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PREFACE

In preparing this volume the authors have endeavored to write

a drill book for beginners which presents the elements of the

subject in a manner conforming with modern ideas. The scope

of the book is limited only by the assumption that a knowledge

of Algebra through quadratics must suffice for any investigation.

This does not mean a treatise on conic sections. In fact, the

authors have intentionally avoided giving the book this form.

Conic sections naturally appear, but chiefly as illustrative of

general analytic methods. A chapter is devoted to their study,

but the numerous properties of these curves are developed inci-

dentally as applications of methods of general importance.

The subject-matter is rather more than is necessary for the

usual course of sixty exercises. It has been made so intentionally,

to permit of choice on the part of the teacher, and also in order

to include all topics strictly elementary in the sense defined

above. The table of contents will show topics not usually treated.

For example, in discussing the nature of the locus of the general

equation of the second degree (Chapter XII), invariants are

introduced. Again, three chapters are devoted to the simple

transformations in the plane. After mastering the entire book,

the student is assured of an acquaintance with all that is funda-

mental in modern Analytic Euclidean Geometry.

Attention is called to the method of treatment. The subject is

developed after the Euclidean method of definition and theorem.

196499
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without, however, adhering to formal presentation. The advan-

tage is obvious, for the student is made sure of the exact nature

of each acquisition. Again, each method is summarized in a rule

stated in consecutive steps. This is a gain in clearness. Many

illustrative examples are worked out in the text.

Emphasis has everywhere been put upon the analytic side,

that is, the student is taught to start from the equation. He is

shown how to work with the figure as a guide, but is warned not

to use it in any other way. Chapter III may be referred to in

this connection.

The same methods have been used uniformly for the plane and

for space. In this way the extension to three dimensions is made

easy and profitable.

Acknowledgments are due to Dr. W. A. Granville for many

helpful suggestions, to Professor E. H. Lockwood for suggestions

regarding some of the drawings, and to Mr. L. C. Weeks for

assistance in proof reading.

New Haven, Connecticut

December, 1904
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AINTALYTIC GEOMETRY

CHAPTER I

REVIEW OF ALGEBRA AND TRIGONOMETRY

1. Numbers. The numbers arising in carrying out the opera-

tions of Algebra are of two kinds, real and imaginary.

A real number is a number whose square is a positive number.

Zero also is a real number.

A pure imaginary number is a number whose square is a nega-

tive number. Every such number reduces to the square root of

a negative number, and hence has the form 6 V— 1, where ^ is a

real number, and (V— 1)^ = — 1.

An imaginary or complex number is a number which may be

written in the form a-\-b V— 1, where a and b are real numbers,

and b is not zero. Evidently the square of an imaginary number

is in general also an imaginary number, since

(a^b V^)2 = a''-b''-\-2ab V^^,

which is imaginary if a is not equal to zero.

2. Constants. A quantity whose value remains unchanged is

called a constant.

Numerical or absolute constants retain the same values in all

problems, as 2, — 3, Vl, tt, etc.

Arbitrary constants, or parameters, are constants to which any

one of an unlimited set df numerical values may be assigned, and

these assigned values are retained throughout the investigation.

Arbitrary constants are denoted by letters, usually by letters from the

first part of the alphabet. In order to -increase the number of symbols at our

1



2 . ANALYTIC GEOMETRY

disposal, it is convenient to use primes (accents) or subscripts or both. For

example

:

Using primes,

a' (read "a prime or a first ")j a'' (read "a double prime or a second"),

a'''(read "a third"), are all different constants.

Using subscripts,

&i (read
" b one "), b^ (read " b two "), are different constants.

Using both,

c/ (read "c one prime"), Cg'' (read "c three double prime"), are different

constants.

3. The quadratic. Typical form. Any quadratic equation

may by transposing and collecting the terms be written in the

Typical Form

(1) Ax'^ + Bx + C = 0,

in which the unknown is denoted by x. The coefficients A, B, C

are arbitrary constants, and may have any values whatever,

except that A cannot equal zero, since in that case the equation

would be no longer of the second degree. C is called the con-

stant term.

The left-hand member

(2) Ax"" -\-Bx-\-C

is called a quadratic, and any quadratic may be written in this

Typical Form, in which the letter x represents the unknown.

The quantity B^ — AAC is called the discriminant of either (1)

or (2), and is denoted by A.

That is, the discriminant A of a quadratic or quadratic equa-

tion in the Typical Form is equal to the square of the coefficient

of the first power of the unknown diminished by four times the

product of the coefficient of the second power of the unknown
by the constant term.

The roots of a quadratic are those numbers which make the

quadratic equal to zero when substituted for the unknown.

The roots of the quadratic (2) are also said to be roots of the

quadratic equation (1). A root of a quadratic equation is said

t() satisfy that equation.
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In Algebra it is shown that (2) or (1) has two roots, x^ and x^,

obtained by solving (1), namely,

(3)

Adding these values, we have

(4) x^^-x^=--'

Multiplying gives

(5) ^
<cxx^ = -'

Hence

Theorem I. The sum of the roots of a quadratic is equal to the

coefficient of the first power of the unknown with its sign changed

divided by the coefficient of the second power.

The product of the roots equals the constant term divided by the

coefficient of the second power.

The quadratic (2) may be written in the form

(6) Ax^ -^Bx + C =*^(a; - x^ {x - x^),

as may be readily shown by multiplying out the right-hand

member and substituting from (4) and (5).

For example, since the roots of 3a;2 — 4a; + l = are 1 and I, we have iden-

tically 3x2-- 4a; + 1 = 3 (x - 1) (cc - i).

The character of the roots x^ and x^ as numbers (§ 1) when the

coefficients A, B, C are real numbers evidently depends entirely

upon the discriminant. This dependence is stated in

Theorem II. If the coefficients of a quadratic are real numbers,

and if the discriminant be denoted by A, then

when A is positive the roots are real and unequal;

when A is zero the roots are real and equal;

when A is negative the roots are imaginary.

* The sign = is read " is identical with," and means that the two expressions

connected hy this sign differ only inform.
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In the three cases distinguished by Theorem II the quadratic

may be written in three forms in which only real numbers appear.

These are

' Ax^-\-Bx~\-C = A (x—x^ (x — ccg), from (6), if A is positive

;

Ax^ -\- Bx -\-C = A (x — XiY, from (6), if A is zero

;

(7)

I 37 +^— I H —^— I ifA is negative.

The last identity is proved thus

:

Ax^ + Bx+C=a(x2-\--z-\--)

/ „ 5 B^ C B'^\

B^
adding and subtracting —— within the parenthesis.

..Ax^+Bx+C=A[(x + ^y+^-^^f^^' Q.E.D.

4. special quadratics. If one or both of the coefficients B and

C in (1), p. 2, is zero, the quadratic is said to be special.

Case I. C = 0.

Equation (1) now becomes, by factoring,

(1)
- Ax^ -\-Bx = x(Ax-\-B)= 0.

Hence the roots are Xi = 0, x^ =— —• Therefore one root of

a quadratic equation is zero if the constant term of that equation

is zero. And conversely, if zero is a root of a quadratic, the con-

stant term must disappear. For if a; = satisfies (1), p. 2, by

substitution we have C = 0.

Case II. ^ = 0. ,

Equation (1), p. 2, now becomes

(2) Ax^+C = 0.

From Theorem I, p. 3, £^1 + 3^2 = 0, that is,

(3) Xi = — x^.
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Therefore, if the coefficient of the first power of the unknown

in a quadratic equation is zero, the roots are equal numerically

but have opposite signs. Conversely, if the roots of a quadratic

equation are numerically equal but opposite in sign, then the

coefficient of the first power of the unknown must disappear. For,

since the sum of the roots is zero, we must hav^, by Theorem I,

B = 0.

Case III. B = C = 0.

Equation (1), p. 2, now becomes

(4) Ax'^ = 0.

Hence the roots are both equal to zero, since this equation

requires that x^ = 0, the coefficient A being, by hypothesis,

always different from zero.

5. Cases when the roots of a quadratic are not independent.

If a relation exists between the roots Xi and X2 of the Typical

then this relation imposes a condition upon the coefficients A,

B, and C, which is expressed by an equation involving these

constants.

For example, if the roots are equal, that is, if Xi = x^, then

B'^-4:AC = 0, by Theorem II, p. 3.

Again, if one root is zero, then ajiCCa = : hence C = 0, by

Theorem I, p. 3.

This correspondence may be stated in parallel columns thus

:

Quadratic in Typical Form

Relation between the Equation of condition satisfied

roots hy the coefficients

In many problems the coefficients involve one or more arbitrary

constants, and it is often required to find the equation of condi-

tion satisfied by the latter when a given relation exists between

the roots. Several examples of this kind will now be worked out
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Ex. 1. What must be the value of the parameter k if zero is a root of

the equation

(1) 2x2-6x + A:2-3A:-4 = 0?

Solution. Here A = 2, B = - 6, C = k^ - Sk - ^. By Case I, p. 4, zero

is a root when, and only when, C = 0.

.-. A;2 - 3 ^ - 4 = 0.

Solving, k = 4 or — 1. Ans.

Ex. 2. For what values of k are the roots of the equation

kx^ + 2kx-4x^2 -3k
real and equal ?

Solution. Writing the equation in the Typical Eorm, we have

(2) kx^ + {2k - 4:)x + {Sk - 2) = 0.

Hence, in this case,

A = k, B = 2k-4, C = Sk-2.

Calculating the discriminant A, we get ^
A = (2 fc - 4)2 - 4 A: (3 A; - 2)

=: - 8 A;2 - 8 A: + 16 = - 8 (A;2 + ^ - 2).

By Theorem II, p. 3, the roots are real and equal when, and only when,

^ " ^"
.'. k^ + k -2 = 0.

Solving, k=—2 or 1, Ans.

Verifying by substituting these answers in the given equation (2)

:

when k=-2, the equation (2) becomes -2ic2-8x-8=0, or -2 (x+ 2)2=0;

whenA;= 1, the equation (2) becomes x2—2x+l=0, or {x— 1)^=0.

Hence, for these values of k, the left-hand member of (2) may Ije trans-

formed as in (7), p. 4.

Ex. 3. What equation of condition must be satisfied by the constants

a, 6, k, and m if the roots of the equation

(3) (62 + a2m2) ?/2 + 2 a'^k7ny + a^ - a^b^ =
are equal ?

Solution. The equation (3) is already in the Typical Form ; hence

^ = 62 _^ (j2^2^ B=2 a^km, C = a^k^ - a^b^.

By Theorem II, p. 3, the discriminant A must vanish ; hence

A = 4 a'^k'^m^ - 4 (62 -f- a2m2) (a2A;2 _ a262) = o.

Multiplying out and reducing,

a262 (A;2 - a2„i2 _ 52) :^ 0. Ans.
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Ex. 4, For what values of k do the common solutions of the simultaneous

equations

(4) 3 X + 4 2/ = /c,

(5) x2 + 2/2 _ 25

become identical ?

Solution. Solving (4) for y, we have

(6) y = l{k-3x).

Substituting in (5) and arranging in the Typical Form gives

(7) 25x2 - 6 fcx + A;2 - 400 = 0.

Let the roots of (7) be Xi and x^. Then substituting in (6) will give the

corresponding values yi and ?/2 of y, namely,

(8) yi = l{k- 3xi), 2/2 = i(A: - 8x2),

and we shall have two common solutions (xi, 2/1) and (X2, 2/2) of (4) and (5).

But, by the condition of the problem, these solutions must be identical.

Hence we must have

(9) xi = X2 and 2/1 = 2/2-

If, however, the first of these is true (xi = X2), then from (8) 2/1 and 2/2

will also be equal.

Therefore the two common solutions of (4) and (5) become identical when,

and only when, the roots of the equation (7) are equal; that is, when the dis-

criminant A of (7) vanishes (Theorem II, p. 3).

... A = 36 A;2 - 100 {k'^ - 400) = 0.

Solving, A:2 = 625,

A; = 25 or - 25. Ans.

Verification. Substituting each value of k in (7),

when A;= 25, the equation (7) becomes x2-6 x+ 9= 0, or (x- 3)2= ; .-. x= 3
;

when A;=- 25, the equation (7) becomes x2+6x+ 9=0, or (x+3)2=0; .•.x=-3.

Then from (6), substituting corresponding values of k and x,

when k = 25 and x= 3, we have y = ^{26 — 9)= 4^;

when A; = — 25 and x = — 3, we have y = ^
(— 25 4- 9) = — 4.

Therefore the two common solutions of (4) and (5) are identical for each

of these values of k, namely,

if A; = 25, the common solutions reduce to x = 3, y = 4

;

if A; = — 25, the common solutions reduce tox = — 3, y = — 4.

Q.E.D.
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PROBLEMS

1. Calculate the discriminant of each of the following quadratics, deter-

mine the sum, the product, and the character of the roots, and write each

quadratic in one of the forms (7), p. 4.

(a) 2x2 - 6x + 4. (i) 5x2 - x - i.

(b) x2 - 9x - 10. (j) 7x2 _ 6x - 1.

(c) 1-X-X2. (k) 3x2-5.
(d) 4x2 - 4x + 1. (1) 2x2 + X - 8.

(e) 5x2 + 10x+ 5. (m) 2x2 + x + 8.

(f) 3x2 - 5 X - 22. (n) 6x2 - x - 5.

(g) 2 x2 + 13. (o) 10 x2 + 60 X + 90.

(h) 9x2 - 6x + 1. (p) 7x^ + 7x + |.

2. For what real values of the parameter k will one root of each of the

following equations have the value assigned ?

One root to he zero

:

(a) 6x2+ 5A;x-3Jfc2 4-3 = 0.

(b) 2^-3x2 + 6x-fc2 + 3 = 0.

(c) x2 + 10x + A:2 + 3 = 0.

(d) 10x2 _ mx + 3A;2 _ 8A; + 2 = 0.

One root to he — 2:

(e) x2-2A;x + 3 = 0.

(f) fcx2 - X + 3 fc2 - 1 = 0.

(g) fc2x2 + 6x = A:2-16.

(h) A;x2 + 2 fcx = - 3.

(i) 10x2 -7/cx + A:2 + 9 = 0.

3. For what real values of k and m will both roots of each of the following

quadratic equations be zero ?

(a) 5 x2 -|- mx -j- A; — 5 = x.

(b) x2 + (3 A; - m) X + fc2 - 4 = 0.

(c) 2x2 + (7^2 + l)x + A:2 = 0.

(d) x2 + (m2 + 2fc-3m)x + 4A;-6m = 0.

(e) t^-{-{m'^ + k'^-b)t + k + m + \ = 0.

4. For what real values of the parameter are the roots of the following

equations equal ? Verify your answers.

(a) A:x2 - 3x - 1 = 0. Ans. A; = - f

.

(b) x2 - A;x + 9 = 0. Am. k = ±Q.
(c) 2 A;x2 + 3 A:x + 12 = 0. Ans. k = ^/.

(d) 2 x2 + A;x - 1 = 0. Ans. None.

(e) 5x2 - 3x + 5 A:2 = 0. ^^^ ^ ^ ^ _^_^^

Ans. k = ±l.

Ans. A; = - 1 or 3.

Ans. None.

Ans. A: = f ± 1 VTo.

Ans. A; = -|.
Ans. A: = -

1 or -1
Ans. None.

Ans. None.

Ans. k = - 7.

Ans. A; = 5, m = 1.

Ans. k=±2,m = ±
Ans. None.

Ans. A; = 0, m = 0.

Ans. k = l,m = -2.

k=-2,m = l.
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Ans. None.

Ans. A; = - |.

4 = 0. Ans. 6 = — 4 or 1.

:0. Ans. m = — 1 or 2

0. Ans. None.

Ans. None.

+ 1=0. Ans. None.

0. Ans. a = 1 or 9.

Ans. p{p — 2 km) = 0.

Ans. p {m^p — 2b) = 0.

Ans. 62 = 2 ahn.

Ans. b'^ = r^{l + m2).

Ans. aWm"^ {k^- a^m'^+ 62) = 0.

Ans. b'^AB-\-m'^BC-\-AC=0.

(f) a;2 + fcx + fc2 4. 2 = 0.

(g) x^-^2kx-k-\ = 0.

(h) x2 + 2 6x + 2 62 + 3 6 -

(i) (m + 2)x2-2ma; + l:

(j) (m2 + 4)x2 + 3x + 2 =

(k) x2 + (Z-3)x-l = 0.

(1) (c2-8)y2_(2c-l)?/ +
(ra) a22 + 2 (a + 3) 2; + 16

5. Derive the equation of condition in order that the roots of the following

equations may be equal.

(a) m2x2 + 2fcmx-2px = -fc2.

(b) x2 + 2 mpx + 2 6p = 0.

(c) 2mx2 + 2 6x + a2=:0.

(d) (1 + m2) x2 + 2 6mx + (62 - r^) = 0.

(e) (62 - a2?n2) y2 _ 2 b'^ky = aWm"^ - b%^.

(f) {A-^mW)x^-\-2bmBx-{-bW-^C = 0.

6. For what real values of the parameter do the common solutions of the

following pairs of simultaneous equations become identical ?

(a) x + 2y = fc, x2 + ?/2 = 5.

(b) y = mx — 1, x2 = 4 y.

(c) 2x-?jy = b, x^ + 2x = Sy.

(d) y = mx + 10, x^ + y'^ = 10.

(e) Ix + y -2 = 0, x^-Sy = 0.

(f) X + 4 y = c, x2 + 2 2/2 = 9.

(g) x2 + 2/2 - X - 2 2/ = 0, x + 2y = c.

(h) x2 + 4 2/2 - 8 X = 0, mx - ?/ - 2 m = 0.

(i) x2 + 2/2 - fc = 0, 3x - 42/ = 25.

(j) x2 - 2/2 + 2 X - 2/ = 3, 4 X + 2/ = c.

(k) 2x2/ - 3x - 2/ = 0, y + Sx-\-k = 0.

(1) x2 + 42/2-8 2/ = 0, X = C.

(m) x2 + 42/2-82/ = 0, 2/ = 6.

(n) 2x2 + 32/2 = 35, 4x + 92/ = fc.

(0) X2 + X2/ + 2 X + 2/ = 0, 2/ = - 2 X + 6.

7. If the common solutions of the following pairs of simultaneous equations

are to become identical, what is the corresponding equation of condition ?

(a) bx + ay = ab, 2/2 = 2px. Ans. ap (2 62 + ap) = 0.

(b) 2/ = mx + 6, ^x2 + 52/ = 0. Ans. B (mW -4bA)=0.
(c) y = m{x - a), By^ -\- Dx = 0. Ans. D (4 amW - D) = 0.

(d) 6x + ay = a6, 2x2/ + c2 = 0. ^ws. a6(a6 + 2c2) = 0.

(e) kx-y = c, Ax^ + By^ = 0. ^ns. c2^1? - kWC -AC = 0.

(f) X cos a + y sin a = p, x2 + 2/2 = r2. ^ns. p2 = ^2,

^ns. k=±5.
-4ns. m = ±l.

J.ns. 6 = 0.

Ans. ?M = ± 3.

Ans. None.

Ans. c = ±9.
Ans. c = or 5.

Ans. None.

Ans. k=26.
Ans. c = - 12 or 3.

Ans. A: = - 6 or 0.

An». c=±2.
Ans. 6 = 0, 2.

Ans. A; = ± 35.

Ans. 6 = — 4 or 0.
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6. Variables. A variable is a quantity to which, in the same

investigation, an unlimited number of values can be assigned.

In a particular problem the variable may, in general, assume any

value within certain limits imposed by the nature of the problem.

It is convenient to indicate these limits by inequalities.

For example, if the variable x can assume any value between — 2 and 5, that

is, if X must be greater* than — 2 and less than 5, the simultaneous inequalities

x>-2, a;<5,

are written in the more compact form

-2<a;<5.

Similarly, if the conditions of the problem limit the values of the variable x to

any negative number less than or equal to — 2, and to any positive number greater

than or equal to 5, the conditions

a;< — 2ora; = — 2, and a; > 5 or x = 5 ,,

are abbreviated to a; < — 2 and a; > 5.

7. Variation in sign of a quadratic. In many problems it

is important to determine the algebraic signs of the results

obtained by substituting in a quadratic different values for

the variable unknown, that is, to determine the algebraic signs

of the values of a quadratic for given values of the variable.

The discussion of this question depends upon the definitions of

greater and less already given, the precise point necessary being

the statement

:

If a is a given real constant and x a real variable, then

J
when x<a, x — a is a negative number

;

[when x>a, x — a is a positive number.

By the aid of this statement and the identities (7), p. 4, we
easily prove

* The meaning of greater and less for real numbers (§ 1) is defined as follows : a is

greater than b when a-bisa, positive number, and a is less than b when a -fe is negative.
Hence any negative number is less than any positive number ; and if a and b are both
negative, then a is greater than b when the numerical value of a is less than the numer-
ical value of b.

Thus 3<5, but -3>-5. Therefore changing signs throughout an inequality reverses
the inequality sign.
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Theorem III. If the disGriminant of a quadratic is positive, the

value of the quadratic* and the coefficient of the second power

differ in sign for all values of the variable lying between the roots,

and agree i7i sign for all other values.

If the discriminant is zero or negative, the value of the quadratic

and the coefficient of the second power always agree in sign.

Proof Denoting the variable by x, and writing the quadratic

in the Typical Form, (1), p. 2, we have, by (7), p. 4,

Case I. Ax^ -[- Bx + C = A (x — x-^ (x — x^ if A is positive.

Case II. Ax'^ -{- Bx -\- C = A{x — x-^'^ if A is zero.

(a) +— 1 +
^ ^,

if A
i« negciiive.

^
^

Consider these cases in turn.

Case I. Since the roots are unequal, let x^ < x^. Then, by

(1), we have at once

{x — iCi) (x — X2) is negative when x^<.x<. x^,

since a: — Xi is positive, and x — x^\s> negative

;

{x — £Ci) {x — CC2) is positive when xKx^oy x> x^,

since x — x^ and x — x^ are both negative or both positive.

Therefore the quadratic has the sign of — ^ in one case, and

of A in the other.

Case II. Since {x — cci)^ is positive (p. 1), the sign of the

quadratic agrees with that of A.

Case III. Since A is negative, ^ AC — B'^ = — ^ \^ positive
;

hence the expression within the brackets is always positive, and

the sign is the same as that of A. q.e.i>.

For example, consider the quadratic

2 ^2 _ 3 ^ + 1.

Here A = 9-8=+l, vl = 2, and the roots are \ and 1.

'

... 2r2-3< + l = 2(i- 0(«-l).

*It is assumed that all the numbers involved are real. Also, since the value of the

quadratic is zero for a value of the variable equal to a root, any such value of the

variable is excluded.
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If now any real number be substituted for t in the quadratic, it will be

found that

when l<t<\, the quadratic 2 «2 _ 3 ^ + i< o

;

when i < i or i > 1, the quadratic 2 <2 _ 3 ^ 4. 1 > 0.

Again, consider the quadratic in r,

3 y2 + 4 r + 9.

Here A = 16 - 108 == - 92, and A = Z. Hence, by Theorem III, if any

real number whatever be substituted for r, the result will always be a posi-

tive number.

Applications of Theorem III. The following examples illustrate appli-

cations of Theorem III.

Ex. 1. Determine all real values of the variable for which the following

radicals are real.

(a) V3- 2x-x2; (b) V2 ^2 + 3 ?/ + 9.

Solution. Consider the quadratic under the radical.

In (a), A = 4 + 12 =: 16, ^ = — 1, and the roots are 1 and — 3.

Applying Theorem III,

when — 3 < X < 1, the quadratic 3 — 2x — x2>0;

when x< — 3orx>l, the quadratic 3 — 2 x — x^ < 0.

Since under the condition of the problem the given quadratic must be

either positive or zero, we have — 3<x<l. Ans.

In (b), A = 9 - 72 = - 63, and A = 2. Hence, by Theorem III, the quad-

ratic is positive, and therefore the square root is real for every real value

of y. Ans.

Ex. 2, For what values of the parameter k are the roots of the equation

(2) fcx2 + 2A:x-4x = 2 -3^

(a) real and unequal ? (b) imaginary ?

Solution. Writing the equation in the Typical Form,

fcx2+ {2k-4)x + Sk-2 = 0,

we fiud

(3) A = B^ - 4 AC = - S{k^ + k - 2).

(See Ex. 2, p. 6.)

By Theorem II, p. 3,

(a) the roots are real and unequal if - 8 (A;2 + ^ - 2) > ;

(b) the roots are imaginary if - 8 {k^ + A; - 2) < 0.
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Applying Theorem III to the quadratic

-S{k^ + k-2),

we have, since A = 64 + 512 = 576, J. = — 8, and the roots are — 2 and 1,

when - 2 < A; < 1, the quadratic - 8 (A:^ + fc - 2) > ;

when A; < - 2 or A; > 1, the quadratic - 8 (A;2 + A; - 2) < 0.

Hence

(a) the roots of (2) are real and unequal if — 2 < A; < 1

;

(b) the roots of (2) are imaginary ifA;< — 2orA:>l. -4ns.

Ex. 3. Show that the simultaneous equations

(4) y = mx + 3

(5) ^
4x2 + 2/2 4-6x -16 =

have two real and distinct common solutions for every real value of m.

Solution. Substituting the value of y from (4) in (5), and arranging the

result in the Typical Form, we get

(6) (4 + m2) x2 + (6 771 + 6) X - 7 = 0.

Calculating the discriminant of (6), we find, neglecting the positive factor 4,

(7) 16 m2 + 18 m + 37.

Applying Theorem III, p. 11, to the quadratic (7),

A = 324 - 64 • 37 is negative, A = 16.

Therefore the quadratic (7) has a positive value for every real value of ?n,

and hence the roots of (6) are, by Theorem II, p. 3, always real and unequal.

That is, (6) always has two real roots, Xi and X2, and from (4) we find the

corresponding real values of y, namely, i/i and 2/2, so that the equations

(4) and (5) have two real and distinct common solutions, (Xi, yi), (X2, 2/2),

for every value of m. q.e.d.

PROBLEMS

1. Write inequalities to express that the values of the variable named are

limited as stated.

(a) X has any value from to 5 inclusive.

(b) y has any positive value.

(c) t has any negative value.

(d) X has any value less than — 2 or greater than — 1.

(e) r has any value from — 3 to 8 inclusive.

(f) z has any negative value, or any positive value not less than 3.

(g) X has any value not less than — 8 nor greater than 2.
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2. Determine the sign of each df the quadratics of the first problem on

p. 8 for all values of the variable.

3. Determine all real values of the variable for which the square root of

the quadratics of problem 1, p. 8, are real.

4. Determine all real values of the parameter for which the roots of each

equation of problem 4, p. 8, are (a) real and unequal
;

(b) imaginary.

5. In problem 6, p. 9, find all real values of the parameter in each case

such that the two common solutions are (a) real and unequal
;

(b) imaginary

,

6. Determine the algebraic sign of the value of the cubic

2(x + l)(x-2)(x-4)

for any value of the variable.

Hint. In this case the roots are -1, 2, 4 in the order of magnitude. Hence, when
x<—l, each factor is negative [(1), p. 10] and the cubic is negative, etc.

Ans. For x < — 1, cubic <0; — l<x<2, cubic > j 2 < x < 4, cubic < ;

4 < X, cubic > 0.

7. Determine the sign of the value of each of the following quantics for

any value of the variable.

Hint. From Algebra we know that any quantic with real coefficients may be

resolved into real factors of the first and second degrees. The sign of each factor for

any value of the variable may then be determined by (1), p. 10, and Theorem III, p. 11.

It is well first to arrange the real roots of the quantic in the order of magnitude, and

then it is necessary to consider only values of the variable less than any root, lying

between each successive pair, and greater than any root, as in problem 6.

(a) (X + 1) (2 x2- 4 X + 7). (f) (x2 - 9) (x2 - 16) (x2 - 25).

(b) (x2-2x-3)(x3-4x2). (g) (3x2-12) (2-x)(3-2x)(5x+4).

(c) (3x + 8)(x2-4x + 4)(x3-l). (h) (x - 1)2(3 + 2x)(4 - 5x) (6 -x)^.

(d) (2 x2 -f 3) (x2 - 4) (x4 - 1). (i) 7 (x2 - 4) (9 - x2) (16 - x2).

(e) (2x + 3)(x-l)(x + 2)(x-3). (j) (x2 - 8) (2x2 - 8) (3x2 - 27).

(k) (2x + 8)2(9-3x)(7-6x)(12-llx).

8. Infinite roots. Consider the quadratic equation

(1) Ax"^ -{-Bx+C = 0,

whose roots are x^ and x^ [(3), p. 3].

Then the equation

(2) Cx'^-{-Bx-{-A=0,
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obtained from (1) by reversing tbe order of the coefficients, has

the roots* — and — j that is, the reciprocals of the roots of (1).

Let us now fix the values f of ^ and C, but allow A to dimin-

ish indefinitely in numerical value, that is, allow A to approach

zero. Then, in (2), since —. (Theorem I, p. 3) is the product of

the roots, this product must also approach zero. Therefore one

root of (2) must approach zero ; and hence its reciprocal, that is,

one root of (1), must increase indefinitely.

Again, let us in (1) and (2) fix the value t of C only, and

assume that both B and A approach zero. Then, in (2), both the

B A
sum, ) and the product, — ? of the roots approach zero, and

c c

hence both roots also approach zero. Hence their reciprocals,

the roots of (1), must increase indefinitely.

This reasoning establishes

Theorem IV. If the coefficient of the second power in a quadratic

equation is variable and approaches zero as a limit, then one root

of the equation becomes infinite, t If the coefficient of the first

power is also variable and approaches zero as a limit, then both

roots become infinite.

Ex. 1. What value must the variable k approach as a limit in order that

a root of the equation

3x2 + 2A;x - A;2x2 - 3 - 2A:x2 =
may become infinite ?

Solution. Arranging the equation in the Typical Form, we have

(A;2 + 2 fc - 3) x2 - 2 A:x + 3 = 0.

If fc2 + 2 fc — 3 = 0, then one root must become infinite. Hence k must
approach 1 or — 3. Ans.

* This theorem is demonstrated in Algebra and may be easily verified thus :

The equation whose roots are — and — \s(x ^ (x ^ = 0.
a?, X2 \ Xi/ \ xj

Multiplying out and reducing, this becomes x^x^ • a;' - (aT^ + a^gV a: + 1 = 0.

O R
By Theorem I, p. 3, XyX^ = - . x^ + x^ = , and substitution of these values and

multiplication by A gives (2).

t We give C a value diiferent from zero.

X A variable whose numerical value becomes greater than any assigned number is said

to " become infinite."
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Ex. 2. What values must k and m approach in order to make both roots

of the equation

(62 _ a2?n2) x2 _ 2 a^kmx - a^k^ - aW =

become infinite ?

Solution. By Theorem IV we must have

52 _ ^2^2 ^0, or fw = ± -

,

and 2 a^km = 0, or k = 0.

Hence m must approach + - or , and k must approach zero. Ans.

PROBLEMS

1. What real value must the parameter approach as a limit in each of the

following equations in order to make a root become infinite ?

(a) kz^-Sx-\-5 = 0. (d) (m^ - i)x^ - 3x + 8 = 0.

(b) (A:2 - l)x2 + 6x - 5 = 0. (e) (c2 - 3)y^ + 2cy - 6 = 0.

(c) 2 x2 - 3 X + A;2x2 + 5 = kx^. (f ) 2 62^2 - 3 ?/ - 3 5?/2 + 2 = - 2 2/2.

2. What real values must the parameters k and m approach in order that

both roots of each of the following equations may become infinite ?

(a) m2x2 ^(2k-m + l)x + 6 = 0.

(b) (m2 - 3 m + 2) 2/2 + (3 fc - 2 m) y + 2 = 0.

(c) (m2 ^ k'^ - 25)P + {m - 7 k + 2b)t + 8 = 0.

(d) m2x2 4- 3A;x + A:2x2 - 4mx + 25x - 25x2 = 2.

(e) (m2 + 3)x2 + (2 fc - 5)x + 8 = 0.

8. Equations in several variables. In Analytic Geometry we
are concerned chiefly with equations in two or more variables.

An equation is said to be satisfied by any given set of values

of the variables if the equation reduces to a numerical equality

when these values are substituted for the variables.

For example, x = 2,y=—S salasfy the equation

«;2a;2 + 3?/2=35,

since 2(2)2 + 3 (- 3)2 = 35.

Siitti\^rly, x = — 1,j/ = 0,- z = — 4 satisfy the equation

2a;2_3?y2_|.22_i8 = o,

since 2(- 1)2 _ 3.O + (- 4)2 - 18 = 0.
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An equation is said to be algebraic in any number of variables,

for example x, y, «, if it can be transformed into an equation

each of whose members is a sum of terms of the form ax^^y^z^,

where a is a constant and m, n,p are positive integers or zero.

Thus the equations x* + xhf'^ — z^ -\-2x — h = Q,

x^y + 2 x'hf^ =r_?/3 4.5a;2 + 2-a;
are algebraic.

The equation x^ -\-y^ — a^

is algebraic.

For, squaring, we get a; + 2 x^y^ -{-y — a.

Transposing, 2 xhj^ — a — x — y.

Squaring, 4iXy = a^ + x^ -\- y'^ — 2 ax — 2 ay }- 2xy.

Transposing, x^ -{- y^ — 2xy — 2 ax — 2 ay -{- a^ ~ 0. q.k.d.

The degree of an algebraic equation is equal to the highest

degree of any of its terms.''^ An algebraic equation is said to

be arranged with respect to the variables when all its terms are

transposed to the left-hand side and written in the order of

descending degrees.

For example, to arrange the equation

2x'^ + 3y'-{-6x'— 2x'y' — 2 + x'^= x'^y'—y'^

with respect to the variables x', y\ we transpose and rewrite the terms in the order

x'^ — x'Y + 2aj'2 _ 2xY + y'2 + ex' + 3?/' — 2 = 0.

This equation is of the third degree.

An equation which is not algebraic is said to be transcendental.

Examples of transcendental equations are

y = sin x, y— 2^, log y = 3 x.

PROBLEMS

1. Show that each of the following equations is algebraic; arrange the

terms according to the variables x, y, or x, jsfeg, and determine the degree.

(a) x2 + Vy-5 + 2 X = 0.

(b) x^ + y + 3 X = 0.

(c) xy + 3 X* + 6 x2?/ - 7 xy8 -f-

(d) X + y + z 4- x^^; - 3xy - 2g2

(e) 2/ = 2 + Vx2 - 2 X - 5.

The degree of any term is the sum of the exponents of the variables in that term.
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(f)2/ =

(g) ^ =

X + 5 + V2 x2 --6x + 3.

-Ey--2/2.

(h) y = ^x + -B + Vix2 + ifx + iV".

2. Show that the homogeneous quadratic *

^x2 + 5X2/ + C?/2

may be written in one of the three forms below analogous to (7), p. 4, if

the discriminant A= JB^ — 4 ^ (7 satisfies the condition given :

Case I. Ax'^ + Bxy + Gy'^ =A{x- hy) (x - hy), if A > ;

Case II. Ax^ + Bxy + Cy^=A{x- hyf, if A = ;

r/ B \2 4AC-B^
Case III. Ax^ + Bxy + Cy^=A\ (x y) + ],. A<0.

2A / 4^2

10. Functions of an angle in a right triangle. In any right

triangle one of whose acute angles is A, the functions of A are

defined as follows :

sin A =
opposite side

hypotenuse

adiacent side
cos A = -T^—7

:

hypotenuse

opposite side

adjacent side
tan^

csc^ =

sec A =

cot A

hypotenuse

opposite side

hypotenuse

adjacent side

adjacent side

opposite side

From the above the theorem is easily derived

:

^ In a right triangle a side is equal to the

product of the hypotenuse and the sine of the

angle opposite to that side, or of the hypote-

a nuse and the cosine of the angle adjacent to

that side.

A 6 (7 11. Angles in general

an angle XOA is considered as gen-

erated by the line OA rotating from

an initial position OX. The angle is

positive when OA rotates from OX
counter-clockwise, and negative when
the direction of rotation of OA is

clockwise.

In Trigonometry

* The coefficients A, B, C and the numbers l^, Z,, are supposed real.
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The fixed line OX is called the initial line, the line OA the

terminal line.

Measurement of angles. There are two important methods

of measuring angular magnitude, that is, there are two^unit

angles.

Degree measure. The unit angle is ^^^^ of a complete revolu-

tion, and is called a degree.

Circular measure. The unit angle is an angle whose subtend-

ing arc is equal to the radius of that arc, and is called a radian.

The fundamental relation between the unit angles' is given by

the equation

180 degrees = ir radians (tt = 3.14159 • • •).

Or also, by solving this,

1 degree =
j|^

= .0174 . • • radians.

180
1 radian = ^^ = 57.29 •

TT

• • degrees.

These equations enable us to change from one measurement to

another. In the higher mathematics circular measure is always

used, and will be adopted in this book.

The generating line is conceived of as rotating around through

as many revolutions as we choose. Hence the important result

:

Any real number is the circular measure of some angle, and

conversely, any angle is measured by a real number.

12. Formulas and theorems from Trigonometry.Ill
1. cotx = ; secx = ; cscx = -;

tan X cos x sin x

sin a; , cosx
2. tanx = ; cotx =

,

cosx sinx

3. sin2x + cos2x = 1 ; 1 + tan2x = sec^x ; 1 + cot2x = csc2x.

4. sin ( — x) = — sin x ; esc (— x) = — esc x

;

cos ( — x) = cos X ; sec (— x) = sec x

;

tan (— x) = — tanx ; cot (— x) = — cot x.
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5. sin (tt — x) = sin x ;
sin {tt -\- x) = — sin x

;

cos (tt - x) = — cos X ; cos (tt + ic) =: — cos x
;

tan (tt — x) = — tan x ; tan (tt + x) = tan x

;

6. sin ( X j
= cos X ; sin (

-- + x j
== cos x

;

cos
(

X )
= sin X ; cos (

—j- a^ )
= — sin x

;

tan( X )= cotx; tan(~- + X j = — cotx.

7. sin (2 TT - x) = sin (- x) = - sin x, etc.

8. sin [x -\- y) = sin x cos y + cos x sin y.

9. sin (x — y) = sin x cos y — cos x sin y.

10. cos (x + ?/) = cos X cos ?/ — sin x sin ?/.

'

, ;

1 1

.

cos (x — y) = cos X cos 2/ + sin x sin ^.

tan X + tan y 10*/ \ tan x - tan y
12. tan {x + y)= --^- 13. tan {x - y)

-

1 - tan X tan 2/ 1 + tan x tan y

2tanx
14. sin 2 X = 2 sin x cos x ; cos 2 x = cos^ x — sin^ x ; tan 2 x

1 - tan2x

X ll — cosx X /l + cosx , X /I —
16. sin-=±i^-^—;cos-=±^-^—;tan-=±^^2\22 \22 \l + cosx

16. Theorem. Law of sines. In any triangle the sides are proportional

to the sines of the opposite angles

;

that is,

sin A sin B sin C

17. Theorem. Law of cosines. In any triangle the square of a side

equals the sum of the squares of the two other sides diminished by twice the

product of those sides by the cosine of their included angle

;

that is, a2 _ 52 _f. c2 _ 2 6c cos^.

18. Theorem. Area of a triangle. The area of any triangle equals one

half the product of two sides by the sine of their included angle

;

that is, area = ^ a6 sin C = i 6c sin -4 = ^ ca sin B.
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13. Natural values of trigonometric functions.

Angle in

Radians

Angle in

Degrees
Sin Cos Tan Cot

.0000 0° .0000 1.0000 .0000 00 90° 1.5708

.0873 5° .0872 .9962 .0875 11.430 85° 1.4835

.1745 10° .1736 .9848 .1763 5.671 80° 1.3963

.2618 15° .2588 .9659 .2679 3.732 75° 1.3090

.3491 20° .3420 .9397 .3640 2.747 70° 1.2217

.4.363 25° .4226 .9063 .4663 2.145 65° 1.1345

.5236 30° .5000 .8660 .5774 1.732 60° 1.0472

.6109 35° .5736 .8192 .7002 1.428 55° .9599

.6981 40° .6428 .7660 .8391 1.192 50° .8727

.7854 45° .7071 .7071 . 1.0000 1.000 45° .7854

Cos Sin Cot Tan
Angle in

Degrees

Angle in

Radians

Angle in

Radians

Angle in

Degrees
Sin Cos Tan Cot Sec Csc

0° 1 00 1 00

It

2
90° 1 GO 00 1

It 180° • -1 00 -1 00

2
270° -1 CO ° 00 -1

2Tt 360° 1 00 1 00



22 ANALYTIC GEOMETRY

Angle in

Radians

Angle in

Degrees
Sin Cos Tan Cot Sec Csc

0° 1 CO 1 CO

Tt

6
30° 1

2

V3
2

V3
3

V3
2V3
3

2

It

4
45°

2 2
1 1 V2 V2

It

3
60° V3

2

1

2
V3

V3
3

2
2V3
3

Tt

2
90° 1 CO CO 1

14. Rules for signs..

Quadrant Sin Cos Tan Cot Sec Csc

First . " . . . + + + + + +

Second . . . + - - - - +

Third. . . .
- - + + - -

Fourth . . .
- + - - + -

9

15. Greek alphabet.

Letters Names Letters Names

A a Alpha I L Iota /

B^ Beta K K Kappa
r 7 Gamma A X Lambda
A 5 Delta M/i Mil

E e Epsilon N V Nu
z f Zeta S 1 Xi

H^ Eta Omicron

e d Theta n IT Pi

\r JU-t ^

^? Mf^

Letters Names

P^ Rho
S (T S Sigma

T T Tau
T V Upsilon

4. Phi

Xx Chi

^ 1// Psi

ft U) Omega



CHAPTER II

CARTESIAN COORDINATES

16, Directed line. Let X'X be an indefinite straight line, and

let a point 0, which we shall call the origin be chosen upon

it. Let a unit of length be adopted and assume that lengths

measured from to the right are positive, and to the left negative.

-5-4-3-2-1 O-hl-t-2 +3 +4+5 unit

1

Then any real number (p. 1), if taken as the measure of the length

of a line OP, will determine a point P on the line. Conversely,

to each point P on the line will correspond a real number, namely,

the measure of the length OP, with a positive or negative sign

according as P is to the right or left of the origin.

The direction established upon X^X by passing from the origin

to the points corresponding to the positive numbers is called the

positive direction on the line. A directed line is a straight line upon

which an origin, a unit of length, and a positive direction have

been assumed.

An arrowhead is usually placed upon a directed line to indicate

the positive direction.

If A and B are any two points of a directed line such that

' 0A = a, OB = b,

then the length of the segment AB is always given hj h — a; that

is, the length oi AB is the difference of the numbers correspond-

ing to B and A. This statement is evidently equivalent to the

following definition

:

23^
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For all positions of two points A and B on a directed line, the

length AB is given by

(1) AB = OB - OA,

where is the origin.

(1) (II) (111) (\Y)
+3 -f-6 -4 0+3 -3 -h5 -6 -2

6 A B B A A B B A

Illustrations.

In Fig. I. ^5 =05 -0^ = 6-3 = 4-3;^^ ==0^-0^=^3-6 =- 3;

II. AB:=OB-OA^-^-?> = -l; BA= 0^ - Oi? = 3- (- 4) =+7;
III. ^i5= OjB-0^ = + 5-(-3)= + 8; j5.4=0^ -05 =- 3-5= -8;
IV. AB= OJ5-0^=-6-(-2)= -4; 5^=0^-05= -2-(-6)= +4.

The following properties of lengths on a directed line are

obvious

:

^^

(2) AB = -BA.
(3) AB is positive if the direction from A to B agrees with

the positive direction on the line, and negative if in the contrary

direction.

The phrase " distance between two points " should not be used if these points

lie upon a directed line. Instead, we speak of the length AB, remembering that

the lengths AB and BA are not equal, but that AB = — BA.

17. Cartesian* coordinates. Let X'X and Y'Y be two directed

Yf lines intersecting at 0, and

P let P be any point in their

plane. Draw lines through

P parallel to X'X and TY
respectively. Then, if

OM = a, 0N = b,

the numbers a, b are called

the Cartesian coordinates of

P, a the abscissa and b the

ordinate. The directed lines

X'X and Y'Y are called the

* So called after Ren^ Descartes, 1596-1650, who first introduqed the idea of coordinates
into the study of Geometry.
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axes of coordinates, X^X the axis of abscissas, Y^Y the axis of

ordinates, and their intersection O the origin.

The coordinates a, b of P are written (a, h), and the symbol

P (a, b) is to be read :
" The point P, whose coordinates are a

and b:'

Any point P in the plane determines two numbers, the coordi-

nates of P. Conversely, given two real numbers a' and b\ then

a point P' in the plane may always be constructed whose coordi-

nates are (a', b^). For lay off OM' = a', ON' = b', and draw lines

parallel to the axes through AI' and N'. These lines intersect at

P'(a',b'). Hence

Every point determines a pair of real numbers, and conversely,

a pair of real numbers determ,ines a point.

The imaginary numbers of Algebra have no place in this repre-

sentation, and for this readon elementary Analytic Geometry is

concerned only with the real numbers of Algebra.

18. Rectangular coordinates. A rectangular system of coordi-

nates is determined when the axes X'X and Y'Y are perpendicular

(oyTJ

H G)

X' (10,

(-5\-4} 4)

to each other. This is the usual case, and will be assumed unless

otherwise stated.
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The work of plotting points in a rectangular system is much
simplified by the use of coordinate or plotting paper, constructed

by ruling oft" the plane into equal squares, the sides being parallel

to the axes.

In the figure, p. 25, several points are plotted, the unit of length

being assumed equal to one division on each axis. The method is

simply this

:

Count off from along Z'Z a number of divisions equal to the

given abscissa, and then from the point so determined a number

of divisions equal to the given ordinate, observing the

Rule for signs

:

Abscissas are positive or negative according as they are laid off

to the right or left of the origin, Ordinates are

positive or negative according as they are laid

Second First off abovc or bclow the axis of X.

^~'
^ ' ^ Rectangular axes divide the plane into four

X'
Third

-^ portions called quadrants ; these are numbered

(^,_) as in the figure, in which the proper signs of

the coordinates are also indicated.

PROBLEMS

1. Plot accurately the points (3, 2), (3, - 2), (- 4, 3), (6, 0), (- 5, 0),

(0, 4).

2. Plot accurately the points (1, 6), (3, - 2), (- 2, 0), (4, - 3), (- 7, - 4),

(- 2, 4), (0, - 1), ( V3, V2), (- V5, 0).

3. What are the coordinates of the origin? Ans. (0, 0).

4. In what quadrants do the following points lie if a and h are positive

numbers: (-a, 6)? (-a, -6)? (6, -a)? (a, &)?

5. To what quadrants is a point limited if its abscissa is positive ? nega-

tive ? its ordinate is positive ? negative ?

6. Plot the triangle whose vertices are (2, — 1), (— 2, 5), (- 8, — 4).

7. Plot the triangle whose vertices are (- 2, 0), (5 V3 - 2, 5), (- 2, 10).

8. Plot the quadrilateral whose vertices are (0, — 2), (4, 2), (0, 6),

(-4,2).
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9. If a point moves parallel to the axis of x, which of its coordinates

remains constant ? if parallel to the axis of y ?

10. Can a point move if its abscissa is zero ? Where ? Can it move if its

ordinate is zero? Where? Can it move if both abscissa and ordinate are

zero? Where will it be?

11. Where may a point be found if its abscissa is 2? if its ordinate

12. Where do all those points lie whose abscissas and ordinates are equal ?

13. Two sides of a rectangle of lengths a and h coincide with the axes of

X and y respectively. What are the coordinates of the vertices of the rec-

tangle if it lies in the first quadrant ? in the second quadrant ? in the third

quadrant ? in the fourth quadrant ?

14. Construct the quadrilateral whose vertices are (— 3, 6), (— 3, 0), (3, 0),

(3, 6). What kind of a quadrilateral is it ?

15. Join (3, 5) and (-3, - 5); also (3, - 5) and (- 3, 5). What are the

coordinates of the point of intersection of the two lines ?

16. Show that (x, y) and (x, — y) are symmetrical with respect to X'X]
(x, y) and (— x, ?/) with respect toY'Y; and (x, y) and (— x, —y) with respect

to the origin.

17. A line joining two points is bisected at the origin. If the coordinates

of one end are (a, — 6), what will be the coordinates of the other end ?

18. Consider the bisectors of the angles between the coordinate axes.

What is the relation between the abscissa and ordinate of any point of the

bisector in the first and third quadrants ? second and fourth quadrants ?

19. A square whose side is 2 a has its center at the origin. What will be

the coordinates of its vertices if the sides are parallel to the axes ? if the diago-

nals coincide with the axes ?

Ans. (a, a), (a, — a), (— a, — a), (— a, a);

(a V2, 0), (- a V2, 0), (0, a V2), (0, - a V2).

20. An equilateral triangle whose side is a has its base on the axis of x

and the opposite vertex above X'X. What are the vertices of the triangle if

the center of the base is at the origin ? if the lower left-hand vertex is at the

^„..(|.0),(-|,0),(0,^);

(0,0),(a,0),(?,2^).
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19. Angles. The angle between two intersecting directed lines

is defined to be the angle made by their positive

directions. In the figuies the angle between

the directed lines is the angle marked 6.

If the directed lines are parallel, then the

angle between them is zero or it according as

the positive directions agree or do not agree.

Evidently the angle between two directed

lines may have any value from to tt inclusive.

Eeversing the direction of either directed line

changes to the supplement it — 6. If both directions are

reversed, the angle is unchanged.

^ = e.

When it is desired to assign a positive direction to a line

intersecting X^X, we shall always assume the upward direction

as positive (see figures).

X X'

\B

X

CS)

Theorem 1. If a and f3 are the angles between a line directed

upward and the rectangular axes OX and OY, then

(I) cos ^ = sin a.

Froof. The figures are typical of all possible cases.

In Fig. 1,

and hence

^-?

cos ^

2

cos ex
I

= sin a. (by 6, p. 20)
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In Fig. 2,

and hence

111 Fig. 3,

cosyS
/ 7r\ .= cos
[
a — —

I = sm a.

^ ^ (by 4 and 6, p. 19)

cos y8 = 1 = sin or. Q.E.D.

The positive direction of a line parallel to X'X will be assumed

to agree with the positive direction of X'X, that is, to the right.

TT
Hence for such a line a = 0, p = —, and the relation (I) still

holds, since

TT
cos y8 = cos — = = sin = sm a.

PROBLEMS

1

.

Show that for lines directed downward cos )3 = — sin a.

2. What are the values of a and jS for a line directed N.E. ? N. W. ? S.E. ?

S.W. ? (The axes are assumed to indicate the four cardinal points of the

compass.)

3. Find the relation between the a's and /3's of two perpendicular lines

directed upward. Ans. a'

20. Orthogonal projection. The orthogonal projection of a point

upon a line is the foot of the perpendicular

Nlet fall from the point upon the line.

Thus in the figure

M is the orthogonal projection of P on Z'X; jj/

N is the orthogonal projection of P on FT; X' \
M X

P' is the orthogonal projection of P'on X'X. J 4iV

If A and B are two points of a directed

line, and M and N their projections upon a

second directed line CD, then 'MN is callSd the projection of AB
upon 02>.

r'
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Theorem II. First theorem of projection. If A and B are points

upon a directed line making an angle y loith a second directed line

CD, then the

(II) projection of the length AB upon CJD = AB cos y.

• Froof. In the figures let

a = the numerical length of AB,

I = the numerical length of ^^S" or BT;

then a and I sue positive numbers giving the lengths of the respec-

tive lines, as in Plane Geometry. Now apply the definition of the

cosine to the right triangles ABS and ABT (p. 18).

r. A ATT ^ ^ ^ ^ ^ ^

B B T II N M N
(1) (2) (3) (4) (5) (6)

In Fig. 1, 1 = a cos BA S = a cos y,

MN=l, AB = a.

.', MN = AB COS y.

In Fig. 2, I = a cos ABT = a cos (tt — y)

= — a cos y, (by 5, p. 20)

MN=^ I, AB=—a..
.'. MN = AB cos y.

In Fig. 3, I = a cos ^ i^T" = a cos (tt — y)

= — a cos y,

MN = -l, AB = a.

.'. MN = AB cos y. ^

In Fig. 4, Z = a cos yl^r = «^ cos y,

MN = -l, AB=-a.
.-. MN = AB cos y.

In Fig. 5, y = 0, ikfiV = 1, AB = a.

Hence AfiV = ^jB = yl^ cos (since cos = 1).

.'. MN = AB cos y.

In Fig. 6, y = TT, iV/i\r = -l, AB=a.
Hence MN^= — AB = AB cos tt (since cos tt = — 1).

.'. ikfiV = ^5c0Sy. Q.E.D.
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Consider any two given points

Pi{^i, 2/1) » -^2(^2, 2/2)-

Then in the figure

7I/1M2 = projection of PxP^ on X'X,

NiNi = projection of PiPg on Y'Y.

Pi(xi,y,)

^ fa: 2, 2/2) y,

Butby (1), p. 24,

M1M2 = OM^ - OMi = 0^2 - «i,

N^N^ = ON2 - ON^ = ^2 - 2/1-

Hence

Theorem III. Given amj tivo points P^ix^, y^, ^2(2^2, 2/2); ^^^^

a?2 — a?! = projection of P^P^ on X'X;

projection of PxP^ on F' F.
(Ill)

21. Lengths. We may now easily prove the important

Theorem IV. The length I ofthe line Y

joining two points P^ (a?i, y^, P^ {x^, 2/2)

is given by the formula jy-

(IV) I = V(xi-X2)^+(2/i-2/2)'-

Proof Draw lines through Pi and -^

P2 parallel to the axes to form the

right triangle PiSP^. Y

Then SP^ = M^M^ = x^ - x^,

P2S = N^N^ = 2/1 - 2/2>

PiP2=V^^'4-^';
arid hence

?AC«2,2/2)

Z = V(a;i-(r2)'+(2/i-2/2)'.

(by III)

(by III)

Q.E.D.
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The method used in deriving (IV) for any positions of Pi and

P2 is the following :

Construct a right triangle by drawing lines parallel to the axes

through Pi and P^- 'J-'he sides of this triangle are equal to the

projections of the length P1P2 upon the axes. But these projec-

tions are always given by (HI)? or by (III) with one or both

signs changed. The required length is then the square root of

the sum of the squares of these projections, so that the change in

sign mentioned may be neglected. A number of different figures

should be drawn to make the method clear.

Ex. 1. Find the length of the hne joinmg the points (1, 3) and (—5, 5).

Solution. Call (1, 3) Pi, and (- 5, 5)P2.

Then

^1 = 1» 2/1 = 3, and Xa = — 5, 2/2 = 5;

and substituting in (IV), we have

Vio

Y

(-5
I<̂, --> ^ ""^

>.
"-.,

(1, 3)

Y

1 = V{1 + 5)^ + (3 - 5)^ 2 VlO.

X It should be noticed that we are simply-

finding the hypotenuse of a right triangle

whose sides are 6 and 2.

Remark. The fact that formulas (III) and (lY) are true for all

positions of the points Pi and P2 is of fundamental importance.

The application of these formulas to any given problem is there-

fore simply a matter of direct substitution, as the example worked

out above illustrates. In deriving such general formulas, since

it is immaterial in what quadrants the assumed points lie, it is

most convenient to draw the figure so that the points lie in the

first quadrant, or, in general, so that all the quantities assumed

as known shall he positive.

PROBLEMS

1. Find the projections on the axes and the length of the lines joining

the following points

:

(a) (- 4, — 4)_and (1, 3). _ Ans. Projections 5, 7; length = Vri.

(b) (- V2, V3) and (V3, V2).

Ans. Projections V3 + V2, V2 - V3,- length = VlO.
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(c) (0, 0) and (
- ,

-—— j

.

Ans. Projections - , - ^3 ; length = a.

(d) {a -\- h^ c \- a) and (c + a, 6 + c).

"

Ans. Projections c — h^h — a\ length = >/(& — c)2 + (a — &)2,

2. Find the projections of the sides of the following triangles upon the

axes:
(a) (0, 6), (1, 2), (3, - 5).

(b) (1, 0). (-1, -6), (-1, -8).

(c) (a, 6), (6, c), (c, d).

3. Find the lengths of the sides of the triangles in problem 2.

4. Work out formulas (III) and (IV), (a) if Xi = Xg; (b) if y^ — yi.

5. Find the lengths of the side;S'of the triangle whose vertices are (4, 3),

(2, -2), (-3, 5). / •

6. Show that the points (1, 4), (4, 1), (5, 5) are the vertices of an isosceles

triangle.

7. Show that the points (2, 2^, (-2, - 2), (2 Vs, - 2 V3) are the vertices

of an equilateral triangle. /
8. Show that (3, 0), (6, 4), (— 1, 3) are the vertices of a right triangle.

What is its area ?

9. Prove that (- 4, - 2), (2, 0), (8, 6), (2, 4) are the vertices of a paral-

IMogram. Also find the lengths of the diagonals.

10. Show that (11, 2), (6, - 10), (-6, - 5), (- 1, 7) are the vertices of

a square. Find its area.

11. Show that the points (1, 3), (2, Vo), (2, — V6) are equidistant from

the origin, that is, show that they lie on a circle with its center at the origin

and its radius VlO.

12. Show that the diagonals of any rectangle are equal.

13. Find the perimeter of the triangle whose vertices are (a, 6), (— a, 6),

(-a, -6).

14. Find the perimeter of the polygon formed by joining the following

points two by two in order

:

(6, 4), (4, - 3), (0, - 1), (- 5, - 4), (- 2, 1).

16. One end of a line whose length is 13 is the point (-4, 8); the ordi-

nate of the other end is 3. What is its abscissa ? Ans. 8 or — 16.

16. What equation must the coordinates of the point (x, y) satisfy if its

distance from the point (7, — 2) is equal to 11 ? •
.
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17. What equation expresses algebraically the fact that the point (x, y) is

equidistant from the points (2, 3) and (4, 5)?

18. If the angle XOY (Fig., p. 24) equals w, show that the length of the

line joining Pi(xi, ?/i) and P^ix^, y-i) is given by

I = V(xi - Xa)^ + (?/i - 2/2)^ + 2 (Xi - X2) (z/i - 2/2) cos w.

19. If w = — , find distance between the points (—3, 3) and (4, — 2).

Ain^. V39.

20. If w = — , find the perimeter of the triangle whose vertices are (1, 3),

(2, 7), (- 4, - 4). An8, V2I + V223 + Vl09.

21. If w = -, find the perimeter of triangle (1, 2), (- 2, - 4), (3, - 5).

Aus. 3V5 + 2 V3 + V26 - 5 V3 + V53 - 14 V3.

22. Prove that (6, 6), (7, - 1), (0, -2), (-2, 2) lie on a circle whose

center is at (3, 2).

23. If w = ^— , find the distance between ( Vs, V2), (- Vi, V3).

Ans. VlO + V2.

24. Show that the sum of the projections of the sides of a polygon upon

either axis is zero if each side is given a direction established by passing

continuously around the perimeter.

22. Inclination and slope. The inclination of a line is the angle

between the axis of x and the line when the latter is given the

upward direction (p. 28).

The slope of a line is the tangent of

its inclination.

The inclination of a line will be

J
denoted by a^ ai, org? «'? etc. ; its slope

-^—:> by m, m^ mg, m', etc., so that m = tan a,

mi = tan ai, etc.

The inclination may be any angle

from to TT inclusive (p. 28). The

T/N

r'

slope may be any real number, since the tangent of an angle in

the first two quadrants may be any number positive or negative.

The slope of a line parallel to X'X is of course zero, since the.

inclination is or tt. For a line parallel to Y'Y the slope is infinite.
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Theorem V. The slope tn of the line passing through two points

Pii^ij yi)} Pii^i, y^ is given by

Uy-t Uyo

Proof.

(1)

Similarly,

(2)

But

M1M2 = 0*2 — iCj

= P1P2 COS a.

.'. P1P2 cos a = X2 — Xi.

^1^2 = 2/2-2/1

= P1P2 cos /3.

.'. P^P^ cos p = 1/2- yi-

cos (3 = sin a.

(by (III), p. 31)

(by (II), p. 30)

(by (III), p. 31)

(by (II), p. 30)

(by (I), p. 28)

Hence, from (2),

(3)

Dividing (3) by (1), tan a = m =

PyP^. sin a = yz — y^.

^2 - 2/1 _
x^ — x^

Remark. Formula (V) may be verified by

constructing a right triangle whose hypot-

enuse is P1P2) s-s on p. 31, whence tan a

(= tan Z SP1P2) is found directly as the ratio

of the opposite side, SP^ = 2/2 — 2/i) ^^ t^®

adjacent side, PiS = X2 — Xi*

2/1-2/2
Q.E.D.

Y' P2/

y---^s
Am.

