square, 88, 133.

Complex numbers, 100, 115, 117-130.

Component, 19, 280.

Conchoid, 254.

Cone, 341, 351 ; of revolution, 342.

Conic sections, 223-231, 232.

Conies as sections of a cone, 228-231.

Conjugate axes, 327 ; axis, 203 ; com-
plex numbers, 122 ; diameters, 215-

219 ; elements of determinant,

83; lines, 327.

Continuity, 155-156.

Contour lines, 351.

Coordinate axes, 4, 277 ;
planes, 277

;

trihedral, 277.

Coordinates, 1, 5, 277 ;
polar, 16, 290.

Cosine curve, 261.

Counterclockwise, 11.

Cross-sections, 333, 337, 339, 350.

Crunode, 252.

Cubic curves, 248 ; equation, 146-

147; function, 143-147.

Curve in space, 293.

Cusp, 252.

Cycloid, 257.

Cylinders, 351.
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De Moivre's tlieorem, 126.

Derivative, 139-141, 143, 149-152,

177-179; of ax^, 139; of cubic

function, 143 ; of function of a func-

tion, 178 ; of implicit function, 177-

179 ; of polynomial, 149-151 ; of

product, 178 ; of quadratic func-

tion, 140; of a:", 151.

Descartes, 17.

Determinant, 11, 13, 39; of n
equations, 81 ; of order n, 77 ; of

second order, 41 ; of three equa-
tions, 48 ; of third order, 47 ; of

two equations, 41.

Diameter, 333; of ellipse, 215; of

hyperbola, 218; of parabola, 184-

185.

Direction cosines, 282, 307.

Director circle, 222 ; sphere, 349.

Directrices of conies, 223, 226.

Directrix of parabola, 169.

Discriminant of equation of second
degree, 240-241 ; of quadratic
equation, 92.

Distance between two points, 7, 17,

278 ; of point from line, 63, 313

;

of point from origin, 6, 278 ; of

point from plane, 298 ; of two
lines, 313-314.

Distributive law, 110.

Division, abridged, 357.

Division ratio, 3, 8, 281.

Double point, 251.

Eccentric angle, 220.

Eccentricity, 208, 223.

Elements of determinant, 47; of

permutations and combinations, 70.

Elimination, 43, 54, 82.

EUipse, 198-222, 223, 229, 242-244.

Ellipsoid, 332-334 ; of revolution, 334.

Elliptic cone, 341 ;
paraboloid, 340.

Empirical equations, 266-276.

Epicycloid, 258.

Equation of first degree, see Linear

equation ; of line, 26, 32 ; of plane,

293-297 ; of second degree, 88.

Equations of line, 308.

Equator, 334.

Equatorial plane, 290.

Equilateral hyperbola, 203.

Euler's angles, 355.

Expansion by minors, 51, 80.

Explicit and implicit functions, 177.

Exponential curve, 263.

Factor of proportionality, 25.

Factorial, 71.

Falling body, 15, 31, 69, 134.

Family of circles, 107 ; of spheres,

329.

Foci of conic, 226; of ellipse, 198,

223 ; of hyperbola, 201, 223.

Focus of parabola, 169.

Four-cusped hypocycloid, 259.

Function, 29 ; of two variables, 351.

Fundamental laws of algebra, 110.

Gas-meter, 27, 269.

Gas pressure, 272, 276.

General equation of second degree,

88, 233-247, 317, 342.

Geometric representation of complex
numbers, 117.

Higher plane curves, 248-276.

Homogeneous function of second
degree, 241 ; linear equations, 43,

54.

Hooke's law, 15, 25, 30, 38, 267,

269.

Horner's process, 166.

Hyperbola, 201-222, 223, 230, 242-

244.

Hyperbolic logarithms, 264 ;
para-

boloid, 340 ; spiral, 259.
^

Hyperboloid, of one sheet,' 337-338

;

of revolution of one sheet, 338 ; of

revolution of two sheets, 339 ; of

two sheets, 338-339.