/ ^

* To construct a line passing through a given point Pi whose slope is a positive frac-

Pj a units above S, and

must lie to the left of P^

tiori - , we mark a point S h units to the right of P^ and a point

draw PiPg- If the slope is a negative fraction, — ^ , then either S
or Pj niust lie below S.
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Theorem VI. If two lines are parallel, their slopes are equal; if

perpendicular, the slope of one is the negative reciprocal of the slope

of the other, and conversely.

Proof Let a-^ and a^ be the inclinations and m^ and m^^ the

slopes of the lines.

If the lines are parallel, a^ = a^. .'. m^ = mg.

If the lines are perpendicular, as in the figure,

IT TT
«'2 = ^1 + 2' °^ a^ = oc^- ^^

tan ( cx^ —
-^

j

(by 4 and 6, p. 19)

(by 1, p. 19)

1
Q.E.D.

2m
The converse is proved by retracing the steps with the assump

tion, in the second part, that ^2 is greater than aj.

PROBLEMS

1. Find the slope of the line joining (1, 3) and (2, 7). Ans. 4.

2. Find the slope of the line joining (2, 7) and (—4, — 4). Ans. y-.

3. Find the slope of the line joining (Vs, V2) and (— V2, Vs).

Ans. 2V6-5.

4. Find the slope of the line joining {a + h, c -\- a), (c -{- a, b + c).

b — a
Ans.

c-b
5. Find the slopes of the sides of the triangle whose vertices are (1, 1),

(- 1, - 1), ( V3, - V3).
^^^ ^^

1+V3
^

I-V3
' i-Vs' 1+V3

6. Prove by means of slopes that (- 4, - 2), (2, 0), (8, 6), (2, 4) are the

vertices of a parallelogram.

7. Prove by means of slopes that (3, 0), (6, 4), (— 1, 3) are the vertices

of a right triangle.

8. Prove by means of slopes that (0, -2), (4, 2), (0, G), (-4, 2) are the

vertices of a rectangle, and hence, by (IV), of a square.
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9. Prove by means of their slopes that the diagonals of the square in

problem 8 are perpendicular.

10. Prove by means of slopes that (10, 0), (5, 6), (5, - 5), (- 5, 5) are

the vertices of a trapezoid.

11. Show that the line joining (a, b) and (c, - d) is parallel to the line

joining (-a, — h) and (- c, d).

12. Show that the line joining the origin to (a, b) is perpendicular to the

line joining the origin to (—6, a).

13. What is the inclination of a line parallel to Y'Y? perpendicular to

Y'Y?

14. What is the- slope of a line parallel to Y'Y? perpendicular to Y'Y?

15. What is the inclination of the line joining (2, 2) and (—2, — 2)?

Ans. —'
4

16. What is the inclination of the line joining (— 2, 0) and (— 5, 3)?

Ans.

17. What is the inclination of the line joining (3, 0) and (4, V3) ?

Am

18. What is the inclination of the line joining (3, 0) and (2, Vs) ?

Ans. —-'
4

A ^
Ans. -

27tAns.—-

19. What is the inclination of the line joining (0, — 4) and (— V3, — 5) ?

Ans. ^-

20. What is the inclination of the line joining (0, 0) and (— V3, 1)

57r
Ans. ^,

21. Prove by means of slopes that (2, 3), (1, — 3), (3, 9) lie on the same

straight line.

22. Prove that the points (a, 6 + c), (6, c -\- a), and (c, a + 6) lie on the

same straight line.

23. Prove that (1, 5) is on the line joining the points (0, 2) and (2, 8)

and is equidistant from them.

24. Prove that the line joining (3, — 2) and (5, 1) is perpendicular to the

line joining (10, 0) and (13, - 2).
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23. Point of division. Let Pi and P^ be two fixed points on a

directed line. Any third point on the line, as P or P\ is said

Pi P P2 P'

"to divide the line into two segments," and is called a point

of division. The division is called internal or external according

as the point falls within or without PiP^- The position of the

point of division depends upon the ratio of its distances from Pj

and Pa- Since, however, the line is directed, some convention

must be made as to the manner of reading these distances. We
therefore adopt the rule :

If P is a point of division on a directed line passing through

Pi and P2, then P is said to divide P1P2 into the segments PiP
P P

and PP2. The ratio of division is the value of the ratio* -^—

•

We shall denote this ratio by X, that is,
^

If the division is internal, PiP and PP2 agree in direction and

therefore in sign, and X is therefore positive. In external divi-

sion X is negative. The sign of A. therefore indicates whether

the point of division P is within or without the segment P1P2

;

and the numerical value determines whether P lies nearer Pi

or Pg. The distribution of X is indicated in the figure.

-1<\<0 XrO X>0 X=00 -<X><X<-1

Px p.

That is, X may have any positive value between Pi and Pg, any

negative value between and — 1 to the left of Pi, and any nega-

tive value between — 1 and — 00 to the right of P2. The value

— 1 for X is excluded.

* To assist the memory in writing down this ratio, notice that the point of division P
is written last in the numerator and first in the denominator.
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Introducing coordinates, we next prove

Theorem VII. Point of division. The coordinates (x, y) of the

point of division P on the line joining P^ (x^, y^, P^ (x^, y^), such

that the ratio of the segments is

rp.
= A,

are given hy the formulas

(VII) iC = — : ;—

>

1 + A
y = Vi + A2/2

l + A

Proof. Given X =
PP.

Let a be the inclination of the line PiP
upon the axis of x.

Then, by the first theorem of projection [(II), p. 30],

MiM = P^P cos or,

MM2 = PP2 cos a.

M^M _ P,P _
MM2~ PP.~

'

M^M = X — x^j

Mi M M.X

Project Pi, P, P2

Dividing,

But

Substituting,

MM. X.

(by hypothesis)

(by (III), p. 31)

A.

Clearing of fractions and solving for x,

x^ -f- Aa^g

Similarly, y
Q.E.D.

1 + A

yi -h A..?/2

1 + A
*

Corollary. Middle point. The coordinates (x, y) of the middle

point of the line joining Pi(xi, y^), P^ix^, 2/2) are found hy taking

the averages of the given abscissas ^and ordinates ; that is,

- |(a?i + ajg), y = | (y^ + y^).3C

P,P
For if P is the middle point of P^P^, then A = —^ = 1.



40 ANALYTIC GEOMETRY

Ex. 1. Find the point P dividing Pi (-1, -6), P^ (3, 0) in the ratio \=-\.

Solution. Applying (VII), xi = - 1, yi=— 6,

= 3, y2 = 0.

X =

y =

-1-
i 3

1-
-6- 0

f
-6_
T"
Ans.Hence Pis (- 2i, -8).

Ex. 2. Find the coordinates of the point of

intersection of the medians of a triangle whose

vertices are (xi, yi), (X2, ^2), (a^s, 2/3).

Solution. By Plane Geometry we have to find

the point P on the medianAD such thatAP = | AD, that is, AP : PD : : 2 : 1,

or X = 2.

By the Corollary, D is [|(X2 + X3), i (2/2 + Vs)]-

To find P, apply (VII), remembering that A corre-

sponds to (xi, 2/1) and D to (X2, 2/2)-

AC^i^Vi)

This gives x

2/ =

Xi + 2 • i (X2 + X3)

2-i(2/2 + ?/3)2/1
.

r3J3,2/3>)

1 + 2

.-. X = 1 (xi + X2 + X3), 2/ = I (2/1 + 2/2 + 2/3)- ^ns.

Hence the abscissa of the intersection of the medians of a triangle is the

average of the abscissas of the vertices, and similarly for the ordinate.

The symmetry of these answers is evidence that the particular median

chosen is immaterial, and the formulas therefore prove the fact of the intersec-

tion of the medians.

PROBLEMS

1. Find the coordinates of the middle point of the line joining (4, — 6)

and (-2, -4). Ans. (1, - 5).

2. Find the coordinates of the middle point of the line joining {a-\-b,c+ d)

and (a — 6, d — c). Ans. (a, d).

3. Find the middle points of the sides of the triangle whose vertices are

(2, 3), (4, — 5), and (—3, — 6) ; also find the lengths of the medians.

4. Find the coordinates of the point which divides the line joining (—1,4)
and (—5, — 8) in the ratio 1 : 3. Ans. (— 2, 1).

6. Find the coordinates of the point which divides the line joining

(-3, -5) and (6, 9) in the ratio 2:5. Ans. (- f, -1).
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6. Find the coordinates of the point which divides the line joining (2, 6)

and (— 4, 8) into segments whose ratio is — |. Ans. {— 22, 14).

7. Find the coordinates of the point which divides the line joining

(—3, — 4) and (5, 2) into segments whose ratio is — f. Ans. (—19, — 16).

8. Find the coordinates of the points which trisect the line joining the

points (- 2, - 1) and (3, 2). Ans. (- ^, 0), (4, 1).

9. Prove that the middle point of the hypotenuse of a right triangle is

equidistant from the three vertices.

10. Show that the diagonals of the parallelogram whose vertices are (1,2),

(- 5, - 3), (7, - 6), (1, - 11) bisect each other.

11. Prove that the diagonals of any parallelogram mutually bisect each

other.

12. Show that the lines joining the middle points of the opposite sides of

the quadrilateral whose vertices are (6, 8), (— 4, 0), (— 2, — 6), (4, — 4) bisect

each other.

13. In the quadrilateral of problem 12 show by means of slopes that the
*

lines joining the middle points of the adjacent sides form a parallelogram.

14. Show that in the trapezoid whose vertices are (— 8, 0), (—4, — 4),

(—4, 4), and (4, — 4) the length of the line joining the middle points of the

non-parallel sides is equal to one half the sum of the lengths of the parallel

sides. Also prove that it is parallel to the parallel sides.

15. In what ratio does the point (—2, 3) divide the line joining the points

(-3, 5) and (4, -9)? Ans. |.

16. In what ratio does the point (16, 3) divide the line joining the points

(-5, 0)and (2, 1)? Ans. - |.

17. Given the triangle whose vertices are (— 5, 3), (1, — 3), (7, 6); show
that a line joining the middle points of any two sides is parallel to the third

side and equal to one half of it.

18. If (2, 1), (3, 3), (6, 2) are the middle points of the sides of a triangle,

what are the coordinates of the vertices of the triangle ?

Ans. (-1,2), (5,0), (7,4).

19. Three vertices of a parallelogram are (1, 2), (-5, —3), (7,-6).

What are the coordinates of the fourth vertex ?

Ans. (1, - 11), (- 11, 5), or (13, - 1).

20. The middle point of a line is (6, 4), and one end of the line is (5, 7).

What are the coordinates of tlie other end ? Ans. (7, 1).

21. The vertices of a triangle are (2, 3), (4, - 5), (- 3, - 6). Find the

coordinates of the point where the medians intersect (center of gravity).



42 ANALYTIC GEOMETRY

22. Find the area of the isosceles triangle whose vertices are (1, 5), (5, 1),

(—9, — 9) by finding the lengths of the base and altitude,

23. A line AB is produced to C so that BC = | AB. If the pointsA and B
have the coordinates (5, 6) and (7, 2) respectively, what are the coordinates

of C ? Ans. (8, 0).

24. Show that formula (VII) holds for oblique coordinates, that is, Z XOY
may have any value.

25. How far is the point bisecting the line joining the points (5, 5) and (8, 7)

from the origin ? What is the slope of this last line ? Ans. 2 Vl3, |.

24. Areas. In this section the problem of determining the area

of any polygon the coordinates of whose vertices are given will

be solved. We begin with

Theorem VIII. The area of a triangle whose vertices are the

origin, P^ (a^i, y-^, and Pc, (x^, y^ is give7i by the formula

(VIII) Area of triangle OP^P^ = i(oo^y2 — ^22/i)-

f.fe2/J
^''•''•^* In the figure let

a == AXOP„

P--- Z XOP^,

e^-- Z P,OP^.

^ == y8-a.
3fa My JL

(1)

By 18, p. 20,

(2) Area A OP^P^ = ^0P^- OP^ sin

= \0P^- OP, sin (yS - a) [by (1)]

(3) = \ OPi • OP2 (sin ft cos a — cos ft sin or).

But m the figure

sm ft = -^-^ = -^^^j cos B = = —^>^ OP, OP, '^ OP, OP,

M^P^ y^ OM. X.sm a = —^—̂ = -^^-^, cos a = = —- •

OPi OPi OPi OP^

Substituting in (3) and reducing, we obtain

Area A OP^P, = ^ {x^y, - x,y^. q.e.d.
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Ex. 1. Find the area of the triangle whose vertices are the origin, (—2, 4),

and (- 5, - 1).

Solution. Denote (- 2, 4) by Pi, (- 5, - 1) by Pg.

Then
cci = - 2, 2/1 = 4, X2 = - 5, 2/2 = - 1-

(-\i) YJk

/\f \
\/ \ a,i)

y \

I ^. ^ X
r-s -t)

Substituting in (VIII),

Area = i [- 2 • - 1 - (- 5) • 4] = 11.

Then Area = 11 unit squares.

If, however, the formula (VIII) is applied by denoting (—2, 4) by P2, and

(_ 5^ - 1) by Pi, the result will be - 11.

The two figures are as follows :

(1) (2)

The cases of positive and negative area are distinguished by

Theorem IX. Passing around the perimeter in the order of the

vertices 0, P^, P^,

if the area is on the left, as in Fig. 1, then (VIII) gives a posi-

tive restdt;

if the area is on the right, as in Fig. 2, then (YIII) gives a

negative result.

Proof When the area is on the left as in Fig. 1, then in (1),

p. 42, we have fi > a, and hence is positive. Therefore sin $

is positive and the product in (2), „ p
p. 42, which gives the area of OP^P^,

is also positive. But when the area

is on the right, as in Fig. 2, we have

13 < a, and hence 6 is negative. Then
sin is negative, and hence also the product in (2), p. 42, which

gives the area of OP^P^. q.e.d.

Formula (VIII) is easily applied to any polygon by regarding

its area as made up of triangles with the origin as a common
vertex. Consider any triangle.

.^1

.e+

(1) (2)
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Theorem X. The area of a triangle whose vertices are P^ (x-^, yi),

A(^2j 2/2); ^3(^3, 2/3) «« ff^^en by

(X) Area A 1*1jP2jP3=i (a:5i2/2— a?22/i+^2?^3—»^32/2 +^32/1— ^12/3)-

This formula gives a positive or negative result according as the

area lies to the left or right in passing

around the perimeter in the order P^P^Pz-

Proof Two cases must be distin-

guished according as the origin is

within or without the triangle.

Fig. 1, origin within the triangle.

By inspection,

(5) Area A P^P^P^ = A OP^P^ + A OP^P.^ + A OP^P^,

since these areas all have the same sign. 1 p

yig. 2, origin without the triangle. By inspection,

(6) Area A P^P^P^ = A OP.P^ + A OP,P, + A OP,P„

since OP^P^, OP^Pi have the same sign, but OP^P-s the opposite

sign, the algebraic sum giving the desired area.

By (VIII), A OP,P, = ^(x,7/, - X0,),

A OP^P^ = ^ (x^y^ - x^y^), A OP^P^ = \ (x^y^ - x^y^).

Substituting in (5) and (6), we have (X).

Also in (5) the area is positive, in (6) negative.

An easy way to apply (X) is given by the following

Rule for finding the area of a triangle.

First step. Write down the vertices in two columns,

abscissas in one, ordinates in the other, repeating the

coordinates of the first vertex.

Second step. Multiply each abscissa by the ordinate of the next

row, and add results. This gives x^y^ 4- ^^yz + ^zVi-

Third step. Multiply each ordinate by the abscissa of the next

row, and add residts. This gives y^x^ + 2/2^3 + Vz^x-

Fourth step. Subtract the result of the third step from that of

the second step, and divide by 2. This gives the required area,

namely, formula (X).

Q.E.D.

Xi •2/1

X2 Vi
a^3 Vz

Xi

7

y\
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It is easy to show in the same manner that the rule applies to

any polygon, if the following caution be observed in the first step :

Write down the coordinates of the vertices in an order agreeing

with that established by passing continuously around the perimeter

,

and repeat the coordinates of the first vertex.

Ex. 2. Find the area of the quadrilateral whose vertices are (1, 6),

(-3, -4), (2, -2), (-1,3).

Solution. Plotting, we have the figure from which

we choose the order of the vertices as indi- ..

^
cated by the arrows. Following the rule : _ i 3

First step. Write down the vertices in — 3 — 4

order. 2 — 2

Second step. Multiply each abscissa

by the ordinate of the next row, and add. This gives

lx3 + (-lx-4) + (-3x-2) + 2x6=3 25.

Third step. Multiply each ordinate by the abscissa

of the next row and add. This gives

6x-l + 3x-3 + (-4x2) + (-2xl)=-25.

Fourth step. Subtract the result of the third step

from the result of the second step, and divide by 2.

. 25 4-25 ^„ .^ .

.-. Area = = 25 unit squares. Ans.

The result has the positive sign, since the area is on the left.

PROBLEMS

1. Find the area of the triangle whose vertices are (2, 3), (1, 5), (— 1, — 2).

Ans. y.

2. Find the area of the triangle whose vertices are (2, 3), (4, —5), (
— 3, —6).

Ans. 29.

3. Find the area of the triangle whose vertices are (8, 3), (— 2, 3), (4, — 5).

Ans. 40.

4. Find the area of the triangle whose vertices are (a, 0), (— a, 0), (0, b).

Ans. ah.

5. Find the area of the triangle whose vertices are (0, 0), (xi, yi), (X2, 2/2)-

Ans. ^jyiH^^.
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6. Find the area of the triangler^whose vertices are (a, 1), (0, 6), (c, 1).

2

7. Eind the area of the triangle whose vertices are (a, 6), (&, a), (c, - c).

8. Find the area of the triangle whose vertices are (3, 0) , (0, 3 V3), (6, 3 V3).

An8. 9V3.

9. Prove that the area of the triangle whose vertices are the points

(2, 3), (5, 4), (—4, 1) is zero, and hence that these points all lie on the same

straight line.

10. Prove that the area of the triangle whose vertices are the points

(a, 6 + c), (&, c \- a)^ (c, a + 6) is zero, and hence that these points all lie on

the same straight line.

11. Prove that the area of the triangle whose vertices are the points

(a, c + a), (— c, 0), (—a, c — a) is zero, and hence that these points all lie

on the same straight line.

12. Find the area of the quadrilateral whose vertices are (-2, 3),

(-3, -4), (5, -1), (2, 2). Ans. 31.

13. Find the area of the pentagon whose vertices are (1, 2), (3, — 1),

(6, - 2), (2, 5), (4, 4). Ans. 18.

14. Find the area of the parallelogram whose vertices are (10, 5), (— 2, 5),

(- 5, - 3), (7, - 3). Ans. 96.

15. Find the area of the quadrilateral whose vertices are (0, 0), (5, 0),

(9, 11), (0, 3). Ans. 41.

16. Find the area of the quadrilateral whose vertices are (7, 0),- (11, 9),

(0, 5), (0, 0). Ans. 59.

17. Show that the area of the triangle whose vertices are (4, 6), (2, — 4),

(—4, 2) is four times the area of the triangle formed by joining the middle

points of the sides.

18. Show that the lines drawn from the vertices (3, — 8), (— 4, 6), (7, 0)

to the medial point of the triangle divide it into three triangles of equal area.

19. Given the quadrilateral whose vertices are (0, 0), (6, 8), (10, — 2),

(4, — 4) ; show that the area of the quadrilateral formed by joining the

middle points of its adjacent sides is equal to one half the area of the given

quadrilateral.
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25. Second theorem of projectiqj|j

Lemma I. If M^^ M^, M^ are any imree points on a directed line,

then in all cases

T Jfi M-i M,

Mo M^Ml

Proof. Let be the origin.

By (1), p. 24, M^M^ = OM^ - OM^,

M^Ms = OMs - OM^.

Adding, M^M^ + M^M^ = OM^ - OM^.

But by (1), p. 24, M^M^ = OM^ - OM^.

Q.E.D.

This result is easily extended to prove

Lemma II. If Mi, M^, M^, •••, ikf„_i, M^ are any n points on a

directed line, then in all cases

MiM^ = M1M2 -h M^M^ + M^M^ + • • • + M„_,M„,

the lengths in the right-hand member being so written that the

second point of each length is the first point of the next.

The line joining the first and last points of a broken line is

called the closing line.

Cii/, M>, M^D

Thus in Fig. 1 the closing line is PyP^ ; in Fig. 2 the closing

line is P1P5.
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Theorem XI. Second theorem of projection. If each segment of a

broken line be given the direction determined in passing continuously

from one extremity to the other, then the algebraic sum of the pro-

jections of the segments upon any directed line equals the projection

of the closing line.

Proof

in Fig. 1

The proof results immediately from the Lemmas. For

M1M2 = projection of P1P2
j

M^M^ = projection of P2P3
5

MiM^ = projection of closing line PiPs-

But by Lemma I

MlMo + M^M^= M^Ms,

and the theorem follows. ^
Similarly in Fig. 2. q.e.d.

Corollary. If the sides of a closed polygon be given the direction

established by passing continuously around the perimeter, the sum

of the projections of the sides upon any directed line is zero.

For tlje closing line is now zero.

Ex. 1. Find the projection of the line joining the origin and (5, 3) upon

a line passing through ( — 5, 0) whose

inclination is — •

4

Solution. In the figure, applying the

second theorem of projection,

proj. of OP on AB
= proj. of OM 4- proj. of MP

It It= OM cos — + MP cos —
4 4

(by first theorem of projection, p, 30)

= 5V2-i-fV2 = 4V2. Ans.

The essential point in the solution of problems like Ex. 1 is the replacing

of the given line, by means of Theorem XI, by a broken line with two seg-

ments which are parallel to the axes.

I
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Ex. 2. Find the perpendicular distance from the Ime passing through

(4, 0), whose inclination is — , to the

point (10, 2).
^

Solution. In the figure draw OC
perpendicular to the given line AB.

27tZXAS or 120°.

.-. Z XOS = 30°, Z SOY = 60°.

Required the perpendicular dis-

tance RP.
Project the broken line OMP upon

OC. Then, by the second theorem of

projection,

(1)

But in the figure

(2)

proj. of OP = proj. of OM + proj. of MP
= OM cos Z XOS + MP cos ZSOY
= 10.iV3 + 2.i
= 1 + 5 Vs.

proj. of OP = 05 + -87

= OA cos^XOS + RP
= 4 . i Vs + RP.

From (1) and (2),

EP + 2V3 = 1 + 5V3.

RP = l-\-SVs. Ans.

PROBLEMS

1. Four points lie on the axis of abscissas at distances of 1, 3, 6, and 10

respectively from the origin. Find P1P4 by Lemma II.

2. A broken line joins continuously the points (—1, 4), (3, 6), (6, — 2),

(8, 1), (1, — 1). Show that the second theorem of projection holds when the

segments are projected on the X-axis.

3. Show by means of a figure that the projection of the broken line join-

[ ing the points (1, 2), (5, 4), (- 1, - 4), (3, - 1), and (1, 2) upon any line is

zero.

4. Find the projection of the line joining the points (2, 1) and (5, 3) upon
7t

a line passing through the point (—1, 1) whose inclination is

Ans.
3 V3 + 2
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5. What is the projection of the line joining these same points upon any

line whose inclination is ^ ? Why ?

6. Find the projection of the line joining the points (-1, 3) and (2, 4)

upon any line whose inclination is f it. Ans. — V2.

7. Find the projection of the broken line joining the points (- 1, 4),

It

(3, 6), and (5, 0) upon a line whose inclination is -• Verify your result by

finding the projection of the closing line. Au8. V2,

8. Find the projection of the broken line-joining (0, 0), (4, 2), and (6, - 3)

upon a line whose inclination is -r- •

Ans. ———
o 2

9. Show that the projection of the sides of the triangle (2, 1), (- 1, 5),

(—3, 1) upon a line whose inclination is — is zero.

10. Find the perpendicular distance from the point (6, 3) to a line passing

It 7
through the point (—4, 0) with an inclination of —• Ans. —p-

11. Find the perpendicular distance from the point (—5, — 1) to a line

passing through the point (6, 0) and having an inclination of f it.

Anjs. 6V2.

12. A line of inclination — passes through the point (5, 0). Find the per-

pendicular distance to the parallel line passing through the point (0, 2).

5 + 2 V3
Ans.



CHAPTER III

THE CURVE AND THE EQUATION

26. Locus of a point satisfying a given condition. The curve*

(or group of curves) passing through 'all points which satisfy a

given condition, and through no other points, is called the locus

of the point satisfying that condition.

For example, in Plane Geometry, the following results are

proved :

The perpendicular bisector of the line joining two fixed points

is the locus of all points equidistant from these points.

The bisectors of the adjacent angles formed by two lines is

the locus of all points equidistant from these lines.

To solve any locus problem involves two things

:

1. To draw the locus by constructing a sufficient number of

points satisfying the given condition and therefore lying on the

locus.

2. To discuss the nature of the locus, that is, to determine

properties of the curve, t

Analytic Geometry is peculiarly adapted to the solution of

both parts of a locus problem.

27. Equation of the locus of a point satisfying a given

condition. Let us take up the locus problem, making use of coor-

dinates. If any point P satisfying the given condition and there-

fore lying on the locus be given the coordinates (x, y), then the

given condition will lead to an equation involving the variables

X and y. The following example illustrates this fact, which is

of fundamental importance.

* The word " curve" wiU hereafter signify any contimious line, straight or curved.

t As the only loci considered in Elementary Geometry are straight lines and circles,

the complete loci may be constructed by ruler and compasses, and the second part is

relatively unimportant.

51 '-^
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Ex. 1. Find the equation in x and y if the point whose locus is required

shall be equidistant from A{— 2, 0) and B{— 3, 8).

Solution. LetP (x, y) be any point on the locus. Then by the given condition

(1) PA = PB.

But, by formula IV, p. 31,

PA = V{x + 2)^ + {y--0)2,

P5=V(a: + 3)2 + (?/-

Substituting in (1),

-8)2.

V(x + 2)'^ + (2/
- 0)2(2)

= V(x + 3)2 + {y- 8)2.

Squaring and reducing,

(3) 2x - 162/ -h 69 = 0.

In the equation (3), x and y are variables representing the coordinates of

any point on the locus, that is, of any point on the perpendicular bisector of

the line AB. This equation has two important and characteristic properties

:

1. The coordinates of any point on the locus may be substituted for x

and y in the equation (3), and the result will be true.

For let Pi (xi, yi) be any point on the locus. Then PiA = PiB, by defi-

nition. Hence, by formula IV, p. 31,

(4) V(xi + 2)2 + 2/i2 = V(xi + 3)2 + (^1 - 8)2,

or, squaring and reducing,

(5) 2 xi - 16 yi + 69 = 0.

Therefore Xi and yi satisfy (3).

2. Conversely, every point whose coordinates satisfy (3) will lie upon the

locus.

For if Pi(Xi, yi) is a point whose coordinates satisfy (3), then (5) is true,

and hence also (4) holds. q.e.d.

In particular, the coordinates of the middle point C ot A and B, namely,

x=-2i,y=:4: (Corollary, p. 39), satisfy (3), since 2 ( - 2i) - 16 x 4 + 69 = 0.

This example illustrates the following correspo?idence between

Pure and Analytic Geometry as regards the locus problem :

Locus problem

Pure Geometry Analytic Geometry

The geometrical condition (satis- An equation in the variables x

fied by every point on the and?/ representing coordinates

locus). (satisfied by the coordinates

of every point on the locus).
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This discussion leads to the fundamental definition

:

The equation of the locus of a point satisfying a given condition

is an equation in the variables x and y representing coordinates

such that (1) the coordinates of every point on the locus will

satisfy the equation; and (2) conversely, every point whose

coordinates satisfy the equation will lie upon the locus. •

This definition shows that the equation of the locus must be

tested in two ways after derivation, as illustrated in the example

of this section and in those following.

From the above definition follows at once the

Corollary. A point lies upon a cun^e when and only when its

coordinates satisfy the equation of the curve.

28. First fundamental problem. To find the equation of a

curve which is defined as the locus of a point satisfying a giuen

condition.

,

The following rule will suffice for the solution of this problem

in many cases

:

Rule. First step. Assume that P (x, y) is any point satisfying

the given condition and is therefore on the curve.

Second step. Write down the given condition.

Third step. Express the . given condition in coordinates and

simplify the result. The final equation, containing x, y, and the'

given constants of the problem, will be the required equation.

Ex. 1. Find the equation of the straight line passing through Pi (4, — 1)

3 7t

and having an inclination of

Solution. First step. Assume P{x, y) any point

on the line.

Second step. The given condition, since the incli-

• Stt
nation a is— , may be written

4

(1) Slope of PiP = tan a = - 1.

Third step. From (V), p. 35,

.N

\ /_ 1

1\ -.</ )

s
r4, I) X

j2\

(2) Slope of PiP = tan a = yi-Vi 2/ + 1

Xi — X2 X — 4

[By substituting {x, y) for {x^, y^), and (4, — 1) for (Xj, y,).]
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/. from (1),

or

(3)

2/ + 1
1

X — 4

x-\- y — S = 0. Ans.

To prove that (3) is the required equation :

1. The coordinates (xi, yi) of any point on the line will satisfy (3), for

the line joins (xi, yi) and (4, — 1), and its slope is — 1 ; hence, by (V), p. 35,

substituting (4, — 1) for (X2, ^2),

-1 yi + 1

Xi — 4
or Xi + ?/i

- 3 = 0,

and therefore Xi and 2/1 satisfy the equation (3).

2, Conversely, any point whose coordinates satisfy (3) is a point on the

straight line. For if (xi, 2/1) is any such point, that is, if Xi + 2/1 — 3 = 0, then

2/1 + 1
also is true, and (xi, 2/1) is a point on the line passing through

(4, — 1) and having an inclination equal to —7- Q.E.D.

Ex. 2. Find the equation of a straight line parallel to the axis of y and

at a distance of 6 units to the right.

Solution. First step. Assume that P(x, y) is

any point on the line, and draw NP perpendicular

to OF.

^^) Second step. The given condition may be

written

(4) NP = 6.

Yi
1^

N P^

(^

M
Third step. Since NP = OM = x, (4) becomes

(5) X = 6. Ans.

The equation (5) is the required equation :

1. The coordinates of every point satisfying the given condition may be

substituted in (5). For if Pi(xi, 2/1) is any such point, then by the given

condition Xi = 6, that is, (xi, 2/1) satisfies (5).

2. Conversely, if the coordinates (xi, 2/1) satisfy (5), then Xi = 6, and

Pi{^u Vi) is at a distance of six units to the right of YY^. q.e.d.

The method- above illustrated of proving that the derived equation has the

two characteristic properties of the equation of the locus should be carefully

studied and applied to each of the following examples.
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V(x+ 1)2 + (y - 2)2.

Substituting in (6),

V(x + 1)2 + (y - 2)2 = 4.

Squaring and reducing,

i%

Ex. 3. Find tlie equation of tlie ^ocus of a point whose distance from

(—1, 2) is always equal to 4.

Solution. First step. Assume that P(aj,2/)

is any point on the locus.

Second step. Denoting (—1, 2) by C,

the given condition is

(6) PC = 4.

Third step. By formula (IV), p. 31,

PC

_I!^'^?

U)

(7) a;2 + y2 + 2x-42/-ll = 0.

This is the required equation, namely, the equation of the circle whose

center is (—1, 2) and radius equals 4. The method of proof is the same

as that of the preceding examples.

PROBLEMS

1. Find the equation of a line parallel to OF and

(a) at a distance of 4 units to the right.

(b) at a distance of 7 units to the left.

(c) at a distance of 2 units to the right of (3, 2).

(d) at a distance of 5 units to the left of (2, — 2).

2. What is the equation of a line parallel to OF and a — b units from it ?

How does this line lie relative to OF if a>6>0? ifO>6>a?

3. Find the equation of a line parallel to OX and

(a) at a distance of 3 units above OX.

(b) at a distance of 6 units below OX.

(c) at a distance of 7 units above (— 2, — 3).

(d) at a distance of 5 units below (4, — 2).

4. What is the equation of XX? of YY'?

6. Find the equation of a line parallel to the line x = 4 and 3 units to the

right of it. Eight units to the left of it.

6. Find the equation of a line parallel to the line y = -2 and 4 units

below it. Five units above it.

7. How does the line y = a-61ieifa>6>0? if6>a>0?

8. What is the equation of the axis of x ? of the axis oly?



(c) Pi is (- 2, 3) and 7n = ? Ans. V2x-2y-\-6+2V2 = 0.

3^
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9. What is the equation of the locus of a point which moves always at

a distance of 2 units from the axis of x ? from the axis of y? from the line

X =— 6? from the line y = 4?

10. What is the equation of the locus of a point which moves so as to

be equidistant from the lines x = b and x = 9? equidistant from y = S and

y=-7?
11. What are the equations of the sides of the rectangle whose vertices

are (5, 2), (5, 5), (- 2, 2), (- 2, 5)'?

In problems 12 and 13, Pi is a given point on the required line, m is the

slope of the line, and a its inclination.

12. What is the equation of a line if

(a) Pi is (0, 3) and ?n = - 3 ? Ans. 3x + ?/-3 = 0.

(b) Pi is (- 4, - 2) and m = i? Ans. x- ?jy -2 = 0.

2

V3
(d) Pi is (0, 5) and m =: ^? Ans. V3x-2?/ + 10 = 0.

(e) Pi is (0, 0) and m 1:= - I ? Ans. 2x + Sy = 0.

(f) Pi is (a, b) and m = ? Ans. y = b.

(g) Pi is (— a, b) and ni = 'X)? Ans. x =— a.

13. What is the equation of a line if

(a) Pi is (2, 3) and a = 45° ? Ans. x - y -\- 1 = 0.

(b) Pi is (- 1, 2) and a = 45°

?

Ans. x - y -]- S = 0.

(c) Pi is ( - a, - b) and a: = 45° ? Ans. x - y = b - a.

(d) Pi is (5, 2) and a = 60°? Ans. Vsx - y -^ 2 - ^Vs = 0.

(e) Pi is (0, - 7) and or = 60° ? Ans. -VSx-y -7 = 0.

(f) Pi is (- 4, 5) and a = 0°? Ans. y = 6.

(g) Pi is (2, - 3) and a = 90°? Ans. x = 2.

(h) Pi is (3, - 3 V3) and a: = 120°

?

Ans. ^Sx + y = 0.

(i) Pi 'is (0, 3) and a = 150°? Ans. Vsx -\-Sy -9 = 0.

(j) Pi is (a, 6) and a = 135° ? Ans. x -{- y = a -\- b.

14. Are the points (3, 9), (4, 6), (5, 5) on the line 3x + 2y = 25?

15. Find the equation of the circle with

(a) center at (3, 2) and radius = 4. Ans. x^ + y^ - 6 x — 4y - S = 0.

(b) center at (12, - 5) and r = 13. Ans. x^ + y^ - 24x -\-10y = 0.

(c) center at (0, 0) and radius = r. Ans. x^ -\- 7/'^ = r^.

(d) center at (0, 0) and r = 5. Ans. x'^ + 7/^ = 25.

(e) center at (3 a, 4 a) and r = 5 a. Ans. x^ + y^ _ 2 a (3 cc + 4 y) = 0.

(f) center at (6 + c, 6 — c) and r = c.

Ans. x2 + ?/2 - 2 (& + c) X - 2 (6 - c) ?/ + 2 62 4. c2 = 0.
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16. Find the equation of a circle whose center is (5, — 4) and whose
circumference passes through the point (—2, 3).

17. Find the equation of a circle having the line joining (3, — 5) and
(— 2, 2) as a diameter.

' 18. Find the equation of a circle touching each axis at a distance 6 units

from the origin.

19. Find the equation of a circle whose center is the middle point of the

line joining (—6, 8) to the origin and whose circumference passes through

the point (2, 3).

20. A point moves so that its distances from the two fixed points (2, — 3)

and (—1, 4) are equal. Find the equation of the locus and plot.

Ans. Sx-7ij + 2 = 0.

21. Find the equation of the perpendicular bisector of the line joining

(a) (2, 1), (- 3, - 3). Ans. lOx + 8y -\- IS =
(b) (3, 1), (2, 4). Ans. x - 3 y + 5 = 0.

(c) (-1, -1), (3, 7). Ans. x-\-2y-7 = 0.

(d) (0, 4), (3, 0). Ans. 6x-Sy-\-7 =0.

(e) (xi, vi), {X2, 2/2).

Ans. 2 (xi - X2) X + 2 (yi - 2/2) 2/ + X2^ - x^ + y^^ - y^ = 0.

22. Show that in problem 21 the coordinates of the middle point of

the line joining the given points satisfy the equation of the perpendicular

bisector.

23. Find the equations of the perpendicular bisectors of the sides of the

triangle (4, 8), (10, 0), (6, 2). Show that they meet in the point (11, 7).

24^ Express by an equation that the point (h, k) is equidistant from

(- 1, 1) and (1, 2) ; also from (1, 2) and (1, - 2). Then show that the point

(f, 0) is equidistant from (- 1, 1), (1, 2), (1, - 2).

29. General equations of the straight line and circle. The

methods illustrated in the preceding section enable us to state

the following results

:

1. A straight line parallel to the axis of y has an equation of

the form x = constant.

2. A straight line parallel to the axis of x has an equation of

the form y = constant.
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Theorem I. The equation of the straight line passing through a

point B (0, h) on the axis of y and having its slope equal to m is

(I) y = fiidc + h.

Proof First step. Assume that P (x, y) is any point on the line.

Second step. The given condition may be written

Slope of PB==m.

Third step. Since by Theorem V, p. 35,

Slopeof Pi5 = ^^^,

[Substituting (x, y) for (xi, yi) and (0, 6) for {X2, 2/2)]

^1 y — h
then = m, or 2/ = mx + b. q.e.d.

Theorem II. The equation of the circle whose center is a given

point (a, (3) and whose radius equals r is

(II) 00^ + y^ -2aiic-2py + a^ -\- P^ -r^ = 0.

Proof First step. Assume that P (x, y) is any point on the

locus.

Second step. If the center (a, /?) be denoted by C, the given

condition is
PC = r.

Third step. By (lY), p. 31,

PC = V(cc - ay +(y- pf.

.-. ^{x - af + {y- ^y = r.

Squaring and transposing, we have (II). q.e.d.

Corollary. The equation of the circle whose center is the origin

(0, 0) and whose radius is r is

a?2 + i/2 = J.2,

The following facts should be observed

:

Any straight line is defined by an equation of the first degree

in the variables x and y.

Any circle is defined by an equation of the second degree in

the variables x and y, in which the terms of the second degree

consist of the sum of the squares of x and y.
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30. Locus of an equation. The preceding sections have illus-

trated the fact that a locus problem in Analytic Geometry leads

p,t once to an equation in the variables x and y. This equation

having been found or being given, the complete solution of the

locus problem requires two things, as already noted in the first

section (p. 51) of this chapter, namely,

1. To draw the locus by plotting a sufficient number of points

whose coordinates satisfy the given equation, and through which

the locus therefore passes.

2. To discuss the nature of the locus, that is, to determine

properties of the curve.

These two problems are respectively called

:

1. Plotting the locus of an equation (second fundamental

problem).

2. Discussing an equation (third fundamental problem).

For the present, then, we concentrate our attention upon some

given equation in the variables x and y (one or both) and start

out with the definition :

The locus of an equation in two variables repTCsenting coordinates

is the curve or group of curves passing through all points whose

coordinates satisfy that equation,"* and through such points only.

From this definition the truth of the following theorem is at

once apparent

:

Theorem III. If the form of the given equation he changed in any

way (^for example, by transposition, by multiplicatidn by a constant,

etc.), the locus is entirely unaffected.

* An equation in the variables x and y is not necessarily satisfied by the coordinates of

any points. For coordinates are real numbers, and the form of the equation may be such

that it is satisfied by no real values of x and y. For example, the equation

is of this sort, since, when x and ij are real numbers, x^ and y^ are necessarily positive

(or zero), and consequently x^ + y^ + lis always a positive number greater than or equal

to 1, and therefore not equal to zero. Such an equation therefore has no locus. The
expression "the locus of the equation is imaginary" is also used.

An equation may be satisfied by the coordinates of a finite number of points only.

For example, x^ + y'^=0 is satisfied by x=0, y= 0, but by no other real values. In this

case the group of points, one or more, whose coordinates satisfy the equation, is called

the locus of the equation.

36^
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We now take up in order the solution of the second and third

fundamental problems.

31. Second fundamental problem.

Rule to plot the locus of a given equation.

First step. Solve the given equation for one of the variables in

terms of the other.

^

Second step. By this formula compute the values of the vari-

able for which the equation has been solved by assuming real

values for the other variable.

Third step. Plot the points corresponding to the values so

determined.^

Fourth step. If the points are numerous enough to suggest the

general shape of the locus, draw a smooth curve through the poi^its.

Since there is no limit to the number of points which may be

computed in this way, it is evident that the locus may be drawn

as accurately as may be desired by simply plotting a sufficiently

large number of points.

Several examples will now be worked out and the arrangement

of the work should be carefully noted.

Ex. 1. Draw the locus of the equation

2x-Sy + 6 = 0.

Solution. First step. Solving for y,

y = |x + 2.

Second step. Assume values for x and compute

y, arranging results in the form :

YJi ji

^Y
yK

yr

[y (0, 2;

y^

>y (--3 0) X
2\

Thus, if

1, y = 2 . 1 + 2

2, y .r 1 . 2 + 2

etc.

31,

Third step. Plot the points found.

Fourth step. Draw a smooth curve

through these points.

X y X y

2 2

1 2| - 1 n
2 3^ -2 f
3 4 -3
4 42- -4 _ 2

.3

etc. etc. etc. etc.

* The form of the given equation will often be such that solving for one variable is

simpler than solving for the other. Always choose the simpler solution.

t Remember that real values only may be used as coordinates.
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Ex. 2. Plot the locus of the equation

2/ zz x2 — 2 x — o.

Solution. First step. The equation as given is solved for y.

Second step. Computing y by assuming values of x, we find the table of

v^alues below

:

X y X y

-3 -3
.1 -4 - 1

2 — o -2 5

3 -3 12

4 5 -4 21

5 12 etc. etc.

6 21

etc. etc.

i^
I

/

/

/

f

/
V

/
\

/
\ /

f

y L i V
\ /

/
s^ /

'

I

Third step. Plot the points.

Fourth step. Draw a smooth curve through these points. This gives the

curve of the figure.

Ex. 3. Plot the locus of the equation

x2 + ^2 4_ e X - IG = 0.

First step. Solving for y,

y = ± VlG - 6 X - x2.

Second step. Compute y by assuming values of x.

X y X y

±4 ±4
1 ±3 ,

-

1

±4.6

2 — 2 ±4.9

3 imag. -3 ±5
4 " -4 ±4.9

5 u -5 ±4.6

G u -6 ±4
7 u -7 ±3

-8
-9 imag.

I

Fa
I

I

X' "y" o
J~^
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For example, if x = 1, y = ± Vl6 -6-1 = ± 3
;

if X = 3, y = ± Vl6 - 18 - 9 = ± V- 11,

an imaginary number

;

if X = - 1, y = ± Vl6 + 6-1 = ± 4.6,

etc.

Third step. Plot the corresponding points.

Fourth step. Draw a smooth curve through these points.

PROBLEMS

1. Plot the locus of each of the following equations,

(a) X + 2 ?/ = 0.

(b)x + 22/ = 3.

(c) 3 X - ?/ + 5 = 0.

(d) 2/ = 4 x2.

(e) x2 + 4 y = 0.

(f) 2/ = x2 - 3.

(g) x2 + 4 y - 5 = 0.

(h) 2/ = x2 + X + 1.

(i) a; = 2/2 + 22/-3.

(j) 4x = y3.

(k) 4 X = 2/3-1.

(1) y = x^- 1.

(m) y = x^ — X.

(n) ?/ = x^ — x2 — 5.

(P) X2 + y2 := 9.

(q) x2 + 2/2 = 25.

(r) x2 + 2/2 + 9a..= 0.

(s) x2 + 2/2 + 4 2/ == 0.

(t) x2 + 2/2 - 6 X --16:= 0.

(u) x2 + 2/2 - 6 2/
--16:= 0.

(v) 4 2/ = x4 - 8.

(w) 4 X = 2/* + 8.

/^\ ., _ ^

^''^^-1+X2

"i"^:-
(z)x = -?-.

r

(o) x2 + 2/2 = 4. 1 + 2/

2. Show that the following equations have no locus (footnote, p. 59).

(a) x2 + 2/2 + 1 = 0. (f) x2 + 2/2 + 2 X + 2 2/ + 3 = 0.

(b) 2x2 + 32/2^-8. (g) 4x2 4-2/2 + 8x + 5 = 0.

(c) x2 + 4 = 0. (h) ?/* + 2 x2 + 4 = 0.

(d) x* + 2/2 + 8 = 0. (i) 9x2+4y24-i8x+82/+ 15=0.

(e) (X + 1)2 + 2/2 + 4 = 0. (i) x2 + X2/ + 2/2 + 3 = 0.

Hint. Write each equation in the form of a sum of squares, or solve for one variable

and apply Theorem III, p. 11, to the quadratic under the radical.

32. Principle of comparison. In Ex. 1, p. 60, and Ex. 3, p. 61,

we can determine the nature of the locus, that is, discuss the

equation, by making use of the formulas (I) and (II), p. 58. The

method is important and is known as the principle of comparison.
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The nature of the locus of a given equation may he determined

by comparison with a general known equation, if the latter becomes

identical with the given equation by assigning particular values to

its coefficients.

The method of making the comparison is explained in the

following

Rule. First step. Change the form* of the given equation (if

necessary) so that one or more of its terms shall be identical with

one or more terms of the general equation.

Second step. Equate coefficients of corresponding terms in the

two equations, supplying any terms missing in the given equation

with zero coefficients.

Third step. Solve the equations found in the second step for

the values f of the coefficients of the general equation.

Ex. 1. Show that 2x — 3y + 6 = is the equation of a straight line

(Fig., p. 60). "

Solution. First step. Compare with the general equation (I), p. 68,

(1) y = mx + b.

Put the given equation in the form of (1) by solving for y,

(2) y=fx + 2.

Second step. The right-hand members are now identical. Equating

cCefl&cients of x,

(3) m = f

.

Equating constant terms,

(4) 6 = 2.

Third step. Equations (3) and (4) give the values of the coefficients m
and 6, and these are possible values, since, p. 34, the slope of a line may-

have any real value whatever, and of course the ordinate b of the point

(0, b) in which a line crosses the F-axis may also be any real number. There-

fore the equation 2x-3y + 6 = represents a straight line passing through

(0, 2) and having a slope equal to §.
q.e.d.

*This transformation is called "putting the given equation in the form" of the

general equation.

tThe values thus found may be impossible (for example, imaginary) values. This

may indicate one of two things,— that the given equation has no locus, or that it cannot

be put in the form required.
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Ex. 2. Show that the locus of

(5) x2 + 2/2 + Gx- 16 =

is a circle (Fig., p. 61).

Solution. First step. Compare with the general equation (II), p. 68,

(6) x2 + 2/2 - 2 ax - 2 jSy + a2 + /32 - r2 = 0.

The right-hand members of (5) and (6) agree, and also the first two terms,

x2 + ?/2.

Second step. Equating coefficients of x,

(7) - 2 a = 6.

Equating coefficients of y,

(8) -2/3 = 0.

Equating constant terms,

(9) a2 + /32 - r2 == - 16.
^

Third step. From (7) and (8),

a = - 3, /3 = 0.

Substituting these values in (9) and solving for r, we find

r2 = 25, or r = 5.

Since a, /3, r may be any real numbers whatever, the locus of (5) is a

circle whose center is (— 3, 0) and whose radius equals 5.

PROBLEMS

1. Plot the locus of each of the following equations. Prove that the locus

is a straight line in each case, and find the slope m and the point of inter-

section with the axis of y, (0, 6).

(a) 2x4-2/-6 = 0.

(b) X-Sy + S = 0.

(c) x + 2y = 0.

(d) 5 X - 6 ?/ - 5 = 0.

(e) i^-fy-i = 0.

(f) ?-f-l=0
5 6

is) 7 X - 8 ?y = 0.

(h) f^-fy-l = 0.

Ans. m =— 2, b = 6.

Ans. m = 1, 6 = 2|.

Ans. m =— I, b = 0.

Ans. m. = I, 6 = — |.

Ans. m = l,b=-j\.

Ans. m = |, 6 = -6.

Ans. m= I, 6 = 0.

Ans. rn=l,b = -l^.
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2. Plot the locus of each of the equations following, and prove that the

locus is a circle, finding the center (or, /3) and the radius r in each case.^

(a) x2 + 2/2 _ 16 = 0. Ans. {a, p) = (0, 0); r = 4.

(b) x2 + y2 _ 49 = 0. Ans. (or, ^) = (0, 0); r = 7.

(c) aj2 + ?/2 - 25 = 0. Ans. {a, p) = {0,0); r = 5.

(d) x2 + ?/2 + 4x = 0. Ans. (or, /3) = (- 2, 0); r = 2.

(e) x2 + 2/'^ - 8 7/ = 0. Ans. {a, p) = (0, 4); r = 4. _
(f) x2 + 2/2 + 4x-8?/ = 0. Ans. {a, p) = {- 2,4); r = ^20.

(g) x2 + 2/2 _ 6x 4- 4 y - 12 = 0. Ans. (a, ^3) = (3, - 2); r = 5.

(h) x2 + 2/2 - 4x + 92/ - I = 0. Ans. (a, ^3) = (2, - |); r = 5.

(i) 3x2 + 32/2-6x- 82/ = 0. ^ns. (a, ^) = (1,|); r = f.

The following problems illustrate cases in which the locus

problem is completely solved by analytic methods, since the loci

may be easily drawn and their nature determined.

3. Find the equation of the locus of a point whose distances from the

axes XX' and YY' are in a constant ratio equal to f

.

A ns. The straight line 2 x — 3 y = 0.

4. Find the equation of the locus of a point the sum of whose distances

from the axes of coordinates is always equal to 10.

Ans. The straight line x + y — 10 = 0.

5. A point moves so that the difference of the squares of its distances

from (3, 0) and (0, — 2) is always equal to 8. Find the equation of the

locus and plot.

Ans. The parallel straight lines 6x + 42/ + 3 = 0, 6x + 42/-13 = 0.

6. A point moves so as to he always equidistant from the axes of coor-

dinates. Find the equation of the locus and plot.

Ans. The perpendicular straight lines x-\-y = 0,x — y = 0.

7. A point moves so as to be always equidistant from the straight lines

jc - 4 = and 2/ + 5 = 0. Find the equation of the locus and plot.

Ans. . The perpendicular straight lines x-y-9 = 0, x + y-\-l=0.

8. Find the equation of the locus of a point the sum of the squares of

whose distances from (3, 0) and (-3, 0) always equals 68. Plot the locus.

Ans. The circle x2 + 2/2 = 25.

9. Find the equation of the locus of a point which moves so that its dis-

tances from (8, 0) and (2, 0) are always in a constant ratio equal to 2. Plot

the locus. Ans. The circle x2 + 2/^ = 16.

10. A point moves so that the ratio of its distances from (2, 1) and (- 4, 2)

is always equal to |. Find the equation of the locus and plot.

Ans. The circle 3 x2 + 3 2/2 - 24 x - 4 2/ = 0.

i.:>
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In the proofs of the following theorems the choice of the axes

of CQordinates is left to the student, since no mention is made

of either coordinates or equations in the problem. In such cases

always choose the axes in the most convenient manner possible.

11. A point moves so that the sum of its distances from two perpendicular

lines is constant. Show that the locus is a straight line.

Hint. Choosing the axes of coordinates to coincide with the given lines, the equation

ia x + y= constant.

12. A point moves so that the difference of the squares of its distances

from two fixed points is constant. Show that the locus is a straight line.

Hint. Draw XX^ through the fixed points, and Y Y'' through their middle point. Then
the fixed points may be written (a, 0), (- a, 0), and if the "constant difference " be denoted

by k, we find for the locus 4 ax = ^' or 4 ax = - fc.

13. A point moves so that the sum of the squares of its distances from

two fixed points is constant. Prove that the locus is a circle.

Hint. Choose axes as in problem 12.

14. A point moves so that the ratio of its distances from two fixed points

is constant. Determine the nature of the locus.

Ans. A circle if the constant ratio is not equal to unity and a straight

line if it is.

The following problems illustrate the

Theorem. If an equation can be put in the form of a product of

variable factors equal to zero, the locus is found by setting each fac-

tor equal to zero and plotting the locus of each equation separately.

16. Draw the locus of 4 x2 - 9 2/2 := 0.

Solution. Factoring,

(1) {2x-Sy){2x + 3y) = 0.

Then, by the theorem, the locus consists of the straight lines

(2) 2x-3y = 0,

(3) 2x-\-Sy = 0.

Proof. 1. The coordinates of any point (xi, ?/i) which satisfy (1) will

satisfy either (2) or (3).

For if (xi, yi) satisfies (1),

(4) (2xi-32/i)(2xi + 32/i) = 0.
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This product can vanish only when one of the factors is zero. Hence
either

2a;i- 32/1 = 0,

and therefore (xi, yi) satisfies (2)

;

or 2 xi + 3 yi = 0,

and therefore (xi, yi) satisfies (3).

2. A point (xi, yi) on either of the lines defined by (2) and (3) will also

lie on the locus of (1).

For if (xi, yi) is on the line 2 x - 3 y = 0,

then (Corollary, p. 53)

(5) 2xi-3?/i = 0.

Hence the product (2 xi — 3 yi) (2 xi + 3 yi) also vanishes, since by (5) the

first factor is zero, and therefore (xi, yi) satisfies (1).

Therefore every point on the locus of (1) is also on the locus of (2) and

(3), and conversely. This proves the theorem for this example. q.e.d.

16. Show that the locus of each of the following equations is a pair of

straight lines, and plot the lines.

(a) z^-y^=: 0. (j) 3x2 + xy - 22/2 + 6x - 4y = 0.

(b) 9X2 -2/2 = 0. (k) x2 - 2/2 + X + ?/ = 0.

(c) x2 = 92/2. (1) x2 - X2/ + 5x - 5 2/ = 0.

(d) x2 - 4 X - 5 = 0. (m) x2 - 2 X2/ + 2/2 + 6 X - 6 2/ = 0.

(e) 2/2-6?/ = 7. (n) x2 -42/2+ 5x+ 102/ = 0.

(f) 2/2 - 5xy + 62/ = 0. (o) x2 + 4x2/ + 4 2/2 + 5x + IO2/ + 6 = 0.

(g) X2/ - 2x2 - 3x = 0. .(p) x2 + 3x2/ + 2 2/2 + X + 2/ = 0.

(h) X2/ - 2 X = 0. (q) x2 - 4 X2/ - 5 2/2 + 2 X - 10 2/ = 0.

(i) X2/ = 0. (r) 3 x2 - 2 X2/ - 2/2 + 5 X - 5 y = 0.

17. Show that the locus of Ax"^ + Bx + C = is a pair of parallel lines, a

single line, or that there is no locus according as A = B^ — 4: AC is positive,

zero, or negative.

18. Show that the locus of ^x2 + Bxy + Cy^ = is a pair of intersecting

lines, a single line, or a point according as A = B^ — 4: AC is positive, zero,

or negative.
'

'

'

'

^ '• • -a^w^ , ^/

\ 33. Third fundamental problem. Discussion of an equation.

The method explained of solving the second fundamental prob-

lem gives no knowledge of the required curve except that it

passes through all the points whose coordinates are determined

as satisfying the given equation. Joining these points gives a

curve more or less like the exact locus. Serious errors may be
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made in this way, however, since the nature of the curve between

any two successive points plotted is not determined. This obj ection

is somewhat obviated by determining before plotting certain prop-

erties of the locus by a discussion of the given equation now to

be explained.

The nature and properties of a locus depend upon the form of

its equation, and hence the steps of any discussion must depend

upon the particular problem. In every case, however, the fol-

lowing questions should be answered.

1. Is the curve a closed curve or does it extend out infinitely far?

2. Is the curve symmetrical with respect to either axis or the

origin ?

The method of deciding these questions is illustrated in the

following examples.

Ex. 1. Plot the locus of
IP

(1) x2 + 4 2/2 = 16.

Discuss the equation.

Solution. First step. Solving for x,

(2) x = ±2 V4 - ?/2.

Second step. Assume values of y and compute x. This gives the table.

Third step. Plot the points of the table.

Fourth step. Draw a smooth curve through these points.

X y X y

±4 ±4
±3.4 1 ±3.4 -1
±2.7 H ±2.7 -H

2 -2
imag. 3 imag. -3

Discussion. 1. Equation (1) shows that neither x nor y can be indefi-

nitely great, since x^ and 4 ?/2 are positive for all real values and their sum

must equal 16. Therefore neither x^ nor 4?/2 can exceed 16. Hence the

curve is a closed curve.

A second way of proving this is the following

:

From (2), the ordinate y cannot exceed 2 nor be less than — 2, since the

expression 4 — ^/2 beneath the radical must not be negative. (2) also shows

that X has values only from — 4 to 4 inclusive.
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2. To determine the symmetry with respect to the axes we proceed as

follows

:

The equation (1) contains no odd powers of x or y ; hence it may be writ-

ten in any one of the forms

(3) (x)2 4- 4 (- 2/)2 = 16, replacing (x, y) by (x, - y) ;

(4) (- x)2 + 4 (?/)2 = 16, replacing (x, y) by (- x, y) ;

(5) (- x)2 + 4 (- y)2 = 16, replacing (x, ?/) by (- x, - y).

The transformation of (1) into (3) corresponds in the figure to replacing

each point P(x, y) on the curve by the point Q(x, — y). But the points P
and Q are symmetrical with respect to XX\ and (1) and (3) have the same

locus (Theorem HI, p. 59). Hence the locus of (1) is unchanged if each point

is changed to a second point symmetrical to the first with respect to XX\
Therefore the locus is symmetrical with respect to the axis of x. Similarly

from (4), the locus is symmetrical with respect to the axis ofy, and from (5),

the locus is symmetrical with respect to the origin.

The locus is called an eUipse.

Ex. 2. Plot the locus of

(6) y2_4a;_f.i5 = o.

Discuss the equation.

Solution. First step. Solve the equation for x, since a square root would

have to be extracted if we solved for y. This gives

(7) X = i(y2 + 15).

X y

33-

4 ±1
^ ±2
6 ±3
U ±4

10 ±5
12| ±6
etc. etc.

Second step. Assume values for y and compute x.
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Since y"^ only appears in the equation, positive and negative values of y
give the same value of x. The calculation gives the table on p. 69.

For example, if 2/ = ± 3,

then a; = i (9 + 15) = 6, etc.

Third step. Plot the points of the table.

Fourth step. Draw a smooth curve through these points.

Discussion. 1. From (7) it is evident that x increases as y increases.

Hence the curve extends out indefinitely far from both axes.

2. Since (6) contains no odd powers of y, the equation may be written in

the form - \o ^ / \ , nr r.(-?/)2-4(x) + 15 =

by replacing (x, y) by (x, — y). Hence the locus is symmetrical with respect

to the axis of x.

The curve is called a parabola.

Ex. 3. Plot the locus of the equation

(8) xy-2y-4 = 0. '{?

Solution. First step. Solving for y,

4
(9) x-2

Second step. Compute ?/, assuming values for x.

When
X y X y

-2 -2
1 -4 -1 -f
n -8 -2 -1
If -16 -4 -f
2 cp -5 -4

2i 16 :

2| 8 -10
s

3 4 etc.
. etc.

4 2

5 4

6 1

12 0.4

etc. etc.

2, 2/ = 1 = 00.

In such cases we assume values differing

slightly from 2, both less and greater, as in

the table.

Third step. Plot the points.

Fourth step. Draw the curve as in the

figure in this case, the curve having two
branches.

1. From (9) it appears that y diminishes

and approaches zero as x increases indefi-

nitely. The curve therefore extends indefi-

nitely far to the right and left, approaching

constantly the axis of x. If we solve (8) for

X and write the result in the form

4
X = 2

y
it is evident that x approaches 2 as ?/ increases

indefinitely. Hence the locus extends both

upward and downward indefinitely far, approaching in each case the line x =2.
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v/

2. The equation cannot be transformed by any one of the three substitutions

(X, y) into (x, - y),

(X, y) into (-x, y),

(X, y) into (- x, - ?/),

without altering it in such a way that the new equation will not have the

same locus. The locus is therefore not symmetrical with respect to either

axis, nor with respect to the origin.

— —————
oo
————— ———

^
\
v^^^ ^ '^ p

oo ^ =— u ,0) 5:

*>N

1

-00 _____ _ _

This curve is called an hyperbola.

Ex. 4. Draw the locus of the equation

(10) 4y = x^

X y X y

1 i -1 -\
H -II -H -'n
2 2 -2 ' -2
n ^% -2i -3||
3 H -3 -6|
3i lOfl -3f -lOff

Solution. First step. Solving for y,

y = 1x3.

Second step. Assume values for x

and compute y. Values of x must be

taken between the integers in order to

give points not too far apart.

For example, if

x = 2|,

2/ = |.i|5=J^2_5=3i|, etc.
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Kk
i

1

1

X ? ;

/

/
V

' ,/^/O V
//
//

r\ f/

'f-x,- J

- - --I — -

Third step. Plot the points thus found.

Fourtli step. The points determine the curve of tlie

figure. •;

Discussion. 1. From the given equation (10), x and

y increase simultaneously, and therefore the curve

extends out indefinitely from both axes.

2. In (10) there are no even powers nor constant

term, so that by changing signs the equation may be

written in the form

4(-2/) = (-x)3,

replacing (x, ?/) by {-x, - y).

Hence the locus is symmetrical with respect to the

origin.

The locus is called a cubical parabola.

34. Symmetry. In the above examples we have assumed the

definition

:

If the points of a curve can be arranged in pairs which are

symmetrical with respect to an axis or a point, then the curve

itself is said to be symmetrical with respect to that axis or point.

The method used for testing an equation for symmetry of the

locus was as follows : if (x, y) can be replaced by {x, — y) through-

out the equation without affecting the locus, then if (a, b) is on

the locus, (a, — h) is also on the locus, and the points of the latter

occur in pairs symmetrical with respect to XX\ etc. Hence

Theorem IV. If the locus of an equation is unaffected by replacing

y hy — y throughout its equation, the locus is symmetrical with

respect to the axis of x.

If the locus is unaffected by changing x to — x throughout its

equation, the locus is symmetrical with respect to the axis of y.

If the locus is unaffected by changing both x and y to — x and
— y throughout its equation, the locus is symmetrical with respect

to the origin.

These theorems may be made to assume a somewhat different

form if the equation is algebraic in x and y (p. 17). The locus

of an algebraic equation in the variables x and y is called an

algebraic curve. Then from Theorem lY follows
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Theorem V. Symmetry of an algebraic curve. If no odd powers

of y occur in an equation^ the locus is symmetrical with respect to

XX'; if no odd powers of x occur, the locus is symmetrical with

respect to YY'. If every term is of even* degree, or every term of

odd degree, the locus is symmetrical with respect to the origin.

35. Further discussion. In this section we treat of three, more

questions which enter into the discussion of an equation.

3. Is the origin on the curve ?

This question is settled by

Theorem VI. The locus of an algebraic equation passes through

the origin when there is no constant term in the equation.

Proof The coordinates (0, 0) satisfy the equation when there

is no constant term. Hence the origin lies on the curve (Corol-

lary, p. 53). Q.E.D.

4. What values of x and y are to be excluded ?

Since coordinates are real numbers we have the

Rule to determine all values of x and y which must be excluded.

First step. Solve the equation for x in terms of y, and from this

result determine all values of y for which the computed value of x

will be imaginary. These values of y must be excluded.

Second step. Solve the equation for y in terms of x, and from

this result determine all values of x for which the computed value

of y will be imaginary. These values of x must be excluded.

The intercepts of a curve on the axis of x are the abscissas of

the points of intersection of the curve and XX\
The intercepts of a curve on the axis of y are the ordinates of

the points of intersection of the curve and YT.

Rule to find the intercepts.

Substitute y — and solve for real values of x. This gives the

intercepts on the axis of x.

Substitute x = and solve for real values of y. This gives the

intercepts on the axis of y.

* The constant term must be regarded as of even (zero) degree.
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The proof of the rule follows at once from the definitions.

The rule just given explains how to answer the question:

5. What are the intercepts of the locus ?

36. Directions for discussing an equation. Given an equation,

the following questions should be answered in order before plot-

ting the locus.

1. Is the origin on the locus? (Theorem VI).

2. Is the locus sijmmetrical ivith respect to the axes or the

origin? {^Theorems IV and V).

3. What are the intercepts? (Mule, p. 73).

4. What values of x and y must he excluded ? (^Rule, p. 73).

5. Is the curve closed or does it pass off indefinitely far? (§ 33,

p. 68).

Answering these questions constitutes what is called a general

discussion of the given equation.

Ex. 1. Give a general discussion of the equation

(1) x2 - 4 2/2 + 16 2/ = 0.

Draw the locus.

X Sr nk ^ *

^ ^^
X

Vs^ ^
^^ Vw _^^^—

'

^ ^
!l= i

fo,

y= 2

X ^^" 'o ^ X
^\^ *^

k^
^ L^

^^
.

*
^

* r' X

1. Since the equation contains no constant terra, the origin is on the curve.

2. The equation contains no odd powers of x\ hence the locus is symmet-
rical with respect to YY'.

3. Putting ?/ =: 0, we find cc = 0, the intercept on the axis of x. Putting"

ic = 0, we find ?/ = and 4, the intercepts on the axis of y.

4. Solving for x,

(2) x.= ±2V2/2_4y.
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Hence all values of y between and 4 must be excluded, since for such a

value y2 _ 4y is negative (Theorem IH, p. 11).

Solving for y,

(3) 2/ = 2 ± i Vx--2 + 16.

Hence no value of x is excluded, since x^ + 16 is always positive.

5. From (3), y increases as x increases, and the curve extends out

indefinitely far from both axes.

Plotting the locus, using (2), the curve is found to be as in the figure.

The curve is an hyperbola.

PROBLEMS

1. Give a general discussion of each of the following equations and draw

the locus.

(n) 9?/2_x3 = 0.

\o) 9?/2 + x3 = 0.

(p) 2xy + 3x-4 =:0.

(q) x2 - X2/ + 8 = 0.

(r) x2 + xy -4 = 0.

(s) x2 + 2x?/-3y = 0.'

^>(t) 2x?/-?/3 + 4x = 0.
'^

(u) 3x2-?/ + x = 0.

(v) 4 2/2 - 2 X - y = 0.

(w) x2 - 2/2 + 6 X = 0.

(x) x2 + 4 2/2 + 8 ?/ = 0.

^y) 9x2 + 2/2 + I8x - Qy = 0.

>(z) 9x2-2/2 + 18x + 6?/ = 0.

2. Determine the general nature of the locus in each of the following

equations by assuming particular values for the arbitrary constants, but not

special values, that is, values which give the equation an added peculiarity.*

(a) 2/2 = 2 mx. (f) x^ - y^ = a^.

(b) x2 - 2 my = m2. (g) x^ + y^ = r^.

x2 2/2 _ (h) x2 + 2/2 = 2rx.

(°) ^+52-^- (i) x2 + 2/2 = 2r2/.

(d) 2x2/ = «2. (J) ^' + y^ = 2ax + 2by.

3,2 ^2 (k) a2/2 = x^

(^) a^-b2
= ^-

(1) a% = a:3.

* For example, in (a) and (b) m= is a special value. In fact, in all these examples

zero is a special value for any constant.

(a) x2 --42/ = 0.

(b) 2/2 --4x + 3 = 0.

(c) x2 + 42/2 -16 = 0.

(d) 9x2 + 2/'' - 18 = 0.

(e) x2 -- 4 2/2 - 16 = 0.

(f ) x2 --42/2 + 16 = 0.

(g) x^ --2/2 + 4 = 0.

(h) X2 --
2/ + X = 0.

(i) xy --4 = 0.

(j) 9 2/ + ic3 = 0.

(k) 4x - 2/3 = 0.

. (1) 6x -y'=^o.

(m) 5x -
2/ + 2/=^ = 0.
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3. Draw the locus of the equation

y'^ = [x — a) (x — 6) (x - c),

(a) when a < 6 < c. (c) when a <h,h = c.

(b) when a = h <c. (d) when a=^h = c.

The loci of the equations (a) to (f ) in problem 2 are all of the

class known as conies, or conic sections,— curves following straight

lines and circles in the matter of their simplicity.

A conic section is the locus of a point whose distances from a

fixed point and a fixed line are in a constant ratio.

4. Show that every conic is represented by an equation of the second

degree in x and y.

Hint. Take YY' to coincide with the fixed line, and draw XX' through the fixed point.

Denote the fixed point by {p, 0) and the constant ratio by e.

Ans. (1 - e2)x2 + ?/2 - 2j)x + p2 - o.

5. Discuss and plot the locus of the equation of problem 4,

(a) when e = \. The conic is now called a parabola (see p. 70).

(b) when e < 1. The conic is now called an ellipse (seep. 69).

(c) when e > 1. The conic is now called an hyperbola (see p. 71).

6. Plot each of the following.

(i) x =

(J) ^ =

(a) x2?/ - 5 = 0. (e) y

(b) x2y - ?/ + 2 X = 0. (f) y

(c) x?/2_4x4-6 = 0. (g) y

(d) T'y -y + ^ = 0. (h) y

x2-3x
4x2

x2-4
x-3
x + 1

x2-4

2/-1
y-2

(k)4x = -/

8y
X2+ X

(1) X

37. Points of intersection. If two curves whose equations

are given intersect, the coordinates of each point of intersection

must satisfy both equations when substituted in them for the

variables (Corollary, p. 53). In Algebra it is shown that all

values satisfying two equations in two unknowns may be found

by regarding these equations as simultaneous in the unknowns'
and solving. Hence the

Rule to find the points of intersection of two curves ivhose equa-

tions are given.



THE CURVE AND THE EQUATION 77

First step. Consider the equations as simultaneous in the coordi-

nates, and solve as in Algebra.

Second step. Arrange the real solutions in corresponding pairs.

These will he the coordinates of all the points of intersection.

Notice that only real solutions correspond to common points

of the two curves, since coordinates are always real numbers.

Ex. 1. Find the points of intersection of

(1) a: -7?/ + 25 = 0,

(2) x2 + 2/2 = 25.

Solution. First step. Solving

(1) for X,

(3) x.= 1y-2b.

Substituting in (2),

{ly- 25)2 + 2/2 = 25.

Reducing, 2/^ — 7 ?/ + 12 = 0.

.-. 2/ = 3 and 4.

Substituting in (3) [not in (2)],

X = — 4 and + 3.

Second step. Arranging, the points of intersection are (—4, 3) and

(3, 4). Ans.

In tlie figure the straight line (1) is the locus of equation (1), and the

circle the locus of (2).

Ex. 2. Find the points of intersection of the loci of

(4)

(5)

2x2 + 32/2 = 35,

3x2-42/ = 0.

Solution. First step. Solving (5) for x2,

(6) x2 = f2/.

Substituting in (4) and reducing,

92/2 + 82/ -105 = 0.

.-. y = S and — %^

Substituting in (6) and solving,

X = ± 2 and ± | V- 105.

Second step. Arranging the real values, we find the points of intersection

are (+ 2, 3), (- 2, 3). Ans.

In the figure the ellipse (4) is the locus of (4), and the parabola (5) the

locus of (5).

/

I it
(JsX^—-J^
^'^y_ 7%
t \ z ^

-I \ ^ \-*x^ ^ it^
s; 7
^)s

f

r'

"^
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PROBLEMS

Find the points of intersection of the following loci.

, 7x-ll2/ + l = 01

"" x-y = ^}' Ans.i6,l).

^- l^Vy^tl}' ^'''- (0'2), (-1, -I).

^ 2/2 ^ 16 X ^
4- y-.x = Of'

^^'- (^'^)' (l^'l^)-

x2 + 2/2 _ 4 X + 6 y - 12 = 0^
^' 2y = Sx + 3 }• ^^MTV,m(-3, -3).

^ x2-?/2 = 16^
^'

x2 = 8y }•
Ans. i±4V2,i).

^ x^ + y^ = 41']
^-

xy = 20 r ^^^- (±5' ±4), (±4, ±6).

x2 + 2/2_6a;_2y_i5 = o 1 , , ^ .. ,

^-
9x2 + 92/2 + 6x-62/-27 = 0r ^^5- (" 2, 1), (- H, - ff).

10. ^ . For what values of 6 are the curves tangent ?

/-«. ( ^ , ), 6 = ±7VTa
y2 -- 2 rix ^

^^-
x^ = 2pyf'

- ^'^'- (0, 0), (2j), 2p).

,- 4x2 + ?/2^5>l
12-

y2 33 8x r ^'''- (-2), (1,-2).

x2 z= 4 ay 1 -

^^- y^ ^^^ r ^ns. (2a, a), (-2a, a).

x2 + 4a2j

x2 + ?/2^100^

!*• ^2-^ h ^ws. (8,6), (8, -6).

2 J

,_ x^ + y^ = 5a^-]
•

x2 = 4ay r ^''^- (2a, «), (-2a, a).

,„ 6%2+ (j2y2 = ^262>|
^®'

X2 + 2/2 = (^2 |- ^^s- («, 0), (- a, 0).
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17. The two loci — -^ = 1 and ?- + ^ = 4 intersect in four points.
4 9 4 9

Find the lengths of the sides and of the diagonals of the quadrilateral formed
by these points.

Ans. Points, (± VlO, ± | V6). Sides, 2 VlO, 3 Vc. Diagonals, V94.

Find the area of the triangles and polygons whose sides are the loci of the

following equations.

18. 3x + y + 4 = 0, 3x-5?/ + 34 = 0, 3a;-2?/ + l = 0. Ans. 36.

19. x-\-2y = 6,2x + y = 1,y = x-\-l.
'

Ans. f.

20. x + y = a,x-2y = ia, y-x-\-1a = 0. Ans. 12 a^.

21. x = 0,y = 0,x = 4,y =-6. Ans. 24.

22. x-y = 0, x-\-y = 0, x — y = a, x + y = b. Ans. —

.

2

23. 2/ = 3x-9, ?/ = 3x + 5, 2y =x-6, 2y = a; + 14. Ans. 56.

24. Find the distance between the points of intersection of the curves

3x - 2 ?/ + 6 = 0, x2 + 2/2 = 9. Ans. if^^•

25. Does the locus of y^ = 4x intersect the locus of 2x + 3y + 2 = 0?

Ans. Yes.

26. For what value of a will the three lines 3x + ?/ — 2 = 0, ax + 2?/ — 3 = 0,

2x — 2/ — 3 = meet in a point ? Ans. a = 5.

27. Find the length of the common chord of x^ -\- y^ = lii and ?/2 = 3 x + 3.

Ans. 6.

28. If the equations of the sides of a triangle are x + Ty + 11 = 0,

3x + 2/— 7 = 0, X — 3?/ + l = 0, find the length of each of the medians.

Ans. 2 V5, I V2, 1 VlTO.

Show that the following loci intersect in two coincident points, that is, are

tangent to each other.

29. ?/2-10x-6?/-31 =0, 2?/-10x = 47.

30. 9x2-4?/2 + 54x-162/ + 29 = 0, 15x-8?/ + ll = 0.

38. Transcendental curves. The equations thus far consid-

ered have been algebraic in x and ?/, since powers alone of the

variables have appeared. We shall now see how to plot certain

so-called transcendental curves, in which the variables appear

otherwise than in powers. The Rule, p. 60, will be followed.
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Ex. 1. Draw the locus of

(1) y = \ogiox.

Solution. Assuming values for x, y may be computed by a table of loga-

rithms, or, remembering the definition of a logarithm, from (1) will follow

(2) X = lO^'.

Hence values may also be assumed for y, and x computed by (2). This

is done in the table.

In plotting,

unit length on XJT' is 2 divisions,

unit length on YY' is 4 divisions.

General discussion. 1. The curve does not

pass through the origin, since (0, 0) does not

satisfy the equation.

2. The curve is not symmetrical with re-

spect to either axis or the origin.

3. In (1), putting x = 0,

2/ = log = — 00 = intercept on YY\
In (2), putting y = 0,

X = 100 = I = intercept on XX'.

Ya

X y X y

1 .1 - 1

3.1 i .01 -2
10 1 .001 -3

100 2 .0001 -4
etc. etc. etc. etc.

4. From (2), since logarithms of negative numbers do not exist, all nega-

tive values of x ofre excluded.

From (2) no value of y is excluded.

5. From (2), as y increases x increases, and the locus extends out indefi-

nitely from both axes.

From (1), as

X approaches zero,

y approaches negative infinity

;

so we see that the curve extends down indefinitely and approaches nearer

and nearer to YY\
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Ex. 2. Draw the locus of

(3) y = 8mx

if the abscissa x is the circular measure of an angle (Chapter I, p. 19).

Solution. Assuming values for x and finding the corresponding number

of degrees, we may compute y by the table of Natural Sines, p. 21.

For example, if

X = 1, since 1 radian = 57°. 29,

y = sin 57°.29 = .843. [by (3)]

It will be more convenient for plotting to choose for x such values that

the corresponding number of degrees is a whole number. Hence x is

expressed in terms of ;r i«i the table.

For example, if

X y X y

7t

6
.50

It

~
6

-.50

7t

3
.86

It

~
3

-.86

It

2
1.00

It

~
2

-1.00

27r
"3" .80

27r

3
-.80

57r

6
.50

hit

6
-.50

Tt - It

, y = sni -

2Tt— , ?/ = sm

sin 60°

2Tt
-sin ?^ (4, p. 19)

= - sin 120°= -sin 60° (5, p. 20)

= - .86.

In plotting, three divisions being taken

as the unit of length, lay off

• ^0 = OB = 7r = 3.1416,

and divide AO and OB up into six equal

parts.

The course of the curve beyond B is

easily determined from the relation

sin (2 ;r + x) = sin x.

Hence y = smx = sin (2 ;r + x),

that is, the curve is unchanged ifx + 27tbe substituted for x. This means,

however, that every point is moved a distance 2 tt to the right. Hence the arc

r.
__

f^ ,j V y 1
# ^ V ^ *

>S;
s.

,

-J TT-
f' f

/ 1

1

e.

't" '3, / '

1

1 ^^ y
X 1

^ ^
4\J

'
\ / TT TT IT Itt 5jr n* A^ \" "

SL 1

1 1 ^ -- £. i- .i>. -- a._ .Tp-: — *s
- - - —

f/^^ ^ s •^ ^~ ~ ~
p ?/= -1 /?

~^ r V'
-

APO may be moved parallel to XX' until A falls on B, that is, into the

position BEC, and it will also be a part of the curve in its new position.
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Also, the arc OQB may be displaced parallel to XX' until falls upon C. In

this way it is seen that the entire locus consists of an indefinite number of

congruent arcs, alternately above and below XX'.

General discussion. 1. The curve passes through the origin, since (0, 0)

^satisfies the equation.

2. Since sin (— x) = — sin x, changing signs in (3),

or

y =— sm X,

y = sin(-x).

Hence the locus is unchanged if (x, y) is replaced by (— x, —y), and

the curve is symmetrical with respect to the origin (Theorem IV, p. 72)

.

3. In (3), if X = 0,

y = sin = = intercept on the axis of y.

Solving (3) for x,

(4) x = sin-'^y.

In (4), if y = 0,

= me, n being any integer.

Hence the curve cuts the axis of x an indefinite number of times both on

the right and left of 0, these points being at a distance of tt from one another.

4. In (3), X may have any value, since any number is the circular meas-

ure of an angle.

In (4), y may have values from - 1 to + 1 inclusive, since the sine of an

angle has values only from — 1 to +1 inclusive.

5. The cuTve extends

out indefinitely along XX'
in both directions, but is

contained entirely between

the lines ?/=: + l, y = —i.

The locus is called the

wave curve, from its shape,

or the sinusoid, from its

equation (3).

Ex. 3. Draw the locus

of y = tan x.

There is no difficulty in

obtaining the curve of the'

figure and in verifying the

properties indicated by a dis-

cussion similar to the pre-

ceding examples.
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PROBLEMS

Plot the loci of the following equations.

1. 2/ = cosx. 5. y = ta,n-^x. 9. y = sin2x.

2. y = cotx. 6. 2/ = 2^.
10. 2/ = tan-.

3 y-s&cx '^- y = 21ogioX.
3. y-secx.

^
11 y = 2co8X.

4. y = sm-^x. 8. 2/ = (l+ajf. 12. y = sin x + cos x.

39. Graphical representation in general. Any equation con-

taining two variables may be represented graphically by a curve

called the graph of the equation by considering the variables as

coordinates and plotting the locus in the usual way. This

method of representing a given law is widely used in all branches

of science.

Ex. 1. Draw the graph of the Simple Interest Law, which shall represent

the relation between amount and time for a given principal and rate per cent.

The law is proven in Algebra to be

(1) J. = P(l + m),

where A = amount, P = principal, r = rate, n = number of years.

Solution. For convenience, take P = one dollar.* Let

One division on OX = 1 year.

One division on OF = 1 dollar,

abscissas = values of n,

ordinates = values of A.

(0,1)

Then the required graph is the locus of
O (1,0) (n,o)X

(2) ?/ = rx + 1.

The locus of (2) is a straight line passing through (0, 1) and having a

slope equal to r (Theorem I, p. 58).

This graph may be used to solve interest problems. For if the number of

years n is given, we merely have to measure off the corresponding ordinate

A of the straight line, and this will give the amount of one dollar at the given

rate for n years.

* Any other case is obtained by multiplying all the ordinates in the figure by P.
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Ex. 2. In Physics it is shown that the vokime (v), pressure (p), and absolute

temperature (t) of a given mass of a perfect gas are connected by the law

(3) pv = kt,

k being a constant dependent upon the particular gas.

Draw the graph if the temperature is assumed constant.

Solution. Assume

one division on OX = unit of pressure,

one division on OY = unit of volume,

abscissas = pressures,

ordinates = volumes.

Then the required graph is the locus o^

(4) xy = constant.

The curve is one branch* of an hyperbola extending to the right and

upward indefinitely, approaching in each case the corresponding axis. Such

curves are called isothermals (equal temperatures), and jtl^e figure is called

the Pressure-Volume Diagram.

PROBLEMS

1. Draw the graph of the Simple Interest Law if the variables are

(a) n and P. (c) A and P. (e) P and r.

(b) n and r. (d) A and r.

2. Draw the graph of the law of Ex. 2 if the variables are

(a) p and t. (b) v and t.

3. The amount (A) of any principal (P) at compound interest (r%) for n

years is given by the Compound Interest Law

A=P{1 + r)».

Draw the graph of this law if the variables are

(a) A and P. (c) A and n. (e) P and n.

(b) A and r. (d) P and r. (f) r and n.

Hint. Take tlie logarithm of both sides when convenient for computation.

* Since negative volumes have no physical meaning, in many cases only a portion of

the entire locus can be made use of in the representation.



CHAPTER IV

THE STRAIGHT LINE AND THE GENERAL EQUATION OF
THE FIRST DEGREE

40. The idea of coordinates and the intimate relation connect-

ing a curve and an equation, which results from the introduction

of coordinates into the study of Geometry, have been considered

in the preceding chapters. Analytic Geometry has to do largely

with a more detailed study of particular curves and equations.

In this chapter we shall consider in detail the straight line and

the general equation of the first degree in the variables x and y
representing coordinates.

41. The degree of the equation of a straight line. It was

shown in Chapter III (Theorem I, p. 58) that

(1) y = mx + b

is the equation of the straight line whose slope is m and whose

intercept on the F-axis is ^ ; m and b may have any values,

positive, negative, or zero (p. 34). But if a line is parallel to

the F-axis, its equation may not be put in the form (1) ; , for,

in the first place, the line has no intercept on the F-axis, and,

in the second place, its slope is infinite and hence cannot be

substituted for m in (1). The equation of a line parallel to the

F-axis is, however, of the form

(2) X = constant.

The equation of any line may be put either in the form (1) or

(2). As these equations are both of the first degree in x and y
we have

Theorem I. The expiation of any straight line is of thefirst degree

in the coordinates x and y.

85
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42. The general equation of the first degree, A3o+By-\-C=0,
The equation

(1) Ax-{-By-\-C = 0,

where A, B, and C are arbitrary constants (p. 1), is called the

general equation of the first degree in x and y because every equa-

tion of the first degree may be reduced to that form.

Equation (1) represents all straight lines.

For the equation y = mz + b may be written mx — y -{ b - 0, which is of the

form (1) it A = m, B = — 1, C= b; and the equation x = constant may be written

X — constant = 0, which is of the form (1) if J. = 1, ^ = 0, C= — constant.

Theorem II. (Converse of Theorem I.) The locus of the general

equation of the first degree

Ax -{- By -{- C =^

is a straight line. X?

Proof Solving (1) for y, we obtainAC
(2) 2/ = -^--^-

This equation has the same locus as (1) (Theorem 111, p. 59).

By Theorem I, p. 58, the locus of (2) is the straight line whose
A C

slope is m = — — and whose intercept on the F-axis is ft = — — •

B B
If, however, £ = 0, it is impossible to write (1) in the form

(2). But if ^ = 0, (1) becomes

^x + C = 0,

C
or x= 7

•

A

The locus of this equation is a straight line parallel to the

F-axis (1, p. 57). Hence in all cases the locus of (1) is a straight

line. Q.E.D.

Corollary I. The slope of the line

Ax -[- By -{- C = ()

is m =— —; that is, the coefficient of x with its sign changed
B

divided by the coefficient of y.
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Corollary II. The lines

Ax -{- Bi/ -\- C =
and A^x-\- B'y + C =
are parallel when and only when the coefficients of x and y are

proportional; that is,

A__B
A'^B''

For two lines are parallel when and only when their slopes are equal (Theorem
VI, p. 36) ; that is, when and only when

_A__A^
B~ B''

Changing the signs and applying alternation, we obtain

Corollary III. The lines

Ax-^By -\-C =
and A'x -\- B'y + C =^

are perpendicular when and only when

AA' + BB' = 0.

For two lines are perpendicular when and only when the slope of one is the

negative reciprocal of the slope of the second (Theorem VI, p. 36) ; that is,

A _B'
~B-A^'

or AA' + BB' = 0.

Ly -
Corollary IV. The intercepts of the line

Ax + By -^C =
on the X- and Y-axes are respectively

a = 7 and =—- •

A B

For the intercept on the X-axis is found (p. 73) by setting y = (i and solving

for X, and the intercept on the F-axis has been found in the above proof.

Corollaries I and IV are given chietly for purposes of reference. In a numerical

example the intercepts are found most simply by applying the general rule already

given (p. 73) ; and the slope is found by reducing the equation to the form

2/ = mx + &,

when the coefficient of x will be the slope.
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Theorems I and II may be stated together as follows

:

The locus of an equation is a straight line when and only when

the equation is of the first degree in x and y.

Theorem II asserts that the locus of every equation of the first

degree is a straight line. Then, to plot the locus of an equation

of the first degree it is merely necessary to plot two points on the

locus and draw the straight line passing through them. The two

simplest points to plot are those at which the line crosses the

axes. But if those points are very near the origin it is better to

use but one of them and some other point not near the origin

whose coordinates are found by the Eule on p. 60.

Theorem III. When two equations of the first degree,

(3) Ax + By ^ C = ;

and

(4) A^x'+B'y + C^ = 0,

have the same locus, then the corresjjonding coefficients are propor-

tional; that is,

A'~~ B'~ C'

Proof The lines whose equations are (3) and (4) are by

hypothesis identical and hence they have the same slope and the

same intercept on the F-axis. Since they have the same slope,

A A'

B^B''
(Corollary I, p. 86)

and since they have the same intercept on the F-axis,

B~ B'

by alternation we obtain

= —

.

(Corollary lY, p. 87)

A B ^ C B
A' = J'''''^C' = B'''

, , ABC
and hence - = -=-.

q.^..^.
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Ex. 1. Find the values of a and h for which the equations

2ax + 2?/-5 =
and 4x-3?/ + 76 =

will represent the same straight line.

Solution. These two equations will represent the same straight line if

(Theorem III) 2a _^ _ -5
.

4 ~ -3~ 76
'

and hence the required values are obtained by solving

2a_^ _2___ -b^

4 ~ 33 ^" 33 ~ "75"

for a and h. This gives

a = -t, 6 = ||.

43. Geometric interpretation of the solution of two equations

of the first degree. If we solve the equations

(1) Ax + By -\-C =
and

(2) A^x -{- B^y -\- C^ = 0,

we obtain the coordinates of the points of intersection of the

lines whose equations are (1) and (2) (Eule, p. 76). But if

these lines are parallel they do not intersect, and if they are

identical they intersect in all of their points. The relation

between the position of the lines whose equations are (1) and

(2) and the number of solutions of the simultaneous equations

(1) and (2) may be indicated as follows

:

_, . . ^ _ Number of solutions
Fosition of Lines

of equations

Intersecting lines. One solution.

Parallel lines. No solution.

Coincident lines. An infinite number.

It is sometimes as convenient to be able to determine the

number of solutions of two equations of the first degree without

solving them as it is to be able to determine the nature of the

roots of a quadratic equation without solving it. The following

theorem enables us to do this.
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Theorem IV. Two equations of the first degree^

Ax-\- By + C =
and A'x -{- B'y -\- C^ = 0,

have, in general, one solution for x and y ; hut if

A__B_
A'~ B''

there is no solution unless

A__B__C_
A'~B'~C''

when there is an infinite number of solutions.

The proof follows at once from Corollary II, p. 87, and Theorem III.

PROBLEMS V
1 . Find the intercepts of the following lines and plot the lines.

(a) 2 x + 3 2/ = 6. Ans. 3, 2.

(b) ^ + ^ = 1.
'

Ans. 2, 4.
2 4

(c) - - ^ = 1. Ans. 3, - 5.

(d) - + -^ = 1. Ans. 4, -2.
4 — 2

2. Plot the following lines.

(a) 2x-32/+5 = 0. (c) ^ + | = 1.

(b) 2/-5-4ic = 0. (d) --y- = \.

3. Find the equations, and reduce them to the general form, of the lines

for which

(a) m = 2, 6 = - 3. ^ns. 2 x - y - 3 = 0.

(b) m = - i, 6 = f . Ans. x + 2 ?/ - 3 = 0.

(c) m = f , 6 = - f . Ans. 4 x - 10 y - 25 = 0.

(d) a = - , 6 = — 2. Ans. x-y -2 = 0.
4
q _,

(e) or = —- , 6 = 3. Ans. x + y - 3 = 0.

Hint. Substitute \ny = mx + b.
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A. Find the number of solutions of the following pairs of equations and
plot the loci of the equations.

(^)
I4 X + 6 2/ + 9 = 0.

^'''- ^° '^^^*^°°-

(b)
{

/ Ans. One.
x + y = 1.

'2-3x

(d) -^
. ^ ^ Ans. No solution.

I^lz X — lo

'

('2 3x^1/
(c) -^ - ,0 ^ns. An infinite number.
^ '

1^6 X + 2 ?/ = 4.

20 = 0.

2/4-6 = 0.

5. Plot the lines 2x — 32/ + 6 = and x — y = 0. Also plot the locus of

(2 X - 3 2/ + 6) + A; (X - y) = for A: = 0, ±1, ±.2. ,

6. Select pairs of parallel and perpendicular lines from the following.

fLi:y = 2x-S.
,,JX2:?/=-3X+2. . TUT T , T

^^nU:y = 2x + 7.
^^'- Li\\Ls;L,±L,.

L2>4 : y = 1 X + 4.

rXi:x + 3y = 0.

(b) ^ X2 : 8x + y + 1 = 0. Ans. Li ± L3.

[Ls-.dx-Sy + 2 = 0.

fXi : 2 X - 5 y = 8.

(c) -^ X2 : 5 y + 2 X = 8. Ans. X2 -L L3.

U3:35x-14y = 8.

7. Show that the quadrilateral whose sides are 2x — 3y + 4 = 0,

3x — y — 2 = 0, 4x — 6?/ — 9 = 0, and 6x — 22/ + 4 = 0isa parallelogram.

8. Find the equation of the line whose slope is — 2 which passes through

the point of intersection of y = 3 x + 4 and y = — x + 4.

Ans. 2x + 2/ — 4 = 0.

9. What is the locus of y = wx + 6 if 6 is constant and m arbitrary ? if

m is constant and b arbitrary ?

10. Write an equation which will represent all lines parallel to the line

(a) y = 2 X + 7. (c) y - 3 X - 4 = 0.

(b)?/ = -x + 9. (d) 22/-4x + 3 = 0.

11. Write an equation which will represent all lines having the same

intercept on the F-axis as (a), (b), (c), and (d) in problem 10.

12. Find the equation of the line parallel to2x — 3?/ = whose intercept

on the F-axis is — 2. Ans. 2x — 3y — 6 = 0.

13. What is the locus of Ax + By + C = it B and C are constant and

A arbitrary ? if -4 and iJ are constant and C arbitrary ?
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44. Straight lines determined by two conditions. In Ele-

mentary Geometry we have many illustrations of the determina-

tion of a straight line by two conditions. Thus two points

determine a line, and through a given point one line, and only

one, can be drawn parallel to a given line. Sometimes, however,

there will be two or more lines satisfying the two conditions

;

thus through a given point outside of a circle we can draw two

lines tangent to the circle, and four lines may be drawn tangent

to two circles if they do not intersect.

Analytically such facts present themselves as follows. The

equation of any straight line is of the form (Theorem II, p. 86)

(1) Ax-\-mj-{-C = 0,

and the line is completely determined if the values of two of the

coefficients A, B, and C are known in terms of the third.

For example, it A = 2B and C — —3B, equation (1) becomes

2Bz + Btj-3B==0,
or 2x-\-y — 3 = 0.

Any geometrical condition which the line must satisfy gives

rise to an equation between one or more of the coefficients

A, B, and C.

Thus if the line is to pass through the origin, we must have (7=0 (Theorem VI,

p. 73) ; or if the slope is to he 3, then =3 (Corollary I, p. 8G).
B

Two conditions which the line must satisfy will then give rise

to two equations in A, B, and C from which the values of two of

the coefficients may be determined in terms of the third, and the

line is then determined.

If these equations are of the first degree, there will be only one

line fulfilling the given conditions, for two equations of the first

degree have, in general, only one solution (Theorem IV, p. 90).

If one equation is a quadratic and the other of the first degree,

then there will be two lines fulfilling the conditions, provided

that the solutions of the equations are real. And, in general,

the number of lines fulfilling the two given conditions will

depend on the degrees of the equations in the A, B, and C to

which they give rise.
^
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I

Rule to determine the equation of a straight line which satisfies

two conditions.

First step. Assume that the equation of the line is

Ax -{- By ^ C =^ ^.

Second step. Find two equations between A, B, and C each of
which expresses algebraically the fact that the line satisfies one

of the given conditions.

Third step. Solve these equations for two of the coefficients A,

B, and C in tei^ms of the third.

Fourth step. Substitute the results of the third step in the equct/-

tion in the first step and divide out the remaining coefficient. The

result is the required equation.

Ex. 1. Find the equation of the line through the two points Pi (5, — 1)

and P2(2, -2).

Solution. First step. Let the required equation be

(1) Ax + B2j-hC = 0.

Second step. Since Pi lies on the locus

of (1) (Corollary, p. 53),

(2) 6A-B+C = 0',

and since Pg lies on the line,

(3) 2A-2B-i-C = 0.

Third step. Solving (2) and (3) for A and B in terms of C, we obtain

A=-IC, B = IC.

Fourth step. Substituting in (1),

-lCx+lC2j + C = 0.

Dividing by C and simplifying, the required equation is

x-3y-S = 0.

Ex. 2. Find the equation of the line, passing through Pi (3, — 2) whose

slope is — i.

Solution. First step. Let the re-

quired equation be

(4) Ax + By+C^O.
Second step. Since Pi lies on (4),

(5) 3A-2B+C = 0;

and since the slope is — i^

(6)
-^=-1.
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Third step. Solving (5) and (6) for A and C in terms of B, we obtain

A = IB, C = IB.

Fourth step. Substituting in (4),

lBx + By-^lB = 0,

or a; + 42/ + 5 = 0.

PROBLEMS

1. Find the equation of the line satisfying the following conditions and

plot the lines.

(a) Passing through (0, 0) and (8, 2).

(b) Passing through (-1, 1) and (- 3, 1).

(c) Passing through (—3, 1) and slope = 2.

(d) Having the intercepts a = o and & = — 2.

(e) Slope = — 3, intercept on X-axis = 4.

(f ) Intercepts a = — 3 and 6 = — 4.

(g) Passing through (2, 3) and (- 2, - 3).

(h) Passing through (3, 4) and (- 4, - 3).

(i) Passing through (2, 3) and slope = — 2.

(j) Having the intercepts 2 and — 5.

2. Find the equation of the line passing through the origin parallel to the

line 2 cc — 3 2/ = 4. Ans. 2 x — 3 ?/ = 0.

3. Find the equation of the line passing through the origin perpendicular

to the line 5x4-2/ — 2 = 0. Ans. x — 6y = 0.

4. Find the equation of the line passing through the point (3, 2) parallel

to the line 4x — y — 3 = 0. Ans. 4x — y — 10 = 0.

5. Find the equation of the line passing through the point (3, 0) perpen-

dicular to the line 2x + y — 5 = 0. Ans. x — 2y — 3 = 0.

6. Find the equation of the line whose intercept on the Y-axis is 5 which

passes through the point (6, 3). Ans. x -f 3y — 15 = 0.

7. Find the equation of the line whose intercept on the JT-axis is 3 which

is parallel to the line x — 4?/-|-2 = 0. Ans. x — 4?/ — 3 = 0.

8. Find the equation of the line passing through the origin and through

the intersection of the lines x — 2y -\- S = and x + 2y — 9 = 0.

Ans. X — y = 0.

9. Find the equation of the straight line whose slope is m which passes

through the point Pi (xi, yi). Ans. y — yi = m{x — Xi).

Ans. x-4y = 0.

Ans. y-i = o.

An^. 2 X - ?y + 7 = 0.

Ans. 2x-3y -6 = 0.

Ans. 3x-l-y-12 =0.
Ans. 4x + 3?/-M2 = 0.

Ans. Sx-2y = 0.

Ans. x-y + 1 = 0.

Ans. 2x + y-l = 0.

Ans. ^--y- = i.

2 5
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10. Find the equation of the straight line whose intercepts are a and b.

Ans. - + l = l.
a

11. Find the equation of the straight line passing through the points

Pi{xu y\) and Pa (0^2, 2/2).

, Ans. (2/2 -Vi)^- {X2 -Xi)y + x^yi - xiy^ = 0.

12. Show that the result of the last problem may be put in the form

x-xi ^ y-yi
X2-X1 y^-yi

Hint. Add and subtract x^y^, factor, transpose, and express as a proportion.

45. The equation of the straight line in terms of its slope

and the coordinates of any point on the line. In this section

and in those immediately following, the Rule in the preceding

section is applied to the determination of general forms of the

equations of straight lines satisfying pairs of conditions which

occur frequently. These general forms will then enable us to

write the equations of certain straight lines with the same ease

that the equation y — mx + h enables us to write the equation

of the straight line whose slope and intercept on the F-axis are

given.

Theorem V. Point-slope form. The equation of the straight line

which passes through the point Pi (xi, y^ and has the slope m is

(V) - y -.y^z=m{pc — cCi).

Proof. First step. Let the equation of the given line be

(1) Ax-{-By -\-C =^0.

Second step. Then, by hypothesis,

(2) Axi + 5?/i + C =
and

(3) -f = ^-

Third step. Solving (2) and (3) for A and C in terms of By

we obtain

A =— mB and C = B (inxi — y^).
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Fourth step. Substituting in (1), we have

— mBx -\- By -\- B (^mx-i — y^) = 0.

Dividing by B and transposing,

y — yi = m{x — x^).
^ q.e.b.

If Pi lies on the T-axis, cci = and y^ = b, so that this equa-

tion becomes y = mx + b.

46. The equation of the straight line in terms of its intercepts.

We pass now to the consideration of a line determined by two

points, and we consider first the case in which the two points lie

on the axes. This section does not, therefore, apply to lines par-

allel to one of the axes or to lines passing through the origin, as in

the latter case the two points coincide and hence do not deter-

mine a line.

Theorem VI. Intercept form. Ifa and b are the intercepts of a line

on the X- and Y-axes 7'espectively, then the equation of the line is

(VI) - + 1^ = 1.
^ ^ ah
Proof First step. Let the equation of the given line be

(1) Ax + By + C = 0.

Second step. By definition of the intercepts (p. 73), the points

(a, 0) and (0, b) lie on the line; hence

(2) ^a + <^ = 0,

(3) Bb-\-C = 0.

Third step. Solving (2) and (3) for A ar«d B in terms of C.

we obtain

A = C and B = --C.
a

Fourth step. Substituting in (1), we have

- - Cx - - Cy + C = 0.
a b

Dividing by C and transposing,

^
, ?/ _ 1r T — -L- Q.E.D.
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Ex. 1. Write the equation of the locus of 2x — 62/ + 3 = 0in terms of

its intercepts and plot the line.

Solution. Transposing the constant term, we have

Dividing by — 3,

2x
-3

X

+ 2y = l,

_. + ? = >
2 2

This equation is of the form (VI). Hence

a = — I and b = |.

Plotting the points (— |, 0) and (0, I) and joining them by a straight line,

we have the required line.

47. The equation of the straight line passing through two

given points.

Theorem VII. Two-point form. The equation of the straight line

passing through Pi (xi, y{) and P^, (x^, ])%) is

/yil)
^ - ^1 ^ y - Z/1

^ ^ a?2 — a?i 2/2 — 2/i

Proof. Let the equation of the line be

(1) Ax-{-By^-C = 0.

Then, by hypothesis,

(2) Axi + By, + C =
and

(3) Ax^ + %2 + C = 0.

To follow the Rule, p. 93, we must solve (2) and (3) for A
and B in terms of C, substitute in (1), and divide by C ; that pro-

cedure amounts to eliminating A, B, and C from (1), (2), and (3),

and that elimination may be more conveniently performed as

follows

:

Subtract (2) from (1) ; this gives

A{x-x,)+B{y-y,)=0,
or

(4) A{x-a:,) = -B{y-yi).
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Similarly, subtracting (2) from (3), we obtain

(5) A (x, -x,) = -B (2/2
-

2/i).

Dividing (4) by (5), we find

= Q.E.D.
*^2 "^i 2^2 yi

Corollary. The condition that three points, Pi(xi, i/i), ^2(^2? 2/2)?

and Pg (ccg, 2/3) should lie on a line is that

^z — ^i ^ yz — yi

^2 — ^1 2/2 yi

For this is the condition that P3 should lie on the line (VII) passing through

i^jj^ndL>P2 (Corollaiy, p. 53).

The TYiethod of proving the corollary should be remembered

rather than the corollary itself, as then the condition may be

immediately written down 'from (VII).

PROBLEMS

1

.

Find, by substitution in the proper formulas, the equations of the lines

satisfying the conditions in problem 1, p. 94.

2. Find the equations of the lines fulfilling the following conditions and

plot the lines.

(a) Passing through the origin, slope = 3. Ans. Sx — y = 0.

(b) Passing through (3, - 2) and (0, - 1). Ans. x + 3?/ + 3 = 0.

(c) Having the intercepts 4 and — 3. ' Ans. Sx — 4:y — 12 = 0.

(d) F-intercept = 5 and slope = 3. Ans. 3x — y + 5 = 0.

(e) Passing tiirough (1, — 2) and (3, — 4). Ans. x + y + 1 = 0.

(f

)

Having the intercepts — 1 and — 3. Ans. Sx-\-y + 3 = 0.

(g) Passing through (- |, |) and slope = -
f . Ans. ix + 6y—7 = 0.

(h) Passing through (0, 0) and slope = m. Ans. y = mx.

/T' 3. Find the equations of the sides of the triangle whose vertices are

(-3,2), (3, - 2), and (0, - 1).

Ans. 2x + 32/ = 0, a; + 3?/ + 3 = 0, and x + ?/ + 1 = 0.

4. Find the equations of the medians of the triangle in problem 3 and
show that they meet in a point.

Ans. x = 0,7x-\-9y -\- S = 0, and 5x + 9y -{ S = 0.

Hint. To show that three lines meet in a point, find the point of intersection of two
of them and prove that it lies on the third.
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5. Show that the medians of any triangle meet in a point.

Hint. Taking one vertex for origin and one side for the X-axis, the vertices may then

be called (0, 0), (a, 0), and (6, c).

6. Determine whether or not the following sets of points lie on a straight

line.

(a) (0, 0), (1, 1), (7, 7). Ans. Yes.

(b) (2, 3,), (- 4, - 6), (8, 12). Ans. Yes.

(c) (3, 4), (1, 2), (5, 1). Ans. No.

(d) (3, - 1), (- 6, 2), (- I, 1). Ans. No.

(e) (5, 6), (1,1), (-1,-1). ^ns. Yes.

(f) (7, 6), (2, 1), (6, - 2). Ans. No.

7. Reduce the following equations to the form (VI) and plot their loci.

(a) 2x-f 32/-6 = 0. (d) 3x + 4y + 1 = 0.

(b) x-32/ + 6 = 0. (e) 2x-4y-7=0.
(c) 3x-42/ + 9 = 0. (f) 7x-6y-Z = 0.

8. Find the equations of the lines joining the middle points of the sides

of the triangle in problem 3 and show that they are parallel to the sides.

• Ans. 4x + 6?/ + 3 = 0, x + 3?/=:0, and x-\-y = 0.

9. Find the equation of the line passing through the origin and through

the intersection of the lines x + 2 y = 1 and 2x-4?/-3 = 0.

Ans. X + 10 y = 0.

10. Show that the diagonals of a square are perpendicular.

Hint. Take two sides for the axes and let the length of a side be a.

11. Show that the line joining the middle points of two sides of a triangle

is parallel to the third.

Hint. Choose the axes so that the vertices are (0, 0), (a, 0), and (6, c).

12. Find the equation of the line passing through the point (3, - 4) which

has the same slope as the line 2 x - y = 3. Ans. 2x-y -10 = 0.

13. Find the equation of the line passing through the point (-1, 4) which

is parallel to the line 3 x + y + 1 = 0. Ans. 3x + y -1 = 0.

14. Two sides of a parallelogram are2x + 3y-7 = and x-3y + 4 = 0.

Find the other two sides if one vertex is the point (3, 2).

Ans. 2x-f3y- 12 = and x-3y + 3 = 0.

15. Find the equation of the line passing through the point (- 2, 3)

which is perpendicular to the line x-{-2y = 1. Ans. 2x -y + 1 = 0.
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16. Show that the three lines x — 2y = 0, x-{-2y — 8 = 0, and x + 2y
— S + k{x — 2 y) = meet in a pomt no matter what value k has, '

17. Derive (V) and (VII) by the Rule on p. 53, using Theorem V,' p. 35.

18. Derive (VI) and (VII) by the Rule on p. 53, using the theorem that

the corresponding sides of similar triangles are proportional.

19. Derive y = mx + h and (V) by the Rule on p. 53, using the definition

of the tangent of an acute angle in a right triangle.
'

20. Derive the equation of the straight line in terms of the perpendicular

distance p from the origin to the line and the angle w which

that perpendicular makes with the positive direction of

the X-axis.

Hint. Find the intercepts in terms of p and w by solving the

right triangles in the figure and substitute in (VI).

Ans. X cos w + 2/ sin w — p = 0.
V^

21. What is the locus of (V) if Xi and 2/1 are constant and m arbitrary ?

22. What is the locus of (VI) if a is constant and 6 arbitrary ? if 6 is con-

stant and a arbitrary ? ,.,j^-

'

23. Write an equation which represents all lines passing through (2, — 1).

24. Write an equation representing all lines whose intercept on the X-axis

is 3.

25. Write in two different forms the equation of all lines whose intercept

on the Y-axis is — 2.

26. Write an equation representing all lines whose slope is — \.

27. If the axes are oblique and make an angle of w, then the equation of a

straight line in terms of its inclination a and intercept on the Y-axis h is

sin a
sin (w — a)

« + &.

28. If the angle between the axes is w, the equation of the line passing

through Pi(iCi, 2/1) whose inclination is a is

sin a ,

,y — y^ — -—
^^
{x — Xx).

-^ ^^ sm (w - a) ^ '^

29. Show that equations (VI) and (VII) hold for obhque coordina-tes.
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48. The normal form of the equation of the straight line.

In the preceding sections the lines considered were determined

by two points or by a point and a direction. Both of these

methods of determining a line are frequently used in Elementary

Geometry, but we have now to consider a line as determined by

two conditions which belong essentially to Analytic Geometry.

Y

AV
A

r\.>' X

<^
7-

B •^Ox

^^

^A
A

Vx

I't ,A

&^-v
/ >

M
Let ABhe any line, and let ON be drawn from the origin perpen-

dicular to J.^ at C. Let the positive direction on ON he from

toward N,— that is, from the origin toward the line,— and denote

the positive directed length OC by ^ and the positive angle

XON, measured, as in Trigonometry (p. 18), from OX as initial

line to ON as terminal line, by (o* Then it is evident from the

figures that the position of any line is determined hy a pair of

values ofp and oo, both p and w being positive and w < 2 tt.

On the, other hand, every line determines a single positive

value of p and a single positive value of a> which is less than

i\^\ Y> '

\^^A

^A \

X

n \
-K-rf

2 7r, unless ^ = 0. When p = 0, however, AB passes through

the origin, and the rule given above for the positive direction

on ON becomes meaningless. From the figures we see that we

can choose for <u either of the angles XON or XON'. When

p — O we shall always suppose that oiKir and that the positive

direction on ON is the upward direction.

* ui is not the angle between the directe^J lines OX and OX, as defined on p. 28.
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Theorem VIII. The normal form* of the equation of the straight

line is

(YIII) • oc cos (H -\- y siiKH — p = O,

where p is the perpendicular distance or normal from the origin to

the line and w is the positive angle which that perpendicular makes

with the positive direction OX of the X-axis regarded as initial

line.

Proof Let P{x, y) be any point on the given line AB.

Then since AB is perpendicular to

ON, the projection of OP on ON is

equal to p (definition, p. 29). By
the second theorem of projection

(p. 48), the projection of OP on ON
is equal to the sum of the projections

^ ^ of OD and DP on ON. Then the con-

dition that P lies on ^jB is

(1) pfoj. of OD on ON -f proj. of DP on ON = p.

By the first theorem of projection (p. 30) we have

(2) pi'oj- of OD on ON = OD cos w — x cos o>,

(3) proj. of DP on ON = DP cos
(
— — w

J

= ?/ sin w.

For the angle between the directed lines DP and ON equals that between

OrandOiV=|-a;.

Substituting from (2) and (3) in (1), we obtain

£c cos 0) + y sin o) — ^ = 0. q.e.d.

To reduce a given equation

(4) Ax+By + C^O
to the normal form, we must determine w and p so that the locus

of (4) is identical with the locus of

(5) X cos 0) + 2/ sin CO — ^ = 0.

* The designation of this equation is made clear by the definition of the normal in

Chapter IX.
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Then we must have corresponding coefficients proportional

(Theorem III, p. 88).

cos 0) _ sin (n _—p
•'• A ~ B ~ ~C"

Denote the common value of these ratios by r ; then

(6) cos o> = rA,

(7) sin CD = rB, and

(8) -p = rC.

To find r, square (6) and (7) and add ; this gives

sin2 io -f cos^ to = r2(^2 _^ B"").

But sin^ w 4- cos^ w = 1

;

and hence r^(^^ + B"^) = 1, or

(9) r = ^

Equation (8) shows which sign of the radical to use ; for since

p is positive, r and C must have opposite signs, unless C = 0. If

C = 0, then, from (8), ^ = 0, and hence w < tt (p. 101) ; then sin a>

is positive, and from (7) r and B must have the same signs.

Substituting the value of r from (9) in (6), (7), and (8) gives

A . B C
cos (0 = ? sm 0) =

,
? p =

Hence (5) becomes

(10) / • x + y + , . = 0,
^ ^ ±VlMr^ ±-y/A^-\-B^ iVI^:^
which is the normal form of (4). The result of the discussion

may be stated in the following

Rule to reduce Ax -\- By -\- C = to the normal form.

First step. Find the numerical value of V^ ^ -f B"^.

Second step. Give the result of the first step the sign opposite to

that of C, or, if C = 0, the same sign as that of B.

Third step. Divide the given equationlby the result of the second

step. The result is the required equation.

I
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The advantages of the normal form of the equation of the

straight line over the other forms are twofold. In the first

place, every line may have its equation in the normal form;

whether it is parallel to one of the axes or passes through the

origin is immaterial. In the second place, as will be seen in the

following section, it enables us to find immediately the distance

from a line to a point.

PROBLEMS
\

1. In what quadrant will ON (Fig., p. 101) lie if sin w and cos w are both
positive? both negative? if sinw is positive and cosw negative? if sinw
is negative and cos w positive ? ^

2. Find the equations and plot the lines for which

(a) w = 0, p = 5. Arts, x =± ^.

Atis. ?/ + 3 = 0.

Ans. V2x+ V2?/- 6 = 0.

Ans. ic— V32/ + 4 = 0.

7 Tf

i\^ (e) w = -—
, j9 = 4. Ans. V2 x - V2y -8 = 0.

3. Reduce the following equations to the normal form and find p and w.

(a) 3a; + 42/-2 = 0. Ans. p = |, w = cos-i f = sin- 1
f

.

(b) 3x - 4y -^ 2 = 0. Ans. p = f, a> = cos-i | = sin-i (-
f).

(c) 12 a; - 5 ?/ = 0, Ans. p = 0, w = cos-i (- ff) = sin-^i j-^.

(d) 2x + 5?/ + 7 = 0.
^

Ans. p = —
, a; = cos-i('—^"j ^z sin-Y ~ Y

+ V2y \_V29/ V-V29^
(e) 4aj - 3?/ + 1 = 0. Ans. p = 1, w = cos-i(- ij = sin-if.

(f) 4x-5 2/ + 6 = 0.

D(b) c-.
2

, p = 3.

.(c) 0,.
7t

p = 3.

;..,(d) 0,.
_27t

' p = 2.

Ans. p =
\ _ V41 / \ a- VIT/Vii V_V4i/ WV41

4. Find the perpendicular distance from the origin to each of the follow-

ing lines.

(a) 12x+5?/-26 = 0. Ans. 2.

(b) x-\-y + l=0. Ans. 1V2.
(c) 3x-2?/-l = 0. Ans. j\^Ts.
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5. Derive (VIII) when (a) -<w<7r; (b) n<(a<—
;

(c) ^— <w<2^;

(d) p = OandO<w<-.

6. For what values of p and w will the locus of (VIII) be parallel to the

X-axis ? the F-axis ? pass through the origin ?

7. Find the equations of the lines whose slopes equal — 2, which are at a

distance of 5 from the origin,

Ans. 2V5X+ VSy- 25 = and 2V5x+V5?/ + 25 = 0.

8. Find the lines whose distance from the origin is 10, which pass through

the point (5, 10). Ans. y = 10 and 4 x + 3 y = 50. J

9. "What is the locus of (VIII) if p is constant and w arbitrary ? if w is

constant and p arbitrary ?

10. Write an equation representing all lines whose distance from the

origin is 5.

49. The distance from a line to a point. The positive direction

on the normal ON drawn through the origin perpendicular to AB
(Fig. 1) is from to AB (p. 101) ; and when AB passes through

(Fig. 2) the positive direction on ON is the upward direction.

A yN
i\,/

i

.

JC' 0/^
(2)

The positive direction on ON is taken to be the positive direction

on all lines perpendicular to AB. Hence the distance from the

line AB to the point Pj is positive if P^ (ind the origin are on

op2Josite sides of AB, and negative if Pi and the origin are on the

same side of AB. When AB passes through the origin the distance

from AB to Pi is positive if that distance is in the upward, direc-

tion, and negative if it is in the doivnumrd direction. Thus in the

figures the distance from AB to Pi is positive and from AB to P^

is negative.
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Theorem EX. The distance d from the line

X cos (0 + 2/ sin to — ^ =

to the point P^ (iCj, ?/i) is

(IX) •

e^ = a?i cos (0 -f ^1 sin (H — p.

Proof. Let AB he the given line and let ON be perpendicular

to AB. By the second theorem of projection (p. 48) we have

proj. of OPx on ON = proj. of OD on ON + proj. of Dl^^ on ON.

From the figure,

proj. of OPx on ON
= OE=p + d.

By the first theorem of

projection (p. 30),

proj. of OD on ON
= OD cos (0 = iCi cos ft),

proj. of DPi on ON
TT= i)Pi COS

= 2/i sin (o.

Hence p \- d = x^ cos w + ?/i siri co,

and therefore d = x^ cos w + ?/i sin la — p.

Erom this theorem we have at once the

-)

Q.E.D.

Rule to find the perpendicular distance from a given line to a

given point.

First step. Beduce the equation of the given line to the normal

form {Rule, p. 103).

Second step. Substitute the coordinates of the given point for

X and y in the left-hand side of the equation. The result is the

required distance.

The sign of the result will show on which side of the line the

point lies.
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Ex. 1. Find the distance from the line 4ic — 3y + 15 = to the point

(2, 1).

Fa
Solution. First step. Reducing the given equation

to normal form, we have

-|x + |y-3 = 0.

Second step. Substituting 2 for x and 1 for y,

we have

^=-f-2 + f(l)-3=-4.

What does the negative sign mean ?

——

'

^y——

1

—

/
y
f

/ s
<

/ V s
/

3'x^ (\ )

y i
_

Ex. 2. Prove that the sum of the distances from the legs of an isosceles

triangle to any point in the base is constant.

Solution. Take the middle point of the base for origin and the base itself

for the X-axis. Then the values of p for the two legs are equal and the values

of (1) are supplementary. Hence, if the equation y
of one leg in normal form is

X cos a> + 2/ sin w — p = 0,

then the equation of the other leg is

X cos (tt — co) + y sin (tt — w) — _p = 0,

or — X cos (o + y sin (a — p = 0.

Let (a, 0) be any point in the base. Then the distances from the legs to

(a, 0) are respectively a cos w — _p and — a cos w — p, so that the sum of these

distances is — 2 _p, that is, a constant.

PROBLEMS

1 . Find the distance from the line

(a) xcos45° + 2/sin45°- V2 = to (5, -

(b) |x-fy-l = to (2,1).

(c) 3x + 4y + 15 = to (-2, 3).

7).

(d) 2x-7y + 8 = to (3,

(e) x-Sy = to (0,4).

5).

Ans. -2V2.
Ans.

Ans.

Ans.
49

Ans.

+ V53
12

+ V10

2. Do the origin and the point (3, - 2) lie on the same side of the line

x-2/ + l = 0? Ans. Yes. '
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3. Does the line 2x + 3?/ + 2 = pass between the origin and the point

(-2, 3)? Ans. No.

4. Pind the lengtlis of the altitudes of the triangle formed by the lines

2x + 3y = 0, x + 3^ + 3 = 0, and x + y + 1 - Q.

Ans. —^, —=:, and V2.
V13 Vio

5. Find the distance from the line Ax -{- By -{- G = to the point

Pi(xi, yi). ^^ Axi + Byi+C

6. Prove Theorem IX when

/ ^ n tt,, ,7r^ .
^ S 7t , ,. S 7t -

(a)p = 0, a;<--; (b)-<a;<7r; (c) tT < a, < --
;

(d) -— < w < 2 tT.

^_ 7. Eind the locus of all points which are equally distant from

3x-4y + l=:0 and 4x + 3?/-l=0.
.

Auii. 7x — y = and x + 7y — 2 = 0.

8. Find the locus of all points which are twice as far from the line

12 X + 6 y — 1 = as from the F-axis. Ans. 14 x — 6 ?/ + 1 = 0.

9. Find the locus of points which are k times as far from Ax — Sy +1=0
as from 5x - 12?/ = 0. Ans. (52 - 25fc)x - (39 - 60k)y + 13 = 0.

10. Find the bisectors of the angles formed by the lines in problem 9.

Ans. 77x -99?/ + 13 = and 27x + 21?/ + 13 = 0.

11. Find the distance between the parallel lines,

3x + l, , 3 ,^, r?/ = mx + 3, , 6

<^){:::3::i: --^ <^>{.+ VlO Ly = mx-3. +VTT^

12. Derive the normal equation of the line by means of Theorem IX.

13. Prove that the altitudes on the legs of an isosceles triangle are equal.

14. Prove that the three altitudes of an equilateral triangle are equal.

15. Prove that the sum of the distances from the sides of an equilateral

triangle to any point is constant.

Hint. Take the center of the triangle for origin, with the JC-axis parallel to one side.
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16. Find the areas of the triangles formed by the following lines.

(a) 2 X - 3 ?/ + 30 = 0, X = 0, X + 2/ = 0. Ans. 30.

(b) x + 2/ = 2, 3x + 4y- 12 = 0, x-?/+6 = 0. Ans. f
(c) 3x - 4y + 12 = 0, X - 3?/ + 6 = 0, 2x - ?/ = 0. Am. 33.

(d) x + 3y-3 = 0, 5x-2/-15 = 0, x-^+l = 0. Ans. 8.'

17. Plot the following lines and find the area of the quadrilaterals of

which they are the sides.

(a) X = ?/, y == 6, X + y = 0, 3x + 2 ?/ - 6 = 0. Ans. 16i.

(b)x + 22/-5 = 0, 2/ = 0, x + 42/ + 5 = 0, 2x + ?/-4 = 0. Ans. 18.

(c)2x-42/-f8 = 0, x + y = 0, 2x- 2/^4 = 0, 2x4-y-3 = 0.