Hypocycloid, 259.

Imaginary axis, 117; ellipsoid, 339;

numbers, 115; roots, 127, 160;

unit, 115 ; values in geometry, 116.

Implicit functions, 177.

Inclined plane, 271.

Induction, mathematical, 71.

Inflection, 144.

Intercept, 26, 34 ; form, 33, 295.

Interpolation, 161.

Intersecting lines, 307.
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Intersection of line and circle, 95

;

of line and ellipse, 213 ; of line and
parabola, 181 ; of line and sphere,

323 ; of two lines, 39, 43.

Inverse of a circle, 101 ; operations,

111; trigonometric curves, 261-
262.

Inverses of involution, 112.

Inversion, 100, 324.

Inversions in permutations, 75.

Inversor, 109.

Irrational numbers, 113.

Isolated point, 252.

Latitude, 290.

Latus rectum of parabola, 170 ; of

conic, 224.

Laws of algebra, 110; of exponents,
112.

Leading elements, 83.

Left-handed trihedral, 354.

Lemniscate, 257, 260.

Level lines, 351.

LimaQon, 254.

Limiting cases of conies, 230.

Line, 24, 307 ; and plane perpendic-
ular at given point, 312 ; of nodes,

355
;
parallel to an axis, 23 ; through

one point, 36, 308 ; through origin,

24 ; through two points, 36, 56,

308.

Linear equation, 32, 293.

Linear equations, n, 81 ; three, 46,

48, 302 ; two, 39-42, 293, 302.

Linear function, 29, 131.

Lituus, 259.

Logarithm, 263-265.

Logarithmic paper, 274; plotting,

272-276.

Longitude, 290.

Major axis, 199.

Mathematical induction, 71.

Maximum, 141, 143.

Measurement, 114.

Mechanical construction of ellipse,

198; of hyperbola, 201; of parab-
ola, 171.

Melting point of alloy, 175, 269.
Meridian plane, 290; section, 335.

Midpoint of segment, 9.

Minimum, 141, 143.

Minor axis, 199.

Minors of determinant, 51, 80.

Modulus of complex number, 124

;

of logarithmic system, 265.

Moment of a force, 288.

Multiple points, 253.

Multiplication, abridged, 356.

Multiplication of determinants, 84.

Napierian logarithms, 264.

Natural logarithms, 264.

Negative roots, 166.

Newton's method of approximation,
162.

Nodal line, 355.

Node, 252.

Non-linear equations representing
lines, 68.

Normal form, 61, 296.

Normal to ellipse, 208 ; to parabola,

181, 182 ; to any surface, 349.

Numerical equations, 158-168.

Oblate, 334.

Oblique axes, 6, 7, 38, 278.

Octant, 277.

Ordinary point, 251.

Ordinate, 5.

Origin, 1, 4, 277.

Orthogonal substitution, 352 ; trans-

formation, 352.

Parabola, 131-142, 169-197, 229,

244-245; Cartesian equation, 171

;

polar equation, 169-170 ; referred

to diameter and tangent, 190.

Paraboloid, elliptic, 340 ; hyper-
bolic, 340 ; of revolution, 341.

Parallel, 335 ; circle, 335.

Parallelism, 28, 33, 59, 285.

Parallelogram law, 19, 120.

Parameter, 107, 109 ; equations of

circle, 109; of ellipse, 220; of

hyperbola, 220 ; of parabola, 189.

Pascal's triangle, 154.

Peaucellier's cell, 109.

Pencil of circles, 107 ; of lines, 67

;

of parallels, 67 ; of planes, 303 ; of

spheres, 329.

Pendulum, 134,
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Permutations, 70-73.

Perpendicularity, 28, 33, 59, 285.
Phase, 124.

Plane, 292-306 ; through three points,

295.

Plotting by points, 131.