Ans. 4tVo.

50. The angle which a line makes with a second line. The

angle between two directed lines has been defined (p. 28) as the

angle between their positive directions. When a line is given

by means of its equation, no positive direction along the line is

fixed. In order to distinguish between the two pairs of equal

angles which two intersecting lines make with each other we
define the angle which a line makes with a

second line to be the positive angle (p. 18)

from the second line to the Jii^st line.

Thus the angle which Li makes with L^

is the angle 0. We speak always of the

'' angle which one line makes with a second

line," and the use of the phrase " the angle

between two lines " should be avoided if those

lines are not directed lines. We have thus added a third method

of designating angles to those given on p. 18 and p. 28.

; Theorem X. The angle 6 which the line

L, : A,x ^B,7j + C, =
makes with the line

is given hy

(X) tan^ =
AxA2 + B1JB2
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Proof. Let a-^ and a^ be the inclinations of L^ and L^ respec-

tively. Then, since the exterior angle of a triangle equals the

sum of the two opposite interior angles, we have

In Fig. 1, ai = $ -\- a^, or 6 = a^ — a^,

In Fig. 2, a2 = 'Tr — 6 + ai, or = tt + (ai — a^).

And since (5, p. 20)

tan (tt -\-
<f>)
= tan <^,

we have, in either case,

tan = tan (a^ — a^)

tan ai — tan org

1 + tan ai tan a^
(by 13, p. 20)

But tan ai is the slope of Zj and tan ^2 is the slope of La ; hence

(Corollary I, p. 86)

tan

Reducing, we get tan

B, B,

-(:-^)(-I-)
A,B, - A,B,

A^A^ + B^B^
Q.E.D.

Corollary. If mi and m^ are the slopes of two lines, then the

angle $ which the first line makes with the second is given by

tan^ =
1 + minii
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Ex. 1. Find the angles of the triangle formed by the lines whose equations

are

L:2x-Sy-6 = 0,

M:6x-y-6 = 0,

N:6x + iy -25 = 0.

Solution. To see which angles formed by the given

lines are the angles of the triangle, we plot the lines,

obtaining the triangle ABC. A is the angle which

M makes with X, so that M takes the place of Li in

Theorem X and L of Lz-

Hence

Ai = 6, Bi=-1;

^2 = 2, B2=-3.

Then tan 1 - ^'^^ ~ ^^^' -
ArA2 + B1B2

-2 + 18

12 + 3

16

"15

and hence ^ = tan-i(H).

B is the angle which L makes with N, and by Corollary III, p. 87, 5 = — •

C is the angle which N makes with Jf, so that if

tan C
A2B1 - AiB2

we must set

Hence

and

A1A2 + B1B2

Ai = 6, Bi = i;

A2 = Q, B2=-l.

24 + 6 _ 30 _ 15
~32~tanC = -4

C = tan-i(if).

16

We may verify these results. For if J5 = -, then A = --C; and hence

(6, p. 20, and 1, p. 19) tan ^ = cot C
true for the values found.

tan C
, which is

Ex. 2. Find the equation of the line through

(3, 5) which makes an angle of — with the line

X - y + 6 = 0.
^

• Solution. Let mi be the slope of the required line.

Then its equation is (Theorem V, p. 95)

(1) y-5 = mi(x-3).

YJ,k

4
/ 3

/ ~~. ^\ ^^'15)

\
~~

\
\
\ 1

\
\\
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The slope of the given line is m^ = 1, and since the angle which (1) makes

with the given line is — , we have (by the Corollary),
^ \

3
' ^ ^

'

tan^ = :^^^ 1, d'^Xl'^-
3 1 + nil /"

1 + mi ^

whence mi = ^ = — (2 + V3).
1 - V3

Substituting in (1), we obtain

y-6 = -{2+V3){x-S),_

or (2 + Vi) X 4- y - (11 + 3 V3) = 0.

In Plane Geometry there would be two solutions of this problem,— the

line just obtained and the dotted line of the figure. Why must the latter

be excluded here?

PROBLEMS

1. Find the angle which the line 3x—y-\-2= makes with 2x+ 7/— 2=0;
also the angle which the second line makes with the first, and show that

these angles are supplementary. . 3 tt tt

4 ' 4
2, Find the angle which the line

* (a) 2 X — 5 ?/ + 1 = makes with the line x — 2y + S = 0.

• (b) X + y + 1 = makes with the line x — y + 1 — 0.

(c) 3x — 4?/ + 2=0 makes with the line x -\- 3y — 7 = 0.

(d) 6x — Sy + S = makes with the line x = 6,

(e) x — 'ly + l = makes with the line x + 22/ — 4 = 0.

In each case plot the lines and mark the angle found by a small arc.

Ans. (a)tan-i(-J,); (b)|; (c) tan-i(V-)
;

(d) tan-i(- i) ;
(e) tan-^/,).

^Z. Find the angles of the triangle whose sides are x + 3y — 4 = 0,

3ic - 2?/ + 1 = 0, and a: - y + 3 = 0. Ans. tan-i(- V), tan-i(i), tan-i(2).

Hint. Plot the triangle to see wliicli angles formed by the given lines are the angles

of the triangle.

-^4. Find the exterior angles of the triangle formed by the lines 5x— y+ S=0,
y = 2,x-4y + 3 = 0. Ans. tan-i(5), tan-i(- i), tan-i(- V)-

5. Find one exterior angle and the two opposite interior angles of the

triangle formed by the lines 2x-3?/-6=0, 3x+42/-12= 0, x-Sy+6=0.
Verify the results by formula 12, p. 20.
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6. Find the angles of the triangle formed by3x+2?/-4=0, x-3y+6=0,
and 4x—3y— 10=0. Verify the results by the formula

tan J. + tan B + tan C = tan J. tan 5 tan C, if A -\- B -\- C = 180°.

7. Find the line passing through the given point and making the given

angle with the given line.

. (a) (2, 1), -, 2x-3?/ + 2 = 0. Ans. 5x - ij - 9 = 0.

(b) (1, - 3), — , X + 22/ + 4 = 0. Ans. 3x + y = 0.

(c) (2, - 5), -, X + 3 ?/ - 8 = 0. Ans. x-2ij -12 = 0.

/IK , V 7. A ?n + tan0
,

(d) (xi, 2/i), (f>, y = mx + b. Ans. y - yi = - (x - Xi).
1 — m tan <p

(e) (Xi, 2/i), (f>,
Ax -\- By -^ C = 0. Ans. y -y^ = -—^ (x - Xi).

A. tan
<f>

-^ B

8. Show from a figure that it is impossible to draw a line through the inter-

section of two lines and "making equal angles with those lines" in the

sense in which we have defined " the angle which one line makes with a

second line." Prove the same thing by formula (X). How are the bisectors

of the angles of two lines to be defined ?

9. Given two lines Xi:3x — 4y — 3 = and X2:4x — 3?/ + 12 = 0; find

the equation of the line passing through their point of intersection such that

the angle it makes with Li is equal to the angle L^ makes with it.

Ans. 7x-7?/ + 9 = 0.

51. Systems of straight lines. An equation of the first degree

in X and ij which contains a single arbitrary constant will repre-

sent an infinite number of lines, for the locus of the equation

will be a straight line for any value of the constant, and the locus

will be different for different values of the constant.

The lines represented by an equation of the first degree which

contains an arbitrary constant are said to form a system. An
equation which represents all of the lines satisfying a single con-

dition must contain an arbitrary constant, for there is an infinite

number of lines satisfying a single condition ;
hence a single geo-

metrical condition defines a system of lines.

Thus the equation y=2x-\-b, where b is an arbitrary constant, represents the

system of lines having the slope 2; and the equation y — 5 — m (x — 3), where m
is an arbitrary constant, represents the system of lines passing through (3, 5).
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Second rule to find the equation of a straight line satisfying two

conditions.

First step. Write the equation of the system of lines satisfying

one condition.

Second step. Determine the arbitrary constant in the equation

found in the first step so that the other condition is satisfied.

Third step. Substitute the result of the second step in the result

of the first step. This gives the required equation.

This rule is, in general, easier of application than the rule on

p. 93. It has already been applied in solving Ex. 2, p. Ill, and

will find constant application in the following sections. The

number of lines satisfying the conditions imposed will be the

number of real values of the arbitrary constant obtained in

the second step.

Ex. 1. Find the equations of the straight lines having the slope f and

intersecting the circle «2 + ^/^ = 4 in but one point.

Solution. First step. The equation

represents the system of lines whose slopes are | (Theorem I, p. 58).

Second step. The coordinates of the inter-

section of the line and circle are found by solv-

ing their equations simultaneously (Rule, p. 76).

\yi^111 Substituting the value of y in the line in the

V^ \. equation of the circle, we have

x2-f (|« + &)2 = 4,

or 25x2 4. 24 6x + (16 &2 _ 64) = 0.^:
/

YA

The roots of this equation, by hypothesis,

must be equal; hence the discriminant must

vanish (Theorem II, p. 3) ; that is,

576 &2_ 100 (16 62- 64) = 0,

whence

Third step. Substitute these values of b in the equation of the first step.

We thus obtain the two solutions

and 2/ = f X - f

.
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PROBLEMS

• 1. Write the equations of the systems of lines defined by the following

conditions.

(a) Passing through (—2, 3).

(b) Having the slope — f

.

(c) Distance from the origin is 3.

(d) Having the intercept on the F-axis = — 3.

(e) Passing through (6, — 1).

(f ) Having the intercept on the JT-axis = 6.

(g) Having the slope i.

(h) Having the intercept on the F-axis = 5.

(i) Distance from the origin = 4.

2. What geometric conditions define the systems of lines represented by
the following equations ?

(a) 2»-3y + 4A: = 0.

(b) kx-Sy -7 = 0.

(c) X + y - k = 0.

(d) x + k = 0.

(e) x + 2ky -S = 0.

(f ) 2kx-3y + 2 = 0.

(g) X cos a + 2/ sin a + 5 = 0.

Hint. Reduce the given equation to one of the well-known forms of the equation of

the first degree.

3. Determine k so that

(a) the line 2x — Sy + k = passes through (—2, 1). Ans. k = 7.

(b) the line 2kx — 5y + S = has the slope 3. Ans. k = J/.

(c) the line x-\- y — k = passes through (3, 4). Ans. k = 7.

(d) the line Sx — 4y -\- k = has intercept on X-axis = 2.

Ans. k =— 6.

(e) the line x — Sky + 4: = Q has intercept on F-axis = — 3.

Ans. k = — ^.

(f) the line 4x — 3y-f6A: = 0is distant three units from the origin.

Ans. k = ± ^.

4. Find the equations of the straight lines with the slope — j\ which cut

the circle x^ -^ y"^ = 1 in but one point. Ans. 5 x -f- 12 y = ± 13.

5. Find the equations of the lines passing through the point (1, 2) which
cut the circle x^ -{-y^ = 4:in but one point. Ans. y = 2 and 4 x -|- 3 ?/ = 10.

6. Find the equation of the straight line passing through (—2, 5) which
makes an angle of 45° with the F-axis. Ans. x + y — 3 = 0.
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7. Find the equation of the straight line which passes through the point

(2, — 1) and which is at a distance of two units from the origin.

Ans. X = 2 and Sx — 4y = 10.

8. Find the equation of the straight line whose slope is f such that the

distance from the line to the point (2, 4) is 2. Ans. 3 x — 4 y = 0.

52. The system of lines parallel to a given line.

Theorem XI. The system of lines parallel to a given line

Ax + By + C =
is represented by

(XI) Aic-\- By -\-k = Oj

where k is an arbitrary constant.

Proof. All of the lines of the system represented by (XI) are

parallel to the given line (Corollary II, p. 87). It remains to be

shown that all lines parallel to the given line are represented by

(XI). Any line parallel to the given line is determined by some

point Pi (xi, ?/i) through which it passes. If Pi lies on (XI),

then AX]_ + By^^ -f A: = 0;

and hence k — — Ax^ — By^.

That is, the value of k may be chosen so that the locus of (XI)

passes through any point Pi. Then (XI) represents all lines

parallel to the given line. q.e.d.

It should be noticed that the coefficients of x and y in (XI)

are the same as those of the given equation.

Ex. 1. Find the equation of the line through the point Pi (3, — 2) paral-

lel to the line Li:2x -^y - A = 0.

Solution. Apply the Rule, p. 114.

First step. The system of lines parallel to

the given line is

2x-Sy -\-k = 0.

Second step. The required line passes

through Pi; hence
• 2-3-3(-2) + fc = 0,

and therefore k =—12.

Third step. Substituting this value of k,

the required equation is

2x-3y -12 =
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53. The system of lines perpendicular to a given line.

Theorem XII. The system of lines perpendicular to the given

is represented by

(XII) BQe-Ay + k = 0,

where h is an arbitrary constant.

Proof. All of the lines of the system represented by (XII)

are perpendicular to the given line, for (Corollary III, p. 87)

AB — BA = 0. It remains to be shown that all lines perpen-

dicular to the giv.en line are represented by (XII). Any line

perpendicular to the given line is determined by some point

^i(^ij l/i) through which it passes. If Pi lies on (XII), then

whence

Bxi — Ayi -{- k = 0,

k = Ayi — Bxi.

That is, the value of k may be chosen so that the locus of (XII)

passes through any point Pi. Then (XII) represents all lines

perpendicular to the given line. q.e.d.

Notice that the coefficients of x and y in (XII) are respectively

the coefficients of y and x in the given equation with the sign of

one of them changed.

Ex. 1. Find the equation of the line through the point Pi (— 1, 3) perpen-

dicular to the line Li: 6x — 2y } S = 0.

Solution. Apply the Rule, p. 114.

First step. The equation of the system of lines perpendicular to the given

line is

2x-\- 5y + k = 0.

Second step. The required line passes

- —^—I—I

—

r**kJ
I

—[— through Pi ; hence

"/^l M I I Ml^ 2(-l) + 6-3 + A: = 0,

or A; = - 13.

Third step. Substitute this value of k. The required equation is then

2x + 62/-13 = 0.
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PROBLEMS

1. Find the equation of the straight line which passes through the point

(a) (0, 0) and is parallel to (c — 3 y + 4 = 0. Ans. x — Sy = 0.

(b) (3, — 2) and is parallel to x -\- y -\- 2 = 0. Ans. x + y — 1 = 0.

(c) (— 5, 6) and is parallel to 2x + 'ky - S = 0. Ans. x + 2y -7 = 0.

(d) (—1, 2) and is perpendicular toSx — iy + l = 0.

Ans. Ax + Sy -2 = 0.

(e) (— 7, 2) and is perpendicular tox-3?/ + 4 = 0.

Ans. Sx + y + 19 = 0.

2. Find the equations of the lines drawn through the vertices of the

triangle whose vertices are (- 3, 2), (3, - 2), and (0, — 1), which are parallel

to the opposite sides.

Ans. The sides of the triangle are

2x + 3y = 0,x-{-Sy + S = 0,x-j-y-}-l = 0.

The required equations are

2x + Sy + S = 0,x + Sy-S = 0,x + y-l = 0.

3. Find the equations of the lines drawn through the vertices of the

triangle in problem 2 which are perpendicular to the opposite sides, and

show that they meet in a point.

Ans. Sx-2y -2 = 0, 3x-y + 11 = 0, x-y- 6 = 0.

4. Find the equations of the perpendicular bisectors of the sides of the

triangle in problem 2, and show that they meet in a point.

Ans. Sx-2y = 0,3x-y-6 = 0,x-y + 2 = 0.

6 . The equations of two sides of a parallelogram are 3a; — 4y+6 = and

X + 5 2/ — 10 = 0. Find the equations of the other two sides if one vertex

is the point (4, 9). Ans. Sx — 4y + 24: = and x + 5 ?/ — 49 = 0.

6. The vertices of a triangle are (2, 1), (— 2, 3), and (4, — 1). Find the

equations of (a) the sides of the triangle, (b) the perpendicular bisectors of

the sides, and (c) the lines drawn through the vertices perpendicular to the

opposite sides. Check the results by showing that the lines in (b) and (c)

meet in a point.

7. Show that the perpendicular bisectors of the sides of any triangle meet

in a point.

8. Show that the lines drawn through the vertices of a triangle perpen-

dicular to the opposite sides meet in a point.

9. Find the value of C in terms of A and B if Ax + By + C = passes

through a given point Pi (xi, yi) ; show that the equation of the system of

lines through Pi may be written A{x — Xi) + B{y — yi) = 0.
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54. The system of lines passing through the intersection of

two given lines.

Theorem XIII. The system of lines passing through the intersec-

tion of two given lines

and ig : ^2^ + ^2^/ + C'g =

is represented by the equation

(XIII) Aix + Biy + Ci + ^ (^2£c + Bty + C2) = O,

where k is an arbitrary constant.

Proof All of the lines represented by (XIII) pass through the

intersection of L^ and L^. For let P^ (x^, yi) be the intersection

of Li and Xg. Then (Corollary, p. 53)

A^x,-\-B,y^^C^ =
and A 2X1 + B^yi + C2 = 0.

Multiply the second equation by k and add to the first. This

gives

^1^1 + B,y, + Ci + A^ (^23^1 + B0, + C2) = 0.

But this is the condition that Pj lies on (XIII).

That all lines through the intersection of Xi and L^ are repre-

sented by (XIII) follows as in the proofs of Theorems XI and

XII. Q.E.D.

Corollary. If L^ and L^ are parallel, then (XIII) represents the

system of lines parallel to Li and L^.

For if Li and L2 are parallel, then

Ax_Bx
A2 B2

and hence
Ai _Bi
kA^ kBi

By composition,
Ai + kA2_Bi + kB2

Ai Bx

Hence L and (XIII) are parallel (Corollary II, p. 87)

Notice that (XIII) is formed by multiplying the equation of L^

by k and adding it to the equation of L^.
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Ex. 1. Find the equation of the line passing through Pi (2, 1) and the

intersection of ii : 3 ic — 5 ?/ — 10 = and L2 : x {- y + 1 = 0.

Solution. Apply the Rule, p. 114. The system of lines passing through the

intersection of the given lines is represented by

Sx - 5 y - 10 -^ k {x + y -\- 1) = 0.

If Pi lies on this line, then

6_5-10 + fc(2 + l + l) = 0;

whence A; = |.

Substituting this value of k and simplifying,

we have the required equation

21x-ll?/-31 = 0.

Ex. 2. Find the equation of the line passing through the intersec-

tion of Li:2x + y + 1 =0 and L-zix - 2y + 1 = and parallel to

Ls-Ax-Sy-1 = 0.

Solution. Apply the Rule, p. 114. The equation of every line through

the intersection of the first two given lines has the form

2x + ?/ + l + A;(x-2?/ + l) = 0,

or (2 + A:)x + (1 - 2 /c) ?/ + (1 + A:) = 0.

If this line is parallel to the third line (Corollary

II, P- 87),

2+fc _ l-2fc

4 ~ -3 '

whence k = 2.

Substituting and simplifying, we obtain

4x-3y + 3 = 0.

The geometrical significance of the value of k in Theorem XIII
is given most simply when L^ and L2 are in normal form.

Theorem XIV. The ratio of the distances from

Li : X cos 0)1 + 2/ sin toi — ^1 =
and L2 : x cos (1)2 -{- y sin (02 — 2^2 = ^

to any 'point of the line

L : X cos (01 + 2/ sin wi — pi -\- k (x cos wo + ?/ sin wg — ^2) =

is constant and equal to — k.
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Proof. Let Pi {x^ ?/i) be any point on L. Then

Xi cos 0)1 + yx sin ini— pi-\- k (x^ cos <i>2 + yi sin wg —p^ = 0,

and hence - h = "'i cos.». + y. sin.», -y,
Xi cos 0)2 + 2/i sm 0)2 — ^2

The numerator of this fraction is the distance from Zi to Pi,

and the denominator is the distance from L^ to Pi (Theorem IX,

p. 106). Hence — A; is the ratio of the distances from L^ and L^

to any point on L. q.e.d.

Corollary. If k = ± 1, then L is the bisector of one of the angles

formed by L^ and L^. That is, the equations of the bisectors of the

angles between tivo lines are found by reducing their equations to

the normal form and adding and subtracting them.

For when Jfc = ± 1 the numerical values of the distances from L\ and L2 to any

point of L are equal.

The angle formed by L^ and L^ in which the origin lies, or its

vertical angle, is called an internal angle of L^ and igj ^^^ either

of the other angles formed by Xi and L^ is

called an external angle of those lines. From

the rule giving the sign of the distance from a

line to a point (p. 105) it follows that L lies in

the internal angles of L^ and L^ when k is nega-

tive, and in the external angles when k is posi-

tive. If the origin lies on L^ or L^, the lines

must in each case be plotted and the angles in which k is posi-

tive found from the figure.

PROBLEMS

1. Find the equation of the line passing through the intersection of

2x-3?/ + 2 = and 3x-4?/— 2 = 0, ^ithout finding the point of intersec-

tion,) which
(a) passes through the origin.

(b) is parallel to5x — 2y + 3 = 0.

(c) is perpendicular to3x — 2?/ + 4 = 0.

Ans. {B.)bz-ly = 0; (b) 5x - 2^/ -50 = ; (c) 2x + By - 58 = 0.
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2. Find the equations of the lines which pass through the vertices of the

triangle formed by the lines 2x — Sy+l = 0, x — y = 0, and 3x + 4?/ — 2 =
which are

(a) parallel to the opposite sides.

(b) perpendicular to the opposite sides.

Ans. (a) 3x + 4 2/- 7 = 0, 14x-21?/+ 2 = 0, 17x - ITy + 5 = 0;

(b) 4:X-Sy-1=0, 21x + Uy -10 = 0, 17x + 17?/ - 9 = 0.

3. Find the bisectors of the angles formed by the lines Ax — 3y — 1 =
and 3x — 4^ + 2 = 0, and show that they are perpendicular.

Ans. 7 X -7y -\- 1 = and x + ?/ — 3 = 0.

4. Find the equations of the bisectors of the angles formed by the lines

6x-12 2/ + 10 = and 12x - 5?/ + 15 = 0. Verify the results by Theorem X.

5. Find the locus of a point the ratio of whose distances from the lines

4x-3i/ + 4 = 0and5x+12y-8=:0isl3to5. Ans. 9x + 9y-i = 0.

6. Find the bisectors of the interior angles of the triangle formed by the

lines 4x-3y = 12, 5x-12i/-4 = 0, and 12x-5y-13 = 0. Show that

they meet in a point.

Ans. 7x-9y-16 = 0, 7x + 7y-9 = 0, 112x-642/-221=0.

7. Find the bisectors of the interior angles of the triangle formed by the

lines 5x-12y = 0, 5 x + 12 y + 60 = 0, and 12 x - 5 ^ - 60 = 0, and show
that they meet in a point.

Ans. 2y + 6 = 0, 17 x + 7 ?/ = 0, 17 x - 17 y - 60 = 0.

8. The sides of a triangle are 3x + 4?/ — 12 = 0, Sx — iy = 0, and

4x + 3?/ + 24 = 0. Show that the bisector of the interior angle at the

vertex formed by the first two lines and the bisectors of the exterior angles

at the other vertices meet in a point.

9. Find the equation of the line passing through the intersection of

x+ y — 2 = and x — y + Q = and through the intersection of2x — y + 3 =
andx -3?/ + 2 = 0. Ans. 19x -{- Sy + 26 = 0.

Hint. The systems of lines passing through the points of intersection of the two pairs

of lines are
x + y—2+k{x-y + G) =

and 2x— y + 3 + k'(x— 3y + 2)=0.

These lines will coincide if (Theorem III, p. 88)

l + k _ 1-k _ -2 + 6Jc

2+k'~-l-3k' 3+2k'
'

Letting p be the common value of these ratios, we obtain

l + k=2p + pk%

l-k=-p-3pk',
and -2 + 6fc=3p + 2p/y.

From these equations we can eliminate the terms in pk' and p, and thus find the value

of k which gives that line of the first system which also belongs to the second system.
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10. Find the equation of the line passing through the intersection of

2X + 52/ — 3 = and Sx - 2y — 1 = and through the intersection of

x-y = and x + 3y-6 = 0. Ans. 43 x - 35 y - 12 = 0.

A figure composed of four lines intersecting in six points is

called a complete quadrilateral. The six vertices determine three

diagonals of which two are the diagonals of the ordinary quadri-

lateral formed by the four lines.

1 1

.

Find the equations of the three diagonals of the complete quadrilateral

formed by the lines x -{ 2y = 0, 3x-4?/ + 2 = 0, x - y -\- S = 0, and
3x-2?/ + 4 = 0. Ans. 2x-?/ + l = 0, a; + 2 = 0, 5x-6y + 8 = 0.

12. Show that the bisectors of the angles of any two lines are perpen-

dicular.

13. Find a geometricarinterpretation of k in (XI) and (XII).

14. Find the geometrical interpretation of ^ in (XIII) when Li and L^

are not in normal form.

15. Show that the bisectors of the interior angles of any triangle meet in

a point.

16. Show that the bisectors of two exterior angles of a triangle and of the

third interior angle meet in a point.

55. The parametric equations of the straight line. The

angles a and ^ between a line directed upward "* and the coordi-

nate axes (p. 28) are called the direction angles of the line.

Their cosines, cos a and cos
fi,

are called the direction cosines of

the line and satisfy the relation

(1) cos^a-f cos2^ = 1.

For (Theorem I, p. 28) cos ^ = sin or and sin^ a + cos^ a = 1.

Given a line with direction angles a and /3 passing through

Pi(xi, 7/i). Let P(x, y) be any point on this line and denote the

variable directed length P^P by p. The projections of PyP on

the axes are respectively (Theorem III, p. 31)

ic — iCi and y — ?/i,

or (Theorem II, p. 30)

p cos a and p cos ^.

* If the line is horizontal we suppose that it is directed to. the right, so a= and i3= -•
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Hence x — Xi = p cos a and y — y^ = p cos ^;

whence x = x-^-{- p cos a.

y = yi-\-p (^os /3.

Hence we have

Theorem XV. Parametric form. The coordinates of any pomt

P (x, y) on the line through a given point Pi (xi, y^ whose direction

angles are a and /3 are given by

^ ^ \y = yi + pcosfi,

where p denotes the variable directed length PiP.

Equations (XV) are called the parametric equations of the

straight line because they express the variable coordinates of any

point (x, y) on the line in terms of a single variable parameter p.

As p varies from — oo to + oo the point P {x, y) describes the line

in the positive direction. These equations are important in deal-

ing with problems which involve the distances from a point 7\

on a line to the intersections of that line with a given curve.

Theorem XVI. Symmetric form. The equation of a straight line

in terms of the coordinates of a point Pj (xi, y^ on the line and

its direction cosines is

^ ^ cos a
""

cos p
Hint. Solve (XV) for p and equate the two values obtained.

Theorem XVII. The direction cosines of the line

Ax -^ By -[-C =
-^ oare cos o = . cos p

when the sign of the radical is the same as that of A .

Proof. Let Pi {x^. y^ be a point on the given line. Then

(Corollary, p. 53) ^^^ ^ ^^^ + (7 = 0.
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SubtractiDg from the given equation, we obtain

A(x-x{)-hB(t/-y,)=0.

Transpose the second term and divide by —AB] this gives

a; — a^i ^ y — yi

-B A

Dividing this equation by (XVI), we have

cos a _ cos /3

-B ~ A '

Let r denote the common value of these ratios. Then

cos a = — Br and cos (3 = Ar.

Squaring and adding,

cos^ a + cos2 13 = (.1^ 4- B^) r\

Then from (1), p. 123, r = y

and hence
— B A

(2) cos a — --==^= and cos (3

The sign of the radical must be the same as that of yl. q.e.d.

[For since the line is directed upward, i3<— , and hence cos/3 is positive.]

Corollary. If cos cc and cos f3 are proportional to two numbers

a and h, then

a o ^
cos a = ? cos p =

± Va^ + ft2 + Va^ + ft2

The sign of the radical must be the same as that of b.

To reduce the equation of a given straight line to the symmet-

rical or parametric form it is necessary to know the coordinates

of some point on the line (which may be found by the Rule,

p. 60) and its direction cosines (which are given by Theorem

XVII). Then we can write the required equations by Theorem

XV or XVI.
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P X ' y

2. 1

5-1 6

Ex. 1. Plot the line whose parametric equations are x = 2 — | /o and

Solution. Comparing with (XV) we see that

Pi (2, 1) is a point on the line. A second point

will enable us to plot the line. We have at

once the table

Hence the line joining

the points Pi (2, 1) and

P2(— 1, 5) is the required

line.

(x,2/), or(2-fp, l + 4p),

are the coordinates of that

variable point P on the line whose distance

from Pi is the variable p.

Ex. 2. Given the circle C : x^ -{ y^ = 2,6 and the line whose parametric

equations are x = 5 — f p and y = — 3 + | /? ; find the product of the dis-

tances from Pi (5, — 3) to the points of intersection of the .line with C, and

the middle point of the chord formed by the line.

Solution. By Theorem XV the coordinates of any point on the line

are (5-fp, -3 + fp), where p

denotes the distance from Pi to

that point. If that point lies on

C (Corollary, p. 53),

(5-3^)2 + (_3 + |p)2 = 25,

or, simplifying,

(3) /) + 9 = 0.

The roots of this quadratic are

the directed lengths pi = P1P2 and

pi = P1P3, where P^ and P3 are the

points of intersection of the line and
circle. For if P2 (5 - | pi, - 3 + f pi)

is on the circle,

(5-|Pi)^+(-3 + |pi)2 = 25,

or Pi' Upi + 9 = 0.

Hence pi, and similarly p2, is a root of (3).

The product of these distances is therefore 9 (Theorem I, p. 3).

Half the sum of these roots is PiP, or 2/- (Theorem I, p. 3). For p = ^^

we have x = f| and y = ||, so the middle point of the chord is the point
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PROBLEMS

1. Plot the following lines

:

('^ {:=2;S:. .
<^»

1

V5
2

V5

2. Prove that if cos a and cos /3 are the direction cosines of a line directed

upward, then — cos a and — cos /3 are the direction cosines of the same line

directed downward.

3. Find the coordinates of the points on the line H ~ -.
^

, for which

p = S, — 2, and 4. Verify the geometric significance of p for each of these

points by Theorem IV, p. 31.

4. Find the product of the distances from Pi (2, 1) to the intersections of

the line x = 2 — ^p and y = 1 + | p with the circle x^ -\- y^ = 25, and explain

the sign of the result. Ans. — 20.

6. Given the ellipse x^ + 4:y^ = 16 and the line x = Xi - ^ p and

y = Vi + ^ P ; find the equation whose roots are the distances from

Pi{^i, Vi) to the points of intersection of the line and ellipse.

Ans. -p^ - ^"^^ ~ ^^^'
p + xi2 + 4yi2 - 16 :^ 0.

25 5

6. Find the condition that Pi in problem 5 should be the middle point of

the chord on which it lies.

Hint. The two values of p must be numerically equal, with opposite signs.

7. Given the parabola y^ = 4x and the line a; = 2 + p cosar, y = -4:

-I- p cos /3 ; find the condition which cos a and cos j8 must satisfy if the

line meets the parabola in but one point.

Ans. cos2 a + 4 cos a cos /3 + 2 cos^/S = 0.

8. If a and 6 are two numbers such that a^ + 62 = 1, prove that a and b

are the direction cosines of some line.

9. Derive equation (XVI) from Theorem V (p. 95) and Theorem I (p. 28).

10. Prove that the common value of the ratios in (XVI) is the length PiP.

Hint. Square (XVI), apply the Theorem on the sum of the antecedents and of the

consequents, and then take the square root.

11. Derive equations (XV) from (XVI) by means of problem 10.
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MISCELLANEOUS PROBLEMS

1. Find the point on the line 3 x — 5 ?/ + 6 = which is equidistant from

the points (3, — 4) and (2, 1).

2. Find the equation of the line through the intersection of the lines

7x + 2/-3 = and 3x + 6y — 11 = which is perpendicular to the line

joinhig their intersection to the origin.

3. Find the equation of the line through the point (2, 5) such that the

portion of the line included between the axes is bisected at that point.

4. Find the equation of the line through the point (2, — 3) such that

the portion of the line included between the lines 3x + 2/ — 2 = and

x + 5?/ + 10 = is bisected at that point.

6. Prove that the diagonals of a rhombus are perpendicular.

6. If the F-axis makes an angle of w with the X-axis, find the equation of

the straight line in terms of its intercept h on the Y-axis and its inclination a.

7. If the Y-axis makes an angle of w with the JT-axis, find the equation

of the straight line whose inclination is a which passes through Pi(xi, 2/i)-

8. If the Y-axis makes an angle of w' with the X-axis, find the normal

form of the equation of the straight line.

9. Find the tangent of the angle which one line makes with another if the

axes are oblique.

10. Show that all of the lines for which m = b pass through the same

point, and find the coordinates of that point.

1 1

.

Show that all of the lines for which - + - = constant pass through the
a b

same point, and find the coordinates of that point.

12. Prove that all of the lines Ax -\- By + C = for which A -\- B + C =
pass through the same point, and find the coordinates of that point.

13. Find the points in which the lines 2x — Sy = 0, x-t-4y — 2 = 0,

2x-3y + X(x+4?/-2) = 0, 2x-3?y-X(x- 4 ?/ - 2) = cut the X-axis.

Show that the last two points divide the line joinhig the first two points inter-

nally and externally in the same numerical ratio.

14. Prove that Ax -\- By + C = represents a straight line by showing

that if Pi and P2 lie on the locus of the equation, the point which divides PiP2
in the ratio X lies on the locus of the equation.

15. Find the bisectors of the exterior angles of the triangle formed by

2 X - 3 y -f- 120 = 0, X + ?/ = 0, and 3x-f-42/-6 = 0. Show that these lines

meet the opposite sides in three points on the same straight line.
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16. Find the equation of tlie line passing through the intersection of

Az + By -^ C = and A'x + B'y + C = which (a) passes through the

origin, (b) is parallel to the X-axis, (c) is parallel to the F-axis.

17. Show that the lines {A + X^^^ + (^ + '^B')y + {C + XC) = pass

through a point if X is a variable parameter and the other letters are constant.

18. Let Aix + Biy + Ci = 0, A^x + B^y + Cs = 0, and A^x + ^sy + C3 =
be three given lines forming a triangle. Show that the equation of any line

Ax -\- By -\- C = may be written in the form

a (Aix + Biy + d) + )8 {A^x + ^22/ + C2) + 7 (^3^ + Bsy + C3) = 0,

where a, /3, and 7 are definite constants.

Hint. Use Theorem III, p. 88.

19. Find the ratio in which the line 2x — 6y + 8 = divides the line join-

ing the points Pi(l, 3) and P2(7, 2).

Hint. The coordinates of the point dividing PjPa 'i^to segments whose ratio is A are

— , ) ; determine A so that this point lies on the given line.
1 + A. l + A/'

20. Find the ratio in which the line x + Sy — 6 = divides the line

joining (- 3, 2) and (6, 1).

21. Determine m so that the line y = mx — 7 divides the line joining

(3, 2) and (1, 4) in the ratio 3:2.

22. Find the equation of the line passing through the point (2, — 3) which

divides the line joining (6, 3) and (2, — 1) in the ratio 2 : 5.

23. Show that the ratio of the distances from the line Ax -}- By -^ C = 0to

the points Pi{Xi, yi) and P2(X2, 2/2) is -^ -^ -•
Ax2 + By2 + C

24. Show that the line Ax + By + C = divides the line joining Pi(xi, yi)

and P2 (X2, 2/2) into segments whose ratio is — -

—

~ .

25. Show by the preceding example that any line cuts the sides of a tri-

angle P1P2, P2-P3, and P3P1 in the points L, M, iV^such that

PiL P2M PsN ^ ^

LP2 ^ MPs ^ NPi
~

26. Plot the line 2x — Sy + 6 = and indicate all of the points for which

2x-3y + 5>0.

27. Find the area of the triangle formed by AiX + Biy + Ci = 0,

A2X + B2y 4 C2 = 0, and A^x + B^y -f O3 = 0.



CHAPTER V

THE CIRCLE AND THE EQUATION x^ + y^ + Dx + Ey + F =

56. The general equation of the circle. If (a, ^) is the center

of a circle whose radius is r, then the equation of the circle is

(Theorem II, p. 58)

(1) x^-{-y^-2ax-2py-\-a^-\- ft^-r^ = Oj

or

(2) (oc-ay + (y-py = r\
'

In particular, if the center is the origin, a = 0, ^ = 0, and (2)

reduces to

(3) ijc^ + y^ = r\

Equation (1) is of the form

(4) x''-{-2f-^Dx-{-Ey-\-F= 0,

where

(5) D = -2a, E=- 2 13, Siud F=:a^ + /3^- 7^.

Can we infer, conversely, that the locus of every equation of

the form (4) is a circle ? By comparing (4) with (1) we obtain (5).

Whence

(6) a=--, ^ = --, and r^ =

These values of a and f3 are real, and if D^ + E^ — 4 F is posi-

tive, the value of r is real and the locus of (4) is a circle.

To plot the locus of (4) by points (Rule, p. 60), we solve for y.

This gives

E I /E^ —AF
(7) y = -'^±^~x^-Dx +{-^—
The discriminant of the quadratic under the radical in (7) is

© = D2 - 4(- 1) f 1 = 2)2 + ^' - 4F,

which is the numerator of r^ in (6).

130
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If © is positive, the quadratic under the radical is positive for

values of x between the roots (Theorem III, p. 11) and the equa-

tion has a locus, as we have seen.

If is zero, the roots of the quadratic are real and equal (Theo-

rem II, p. 3). But for all other values of x the quadratic is

negative (Theorem III, p. 11). The locus therefore consists of

the single point
D e\

For the quadratic in (7) equals zero when k = — — (p. 2), and hence, from (7),

E
the corresponding value of t/ is —-^- This also follows from (6) if we suppose r

approaches zero, for then the circle consists only of its center ( — ^ » ~ "^ )

'

If is negative, the quadratic in (7) is negative for all values

of X (Theorem III, p. 11) except the roots, which are imaginary

(Theorem II, p. 3). Hence there is no locus.

The expression ® = D^ -\- E^ — 4:F is called the discriminant

of (4). When = the locus of (4) is often called a point-circle

or a circle whose radius is zero.

We have thus proved

Theorem I. The locus of the equation

(I) oe^ + y^ + Utoo + Ey + F = 0,

whose discriminant is ® = D^ -{- E^ — 4: F, is determined as follows:

(^a) When is positive the locus is the circle whose center is

(
— — > — 77 ) and whose radius is r = -i- Vz)^ -^ ^^ — 4i^= ^ V©.

^ / ( D e\
(b) When © is zero the locus is the point-circle I

— "^' ~~
"o 7'

(c) When is negative there is no locus. ^ '

Corollary. When E = the center of (I) is on the X-axis, and

when D = the center is on the Y-axis.

Whenever in what follows it is said that (I) is the equation

of a circle it is assumed that is positive.
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Ex. 1. Find the locus of the equation x^ + y^ — 4:X + Sy — 5 = 0.

Solution. The given equation is of

the form (I), where

D = - 4, ^ = 8, F = -6,

and hence

e = 16 + 64 + 20 = 100>0.

The locus is therefore a circle whose

center is the point (2, — 4) and whose

radius is
-J-
VlOO = 5,

The equation Ax^ -\- Bxy + Cy"^

-{-DX + Ey + F =0 is called the

general equation of the second degree

in X and y because it contains all

possible terms in x and y of the second and lower degrees.

Theorem II. The locus of the general equation of the second

YA

t^
^ ^N

X ' / \ i-'

/ \

\

(-2, i)

\ /

\ /
\ /^^ ^y

r*

degree^

Ax^ + Bxy ^Cif^Bx^Ey^F=^,
1)2 + ^2

is a circle when and only when A
is positive.

C,B = 0, and
4.AF

Proof The equation of every circle must have the form (I)

;

hence the coefficients of x^ and y^ must be equal and the xy term

must be lacking ; that is, the locus of (II) can be a circle only

when A =C and B = 0. If these conditions be satisfied, (II)

may be written in the form

x"" + y^ -}- jx -h jy -\- -j = 0,

whose locus is a circle when and only when its discriminant

D'^-^ E^-4.AF
IS positive. Q.E.D.

57. Circles determined by three conditions. The equation of

any circle may be written in either one of the forms

(x-ay + (y-py = r'

or x'^-\-y^ + Dx + Ey-{- F=0.
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Each of these equations contains three arbitrary constants.

To determine these constants three equations are necessary, and

as any equation between the constants means that the circle sat-

isfies some geometrical condition, it follows that a circle may be

determined to satisfy three conditions.

Rule to determine the equation of a circle satisfying three

conditions.

First step. Let the required equation he

(1) (^_a)2-f(y-/3)2 = r2

or

(2) x^-^y^ + Dx-\-Ey^F=0,

as 77? ay be more convenient.

Second step. Find three equations between the constants a, fi,

and r [or D, E, and F] which expy^ess that the circle (1) \_or (2)]

satisfies the three given co7iditions.

Third step. Solve the equations found in the second stepfor a, /?,

and r [or D, E, and F~\.

Fourth step. Substitute the results of the third step in (1) [or

(2)]. The result is the required equation.

Ex. 1. Find the equation of the circle passing through the three points

Pi(0, 1), P2(0, a), and P3(3, 0).

Solution. First step. Let the required equa-

tion be

(3) x'^ + y"^ + Dx + Ey + F = 0.

Second step. Since Pi, P2, and Pg lie on (3),

their coordinates must satisfy (3). Hence we

have

1 + ^ + P = 0,

36 + 6 ^ -I- P = 0,

(4)

(5)

and

(6) 9 + 3D + P = 0.

Third step. Solving (4) , (5) , and (6) , we obtain

E = -7, F=6, D = -B.

Fourth step. Substituting in (3), the required equation is

x2 + y' 7y + G = 0.
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since it

By Theorem I we find that the radius is | V2 * and the center is the

point (I, I).

Ex. 2. Find the equation of the circle passing through the points

Pi (0, — 3) and P^ (4, 0) which has its center on the line ic + 2 ?/ = 0.

Solution. First step. Let the required equation be

(7) x2 + ?/2 + Dx + Ey + F = 0.

Second step. Since Pi and P2 lie on the locus of (7), we have

(8) 9-3^ + P =
and

(9) 16 + 4 D + P = 0.

The center of (7) is ( ,
— 7- ) > and

lies on the given line,

-f-(-f)-.
or

(10) D-\-2E = 0.

Third step. Solving (8), (9), and (10), we obtain

D = -
-V-, E = h and P = - -2/-.

Fourth step. Substituting in (7), Xve obtain the required equation,

x2 + 2/2 - -V- « + 1 y - ¥ = 0.

or 5 x2 + 5 2/2 _ 14 x + 7 ?/ - 24 = 0.

The center is the point (|, — ^^), and the radius is ^ V29.

>

PROBLEMS

1. Find the equation of the circle whose center is

(a) (0, 1) and whose radius is 3.

(b) (—2, 0) and whose radius is 2.

(c) (—3, 4) and whose radius is 5.

(e) (or, 0) and whose radius is a.

(f
) (0, p) and whose radius is /3.

is) (Oj — jS) and whose radius is /3.

Arts. x2 + ?/2 — 2 y - 8 = 0.

Ans. «2 + 2/2 ^ 4 a;
_ 0.

Ans. x^ + y'2 -{-6x - Sy = 0.

Ans. a;2 + 2/2 — 2 ax =: 0.

Ans. x^ + y^ - 2 Py = 0.

Ans. a;2 + 2/2 + 2 ]82/ = 0.

* The radius is easily obtained, since Vi is the length of the diagonal of a square
whose side is one unit. We may construct a line whose length is y/n by describing a
semicircle on a line Avhose length is n + 1 and erecting a perpendicular to the diameter
one unit from the end. The length of that perpendicular will be -y/n.
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2. Find the locus of the following equations.

L (a) a;2 + 2/2 _ 6x - 16 = 0. (f) x2 + y2 _ e^; + 4y - 5 = 0.

P —X^(b) 3x2 + 3y2_i0x-24 2/ = 0. (g) (x + 1)2 + (y _ 2)2 = 0.

' (c) x2 + 2/2 ^ 0. (h) 7 x2 + 7 i/2 - 4 X - y = 3.

^ (d) x2 + 2/2 _ 8x - ?/ + 25 = 0. (i) x2 + 2/^ + 2 ox + 2 6?/ + a2 + 62 = q.

(e) x2 + 2/2 - 2x + 2 2/ + 5 = 0. (j) x2 + 2/2 + 16x + 100 = 0.

3. Find the equation of the circle which

(a) has the center (2, 3) and passes through (3, — 2).

Ans. X2 + 2/2 -4X-62/-13 = 0. '^

(b) passes through the points (0, 0), (8, 0), (0, - 6).

Ans. x2 + ^2 _ 3 a; _^ (5 y _ 0^

(c) passes through the points (4, 0), (— 2, 5), (0, — 3).

Ans. 19x2 +-19^2^ 2x- 47 2/ - 812 = 0.

(d) passes through the points (3, 5) and (—3, 7) and has its center on

the JT-axis. Ans. x2 + y2 _|_ 4 j. _ 46 = Q.

(e) passes through the points (4, 2) and (—6, — 2) and has its center on "*

the F-axis. Ans. x2 + 2/2 + 5 2/ - 30 = 0.

(f) passes through the points (5, — 3) and (0, 6) and has its center on

the line2x -3?/ - 6 = 0. Ans. 3x2 + 82/2 - 114x - 642/ + 276 = 0.

(g) has the center ( — 1, — 5) and is tangent to the JT-axis.

Ans. x2 + ^2 _^ 2 X + 10 2/ + 1 = 0.

(h) passes through (1, 0) and (5, 0) and is tangent to the F-axis.

^715. x2 + 2/^-6x±2V5y + 5 = 0.

(i) passes through (0, 1), (5, 1), (2, - 3).

Ans. 2x2 + 2^2_iox + 2/-3 = 0.

(j) has the line joining (3, 2) and (— 7, 4) as a diameter.

Ans. x2 + 2/^ + 4 X - 6 2/ - 13 = 0.

(k) has the line joining (3, — 4) and (2, — 5) as a diameter.

Ans. x2 + 2/2 - 5 X + 9 y + 26 = 0.

(1) which circumscribes the triangle formed by x — 6 = 0, x4-22/ = 0,

and X - 2 2/ = 8. Ans. "2 x2 + 2 y2 _ 21 x + 8 ?/ + 60 = 0.

(m) passes through the points (1, — 2), (— 2, 4), (3, — 6). Interpret the

result by the Corollary, p. 98.

(n) is inscribed in the triangle formed by4x + 32/ — 12 = 0, 2/ — 2 = 0,

tx

- 10 = 0. Ans. 36 x2 + 36 2/2 - 516 x + 60 2/ + 1585 = 0.

4. Plot the locus of x2 + 2/2 - 2 x + 4 7/ + A: = for A; = 0, 2, 4, 5 - 2, - 4,

8. What values of k must be excluded

?

Ans. lc>h.
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5. What is the locus of x"^ + y^ + Dx + Ey -{- F = ii DandE are fixed

and F varies ?

6. For what values of k does the equation A"^ + y^ — 4x + 2 ky + 10 =
have a locus ? Ans. k> -{ V6 and A; < — V6.

7. For what values of k does the equation x^ + y^ -\- kx + F = have a

locus when (a) F is positive
;

(b) F is zero
;

(c) F is negative ?

Ans. (a) ^ >

2

Vf and k<-2^F
;

(b) and (c) all values of k.

8. Find the number of point-circles represented by the equation in

problem 7. Ans. (a) two
;

(b) one
;

(c) none.

9. Find the equation of the circle in oblique coordinates if w is the angle

between the axes of coordinates.

Ans. {x - a:)2 + (?/ - /3)2 + 2 (x — a) {y - ^) cos w = r'^.

10. Write an equation representing all circles with the radius 6 whose

centers lie on the X-axis ; on the Y-axis.

11. Find the number of values of k for which the locus ot^

(a) x^ + y"^ -}- 4:kx - 2 y + 6 k = 0,

(b) x^ + y^ + 4:kx - 2y - k = 0,

(c) x2 -f 2/2 + 4 fcx - 2 2/ + 4 A: =

is a point-circle. Ans. (a) two
;

(b) none
;
(c) one.

12. Plot the circles a;^ + ?/2 + 4 x - 9 = 0, x'^ + y^ - ix - 9 = 0, and

x2 -f- 2/2 _|_ 4x _ 9 + A:(x2 + 2/2 _ 4x - 9) = for A: = ± 1, ±3, ± i, - 5,

— ^. Must any values of k be excluded ?

13. Plot the circles x2 + 2/2 + 4x = 0, x2 + 2/2 _ 4^; = 0, and x2 + y2 + 4x

-f A; (x2 -|- 2/2 — 4 x) = for the values of k in problem 12. Must any values

of A: be excluded ?

14. Plot the circles x2 -1- ?/2 + 4x + 9 = 0, x2 + ?/2 - 4x + 9 = 0, and

x2 + 2/2 + 4x4-9 + A:(x2 + 2/2-4x4- 9) = for A; = - 3, - |, -5, - |,

—
I,

—
f , — 1. What values of k must be excluded ?

' 58. Systems of circles. An equation of the form

x^-\-y'^ + Dx + Ey + F=0
will define a system of circles if one or more of the coefficients

contain an arbitrary constant. Thus the equation

x^ -\- 7/^ — r^ =
represents the system of concentric circles whose centers are at

the origin. Very interesting systems of circles, and the only

systems we shall consider, are represented by equations analogous

to (XIII), p. 119.
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Theorem III. Given two circles, '

Ci :
^2 + 7/2 + D^x + E^y + i^'i =

and C^:x^ -{-if -{- D^x + E^y + F^ = 0;

then the locus of the equation

(III) oc^ + y^ + n^oc + Eiu + F^

+ l^iic'' + 2/^ + i>2^ + E^y + JPa) = O

t5 (Z circle except when k = — X. In this case the locus is a straight

line.

Proof. Clearing the parenthesis in (III) and collecting like

terms in x and y, we obtain

{l + l<)x^-\-{l-\-k)y^+ {Dy^kR,)x + {E, + kE^)y+ {F, + kF,) = 0.

Dividing by 1 + ^ we have

"^ +y ^ ij^k ^^
1 + /^ ^ i^rk ^•

The locus of this equation is a circle (Theorem I, p. 131). If,

however, k = — 1, we cannot divide by 1 + A^. But in this case

equation (III) becomes

(A - D,)x + (E, -E,)y+ (F, - F,) = 0,

which is of the first degree in x and y. Its locus is then a

straight line called the radical axis of Ci and C^. q.e.d.

Corollary I. The center of the circle (III) lies upon the line

joiiiing the centers of Ci and Cg and divides that line into seg-

ments whose ratio is equal to k.

For by Theorem I (p. 131) the center of Ci is Pi( - —i. - -^
) and of C-i is

f D2 Ei\ \ 2 2 /

P2 (
»

j
• The point dividins? P1P2 into segments whose ratio equals k

is (Theorem VII, p. 39) the point — »
-——

> or,
L— 1-f-A^ l-rfl! —J

. ,., . ( Dx + kDi Ei-{-kE2\ ^ . . . ^^ ^ . .tttnsjmphfymg,
(^
-

^
> - -

^
j ' which is the center of (III).
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Corollary II. The equation of the radical axis of C-^ and C^ is

(A -D,)x+ (E, - E,)y + (Fi - F,) = 0.

Corollary III. The radical axis of two circles is perpendicular to

the line joining their centers.

Hint. Find the line joining the centers of C^ and C2 (Theorem VII, p. 97) and show
that it is perpendicular to the radical axis by Corollary III, p, 87.

. The system (III) may have three distinct forms, as illustrated

in the following examples. These three forms correspond to the

relative positions of C^ and Cg, which may intersect in two points,

be tangent to each other, or not meet at all.

Ex. 1. Plot the system of circles represented by

x2 + 2/2 4- 8x - 9 + ^-(x2 + ?/2 - 4a; - 9) = p^,
•

Solution. The figure shows the circles

a:2 + 7/2 + 8 X - 9 = and x'^ -h y^ - 4:X - 9 =

plotted in heavy lines and the circles corresponding to

A; = 2, 5, 1, 4,-4, - f , and -
I

;

these circles all pass through the intersection of the first two.

The radical axis of the two circles plotted in heavy lines, which corre-

sponds to k = — 1, is the F-axis.
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Ex. 2. Plot the system of circles represented by

x2 + ?/2 -f 8x + k{x^ + 2/2 - ix) = 0.

-
^

-=

^
Y,

^
----

N
--

/
/ y \ /^rVJ ^

s \
/ /

/ /' ^\ rN
\, ^

1 ( / / ^\ 'P^ Ni \
\

\l

( r A^3 \

X
\ ^^ fc3 J X

\ \ \ \ ^!^ ^Ki
/'

1 /I

\ \ \^ ^f \^ ^-^y / /
\
\
\ ^ \-^ -^ y /

-
^ -^/

r
\.^> ^^ --

Solution. The figure shows the circles

x^ + y^ + Sx = and x^ + y'^-4:X =

plotted in heavy lines and the circles corresponding to

A: = 2, 3, I, 5, 1, 1, - 7, i, - 4, - 3, and - f
These circles are all tangent to the given circles at their point of tangency.

The locus for Z: = 2 is the origin.

Ex. 3. Plot the system of circles represented by

' x2 + 2/2_iOx + 9 + A;(x2 + 2/2 + 8cc + 9) = 0.

Solution. The figure shows the circles

x2 + y2 _ 10 X + 9 = and x2 + ?/2 _^. gx + 9

plotted in heavy lines and the circles corresponding to

Jc = h 17, h - 10, - tV. and - V-
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These circles all cut the dotted circle at right angles, as will be shown
later. For k = f the locus is the point-circle (3, 0), and for A: = 8 it is the

point-circle (—3, 0).

In all three examples the radical axis, for which A; = — 1, is the F-axis.

Theorem IV. When the circles

Ci :
^2 _^ 2/' + A^ -h E,ij + Fi =

and C^ : x^ -\- y^ -\- D^x -f Ec^y + F^ =
intersect in two points P^ (xi, y^) and P^ (x^, y^, then the system

of circles represented by

a;2 + y2 _,_ ^^^ _j_ ^^y _j_ 2^^ _p ;^(^2 _^ y2 _^ ^^^ ^ ^^^ + ^2) =
consists of all circles passing through P-^ and P^.

Proof. First, every circle of the system passes through Pj and

Pa- I'or, since Pj lies on C^ and Cg, we have

^1 + 2/1' + A^i + A2/1 + i^i =
and x^ -^ 2/i2 ^ ^^^^ ^ ^^^^ + P2 = 0.

Multiply the second equation by h and add to the first; this

gives

which is the condition that P^ lies on any circle of the system.

In the same manner we can show that every circle of the system

passes through P^.

In the second place, every circle which passes through P^ and

P2 is in the system. For any such circle is determined by Pi, Pg

and a point P3 (ccg, y^) not on the line P^P^- Then if P^ lies on a

circle, of the system, we have

^3' + 2/3' + D^x^ + E^y^ + i^i + /v (rrg^ + y,^ + D^x^ + i^J^T/g + P2) = 0,

and hence ^ ^ _ ^a^ + ^a^ + A^3 + A.Vs + ^1.

a^s' + 2/3' + Aa^s + -E^22/3 -f P2

That is, a value of k can be determined so that the corresponding

circle passes through P3. Since P3 is any point not on P^P^,

that circle is any circle which passes through Pi and P^; and
hence every circle which passes through Pj and Pg belongs to

the system. q.e.d.
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Corollary. The radical axis of two iiitersecting circles is their

common chord.

In like manner we may prove

Theorem V. When the circles

Ci :
^2 + 2/2 + D^x + J5:iy + Fi =

and Ca : cc^ + 2/^ + D^^ + E^y -^ F^ =

are tangent at the j^oint Py (xi, t/j), then the system of circles repre-

sented hy

^' 4- 2/' + Aa^ + E,y J^F^-\-k{x^ + t/ + D^x + E^y + ^2)=

consists of all circles tangent to C^ and C^ at Pj.

These theorems show how to construct the circles of the system

in case Ci and Cg intersect or are tangent, but there is no analo-

gous theorem if Ci and Cg do not intersect. In what follows we
shall consider a method which applies to all three cases.

Theorem VI. The equation of the systein (III), (p. 137), may he

tvritten iii the form

(VI) ic2 + y2 _,_ j^f^ _,_ 2?^ ^ Q^

where k' is an arbitrary constant, if the axes of x and y be respec-

tively chosen as the line of centers and the radical axis of Ci and Cg.

Proof No matter how the axes be chosen, the equations of

Ci and C2 have the forms

C^:x^ + 7/ + D,x + Fiy + Fi =
and C2 : £c2 + ?/2 4- D^x + E^y + F^ = 0.

If the centers of Ci and C\ lie on the Z-axis, then Fi = and

F2 = (Corollary, p. 131). The equation of the radical axis

(Corollary II, p. 138) then becomes

{D,-D,)x^{F,-F,)=0.

If this line is the F-axis, whose equation is x = Q, we must

have Fi — F2 = 0, and "hence F^ = F^. Substituting F for Fj

and Fa and setting E^ = and F2 = in (III), we obtain

x"^ -{- y"" + D^x -{- F -{- k (.t2 + t/^ + D^x + F) = 0.
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Collecting like powers of x and y and dividing by 1 + yfc, we
obtain

x^ ^-tf ^ ic + F = 0.
X -]- ki

The coefficient of a; changes with k and may be denoted by a

single letter; if we set

A + hP,

1-^k -"'

we obtain equation (VI). q.e.d.

Corollary. The centers of the circles of the system (YI) lie on

the X-axis.

The study of the system of circles (III), p. 137, may then be

effected by the study of the system (VI), whose equation is in a

simpler form than that of (III).

Theorem VII. If r' is the radius of that circle of the system

X^ + 2/2 + k'x + F =

whose center is (a\ 0), then

k'^ — 4: F
Proof For by Theorem I (p. 131) we have r'^ =

and a'2 = -—
• Hence r'^ = a'"^ — F.

4

Corollary I. When F is negative, r' is the hypotenuse of a right

triangle ivhose legs are a! and V— F.^

Corollary II. When F is zero, then r' = a'.

Corollary III. When F is positive, a' is the hypotenuse of a right

triangle ivhose legs are r' and '\F

.

We may readily construct circles of the system (VI) by the

use of these corollaries. With the preliminary remark that the

centers of all of the circles of the system lie on the Z-axis (by

the Corollary), we shall consider the three cases separately.

* When F is negative, —F is positive, and hence y/-F is a real number.
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Case I. F < 0. In this case r'^ = a'^ — F is positive for all

real values of a', and hence every point on the A'-axis may be

used as the center of a circle belonging to the

system.

On OF lay off OA = V— i^. With any

point P' on the Z-axis as center and with.

P'A as a radius, describe a circle ; this circle

will belong to the system. For let OP' = a';

then P'A = r' by Corollary I. The system

is then composed of all circles whose centers

lie on the Z-axis which pass through A (0, + V— F). It is evi-

dent that the circles will also pass through B (0, — V— F).

Case II. F =0. In this case r''^ = a'^, and hence all points

on the Z-axis may be used as centers. Further,

the circles of the system will all pass through

the origin (Theorem YI, p. 73). Hence the

circle whose center is any point P' on the

Z-axis and whose radius is P'O will belong to

the system. It is evident that all of the cir-

cles of the system are tangent to the F-axis at the origin and

also to each other.

Case III. F> 0, In this case r'^ = a'^ — F is positive only

when a' is numerically greater than \F, and hence points on the

Z-axis for which a' is numerically less

than V^ cannot be used as centers.

With as a center and with Vf as a

radius, describe a circle, the dotted circle

in the figure. Let P' be any point on the

Z-axis outside of this circle. Draw P'A

tangent to the dotted circle. With P' as

center and P'A as radius, describe a circle; this circle will belong

to the system. For let P'0= a'', then, since OA = Vf, and since

^ is a right angle, P'A =r' by Corollary III. Two intersecting

jircles whose tangents at a point of intersection are perpendicu-

lar are said to be orthogonal ; hence the system is composed of all

circles whose centers are on the Z-axis which cut the dotted circle
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orthogonally. If P' falls at C or D, the radms will be zero

;

that is, the point-circles C and D belong to the system and are

called its limiting points. Hence

Theorem VIII. The circles of the system represented by

a;2 4. 2/2 + h'x -\-F=0

have their centers on the X-axis, and

(a) pass through (0, + V— F) and (0, — V— F) if F is

negative ;

(b) are tangent to each other at the origin ifF= 0;

(c) are orthogonal to the circle x^ + y'^ = F if F is positive.

The constructions given in the proof were used in drawing the

figures on pages 138 and 139.

It is evident from the figures, and can be proved analytically,

that there are no point-circles if F is negative, that there is one

point-circle if F is zero, and that there are two if F is positive.

59. The length of the tangent.

Theorem IX. Given a point Pi (xi, y-^ and the circle

C -.x"^ + !/-{- Dx-\-Ey -^F^O,

then the product of any secant through P^ and its external s.eg-

Tnent is

Proof Let the equations of any line through Px be (Theorem

XV, p. 124)

x = Xx + p cos a,

2/ = 2/1 + P cos /?.

Then if the point (x, y) or (x^ -f

/>j p cos a, yi + p cos (3) lies on C, we

have (Corollary, p. 53)

(xi + p cos a)2 + (?/i -f p cos (3y

+ D(xi-\- p cos a) 4- -^ (2/1 + f>
cos l3)-\-F=0.
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Simplifying, arranging according to powers of p, and using

(1), p. 123, we have

p2 + p [(2 Xi + D) cos « + (2 2/1 + £) cos y8]

+ ^i' + 2/i' + Dx^ + Eij, + Fi = 0.

The roots of this quadratic are the lengths of the secant PA
and its external segment P1P2' Hence the product of I\Ps and

P1P2 is (Theorem I, p. 3)

As this expression does not contain cos a or cos /3 it is imma-

terial in what direction the secant be drawn. q.e.d.

Corollary. The square of the length of the tangent from P^ to C
is given by (IX).

For when the secant swings around on Pi until it becomes tangent to C, P1P3
and P1P2 both become equal to P1P4.

Theorem X. The ratio of the squares of the lengths of the tan-

gents di'awn from any point of the circle

Cj,:x'-\-y''^- D,x + E,y + ^i

+ k(x^ + 2/' + D2X + E,y + P2) =
to the circles

C,:x' + y''-\- D,x -^E,y-]-F, =
and C^-.x^ + 2/ -\- D^x + E^y 4- Pg =

is constant and is equal to — k.

Proof Let Pi(a:i, y^ be any point on Cj^. Then

^i^ + Vi + A^i + ^i2/i + ^1 + ^ (^1' + Vi + D^^i + E^y, + P2) = 0.

Dividing by the parenthesis and transposing, we obtain

^i" + yi' + A^i + -gi 3/1 + Pi ^
j^

^l' + 2/l' + A^l + P2 2/l + ^2

By the Corollary the numerator of this fraction is the square

of the length of the tangent from Pj to C^, and the denominator

is the square of the length of the tangent from Pj to Cg. Hence

the ratio of the squares of the lengths of those tangents is con-

stant and equal to — A;. q.e.d.
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Corollary I. The locus of a point from which the ratio of the

squares of the lengths of the tangents to the circles C^ and C^ is

constant and equal to — k is the circle C^.

Theorem X proves only one part of the Corollary. It remains to be proved

that all points such that the ratio of the squares of the lengths of the tangents from

these points to C\ and (J% equals — Ic lie on C'^..

Corollary II. The locus of points from which tangents to two

circles are equal is the radical axis of those circles.

PROBLEMS

1. By means of Theorem VIII plot the following systems of circles.

(a) ic2 + 2/2 + 4a; - 1 + A;(x2 + 2/2 - 2x - 1) = 0.

(b) x2 + 2/2 -f 4x + 1 + A;(x2 + 2/2 - 2x + 1) = 0.

(c) x2 + 2/2 + 4x + A;(x2 + y^-2x) = 0.

(d) x2 + 2/2 + 2x - 4 + fc (x2 + 2/2 + Cx - 4) = 0. IP

(e) x2 + 2/2 + 2x + 9 + fc (x2 + 2/2 - 4x + 9) = 0.

(f) x2 + 2/2 - 6 X + A; (x2 + 2/2 + 8 x) = 0.

2. Find the lengths of the tangents from the point

(a) (5, 2) to the circle x2 + ^2 _ 4 = q.

(b) (- 1, 2) to the circle x^ + y^-6x-2y = 0.

(c) (2, 5) to the circle 2x2 + 2 2/2 + 2x + 42/-l=0.
(d) (1, 2) to the circle x^-\-y^ = 25.

What does the imaginary answer in (d) mean ? Ans. Point is within the circle.

3. Determine the nature of the following systems.

(a) x2 + 2/2 + 2 X - 4 2/ + A; (x2 + y2 _ 2 X + 4 y) = 0.

(b) x2 + 2/2 + 4 X - y + fc (x2 + 2/2 - 4 X + 2/ - 4) = 0.

(c) x2 + 2/^+ 2 X - 4 2/ + 1 + A; (x2 + 2/2 - 2 X + 4 y + 1) = 0.

4. Find the equation of the circle passing through the intersections of the

circles x^ + y^ — 1 = and x^ -{- y^ + 2x = which passes through the point

(3,2). ^ns. 7x2 + 7 2/2- 24x- 19 = 0.

6. Find the equation of the circle passing through the intersections of

x2 -I- 2/2 — 6 X = and x2 + 2/2 — 4 = which passes through (2, — 5).

Ans. x2 + 2/^-3x-2 = 0.

6. Find the equation of that circle of the system x^ -\- y^ — Ax — 3

+ A; (x2 + 2/'"^ — 4 2/ — 3) = whose center lies on the line x — y — 4:ih=X).

Ans. X2 + 2/2 -6x + 2|/-3='0-
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7. Find the equation of the circle passing through the intersections of

x^ -{ y^ — i X + 2y = and x^ + ^z^ — 2y — 4 = whose center lies on the

line 2x + 4y-l = 0. Ans. x'^ + y^ - 3x + y - 1 = 0.

8. Find the equations of the circles passing through the intersections of

aj2 _|_ y2 _ 4 — and x^ + y^ + 2x — S = whose radii equal 4.

Ans. x^-\-y^ — 6x-7 = and x^ -{- y^ -\- 8x = 0.

9

.

Find the radical axes of the circles x^+ y2— 4 x= 0, x^ + ?/2+ 6 x— 8 ?/= 0,

and x2 + 2/2 + 6x — 8 = taken by pairs, and show that they meet in a point.

10. Find the radical axes of the circles x^-]-y^-9=0, 3x2+3 2/2-6 x+82/
— 1=0, and x2+2/2_)_8 y=0 taken by pairs, and show that they meet in a point.

11. Show that the radical axes of any three circles taken by pairs meet

in a point.

12. By means of problem 11 show that a circle may be drawn cutting any

three circles at right angles.

13. By means of problem 11 prove that if several circles pass through two

fixed points their chords of intersection with a fixed circle will pass through

a fixed point.

14. The square of the tangent from any point Pi of one circle to another

is proportional to the distance from the radical axis of the two circles to Pi.

15. If Ci and C^ (Theorem III) are concentric, then all the circles of the

systeni (III) are concentric.

16. Show that when Ci and C2 (Theorem III) are concentric the equation

of the system (III) cannot be written in the form given in Theorem VI.

17. Show that the radical axis of any pair of circles in the system (III)

is the same as the radical axis of Ci and C2.

18. How may problem 11 be stated if the three circles are point-circles ?

MISCELLANEOUS PROBLEMS

1

.

Find the equation of the circle which circumscribes the triangle formed

byx + 2?/ = 0, 3x-2y = 6, and x - y = 6.

2. Find the equation of the circle inscribed in the triangle in problem 1.

3. Find the angle between the radii of the circles x^ -\-y^ = 26 and

x^ -\-y^ — \6x-hS9 = which are drawn to a point of intersection.

Hint. Find the radii, the length of the line of centers, and apply 17, p. 20.

4. Find the angle between the radii of the circles x^ + y^ + DiX + Eiy

+ Pi = and x2 + 2/2 ^ j)^x + P22/ + P2 = which are drawn to a point of

intersection.
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5. Find the condition that the angle in problem 4 should be a right angle.

6. Show that an angle inscribed in a semicircle is a right angle.

7. Prove that the perpendicular dropped from a point on a circle to a

diameter is a mean proportional between the segments of the diameter.

8. If w is the angle between the oblique axes OX and OY, then the

locus of x2 + 2 cos (oxy + ?/2 + Dx + jE"?/ + F = is a circle.

9. Given a circle C:x2+2/2+Zte+^2/+ 2^=0 and a line i:J.x+%+C=0;
show that the system of curves x"^ -\- y^ -\- Bx + Ey + F + k {Ax + By -j-C)=0

consists of all circles whose centers lie on the line through the cent.er of C
perpendicular to L.

10. Find the radical axis of any two circles of the system in problem 9.

1 1 . Find a geometric interpretation of k in the equation in problem 9.

12. What does the equation of the system in problem 9 become if

(a) the Y-axis is the line L and the X-axis passes through the center of C ?

(b) the, origin is the center of C and the Y-axis is chosen parallel to L?

13. Show how to construct the circles of the system x^+y^—r^-{-k{x—a)=0
when (a) r < a ;

{h) r = a; and (c) r>a. -i

14. Show that the discriminant of (III) is

r2^k^ - {(P' - r^ - r2^) ^ + r^

(1 + A:)2
'

where ri is the radius of Ci, r^ of C2, and d is the length of the line joining

the centers of C\ and C2.

15. From problem 14 show that if there are no point-circles in (III), then

Ci and C2 intersect ; if there is one point-circle in (III), then C\ and C2 are

tangent ; if there are two point-circles in (III), C\ and Ci do not intersect.



CHAPTER VI

POLAR COORDINATES

60. Polar coordinates. In this chapter we shall consider a

second method of determining points of the plane by pairs of

real numbers. We suppose given a fixed point 0, called the

pole, and a fixed line OA, passing through

0, called the polar axis. Then any point

P determines a length OP = p and an

angle A OP = 0. The numbers p and

are called the polar coordinates of P. p is

called the radius vector and 6 the vectorial \

angle. The vectorial angle is positive \
or negative as in Trigonometry (p. 18).

"^

The radius vector is positive if P lies on the terminal line of 6,

and negative if P lies on that line produced through the pole 0.

Thus in the figure the radius vector of P is positive, and that of P' is negative.

It is evident that every

pair of real numbers (p, 0)

determines a single point,

which may be plotted by

the

Rule for plotting apoint

whose polar coordinates

(p, 0) are given.

First step. Construct the

terminal line of the vecto-

rial angle 0, as in Trigo-

nometry.

Second step. Ifthe radius

vector is positive, lay off a

length OP = p on the terminal line of 6; if negative, produce the

149
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terminal line through the pole and lay off OP equal to the numer-

ical value of p. Then P is the required point.

In the figure on p. 149 are plotted the points whose polar coordinates are

(''-f>(^-T>(-'X><«-).-(^.-f>
Every point P determines an infinite number ofpairs of numbers (p, 6).

The values of d will differ by some mul-

tiple of 7t, so that if is one value of 6 the

others will be of the form + kTt, where k is

a positive or negative integer. The values

of p will be the same numerically, but will

be positive or negative, if P lies on OB,
according as the value of 6 is chosen so that

OB or OC is the terminal line. Thus, if

OB = p the coordinates of B may be written

in any one of the forms (p, 0), (— p, tt + 0),

(/), 2 TT + 0), {— p, (p—7t), etc.

Unless the contrary is stated, we shall always suppose that 6 is

positive, or zero, and less than 2 ir ; that is, < ^ < 2 tt.

PROBLEMS

1. Plot ..ep„lnu(4.|),(e -),(-., VO.(^,f).(-/-^).
(5, 7t).

2. Plot the points (6, ±j), (-2, ± |), (3, 7t), (-4, tt), (6, 0),

(-6, 0).
\ 4/ \ 2/

3. Show that the points (/>, 6) and (p, — d) are symmetrical with respect

to the polar axis.

4. Show that the points (p, 6), (— p, 0) are symmetrical with respect to

the pole.

5. Show that the points {— p, 7t — 6) and (p, 6) are symmetrical with respect

to the polar axis.

61. Locus of an equation. If we are given an equation in the

variables p and 6, then the locus of the equation (p. 59) is a curve

such that

:

1. Every point whose coordinates (p, 6) satisfy the equation lies

on the curve.

2. The coordinates of every point on the curve satisfy the

equation.
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The curve may be plotted by solving the equation for p and

finding the values of p for particular values of 6 until the coor-

dinates of enough points are obtained to determine the form of

the curve.

The plotting is facilitated by the use of polar coordinate paper, which enables

us to plot values of 6 by lines drawn through the pole and values of p by circles

having the pole as center. The tables on p. 21 are to be used in constructing

tables of values of p and 0.

In discussing the locus of an equation the following points

should be noticed.

1. The intercepts on the polar axis are obtained by setting

^ = and 6 = TT and solving for p.

But other values of 9 may make p = and hence give a point on the polar axis,

namely, the pole.

2. The curve is symmetrical with respect to the pole if, when

— p is substituted for p, only the form of the equation is changed.

3. The curve is symmetrical with respect to the polar axis if,

when — ^ is substituted for 0, only the form of the equation is

changed.

4. The directions from the pole in which the curve recedes to

infinity, if any, are found by

obtaining those values of for

which p becomes infinite.

5. The method of finding the

values of $ which must be ex-

cluded, if any, depends on the

given equation.

Ex. 1. Discuss»and plot the locus

of the equation p = 10 cos 0.

Solution. The discussion enables us

to simplify the plotting and is there-

fore put first.

1. For ^ = p = 10, and foY0 = 7t

p = — 10. Hence the curve crosses the

polar axis 10 units to the right of the

pole.

2. The curve is symmetrical with respect to the polar axis, for

cos(- 0) = COS0 (4, p. 19).

p d 9

10 Tt

2
7t

l2
9.7 nit

12
- 2.6

7f

6
8.7

2;r

3
- 5

7t
37r - 7

4
7 4

7t

5

hit

6
- 8.7

3
llTT - 9.7

57t 12

12
2.6

It -10
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3. As cos d is never infinite,

the curve does not recede to

infinity. Hence the curve is a

closed curve.

4. No values of 6 make p

imaginary.

Computing a table of values

we obtain the table on p. 151.

As the curve is symmetrical

with respect to the polar axis,

the rest of the curve may be

easily constructed without com-

puting the table farther; but

as the curve we have already

constructed is symmetrical

with respect to the polar axis,

no new points are obtained. The locus is a circle.

Ex. 2. Discuss and plot the locus of the equation p"^ = aP- cos 2 0.

Solution. The discussion gives

us the following properties.

1. For ^ = or 7t p = ±a.
Hence the curve crosses the

polar axis a units to the right

and left of the pole.

2. The curve is symmet-
rical with respect to the pole.

3. It is also symmetrical

with respect to the polar

axis, for cos (— 2 ^) = cos 2 6

(4, p. 19).

4. p does not become infinite.

5. p is imaginary when
cos 2 ^ is negative, cos 2 d

is negative when 2 ^ is in

the second or third quadrant; that is, when

i^>2»>* or I^>2»>^.
2 2 2 2

Hence we must exclude values of such that

^^^ n^ ^ J 77r ^ 57r—->e>- and — >d>
4 4 4 4

The accompanying table of values is all that

e P e p

12

±a

±.93 a

It

6

It

4

±.7a

need be computed when we take account of 2, 3, and 5.



POLAR COORDINATES 153

The complete curve is obtained by plotting these points and the points

symmetrical to them with respect to the polar axis. The curve is called a

lemniscate. In the figure a is taken equal to 9.5.

Ex. 3. Discuss and plot the locus of the equation

2

^ ""
1 + cos ^

'

Solution. 1. For ^ = p = 1, and iov d = it p

the polar axis one unit to the right of the pole.

2. The curve is not symmetrical with respect to the pole,

be inferred from 1 ?

3. The curve is symmetrical with respect to the polar axis, since

cos(- d) = cos^ (4, p. 19).

4. p becomes infinite when 1 + cos ^ = or cos 6 =— \ and hence

6 = 7t. The curve recedes to infinity in but one direction.

5. p is never imaginary.

On account of 3 the table of values is computed only to ^ = tt, and the

rest of the curve is obtained from the symmetry with respect to the polar

axis. The locus is a parabola.

CO ; so the curve crosses

How may this

e p Q ?

1 lit
2.7

IT
1.02

12

12

7t
1.07

27r

3
4

6

7t

4
1.2

3 7r

4
6.7

TC
1.3 hit

14
3 G

57r

12
1.6 ll;r

50*
12

Tt
2

2 It CO

PROBLEMS

Discuss and plot the loci of the following equations.

1. p = 10. e = tan-il. 5. psin^ = 4.

2. /t) = 5. Q=-

Z. p = 16.C0S d.

4. p COS ^ = 6.

6
6. p

7. p =

COS^

COS 6
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1 - 2 cos ^

9. p = a sin 6.

10. p = a{l — cos^).

11. /)2 sin 2 ^ n: 16.

12. p2 = 16sin2^.

13. p^cos^2d = a^.

14. p = asm2 6. p = acos2d.

8
15. p =

1 — e cos

for e = 1, 2, i.

16. pcose = asin^d.

17. /9C0S ^ = a cos 2d.

18. /) = a(4 + 6cos^)

for 6 = 3, 4, 6.

19. p =
1 + tan ^

20. p = asece ±h
for a > 6, a = 6, a<b.

21. p = ad.

22.p = asmS6. p = acosSd.

23. Prove that the locus of an equation is symmetrical with respect to

e = — it the results of substituting - + d and —- give equations which
2 2 ^

differ only in form.

24. Apply the test for symmetry in problem 23 to the loci of 4, 5, 10, 11,

and 12.

62. Transformation from rectangular to polar coordinates.

Let OX and OF be the axes of a rectangular system of coordi-

nates, and let be

the pole and OX the

polar axis of a sys-

tem of polar coor-

dinates. Let (x, y)

and (p, 6) be respec-

tively the rectan-

gular and polar coor-

dinates of any point

P. It is necessary

to distinguish two cases according as p is positive or negative.

When p is positive (Fig. 1) we have, by definition,

cos 6

whatever quadrant P is in.

Hence

sin 6

(1) X = p cos 0, y = p sin B.
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When p is negative (Fig. 2) we consider the point P' symmet-

rical to P with respect to 0, whose rectangular and polar coordi-

nates are respectively (— x, — y) and (— p, 6). The radius vector

of P', — p, is positive since p is negative, and we can therefore use

equations (1). Hence for P'

— £c = — p cos ^, — y = — p^md\
and hence for P

X = p cos $, y = p sin df

as before.

Hence we have

Theorem I. If the pole coincides with the origin and the polar

axis with the positive X-axis, then

a? = yocos 9,

p sin $,

where (x, y) are the rectangular coordinates and (p, 6) the polar

coordinates of any point.

Equations I are called the equations of transformation from rec-

tangular to polar coordinates. They express the rectangular

coordinates of any point in terms of the polar coordinates of

that point and enable us to find the equation of a curve in polar

coordinates when its equation in rectangular coordinates is known,

and vice versa.

From the figures we also have

<) {:

(2)

p^ = 00^ -{ y^, = tan-i ^,
oc

e =— ^ cos^=
^

± Vx2 -^y^ ± Vic2 + y2

These equations express the polar coordinates of any point in terms

of the rectangular coordinates. They are not as convenient for use

as (I), although the first one is at times very convenient.

Ex. 1. Find the equation of the circle x'^ + y'^ = 25 in polar coordinates.

Solution. Substitute the values of x and ?/ given by (I). This gives

p2 cos2 e + p^ sin2 d = 25, or (by 3, p. 19) p^ = 2b; and hence p = ± 5, which

is the required equation. It expresses the fact that the point {p, 0) is five

units from the origin.
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Ex. 2. Find the equation of the lemniscate (Ex. 2, p. 152) p^ = a^ cos 2 6

in rectangular coordinates.

Solution. By 14, p. 20, we have

/)2= a2(cos2^-sin2^).

Multiplying by p% p^ = a^ (^2 cos2 d - p"^ sin2 d).

From (2) and (I), {x^ + 2/2)2 = a'^^x2 _ ^2), ^^g.

63. Applications.

Theorem II. The general equation of the straight line in polar

coordi?iates is

(II) p(A cos 6 -hB sin e) + C = 0,

where A, B, and C are arbitrary constants.

Proof. The general equation of the line in rectangular coordi-

nates is (Theorem II, p. S(y)

Ax + By + C = 0. }j)

By substitution from (I) we o.btain (II). q.e.d.

When A = the line is parallel to the polar axis, when 7? = it is perpen-

dicular to the polar axis, and when C= it passes through the pole.

In like manner we obtain

Theorem III. The general equation of the circle in polar coordi-

nates is

(III) p2 ^ p (i) cos |9 + J^ sin e)J^F = 0,

where D, E, and F are arbitrary constants.

Corollary. If the pole is on the circumference and the polar axis

passes th7vugh the center, the equation is

p — 2 r cos ^ = 0,

where r is the radius of the circle.

For if the center lies on the polar axis, or X-axis, E=0 (Corollary, p. 131)

;

and if the circle passes through the x)ole, or origin, F=0. The abscissa of the
D

center equals the radius, and hence (Theorem I, p. 131) — — = r, or I) — — 2r.

Substituting these values of D, E, and F in (III) gives /o — 2r cos ^ = 0.

Theorem IV. The length I of the linejoining two points P^ (pi, Oi)

and P2 (p2, O2) is given by

(lY) P = p,^ + /),^ - 2 p,p, cos {d, - 9,).
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Proof. Let the rectangular coordinates of P^ and Pg be respec-

tively (iCj, ?/i) and (x2, y^. Then by Theorem I, p. 155,

Xi = pi cos 6if X2 = p2 cos 62,

2/1 = pi sin $1, 1/2 = p2 sin 0^.

By Theorem IV, p. 31,

l' = {x,-X2Y-\-{y,-y2y,
and hence l^ = (p^ cos 61 — pa cos ^2)^+ (pi sin 61 — pa sin $2)^.

Removing parentheses and using 3, p. 19, and 11, p. 20, we
obtain (lY). <^ -^^^

q.e.d.

PROBLEMS

1. Transform the following equations into polar coordinates and plot

their loci.

(a) x-Sy = 0. Ans. 6 = tan-' (i).
K

(b) ?/ + 5 = 0. Ans. p =
sin^

(c) x^-{-y^ = 16. Ans. p=±4.
(d) x^ + y'^ — ax = 0. Ans. p = acosd.

(e) 2xy = 7. Ans. p^ sin 2 ^ = 7.

(f) x-^ - ?/2 = a2. Ans. p^ cos 2 ^ = a^.

(g) xcosu + ysinu — p = 0. ^ns. pcos {d — oj) ~ p = 0.

(h) (1 - e2) x2 + ?/ - 2 e2]9x - e2p2 = 0. ^ns. p =—-^
1 — ecos^

(i) 2a:?/ + 4?/2-8a; + 9 = 0. Ans. p2(sin2^ + 4sin2^) - 8/)COs6' + 9 = 0.

2. Transform equations 1 to 21, p. 153, into rectangular coordinates.

3. Find the polar coordinates of the points (3, 4), (—4, 3), (5, —12),

(4, 5).

4. Find the rectangular coordinates of the points (5, — ), ( — 2, — ),
,0 ^x ' \ 2/ \ 4 /

ep
5. Transform into rectangular coordinates p =

ecos^

64. Equation of a locus. The equation of a locus may often

be found with more ease in polar than in rectangular coordinates,

especially if the locus is described by the end of a line of vai'iable

length revolving about a fixed point. The steps in the process

of finding the polar equation of a locus correspond to those in the

Rule on p. 53.
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Ex. 1. Find the locus of the middle points of the chords of the circle

C: p — 2r cos ^ = which pass through the pole which is on the circle.

Solution. Let P{p, 6) be any point on the locus. Then, by hypothesis,

OP = ^ OQ,

where Q is a point on C.

But OP = /) and OQ = 2 r cos 6.

Hence p = r cos 6.

From the Corollary (p. 156) it is seen that

the locus is a circle described on the radius

of C through as a diameter.

Ex. 2. The radius of a circle is prolonged a distance equal to the ordinate

of its extremity. Find the locus of the end of this line.

Solution. Let r be the- radius of the circle, let its center be the pole, and
let P (p, 6) be any point on the locus. Then,

by hypothesis,

OP = OjB + CB.

But OP = p,

OB = r,

and CB = r sin 6.

Hence the equation of the locus of P is

p = r + >• sin ^.

The locus of this equation is called a cardioid.

p{P,d)

PROBLEMS

1. Chords passing through a fixed point on a circle are extended their

own lengths. Find the locus of their extremities.

Ans. A circle whose radius is a diameter of the given circle.

2. Chords of the circle p = 10 cos 6 which pass through the pole are

extended 10 units. Find the locus of the extremities of these lines.

Ans. p = 10 (1 + cos d).

3. Chords of the circle p = 2a cos 6 which pass through the pole are

extended a distance 2 6. Find the locus of their extremities.

Ans. p = 2 (6 + a cos 6). ,
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4. Find the locus of the middle points of the lines drawn from a fixed

point to a given circle.

Hint. Take the fixed point for the pole and let the polar axis pass through the center

of the circle.

Ans. A circle whose radius is half that of the given circle and whose

center is midway between the pole and the center of the given circle.

6. A line is drawn from a fixed point meeting a fixed line in Pi. Find

the locus of a point P on this line such that OPi • OP = a^. Ans. A circle.

6. A line is drawn through a fixed point meeting a fixed circle in Pi

and Pa. Find the locus of a point P on this line such that

OP = 2
^^^

'

^^^
. Ans. A straight line.

OPi + OP2



CHAPTER VII

TRANSFORMATION OF COORDINATES

65. When we are at liberty to choose the axes as we please

we generally choose them so that our results shall have the sim-

plest possible form. When the axes are given it is important

that we be able to find the equation of a given curve referred to

some other axes. The operation of changing from one pair of

axes to a second pair is known as a transformation of coordinates.

We regard the axes as moved from their given position to a new

position and we seek formulas which express the old coordinates

in terms of the new coordinates.

66. Translation of the axes. If the axes be moved from" a first

position OX and OF to a second position O'Z' and O'F' such that

O'X' and O'F' are respectively parallel to OX and OY, then the

axes are said to be translated from the first to the second position.

Let the new origin be 0\h, k) and let the coordinates of

any point P before and after the

translation be respectively (x, y)

and (x\ ?/'). Projecting OP and

OO'P on OX, we obtain (Theorem

XI, p. 48)

X = x^ -\- h.

Similarly, y = y' -{- k.

Hence,

Theorem I. If the axes be translated to a netv origin (h, k), and

if (x, y) and (x', y') are respectively the coordinates of any point P
before and after the translation, then

Y'
Y' '

N
1

d
^^^

B (h. kyX Y X

/"/

»

A M X

(I)
•£c = a?' + h,

y = y^ \-k.

160
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Equations (I) are called the equations for translating the axes.

To find the equation of a curve referred to the new axes when

its equation referred to the old axes is given, we substitute the

values of x and y given by (I) in the given equation. For the

given equation expresses the fact that P (a?, y) lies on the given

curve, and since equations (I) are true for all values of (a:, y), the

new equation gives a relation between x' and y^ which expresses

that P{x\ 2/') lies on the curve and is therefore (p. 53) the eqiiar

tion of the curve in the new coordinates.

Ex. 1. Transform the equation

x2 + y2_6x + 4y-12 =

when the axes are translated to the new origin (3, — 2).

Solution. Here ^ = 3 and k=—2, so equations (1) become

X = x' -\- S, y = y' - 2.

Substituting in the given equation, we

obtain

(x' + 3)2 + (z/'-2)2-6(x' + 3)

+ 4(^-2) -12 = 0,

or, reducing, x'^ + y'^ = 25.

This result could easily be foreseen.

For the locus of the given equation is

(Theorem I, p. 131) a circle whose center is

(3, -2) and whose radius is 5. When the

origin is translated to the center the equa-

tion of the circle must necessarily have

the form obtained (Corollary, p. 58).

PROBLEMS

1. Find the new coordinates of the points (3, - 5) and (- 4, 2) when the

axes are translated to the new origin (3, 6).

2. Transform the following equations when the axes are translated to the

new origin indicated and plot both pairs of axes and the curve.

Ans. Sx' -4y' = 0.

Y £
"

^ -^^ ^ N '

/ \
\
\ X

0' (3, 2) X'

/
/

\ /
V^ y

Ans. iC'2 + 2/'2 ^

Ans. y"^ = 6 x'.

(a) 3x-4y = 6, (2,0).

(b) x2 + 2/2 - 4iC - 2 ?/ = 0, (2, 1).

(c) y2-6x + 9 = 0, (1,0).

(d) x2 + 2/2_i = o, (-3, -2).

(e) ?/2_2fcx + fc2 = 0, (-, oV

(f) x2-4?/2+8x+24?/-20=0, (-4, 3). Ans. x'2-4i/'2 =

Ans.

Ans.

x'2+?/'2_6a;'_4y'+12=0.

y'2 - 2 kx'.
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3. Derive equations (I) if 0' is in (a) the second quadrant
;

(b) the third

quadrant
;

(c) the fourth quadrant.

67. Rotation of the axes. Let the axes OX and F be rotated

about through an angle 6 to the positions OX' and 0Y\ The

equations giving the coordinates of any point referred to OX and

OF in terms of its coordinates referred to OX' and OY' are called

the equations for rotating the axes.

Theorem II. The equationsfor rotating the axes through an angle

6 are

(II)
05 = a?' cos 5 — y^ sin 9y

2/ = 0?' sin ^ + y^ cos 9,

Proof. Let P be any point

whose old and new coordi-

^^^
^ nates are respectively (x, y)
^ and (x', y'). Draw OP and

draw PM' perpendicular to OX'. Project OP and OM'P on OX.

The proj. of OP on OX = x.

The proj. of OM' on OX = x' cos 6.

(Theorem III, p. 31)

(Theorem II, p. 30)

The proj. of M'P on OX = y'Gos['^ + e\ (Theorem II, p. 30)

= — y sm &.

Hence (Theorem XI, p. 48)

X == x' cos — y' sin 6.

(by 6, p. 20)

In like manner, projecting OP and OM'P on OF, we obtain

y =z x' COS 0\-\-y'cosO

x' sin -\- y' cos 0. Q.E.D.

If the equation of a curve in x and y is given, we substitute

from (II) in order to find the equation of the same curve referred

to OX' and OY'.
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Ex. 1. Transform the equation x^ — y^ = 16 when the axes are rotated
It

through

Solution. Since

. 7t 1 /- 1
sm - = - V2 = -—

4 2 V2

and cos — = —-i
4 V2

equations (II) become

x' - y' x' + y'

Vi V^

Substituting in tlie given

equation, we obtain

Wttf\ s yirt-
: !s s^ Z 1

"

\ s Z /
- -^ s Z t ~-

- 4^ 541 ^X ^ Js -r

: 7 z s^ t "

- -7 z s _s

- 7- z s^^ I

-/-A -

(

^

' -y'V _ / ^' -^y'Y

or, simplifying,

x^ + y'V
V2 ^ ^ V2

x'?/' + 8 = 0.

16,

PROBLEMS

1. Find the coordinates of the points (3, 1), (—2, 6), and (4, — 1) when
It

the axes are rotated through — •

2. Transform the following equations when the axes are rotated through

the indicated angle. Plot both pairs of axes and the curve.

Tt
(a) X - y = 0,

(b) x2 + 2xy + 2/2 = 8, ^.
4

(c) 2/2 = 4x, -|.

(d) X2 + 4X2/ + 2/2 3,16,^.
4

(e) x2 + 2/2 = r2, e.

(f) x2 + 2 x?/ + 2/2 + 4 X - 4 2/ = 0, - -.
4

Ans. y' = 0.

J.ns. x'2 = 4.

-4ns. x'2 = 4 2/'.

^ns. 3x'2-2/'2 = 16.

Ans. x'2 + 2/'2 = r2.

3. Derive equations (II) if 6 is obtuse.

68. General transformation of coordinates. If the axes are

moved in any manner, they may be brought from the old position

to the new position by translating them to the new origin and

then rotating them through the proper angle.
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^j-j-j.
(i€ = o(^' COS O-y^

^ ^ 12/ = a?' sin 9 + y'

Y
^'\

^'

X"

/^
v^ ^'

Theorem III. If the axes he translated to a new origin (Ji, k) and

then rotated through an angle 0, the equations of the transforma-

tion of coordinates are

oe' cos $ — y' &in 6 -\- 7i,

cos 6 + 7c.

Proof To translate the axes to O'X" and O'Y" we have, by (I),

x = x" -\- h,

where (x", t/") are the coordi-

nates of any point P referred

to O'X" and O'Y".

To rotate the axes we set,

by (II),
,

x" = x' cos 6 — y' sin 6,

y" = x' sin -\- y' cos 0.

Substituting these values of x" and y", we obtain (III). q.e.d.

69. Classification of loci. The loci of algebraic equations

(p. 17) are classified according to the degree of the .equations.

This classification is justified by the following theorem, which

shows that the degree of the equation of a locus is the same no

matter how the axes are chosen.

Theorem IV. The degree of the equation of a locus is unchanged

by a transformation of coordinates.

Froof Since equations (III) are of the first degree in x' and

y', the degree of an equation cannot be raised when the values of

X and y given by (III) are substituted. Neither can the degree

be lowered; for then the degree must be raised if we transform

back ta the old axes, and we have seen that it cannot be raised

by changing the axes.^

As the degree can neither be raised nor lowered by a trans-

formation of coordinates, it must remain unchanged. q.e.d.

* This also follows from the fact that when equations (III) are solved for x' and
;

results are of the first degree in x and y.

the
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70. Simplification of equations by transformation of coordi-

nates. The principal use made of transformation of coordinates

is to discuss the various forms in which the equation of a curve
may be put. In particular, they enable us to deduce simjde forms
to which an equation may be reduced.

Rule to simplify the form of an equation.

First step. Substitute the values of x and y given by (I) [or (II)]

and collect like powers of x' and y'.

Second step. Set equal to zero the coefficients of two ter'ms

obtained in the first step which contain h and k (or one coeffi-

"cient containing 6).

Third step. Solve the equations obtained in the seco7id step for

h and k* (or 9).

Fourth step. Substitute these values for h and k (or &) in the

result of the first step. The result will be the required equation.

In many examples it is necessary to apply the rule twice in

order to rotate the axes, and then translate them, or vice versa.

It is usually simpler to do this than to employ equations (III)

in the Rule and do both together. Just what coefficients are

set equal to zero in the second step will depend on the object

in view.

It is often convenient to drop the primes in the new equation

and remember that the equation is referred to the new axes.

Ex. 1. SimpUfy the equation y2 _ gx + 6 y + 17 = by translating the

axes.

Solution. First step. Set x = x'' -\- h and y = y' -\- k.

This gives {y' + A;)2 - 8 (x' + 7i) + 6 (?/' + A:) + 17 = 0, or

(1) y'2_8x' + 2A: ?/'+ A:2 f = 0.

+ 6

y'+ k^

-8h
+ 6A:

+ 17

* It may not be possible to solve these equations (Theorem IV, p. 90).

t These vortical bars play the part of parentheses. Thus 2 i- + 6 is the coefficient of y'

and k^-8h + Gk+ 17 is the constant term. Their use enables us to collect like powers
of x^ and y' at -the same time that we remove the parentheses in the preceding equation.
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Second step. Setting the coefficient of y' and the constant term, the only

,
coefficients containing h and A;, equal to zero, we
obtain

(2) 2 fc + 6 =: 0,

(3) A;2- 8/1 + 6 A; + 17 = 0.

Third step. Solving (2) and (3) for h and fc,

we find

A; =-3, /i=:l.

Fourth step. Substituting in (1), remember-

ing that h and Ic satisfy (2) and (3), we have

y'l _ 8 X' = 0.

The locus is the parabola plotted in the figure

which shows the new and old axes.

Ex. 2. Simplify x2 + 4?/2-2x-16?/ + l=0
by translating the axes.

Solution. First step. Set x =x' + h, y=y'+k.
This gives

Y' ^r-

^
/

/
/

X

s (i -3) X'

\
\
s

sS

(4) x"^+^y"^-\-2h X' + ^k y'+ h^

-.16 + 4A:2

~2h
-16k
+ 1

= 0.

Second step. Set the coefficients of x' and y' equal to zero. This gives

2h-2 = 0, Sk-16 = 0.

Third step. Solving, we obtain

^1 = 1, A: = 2.

Fourth step . Substituting in (4) , we obtain

x'2 + 4 y'2 ^ 16.

Plotting on the new axes, we obtain the

figure.

Ex. 3. Remove the xy-term from x'^ -}- ixy + y^ = 4hj rotating the axes.

Solution. First step. Set x = x' cos ^ — y' sin 6 and y = x'sme + y' cos ^,

whence

+ 4 sin cos e

+ sin2 e

?/2 = 4.x'2 - 2 sin ^ cos d

+ 4 (cos2 d - sin2 d)

-{- -2 &m d cos, 6

or, by 3, p. 19, and 14, p. 20,

(5) (1 + 2sin2^)x'2 + 4cos2^.xV+(l - 2 sin2^)y'2 ^ 4.

x'y'-\- sin2

— 4sin^cos^

4- cos2 6
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Second step. Setting the coefficient of xfy' equal to zero, we have

cos 2 ^ = 0.

Third step. Hence

2^ =

->[
1 1

1 \\itrtttP
- S A z .

-7- -

S ^ z
S ^^-Z -"^^ S ^Z3I

^^v^ j\^^2
- ^^ "" ?

7\
~Z s: s :

7 4 s^
z ^i_ s

' z V ^ -'7
A INNlK

Fourth step. Substituting in

(5), we obtain, since sin — = 1

(p. 21),

The locus of this equation is

the hyperbola plotted on the

new axes in the figure.

' From cos 2 ^ = we get, in general, 26 =—\- nit, where n is any positive

7t Tt
or negative integer, or zero, and hence 6 = — + n — - Then the xy-term may

4 2

be removed by giving d any one of these values. For most purposes we
choose the smallest positive value of 6 as in this example.

Ex. 4. Simplify x3 4-6x2 + 12x — 4y + 4 = by translating the axes.

Solution. First step. Set

x = x' -{- h, y = y' + k.

We obtain

(6) x'^-i-Sh x'^+ 3/i2 x'-4?/+ h^ = 0.

+ 6 -\-l2h + 6/i2

+ 12 + 12 ;i

- ik
+ 4

Second step. Set equal to zero the coefficient

of x'2 and the constant term. This gives

3 /i + 6 = 0,

7^3 4. 6 ^2 + 12 /i - 4 A; -f 4 = 0.

Third step. Solving,

h = -2, k = -l.

Fourth step. Substituting in (6), we obtain

x'3 _ 4 ?/' = 0,

YA r|
1

'

i

^yc .Y

/^' (-2rl) x'
f

1

1
1

1^——— -

whose locus is the cubical parabola in the figure.
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PROBLEMS

1. Simplify the following equations by translating the axes. Plot both

pairs of axes and the curve.

(a) x2 + 6 X + 8 rr 0.

(b) x^-4y + S = 0.

(c) x2 + 2/2 + 4 X - 6 ?/ - 3 = 0.

(d) 2/2 - 6 X - 10 ?/ + 19 = 0.

(e) x2 - 2/2 + 8x -Uy - 33 = 0.

(f) x2 + 42/2 - 16xV 24y + 84 = 0.

(g) 2/^ + 8x-40 = 0.

(h) x3 - 2/2 + 14 2/ - 49 = 0.

(i) 4x2 -4x2/+ 2/2 -40x^2«^2/-|; 99 = 0.

2. Remove the xy-term from the following equations by rotating the axes.

Plot both pairs of axes and the curve.

(a) x2 - 2 xy + y^ = 12.

(b) x2 - 2 X2/ + 2/2 + 8 X + 8 2/ = 0.

(c) xy = 18.

(d) 25 x2 + 14 X2/ + 25 y^ = 288.

(e) 3x2 -10x2/ + 3 2/2 = 0.

(f ) 6 x2 + 20V3 xy + 26 y2 = 324.

Ans. x'2 = 1.

Ans. x'2 1= 4 2/'.

Ans. x'2 + 2/'2 = 16.

Ans. 2/'2 = 6x'.

Ans. x'2 _ ^'2 = 0.

Ans. x'2 + 4 2/'2 = 16.

Ans. 8 x' + 2/'"^ = 0.

Ans. 2/'2 = X'3.

Ans. (2x'- 2/0^-1=0

^ns. 2/'2 = 6.

^ns. y/2y'^ + 8x' = 0.

^)IS. x'2 _ 2/'2 = 36.

^ws. 16 x'2 + 92/^2=144

Ans. x'2 _ 4 2/'2 = 0.

Ans. 9x'2-2/'2 = 81.

71. Application to equations of the first and second degrees.

In this section we shall apply the Rule of the preceding section

to the proof of some general theorems.

Theorem V. Bi/ rtioving the axes the general equation of the first

degree,

Ax + By +C = Oj

may he transformed into x' = 0.

Proof Apply the Rule on p. 165, using equations (III).

Set X — x^ cos — y' sin 6 -\- h,

^y = x' sin -{- y' cos +- k.

This gives

(1) A cos 6

-\-BsmO
x' — A sin y' + Ah

-^ Boose + Bk

+ C

= 0.



TRANSFORMATION OF COORDINATES 169

Setting the coefficient of ?/' and the constant term equal to zero

gives

(2) - ^ sin (9 + j5 cos ^ = 0,

(3) Ah + Bk-^C = 0.

From (2), tan ^ = "T ' or tan"

From (3) we can determine many pairs of values of h and /c.

One pair is

A

\

Substituting in (1) the last two terms drop out, and dividing

by the coefficient of x' we have left £c' = 0. q.e.d.

We have moved the origin to a point (h, k) on the given line

L, since (3) is the condition that {h, k) lies on the line, and then

rotated the axes until the new axis of

y coincides with L. The particular

point chosen for (h, k) was the point 0'

where L cuts the Z-axis.

This theorem is evident geometric-

ally. For ic' = is the equation of

the new F-axis, and evidently any line

may be chosen as the F-axis. But the theorem may be used to

prove that the locus of every equation of the first degree is a

straight line, if we prove it as above, for it is evident that the

locus of ic' = is a straight line.

Theorem VI. The term in xy may always he removed from an

equation of the second degree,

Ax^ + Bxy -\-Cy^-^Dx+Ey-\-F=Oj

by rotating the axes through an angle 6 such that

(VI) tan2^ = A- C
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Proof. Set

and

This gives

(4) y1cos2<9

-\-B sin ^cos 6

+ C sin2 e

X = x' COS — y' sin

y = x' sin -{- y' cos ^.

— B sin ^ cos ^

+ C cos^ ^

a;' — Z) sin $

-{- Ecosd

x'^-2AsmeG0se
+ B(Gos^O-sm^e)

+ 2Csiiie^ose

+ Dcose

i- EsinO

Setting the coefficient of x'y' equal to zero, we have

(C -A)2 sin ecosO + B (cos^ - sin^ 0) = 0,

or (14, p. 20), (C - ^) sin 2 ^ + 5 cos 2 ^ = 0.

B

y'-\-F=0.

Hence tan2<9
A -C

If satisfies this relation, on substituting in (4) we obtain an

equation without the term in xy. q.e.d.

Corollary. In transforming an equation of the second degree hy

rotating the axes the constant term is unchanged unless the new

equation is multiplied or divided hy some constant.

For the constant terra in (4) is the same as that of the given equation.

Theorem VII. The terms of the first degree m,ay he removed from,

an equation of the second degree,

Ax^ H- Bxy + C//2 + Dx + Ey -\- F = 0,

hy translating the axes, provided that the discriminant of the terms

of the second degree, A = ^^ — 4 yl C, is not zero.

Proof Set X = x' -\- h, y = y' -\- k.

This gives

(5) Ax''' + Bx'y' 4- Cy'^ ^-2Ah
+ Bk

x' ~h Bh y' + Ah'

+ 2Ck -\-Bhk

+ E + Ck^

-\-Dh

\-Ek

+ F

0.
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Setting equal to zero the coefficients of x' and y\ we obtain

(6) 2Ah-{- Bk-{- D = (),

(7) Bh + 2Ck^E = 0.

These equations can be solved for h and k unless (Theorem

IV, p. 90)
2A_B
B ~2C

or B'^-^AC = 0.

If the values obtained be substituted in (5), the resulting equa-

tion will not contain the terms of the first degree. q.e.d.

Corollary I. If an equation of the second degree he transformed

by translating the axes, the coefficients of the terms of the second

degree are unchanged unless the new equation be multiplied or

divided by some constant.

For these coefficients in (5) are the same as in the given equation.

Corollary II. When A is not zero the locus of an equation of the

second degree has a center of symmetry.

For if the terms of the first degree be removed the locus will be symmetrical

with respect to the new origin (Theorem V, p. 73)

.

If A= ^2_4 j[(7— 0, equations (6) and (7) may still be solved for h and k

2A B D
if (Theorem IV, p. 90) -:— = —; = — > when the new origin {h, k) may be any

point on the line 2Ax-\- By -\- D = 0. In this case every point on that line will

be a center of symmetry.

For example, consider x2 + 4a;^/ + 4?/2-|-4a; + 8?/ + 3 = 0. For this equation

equations (6) and (7) become

In these equations the coefficients are all proportional and there is an infinite

number of solutions. One solution is A = — 2, A: = 0. For these values the given

equation reduces to

cc2 + 4 xy + 4 ?/2 — 1 = 0,

or (x + 2 y + 1) (x + 2 2/
— 1) = 0.

The locus consists of two parallel lines and evidently is symmetrical with

respect to any point on the line midway between those lines.
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MISCELLANEOUS PROBLEMS '^

1. Simplify and plot.

(a) y^-6y + 6 = 0. (e) x^ + 4xy + y"^ = S.

(b) x2 + 2xy + 2/2 - 6x - 6i/ + 5 = 0. (f) x^ - 9 y^ - 2 x - S6y + 4 = 0.

X{c) ?/2 + 6x- 102/4-2 = 0. (g) 25 2/2 -16x2 + 502/ -119 = 0.

(d) x2 + 42/2 _ 8x - \Qy = 0. (h) x2 + 2x2/ + ?/2 _ Sx = 0.

2. Find the point to which the origin must be moved to remove the terms

of the first degree from an equation of the second degree (Theorem VII).

3. To what point (h, k) must we translate the axes to transform

(1 - e2) x2 + 2/2 - 2px + p2 = into (1 - e2) x2 + 2/2 - 2 e'^px - e'^p^ = ?

4. Simplify the second equation in problem 3.

6. Derive from a figure the equations for rotating the axes through + —
jt

2
and 1 and verify by substitution in (II), p. 162.

2

6. Prove that every equation of the first degree may be transformed into

2/' z= by moving the axes. In how many ways is this possible ?

7. The equation for rotating the polar axis through an angle is

6 = 6' -V <t>.

8. The equations of transformation from rectangular to polar coordi-

nates, when the pole is the point (^, k) and the polar axis makes an angle of

with the X-axis, are

X = h + p cos {6 + 0),

y = k + psm{6 -\- (p).

9. The equations of transformation from rectangular coordinates to

oblique coordinates are

X = x' + 2/^ cos w,

y = y' sin w,

if the X-axes coincide and the angle between OX' and OY' is w.

10. The equations of transformation from one set of oblique axes to any

other set with the same origin are

, sin (w — 0) , sin (w — ^)
X = x'—^^ ^ + y ^^ ^»

sm w sin w

, sin . , sin \Li

sm oj sm (a

where w is the angle between OX and OF, is the angle from OX to OX',

and \p is the angle from OX to OY'.
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CONIC SECTIONS AND EQUATIONS OF THE SECOND DEGREE

72. Equation in polar coordinates. The locus of a point P is

called a conic section* if the ratio of its distances from a fixed

point F and a fixed line DD is constant. F is called the focus,

DD the directrix, and the constant ratio the eccentricity. The

line through the focus perpendicular to the directrix is called

the principal axis.

Theorem I. If the pole is the focus and the polar axis the princi-

pal axis of a conic section^ then the polar equation of the conic is
•*

(I) P =
ep

1 — e cos ^

where e is the eccentricity and p is the distance from the directrix

to the focus.

P(P'0)

Froof. Let P be any point on the conic. Then, by definition,

FP
EP = '-

From the figure, FP = p

and EP = HM = p -{- p cos 0.

Substituting these values of FP and ^^

EP, we have

or, solving for p,

p + p cos

ep

e;

p —
cos Q.E.D.

* Because these curves may be regarded as the intersections of a cone of revolution

with a plane.

173
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From (I) we see that

1. A conic is symmetrical with respect to the principal axis.

For substituting

cos (— 6) = cos d.

6 for 6 changes only the form of the equation, since

2. In plotting, no values of 6 need be excluded.

The other properties to be discussed (p. 151) show that three

cases must be considered according as e = 1.

The parabola e = 1. When e = 1, (I) becomes

P
p = J

^ 1 - cos ^

and the locus is called a parabola.

1. For ^ = p = 00, and for TT p = V The parabola

therefore crosses the principal axis but once at the point 0,

called the vertex, which is ^ to the left of the focus F, or mid-

way between F and BD.

2. p becomes infinite when the denominator, 1 — cos 0, vanishes.

If 1 — cos ^ = 0, then cos = 1', and hence. ^ = is the only

value less than 2 tc for which p is infinite.

77"

/^.^^ 3. When increases from to —

>

Z

then cos 6 decreases from 1 to 0,

1 — cos 6 increases from to 1,

p decreases from oo to j),

and the point P (p, 6) describes the parabola

from infinity to B.

TT
When 6 increases from — to tt,

then cos decreases from to — 1,

1 — cos Q increases from 1 to 2,

IP

p decreases from /> to ^)

and the point P {p, 6) describes the parabola from B to the

vertex 0,
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On account of the symmetry with respect to the axis, when

6 increases from tt to —^i P(p,_0) describes the parabola from

to B'-y and when 6 increases from —^ to 2 tt, from B' to infinity.

When e < 1 the conic is called an ellipse, and when e > 1,

an hyperbola. The points of similarity and difference in these

curves are brought out by considering them simultaneously.

TJie ellipse, e < 1

.

ep e

The hyperbola, e > 1.

1. For ^ = ^ 1. For 6^ = p =
ep

P-
1 — el — e 1 — el — e

As e < 1, the denominator, and hence As e > 1, the denominator, and hence

p, is positive, so that we obtain a point p, is negative, so that we obtain a

A on the ellipse to the right of F. point A on the hyperbola to the left

e •> of F.
As = 1 when e<l, according as e

1-e < g
^ - , then FA may be greater, equal to, or "^^ ^ > ^ (numerically) when e > 1^

less than FH. ^^^^ P >P > ^^ ^ ^^^ ^^ *^® ^®^* ^^ ^'

T^ n ep e
For ^ = ;r p=:;-f— = :^— p. pis

^ ^ ep e
YoT d = 7t p = —^— = p. pis

1+e 1+e1+e 1+e
positive, and hence we obtain a point positive, and hence we obtain a sec-

A' to the left of F. ond point A' to the left of F.

As <1, then p<p; so A^ lies
1 + e

between H and F.

A and A' are called the vertices of

the ellipse.

As <1, then p<p; so A' lies
1 + e

between H and F.

A and A^ are called the vertices of

the hyperbola.
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The ellipse^ e < 1.

2. p becomes infinite if

1 — e cos ^ = 0,

or cos 6 = -•
e

As e<l, then ->1; and hence
e

there are no values of 6 for which

p becomes infinite.

3. When

then

.6 increases from to

cos 6 decreases from 1 to 0,

1 — e cos 6 increases from 1 — e to 1

;

hence p decreases from to ep,
1 — e

and P {p, 6) describes the ellipse from

^toC.

The hyperbola^ e > 1.

2. p becomes infinite if

1 — e cos ^ = 0,

or cos 6 = -•

As e>l, then -<1; and hence
e

there are two values of 6 for which

p becomes infinite.

3. When
6 increases from to cos-i

(
-

)»

then cos 6 decreases from 1 to -

,

e

1 — e cos 6 increases from 1 — e to ;

exi
hence p decreases from to — oo,

1 —

e

and P (p, 6) describes the lower half

of the left-hand branch from A to

infinity.

When
e increases from cos-i

(i)-f-

When 6 increases from — to 7t,

2
then cos 6 decreases from to — 1,

1 — e cos d increases from 1 to 1 + e

;

hence p decreases from ep to—— ,

1 + e

and P (p, d) describes the ellipse from

C to A\
The rest of the ellipse, A'C'A,

may be obtained from the symmetry
with respect to the principal axis.

The ellipse is a closed curve.

then cos d decreases from - to 0,
e

1 — e cos ^ increases from to 1

;

hence p decreases from oo to ep,

and P (p, 6) describes the upper part of

the right-hand branch from infinity

toC.

When 6 increases from — to vt,

2

then cos 6 decreases from to — 1,

1 — e cos ^ increases from 1 to 1 + e

;

hence p decreases from ep to
ep

l + ~e

and P (p, 6) describes the hyperbola

from C to A\
The rest of the hyperbola, A'C

to infinity and infinity to A, may be

obtained from the symmetry with

respect to the principal axis.

The hyperbola has two infinite

branches.
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PROBLEMS

1. Plot and discuss tlie following conies. Find e and p, and draw the

focus and directrix of each.

^ 3
(e) P(a) p =

T-- cos 5

(b) p =
2

1-- i cos (?

(C) p =
8

1-- 2 cos ^

IA\ ^ — 5

(g) p =

(h) p =

3 - cos

6

2 - 3cos^'

2

2 - cos^"

12

2 - 2 cos ^ 3 - 4 cos ^

2. Transform the equations in problem 1 into rectangular coordinates,

simplify by the Rule on p. 165, and discuss the resulting equations. Find

the coordinates of the focus and the equation of the directrix in the new
variables. Plot the locus of each equation, its focus, and directrix on the

new axes.

Ans. (a) ?/2=:4x, (1,0), x = - 1. ."

x2 y2 , / 4 ^\ 16

^ ' 6_4 IJL ' V 3 /3 / 3

^ ' 6_4 6_4 ' V 3 J 3

(d) 2/2 = 5x, (1,0), x = -%.

x2 ?/2 ^ / 3 -\ 27

64 8

/2 . /18 ^\ 8
5'

w5-f-. (-?»)• —I
x2 ?/2 , /48 ^\ 2";

^ ' 1296 144 ' V 7 / 7

3. Transform (I) into rectangular coordinates, simplify, and find the coor-

dinates of the focus and the equation of the directrix in the new rectangular

coordinates if (a) e = 1, (b) e^l.

Am. (a) 2/2 = 2px, (|, o), a:=-|

(b)
e2p

(1 - e2)2 1 _ e2

+ _^.l, (-^, 0),x =^
e2p2 'V 1 _ e2 /
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4. Derive the equation of a conic section when (a) the focus lies to the

left of the directrix
;
(b) the polar axis is parallel to the directrix.

Ans. (a) p = ^^
; (b) p - ^^

1 + e cos 6 1 — e sin

5. Plot and discuss the following conies. Find e and p, and draw the

directrix of each.

7
(^) P = ^;-, ^- (^) P

1 + cos e 3 + 10 cos ^

5
{h)p = - —.. {d)p =

1 - sin ^ 3 - sin e

73. Transformation to rectangular coordinates.

Theorem II. If the origin is the focus and the X-axis the princi-

pal axis of a conic section, then its equation is

(II) (1 - e^) 0^2 _^ ^2 _ 2 e'^px - eY = 0,

where e is the eccentricity and xz=z—p is the equation of the

directrix.

Proof Clearing fractions in (I), p. 173, we obtain

P — ep cos 6 = ep.

Set p = ± Vx^ + y^ and p cos ^ = a; (p. 155). This gives

± Va;^ -{- y^ — ex = ep,

or ± Vx^ + y^ = ex -\- ep.

Squaring and collecting like pov^ers of x and y, we have the

required equation. Since the directrix DD (Fig., p. 173) lies p
units to the left of F its equation is ic ——p. q.e.d.

74. Simplification and discussion of the equation in rectangu-

lar coordinates. The parabola, e = 1.

When 6 = 1, (II) becomes

y^ — 2px —p^ = 0.

Applying the Eule on p. 165, we substitute

(1) x = x' -\- h, y = y' + k,

obtaining

(2) y'^ - 2px' + 2ky'-{-k:'- 2ph -p^ = 0.
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Set the coefficient of y^ and the constant term equal to zero

and solve for h and h. This gives

(3) 7,=-|, 7, = 0.

Substituting these values in (2) and dropping primes, the equa-

tion of the parabola becomes y^ = 2jjx.

From (3) we see that the origin has been

removed from F to O, the vertex of the ^
parabola. It is easily seen that the new

coordinates of the focus are
[ ^ , 1 , and x

the new equation of the directrix is

X = — ^' Hence
Li

Theorem III. Jf the origin is the vertex and the X-axis the axis

of a parabola, then its equation is

(III) y^ = 2poe.

The focus is the point (
— , ), and the equation of the directrix

V \ I
IS X = — —•

A general discussion of (III) gives us the following properties of the

parabola in addition to those already obtained

(p. 174).

1. It passes through the origin but does not cut

the axes elsewhere.

2. Values of x having the sign opposite to that

X of p are to be excluded (Rule, p. 73). Hence the

curve lies to the right of YY' when p is positive and

to the left when p is negative.

3. No values of y are to be excluded ; hence the

curve extends indefinitely up and down.

Theorem IV. If the origin is the vertex and the Y-axis the axis

of a parabola, then its equation is

(IV) a?2 = 2py.
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V
7

\ /
\^V

,

X' V-^ X
D Y' D

The focus is the point
( 0, "^ I j and the equation of the directrix

. V

Proof Transform (HI) by rotating the
77"

axes through — — • Equations (II), p. 162,

give us for B =~ —

x = y\

y=-x'.

Substituting in (III) and dropping primes, we obtain x^ = 2py.
Q.E.D.

After rotating the axes the whole figure is

turned through — in the positive direction.

The parabola lies above or below the X-axis

according as p is positive or negative.

Equations (III) and (IV) are called

the typical forms of the equation of the

parabola.

Equations of the forms

Ax^ + Ey = and Cy^ + Dx = 0,

where A, E, C, and D are different from zero, may, by transpo-

sition and division, be written in one

^ of the typical forms (III) or (IV),

so that in each case the locus is a

^ parabola.

Ex. 1. Plot the locus of x^ + 4 ?/ = and

find the focus and directrix.

Solution. The given equation may be

written

x2 = - 4 y.

Y'

'y-f
D ^ P
X' y^o^\ X

ya ^

D y^i

X' /^
"^N

/ ^(C ,-i;\
/ \
1 \

i i

1 \

Y'

Comparing with (IV), the locus is seen to be a parabola for which p = —2.
Its focus is therefore the point (0, — 1) and its directrix the line y = 1.

Ex. 2. Find the equation of the parabola whose vertex is the point 0'

(3, — 2) and whose directrix is parallel to the F-axis, if p = 3.
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Solution. Referred to O'X' and O'Y' as axes, the equation of the parabola

is (Theorem III)

(4) y'^ = ex\

The equation for translating the axes from

to (7 are (Theorem I, p. IGO)

X = x' + 3, y = y' -2,
whence

(5) x' = x-^,y' = y + 2.

Substituting in (4), we obtain as the re-

quired equation

(2/ + 2)2 = 6(^-3),

or 2/2_6a.^4y ^22 = 0.

Referred to O'X' and 0'Y\ the coordinates

of T are (Theorem III) (|, 0) and the equa-

tion of DB is x' = — |. By (5) we see that,

referred to OX and OF, the coordinates of F are (|, - 2) and the equation

of DD is X = ir

nf rV

>^
y
/

/

5:

F
.O' b,- 2) .Y

.

s.
V
s ^

Z.I

PROBLEMS

1 . Plot the locus of the following equations. Draw the focus and direc-

trix in each case.

(a) y^ = 4:X.

(b) 2/2 + 4x
{6) y^ -6x = 0.

0. (e) x2 + 10 y = 0.

(c) x2-82/ = 0. (f) 2/2 + x = 0.

2. If the directrix is parallel to the F-axis, find the equation of the

parabola for which

(a) p = 6, if the vertex is (3, 4).

(b) p = — 4, if the vertex is (2, — 3).

(c) p = 8, if the vertex is (—5, 7).

(d) p '= 4, if the vertex is (/i, k).

3. The chord through the focus perpendicular to the axis is called the latus

rectum. Find the length of the latus rectum of y^ = 2px. Ans. 2 p.

4. What is the equation of the parabola whose axis is parallel to the axis

of y and whose vertex is the point (or, )3) ? Ans. (x — a)^ = 2p{y — ^).

5

.

Transform to polar coordinates and discuss the resulting equations

(a) 2/2 = 2px, (b) x2 = 2py.

6. Prove that the abscissas of two points-on the parabola (III) are propor-

tional to the squares of the ordinates of those points.

Ans. (?/ - 4)2 = 12 (X - 3).

Ans. (2/ + 3)2=-8(x-2).

Ans. {y - 7)2 = 16 (x + 5).

Ans. {y -kf = 8{x- h).
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75. Simplification and discussion of the equation in rectan-

gular coordinates. Central conies, e%l. When e^l, equation

(II), p. 178, is

(1 - e2)a;2 + 2/2-2 e''2)x - eY = 0.