Points of inflection, 144.

Polar, 102, 104, 326 ; angle, 16 ; axis,

16 ; coordinates, 16, 290 ; equa-
tion of circle, 91 ; of conic, 224-225;
of line, 60 ; of parabola, 169-170

;

representation of complex num-
bers, 124.

Pole, 16.

Pole and polar, 102, 104, 326.

Poles, 334.

Polynomial, 148-157 ; curve, 155-157.
Power of a point, 106, 328.

Principal diagonal, 47.

Projectile, 135, 142.

Projecting cylinders, 321 ; planes
of a line, 309-311.

Projection, 18-21, 280-281, 284.

Prolate, 334.

Proportional quantities, 24.

Pulleys, 27, 31, 38, 268.

Pythagorean relation, 282.

Quadrant, 5.

Quadratic equation, 92 ; function,
131-142.

Quadric surfaces, 332-^50, 342.

Radical axis, 106, 328, 329 ; center,

107, 328, 329 ; plane, 328.

Radius vector, 16, 282, 290.

Rate of change, 29, 149 ; of interest,

29, 35.

Rational numbers. 111.

Real axis, 117; numbers, 113; roots,

160-167.

Reciprocal polars, 327.

Rectangular coordinates, 6 ; hyper-
bola, 203.

Reduction to normal form, 62, 297.

Regula falsi, 161.

Related quantities, 14.

Remainder theorem, 163.

Removal of term in xy, 238.

Resultant, 19, 280.

Right-handed trihedral, 354.

Rotation of axes, 235-236; of co-
ordinate trihedral, 352-355.

Row, 41, 47.

Rule of false position, 161.

Ruled surfaces, 347-349.
Rulings on hyperboloid of one sheet,

348 ; on hyperbolic paraboloid, 349.

Second derivative, 144.

Secondary diagonal, 47.

Sheaf of planes, 304.

Shearing force, 196-197.
Shortest distance of two lines, 313-

314.

Simple point, 251.

Simpson's rule, 193.

Simultaneous linear equations, 39-
48, 81-83, 302.

Simultaneous linear and quadratic
equations, 94.

Sine curve, 261.

Skew symmetric determinant, 84.

Slope, 24 ; of ellipse, 207 ; of hyper-
bola, 210; of parabola, 139-140,
176 ; of secant of parabola, 138.

Slope form of equation of line, 26.

Sphere, 317-331 ; through four points,

319.

Spherical coordinates, 290.

Spheroid, 334.

Spinode, 252.

Spiral of Archimedes, 259.

Square root of complex number, 129.

Statistics, 14.

Straight line, 23.

Strophoid, 260.

Subnormal to parabola, 181.

Substitutions, 270.

Subtangent to parabola, 180.

Sum of two determinants, 52, 78.

Superposable trihedrals, 354.

Surface, 292 ; of revolution, 335-336.

Suspension bridge, 188.

Symmetric determinant, 84.

Symmetry, 136-138, 215.

Synthetic division, 164.

Tangent to algebraic curve at origin,

250-253; to circle, 97; to ellipse,

206, 213; to hyperbola, 210; to

parabola, 139, 180, 182.
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Tangent cone to sphere, 324.

Tangent curve, 261.

Tangent plane to ellipsoid, 346 ; to

hyperboloids, 347 ; to paraboloids,

347 ; to quadric surfaces, 347 ; to

sphere, 322.

Taylor's theorem, 168.

Temperature, 15, 31, 270.

Tetrahedron volume, 301.

Thermometer, 2, 31, 35.

Transcendental curves, 262.

Transformation from cartesian to

polar coordinates, 16, 290-291;
to center, 226, 240; to parallel

axes, 12, 239.

Translation of axes, 12, 233-235 ; of

coordinate trihedral, 287.

I Transposition, 50, 78.

Transverse axis, 203.

Trochoid, 258.

Uniform motion, 30, 69.