To simplify (Rule, p. 165), set

(1) x = x' -{-h, y = y' + k,

which gives

(2) (1 - e^)x''' + 2/'' -f 2 h (1 - e^) = 0.ic' + 2 7^2/' + (1-6^)^2

- 2 e'^ph

— e^

Setting the coefficients of cc' and y^ equal to zero gives

2 hi\ -e^)-2e^p = 0, 2k = 0,
'^ -

whence

(3)
_

* = r^' * = o-

Substituting in (2) and dropping primes, we obtain

or

(4) —r^ + -fr = i-

(1 - 6^)2 1-^2

This is obtained by transposing the constant term, dividing by it, and then

dividing numerator and denominator of the first fraction by 1 — e^.

The ellipse, e < 1. The hyperbola, e > 1.

From (3) it is seen that h is posi- From (3) it is seen that h is nega-

tive when e < 1. Hence the new ori- tive when e > 1. Hence the new ori-

gin lies to the right of the focus F. gin lies to the left of the focus F.

Further, > 1 numerically, so
' 1 - e2

h>p numerically ; and hence the

new origin lies to the left of the

directrix DD.
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The locus of (4) is symmetrical with respect to YY' (Theorem

V, p. 73). Hence is the middle point oi AA'. Construct in

D Y d'

E -A
B^
^t e'^?Sv

1
\

\ \
X' A F F'y X

D
V.

Y
B^
y

D'

either figure F' and D'D' symmetrical respectively to F and DB
with respect to YY\ Then F' and X)'i)' are a new focus and ^

directrix.

For let P and P' be two points on the curve, symmetrical with respect to YY'.

Then from the symmetry PF — P'F' and PE — P'E'. But since, by definition,

PF P'F'—— = e, then = e. Hence the same conic is traced by P', using F' as focus
PMi P Mi

and D'D' |is directrix, as is traced by P, using F as focus and DD as directrix.

Since the locus of (4) is symmetrical with respect to the origin

(Theorem V, p. 73), it is called a central conic, and the center of

symmetry is called the center. Hence a central conic has two foci

and two directrices.

The coordinates of the focus F in either figure are

(-A»)
For the old coordinates of F were (0, 0). Substituting in (1), the new coordi-

nates are x = — h, y' = — k, or, from (3), / — -—^. V

i

The coordinates of F' are therefore

The new equation of the directrix DD is x - _^
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For from (1) and (3), x = x' +
e^

y = yl-e2
(Theorem II) and dropping primes, we obtain x =

P

Substituting in x = —p
P

Hence the equation oi D'D' is x = j

We thus have the

Lemma. The equation of a central conic whose center is the origin

and whose principal axis is the X-axis is

(4) _^!_ +^L = l.

e^p^

Its foci are the points I ±
e^p

e^p^

0^
1-e'

and its directrices are the lines x = :t
IP

The ellipse, e < 1.

For convenience set

(5) a
l-e2 1

e^p

a2 and 6^ are the denominators in (4)

and c is the abscissa of one focus. Since

-.e<l, l-e2 is positive; and hence a, b^,

and c are positive.

We have at once

a^-b'^ =
e^p-^ e^p-^

(1

e4p2

and
(1 - e2)2

e-^p-' e^p

(1 - e2)2 1 _ e2 1

Hence the directrices (Lemma) are

the lines x = ±—-
c

By substitution from (5) in (4) we
obtain

a2
"*

62 "

The hyperbola, e > 1.

Eor convenience set

(6)

a=
ep

l-e2'
62:

e^p

a^ and - b^ are the denominators in (4)

and c is the abscissa of one focus. Since

e > 1, 1- e2 is negative; and hence a, b^, and
c are positive.

We have at once

a2 + 62
e2p2

(1 - e2)2

e4p2

(1 - e2)2

e2p2
.

e2p

2ri2a^p

l-e2

c2

and

a2__
c
~

(1 - e2)2 l-e2

Hence the directrices (Lemma) are

the lines x = ± —•
c

By substitution from (6) in (4) we
obtain

X2_y2^_^

a2 62
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The ellipse^ e < 1.

The intercepts are x = ±a and

y = ±h. AA' = 2 a is called the

major axis and BB' = 26 the minor

axis. Since a^ — h^ = c^ is positive,

then a>b, and the major axis is

greater than the minor axis.

^1
^

D

/

/"
h

B D

1 V <—a-\—

*

X' A F ^.-C—^F'JA X

D

\
Y f____«^____. d'

Hence we may restate the Lemma
as follows.

Theorem V. The equation of an

ellipse whose center is the origin and

whose foci are on the X-axis is

(V)
a'

where 2 a is the major axis and 2 b the

minor axis. If c'^= a^— b^, then the

foci are (± c, 0) and the directrices

are x = ± —-
c

Equations (5) also enable us to

express e and p, the constants of (I),

p. 173, in terms of a, 6, and c, the

constants of (V). For

c _ e^p ev _
a~l-e2"l-e2~(7)

and

(9)

62

c l-e2
e^p

P

The hyperbola, e > 1.

The intercepts are x = ± a, but the

hyperbola does not cut the F-axis.

AA' = 2 a is called the transverse

axis and BB' = 26 the conjugate

axis.

Hence we may restate the Lemma
as follows.

Theorem VI. The equation of an

hyperbola whose center is the origiru

and whose foci are on the X-axis is

x^ r
a^ o2

where 2 a is the transverse axis and 2 b

the conjugate axis. If c^= a^-\- b^,

then the foci are (± c, 0) and the

directrices are x = i — •

c

Equations (6) also enable us to

express e and p, the constants of (I),

p. 173, in terms of a, 6, and c, the

constants of (VI). For

(8) 1^ '"P
. ^ --

and

l-e2

e2p2
(10) — =
^ ^ c l-e2

l-e2

e^p

l-e2
= 1>.
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The ellipse, e < 1.

In the figure OB = b, OF" = c,

and since c^ = a'^ — 6^, then BF' = a.

Hence to draw the foci, with JB as a

center and radius OA, describe arcs

cutting XX' at F and F'. Then F
and F' are the foci.

It a = b, then (V) becomes

x2 + 2/2 = a2,

whose locus is a circle.

Transform (V) by rotating the

axes through an angle of (Theo-
2

rem II, p. 162). We obtain

Theorem VII. The equation of an

ellipse whose center is the origin and

whose foci are on the Y-axis is

«2_^^2
r2

The hyperbola, e>l.

In the figure OB = 6, OA' = a
;

and since c2 = a2 + 62^ then BA' = c.

Hence to draw the foci, with as a

center and radius BA', describe arcs

cutting XX' at F and F'. Then F
and F' are the foci.

If a = 6, then (VI) becomes

x2-y2 = a2,

whose locus is called an equilateral

hyperbola.

Transform (VI) by rotating the

axes through an angle of (Theo-

rem II, p. 162). We obtain

Theorem Vni. The equation of an

hyperbola whose center is the origin

and whose foci are on the Y-axis is

(VII) (VIII) ^— JL-IL = 1,

Y \

B'

A

B'\

i

f /

/ a/
y

/

F'

c

A2

X' n 10

F

\B' £

D D
Y

where 2 a is the major axis and 2 bis

the minor axis. If d^ = a^ — 62, the

foci are (0, ± c) and the directrices

a2
are the lines y =± —•

where 2a is the transverse axis and 2h
is the conjugate axis. If c'^ = a^ + b^,

the foci are (0, ± c) and the directrices

are the lines y = ±^.
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The ellipse^ e < 1.

The essential difference between

(V) and (VII) is that in (V) the de-

nominator of x2 is larger than that

of 2/^, while in (VII) the denominator

of y^ is the larger. (V) and (VII)

are called the typical forms of the

equation of an ellipse.

The hyperbola^ e > 1.

The essential difference between

(VI) and (VIII) is that the coeffi-

cient of ?/2 is negative in (VI), while

in (VIII) the coefficient of x^ is nega-

tive. (VI) and (VIII) are called the

typical forms of the equation of an

hyperbola.

An equation of the form

where A, C, and F are all different from zero, may always be

written in the form

(11) a /3

By transposing the constant term and then dividing by it, and dividing

numerator and denominator of the resulting fractions by A and C respectively.

The locus of this equation will be

1. An ellipse if a and (3 are both positive, a^ will be equal to

the larger denominator and b^ to the smaller.

2. An hyperbola if a and ^ have opposite signs, a^ will be

equal to the positive denominator and b^ to the negative denomi-

nator.

3. If a and p are both negative, (11) will have no locus.

Ex. 1. Find the axes, foci, directrices, and

eccentricity of the ellipse 4 x^ + y2 = 16.

Solution. Dividing by 16, we obtain

- + ^ = 1
4 16

The second denominator is the larger. By
comparison with (VII),

62 = 4, a2 = 16, c2 = 16 - 4 = 12.

Hence 6 = 2, a = 4, c = Vl2.

The positive sign only is used when we extract the

square root, becaus.e a, 6,'and c are essentially positive.

r>

,

JJ D
__/

^ >V

/ \
/ \

7? B'

X

\ /

\ /
\ "'i

/
a

r\ T\

T'

/s^ ^ y
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Hence the major axis^^^' = 8, the minor axis BB' = 4, the foci F and F'

are the points (0, ± Vl2), and the equations of the directrices DD and D'ly

a2 16 ^4
are y = ± — = ± —= = ± - Vl2.

c Vl2 3

Vl2 4 1
From (7) and (9), e = —— and p = -—=: = - V12.

4 V12 3

PROBLEMS

1. Plot the loci, directrices, and foci of the following equations and find

e and p.

(a) x2 + 9?/2 = 81. (e) dy^ - 4x2 = 36.

(b) 9 x2 _ 16 y2 = 144. (f

)

x2 - 2/2 = 25.

(c) 16 x2 + 2/2 = 25. (g) 4 x2 + 7 2/2 = 13.

(d) 4x2 + 92/2 = 36. (h) 5x2 _ 32/2 = 14.

2. Find the equation of the ellipse whose center is the origin and whose

foci are on the JT-axis if

(a) a = 5, 6 = 3. Ans. 9 x2 + 25 2/2 = 225.

(b)a'=6, e=:i. Ans. 32x2 + 362/2 = 1152.

(c) 6 = 4, c = 3. Ans. 16 x2 + 25 2/2 = 400.

(d) c = 8, e = f.
Ans. 5x2 + 9 2/2 = 720,

3. Find the equation of the hyperbola whose center is the origin and

whose foci are on the X-axis if

(a) a = 3, h = 5. Ans. 2bx^-9y^ = 225.

(b) a = 4, c = 5. Ans. 9x^-16y^ = 144.

(c) e = f, a = 5. Ans. 5x2-42/2 = 125.

(d) c = 8, e = 4. Ans. 15x2-2/2 = 60.

4. Show that the latus rectum (chord through the focus perpendicular to

2 62
the principal axis) of the ellipse and hyperbola is

a

5. What is the eccentricity of an equilateral hyperbola ? A71S. V2.

6. Transform (V) and (VI) to polar coordinates and discuss the resulting

equations.

7. Where are the foci and directrices of the circle ?

8. What are the equations of the ellipse and hyperbola whose centers

are the point (a, /3) and whose principal axes are parallel to the X-axis ?

Ans
('^-^)^

,

(y-^)^ ^i. i^-o^)^ (y-/3)2 ^
a2 62 ' a2 62

*
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76. Conjugate hyperbolas and asymptotes. Two hyperbolas

are called conjugate hyperbolas if the transverse and conjugate

axes of one are respectively the conjugate and transverse axes of

the other. They will have the same center and their principal

axes (p. 173) will be perpendicular.

If the equation of an hyperbola is given in typical form, then
the equatlofi of the conjugate hyperbola is found by changing the

signs of the coefficients of x^ and y'^ in the given equation.

For if one equation be written in the form (VI) and the other in the form (VIII),
then the positive denominator of either is numerically the same as the negative
denominator of the other. Hence the transverse axis of either is the conjugate
axis of the other.

Thus the loci of the equations

(1) 16x2-2/2^16 and -16x2 + 2/2=16

are conjugate hyperbolas. They may be written

«2 2/2 a;2 2/2___^la„d-- + - = l.

The foci of the first are on the X-axis, those of the second on the T-axis. The
transverse axis of the first and the conjugate axis of the second are equal to 2,

while the conjugate axis of the first and the transverse axis of the second are

equal to 8.

The foci of two conjugate hyperbolas are equally distant from

the origin.

For c2 (Theorems VI and VIII) equals the sum of the squares of the semi-

transverse and semi-conjugate axes, and that sum is the same for two conjugate

hyperbolas.

Thus in the first of the hyperbolas above c^ = 1 -f 16, while in the second

c2=16 + l.

If in one of the typical forms of the equation of an hyperbola

we replace the constant term by zero, then the locus of the new

equation is a pair of lines (Theorem, p. Q>^) which are called the

asymptotes of the hyperbola.

Thus the asymptotes of the hyperbola

(2) b'^x'- - aSf = a%''

are the lines

(3) ^2^2 _ ^2^2 ^ 0,

or

(4) bx -\- ay = and bx — ay = 0.
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Both of these lines pass through the origin, and their slopes are respectively

,5) -^nd^.

An important property of the asymptotes is given by

Theorem IX. The branches of the hyperbola approach its asymp-

totes as they recede to infinity.

Proof. Let P^ (x-^, y\) be a point on either branch of (2) near

the first of the asymptotes (4). The distance from this line to

Pi (Fig., p. 191) is (Eule, p. 106)

(6) d= ^-^±^y^
.

Since Pi lies on (2), bW - «Vi' = «^'^'-

Factoring, bx^ + a?/i = _— "^

oxi — ayi

a%^
Substituting in (6), d = .

-
4- VZ>2 + a^ (bxi — ayi)

As Pi recedes to infinity, a^i and ?/i become infinite and d

approaches zero.

For bxi and ayi cannot cancel, since Xi and pi have opposite signs in the second

and fourth quadrants.

Hence the curve approaches closer and closer to its asymptotes.

Q.E.D.

Two conjugate hyperbolas have the same asymptotes.

For if we replace the constant term in both equations by zero, the resulting

equations differ only in form and hence have the same loci.

Thus the asymptotes of the conjugate hyperbolas (1) are respectively the loci of

16x2 - 2/2 = and -lGx^ + y'^ = 0,

which are the same.

An hyperbola may be drawn with fair accuracy by the fol-

lowing

Construction. Lay o& OA = OA' = a on the axis on which the

foci lie, and OB = OB' = b on the other axis. Draw lines through

A, A', B, B' parallel to the axes, forming a rectangle.^* Draw the

* An ellipse may be drawn with fair accuracy by inscribing it in such a rectangle.
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diagonals of the rectangle and the circumscribed circle. Draw
the branches of the

hyperbola tangent to

the sides of the rec-

tangle at A and A'

and approaching nearer

and nearer to the di-

agonals. The conju-

gate hyperbola may
be drawn tangent to

the sides of the rec-

tangle at B and B'

and approaching the diagonals. The foci of both are the points

in which the circle cuts the axes.

The diagonals will be the asymptotes, because two of the vertices of the rec-

tangle (± a, ± 6) will lie on each asymptote (4) . Half the diagonal will equal c, ^

the distance from the origin to the foci, because c^= a^ -\- b^.

77. The equilateral hyperbola referred to its asymptotes. The equation

of the equilateral hyperbola (p. 186) is

(1) x2 - 2/2 = ot2. -

Its asymptotes are the lines

X — y — and ic + y = 0.

These lines are perpendicular (Corollary III, p. 87), and hence they may
be used as coordinate axes.

Theorem X. The equation <^f an equilateral hyperbola referred to its asymp-

totes is

(X) 2ocy = a^.
It

Proof. The axes must be rotated through

to coincide with the asymptotes.

Hence we substitute (Theorem II, p. 162)

x' -\-y' -x' + y'

V2V2
in (1). This gives

Or, reducing and dropping primes,

1xy = a2. Q.E.IX
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78. Focal property of central conies. A line joining a point on

a conic to a focus is called a focal radius. Two focal radii, one to

each focus, may evidently be drawn from any point on a central

conic.

- Theorem XI, The sum of the focal

radii from any point on an ellipse is

equal to the major axis 2 a.

Theorem Xn. The difference of the

focal radii from any point on an

hyperbola is equal to the transverse

axis 2 a.

T>

Y'
d'

E

II

^ r"^^ e'

<f^^\
X' A F jr' 1^ X

D
V

b'

r'

r| D J

E ly

h' H
1 \r

X' F'JA

/ ^ y'

\i X

D \

Proof. Let P be any point on the

ellipse. By definition (p. 173),

r = e- PE, r' = e . PE\

Hence r + r' = e {PE + PE")

= e • HH\

From (7), p. 185, e= -»

Proof. Let P be any point on the

hyperbola. By definition (p. 173),

r = e- PE, r' = e- PE'.

Hence r' - r = e {PE' - PE)
= e • HH\

From (8), p. 185, e= -,

and from the equations of the direc- and from the equations of the direc-

trices (Theorem V), trices (Theorem VI),

«2

c

a2
HH' = 2— .

c

Hence r+r' = -.2- = 2a.
« ' Q.E.D.

Hence»-'-r = --2- = 2a.
« " Q.K.n.

79. Mechanical construction of conies. Theorems XI and XII afford simple

methods of drawing ellipses and hyperbolas. Place two tacks in the drawing

board at the foci F and F' and wind a string about them as indicated.

If the string be held fast at A, and a pencil be placed in the loop FPF'
and be moved so as to keep the string taut, then PF + PF' is constant and

P describes an ellipse. If the major axis is to be 2 a, then the length of the

loop FPF' must be 2 a.
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If the pencil be tied to the string at P, and both strings be pulled in or

let out at A at the same time, then PF" — PF will be constant and P will

describe an hyperbola. If the transverse axis is to be 2 a, the strings must
be adjusted at the start so that the difference between PF' and PF equals 2 a.

To describe a parabola, place a right triangle with one leg EB on the

directrix DD. Fasten one end of a string whose length is AE at the focus

F, and the other end to the triangle at A. With a pencil at P keep the

string taut. Then PF = PE ; and as the triangle is moved along Di> the

point P will describe a parabola.

PROBLEMS

1. Find the equations of the asymptotes and hyperbolas conjugate to the

following hyperbolas, and plot.

(a) 4ic2 - 2/2 = 36. (c) 16x2 _ y2 4. 64 = 0.

(b) 9x2 - 25y2 = loO. (d) 8x2 - 16y2 + 25 = 0.

2. Prove Theorem IX for the asymptote which passes through the first

and third quadrants.

3. If e and e' are the eccentricities of two conjugate hyperbolas, then

1 1 .

4. The distance from an asymptote of an hyperbola to its foci is numer-

ically equal to 6.

5. The distance from a line through a focus of an hyperbola, perpen-

dicular to an asymptote, to the center is numerically equal to a.

6. The product of the distances from the asymptotes to any point on the

hyperbola is constant.

7. The focal radius of a point Pi(xi, y{) on the parabola 2/2 = 2px is
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8. The focal radii of a point Pi (xi, yi) on the ellipse b^x^ + a^y^ = a^b^

are r = a — exi and r' = a -\- exi.

9. The focal radii of a point on the hyperbola b^x^ — a^y^ = a'^b^ are

r = exi — a and r' = exi + a when Pi is on the right-hand branch, or

r = — exi — a and r' = — exi + a when Pi is on the left-hand branch.

10. The distance from a point on an equilateral hyperbola to the center

is a mean proportional between the focal radii of the point.

11. The eccentricity of an hyperbola equals the secant of the inclination

of one asymptote.

80. Types of loci of equations of the second degree. All of

the equations of the conic sections that we have considered are

of the second degree. If the axes be moved in any manner, the

equation will still be of the second degree (Theorem IV, p. 164),

although its form may be altered considerably. We have now to

consider the different possible forms of loci of equations of the

second degree.

By Theorem VI, p. 169, the term in xy may be removed by

rotating the axes. Hence we only need to consider an equation

of the form

(1) Ax"" -\-Cif-\-Dx + Ey + F = 0.

It is necessary to distinguish two cases.

Case I. Neither A nor C is zero.

Case II. Either ^ or C is zero.

A and C cannot both be zero, as then (1) would not be of the second degree.

Case I

When neither A nor C is zero, then ^ = B^ — 4, AC is not zero,

and hence (Theorem VII, p. 170) we can remove the terms in

X and y by translating the axes. Then (1) becomes (Corollary I,

p. 171)

(2) Ax"" -{- Cy'^ -{- F' = 0.

We distinguish two types of loci according as A and C have the

same or different signs.
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Elliptic type, A and C have the

same sign.

1. F' 7!^0* Then (2) may be

iC2 y2
written 1 = 1,

a /3

F' F'
where a = » /3 =

A C

Hence, if the sign of F' is different

from that of A and C, the locus is an

ellipse; but if the sign of F' is the

same as that of A and C, there is no

locus.

2. F' = 0. The locus is a point.

It may be regarded as an ellipse

whose axes are zero and it is called

a degenerate ellipse.

Hyperbolic type, A and C have dif-

ferent signs.

1. F' ^0.* Then (2) may be

written h — = 1,
a p

F' F'
where a = , 8 =A^ C
Hence the locus is an hyperbola whose
foci are on the F-axis if the signs of

F' and A are the same, or on the

X-axis if the signs of F' and C are

the same.

2. F' = 0. The locus is a pair of

intersecting lines. It may be regarded

as an hyperbola whose axes are zero

and it is called a degenerate hyperbola.

Case II

When either A or C is zero the locus is said to belong to the

parabolic type. We can always suppose ^1 = and C 9^ 0, so that

(1) becomes ^ -

(3) Ci/ + Dx-\- Ey + F=0.
For if ^ 5^ and C = 0, (1) becomes Ax"^ + Dx + Ey -\- F=(i. Rotate the axes

It
(Theorem II, p. 162) through — by setting x = —y',y~ x'. This equation becomes

Ay'^ + Ex' — Dtf -\- F=Q), which is of the form (3).

By translating the axes (3) may be reduced to one of the forms

(4) Cy^-\-Dx = ox

(5) . Cif + F' =0.

For substitute in (3), x = x' + h, y = y' -\- k.

This gives

(6) Cy'^^-Dx' -^2Ck\y' ^-Ck'^ =0.
-\- E

I
-\-Dh

+ Ek
+ F

If we determine h and k from

2Ck + E=0, Ck^ + Dh -\- Ek + F = 0,

[then (6) reduces to (4). But if Z> =: 0, we cannot solve the last equation for h, so

[that we cannot always remove the constant terra. In this case (6) reduces to (5).

* Read " F' not equal to zero " or "F^ diiferent from zero."
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Comparing (4) with (III), p. 179, the locus is seen to be ^.parab-

I
¥'

ola. The locus of (5) is the pair of parallel lines y = ±^ — —
when F' and C have different signs, or the single line y =
when F' = 0. li F' and C have the same sign, there is no locus.

When the locus of an equation of the second degree is a pair of

parallel lines or a single line it is called a degenerate parabola.

We have thus proved

Theorem XIII. The locus of an equation of the second degree is

a conic, a point, or a pair of straight lines, ivhich may he coincident.

By moving the axes its equation m^ay he reduced to one of the three

forms .^

Ax" + Cif + F* = 0, Cy'^ -^ Dx = 0, Cy^ + F* = 0,
'*

where A , C, and D are different from zero.

Corollary. TJie locus of an equation in which the term in xy is

lacking, ^^^2 _^ ^f + Dx + Ey + F = 0,

will helong to

the parabolic type if A = or C = 0,

the elliptic type if A and C have the same sign,

the hyperbolic type if A and C have different signs.

PROBLEMS

1 . To what point is the origin moved to transform (1) into (2) ? -

( - — -—

^

V 2A' 20/
Ans.

.

V 2A 2C.

2. To what point is the origin moved to transform (3) into (4) ? into (5) ?

3. Simplify Ax^ + Dx-\-Ey + F=Ohy translating the axes (a) if ^ 7^ 0,

(b) it E = 0, and find the point to which the origin is moved.

(b) Jx2 + F' = 0, (-^'O)2A
* In describing the final form of the equation it is unnecessary to indicate by primes

what terms are different from those in (1).
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4. To what types do the loci of the following equations belong?

(a) 4:X^ + y^ - ISx -{- 7 y - 1 = 0. (e) x^ + 1 y^ - 8x + 1 = 0.

(b) 2/2 + 3» - 4y + 9 = 0. (f) x^ + y2-6x + 8y = 0.

(c) 121a;2-44y2 + 68x-4 = 0. (g) 3x2-42/2 -62/ + 9 = 0.

(d) x2 + 4?/-3 = 0. (h) x2-8x + 9?/ -11 = 0.

(i) The equations in problem 1, p. 172, which do not contain the xy-term.

81. Construction of the locus of an equation of the second

degree. To remove the xi/-teim. from

(1) Ax^ + Bxi/ -\- Cy-^Dx-\- Ey-\- F=0

it is necessary to rotate the axes through an angle 6 such that

(Theorem VI, p. 169)

(2) tan2^ = j4^,

while in the formulas for rotating the axes [(II), p. 162] we need

sin 6 and cos $. By 1 and 3, p. 19, we have

(3) cos 2 ^ = ±
Vl -f- tan^ 2

From (2) we can choose 2 ^ in the first or second quadrant so

the siffn in (3) must be the same as in (2). will then be acute;

and from 15, p. 20, we have

/I -cos 2^ ^
,

^/l + cos2^
(4) sm ^ = + \j

, cos 6> = + V

In simplifying a numerical equation of the form (1) the com-

putation is simplified, if A = B^ — 4:AC=^0, by first removing

the terms in x and ?/ (Theorem VII, p. 170) and then the a^y-term.

Hence we have the

Rule to construct the locus of a numerical equation of the second

degree.

First step. Compute A = B^ — 4^C.
Second step. Simplify the equation by

(a) translating and then rotating the axes if^^ 0',

(b) rotating and then translating the axes if A = 0.
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Third step. Determine the nature of the locus hy inspection of

the equation (§ 80, p. 194).

Fourth step. Plot all of the axes used and the locu^.

In the second step the equations for rotating the axes are

•found from equations (2), (3), (4), and (11)^ p. 162. But if the

xy-tQim. is lacking, it is not necessary to rotate the axes. The
equations for translating the axes are found by the Eule on

p. 165.

Ex. 1. Construct and discuss the locus of

x2 + 4 x?/ + 4 y2 4. 12 X - 6 2/ = 0.

Solution. First step. Here A = 42-4-l-4 = 0.

Second step. Hence we rotate the axes through an angle d such that,

'''''^'
4 4,,tan2^ =— = \?

1-4 3

Then by (3), cos2^ = -|,

2 1
and by (4), sin^ = —— and cos^ —

V5 Vs

(1)

The equations for rotating the axes [{II), p. 162] become

x' — 2y' Ix' -\-y'

^ = rr-, y =
V5 V5

Substituting in the given equation,* we obtain

a;'2 -2/' = 0.

V5

It is not necessary to translate the axes.

Third step. This equation may be written

x"^ = -^y'.

3
Hence the locus is a parabola for which p = —z:, and whose focus is on

the F'-axis.
"^^

* When A = the terms of the second degree form a perfect square. The work of

substitution is simplified if the given equation is first written in the form

(x + 2y)^ + 12x-(iy = 0.

It will be shown in Chapter XII that when A= the locus is always of the parabolic

type.
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Fourth step. The figure shows both sets of axes,* the parabola, its focus

and directrix.

In the new coordinates the focus

is the point ( 0, —^ ) and the direc-
^ 2V5^

Q

trix is the line y' = (Theorem
2V5

The old coordinates of

:^ f^w^V _ N
^.. Jt

!v. V 2tXJt
'

""^^^
7~t -

^^U
"tt^^ -'

t ^^.

IV, p. 179).

the focus may be found by substi-

tuting the new coordinates for x'

and y' in (1), and the equation of

the directrix in the old coordinates

may be found by solving (1) for y'

and substituting in the equation given above.

Ex. 2. Construct the locus of

5 a;2 + 6 xy + 5 2/2 + 22 (c - 6 y + 21 = 0.

Solution. First step. A = 6^-4'6-S7^0.
Second step. Hence we translate the axes first. It is found that the equa-

tions for translating the axes are

X = x' - i, y = y' -\- S,

and that the transformed equation is

5x'^ + 6 xY + 5 /2 ^ 32.

From (2) it is seen that the axes must be rotated through — . Hence we
set

Y N 1

Y Y
V^

\l. /
j\ ^

s, /
1 \ ><

V ^ \,\
^ / >
>< \

z \ ^ \ '

—
y
z — \

•' y = X" + y"

V2 V2

and the final equation is

4.x'"^ + y'"^ = \Q.

Third step. The simplified equa-

tion may be written

16
1.

Hence the locus is an ellipse whose major axis is 8, whose minor axis is 4,

and whose foci are on the F''-axis.

Fourth step. The figure shows the three sets of axes and the ellipse.

*The inclination of OX' is 0, and hence its slope, tan 6, may be obtained from (4).

2 . 1

method given in the footnote, p. 35.

^1 • , , „ sin
this example tan 6 =

In

= 2, and the X'-axis may be constructed by the
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PROBLEMS

1. Simplify the following equations and construct their loci, foci, and

directrices.

(a) 3x2 -4x2/ + 8x-l=0. Ans. x'"^ - 4 y'"^ + 1 = 0.

(b) 4x2 + 4 x?/ + 2/2 + 8 X - 16 ?/ = 0. Anz. 5 x'2 - 8 V5 y' = 0.

(c) 41 x2 - 24 X2/ + 34 ?/ + 25 =: 0. Ans. x'2 + 2 ?/'2 _^ 1 ^ 0.

(d) 17x2 -12x?/ + 8?/2-68x + 24?/ -12 = 0.

An&. x''2 + 4 2/"2 _ 16 = 0.

(e) 2/2 + 6 X - 6 y + 21 = 0. Ans. y"^ + 6 x' = 0.

(f

)

x2 - 6 X2/ + 9 2/2 + 4 X - 12 ?/ + 4 = 0. Ans. y'"^ = 0.

(g) 12xy - 52/2 + 48?/ - 36 = 0. Ans. 4x''2 _ g^/'^a = 3(3.

(h) 4x2 _l2xy + 92/2 + 2x- 3 2/ -12 = 0.

Ans. 52 2/''2 - 49 = 0.

(i) 14x2 - 4x2/ + 112/2 -88x + 34?/ + 149 = 0.

Ans. 2x''^ + Sy''^ = 0.

(j) 12x2 + 8x2/ + 18 2/2 + 48 x + 16 2/ + 43 = 0.

^ns. 4x2 + 22/2 = 1.

(k) 9x2 + 24x2/ + 162/2 -36x- 482/ + 61 = 0.

^ns. x"2 + 1 = 0.

(1) 7 x2 + 50 X2/ + 7 2/2 = 50. Ans. 16 x'2 - 9 2/^2 = 25.

(m) x2 + 3X2/ - 32/2 + 6x + 92/ + 9 = 0. ^ns. 3x''2 - 7 2/^2 ^ q.

(n) 16x2 - 24x2/ + O?/^ - 60x - 80 2/ + 400 = 0.

Ans. y'"^ - 4 x'' = 0.

(o) 95x2 + 56a;y _ IO2/2 - 56x + 2O2/ + 194 = 0.

^MS. Qx"'^-y"-'^^Vl = Q.

(p) 5 x2 - 5 xy - 7 2/2 - 165 x + 1320 = 0. Ans. 15 x''2 _ \\ y"% _ 330 = 0.

82. Systems of conies. The purpose of this section is to

illustrate by examples and problems the relations between

conies and degenerate conies and between conies of different

types.

A system of conies of the same type shows how the degenerate

conies appear as limiting forms, while a system of conies of dif-

ferent types shows that the parabolic type is intermediate between

the elliptic and hyperbolic types.

Ex. 1. Discuss the system of conies represented by x2 + 4 2/2 = k.

Solution. Since the coefficients of x2 and y^ have the same sign, the locus

belongs to the elliptic type (Corollary, p. 196). When k is positive the locus

is an ellipse ; when fc = the locus is the origin,— a degenerate ellipse / and

when k is negative there is no locus.
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In the figure the locus is plotted for k = 100, 64, 36, 16, 4, 1, 0. It is seen

that as k approaches zero the ellipses become smaller and finally degenerate

into a point. As soon as k becomes negative there is no locus. Hence the

point is a limiting case between the cases when the locus is an ellipse and
when there is no locus.

Ex. 2. Discuss the system of conies represented by 4 x^ — 16 y^ = k.

Solution. Since the coefficients of x^ and y^ have opposite signs, the locus

-3L^

k ^^
— - Y_—— _ — ——— ^^

^
V^N^ s

^
*«»,

^ •^
^^^^:>

*^;

s ^1^^ -*- k- -216^
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^^ ^*

\ S^^frs
^/

»"^

N N^^ >s ..^ k= -6 ^^
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^ / A
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^^
k V I
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/ y/<^^ •^ —J <^
:^sN^^

/
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^ .^^^^

^ r •^ ^^% ;5: s,y'

i
t-
^ z^ ^ -^ v;^^
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.^^
--' **^ V^ ^

H r' 1S*J

belongs to the hyperbolic type. The hyperbolas will all have the same
asymptotes (p. 189), namely, the lines cc ± 2 y = 0. The given equation may
be written

k k

4 16

The locus is an hyperbola whose foci are on the X-axis when k is positive and
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on the F-axis when k is negative. For A: = the given equation shovs^s that

the locus is the pair of asymptotes.

In the figure the locus is plotted for k = 256, 144, 64, 16, 0, - 64, - 256.

It is seen that as k approaches zero, whether it is positive or negative, the

hyperbolas become more pointed and lie closer to the asymptotes and finally

degenerate into the asymptotes. Hence a pair of intersecting lines is a lim-

iting case between the cases when the hyperbolas have their foci on the X-axis

and on the Y-axis.

Ex. 3. Discuss the system of conies represented hj y'^ = 2kx \- 16.

Solution. As only one term of the second degree is present, the locus

belongs to the parabolic type (Corollary, p. 196). The given equation may be

simplified (Rule, p. 165) by translating the axes to the new origin ( , Y
We thus obtain \ k y

Q
The locus is therefore a parabola whose vertex is ( , 0) and for which

p = k. It will be turned to the right when k is positive, and to the left when
k is negative. But if A: = 0, the locus is the degenerate parabola y = ± 4.

^ Y ^
-^ '**s,

V, ^ ^^ '-'^ "

-—- "^ N
s. yy ^^ ,

-

- ^— ^ "*^

«^ \ /"
-^ ^— " » .

—

-

k^l>
^ a*^ k= ^—

"

"^

^ :^=? ^ ^
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# ^
\vy / / Y t

\

N
s< XK

r y •^ f M Vl to \> V;-

JT ^ i

i j X
V.'^ \^ \j y / y^ ^^^ :^ \ \ / ^^ ^^ ^

kH1 ^^ ^ '"

, ^ ff»^ ^^ c=: ^ -
-

— P^ r-^ /
y \ ^^

*^^ ~~ — .

.

"^ ^ y ss
"**^ .^ — -^ ^

e
'-' ^ X" V ^

-^^ r M^

In the figure the locus is plotted for A; = ± 4, ± 2, ± 1, db |, 0. It is seen

that as k approaches zero, whether it is positive or negative, the vertex recedes

from the origin and the parabola lies closer to the lines ?/ = ± 4 and finally

degenerates into these lines. The degenerate parabola consisting of two

parallel lines appears as a limiting case between the cases when the parab-

olas are turned to the right and to the left.



CONIC SECTIONS 203

Ex. 4. Discuss the system represented by

Solution.

x2

25 - A; 9 - A:

When fc < 9 the locus is an ellipse whose foci are {± c, 0) where

c2 = (25 -k) - {d -k) = 16 (theorem V, p. 185). When 9 < fc < 25 the locus

is an hyperbola whose foci are (± c, 0), where c^ = (25 - fc) - (9 - fc) = 10

(Theorem VI, p. 185). When A; > 25 there is no locus. Since the ellipses and

hyperbolas have the same foci, (± 4, 0), they are called confocal.

Clearing of fractions, we obtain

(9 - A:)x2 + (25 -k)y^ = {9- k) (25 - k).
.

Hence when A; = 9 or 25 the locus is a degenerate parabola y^-OoTX^ = 0.

In the figure the locus is plotted for k = - 56, - 24, 0, 7, 9, 11, 16, 21,

24, 25. As k increases and approaches 9 the ellipses flatten out and fmally

1 1 1 1 1

1\[
1

l\J l: \i\f\ 1/ 1

—

N )<^\'T~ "^E^2 ^^
^\ •^'^

I

*=
2^ / ' ^ y

X S^P~~H-2 5
/ v/"! \ i 2^/ s^

^^»J Z S, tjL'^ = oil A \^^
/ "^^^C s.^'x 7 ^t$^^ \-"%
t t'^^%^----~ty\.^% 4
-t- ^t- Cu ^'-^ ^

^ IT X^ " _F^y ^
, L'^NZl---qrt"^7 i
5,"^^ ?> \^\ \ t>ti

-"'' V 5 L.J X^ ^Z -t~'^^^^^^^5 t X S^\=z^
^^^ ^^^--^"^ ^^i

^ ^S -^ JL s^ ^^
'^ /^U^ -fc-' N'^ ^

- == r--i ,.
E ^ 1

-degenerate into the JT-axis, and as k decreases and approaches 9 the hyper-

bolas flatten out and degenerate into the X-axis. Hence the locus of the

parabolic type, y'^ = 0, appears as a limiting case between the ellipses and

hyperbolas. As k increases and approaches 25. the two branches of the

hyperbolas lie closer to the F-axis, and in the limit they coincide with

the F-axis.

Ex. 5. Plot and discuss the locus of A:x2 + 2 2/2 - 8 x = 0.

Solution. If A: = 0, the locus is a parabola. If k is not zero, the locus is

an ellipse or hyperbola according as k is positive or negative,

passes through the origin for all values of k.

The locus
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Simplifying by translating the axes (Rule, p. 165), it is found that if the

origin is (
- , j the equation becomes

From this the axes may be determined and the locus sketched.

In the figure the locus is plotted for fc = 1, f, ^, 0, — 1, — i. If A; is posi-

tive and approaches zero, the ellipses become longer and lie closer to the

\ Y\
,

y^

S
^ ft
y
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^

•v
^

s. 4- Af.P
y
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s, ^• \ ^y ^
S ^>'

\
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\ r ^t \ f»» \
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^ >^ ^^^ ^

y ,/
y ^

s>

y
/^' y %N "^

^X /
/ N^"v

^-
>•

y / 'sV V
- y X ^y

^ y'

parabola. If k is negative and approaches zero, the right-hand branches of

the hyperbolas lie closer to the parabola and the left-hand branches recede

from the origin. This shows that tUe parabola is a limiting form between the

ellipse and hyperbola.

How does the locus behave if k approaches + co or — co ? >-

PROBLEMS

1. Plot on separate sheets the foci and directrices of the conies plotted in

examples 1, 2, and 3. Where are the foci and directrices Of the degenerate

conic in each system ? Verify the results analytically.

2. Plot the following systems of conies and show that the conies of each

system belong to tlie same type. Draw enough conies so that the degenerate

conies of the system appear as limiting cases.

<^>S+
k. (c)

16
= k.

(b) 2/2 = 2 kx. (d) x2

3. Problem 1 for the systems in problem 2.

r
9

2ky -6.
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4. Plot the system — + — = 1 for positive values of k. What is the locus
k 16

if k = lQ? Show how the foci and direatrices behave as k increases or

decreases and approaches 16. Where are the foci and directrices of a

circle ?

5

.

Plot the system in problem 4 for positive and negative values of k. Show
hov^the conies change as k approaches zero when it is positive and negative.

6. Plot the following systems of conies and show that all of the conies of

each system are confocal. Discuss degenerate cases and show that two

conies of each system pass through every point in the plane.

^ ' 16-A; SQ-k ^ ' 64 - k 16 - k

(b) y^ = 2kx-}- A;2. (d) x^ = 2ky + k^.

7. Plot and discuss the systems

(a) 16 {X _ A;)2 + 9 2/2 = 144. (c) {y - k)"^ = 4 x.

(b) xy = k. (d) 4 (X - k)'^ -9{y- ky = 36.

8. Plot the following systems and discuss the locus as k approaches zero

and infinity. Show how the foci and directrices behave in each case.

^ (^-^2 .^ {x-kl_y^^
^ ' k^ 36 ^ ^

A;2 36

9. Show that all of the conies of the following systems pass through the

points of intersection of the conies obtained by setting the parentheses equal

to zero. Plot the systems and discuss the loci for the values of k indicated.

(a) (?/2-4x) + fc(z/2 + 4rc) = 0, fc3z:+l, -1.

(b) {x^ + ?/2 _ 16) + fc(x2 - 2/2 _ 4) 3z: 0, A; = + 1, - 1, - 4.

(c) (x2 + 2/2 - 16) + fc(a;2 - 2/2 - 16) = 0, fc = + 1, - 1.

(d) (x2 + 16 2,2 - 64) + A: (x2 - 4 2/2 _ 36) = 0,k = -l,4, - -y.

(e) x2 + 4 2/ + A: (x2 - 4 y + 16) = 0, A; = + 1, - 1.

MISCELLANEOUS PROBLEMS

1. Construct the loci of the following equations, their foci and directrices.

(a) 9x2 + 24x2/+ 162/2- 50x4-802/ -275 = 0.

(b) 56x2-64x2/ + W)9y2._i76x + 282 y- 896 = 0.

(c) 5x2 _ I2xy + 6x - S6y - 63 = 0.

2. Find the value of p if ^2 = 2px passes through the point (3, - 1).

X2 2/2

3. Find the values of a and h if — + ^ = 1 passes through the points

(3, - 6) and (4, 8).
"^ ^^

4. Find the equation of the locus of a point P if the sum of its distances

from the points (c, 0) and (— c, 0) is 2 a,
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6. Find the equation of the locus of a point P if the difference of its

distances from the points (c, 0) and (— c, 0) is 2 a.

6. Find the equation of the locus of a point if its distances from the line

x = — — and the point (
— , j are equal.

7. Show that a conic or degenerate conic may be found which satisfies

five conditions, and formulate a rule by which to find its equation.

Hint. Compare p. 93 and p. 133.

8. Find the equation of the conies which satisfy the following conditions.

(a) Passing through (0, 0), (1, 2), (1, - 2), (4, 4), (4, - 4).

(b) Passing through (0, 0), (0, 1), (2, 4), (0, 4), (- 1, - 2).

(c) Passing through (3, 7), (4, 6), (5, 3) if ^ = -B and C = 0.

(d) Passing through (1, 2), (3, 4), {4, 2), (2, - 1), (4, 2).

(e) Passing through (0, 0), (0, 1), (1, 0), (6, 6), (5, 6).

(f) Passing through (0, 0), (2, 0), (- 3, 2), (5, 2) with its axes parallel to

the coordinate axes.

9. What is the nature of a conic which passes through five points, of

which three or four are on a straight line ?

The circle whose radius is a and whose center is the center of

a central conic is called the auxiliary circle.

10. The ordinates of points on an ellipse and the auxiliary circle which

have the same abscissas are in the ratio of 6 : a,

11. The area of an ellipse is Ttab.

Hint. Divide the major axis into equal parts. With these as hases inscribe rectan-

gles in the ellipse and auxiliary circle. Apply problem 10 and increase the number of

rectangles indefinitely.

12. The auxiliary circle of an hyperbola passes through the intersections

of the directrices and asymptotes.

13. Show that the locus of xy -^ Dx }- Ey -\- F = is either an equilateral

hyperbola whose asymptotes are parallel to the coordinate axes or a pair of

perpendicular lines.

14. Discuss the form of the locus oi x^ - y^ -\- Dx -{- Ey + F = 0.



CHAPTER IX

TANGENTS AND NORMALS

83. The slope of the tangent. Let Pi be a fixed point on a

curve C and let P^ be a second point on C near P^. Let P^

approach P^ by moving along C. Then the limiting position

PiT of the secant through Pi and P^ is called the tangent to C
at Pi.

It is evident that the slope of PiT is the limit of the slope

of P1P2. The coordinates of Pg ^^y be written (xi + A, 2/1 + k),

where h and k will be positive or negative numbers according

to the relative positions of Pi and Pg. The slope of the secant

through Pi and Pg is therefore (Theorem V, p. 35)

3/1 -fa -^k^ k
(1)

Xi — Xi h) h

As P2 approaches Pi both h and k approach zero, and hence
k

approaches -? which is indeterminate. The actual value of the

k
limit of - may be found in any case from the conditions that'

Pi and P2 lie on C (Corollary, p. 53), as in the example

following.

207
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Ex. 1. Find the slope of the tangent to the curve C : 8 y'= x^ at any point

Pi {xu yi) on G.

Solution. Let Pi (xi, yi) and P^ (xi + ^, 2/i + k) be two points on C.

Then (Corollary, p. 53)

(2) 8 2/i = Xi3

and 8 (^i + k) = (xi + h)\

or

(3) 8 ?/i + 8 A; = Xi3 + 3 XiS^i + 3 x^h^ + /i^.

Subtracting (2) from (3), we obtain

^k = ^Xx^h + Zxrh'^ + h^.

Factoring, 8 A; = /i (3 Xi2 + 3 XiA + TjF)
;

fc _ 3xi2_+_3xiM-^
h~ 8

y\ 1

H
I f

'/
^^

P^. -J
h

X /^ "o / X

/ /
f / 1

1
*

/
// Y

and hence

Then, as P2 approaches Pi, h and k approach

zero and the

limit of - — limit of =
' h 8 8

3xi2
Hence the slope m of the tangent at Pi is m =—-•

8

C is symmetrical with respect to 0, and the tangents at symmetrical points

are parallel since only even powers of Xi and yi occur in the value of m. The
tangent at the origin is remarkabL In that it crosses the curve.

The method employed in this example is general and may be

formulated in the following

Rule to determine the slope of the tangent to a curve C at a point

Pi on C.

First step. Let Pi (xi, 1/1) and P^ {xi + h, yi + k) he two points

on C. Substitute their coordinates in the equation of C and

subtract.

Second step. Solve the result of the first step for — ?* the slope

of the secant through Pi and P^.

Third step. Find the limit of the result of the second step when

h and k approach zero. This limit is the required slope.

* The sohxtioii will contain h and k separately, so that the equation is not solved in the

ordinary sense.
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Ex. 2. Find the slope of the tangent to the semicubical parabola 3 2/2 = x^

atPi(iCi, 2/i).

Solution. First step. Let Pi(iCi, yi) and P^ixi + ^, 2/i + k) be two points

on the curve. Then (Corollary, p. 53)

(4) 3?/i2 = Xi3

and 3 yi2 + 6 kyi + 3 A;^ = xi^ + 3 x^^h+ 3 Xih"^ + ^8.

Subtracting,

6yik + 3A;2 = Bxi^h + 3xi;i2 _i_ ^3,

Second step. Factoring,

k{6yi + Sk) = h{Sxi^ + S Xih + ^^2).

k _ Sxi^ + Sxih + h^

h~
Hence

Qyi + Bk

Third step. As h and k approach zero,

limit of- = limit of-
h 62/1 + 3A;

3xi2

62/1

Xj^

22/1

Hence the slope of the tangent at Pi is m =

At the origin m = - and is indeterminate. To find the value of m at the

origin, we may either apply the rule a second time, setting cci = and 2/1 = 0,

or eliminate 2/1 from the value of m by means of (4), thus obtaining a value

which is determinate at the origin.

PROBLEMS

1. Find the slopes of the tangents to the following curves at the points

indicated.

(a) 2/2 = 8 X, Pi (2, 4).

(b) x2 + 2/2 = 25, Pi (3, -4).

(c) 4x2 + 2/2 = 16, Pi(0, 4).

(d) x2 - 92/2 = 81, Pi (15, - 4).

Ans. 1.

Ans. |.

Ans. 0.

2. Find the slopes of the tangents to the following curves at the point

Pi(xi, 2/1).

(a) 2/2 = 6x.
3

Ans. — •

(b) 16 2/ = x4

(c) x2 + 2/2 = 16.

Ans.

Ans.

Xi«



Atis.

2/1

Ans.
3xi2 + 2xi

2yi

Ans.
8-4xi
2/1-1

Ans.
Xi

A nQ 2/1
./I /to.

Xi + 2yj_

Ans.
4-Xi
2-2/1

Ans.
Xi + S
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(d) x2 - 2/2 = 4.

(e) 2/2 = x3 + x2.

(f) 4x2 4-2/2-16x-22/ = 0.

(g) xy = a\

(h) X2/ + 2/2 = 8.

(i) x2 - y2 _ 8 X + 4 2/ = 0.

(j) x2 + 2/2 + 6x-82/ = 0.

4-2/1

84. Equations of tangent and normal. We have at once the

Rule to find the equation of the tangent to a curve C at a point

Pi{^i, Vi) on C.

First step. Find the slope m of the tangent to C at Pj {Rule,

p. 208).

Second step. Substitute Xi, yi, and m in the point-slope form of

the equation of a straight line [(V), p. 95].

Third step. Simplify that equation hy means of the condition

that Pi lies on C {Corollary, p. 53).

Ex. 1. Find the equation of the tangent to C : 8 y = x^ at Pi (xi, 2/1).

3xi2
Solution. First step. From Ex. 1, p. 208, the slope is m =
Second step. Hence the equation of the tangent is

2/ - 2/1 = -x- {X - Xi),

or
^

(1) 3xi2x - 8 2/ - 3xi3 +'82/1 = 0.

Third step. Since Pi lies on C, 8 2/1 = Xi^.

Substituting in (1), we obtain

(2) 3 Xi2x - 8 2/ - 2 Xi3 = 0.

The normal to a curve C at a point Pi on C is the line through

Pi perpendicular to the tangent to C at Pi. Its equation is found

from that of the tangent by the Rule on p. 114, using Theorem

XII, p. 117'.
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Ex. 2. Find the equation of the normal at Pi to the curve in Ex. 1.

Solution. The equation of any line perpendicular to (2) has the form

(Theorem XII, p. 117)

(3) 8 x + 3 xth/ + k = 0.

If Pi lies on this line, then (Corollary, p. 53)

8a;i + Sxih/i-\-k = 0,

whence A: = — 8 Xi — 3 xi^yi.

Substituting in (3), the equation of the normal is

8 X + 3 Xi2y - 8 xi - 3 iCi22/i = 0.

PROBLEMS

1. Eind the equations of the tangents and normals at Pi(xi, ?/i) to the

curves in (a) to (e), problem 2, p. 209.

Ans. (a) yiy = 3 (x + Xi), 2/iX + 3 y = Xiyi + 3 ?/i.

(b) Xi^x - 4 ?/ = 12 2/1, 4 X + Xi^y = 4 xi + Xi^^i/i.

(c) xix + Viy = 16, yix - xiy = 0.

(d) xix - yiy = 4, yix + x^y = 2 x^yx.

(e) (3 Xi2 4- 2 xi)X- 2 2/1?/- Xi3= 0, 2 yiX+ (3 Xi2 + 2 Xi) y= 3 Xi^yi + 4 Xi?/i.

2. Find the coordinates of a point on each of the curves in (/) to (j),

problem 2, p. 209, and then find the equations of the tangent and normal at

that point.

3. Find the equations of the tangents and normals to the following curves

at the points indicated.

(a) 2/2-8x + 4y=:0, (0, 0). Am. 2x - ?/ = 0, x + 2?/ = 0.

(b) xy = 4, (2, 2). Ans. x + y = 4, x — y — ^.

(c) x2-42/2 = 25, Pi(xi, ?/i). Ans. XiX-42/i?/=25, 42/iX+Xi2/=5xi?/i.

(d) x2 + 2xy = 4, Pi(xi, ?/i).

Ans. (xi + 2/i) X + Xxy - 4, XiX - (xi + ^i) y = x^ - Xi?/i - y^.

(e) 2/2 = 2 px. Pi (xi, ?/i).
' Ans. 2/i2/=P(a^ + a:i), 2/iX+j32/ = Xi?/i+i32/i.

(f) -0 + ^ = 1' Pi (^1,2/1).

^^^' -^ +
-P"

- ^'
62 a2

-
a262

'''^"

(g) 62x2 - a22/2 = a262, p^(xi, yi).

Ans. 62a;jic _ a^y^y = a'^b^, a^yiX + b^Xiy = (a2 + 62) Xiyi.

(h) x^-y^ -\-x^ = 0, (0, 0). Ans. y = ±x, x = Ty-
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85. Equations of tangents and normals to the conic sections.

Theorem I. The equation of the tangent to the circle

C : x^ -\- y^ = r"^

at the point P^ (x-^, y^) on C is

(I) oc^oo + ynj = rp2

Proof. Let Pi (xi, ^i) and P2 (xi + A, S'l + k) be two points on the circle C.

Then (Corollary, p. 63)

(xi + W + (2/1 + W = r%

(1)

and

or

(2) Xi2 + 2xiA + /i2 4-yi2 + 22/iA;4-A;2 = r2.

Subtracting (1) from (2), we have

2 Xi/i + ^2 + 2 vik + A:2 = 0.

Transposing and factoring, this becomes

A;(2yi + fc)=-/i(2xi + h),

k _ 2xi 4- ^
whence

22/i + A;

is the slope of the secant through Pi and P2.

Letting Pj. approach Pi, h and k approach zero, so that m, the slope of the

tangent at Pi, is

,. ., - 2xi + A xim = limit of = = -.

2 2/1 + A; 2/1

The equation of the tangent at Pi is then (Theorem V, p. 95)

Xi
y -yi =

or

(X - Xi ,

2/1

r2.

Q.E.D.

xix + yiy

But by (1), xi2 4- yi2

so that the required equation is

Xix + yiy

Theorem II. The equation of the tangent to the locus of

Ax^ + Bxg + Ci/ + Dx -{- Ey + F=0
at the point Pi (xi, 3/1) on the locus is

(II)
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Proof. Let Pi (xi, 2/1) and P2 (xi + ^, ?/i + A:) be two points on the conic.

Then (Corollary, p. 53)

(3) • Axx^ + Bxiv^ + Cyi^ -\- Dxi + Eyi + F = and

A{xi + h)^ -{B{xi + h) {yi + A;) -f C (yi + k)^ + D(xi + /i) + -E;(2/i + A;) + P= 0.

Clearing parentheses, we have

(4) Axi^ + 2 ^XiA + Ah'^ + ^Xi2/i + -BxiA; + Byih + ^/iA;

+ Cyi^ + 2 C2/1A; -f Ck^ 4- Dxi + -D^ + ^2/1 + Ek + F = 0.

Subtracting (3) from (4), we obtain

(5) 2Axih + Ah^ + Bxik + 5?/i/i + Bhk + 2 CyiA; -f- Ck"^ -\- Dh -\- Ek = 0.

Transposing all the terms containing h and factoring, (5) becomes

k{Bxi + 2Cyi-\-Ck + E)=-h{2Axi -\- Ah + Byi + Bk-+ D),

k 2Axi + Byi + D-{-Ah + Bk
whence

h Bxi + 2 Cyi + E -\- Ck

This is the slope of the secant P1P2 [(1), p. 207].

Letting P2 approach Pi, h and k will approach zero and the slope of the

^^^S^^t i«

^ ^ _ 2Ax, + By,-i-D
^^

Bxi + 2 C2ji -{- e'

The equation of the tangent line is then (Theorem V, p. 95)

2Axi-{-Byi + D.
,

^'
Bxi + 2Cyi + E^ '^

To reduce this equation to the required form we first cleaij of fractions and

transpose. This gives

(2 Axi + By I + D)x fiBxi + 2Cyi-\-E)y
^- (2 Axi^ + 2 Bxiyi + 2 Cyi^ + Dxi + ^2/i ) = 0.

But from (3) the last parenthesis in this equation equals

-{Dxi + Eyi + 2F).

Substituting, the equation of the tangent line is

{2Axi + Byi +-:©y:rH- {Bxi + 2Cyi + E)y + {Dxi + Eyi + 2F) = 0.

Removing the parentheses, collecting the coefficients of A, B, O, D, E^

and P, and dividing by (2), we obtain (II). q.e.d.

Theorem II enables us to write down the equation of the taiP"

gent to the locus of any equation of the second degree. It is

remembered most easily in the form of the following Rule.
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Rule to write the equation of the tangent at Pi (xi, t/i) to the locus

of an equation of the second degree.

First step. Substitute x^x and y^y for x"^ and y"^, ——-

—

— for

xy, ana —-—- and for x and y in the given equation.

Second step. Substitute the numerical values of Xt and y^, ifgiven,

in the result of the first step. The result is the required equation.

In like manner, or at once from this Kule, we have

Theorem III. The equation of the tangejit at P^ (xi, y^) to the

ellipse b^x^ + a^y^ = a%^ is b^oc^oc + a^y^y = a^b^
;

hyperbola b^x^ — a^y"^ — a%'^ is b'^oc^uc — a^yiy = a^b"^
;

parabola y"^ = 2px is y^y = _p (x + x-^.

By the method on p. 210, we obtain

Theorem IV. The equation of the normal at Pi(xi, y{) to the

ellipse b^x^ + a^y^ = a%^ is ahj^oc — h^x^y = {a^ — b^) oc^yi ;

hyperbola b'^x^ — a^y^ = a%^ is ahj^x + b'^x^y — {a^ + 6^) x^y^
;

parabola y"^ = 2px is y^x + j^y = x^y-i + vy^-

PROBLEMS

1. Find the equations of the tangents and normals to the following conies

at the points indicated.

(a) 3x2-10?/2 = 17, (3, 1). (d) 2x2 -^2 '=14, (g^ _ 2).

(b) y2 = 4aj, (9, _ 6). (e) x^^hy'^ = 14, (3, 1).

(c) x2 + y2 ^ 25, (- 3, - 4). (f) x2 = 62/, (- 6, 6).

(g) x2-x2/ + 2x-7 = 0, (3,2).

(h) X2/-y2 + 6x + 82/-6 = 0, (-1,4).

The directed lengths on the tangent and normal from the point

of contact to the Z-axis are called the length of the tangent and the

length of the normal respectively. Their projections on the Z-axis

are known as the subtangent and subnormal.

2. Find the subtangents and subnormals in (a), (b), (d), and (e), prob-

lem 1. Am. (a) - Lo, _«_
;

(b) - 18, 2 ;
(d) - |, 6 ;

(e) |, - f

.

3. Find the lengths of the tangents and normals in (a), (b),Jd), and (e),

probl&m 1. Ans. (a) \ VTsT, J^ VlsT
;

(b) 6 VTo, 2 VlO

;

^
(d) I Vio, 2 VlO

;
(e) \ V34, | Vsi".

\
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4. Find the subtangents and subnormals of (a) the ellipse, (b) the hyper-

bola, (c) the parabola.

Ans. (a)
Xi- 62 a2 _ a;

2

xi; (b)^ ,

a^ Xi
2xi,p.

xi a^ xi a^

5. Show how to draw the tangent to a parabola by means of the sub-

normal or subtangent. .

6. Prove that a point Pi on a parabola and the intersections of the

tangent and normal to the parabola at Pi with the axis are equally distant

from the focus.

7. Show how to draw a tangent to a parabola by means of problem 6.

8. The normal to a circle passes through the center.

9. If the normal to an ellipse passes through the center, the ellipse is a

circle.

10. The distance from a tangent to a parabola to the focus is half the

length of the normal drawn at the point of contact.

11. Find the equation of the tangent at a vertex to (a) the parabola;

(b) the ellipse; (c) the hyperbola.

12. Find the subnormal of a point Pi on an equilateral hyperbola.

Ans. Xi.

13. In an equilateral hyperbola the length of the normal at Pi is equal to

the distance from the origin to Pi.

86. Tangents to a curve from a point not on the curve.

Ex. 1. Find the equations of the tangents to the parabola y"^ = 4x which

pass through P2 (— 3, — 2).

Solution. Let the ;point of

contact of a line drawn through

P2 tangent to the parabola be

Pi. Then by Theorem III the

equation of that line is

(1) ?/i?/ = 2 X + 2 Xi.

Since P2 lies on this line

(Corollary, p. 53),

(2) -2yi=-6 + 2xi;

and since Pi lies on the parabola.

(3) ?/l2 = 4Xi.

The coordinates of Pi, the

point of contact, must satisfy

(2) and (3). Solving them, we
find that Pi may be either of the points (1, 2) or (9, - 6).
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If (1, 2) be the point of contact, the tangent line is, from (1),

22/ = 2x + 2,

or x-y + 1 = 0.

If (9, — 6) be the point of contact, the tangent line is

- 6 2/ = 2 X + 18,

or x-Sy + 9 = 0.

The method employed may be stated thus

:

Rule to determine the equations of the tangents to a curve C
passing through P^ix^, y^ not on C.

First step. Let P^ (x'l, ?/i) he the point of tangency of one of the

tangents, and find the equation of the tangent to C at P^ {Rule,

p. 210).