Units, 5.

Vector, 18, 119, 280.

Vectorial angle, 16.

Velocity, 30, 31.

Versiera, 256.

Vertex of parabola, 132, 170.

Vertices of ellipse, 198 ; of hyper-
bola, 202.

Volume of tetrahedron, 301.

Water gauge, 2.

Whispering galleries, 212.
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TRIGONOMETRY
BY

ALFRED MONROE KENYON
Professor of Mathematics, Purdue University

And LOUIS INGOLD
Assistant Professor of Mathematics, the University of

Missouri

Edited by Earle Raymond Hedrick

Trigonometry, flexible cloth,
_
pocket size, long i2mo {xi-\-i32 pP.) with Complete

Tables {xviii + 124 pp.), $1.35 net

Trigonometry (xi + 132 pp.) with Brief Tables {xviii + 12 pp.), $1.00 net

Macmillan Logarithmic and Trigonometric Tables, flexible cloth, pocket size, long

i2mo {xviii + 124 pp.), $0.60 net

FROM THE PREFACE

The book contains a minimum of purely theoretical matter. Its entire

organization is intended to give a clear view of the meaning and the imme-

diate usefulness of Trigonometry. The proofs, however, are in a form that

will not require essential revision in the courses that follow. . . .

The number of exercises is very large, and the traditional monotony is

broken by illustrations from a variety of topics. Here, as well as in the text,

the attempt is often made to lead the student to think for himself by giving

suggestions rather than completed solutions or demonstrations.

The text proper is short; what is there gained in space is used to make the

tables very complete and usable. Attention is called particularly to the com-

plete and handily arranged table of squares, square roots, cubes, etc.; by its

use the Pythagorean theorem and the Cosine Law become practicable for

actual computation. The use of the slide rule and of four-place tables is

encouraged for problems that do not demand extreme accuracy.

Only a few fundamental definitions and relations in Trigonometry need be

memorized; these are here emphasized. The great body of principles and

processes depends upon these fundamentals; these are presented in this book,

as they should be retained, rather by emphasizing and dwelling upon that

dependence. Otherwise, the subject can have no real educational value, nor

indeed any permanent practical value.

THE MACMILLAN COMPANY
Publishers 64-66 Fifth Avenue New York



THE CALCULUS
BY

ELLERY WILLIAMS DAVIS

Professor of Mathematics, the University of Nebraska

Assisted by William Charles Brenke, Associate Professor of

Mathematics, the University of Nebraska

Edited by Earle Raymond Hedrick

Cloth, semi-flexible, xxi + 383 pp. + Tables {63), i2mo, $2.00 net

Edition De Luxe, flexible leather binding, India paper, $2.40 net.

This book presents as many and as varied applications of the Calculus

as it is possible to do without venturing into technical fields whose subject

matter is itself unknown and incomprehensible to the student, and without

abandoning an orderly presentation of fundamental principles.

The same general tendency has led to the treatment of topics with a view

toward bringing out their essential usefulness. Rigorous forms of demonstra-

tion are not insisted upon, especially where the precisely rigorous proofs

would be beyond the present grasp of the student. Rather the stress is laid

upon the student's certain comprehension of that which is done, and his con-

viction that the results obtained are both reasonable and useful. At the

same time, an effort has been made to avoid those grosser errors and actual

misstatements of fact which have often offended the teacher in texts otherwise

attractive and teachable.

Purely destructive criticism and abandonment of coherent arrangement

are just as dangerous as ultra-conservatism. This book attempts to preserve

the essential features of the Calculus, to give the student a thorough training

in mathematical reasoning, to create in him a sure mathematical imagination,

and to meet fairly the reasonable demand for enlivening and enriching the

subject through applications at the expense of purely formal work that con-

tains no essential principle.

THE MACMILLAN COMPANY
Publishers 64-66 Fifth Avenue New York



GEOMETRY
BY

WALTER BURTON FORD
Junior Professor of Mathematics, University of Michigan

And CHARLES AMMERMAN
The William McKinley High School, St. Louis

Edited by Earle Raymond Hedrick, Professor of Mathematics

in the University of Missouri

Plane and Solid Geometry, cloth, i2mo, 319 pp., $1.25 b

Plane Geometry, cloth, i2mo, 213 pp., $0.80 net

Solid Geometry, cloth, i2mo, 106 pp., $0.80 net

STRONG POINTS

I. The authors and the editor are well qualified by training and experi-

ence to prepare a textbook on Geometry.
II. As treated in this book, geometry functions in the thought of the

pupil. It means something because its practical applications are shown.
III. The logical as well as the practical side of the subject is emphasized.
IV. The arrangement of material is pedagogical.

V. Basal theorems are printed in black-face type.

VI. The book conforms to the recommendations of the National Com-
mittee on the Teaching of Geometry.

VII. Typography and binding are excellent. The latter is the reenforced

tape binding that is characteristic of Macmillan textbooks.

" Geometry is likely to remain primarily a cultural, rather than an informa-

tion subject," say the authors in the preface. " But the intimate connection
of geometry with human activities is evident upon every hand, and constitutes

fully as much an integral part of the subject as does its older logical and
scholastic aspect." This connection with human activities, this application

of geometry to real human needs, is emphasized in a great variety of problems
and constructions, so that theory and application are inseparably connected
throughout the book.
These illustrations and the many others contained in the book will be seen

to cover a wider range than is usual, even in books that emphasize practical

applications to a questionable extent. This results in a better appreciation
of the significance of the subject on the part of the student, in that he gains a
truer conception of the wide scope of its application.

The logical as well as the practical side of the subject is emphasized.
Definitions, arrangement, and method of treatment are logical. The defi-

nitions are particularly simple, clear, and accurate. The traditional manner
of presentation in a logical system is preserved, with due regard for practical

applications. Proofs, both forraal and informal, are strictly logical.

THE MACMILLAN COMPANY
Publishers 64-66 Fifth Avenue New York



Elements of Theoretical Mechanics

BY

ALEXANDER ZIWET

Cloth, 8vo, 404 pp., $4.00 net

The work is not a treatise on applied mechanics, the applications being
merely used to illustrate the general principles and to give the student an idea
of the uses to which mechanics can be put. It is intended to furnish a safe
and sufficient basis, on the one hand, for the more advanced study of the sci-

ence, on the other, for the study of its more simple applications. The book
will in particular stimulate the study of theoretical mechanics in engineering
schools.

Introduction to Analytical Mechanics

BY

ALEXANDER ZIWET
Professor of Mathematics in the University of Michigan

And peter FIELD, PH.D.

Assistant Professor of Mathematics in the University of

Michigan

Cloth, j2mo, 378 pp., $1.60 net

The present volume is intended as a brief introduction to mechanics for

junior and senior students in colleges and universities. It is based to a large

extent on Ziwet's "Theoretical Mechanics "; but the applications to engineer-
ing are omitted, and the analytical treatment has been broadened. No knowl-
edge of differential equations is presupposed, the treatment of the occurring
equations being fully explained. It is believed that the book can readily be
covered in a three-hour course extending throughout a year. The book has,

however, been arranged so that certain omissions may be easily made in order

to adapt the book for use in a shorter course.

While more prominence has been given to the analytical side of the sub-

ject, the more intuitive geometrical ideas are generally made to precede the

analysis. In doing this the idea of the vector is freely used; but it has

seemed best to avoid the special methods and notations of vector analysis.

That material has been selected which will be not only useful to the begin-

ning student of mathematics and physical science, but which will also give the

reader a general view of the science of mechanics as a whole and afford him
a foundation broad enough to facilitate further study.

THE MACMILLAN COMPANY
Publishers 64-66 Fifth Avenue New Tork
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