Second step. Write the conditions that (x^, y^) satisfy the result

of the first step and (cci, y-^ the equation of C, and solve these equa-

tions for Xi and yi.

Third step. Substitute each pair of values obtained in the second

step in the result of the first step. The resulting equations are the

required equations.

PROBLEMS

1. Find the equations of the tangents to the following curves which pass

through the point indicated and construct the figure.

(a) x^ + y^ = 25, {7, -1). Ans. 3x - 4?/ = 25, 4x + 3?/ = 25.

(b) 2/2 := 4x, (- 1, 0). Ans. y = x-\-\,y + x-\-l = 0.

(c) 16x2 + 25y2 = 400, (3, - 4). Ans. y + 4 = 0, Sx - 2y = 11.

(d) 8y = x3, (2, 0). Ans. y = 0,27 x-8y- 54 = 0.

(e) x2 _}. i6?/2 _ 100 = 0, (1, 2). Ans. None.

(f) 2xy + ?/2 = 8, (- 8, 8). Ans. 2x + 3?/ - 8 = 0, 4x + 3?/ + 8 = 0.

(g) y^-\-4x-ey = 0, {-^, -1). Ans. 2x-Sy = 0, 2x-y-\-2 = 0.

(h) x2 + 4 y = 0, (0, - 6). Ans. None.

(i) x2 - 3 ?/2 + 2 X + 19 = 0, (- 1, 2).

Ans. x + 3?/-5 = 0, x-3y + 7 = 0.

(j) y2 = x^, (f, 0). Ans. y = 0, 3x - y - 4 = 0, 3x + y - 4 = 0.

2. Find the equations of the lines joining the points of contact of the

tangents in (a), (b), (c), (f), (g), and (i), problem 1.

Ans. (a)7x-y = 25; (b) x = 1 ;
(c) 12x - 25y = 100;

(f) x = l; (g) x-2y = 0; (i) y = 6.
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87. Properties of tangents and normals to conies.

Theorem Y. If a point moves off to infinity on the parabola y^

tangent at that point approaches parallelism

with the X-axis.

Proof. The equation of the tangent at the

point Pi(xi, yi) is (Theorem III, p. 214)

2/12/ =px+ pxi.

Its slope is (Corollary I, p. 86)

2px, the

Pm = —•
2/1

As Pi recedes to infinity y^ becomes infinite,

and hence m approaches zero, that is, the tangent

approaches parallelism with the X-axis. q. e . d.

Theorem VI. If a point moves off to infinity on the hyperbola

b'^^-a'^y'^ = aW,

the tangent at that point approaches coincidence with an asymptote.

Proof. The equation of the tangent at the point Pi (Xi, yi) is (Theorem
"*

III, p. 214)

(1) 62a;ix - a'^yiy = a'^bK

&2xi
Its slope is (Corollary I, p. 86)

cC'yi

As Pi recedes to infinity Xi and yi become infinite and m has the inde

terminate form —

.

CO

But since Pi lies on the hyperbola,

62xi2 - a2yi2 = a'^b'^

Dividing by a'^yi^, transposing, and extracting the square root,

6
Multiplying by

bxi

ayi

62Xi

'1

2/1^

+ 1.

m = —— = ±-A — + 1.

a^yi a \ 2/i2
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From this form of m we see that as 2/1 becomes infinite m approaches

± -, the slopes of the asymptotes [(5), p. 190], as a limit. The intercepts of

(1) are — and - As their limits are zero the limiting position of the

tangent will pass through the origin. Hence the tangent at Pi approaches

coincidence with an asymptote. q.e.d.

These theorems show an essential distinction between the form of the

parabola and that of the right-hand branch of the hyperbola.

^ Theorem vn. The tangent and normal to an ellipse bisect respectively the

external and internal angles formed by the focal radii of the point of contact *

Proof. The equation of the lines joining Pi (xi, yi) on the ellipse

62x2 + a22/2 = a262

to the focus F' (c, 0) (Theorem V, p. 185) is

(Theorem VII, p. 97)

yix + {c-xi)y-cyi = 0,

and the equation of PiP is

^
yix - {c + Xi)y + cT/i = 0.

The equation of the tangent AB is

(Theorem III, p. 214)

62xix + a^yiy = a^b^.

We shall show that the angle 6 which AB makes with PiF' equals the

angle which PiP makes with AB.
By Theorem X, p. 109,

a2y^2 _ 52cxi -f b'^xi^ _ {a'^yi^ + b^Xr^ - b^cxi

b^xiyi + a^cyi - a^x^yi a^cyi - {a^ - 62) xi^i

But since Pi lies on the ellipse.

a2y^2 ^ 52a;^2
_ (j252^

and (Theorem V, p. 185)

a262 - 62cxi
Hence tan 6 =

In like manner

tan =

a2-62

62(a2-

:C2.

CXi)

cyi

<
a'^cyi - c2xi2/i cyi {a^ - cxi)

- 62cxi - 62xi2 - a^i^ (62xi2 + a^yr^) + 62cxi

h'^xiyi - a^cyi - a'^Xiyi a2c2/i + (a2-62)xi2/i

aW + 62cxi _ 62

cyia^cyi + c2xiyi

* This theorem finds application in the so-called whispering galleries.
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Hence tan ^ = tan
;
and since d and are both less than it, 6 = <p.

That ia, AB bisects the external angle of FPi and F'Pi, and hence, also,

CD bisects the internal angle. q.b.d.

In like manner we may prove the following theorems.

*4llieorem VIII. The tangent and normal to an hyperbola bisect respec-

tively the internal and external angles formed by the focal radii of the point

of contact.

%Theorem IX. The tangent and normal to a parabola bisect respectively the

internal and external angles formed by the focal radius of the point of contact

and the line through that point parallel to the axis*

These theorems give rules for constructing the tangent and normal to a

conic by means of ruler and compasses.

Construction. To construct the tangent and normal to an ellipse or hyper-

bola at any point, join that point to the foci and bisect the angles formed by
these lines. To construct the tangent and normal to a parabola at any point,

draw lines through it to the focus and parallel to the axis, and bisect the

angles formed by these lines.

The angle which one curve makes with a second is the angle which the

tangent to the first makes with the tangent to the second if the tangents are

drawn at a point of intersection.

N Theorem X. Confocal ellipses and hyperbolas intersect at right angles.

Proof. Let

+ rr = 1 and —: — rrr = 1(2)
a2 62 a'2 6'2

be an ellipse and hyperbola with the same foci. Then

(3) a2 - 62 = a/2 + 5^2.

For if the foci are (± c, 0), then in the ellipse c^ = a^- b^ and in the hyperbola C'=a'^ + b''

(Theorems V and VI, p. 185).

* This theorem finds application in reflectors for lights.
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The equations of the tangents to (2) at a point of intersection Pi {xi, y\)

are (Rule, p. 214)

It is to be proved that the lines (4) are perpendicular, that is (Corollary

III, p. 87), that

(5)
-^-J^ = 0.

^ ^
a2a'2 hW^

Since P\ lies on both curves (2), w^e have

^V^' = land^-^ = 1.

a2 &2 (j'2 5'2

Subtracting these equations, we obtain

,g.
(a^-a^-^)xi2 _ (62 + y2)y^2 ^ ^

But from (3), a'^ - a'2 = lfi ^ h'\

and hence (6) reduces to (5) and the lines (4) are perpendicular. q.e.d.

In like manner we prove

Nrheorem XI. Two parabolas with the same focus and axis which are turned

in opposite directions intersect at right angles.

Hence the confocal systems in section 82, p. 200 (Ex. 4 and problem 6),

are such that the two curves of the system through any point intersect at

right angles.

PROBLEMS

1. Tangents to an ellipse and its auxiliary circle (p. 206) at points with

the same abscissa intersect on the X-axis.

2. The point of contact of a tangent to an hyperbola is midway between

the points in which the tangent meets the asymptotes.

3. The foot of the perpendicular "from the focus of a parabola to a tan-

gent lies on the tangent at the vertex.

4. The foot of the perpendicular from a focus of a central conic to a

tangent lies on the auxiliary circle (p. 206).

6 . Tangents to a parabola from a point on the directrix are perpendicular

to each other.

6. Tangents to a parabola at the extremities of a chord which pass

through the focus are perpendicular to each other.

7. The ordinate of the point of intersection of the directrix of a parabola

and the line through the focus perpendicular to a tangent is the same as that

of the point of contact.
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8. How may problem 7 be used to draw a tangent to a parabola ?

9. The line drawn perpendicular to a tangent to a central conic from a

focus and the line passing through the center and the point of contact inter-

sect on the corresponding directrix.

10. The angle which one tangent to a parabola makes with a second is

half the angle which the focal radius drawn to the point of contact of the

first makes with that drawn to the point of contact of the second.

11. The product of the distances from a tangent to a central conic to the

foci is constant.

12. Tangents to any conic at the ends of the latus rectum (double chord

through the focus perpendicular to the principal axis) pass through the

intersection of the directrix and principal axis.

13. Tangents to a parabola at the extremities of the latus rectum are

perpendicular.

14. The equation of the parabola referred to the tangents in problem 13 is

x2 - 2a;?/ + 2/2 - 2 V2p {x + y) + 2p2 = o,

or (compare p. 17) x^ -\- y^ = yp V2.

15. The area of the triangle formed by a tangent to an hyperbola and

the asymptotes is constant.

16. The area of the parallelogram formed by the asymptotes of an

hyperbola and lines drawn through a point on the hyperbola parallel to

the asymptotes is constant.

88. Tangent to a curve at the origin. If a curve passes through

the origin, the equation of the tangent at

that point is easily found.

Ex. 1. Find the equation of the tangent at the

origin to

Solution. To find the slope of the tangent at

Pi(0, 0), let P2(0 + A, + k) be a second point

on C. The conditions that Pi and P2 lie on C
give but one equation,

whence the slope of the secant P1P2 is [(1), p. 207]

m=-=-2
h

^2.

Letting P^ approach Pi, h and k approach zero,

and the slope of the tangent is the limit of m,

which is — 2.
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Hence the equation of the tangent is (Theorem I, p. 58)

or 2 X + y = 0.

Notice that this equation may be obtained at once by setting the terms of

the first degree in the equation of C equal to zero.

If a curve passes through the origin, the constant term in its

equation must be zero (Theorem YI, p. 73), so that its equation

must have the form

Ax + By + Cx^ + Dxi/ -\- Eif + Fx^ -]
= 0,

where the dots indicate that there may be other terms whose

degree in x and y may be three or greater.

Theorem XII. The equation of the tangent at the origin to the

curve C whose equation arranged according to ascending powers of

X and y is

Ax + By-{- Cx'^ + Dxy -{ Ey'^ + Fx^ ^ = 0,

is Ax -{- By = 0.

That is, the equation of the tangent to C at the origin is obtained

by setting equal to zero the terms of the first degree in x and y.

Proof Pi(0, 0) lies on C. Let Pi{h, k) be a second point

on C. Then (Corollary, p. 53)

Ah -^Bk-\- Ch^ + Dhk + Ek'^ + F/^s + . .
. = Q.

Transposing all terms containing h, and factoring,

k{B + Ek-\ ) = -h{A + Ch + Dk + Fh'' + •••).

k _ A-\-Ch^- Dk-\- Fh'' + >
.

•

" h~ B-\- Ek-\

Letting P^ approach P^, the limit of —^ which is the slope of

A
the tangent, is seen to be

Hence the equation of the tangent is (Theorem V, p. 95)

A
y = X, —^ B ^

or . Ax + By = 0. q.e.d.

If ^ = and B = 0, the terms of the lowest degree, if set equal to zero, will

be the equation of the two or more lines which will then be tangent to C at

the origin. For example, if the equation of C is x'^ — y'^ + x^ — 0, the two lines

a;2 _ y2 — will be tangent to C at the origin (problem 3, (h), p. 211).
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89. Second method of finding the equation of a tangent. The
tangent to a curve C at a point Pi may now be found as follows.

Transform C by moving the origin to Pi (Theorem I, p. 160).

The equation of the tangent at Pi in the new coordinates is then

found immediately by Theorem XII. Transform it by translating

the axes to their first position. The result is the equation of the

tangent at Pi in the given coordinates.

Ex. 1. Find the equation of the tangent to C : 4 x^ — 2 ?/2 _j. 3^3 = q at

Pi(- 2, 2) which lies on C.

Solution. Set (Theorem I, p. 160)

x = x'-2, y = y' + 2.

The equation of C becomes

4 (x' - 2)2 - 2 (y' + 2)2 + {x' - 2)3 = 0.

Only the terms of the first degree are

needed, and these may he picked out without

clearing the parentheses. Tlie equation of

the tangent is therefore

4 (- 4 x') - 2 . 4 ?/' + 12 x' = 0,

or x' + 2 y' — 0.

To transform to the old axes, set

x' = X + 2, y' = y -2.

"We thus obtain

x + 2?/-2 = 0,

which is the equation of the tangent to C at Pi.

PROBLEMS

1. Find the equations of the tangents at the origin to

(a) x2 + 2 xy + ?/2 - 6 X + 8 y = 0. (d) y = x^ - 2 x2 + x.

(h) xy -y^ -\-x-Sy = 0. {e) x^ -\- y^ + x - y = 0.

(c) x2 + 4x2/ - 3x + 4?/ = 0. (f) x3 + x2 - Sxy - 4y2 = q.

2. Find the equations of the tangents to the following curves at the points

indicated by the method of section 89.

(a) 9x2 - 2/2 + 2 X - 4 = 0, (2, 6).

(b) x2 + 4xy + 62/-7=0, (-1, 3).

(c) xy + 6x - 4?/ - 6 = 0, (2, 3).

(d) y2a.4x + 2y + 8 = 0, (-4, 2).

(e) y^ = x^ + 8, (2, 4).

(f) 2/ = X* - 3x3 - 5x2 + 4x + 4, (0, 4).

Ans. 19x-6y-2 = 0.

Ans. 5x + 2/ + 2=0.
Ans. 9x-2y-12 = 0.

Ans. 2x + 3y + 2 = 0.

Ans. Sx-2y + 2 = 0.

An^. y = 4 X + 4.
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3

.

Find the angle which the locus of xy-\-4y — 2x = makes at the

origin with that of x^ -\- ixy + x -{- 8y = 0.
j^^^^ 5

4*

4. Find the angle which the line 2x — Sy — 9 = makes with the locus

of x2/ + 6x-4y-19 = 0at(3, -1). ^^^
4̂

MISCELLANEOUS PROBLEMS

1. Find the equations of the tangents and the normals to the following

conies at the points indicated.

(a) x^ + 4xy -ix-lOy + 7 = 0, (3, - 2).

(b) x?/ -4x4-32/ -4 = 0, (-1,4).

(c) x?/ + 2/2 + 2x + 2?/ = 0, (- 3, 3).

(d) 2/2 + 4x + 62/ - 27 = 0, (5, - 7).

(e) x2 + 3X2/ + 2/2 - 102/ - 1 = 0, (2, 3).

(f) x2 - 8x + 32/ - 14 = 0, (1, 7).

2. Find the equation of one of the tangents to the ellipse x^ + 9?/^ — 4x
4- 9 2/ = which is parallel to the line 4x — 9y — 36 = 0.

.3. For what point of the parabola y'^ = 2px is the length of the tangent

equal to four times the abscissa of the point of contact ?

4. What is the length of the tangent to a parabola at an extremity of

the latus rectum ? Restate the equation of the parabola in problem 14,

p. 221, in terms of this length.

5. For what point on the parabola y^ = 2px is the normal equal to

(a) twice the subtangent? (b) the difference between the subtangent and

the subnormal?

6. Through a point of the ellipse h^"^ + a'^y^ = a'^b'^ and that point of

the auxiliary circle with the same abscissa normals are drawn. What is

the ratio of the subnormals ?

7. For what points of an hyperbola is the subtangent equal to the

subnormal ?

8. The ordinate of a point on an equilateral hyperbola and the length of

the tangent drawn from the foot of that ordinate to the auxiliary circle are

equal.

9. A tangent to a parabola meets the directrix and latus rectum produced

at points equally distant from the focus.

10. The semi-conjugate axis of a central conic is a mean proportional

between the distance from the center to a tangent and the length of the

normal drawn at the point of contact.
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11. Find the points of the ellipse for which the lengths of the tangent

and normal are equal.

12. Any point on an equilateral hyperbola is the middle point of that part

of the normal included between the axes of the hyperbola.

13. A circle is drawn through a point on the minor axis of an ellipse and
through the foci. Show that the lines drawn through the given point and

the points of intersection of the circle and ellipse are normal to the ellipse.

14. How many normals may be drawn through a given point to (a) an

ellipse ? (b) an hyperbola ? (c) a parabola ?



CHAPTER X

RELATIONS BETWEEN A LINE AND A CONIC. APPLICA-

TIONS OF THE THEORY OF QUADRATICS

90. Relative positions of a line and conic. If a line and conic

are given, it is evident that

(a) the line is a secant of the conic,

(b) the line is tangent to the conic, or

(c) the line does not meet the conic.

The coordinates of the points of intersection of the line and

conic are found by solving their equations (Rule, p. 76), which

are of the first and second degrees respectively. To solve, we

eliminate y* and arrange the resulting equation in the form

(1)
•' Ax^ + Bx + C = 0.

Denote the roots by Xi and X2 and the discriminantB^—AAChj A.

Analytically the three cases above present themselves as follows :

(a) If A is positive, the line is a secant.

For Xi and X2 are real and unequal (Theorem II, p. 3), and hence they are the

abscissas of the points of intersection, which must be distinct.

(h) If A is zero, the line is a tangent.

For in this case a^i = x^, so that the points of intersection coincide.

(c) If A is negative, the line does not meet the conic.

For Xx and Xg are imaginary, and hence there are no points of intersection

(p. 77).

If ^ = 0, one root of (1) is infinite (Theorem IV, p. 15) and one point of inter-

section is said to be " at infinity."

li A = and B = 0, then both roots of (1) are infinite and the line is said to be
** tangent at infinity."

If ^ = 0, B = 0, and C= 0, then (1) is satisfied by all values of x, and hence

has an infinite number of roots. All of the points on the line lie on the conic;

that is, the conic is degenerate and consists of straight lines of which the given

line is one.

*If one equation does not contain ?/, then x is found by solving that equation. But
for our purposes it is unnecessary to complete the solution.

226
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In solving the equations of the line and conic it might be easier

to eliminate x than y. Then (1) would be a quadratic in y, but

the result of the discussion would be the same.

If one equation did not contain y, it would be necessary for our purposes to

eliminate x instead of y, and vice versa.

Ex. 1. Determine the relative positions of the

line 3x — 2y + 6 = and the parabola y^ + 4x = 0.

Solution. It is easier to eliminate x than y.

Solving the equation of the line for x, we obtain

2y -Qx= — -.

3

Substituting in y2 + 4 x = 0, we get

3 2/2 + 8 y - 24 = 0.

The discriminant of this quadratic is

A = 82-4..8(-24) = 352.

As A is positive, the line is a secant.

Ex. 2. Determine the relative position of the line 4 x + y
+ 5 = and the ellipse 9 ic^ + ?/2 = 9.

Solution. It is easier to eliminate y than x. From the

first equation,

y =- (ix+ 5).

Substituting in the second and arranging, we get

25x2 + 40X + 16 = 0.

The discriminant is A = 402 - 4 • 25 • 16 = 0. Hence the

line is a tangent.

Ex. 3. Determine the relative position of the loci ofx2 — 2/2^3a; — 3y =
and X — y = 0.

Solution. Eliminating y, we get

x2 - x2 4- 3 X - 3 X = 0,

or • x2 + . X + = 0.

As this equation is true for all values of x,

then all of the points on the line lie on the conic.

The equation of the conic may evidently be

written {x — y) (x + y + S) = 0. The locus of

this equation is (Theorem, p. 66) the degenerate

conic consisting of the pair of lines

x-y = 0, x + y + S = Or

of which one is the given line.

..[ U:4

\̂

A' Mo X

J

y] [



Ans. Tangent.

Ans. Do not meet.

Ans. Secant.

Ans. Tangent.

Ans. Tangent.

Ans. Secant.

Ans. Do not meet.

Ajis. Do not meet.

Ans. Secant.

Ans. Tangent.
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PROBLEMS

1. Determine the relative positions of the loci of the following equations

and plot their loci.

(a) x + y + l = 0,x^ = 4y.

(b) x-2y + 20 = 0^x^ + y^ = 16.

(c) y2-4x = 0,2x + 3y-S = 0.

(d) x2 + 2/2 - X - 2 ?/ = 0, X + 2 2/ = 5.

(e) 2xy -Sx -y = 0,y + Sx-6 = 0.

(f

)

x^ + y^ - Gx - Sy = 0, X - 2y = 6.

(g) 4 x2 + ^-2 _ 16 aj = 0, X + ?/ - 8 = 0.

(h) x2 + ?/2 - 8x - 6 = 0, X + 8 = 0.

(i) 8x2-6 2/2 + i6x-32 = 0, 2x-3y = 0.

(j) x2 + xy + 2x + y = 0, 2x + y + 4 = 0.

(k) x2 + 2 x?/ + ?/2 + 4 X - 4 ?/ = 0, X + ?/ = 1.

Ans. Secant, with one point of intersection at infinity.

(1) 4 x2 — ?/2 + 4 X + 1 = 0, 2 X — 2/ + 1 = 0, Ans. Line is part of conic,

(m) x2 + 4x!/ + ?/2 + 4 X - 6 ?/ = 0, 2 X - 3 ?/ = 0. Ans. Tangent,

(n) x2 - 4 ?/2 + 8 ?/ - 20 = 0, X - 2 ?/ + 2 = 0. Ans. Tangent at infinity,

(o) x2-6x?/ + 0?/2 + x-3?/-2 = 0, x-32/=l.
Ans. Line is part of conic,

(p) 6 x2 — 5 x?/ — 6 ?/2 = 18, 2 X — 3 ?/ = 0. Ans. Tangent at infinity.

2. Find the middle points of the chords of the conies in (c), (f), and (i),

problem 1, which are formed by the given line.

Ans. (c) (V-, -3); (f)
(-V-,

- |) ;
(i) (- f, -1).

3. Interpret Theorem II, p. 3, geometrically by determining the relative

positions of the parabola y = Ax^ + Bx + C and the line y = 0. Construct

the figure if

(a) A = l, B=-l, C=0; (b) A = l, B=C=0; (c) A = l B=l, C=0.

91. Relative positions of lines of a system and a conic, and

of a line and conies of a system. Given a system of lines (that

is, an equation of the first degree containing a parameter k) and

a conic, we can determine the values of k for which the lines of

the system intersect, are tangent to, or do not meet the conic, as

follows.

Eliminate x or y, as may be more convenient, from the equa-

tions of the system of lines and the conic, thus obtaining an

equation either of the form

(1) Aif -\- By -\- C = 01 Ax^ + Bx + = 0.
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The discriminant A will be in general a quadratic in k.

Determine the values of k for which A is positive, zero, or

negative (Theorem III, p. 11) and apply the results of the

preceding section.

The same process serves to separate the conies of a system

(that is, the loci of an equation of the second degree containing

a parameter k) into three classes according as they intersect, are

tangent to, or do not meet a given line. Only here the values of A;,

if any, for which the equation has no locus must be excluded.

Ex. 1. Find the values of k for which the line y = 2x -\- k intersects, is

tangent to, or does not meet the ellipse x2 + 4?/2 — 8x + 4?/ = 0.

Solution. Eliminating y by substitution in the second equation, we obtain

17x2 + 16A;x + 4fc24.4A: = 0.

The discriminant of this quadratic is

A = (16 A:)2 _ 4 . 17 (4 A:2 + 4A;) =- 16(fc2 + 17 k).

17,

By (a), (&), and (c), p. 226,

(a) the line is a secant if - 16 {k^ + 17 fc) > ;

(b) the line is a tangent if - 16 {k^ + 17 A:) = ;

(c) the line does not meet the ellipse if — 16 (A;^ + 17 A;) < 0.

Apply Theorem III, p. 11, to the quadratic — 16(fc2 + 17 A;).

Since A = (— 16 • 17)^ is positive, ^ = — 16, and the roots are and

(a) if - 17 < A; < 0, the quadratic - 16 (A:^ + 17 A;) > ;

(b) if A: = or - 17, the quadratic - 16 {k^ + 17 A;) = ;

(c) if A; < - 17 or A; > 0, the quadratic - 16 (A;2 + 17 A:) < 0.

Hence
(a) the line is a secant if — 17 < A: < 0.

(b) the line is a tangent if A: = or — 17.

(c) the line does not meet the ellipse if A: < — 17 or A; > 0.

The lines of the system are all parallel. The figure shows the two tangent

lines and indicates where the lines lie for different values of k.
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PROBLEMS

1 . Determine the values of k for which the loci of the following equations

(a) intersect, (b) are tangent, (c) do not meet. Construct the figure in each

(a) 2/ = A:x — 1, x2 = 4 2/.

Ans. (a) A;>1 or ^<-l; (b) A; = ± 1 ;
(c) -l<k<\.

(b) X + 2 y = A;, x2 + 2/2 = 5.

Ans. (a) - 5 < fc < 5
;

(b) A: = ± 5
;

(c) A: > 5 or A; < - 5.

(c) x'^ + y^ = k, 3 X - 4 2/ + 10 = 0.

Ans. (a) A: > 4
;

(b) A: = 4
;

(c) < A; < 4.

(d) y = A;x + 2, x2 — 8 y = 0. Ans. (a) For all values of k.

(e) x2 + y2 _ 2 A;x = 0, y = x.

Ans. (a) For all values except A; = ; (b) A; = 0.

(f) 4 x? - 2/2 = 16, y = A:x.

Ans. (a) - 2 < A; < 2 ;
(b) A: = ± 2

;
(c) A; > 2 or A: < - 2.

(g)
y'^ = 2kx, X - 2 2/ + 2 = 0.

Ans. (a) A; > 1 or A; < ; (b) A: = or 1; (c) < A: < 1.

(h) x2 + 4 ^2 _ 8x = 0, y = kx + 2-^k.
Ans. (a) All values except A: = ; (b) fc = 0.

(i) xy = k, 2 X + y + 4 = 0. Ans. (a) A; < 2
;

(b) Ar=: 2
;

(c) A; > 2.

(j) X2/. + 2/2 - 4 X + 8 2/ = 0, X - 2 2/ + A: = 0.

Ans. (a) A; > 48 or A; < ; (b) A; = or 48
;

(c) 48 > A; > 0.

(k) 4x2 + 2/2 - 6x + 6y = 0, 2/ = A;x + 1 - A;.

Ans. (a) A; > 1 or A; < - If
;

(b) A: = 1 or - if
;

(c) - if < A; < 1.

2. Determine the values of k for which the loci of the following equations

are tangent and construct the figure.

(a) x2 - 4 2/ + 16 = 0, 2/ = A;.

(b) 9x2 + 162/2 = 144^ y _ a- ^ ^^

(c) 4x2/ + y2 + 16 _ 0, X = A;.

(d) x2 + 4x2/ + 2/2 = A:, 2/ = 2x + 1.

(e) x2 + 2x2/ + 2/2 + 8x-62/ = 0, 4:X-^y = k.

(f) x2 + 2x2/ -4x + 22/ = 0, 2x - 2/ + A; - 3 = 0.

92. Tangents to a conic. If in the preceding section the value

of the discriminant of (1) is zero, then the line and conic are tan-

gent. The equation obtained by setting that discriminant equal

to zero is called the condition for tangency. Hence the condition

for tangency of a line and conic is found by eliminating either

X or y from their equations and setting the discriminant of the

resulting quadratic equal to zero.

Thus in Ex. 1, p. 229, the condition for tangency is A = - 16 (A;2 + 17 A;) = 0.

Ans. k = 4.

Ans. k=±5.
Ans. k=±2.
Ans. k=--i-,.

Ans. k = 0.

An^. A; = 3 or 13
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X v
Ex. 1. Find tlie condition for tangency of the line - + - = 1 and the parab-

ola 2/2 = 2px.

Solution. Eliminating z by solving the first equation for x and substituting

in the second, we get
6^2 + 2 apy — 2 abp = 0.

The discriminant of this quadratic is

A = (2 ap)2 - 4 6 (- 2 abp) = 4 op (ap + 2 62).

Hence the condition for tangency is

4 ap{ap + 2 62) = or ap {ap + 2 62) = 0.

Rule to find the equation of a line tangent to a given conic and

satisfying a second condition.

First step. Write the equation of the system of lines satisfying

the second condition.

Second step. Find the condition for tangency of the equation

found in the first step and the given conic.

Third step. Solve the equation found in the second step for the

value of the parameter of the system of lines and substitute the real

values found in the equation of the system. The equations obtained

are the required equations.

Ex. 2. Find the equations of the lines with the slope \ which are tangent

to the hyperbola x2 — 6 y2 + 12 y — 18 = and find the points of tangency.

Solution. First step. The lines of the system

(1) y = ix + fc .

have the slope \ (Theorem I, p. 58).

y\ y V
^ y^ ^^^X

s, ^y ^ X"(^b

\ ^^ ^tI^ t^
X \ \

X ' X^ ^ -f)
sV fi

"^^ T-e 1 ^X *•

,

i

Second step. Solving (1) for x and substituting in the given equation,

(2) y2 + (4 ^ _ 6) y + 9 - 2 A:2 = 0.

Hence the condition for tangency is

(4 fc - 6)2 - 4 (9 - 2 A:2) = 0.
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Third step. Solving this equation, A; = or 2.

Substituting in (1), we get the required equations, namely,

(3) x-2?/ = 0, x-2?/ + 4 = 0.

To find the points of tangency we substitute each value of k in (2), which

then assumes the second form of (7), p. 4, namely,

if fc = 0, (2) becomes (?/ - 3)2 = ; .-. y = Z;

if A: = 2, (2) becomes (y + 1)2 = ;.-.?/ = - 1.

Hence 3 and — 1 are the ordinates of the points of contact. Then, from (1),

if fc = and y = 3, we have x = 6

;

if A: = 2 and ?/ = — 1, we have x = — Q.

Hence, if A; = 0, the point of contact is (6, 3)

;

if A; = 2, the point of contact is (— 6, — 1).

The points of contact may also be found by solving each of equations (3)

with the given equation.

PROBLEMS

1. Determine the condition for tangency of the loci of the following

equations.

(a) 4x2+?/2-4x-8=0, y= 2x-\-k. Ans. k^ -\-2k -\1 =0.
(b) xy + X - 6 = 0, x = ky -^-b. Aiis. fe2 + 14 A; + 25 = 0.

(c) x2 — 2/2 = o?^ y — kx. Ans. A; = ± 1.

(d) x2 + 2/2 = ^2^ 4 2/ - 3 X = 4 A;. Ans. 16 A:2 = 25 r'^.

(e) x2 + ?/2 zz r2, 2/ = mx + 6. Ans. (2?w6)2-4(l+ m2)(62_^2)^0.

(f).^ + ^^ = l,-+^.l. ^n. ^ + ^ = 1.
^ -^

a2 . 62 ' a ^ a2 ^ ^2

/ ,. x2 2/2 1 a:
,

2/ , . a2 52
(g) —c.-7-. — ^i — + - = 1. Ans. =1.
^^'

a2 62 ' a ^ a2 ^2

X2 W2
(h)* — + ^- = 1, 2/ = mx + /3. Ans. ahn^ + 6^ - /32 = q.

a2 6^

0)* ^ - r^ = 1' y = mx + p. Ans. a'^m^ - 62 - /32 = 0.
a2 62

(j)* x2 4- 2/2 = r2, x cos w + 2/ sin w — p = 0.

^ns. p2 _ y2 _ 0.

(k)* 2 x^ = a2 - + ^ = 1. Ans. aB = 2 a2.

(1)* x2 + 2/2 ^ ^2^ ^x + % = 1. Ans. A^r'^ + ^2^2 ^^ 1.

* In these problems it is assumed that the constants involved are not zero.
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2. Find the equations of thie tangents to the following conies which satisfy

the condition indicated, and their points of contact. Verify the latter approx-
imately by constructing the figure.

(a) ?/2 — 4 a;^ slope = i. Ans. x — 2y + i = 0.

(b) x2 + 2/2 ^ 16, slope = - f Ans. 4:X + Hy ±20 = 0.

(c) 9 ic2 + 16 ?/2 = 144, slope = — |. Ans. x + 4 y ± 4 VlO = 0.

(d) x2 — 4 y^ = 36, perpendicular to 6x — 4y + 9 = 0.

Ans. 2x + Sy ±3Vl = 0.

(e) x2+2?/2-x+ ?/=0, slope=-l. Ans. x-\-y = l, 2x + 2y + l = 0.

(f) x^=4:y, passing through (0,-1). Ans. y =±x — 1.

(g) x^ = 8y, passing through (0,2). Ans. None,

(h) 4 x2 - y2 = 16, slope = 2. Ans. y = 2x.

(i) xy + y^ ~4:X-\-8y = 0, parallel to 2x -4y = 7.

Ans. x = 2y, x-2y + 48 = 0.

(j) 4 x2 + 2/2 - 6 X + 6 2/ = 0, passing through (1, 1).

Ans. x-y=0, 19x+ ll2/-30= 0.

(k) x2 + 2 X2/ + 2/2 + 8 X - 6 2/ = 0, slope = f

.

Ans. 4 X — 3 2/ = 0.

(1), x2 + 2x2/ - 4x + 2 ?/ = 0, slope = 2.

Ans. y = 2x, 2x -y -\-10 = 0.

(m) y^ = 2px, slope = m. Ans. y = mx-\--^'
2 m

(n) h^x'^ + a22/2 = a2&2, slope = m. Ans. y = mx ± Vo^iM^.
(o) 2xy = a2, slope = m. Ans. y = mx ± a V— 2 m.

3. Find the highest and lowest points of the conic

(a) x2 + 6 xy + 9 y2 _ 6 X =: 0. Ans. Highest (f , f).

(b) x2 - 2x2/ - 4x - 4?/ - 8 = 0. Ans. (0, - 2), (- 4, - 6).

(c) x2 - 2/2 - 4 X + 8 2/ - 16 = 0. Ans. None.

JTmt. Find the points of contact of the horizontal tangents.

93. Tangent in terms of its slope. The method of the preced-

ing section for finding a tangent with a given slope may be

applied to general equations and yield formulas for the equation

of a tangent in terms of its slope.

Theorem I. The equation of a tangent to the parabola y'^ = 2px
in terms of its slope m is

(I) y = -,nx+£^.
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Proof. Eliminating x from y = mx + k and y^ = 2px, we obtain

m?/^ — 2py + 2pk = 0.

Hence the condition for tangency is

A z= (- 2py -4m (2pk) = 0, ,

whence k = 7^

—

2m

Substituting in y = mx + k, we obtain (I). q.e.d.

In like manner we prove

Theorem II. The equation of a tangent in terms of its slope m
to the

circle x^ -\- y^ = r^ is y = moo Ht r Vl + m^
;

ellipse Px^ + a'^y'^ = a%'^ is y = thx^ i '\/a^ni^ + b^
;

hyperbola V^x^ — a^y^ = a^"^ is y = mx ±_ ^ahn^ — b^.

PROBLEMS

1. Find the equations of the common tangents to the following pairs of

conies. Construct the figure in each case.

(a) 2/2 = 5x, 9x2 + 9?/2 ^ I6. Ans. 9x ± 12y + 20 = 0.

(b) 9 »2 + 16 y2 ^ 144^ 7 x2 - 32 2/2 = 224. Ans. ±x-y±5 = 0.

(c) x2 + 2/2 = 49, x2 + 2/2 - 20 2/ + 99 = 0.

Ans. ± 4x - 32/ + 35 = 0, ± 3x - 4?/ + 35 = 0.

Hint. Find the equations of a tangent to each conic in terms of its slope and then

determine the slope so that the two lines coincide (Theorem III, p. 88).

2. Two tangents, one tangent, or no tangent can be drawn from a point

Pi (a^i, Vl) to the locus of

(a) y^ = 2px according as 2/1^ — 2pxi is positive, zero, or negative.

(b) &2x2 + a^yi = a262 according as b'^Xi^ + a^yi^ — aW is positive, zero,

or negative.

(c) &2x2 _ diyi — CJ252 according as Hh:,^ — a'hfi^ — a262 is negative, zero,

or positive.

3. Two perpendicular tangents to

(a) a parabola intersect on the directrix.

(b) an ellipse intersect on the circle x2 +2/2 = a2 4. jj\

(c) an hyperbola intersect on the circle x^ ^- y^ = a"^ — &2.
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94. The equation in p. In the following sections we shall suppose that the

line is given in parametric form (Theorem XV, p. 124),

(1)

Cx = Xi +
\y = yi +

p cos a,

P cos p.

The geometric significance of these equations should be constantly borne in mind.

A line is given which passes through P^ (x^, y^) and whose direction cosines (p. 123) are

cos a and cos /3 (or whose slope is m sm a cos /3
by (I), p. The point {x, y) or

cos a cos a

(a^i + p cos o, 2/i + p cos ^) is that point on the line whose directed distance from P^ is the

variable p.

Suppose the conic is the parabola >

(2) 2/2 - 7;9X = 0.

If the point (xx + p cos a^y^-^p cos jS) on (1) lies on (2), then (Corollary,

p. 53)
{yx + p cos i3)2

- 2p (xi + p cos a) = 0,

or

(3) cos2 /3 • /32 + (2 2/1 cos ^ -2p cos a)p + (yi^ - 2pxi) = 0.

This equation is called the equation in p for the parabola. Its roots,

p\ and /92, are the directed lengths P1P2 and P1P3 from Pi to the points

of intersection of the line and parabola.

For p is the distance from P^ to the point {x^+ p cos a, t/j 4- p cos )3); and when p satisfies

equation (3) the point \X^ + p cos a,yi + p cos /3) lies on the parabola.

Hence

Theorem HI. The directed distances from Pi (xi, 2/1) to the points of inter-

iction of the line

X = Xi + /? cos a^ y = y\-\- p cos ^

md the parabola ij"^ = 2px are the roots of the equation in p,

cos2 /3 • p2 4. (2 2/1 cos /3 - 2p cos a)p -\- {tji^ - 2pxi) = 0.
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The equation in p for any conic is the equation whose roots are the

distances from a point Pi to the points of intersection of tlie conic and the

line through Pi whose direction angles are or and ^. The method used in

proving Theorem III is general and justifies the

Rule for forming the equation in p for any conic.

Substitute Xi + p cos a for x and yi -i- p cos /3 for y in the equation of the

conic and arrange the result according to powers of p.

For convenience of reference we state the following theorems which are

proved by this Rule.

Theorem IV. The equation in pfor the central conic tP-x'^ ± a'^y'^ — a%'^ = is

(IV)

(62 cos2 a ± a2 cos2 ^)p2 + (2 hHx cos or ± 2 a'^yx cos /3)p + (62xi2 ± cc^y^^ - a^b'^) = 0.

Theorem V. The equation in p for the locus of

Ax^ + Bxy + (72/2 + Dx + ^y + F=
is

(V) {A cos2 or + E cos a cos jS + C cos2 ^) ^2

+ [(2 Axi + Byi + D) cos a + {Bxi + 2 Cyi + E) cos /3] p

+ (^Xi2 + Bxm + Cyt' + Dxi + Eyi -h F) = 0*

The relative position of the line (1) and a conic depends upon the discrimi-

nant of the equation in p. For according as the roots of the equation in p

are real and unequal, real and equal, or imaginary (Theorem II, p. 3), the

line and conic will intersect, be tangent, or not meet at all.

PROBLEMS

1. Find the equation in p for each of the following conies.

{&) xy = 8. (e) 2x^ + xy + Sx-iy = 0.

(b) x2 + 2/2 = 9. {i) x'^ + 2 xy -^ y'^ - 4x = 0.

(c) 8x2 _ y2 ^16. (g) xy + 4x - 8y - 3 = 0.

(d) x2 - 2/2 -f 4 X - 6 y = 0. (h) x2 + 4 xy + 2/2 - 3 x = 0.

2. What can be said of the coeflBcients and roots of the equation in p

(a) if Pi (xi, 2/i) lies on the conic ?

(b) if the line is tangent to the conic at Pi ?

(c) if the line meets the conic at infinity ?

(d) if Pi is the middle point of the chord formed by the line ?

* Notice that the coeflacient of p2 is found by substituting cos a for x and cos j8 for y
in the terms of the second degree in the given equation. The constant term is found by

substituting x\ for x and y^ for y throughout the given equation. Compare the coeffi-

cients of cos a and cos /3 within the brackets with equations (6) and (7), p. 171.
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3. Determine the relative position of the following lines and conies and

construct the figures.

(a) ?/2 _ 4 X + 4 =

(b) 4 xy + 3 ?/2 - 4 X + 4 ?/ - 16 =

f X = 3 + 5 p,
< n . ,

Ans. Secant.

r

(c) 4x2 + 92/2 - 40a; -72y + 100 =

(d) 3x2 + x?/ - 4 ?/2 - X + y =

Vio

I VIO

Ans. Tangent.

1- V2
Ans. Do not meet.

\y=-2-hlp.
Ans. Line is part of conic.

(e) 4x2-9?/2 = 36
= 2-|p,
= 3 + 4p.

Ans. - Secant with one point of intersection at infinity.

12/

95. Tangents, We shall show how to find the equation of a tangent to a

conic by means of the equation in p by considering the tangent to the parab-

ola 2/2 — 2_px = at the point Pi (xi, 2/i)- Let

(1) X = Xi + /) cos or, 2/ = :yi 4- /9 cos /3

be any secant through Pi intersecting the parabola at Pq. One root of the

equation in p is pi = P1P2 and the other is p2 = 0. Hence (III), p. 235,

becomes (Case I, p. 4)

cos2/3 • p2 + (2 2/1 COS ^ - 2p cos a)p = 0.

[Or tlie constant term is zero by the Corollary, p. 53.]

When P2 approaches Pi the line becomes tangent (p. 207), and as pi

becomes zero we must have (Case III, p. 5)

(2) 2 2/iCos j8 — 2p cos a = 0.

This is the condition that (1) is tangent to the

parabola. Solving (1) for cos a and cos /3 and substi-

tuting in (2), we obtain

2yiy-2px-2 y^ + 2pxi = 0.

But since y-^ — 2 pxi this reduces to

2/12/ - p (x + xi) = 0,

which is the form given in Theorem III, p. 214.
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± - V— 1, so the slopes of

96. Asymptotic directions and asymptotes. If the coeflacient of p2 in

the equation in p is zero, then one root is infinite (Theorem IV, p. 15) ; and

hence the line and conic have one point of intersection at an infinite distance

from Pi. The direction of such a line is called an asymptotic direction.

Theorem VI. The asymptotic directions of the hyperbola are parallel to the

asymptotes, of the parabola are parallel to the axis, while the ellipse has no

asymptotic directions.

Proof. Set the coefficient of p^ in the equation in p for the hyperbola

[(IV), p. 236] equal to zero. This gives

62 cos2 a -a^ cos2 /3 = 0.

cos/3 b
.-. m = =±-'

cos a a

Therefore the slopes of the asymptotic direc-

tions are the same as those of the asymptotes

[(5), p. 190].
^^

Similarly for the parabola m = — = 0, so
cos a

that the asymptotic direction is parallel to the axis.

-,, , „. . ,., cosiS b
For the ellipse, m like manner, m = = ± -

^ ' cos a a

the asymptotic directions are imaginary ; that is,'there

are no asymptotic directions. q.e.d.

Corollary. Every line having the asymptotic direction

of a conic intersects the conic in but one point in the

finite part of the plane.

If both roots of the equation in p become infinite,

the line is said to be "tangent to the conic at infinity"

and is called an asymptote. Using this definition of

the asymptotes, we have, in justification of the prelimi-

nary definition on p. 189, the following theorem.

Theorem VII. The equation of the asymptotes of the hyperbola

&2x2 - a2?/2 = am is 62^2 - a2y2 ^ 0.

Proof. Both roots of the equation in p for the hyperbola [(IV), p. 236]

will be infinite if (Theorem IV, p. 15)

62 cos2 a — a2 cos2 /3 = and 2 62^1 cos a: — 2 a'^yi cos ^ = 0.

From the first equation, cos /3 = ± - cos a.

Substituting in the second, we get bxi T ayi = as the condition that Pi
should lie on an asymptote. But this is the condition that Pi should lie on

one of the lines 6x =F ay = or 62x2 — a'^y'^ = 0. Hence this equation is the

equation of the asymptotes. q.e.d.



LINE AND CONIC 239

The method of the proof justifies the

Rule forfinding the equation of the asymptotes of any hyperbola.

First step. Derive the equation in p (Rule, p. 236).

Second step. Set the coefficients of p'^ and p equal to zero.

Third step. Eliminate co8 a and cos ^ from these equations and drop the

subscripts on Xi and yi.

PROBLEMS

1 . Find the equations of the tangents to the following conies drawn from

the points indicated. (The method of section 95 can be applied whether Pi
lies on the conic or not.)

(a) xy = 16, (4, 4). Ans. x + y = S.

(b) x2 + 2xy = 4, (2, 0). Ans. x-\-y = 2.

(c) x2 = 4 y, (0, - 1). Ans. x2 - (y + 1)2 = 0, or x = ±{y + 1).

(d) x2-32/2 + 2x+19 = 0, (-1, 2). Ans. (x + 3?/ - 6)(x - 3y + 7) = 0.

2. Determine the slopes of the asymptotic directions of the following

conies.

(a) x2 - xy - 6 2/2 - 8 X = 0. Ans. i, - |.

(h) xy-y^ + 4x-6 = 0. Ans. 0,1.

(c) x2 + 4 x?/ + 4 2/2 _ 2 X = 0. Ans. - ^.

(d) 4 x2 + xy + 2/2 _ 3 =: 0. Ans. None.

(e) 9 x2 - 6 xy + y2 _ 2 2/ + 5 = 0. Ans. 3.

(f) x2 + 6xy + 4y2 = lo. Ans. - i, - 1.

(g) xy + Dx + Ey + F=0. Ans. 0, oo.

3. Determine whether the loci of the equations in problem 2 belong to the

elliptic, hyperbolic, or parabolic type.

4. Find the equations of the asymptotes of the following hyperbolas.

(a) xy - y2 + 2 X = 0.

(b) 2x2 -xy -4 = 0.

(c) x2-6xy + 8y2 = 10.

(d) xy - 4 X - 3 y = 0.

(e) 2x2-7xy + 3y2 = 14.

(f) x2 - 4 y2 + 2 X + 8 y = 0.

Ans. y + 2 = 0, x-y + 2 = 0.

Ans. x = 0, 2x — y = 0.

Ans. x-4y=0, x-2y = 0.

Ans. X = 3, y = 4.

Ans. 2x-y=:0, x-3y = 0.

Ans. x-2y + 3 = 0, x + 2y-l = 0.

5. Find the equations of the asymptotes of the hyperbolas (a), (b), (f),

and (g) in problem 2.

Ans. (a) 75x-25y + 296 = 0, 50x + 25y - 184 = 0;

(b)y + 4 = 0, x-y + 4 = 0;

(f)x + 4y = 0, x + y = 0;

(g) X + jE; = 0, y + D = 0.

6. Prove that the parabola has no asymptotes.
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7. Show that the asymptotic directions of the locus of Ax^ + Bxy + Cy^

+ Dx -i- Ey + F = sue determined by the locus of Ax^ + Bxy + Cy^ = 0.

8. By means of problem 7 show that the locus of the general equation

of the second degree belongs to the hyperbolic, parabolic, or elliptic type

according a,s A = B^ - 4: AC is positive, zero, or negative.

9. Show how to determine the direction of the axis of any parabola by

means of problems 7 and 8.

97. Centers. The problem of this section is to determine the center of

symmetry, if there is a center, of the locus of

(1) Ax'^ + Bxy + Cy^ -\- Dx + Ey + F = 0.

That is, we seek a point Pi{Xi,'yi) which is the middle

point of every chord of (1) drawn through it.

If Pi is the middle point of the chord P2P3 formed by

the line

x = Xi-\- pcosa, y = yi + p cos jS,

"^ then the roots of the equation in p must be equal numer-

ically with opposite signs. Hence the coefficient of p in (V), p. 236, must be

zero (Case II, p. 4).

(2) .-. (2 Axi + Byi + D) cos a + {Bxi + 2 C?/i + E) cos ^ = 0.

If Pi is the middle point of every chord passing through it, (2) is satisfied

by all values of cos a and cos /3. For cos /3 = and cos a = we get

(3) 2 Axi + Byi + D = 0, Bxi + 2 Cyi -{- E = 0,

and if equations (3) are satisfied, (2) is always satisfied.

We can solve (3) for a single pair of values of Xi and 2/1 (Theorem IV,

p. 90) unless — = —, OT A = B^-AAC = Q,
B 2C

and the locus of (1) will have a single center. But if A = there will be

no center unless at the same time — = — , when every point on the line
2 C E

'2.Ax -^ By -{- B =i will be a center.

Hence we have

Theorem VIII. The locus of

Ax'^ + Bxy + Cy^ + Dx-}- Ey + F=0
will have a single center of symmetry if A = B^ — 4:AC is not zero. If A =

there will he no center unless — = — , when all of the points on a line will
, , 2C E
oe centers.

Corollary. The center will be the point of intersection of the lines

2Ax-\-By + n = 0, Bjo^'^Cy -\-E = 0.
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If the locus is of the elliptic or hyperbolic type (p. 195), there will be a single center.

But if the locus belongs to the parabolic type, there is no center unless the locus degen-

erates. If the locus is a pair of parallel lines, then every point on the line midway
between them is a center.

To find the center in a numerical example we proceed as in the above

proof as far as equations (3) and then solve those equations.

Ans. (0, 0).

Ans. None.

Ans. (-12, -4).

PROBLEMS

1

.

Find the centers of the following conies.

(a) x2 + xy - 4 = 0.

(b) x'^ -2xy + y^ -4:X = 0.

(c) xy-2y^ + 4x-4.y = 0.

(d) jc2 _ 8x2/ + 16 ?/2 + 2 X - 8 2/ - 3 = 0.

Ans. Any point of the line x — 4y + l=0.
(e) x2 + 4xy + y2 - 8x = 0. Ans. (- |, f).

(f) 4x2 + I2xy + 92/2 _ 2x + 6 = o. Ans. None.

(g) 4x2 + 12x2/ + 92/2 -4x- 62/ -8 = 0.

Ans. Any point of the line 2x + 32/ — 1 = 0.

2. If all the coefficients of the general equation of the second degree

except B are constant, and if B varies so that B^ — iAC approaches zero,

how does the center of the locus behave ?

98. Diameters. The locus of the middle points of a system of parallel

chords of a curve is called a diameter of the curve.

Consider the ellipse

62x2 + a22/2 = a262

and the system of parallel lines whose

direction angles are a and /3. The para-

metric equations of that line through

Pi{xi, 2/1) are (Theorem XV, p. 124)

jc = xi + p cos a, 2/ = 2/1 + /o cos /S.

If Pi is the middle point of the chord,

then the roots pi = P1P2 and p2 = P1P3

of the equation in p [(IV), p. 236] must

be equal numerically with opposite signs. Hence (Case II,

2 b'^Xi cos a + 2 a^yi cos j8 = 0.

cos/3

p. 4)

Dividing by 2 cos a and setting m (p. 235), we get
cos a

62xi+ a'^myi =

as the condition that (Xi, ^i) is the middle point of a chord whose slope is m.

This is the condition that Pi should lie on the line

DD' : 62x + a^rny = 0.
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Hence we have

Theorem IX. The diameter of the ellipse

62x2 + a22/2 = a262

bisecting all chords with the slope m is

(IX) b^a^ + a^my = O.

This reasoning may be applied to any conic, and justifies the

Rule for deriving the equation of a diameter of a conic bisecting all chords

with the slope m.

First step. Derive the equation in p {Rule, p. 236).

Second step. Set the coefficient of p equal to zero.

Third step. Replace Xi and yi by x and y respectively, and by m.

The result is the required equation.

By this means we prove

Theorem X. The diameter bisecting all chords with the slope m of the

hyperbola b'^x^ - a^y- = a-b^ is b^x — a'^my = O

;

parabola 2px is my = p.

Corollary. All the diameters of the parabola are parallel to its axis, and

every line parallel to the axis is a diameter.

Theorem XI. The diameter of the locus of

Ax'2 + Bxy + Cy^ + Dx + Ey + F=0
bisecting all chords of slope m is

(XI) 2Ax + By + n + m {Bx \- ^'Cy -\- E) = O.

Corollary. The diameter passes through the center if the locus has a center,

and every line through the center is a diameter.

Hint. Apply the Corollary, p. 240, and Theorem XIII, p. 119.
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PROBLEMS

1. Find the equation of the diameter of each of the following conies which

bisects the chords with the given slope m.

(a) x2 - 4 2/2 = 16, m = 2. Ans. x-Sy = 0.

(b)2/2 — 4x, wi = — -J. Ans. y + 4 = 0.

(c) xy = 6, m = 3. Ans. y -{-Sx = 0.

(d) x2 - xy — 8 = 0, m = l. Ans. x - y = 0.

(e) x2 - 4 y2 + 4 a; - 16 = 0, m=-l. Ans. x + 4?/ + 2 = 0.

(f) xy + 2y^-4x-2y-\-e = 0,m = i. Ans. 2x + lly -16 = 0.

2. Find the equation of that diameter of

(a) 4 x2 + 9 2/2 = 36 passing through (3, 2). Ans. 2x-3y = 0.

(b) 2/^ = 4x passing through (2, 1). Ans. y = \.

(c) xy = 8 passing through (— 2, 3). ^ns. 3 x + 2 y = 0.

(d) x2 — 42/ + 6 = passing through (3, — 4). Ans. x = 3.

(e) xy — 2/2 4. 2 X — 4 = passing through (5, 2). Ans. 4x — 9?/ — 2 = 0.

3

.

Find the slope of (XI) if ^ - 4^ C = 0. How may the result be inter-

preted by means of problems 8 and 9, p. 240 ?

4. What relation exists between m\ the slope of (XI), and m ?

Ans. 2 Cmm' + 5 (m + m') + 2^ = 0.

5. What does the result of problem 4 become for
62

(a) the ellipse 62x2 4- ahj^ = a^b^ ? -Ans. mm' = •

a2
62

(b) the hyperbola 62x2 - a2y2 = a^^ ? Ans. mm' = —

.

a2

(c) the parabola y^ = 2px? Ans. m' = 0.

6. By means of problem 5 discuss the relative directions of a set of

parallel chords and the diameter bisecting them.

7. Find the equation of the chord of the locus of

(a) x2 + 2/^ = 25 which is bisected at the point (2, 1).

Ans. 2x + y — 5 = 0.

(b) 4x2 — 2/2 = 9 which is bisected at the point (4, 2).

Ans. 8 X - y - 30 = 0.

(c) xy = 4 which is bisected at the point (5, 3).

Ans. 3x + 5y- 30 = 0.

(d) x2 — xy — 8 = which is bisected at the point (4, 0).

Ans. 2x-y-8 = 0.
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99. Conjugate diameters of central conies. In every system of parallel

chords of a central conic there is one which passes through the center and

which is therefore a diameter (Corollary to Theorem XI). This diameter

and the one bisecting the chords parallel to it are called conjugate diameters.

The ellipse

Let m be the slope of a diameter

of the ellipse

&2x2 + a2y2 = aW.

From Theorem IX the slope of

the conjugate diameter is (Corollary

I, p. 86)
62

m' =

62
.-. mm =

a2

Hence

Theorem xn. If m and m' are the

slopes of two conjugate diameters of

the ellipse h^x^ + a^^ = a^b^, then

&2
(XII) niTn' = —

a^

Corollary. Conjugate diameters of

the ellipse lie in different quadrants.

For tn and m' have opposite signs since

tlieir product is negative.

The hyperbola

Let m be the slope of a diameter

of the hyperbola

62x2 - a22/2 = a262.

From Theorem X the slope of the

conjugate diameter is (Corollary I,

p. 86)

m' =

.-. mm'

62

62

a2*

Hence
^

Theorem Xm. If m and m' are the

slopes of two conjugate diameters of

the hyperbola b'^x'^ — a^y^ = a^b% then

(XIII) rmnf = 62

"%. y' yf/
^V^V ^,^

\v:PPf^V\ l^^^J^
A- aJ^^\v ^^

y^''^ "^^^nVV

/^^ ^^Kv/ y'
vS

Corollary. Conjugate diameters of

the hyperbola lie in the same quad-

rant, but on opposite sides of the

asymptotes.

For m and rw'-liave the same sign since

their product is positive, and if one is

numerically less than _ , the other must be
a T

numerically greater than _ which is the
a

slope of one asymptote [(5), p. 190].
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The ellipse

The length of a diameter of the

ellipse, or of its conjugate diameter,

is that part of the line included

between the points of intersection

of the line and the ellipse.

Construction. To construct the

diameter conjugate to a given diam-

eter AB, draw a chord EF parallel

to AB, and then draw the diameter

CD bisecting EF,

The hyperbola

The length of that one of two con-

jugate diameters of the hyperbola

which does not meet the hyperbola

is defined to be that part of the line

included between the branches of

the conjugate hyperbola (p. 189).

Construction. To construct the

diameter conjugate to a given diam-

eter AB, draw a chord EF parallel

to AB, and then draw the diameter

CD bisecting EF.

Theorem XIV. Given a point

Pi (^1? Vi) on the ellipse b^x^ + a^y^

= a^b"^, the equation of the diameter

conjugate to the diameter through Pi

is

(XIV) b^acix + aHjxy = O.

Proof. The diameter through Pi

passes through the origin (Corollary,

p. 242), and hence its slope is (Theo-

rem V, p. 35) m = — . Then, from
X\

(XII), the slope of the conjugate

y^x-i
diameter is m' = ^— The equa-

a'^yx

tion of the line through the origin

with the slope m' is (Theorem V,

p. 95)

62xi
y = -^x,

a^yi

which may be written in the form

(XIV). Q.E.D.

Corollary. The points of intersec-

tion of (XIV) with the ellipse are

\ b a / \ b a /

Theorem XV. Given a point

Pii^h Vi) on the hyperbola 6^x2 _ a^y2

= a^b^, the equation of the diameter

conjugate to the diameter through Pi
is

(XV) b^ociQc — ahjiy = O.

Proof. The diameter through Pi
passes through the origin (Corollary,

p. 242), and hence its slope is (Theo-

rem V, p. 35) m = — - Then, from
Xi

(XIII), the slope of the conjugate

b^Xi
diameter is m' = -s— • The equa-

a^yi

tion of the line through the origin

with the slope m' is (Theorem V,

p. 95)

b'^xi

a^yi

which may be written in the form

(XV). Q.E.D.

Corollary. The points of intersec-

tion of (XV) with the conjugate hyper-

bola are

\ b a / \ b a /

These are found by the Rule, p. 76. These are found by the Rule, p. 76.
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PROBLEMS

1. "What is the relation between the slopes of conjugate diameters of

the equilateral hyperbola 2 xy = a^ ? Ans. m + m' = 0.

2. The tangents at the ends of a diameter of (a) an ellipse, (b) an hyper-

bola, are parallel to the conjugate diameter.

3. The tangent at the end of a diameter of a parabola is parallel to the

chords which the diameter bisects.

4. The sum of the squares of two conjugate semi-diameters of an ellipse

equals a^ + 62.

Hint. Let P^ (ajj, y-^ be any point on the ellipse. Find the squares of the distances

from the center to P^ and to one of the points in the Corollary to Theorem XIV, add, and

apply the Corollary, p, 53.

5. The difference of the squares of two conjugate semi-diameters of an

hyperbola equals a^ — &2.

Hint. See the hint to problem 4.

6. The angle between two conjugate diameters is sin-^^^, where

a' and h' are the lengths of the conjugate semi-diameters. ^

7. Conjugate diameters of an equilateral hyperbola are equal in length.

8. Conjugate diameters of an equilateral hyperbola are equally inclined

to the asymptotes.

9. The lines joining the ends of conjugate diameters of an hyperbola are

parallel to one asymptote and bisected by the other.

10. The product of the focal radii (problems 8 and 9, p. 194) drawn to

any point on (a) an ellipse, (b) an hyperbola, equals the square of the semi-

diameter conjugate to the diameter drawn through that point.

11. The asymptotes of an hyperbola are conjugate diameters of an ellipse

which has the same axes as the hyperbola.

12. Show that the conjugate diameters of the ellipse in problem 11 are

equal.

MISCELLANEOUS PROBLEMS

1. Find the condition for tangency of

(a) 2/2 = 2px and Ax ^- By + C = 0.

(b) &2a;2 + a2y2 - a^p- and J.x + 2^?/ + O = 0.

(c) 62^2 _ a27/2 ^ ^262 and Ax ^ By ^ C = 0.

2. Find the points on each of the conies where the tangents are equally

inclined to the axes. When is the solution impossible ?
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3. Find the points on the ellipse where the tangents are parallel to the

line joining the positive extremities of the axes.

4. The perpendicular from the focus of a parabola to a tangent intersects

the diameter drawn through the point of contact on the directrix.

6. The perpendicular from a focus of a central conic to a diameter inter-

sects the conjugate diameter on the directrix.

6. Tangents at the extremities of a chord of a parabola intersect on the

diameter bisecting that chord.

7. Find the equation of (i) the ellipse, (b) the hyperbola, referred to

conjugate diameters as axes of coordinates. (See problem 10, p. 172.)

8. Given the equation in p for an equation of the second degree; what
may be said of the relative positions of the line, the conic, and the point Pi

(a) if the constant term is zero ?

(b) if the coefficient of p is zero ?

(c) if the coefficient of p^ is zero ?

(d) if the coefficient of p and the constant term are zero ?

(e) if the coefficients of p^ and p are zero ?

(f) if the coefficients of p^ and p and the constant term are zero ?

(g) if the discriminant is positive, negative, or zero ?

9. Tangents to an hyperbola at the extremities of conjugate diameters

intersect on the asymptotes.

10. The area of the parallelogram formed by tangents at the extremities

of conjugate diameters of (a) an ellipse, (b) an hyperbola, is 4 ab, that is, it

is equal to the area of the rectangle whose sides equal the axes.

11. The diagonals of the parallelogram circumscribing the ellipse in

problem 10 are conjugate diameters.

12. Chords drawn from a point on (a) an ellipse, (b) an hyperbola, to

the extremities of a diameter are parallel to a pair of conjugate diameters.

13. The directrix of a parabola is tangent to the circle described on any

focal chord as a diameter.

14. The tangent at the vertex of a parabola is tangent to the circle

described on any focal radius as a diameter.



CHAPTER XI

LOCI. PARAMETRIC EQUATIONS

100. The first fundamental problem (p. 53) of Analytic Geom-

etry is to find the equation of a given locus. In this chapter we

shall first give some additional problems which may be solved by

the Rule on p. 53, using either rectangular or polar coordinates

as may be more convenient. We shall then consider two classes

of loci problems which are not readily solved by that Rule and

which include nearly all of the important loci occurring in Ele-

mentary Analytic Geometry. '^

PROBLEMS

It is expected that tlie locus in each problem will be constructed and discussed after

its equation is found.

1. The base of a triangle is fixed in length and position. Find the locus

of the opposite vertex if

(a) the sum of the other sides is constant. Arts. An ellipse.

(b) the difference of the other sides is constant. * Ans. An hyperbola.

(c) one base angle is double the other. Ans. An hyperbola.

(d) the sum of the base angles is constant. Ans. A circle.

(e) the difference of the base angles is constant. Ans. A conic.

(f) the product of the tangents of the base angles is constant.

Ans. A conic.

(g) the product of the other sides is equal to the square of half the base.

Ans. A lemniscate (Ex. 2, p. 152).

(h) the median to one of the other sides is constant. Ans. A circle.

2. Find the locus of a point the sum of the squares of whose distances

from (a) the sides of a square, (b) the vertices of a square, is constant.

Ans. A circle in each case.

3. Find the locus of a point such that the ratio of the square of its dis-

tance from a fixed point to its distance from a fixed line is constant.

Ans. A circle.

248
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4. Find the locus of a point such that the ratio of its distance from a
fixed point Pi (cci, yi) to its distance from a given line Ax + By + C = is

equal to a constant k.

Ans. {A^ + ^2 _ ^2^2) a;2 _ 2 k'^ABxy -\- {A^ -\- m - k^B^) y^

- 2 {A^xi + B^i-{-k^AC)x-2 {A'^yi + B^y^ + k^BC)

y

+ (Xl2 + 2/i2) (^2 4. J52) _ ^2(72 = 0.

5. Find the locus of a point such that the ratio of the square of its dis-

tance from a fixed line to its distance from a fixed point equals a constant k.

Ans. x^ — k-{x — p)2 — k'^y'^ = if the F-axis is the fixed line and the

X-axis passes through the fixed point, p being the distance from the line

to the point.

6. Find the locus of a point such that

(a) its radius vector is proportional to its vectorial angle.

Ans. The spiral of Archimedes, p = a9.

(b) its radius vector is inversely proportional to its vectorial angle.

Ans. The hyperbolic or reciprocal spiral, pd = a.

(c) the logarithm of its radius vector is proportional to its vectorial angle.

Ans. The logarithmic spiral, logp = ad.

(d) the square of its radius vector is inversely proportional to its vectorial

angle. Ans. The lituus, p^d = a^.

101. Loci defined by a construction and a given curve. Many
important loci are defined as the locus of a point obtained by a

given construction from a given curve. The method of treatment

of such loci is illustrated by

Ex. 1. Find the locus of the middle points of the chords of the circle

x2 + y2 -= 25 which pass through Pg (3, 4).

Solution. Let Pi(Xi, yi) be any point

on the circle. Then a point P (x, y) on

the locus is obtained by bisecting P1P2.

By the Corollary, p. 39,

X = l(Xi + 3), 2/=l(yi + 4).

(1) .-. a:i=:2x-3, y^ = 2y-4.

Since Pi lies on the circle (Corollary,

xi^ + 2/i2 = 25.

Substituting from (1),

(2 X - 3)2 + (2 ?y - 4)2 = 26,

ic2 + 2/2_3a;_4y_o.

p. 53),

r> K

^ ^ ba:sm} )

/ // /
/

- / /

\ <^ -?/:

.Y .> X
\

\ WngVt)\
-'1

^^- y

r'
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As this equation expresses analytically that P(x, y) satisfies the given

condition, it is the equation of the locus.

The locus is easily seen to be a circle described on OP2 as a diameter,

since its center is the point (|, 2) and its radius is f (Theorem I, p. 131).

The method may evidently be expressed as follows :

Rule for finding the equation of a locus defined by a construction

and a given curve.

First step. Find expressions for the coordinates of any point

P\ (cci, 2/1) on the given curve in terms of a point P (x, y) on the

required curve.

Second step. Substitute the results of thefirst step for the coordi-

nates in the equation of the given curve and simplify. The result

is the required equation.

This Eule may also be applied if polar coordinates are used

instead of rectangular coordinates.

Ex. 2. The witch. Find the equation of the locus of a point P constructed

as follows : Let OA be a diameter of the circle x'^ -\-y^ — 2ay = and let any

chord OPi of the circle meet the tangent at ^ in a point B. Lines drawn

through Pi and B parallel respectively to OX and OY intersect at a point P
on the required locus.

Solution. First step. Let {x, y)

be the coordinates of P and (xi, yi)

of Pi. Then from the figure

(1) 2/1 = y-

From the similar triangles OCPi
and PiPB we have

xi yi
(2)

00 _ CPi

PiP ~ PB
OM-OC=x-

X — Xi 2a — y
For OC = «i, P^P = OM- OC=x-x^, CP^= iji, P£ = MB-

Solving (1) and (2) for Xi and ?/i, we obtain

(3)

MP=2a-y.

xy

2a

Second step. Substituting from (3) in the equation of the given circle

x2 + ?/2 — 2 ay = 0, we get

x2'i/2

+ y''

or

(4)

4a2

x2y = 4a2(2a

2 ay = 0,

y)-
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The locus of this equation is known as the witch of Agnesi.

Discussion (p. 74). 1. The witch does not pass through the origin (Theo-

rem VI, p. 73).

2. The witch is symmetrical with respect to the F-axis (Theorem V,

p. 73).

3. Its intercept on the F-axis is 2 a, but the curve does not meet the

X-axis (Rule, p. 73).

4. No values of x need be excluded, but all values of y must be excluded

except 0<y<2a.

For, solving (4) for x and y (Rule, p. 73),

y = , x = ±2a\\ ~-

Hence y is real for all values of x. But the fraction under the radical is negative if

2/>2a or if y <0, and hence these values must be excluded.

5. The witch extends indefinitely to the right and left and approaches

nearer and nearer to the X-axis.

For from the first of equations (5), as x increases without limit y decreases and
approaches zero.

Ex. 3, The conchoid. Find the locus of a point P constructed as follows :

Through a fixed point A on the F-axis a line is drawn cutting the X-axis at

Pi. On this line a point P is taken so that PiP = ± 6, where 6 is a constant.

(5)

Solution. First step. Use polar coordinates, taking A for the pole and

A¥ for the polar axis. Then it AO = a the equation of XX' is

(6) p = a sec d.

For the equation of a line perpendicular to the polar axis has the form (p. 156)

C C
pA cos + C = 0, or p = sec 6, and its intercept on the polar axis is

A A

If the coordinates of P are (/?, 6) and of Pi are {pi, 6i), then in any one of

the figures we have by definition

AP = ^Pi ± b.

.'. 0i = d,pi = pTh.
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Second step. Substituting in (6), we obtain

(7) p = a sec d ±h.

The locus of this equation is called the conchoid of Nicomedes. It has three

distinct forms according as a rs greater, equal to, or less than 6.

Discussion (p. 151). 1. The intercepts on the polar axis AY are a+ 6

and a — b.

The pole also will lie on the conchoid if a sec 6±b = 0or9 = sec- 1 f ± -)•

2. The conchoid is symmetrical with respect to the polar axis AY.

For sec (- 6) = sec 6 by 4, p. 19.

3. The conchoid recedes to infinity in the two opposite directions perpen-

dicular to the polar axis A Y.

For if = - or ^

—

, sec = oo and hence p = oo

.

2 2
j^p

4. If we transform to rectangular coordinates, using (2), p. 155, we get

(x2. + 2/2)(x-a)2 = 62ic2.

A is now the origin and J.Y the positive axis of X. To translate the axes
7t

to and rotate them through we set (Theorem III, p. 164) x = y' -\- a,

y — — x'. We thus obtain

(8) x2?/2 = (2/ + a)2(62-2/2),

which is the equation of the conchoid referred to OX and OY.

From (8) it is easily seen that the conchoid approaches nearer and nearer

to the X-axis as it recedes from the origin.

PROBLEMS

1. Find the locus of a point whose ordinate is half the ordinate of a point

on the circle x'^ \- y"^ = 64. Ans. The ellipse a:2 + 4 ?/2 = 64.

2. Find the locus of a point which cuts off a part of an ordinate of the

circle x'^ + 2/2 = a2 whose ratio to the whole ordinate is h-.a.

Ans. The ellipse 62^2 + aHj'^ = a^b^.

3. Find the locus of a point which divides an ordinate of (a) x^-\-y-= r^^

(b) y2 _ 2px, (c) 2xy = a^ into segments whose ratio is X.

Ans. (a) X2x2 + (1 + X)2?/2 = x2r2
;

(b) (1 + \)^y2 = 2\^px;

(c) 2 (1 + X) xy == Xa2.
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4. Find the locus of the middle points of the chords of (a) an ellipse, (b) a

parabola, (c) an hyperbola which pass through a fixed point P^ (X2, 2/2) on

the curve.

Ans. A conic of the same type for which the values of a and 6 or of p are

half the values of those constants for the given conic.

5. Lines are drawn from the point (0, 4) to the hyperbola x^ — 4^/2 = 16,

Find the locus of the points which divide these lines in the ratio 1 : 2.

Ans. 9 x2 - 36 y2 + 192 y _ 272 = 0.

6. Lines drawn from the focus of the conic (II), p, 178, are extended their

own lengths. Find the locus of their extremities.

Ans. A conic with the same focus and eccentricity whose directrix is

x = -2p.

7. Lines are drawn from a fixed point P2 {x^, 2/2) to (a) the line Ax + By

+ C = 0, (b) the parabola y'^ = 2px, (c) the central conic Ax^ + By^ + F=0.
Find the locus of the points dividing these lines in the ratio X.

Ans. (a) a straight line parallel to the given line

;

(b) a parabola whose axis is parallel to that of the given parabola

;

(c) a central conic whose axes are parallel to those of the given conic.

8. Find the locus of the middle points of chords of an ellipse which join

the extremities of a pair of conjugate diameters.

Ans. 2 62x2 + 2 a^y^ = a^l^.

9. A chord OPi of the circle x"^ + y^ -{ ax = which passes through the

origin is extended a distance PiP = a. Find the locus of P.

Ans. The cardioia |
(^' + ^' + <^)^ =

''Y + ^');

i,or p = a{l — cosecos 6).

10. A chord OPi of the circle x^ + 7/^ — 2ax = meets the line x = 2 a at

a point A. Find the locus of a point P on the line OPi such that OP=PiA.
f y^(2 a x) ^ x^

Ans. The cissoid of Diodes v « '

t or p = 2asmd tan d.

11. Find the locus of the point P in problem 9 if PiP = b.

Ans. The lima5on of Pascal, p = b — a cos d. The limaQon has three dis-

tinct forms according as 6 = a.

102. Parametric equations of a curve. Equations (XY), p. 124,

X = Xi-\- p cos a, y — y^-{- p COS (i,

are called the parametric equations of the straight line because

they give the values of the coordinates of any point {x, y) on the

line in terms of a single variable parameter p. In general, if two
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equations give the values of the coordinates of any point (x, y)

on a curve in terms of a single variable parameter, those equations

are called parametric equations of the curve.

Ex. 1. Find parametric equations of the circle whose center is the origin

and whose radius is r.

Solution. Let P (», y) be any point on the circle and denote Z XOP by 6.

Then from the figure

(1) x = r cos e^ y — r sin d.

These are the required equations. They possess two

properties analogous to those of the equation of the

locus (p. 53).

1. Correspgnding to any point P on the locus there

is a value of d such that the values of x and y given

by (1) are the coordinates of P.

2. Corresponding to every value of Q for which the values of x and y given

by (1) are real numbers there is a point P (x, y) on the locus.

The parameter in the parametric equations of a curve may be

chosen in a great many ways, and hence the parametric equations

of the same curve will often appear in very different forms.

Thus in Ex. 1, if we had chosen for the parameter half the abscissa of P,

denoting it by ^, then ^ = -
' and from the figure y - ±. V7*2 — x^, whence the

parametric equation would have been x = 2 <, y = ± Vr^ — 4 1^.

Rule to 'plot a curve whose parametric equations are given.

First step. Assume values of the parameter and compute the

corresponding values of x and y from the given equations.

Second step. Plot the points whose coordinates are found in the

first step.

Third step. If the points are numerous enough to suggest the

general shape of the locus, draw a smooth curve through the points.

Ex. 2. Plot the curve whose parametric equations are

(2) X = at^, y = aH\

Solution. Take a = ^. Then equations (2) become

(3) x = it^ y = itK
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First step. Assume values of t and compute x and y from (3) , For example,

if t = 2, X = i22 = 2, ?/ = i 23 = 2. This gives the table :

I FA

t ic y

1 .5 .25

2 2 2

3 4.5 6.75

etc. etc. etc.

- 1 .5 - .25

-2 2 -2
-3 4.5 -G.75

etc. etc. etc.

Second step. Plot the points found.

Third step. Draw a smooth curve through these points as in the figure.

Rule to find the equation of a curve in rectangular coordinates

whose parametric equations are given.

Eliminate the parameter from the parametric equations.

We shall justify the Kule for the examples in this section.

In Ex. 1, if we square each of the equations (1) and add, we obtain (3, p. 19)

x2 + y2 = r^

which is the equation of the given locus (Corollary, p. 58).

In Ex. 2, if we cube the first of equations (2) and square the second, we get

a;3 = aH% y^ = aH^.

(4) .-. ?/2=aa;8.

This is the equation of the semicubical parabola (p. 209) . To prove that (4) is

the equation of the curve obtained in Ex. 2 we mi^st prove two things (p. 53)

:

1. The coordinates of any point P\ {x\, yi) on the curve satisfy (4).

ilf

Pi (a;i, yi) is on (2), then (1, Ex. 1) there is a value ti such that

(5) xi = atr^, yi = a'^tiK

(6) .-. xi3 = aHi^, yi^ = aHi^.

(7) .'.yi2=axiK

Hence xi and yi satisfy (4)

.

2. Ifxi and y\ satisfy (4), then Pi (xi, yi) is on the curve.

For if (7) is true, then from the first of equations (5) we obtain a value ^i. Sub-

stituting xi = ati^ in (7), we get yi = aHi^. Hence X\ and yi are given by (5), and



256 ANALYTIC GEOMETRY

The parametric equations of a curve are important because it

is sometimes easy to express the coordinates of a point on the

locus in terms of a parameter when it is otherwise difficult to

obtain the equation of the locus.

Ex. 3. The cycloid. Find the parametric equations of the locus of a point

P on a circle which rolls along the axis of x.

3T

(8)

Solution. Take for origin a point at which the moving point P touched

the axis of x. Let a be the radius of the circle and denote the variable angle

ABP by d. Then (p. 18)

PC = a sin d, CB = a cos d.

By definition, OA = arc^P = ad.

For an arc of a circle equals Its radius times tlie subtended angle, from the definition

of a radian (p. 19).

Hence from the figure, if (x, y) are the coordinates of P,

x = OD = OA-PC = ae-asmd, 2j = DP = AB-CB = a-acosd.

'X = aid -sin 6),

y — a{l — cos^).

These are the parametric equations of the cycloid.

Discussion. 1. The cycloid passes through the origin, for if ^ = 0,

x = yz=0.

2. The cycloid is symmetrical with respect to the Y-axis (Theorem IV,

p. 72, and 4, p. 19).

3. Its intercepts on the X-axis are 2n7ta, where n is any positive or

negative integer, or zero.

For, from the second of equations (8), if y/ = 0, cos 9 = 1. .'. = 2mr ; and hence from
the first of equations (8) x = a • 2mr.

4. The cycloid lies entirely between the lines y = and y = 2a, for

- 1<C0S^<1.
5. The cycloid extends indefinitely to the right and left and consists of

parts equal to OMN. For if we replace d in (8) by 2 mt + d, y is unchanged
while x is increased by 2 riTT (compare Ex. 2, p. 81).
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Ex. 4. The hypocycloid of four cusps. Find the parametric equations of

the locus of a point P on a circle which rolls on the inside of a circle of four

times the radius.

Solution. Take the center of the fixed circle for the origin and let the

X-axis pass through a point A where the tracing point P touched the large

circle. Denote ZAOB hy 6. Then Z BCP = 4d.

For by hypothesis arc PB = arcAB ; and from the definition of a radian (p. 19)

arcPB=^ZBCP, arc AB =

4
ae. ZBCP = a9, or ZfiCP = 4d.

But

whence

Z OCE + Z ECP + Z PCB = Tt.

It
... _ _ ^ + z EGP

2

Z ECP =
"

id=7t.

S9.

Then (p. 18) DC = CP cos (
- - 3

^
) = ^ sin 3 6, (by 6, p. 20)

DP = CPsinf--30') = -cos3^, (by 6, p. 20)
\2 / 4

OE = OC Gosd =— cos^,
4

EC = OC sin = -— sin d.
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Hence

(9)

OE + DP =— cose + - cos

3

d,

4 4

y = EC - DC = — sin ^ sin 3 ^.

4 4

But from 8, 10, and 14, p. 20, and 3, p. 19,

cos 3 <9 = 4 cos3 ^ - 3 cos ^, sin 3 ^ = 3 sin ^ - 4 sin^ d.

Substituting in (9), we get

(10) x = a cos^ e, y = a sin^ e,

wliich are the parametric equations of the hypocycloid of four cusps.

Discussion. 1. The hypocycloid of four cusps does not pass through the

origin because there is no value of 6 for which sin 6 = cos ^ = 0.

2. It is symmetrical with respect to both axes and the origin.

For if 6= 6i gives a point (a^i, yi) on the curve,

then e—Tt — di gives a point (— x\, y\) on the curve,

6= It -{- d\ gives a point {— X\, — y\) on the curve,

and 6=27t — 6i gives a point (xi, — yi) on the curve.

3. Its intercepts on both axes are ± a.

. For if ^ = 0, — , TT, —-, then either a; = and y = ±a, OTy = and x = ±a.

4. Values of x and y numerically greater than a give no points on the

curve since sin d and cos 6 cannot be numerically greater than 1.

5. The hypocycloid is therefore a closed curve.

PROBLEMS

1. Plot and discuss the following parametric equations. Verify the dis-

cussion by finding the equation in rectangular coordinates.

/ X
2«-l -« + 3

, ^ ,^ 2
^'^" = TTT'^^TT¥~' (e)x = 4^,^.-.

(b) « = 4 cos 0, ?/ = 2 sin 0. (f) x = 3 + 2 cos d, y = 2smd — \.

(c) X = 4 sec 6, y = i tan 6. (g) x = i -f 4, y = i t^.

(d) x = t-S, y = \tK (h) x=:a cos^ 6, y = h sin^ d.

2. Find the equation in rectangular coordinates of (a) the hypocycloid of

four cusps (Ex. 4), (b) the cycloid (Ex. 3).

Ans. (a)x'+ y^=:a^; (b) x= avers-i- — V2 ay— 2/2, where vers^=1 — cos ^,

or = vers-i (1 — cos 6).

3. Show that x = , y = -, the fractions having the same
ct + d ct -\- d

denominator, are the parametric equations of a straight line. Interpret

the meaning of Mf (a) c = d = l, (b) c = 0.
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4. If the denominators of the fractions in problem 3 are different, then

the equations given are the parametric equations of an equilateral hyperbola

or two perpendicular lines.

6. Find the parametric equations of the ellipse, using as parameter the

eccentric angle 0, that is, the angle from the major axis to the radius of a point

on the auxiliary circle, p. 206, which has the same abscissa as a point on the"

ellipse. Discuss the equations. Ans. x = a cos <p, y = & sin 0.

Hint. Apply problem 10, p. 206.

6. Find the locus of a point Q on the radius BP (Fig., p. 256) if BQ = b.

Ans. < ~ , ^ ' The locus is called a prolate or curtate cycloid

according as b is greater or less than a.

7. Given a string wrapped around a circle, find the locus of the end of the

string as it is unwound.

Hint. Take the center of the circle for origin and let the X-axis pass through the point A
on which the end of the string rests. If the string is unwound to a point B, let Z AOB = 0.

Ans. The involute of a circle < • „ „
{y = rsmd — rd

sin^,

cos^.

8. A circle of radius r rolls on the inside of a circle whose radius is r'.

Find the locus of a point on the moving circle.

Ans. The hypocycloid

X = (r' — r) cos 6 + r cos

y = {r' — r) sin — r sin

r

r' — r

r

where 6 is chosen as in Ex. 4.

9. A circle of radius r rolls on the outside of a circle whose radius is /.

Find the locus of a point on the moving circle.

Ans. The epicycloid

X = (r'+ r) cosd — r cos d,

y = (r' -{ r) sill ^ — r sin 0,

where 6 is chosen as in Ex. 4.

103. Loci defined by the points of intersection of systems of

curves. If two systems of curves involve the same parameter, the

curves of the systems belonging to the same value of the param-

eter are called corresponding curves. Many loci are defined, or

may be easily regarded, as the locus of the points of intersection

of such curves. The method of treatment is illustrated by
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Ex. 1. A fixed line ^5 is drawn parallel to one side of a rectangle, and a

variable line CB parallel to the other side. Find the locus of the intersec-

tion oi AC and BD.

Solution. Let the lengths of the

sides be a and 6, and take two sides

for the axes. Then the vertices are

(0, 0), (a, 0), (0, 6), and (a, 6).

Let 0A= ^ and OD = k. Then

the coordinates ofA,B, C, and D are

respectively (0, /3), (a, /3), (k, 6), and

(k, 0). Hence the equations of ^C
and BD are respectively (Theorem

VII, p. 97)

(1) {b- p)x-ky -}- ^k = 0.

(2) ^x + {k- a)y - ^k = 0.

These equations represent two systems of lines and involve the same

parameter k. To each value of k corresponds a pair of lines intersecting in a

point P (x, y) on the locus,

of P (Rule, p. 76)

(3)

Solving (1) and (2), we obtain as the coordinates

al3k

y

hk + ajS

h^k

ab

bk -]- aj3 — ab

As these equations express x and y in terms of a parameter k, they are the

parametric equations of the locus. The equation of the locus may be obtained

by eliminating k (Rule, p. 255). To do this multiply the first of equations (3)

by 6, the second by a, and subtract. This gives

(4) bx — ay = 0.

The locus is therefore a diagonal of the rectangle, for this line passes

through (0, 0) and (a, b) (Corollary, p. 53).

This equation might also be obtained by adding (1) and (2). But if the

elimination were difiicult or impossible, we would content ourselves with the

parametric equations (3).

The method of solving Ex. 1 may be summed up in the

Rule to find the equation of the locus of the joints of intersection

of corresponding curves of tivo systems^

First step. Find the equation of the two* systems of curves defin-

ing the locus in terms of the same parameter.

* In some cases the definition involves but one system of curves. In such cases a

second system which passes through the points on the locus may frequently he found.
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Second stejj. Solve the equations of the systems for x and y in

terms of the parameter. This gives the parametric equations of

the locus.

Third step. Find the equation of the locus from the parametric

equations {Rule, p. 255).

If only the parametric equations are required, the third step may he omitted.

If only the equation in rectangular coordinates is required, it may he ohtained

hy eliminating the parameter from the equations found in the first step, for the

result will he the same as that ohtained hy eliminating the parameter from the

equations found in the second step.

Ex. 2. Find the locus of the points of intersection of two perpendicular

tangents to the ellipse h'^x^ + a'^y'^ — a^b'^ = 0.

Solution. First step. The equation of a tangent in terms of its slope t is

(Theorem II, p. 234)

(4) 2/ = te + vaH-^ + 62.

The slope of the tangent perpendicu-

lar to (4) is (Theorem VI, p. 36) - i

;

t

and hence its equation is (Theorem II,

p. 234)

Second step. As the parametric

equations are not requii-ed, this step

may be omitted.

Third step. To eliminate t from (4) and (5) we write them in the forms

tx-y = - VaH'^ + 6-2,

x-]-ty = Va2 + 62^2.

Squaring these equations, we obtain

<2x2 - 2 te2/ + 2/2 = a2<2 + h%

ic2 + 2 txy + «22/2 = a2 + 52^2.

Adding, (1 + t^) x2 + (1 + t^) y^ = (1 + f^) a2 + (1 + t^) bl

Dividing by 1 + t^, we get the required equation,

x2 + y^ = a2 + 62.

The locus is therefore a circle whose center is the center of the ellipse and

whose radius is Va2 + 62, It is called the director circle.
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PROBLEMS

1. Find the locus of the intersections of perpendicular tangents to (a) the

parabola, (b) the hyperbola (VI), p. 185.

Ans. (a) The directrix
;

(b) x"^ + y^ = a"^ - W.

2. Find the locus of the point of intersection of a tangent to (a) an ellipse,

(b) a parabola, (c) an hyperbola with the line drawn through a focus perpen-

dicular to the tangent.

Ans. (a) x2 -f 2/2 := a2
;

(b) x = ; (c) x2 + ?/2 = a2.

3. Given two fixed points A and J5, one on each of the axes, and two vari-

able points A' and B% one on each axis, such that OA' + OB' = OA + 05,
find the locus of the intersection of AB' and A'B. Ans. x + y = a + 6.

Hint. Let OA=a,OB=b, and OA'=a + }c; then OB' = b-}c.

4. Find the locus of the point of intersection of a tangent to an equi-

lateral hyperbola and the line drawn through the center perpendicular to

that tangent.

Ans. The lemniscate (Ex. 2, p. 152) (x2 + 2/2)2 ^ ^2 (x2 - y^).

6. Find the locus of the point of intersection of a tangent to the circle

«^ + 2/^ + 2 ox + a2 — 62 — and the line drawn through the origin perpen-

dicular to it.

Ans. The lima^on (problem 11, p. 253) (x2 + 2/2 + ax)2 = b'^{x^ -f 2/2).

6. Find the locus of the point of intersection of the diagonals of a trape-

zoid formed by drawing a line parallel to one side of a given triangle.

Ans. A median of the triangle.

7. Find the locus of the intersection of the diagonals of a rectangle

inscribed in a triangle.

Ans. The line joining the middle points of the base and altitude.

8. Find the locus of the point of intersection of lines drawn through the

foci of an ellipse parallel to conjugate diameters. Ans. An ellipse.

9. Find the locus of the foot of the perpendicular drawn from the origin

to a tangent to the parabola 2/2 + 4 ax + 4 a2 = 0.

Ans. The strophoid y^ = x'^ .

MISCELLANEOUS PROBLEMS

1. Find the locus of the center of a circle which

(a) has a given radius and passes through a given point.

(b) passes through two given points.

(c) passes through a given point and is tangent to a given line.

(d) is tangent to a given circle and a given straight lipe.

(e) is tangent to a given circle and passes through a given point.
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2. One side of a triangle is fixed and a second side has a constant length.

Find the locus of the middle point of the third side.

3. The extremities of a straight line of variable length rest on two perpen-

dicular lines. Find the locus of its middle point if the area of the triangle

formed is constant.

4. Find the locus of the middle point of that part of a line through a fixed

point Pi (iCi, 2/i) which is included between two perpendicular lines.

6. A line of fixed length moves with its extremities on the axes. Show
that (a) the locus of any point on the line is an ellipse

;
(b) the locus of the

foot of the perpendicular drawn from the origin to the line is the four-leaved

rose p = a sin 2 ^.

6. Let the X-axis cut the circle x"^ + y^ = a^ at A. An arc ^jB is laid

off on the circle equal to the abscissa of a point on the parabola y^ = 2-px,

and the radius OB is produced a distance BP equal to the ordinate of that

point. Show that the locus of P is the parabolic spiral {p — a)^ = 2 apd.

7. The cissoid (problem 10, p. 253) is the locus of the point of intersection

of a tangent to the parabola y^ + Sax = and the perpendicular to it drawn
through the origin.

8. Given a fixed point A on the negative part of the X-axis and a line

through A meeting the F-axis at B. On either side of B a length BP = OB
is laid off on AB. Show that the locus of P is the strophoid (problem 9,

p. 262).

9. One side of a right angle ABC passes through a fixed point D, while a

point C on the other side moves along a fixed line EF whose distance from D
equals the side BC. Prove that (a) the middle point of BC describes a cissoid

(problem 10, p. 253) ;
(b) the vertexB describes a strophoid (problem 9, p. 262).



CHAPTER XII

THE GENERAL EQUATION OF THE SECOND DEGREE

104. If the general equation of the second degree (p. 132)

Ax^ + Bxy + C?/2 -f Dx + ^2/ + i^ =

has a locus, it must be either a conic or a degenerate conic (Theorem XIII,

p. 196). The method of determining the exact nature of the locus was to

simplify its equation by a transformation of coordinates, a process which is

frequently laborious. The principal object of this chapter is to derive rules

by which the exact nature of the locus may be easily ascertained. In this

connection the expressions , ,

H = ^ + C,

and = iACF + BDE - AE'^ - CD^ - FW-

will be of fundamental importance.

105. Condition for a degenerate conic.

Lemma I. If an equation of the second degree is transformed by a transfor-

mation of coordinates, then the left-hand member of the transformed equation

can be factored when and only when the left-hand member of the original equa-

tion can be factored*

Proof For the equations of a transformation of coordinates [(III), p. 164]

are of the first degree when solved for either the new or old coordinates, and

hence when we substitute in an equation whose left-hand member is factored

the result is an equation whose left-hand member is factored. q.e.d.

Lemma IL The locus of an equation of the second degree is a degenerate conic

when and only when the left-hand member of its equation may be factored.

Proof By a transformation of coordinates an equation of the second

degree may be reduced to one of the forms

(1) ^x2 + Cy2 + iT = 0, C?/2 + Dx = 0, Cy'^-\-F= 0,

where A, C, and D are different from zero (Theorem XIII, p. 196).

* "We shall say that the left-hand member of the equation can be factored if it can be

written as the product of two factors of the^rs^ degree in x and y (p. 17). Hence

x^-y'^={x-}-y){x-y)

can be factored, while x^- y = {x + Vy) {x — y/y)

cannot be factored in this sense.

264
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The locus of the first of equations (1) is degenerate when and only when
F=0, the locus of the second is never degenerate, and the locus of the third

is always degenerate.* Hence the locus of an equation of the second degree

is degenerate when and only when its equation may be reduced to one of

the forms

(2) Ax^ + Cy^ = 0, Cy^ + F = 0.

These equations may be written in the forms

{Vax -^V~Cy) {VAx - vCTcy) = 0,

(Vc ?/ + V^^) (Vc ?/ - V^^) = 0.

Hence equations (2) are forms of equations (1) which can be factored,

and they are evidently the only such forms.

Hence the locus of an equation in its simplest form is degenerate when
and only when it can be factored, and then by Lemma I the same is true of

the locus of any equation of the second degree. q.e.d.

We now seek the conditions which the coefficients of

(3) Ax^ + Bxy + Cy^-^Bx-\-Ey + F=0
must satisfy in order that the left-hand member can be factored.

Arranging (3) according to powers of x, we have

(4) Ax^ + {By + D)x + Cy^-]-Ey + F= 0.

Solving for x (which implies that A is not zero), we may write the left-

hand member of (4) in the form of (6), p. 3, namely

(5) a(x -(-^y + -P)+^^-4^Qz/^ + (2i?i)-4^^)?/ + J)-^-4^J'\

/ -{By+ D)-V{B^-4AC)y^-\-{2BD-4,AF)y + D^-4AF\
V 2 A /

These factors will be of the first degree in y as well as x when and only

when the quadratic in y under the radical can be written in the second form

of (7), p. 4, which can be done when and only when

(6) (2 J5D - 4 AEy2 -4{B^- 4 AC) (i)^ - 4 AF) = 0.

Clearing parentheses and dividing by — 10 J., we obtain

(7) AACF-h BDE -AE^ - CD'^ -F& = 0.

The left-hand member of (7) is called the discriminant of (3) and is denoted

by 0. Hence the left-hand member of (3) can be factored (footnote, p. 264)

when and only when its discriminant is zero. Then from Lemma II we have

* The equation Cy^ + F= has no locus if C and F have the same sign (p. 196), hut we
shall speak of this as a degenerate case to distingviish it from the equation Ax^+Cy^+F=0,
which has no locus if F^Q, and A, C, and F have the same sign (p. 195), for the former

equation has the same form as that of a degenerate parabola (p. 196), while the latter has

the same form as that of a central conic.
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Theorem I. The locus of an equation of the second degree

Ax^ -\-Bxy -{- Cy^ + Dx -\- Ey + F =
is degenerate when and only when its discriminant

Q = 4:ACF+ BDE — AE^ — CD^ — FB^
IS zero. ^i — ^.^- " - - ^

PROBLEMS

1. If J. = 0, then = BDE - CD^ - FB'^. Show that, the locus of

Bxy -\- Cy'^ -\- Dx -\- Ey -\- F =
will be degenerate when and only when = 0.

Hint. Arrange the given equation according to powers of y.

2. liA = C = 0, then e = DE - FB, after dividing by B which we sup-

pose is not zero. Show that the locus of

Bxy + Dx + Ey -h F=0 yp

will be degenerate when and only when = 0.

Hint. If the given equation can be factored, the factors must have the form

{A'x-\-B'){C'y + D') = 0,

as otherwise their product would contain x^ or y^.

Multiply these factors, find the conditions that their product should have the same
locus as the given equation, and eliminate A', B', C\ and D'.

3. Are the loci of the following equations degenerate or non-degenerate ?

(a) x2 — 2 xy + ?/2 - 2 2/ — 1 = 0. Ans. Non-degenerate.

(b) x2 + 2 xy + ?/2 + X + ?/ - 2 = 0. Ans. Degenerate.

(c) x2 + y2 - 4 X + 2 ?/ + 5 = 0. Ans. Degenerate.

(d) x2 + xy + 2/2 + 2 X + 3 y - 3 = 0. Ans. Non-degenerate.

(e) xy -I- X - 2/ + 7 = 0. Ans. Non-degenerate.

(f

)

x2 -I- 2 xy - 2/ + 3 = 0. _ Ans. Non-degenerate.

{g) xy + 2x - y - 2 = 0. Ans. Degenerate.

4. Find the real values of k for which the loci of the following equations

are degenerate.

(a) A;x2 + (1 _ fc) 2/2 - (2 + fc) = 0. Ans. 0, 1, - 2.

(b) x2 + (1 + A:) 7/2 - 4 A:x - 16 = 0. Ans. - 1.

(c) xy + k (x2 - 2/2) = 0. Ans. All values.

5. Find all possible cases in which equation (3), p. 265, has no locus.

Hint. Solve for x and apply Theorem III, p. 11, assuming that A is positive and
noticing that the discriminant of the quadratic in y under the radical is - 16 ^0.

Ans. > 0, A < ; = A = 0, 1)2-4 AF< 0.
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106. Degenerate conies of a system. Let the equations of two conies,

degenerate or non-degenerate, be

Ci : Aix^ -}- Bixy + Ci?/2 + DyX -h Eiy -{- Fi =
and C2 : ^2^2 + Bzxy + C^y^ + Ax + Ezy + Fg = 0.

(1)

or

(2)

Then the equation

Aix^ + Bixy + Ci?/2 + Dix + ^ly + Fi

+ A; (^2^2 + B^xy + C^y^ + DoX + ^22/ + 1^2) = 0,

(^1 + kA2)x^ + (5, + ^J52)X2/ + (Ci + fcC2)y2

+ (Z>i + JCD2) X + (^1 + A:^2) y + (i^i + kF2) = 0,

where A: is an arbitrary constant, will represent a system of conic sections.

If Ci and C2 intersect, all the conies of the system will pass through their

points of intersection.

This is proved as in the case of straight lines (Theorem XIII, p. 119) and circles

(Theorem IV, p. 140).

Ex. 1. Find the values of k for which the conies belonging to the sys-

tem a;2 4. 2/2 - 4 + A: (x^ - 2/2 - 1) = are

degenerate.

Solution. The givep equation may he writ-

ten in the form

(3) (1 + A;) a:2 + (1 - k) y^ - (^ ^ k) = 0.

Its discriminant is

e = - 4:{1 + k) {1 - k) (4: + k).

If the locus of (3) is degenerate, then (Theo-

rem I, p. 266)

e=^-4il + k)(l-k)i^-{-k) = 0.

.: k = -l, 1, or -4.

If A; = — 1, (3) becomes 21/2 — 3=0, or y = ± Vf.

U k= 1, (3) becomes 2 a;2 — 5 = 0, or x = ± V|.

If A; = - 4, (3) becomes 3x^-5y^ = 0, or y = ±V^x.

\ i .- \
1 1 /

\\ / ^
\^ T II /<s^^ '«j

A^
Jsfc— 2^\{— k^ -1

/

iSy^ \

A '

\r ^\ \ k= -1 X

i'^^ J> vv
/y ^^

// V<
/ , \ \

/ "v

In each case the locus is a pair of lines.

The figure shows the circle a:2 -|- 1/2 _ 4 = 0, the hyperbola a;2 — ?/2

and the three pairs of lines.

1 = 0.

Theorem n. In mery system of conies whose equation has the form (1) there

is at least one degenerate conic and., in general, there cannot be more than three.

These are obtained by substituting for k, in the equation of the system, the roots

of its discriminant 0.
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Proof. The discriminant © of (1), when set equal to zero, gives an equa-

tion of the third degree in k.

For each term in © consists of the product of three of the coefficients of (2), and such

products will contain the third power of k.

The roots of this cubic equation will be the values of k giving the degen-

erate conies of the system (Theorem I, p. 266). There are, therefore, not

more than three values of k for which the locus is degenerate.

In a special case, however, all of the coefficients in this cubic might be zero, in which

case the locus of (2) is degenerate for all values of k (see problem 4, (c), p. 266).

Two or all three of the roots might be equal, and hence there might be

but two, or even but one, degenerate conic in the system.

Two of the roots might be imaginary and hence could not be used. But

one of them must be real,* and hence there is always at least one real value

of k for which the locus of (1) is degenerate, t q.e.d.

Systems of conies defined by equations of the form (1) are classified according to the

nature of the common solutions of C^ and Cj. In Algebra it is shown that two equations

of the second degree have, in general, four pairs of common solutions for x and y. Hence
five cases arise

:

1. Four distinct pairs of solutions.

2. Two pairs are identical and the other two pairs are distinct.

3. Three pairs are identical and the fourth pair is different.

4. Two pairs are identical and the other two pairs are also identical.

5. All four pairs are identical.

If the four pairs of solutions are all real, then these five cases have the following

geometrical interpretation.

1. Ci and Cj have four distinct points of intersection. All the conies of the system

pass through these four points. There are three degenerate conies in the system [Ex. 1

and problem 1, (a)].

2. Cj and Cg are tangent at one point and intersect in two other points. All the conies

of the system are tangent at the first point and pass through the other two points. There

are two degenerate conies in the system [problem 1, (b)].

3. Cj and Cj are tangent at one point and intersect in a second point. All the conies

of the system are tangent at the first point and pass through the second point. There is

but one degenerate conic in the system [problem 1, (c)].

4. Ci and C^ are bi-tangent, that is, tangent at two different points. All of the conies

of the system are tangent at these two points. There are two degenerate conies in the

system [problem 1, (d)].

5. C-i and C^ are tangent at one point and do not intersect elsewhere. All of the

conies of the system are tangent at this point. There is but one degenerate conic in

the system [problem 1, (e)].

* In Algebra it is shown that the imaginary roots of an equation with real coefficients

must enter in pairs. Hence if the degree is an odd number, one root, at least, must be

real.

t It is tacitly assumed, as is true, that not all of the roots of the discriminant, when
substituted for k, give equations which have no locus. But this point is not essential for

our further reasoning.
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PROBLEMS

1 . Find the values of k for the degenerate conies of the following systems.

Plot Ci, C2, and the degenerate conies.

(a) x2 + 2/2 _ 16 + A; (x2 + 92/2 _ 36) = 0. Ans. fc = - 1, -\, -
f

.

(b) 4x2 + 2^2 _ i6x + A; (x2 ^y^-^x) = 0. Ans. A: = - 2, - 2, - 1.

(c) x2 4. 2x2/ + 22/2 + 8x + 82/ + A:(x2 + 22/2 + 82/) = 0.

Ans. fc = — 1, — 1, — 1.

(d) x2 + 2/2 _ 36 + A; (x2 + 4 2/2 - 36) = 0. Ans. k = -l, - 1, - 1.

(e) x"^ + y^ - 4:x + k{ix^ + y^ - 4:x) = 0. Ans. k = -l, - 1, - 1.

2. Find the points of intersection of Ci and C2 in problem 1.

Ans. (a) (fV6,iVl0),(fV6,-iVl0),(-|y6,^Vi0),(-|V6,-|Vu;).

(b) (0, 0), (0, 0), (I, I
V2),

(f , -fV2).
(c) (0, - 4), (0, - 4), (0, - 4), (0, 0).

(d) (6,0), (6,0), (-6,0), (-6,0).

(e) (0, 0), (0, 0), (0, 0), (0, 0).

3. Discuss the following systems of conies.

(a) x2 + 2/2 - 16 + A; (x2 - 4 y2 + 16) = 0.

(b) x2 - 2 2/ + 4 + A; (x2 + 8 2/) = 0.

(c) X2/ + 82/ + 8 + A:(X2/ + 8) = 0.

(d) x2 + 2 2/2 - 8 + A; (x2 + 2/2 - 4) = 0.

(e) x2 + 6 2/ + 9 + A; (x2 + 6 2/) = 0.

(f) 2j^-4.x-\-k{y^ + ix) = 0.

(g) x2 - 2/2 + 25 + A;(x2 -f 2/2) = 0.

(h) x2 - 2/2 + A; (x2 + 2/2) = 0.

(i) 2/2 - 4 X - 16 + fc(x2 - 2/2 + 8 X + 16) = 0.

(j) x2 - 2/2 + A:(x2 - 42/2 - 3) = 0.

107. Invariants under a rotation of the axes.

Lemma III. If the axes are rotated about the origin, then for any point whose

old and new coordinates are respectively (x, y) and (x', y') we have

x2 + 2/2 = x'-^ + 2/'2.

Proof. To rotate the axes through an angle 6 we set (Theorem II, p. 162)

J X =: x' cos ^ — 2/' sin ^,

'^ \y = x' sin d -\- y' cos 6.

Then x2 + y2 _ ^x' cos d - y' sin 9)^ + (x' sin 6 + y' cos 5)2

= x'2 (cos2 d -f sin2 5) + 2/'2 (siu2 5 + cos2 6)

= x'2 + y-2^ (by 3, p. 19)

Q.E.D.

The lemma is evident geometrically since x^ + ?/2 and x'^ + if^ are the squares of the

distance from the point to the origin [(JY), p. 31] in the new and old coordinates

respectively.
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"We are considering in this chapter the equation

(2) Ax^ + Bxy + Cy^ -\- Dx -\- Ey + F = 0.

If we substitute from (1) without simplifying the result, we obtain an

equation of the form

(3) A'x'-2 4- B'xY + Cy^ + D'x' + EY + F = 0,
^

which has the same constant term (Corollary, p. 170).

Consider the system of conies

(4) Ax^ + Bxy + Cy^ + Dx + Ey + F + k{x'^ -^ y^) = 0.

If the axes be rotated by substituting from (1), the equation of the system

becomes

(6) ^V2 + B'xY + CY^ + D'x' + EY -\-F+k (x'2 + y'^) = 0.

For the left-hand member of (2) becomes the left-hand member of (3), and x^ + y'

becomes a;'^ ^ y^2 \)y Lemma III.

Denote the discriminants of (2), (3), (4), and (5) by 0, ©', ©i, and 0/
respectively. The locus of (4) is degenerate when and only when (Theorem I,

p. 266)

ei = i{A+k){C + k)F-\- BDE - {A + k)E-2 - {C -^ k) D'^ - FB^ = 0,

or

(6) AFk^-i-{4:AF-\-ACF-E^ -D'^)k + Q = Q*

Similarly, the locus of (5) is degenerate when and only when

(7) 4 Fk^ + (4 A'F + 4 C'F - E'^ - B'^) k ^ Q' = 0.

The roots of (6) and (7) must be the same.

For (4) and (5) are the equations of the same conic referred to different axes. Hence
the locus of either equation is degenerate if the locus of the other is degenerate.

Since the coefficients of A;^ in (6) and (7) are equal, the other coefficients

must also be equal. Hence

(8) 0' =

and 4:A'F +^C'F- E'^ - D'^ = 4AF + 4CF - E^ - Z)2.

An expression involving the coefficients A, B, C, D, E, and F whose value

remains unchanged when the axes are changed is called an invariant of the

general equation of the second degree under a transformation of coordinates.

It is assumed in this definition that the equation in the new coordinates is not

simplified by multiplying or dividing by a constant. An expression involv-

ing the coordinates which remains unchanged when the equation in the new
coordinates is simplified is called an absolute invariant. Hence, from (8),

* This quadratic may be regarded as a cubic equation with one infinite root, by a

theorem analogous to Theorem IV, p. 15. The locus of (4) for k=co is x^ + y^ = 0, which
is one of the degenerate conies of the system.
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Theorem m. The discriminant of an equation of the second degree is

invariant under a rotation of the axes.

Corollary. The expression ^ = 4-42^ + 4 CF — E'^ — Ifi is invariant under

a rotation of the axes.

Lemma IV. An invariant of

(9) Ax^ + Bxij + C?/2 + F =

under a rotation of the axes which involves only A, J?, and C is also an
invariant of (2).

Proof. Substituting in (9) from (1), we obtain

A'x'^ + B'xY + Cy^ -{-F = 0,

where A', B\ and C have the same values as in (3).

For when we substitute from (1) in Ax^ + Bxy + Cy^ we obtain only terms in x'^, x'y',

and y'"^, and substituting in Dx + Ey in (2) we obtain only terms in x' and y'.

Hence an expression involving only A^ B, and C will be an invariant of

(2) if it is an invariant of (9). q.e.d.

Theorem IV. The expressions

A = B^-4tAC, 1I = A + C,

are invariants of an equation of the second degree under a rotation of the axes.

Proof. Consider the system

(10) Ax^ -\-Bxy + Cy^ + F+k {x^ + 7/2) = o.

Rotating the axes, this equation becomes

(11) A'x'^ + B'xY + CY^ + F+ A: (x'2 + y-i^ ^ q.

Denote the discriminants of (10) and (11) by 0i and ©/. Then the locus

of (10) is degenerate when and only when

ei = 4(A -\- k) (C + k) F - Fm =
or

(12)
- 4 A;2 + 4 (^ + C) A: - (^ - 4 ^ C) = 0.

Similarly, the locus of (11) is degenerate when and only when

(13) 0/ = 4 A:2 + 4 {A' +C')k- {B'^ - 4 A'C) = 0.

Since (10) and (11) have the same locus, (12) and (13) have the same roots.

And since the coefficients of A;2 in (12) and (13) are equal, the remaining

coefficients are equal. Hence

B'^-iA'C' = B^-^AC
and A'' + C = A -]- C. q.e.d.
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Ex. 1. Transform x^-\-xy + x — 2y + 4: = 0'bj rotating the axes through —
Compute A, H, and © for the given and required equations.

Solution. In the given equation

A=1,B = 1,C=0,D = 1,E = -2,F=4:.
.'. H = 1 + = 1, A = 12 - 4 • 1 • = 1,

0=4-l-O-4 + l-l(-2)-l(-2)2-O-12-4-12 = -lO,

To rotate the axes set (Theorem II, p. 162)

X = X' COS—
4 -.^=^-f y = X' &in- + y'cos- =

x' -\- y'

V2

This gives, after removing parentheses but not clearing of fractions,

(14)

V2

3
' + 4 =:0.

Here A = l, B = -l, C-0, D = 1 E^- 3

V2'
F = 4.

.-. A = i, H = i, e = -io.

Hence the values of A, H, and are unchanged.

But if we clear fractions in (14) we obtain

V2a;'2 _ V2xV - cc' - 3y' + 4 V2 =: 0.

For this equation A = 2, H = V2, = - 20 V2.

Hence A, H, and are not absolute invariants under a rotation of the axes.

H2 H3
Theorem V. The expressions — and — are absolute invariants of an equa-

A
tion of the second degree under a rotation of the axes.*

Proof. The given expressions are invariants because A, H, and are

invariants. To show that they are absolute invariants we must prove that

their values are unchanged when we multiply

(15) Ax^ + Bxy + Cy2 i-Dx + Ey-h F=0
by a constant. Multiplying (15) by k, we get

(16) kAx'^ + kBxy + kCy^ + kDx + kEy -\- kF = 0.

Denote the invariants of (16) by A^-, H^-, and Qk- Then

(17) Ax,. = k^B^ - 4 kAkC = k2{B^-^AC) = k^A.

(18) Jlk = kA-\-kC = k{A + C) = kli.

(19) Sk = k^ {iACF + BDE - AE^ - CD^ - FB^) = k^B.

* The proof also holds for a translation of the axes after Theorems VI and VII are

proved.
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Dividing the square of (18) by (17),

Ak ~ A

Dividing the cube of (18) by (19),

H2 H3
Hence — and — are absolute invariants. q.e.d.

A

PROBLEMS

H2 H3
1. Compute — and — for the equations in problem 2, p. 168, and also

A
for their answers.

2. The values of A\ B\ and C in (3), p. 270, are respectively the

coefficients of x'2, x'y\ and y"^ in (4), p. 170, Compute the values of

£'2 _ 4 vl'C and A' + C in terras of ^, B, and C
rj

3. Show that -===:z^ is an invariant of the line Ax -i- By + C =
± V^2 + ^

under a rotation of the axes.

4. Show that—^ - is an invariant of the line Ax-\-By -\- C =

and the point Pi (iCi, ^i) under a rotation of the axes.

6. Show that V(xi - Xz)^ + (yi - 2/2)2 is an invariant of the points

Pi{^u yi) and P2(X2, 2/2) under a rotation of the axes.

6. Show that ^ ^ ^—? is an invariant of the lines Axx-\- Biy + Ci =
AiA2-\- B1B2

and A2X + B^y + C2 = under a rotation of the axes.

7. Interpret geometrically the meaning of the invariants in problems 3

to 6.

108. Invariants under a translation of the axes.

Theorem VI. The expressions

A = B^-4AC, Ti=A-i-C

are invariants of an equation of the second degree under a translation of the axes.

Proof. If an equation of the second degree be transformed by translating the

axes, the coefficients^, B, and C are unchanged (Corollary I, p. 171). Hence
any expression involving these letters, as A or H, is an invariant. q.e.d.
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Lemma V. If the axes are translated to the point {h, fc), then for any point

P whose old and new coordinates are respectively (x, y) and (x', y') we have

kx — hy = kx' — hy\

Proof. To translate the axes we set (Theorem I, p. 160)

x = x' -\-h, y = y' -\-k.

Then ' kx - hy :^k{x' + h) - h {7/ + k)

= kx' — hy'. Q.E.D.

The Lemma is evident geometrically since either kx - hy or kx^ - Tiy' is the area of the

triangle whose vertices are P and the old and new origins [(VIII), p. 42].

Theorem VII. The discriminant of the equation

(!) Ax^ + Bxy + Cy^+Dx-{-Ey +F=0
is an invariant under a translation of the axes

(2) x = x' + h, y = y' + k.

Proof. Consider the system

(3) Ax^ + Bxy + Cy^ -\- Dx + Ey -{- F + k' {kx - hy) = 0.

Substituting in (3) from (2), we obtain

(4) Ax'^ + BxY + Cy'^ + D'x' + Wy' + F' + ¥ {k<c' - hy') = 0.

For (1) becomes an equation of the form (Corollary I, p. 171)

(5) Ax'^ + Bx'y' + Cy'^ + B'x' + E'y' -\-F' = 0,

and kx — hy becomes kx' - hy' (Lemma V).

Denote the discriminants of (1) and (5) by and 0' ; of (3) and (4) by 0i

and 0i'. If the locus of (3) is degenerate (Theorem I, p. 266),

01 = ^ACF+B{p + k'k) {E - k'h)-A {E - k'h)^ - C {D -}- k'k)^ - FB^ = 0,

or

(6) {Bhk -Ah^- Ck^) k'^ + {BEk - BDh + 2AEh-2 CDk) k'-\-e = 0.

Similarly, the locus of (4) is degenerate if

(7) {Bhk - Ah^ - Ck^) k'^ + {BE'k - BD'h + 2 AE'h - 2 CB'k)k' + 0' = 0.

Since (6) and (7) must have the same roots, and since the coefficients of k'^

are equal, then the remaining coefficients are equal. Hence

0' = 0. Q.E.D.

Since any transformation of coordinates may be effected by a rotation and

a translation of the axes, the results of Theorems III, IV, VI, and VII may
be embodied in a single theorem.
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Theorem Vin. If the equation

Ax^ + Bxy +Cy^-i-Dx + Ey + F =
be transformed by a transformation of coordinates into

A'x"^ + B'xY + CY'^ + D'x' + E'y' + F' = 0,

then A' = B'2-4A'C' = :^ -4:AC = A,

H' = ^' + C = ^ + C = H,

and 0' = 4 A'C'F' + B'lTE' - A'E'^ - C'TY^ - F'B'^

= 4:ACF + BDE - AE^ - CD^ - FB^ = 0.

That is, A, H, and are invariants of an equation of the second degree under

any transformation of coordinates.

PROBLEMS

1. Compute — and — for the equations in problem 1, p. 168, and the
A

answers.

2. Prove that the expressions in problems 4 to 6, p. 273, are invariant

under a translation of the axes and interpret them geometrically.

3. Prove by direct substitution that ^ (Corollary, p. 271) is invariant under

a translation of the axes provided that A = = 0.

109. Nature of the locus of an equation of the second degree. By a trans-

formation of coordinates the equation

(1) ^x2 + Bxy -^Cy^ + Dx + Ey + F=0
may be reduced* to one of the forms (Theorem XIII, p. 196)

(I) A'x"^ + C'y'^ + F' = 0, where ^' 5^ and C ^^ ;

(II) CY'^ + D'x' = 0, where C" 7^ and D' 5^ ;

(III) CY'2-i-F' = 0, where C':^0.

The theory of invariants enables us to determine to which one of these

three forms a given equation may be reduced and to find the exact nature of

the locus without actually effecting the transformation of coordinates.

To do this compute the numerical values of A, H, and for the given

equation (1). We have, further,

(2) for (I), A' = - 4A'C 7^ 0, W = A' + C^ 0' = 4 A'C'F';

(3) for (II), A' = 0, H' = C" 7i 0, 0' = - C'D''^ 5^ ;

'

(4) for (III), A' = 0, H' = C 5^ 0, 0' = 0.

But in each case, by Theorem VIII,

(5) A' = A, H' = H, 0' = 0.

* It is assumed that the equation is not multiplied or divided by a constant in this

reduction.
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Hence, t/ A 7^ 0, (1) may he reduced to the form (I)

;

i/ A = and 7^ 0, (1) may be reduced to the form (II)

;

and i/ A = and = 0, (1) may he reduced to the form (III).

We shall discuss these three cases separately.

Cask I. A 5^ 0. Substituting from (2) in (5), we get

(6) - 4:A'C' = A,

(7)
^' + C' = H,

(8) 4A'C'F' = Q.

Elliptic type, A < 0. Hyperbolic type, A > 0.

From (6), if A<0, A' and C have From (6), if A>0, A' and C have

the same signs and the locus belongs opposite signs and the locus belongs to

to the elliptic type (p. 195). the hyperbolic type (p. 195).

From (8), if 5^ 0, then F' ^0 and From (8), if 9^ 0, then F' ^0 and

the locus is an ellipse if H and differ the locus is an hyperbola.

in sign, or there is no locus if H and

agree in sign. For A' and C" have the

sign of H, from (7), and F' has the sign

of 0, from (8).

From (8), if = 0, then ii^= and From (8), if = 0, then i^=: and

the locus is a point. the locus is a. pair of intersecting lines.

The values of A^, C, and F^, if desired, may be found by solving (6), (7), and (8).

Case II. A = and 0^0. The locus is a parabola (p. 180).

Substituting from (3) in (5), we get C^ = H and — CD'- = ©, from wbicb the values of

C and D' may be found if desired. ,

Case III. A = and = 0. Substituting from (4) in (5), we obtain the

single equation C = H, which does not enable us to compare the signs of

C" and F' in (III). But ^ = 4.AF +^CF -FT^ - D^ is invariant under a

rotation of the axes, and when A = = 0, ^ is also an invariant under a

translation of the axes.

For, substituting the values of D', E', and F' given by (5), p. 170, and setting A' = A,

B'=B, C'= C (Corollary I, p. 171) in

^' =iA'F' + ^ C'F' - E'-^ - Z>'2,

weget ^'={4:CD-2BE)h + {^AE-2BD)k + ^.

But if A = = 0, then 2 BD -4AE = 0, from (6), p. 265. Multiplying this by B and set-

ting B2 = 'i AC {from A = 0), we have iACD - 2ABE = 0, or 4 CD - 2BE= 0. Hence ^'= ^

For (III) we have ^ = 4 C'F\ and hence

4 C'F' = ^

Hence (p. 196) if ^ < 0, the locus is two parallel lines
;

if ^ = 0, the locus is a single line

;

if f > 0, there is no locus.

The results of this section are embodied in
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Theorem IX. The nature of the locus of the equation

Ax^ + Bxy + Cy^ -i- Dx + Ey + F .=

depends upon the values of the invariants

A = B^-4:AC, R = A-\-C,

e = ^ACF-{- BDE - AE^ - CD^ - FB^,

and ^ = 4:AF-\-^CF-E'2-D^,

as indicated in the following table.

09^0
Conic.

A<0
Ellipse, if H and differ in sign.

No locus, if H and agree in sign.

A = Parabola.

A>0 - Hyperbola.

=
Degenerate

Conic.

A<0 Point.

A =
Two parallel lines, if ^ < 0.

One line, if ^ = 0.

No locus, if ^ > 0.

A>0 Two intersecting lines.

PROBLEMS

1 . Find the exact nature of the locus of

(a) a^2 ^ 2xy -h 2y^ - 6x - 2y +9 = 0.

(b) x^ - 2 xy -\- 2 y'2 - 4:y + 8 = 0.

(c) x^-\-6xy + 9y^-j-2x-6y = 0.

(d) x2 - 2 xy - 2/2 + 8 X - 6 = 0.

(e) 4 x2 4- 9 2/2 + 4 X + 1 = 0.

(f) 4x2 + 4x7/ + ?/2 + 4x4-2 2/ -48 = 0.

(g) 4x2 -20x?/4- 25?/2 + 12x-30?/ + 9 =
(h) 9x2 -12x?/ + 4?/2- 18x4-122/ + 34 = 0.

(i) 3x2 - lOxy + 7 2/2 + 15x- 7 2/ -42 = 0.

2. Find a^ and b^, orp, for the following conies :

(a) x2 - 2 X2/ + 2/2 - 8 X = 0.

(b) 3x2 - 10x2/ + 32/3-8 = 0.

(c) 5 x2 + 2 x?/ + 5 2/2 - 12 X - 12 2/ = 0.

Hint. Compute the absolute invariants— and — for tlie given equation and for that
A

one of the typical forms (III), p. 179, (V) and (VI), p. 185, to which it may be reduced.

Equate and solve for a^ and b^ or for jo.

Ans. Ellipse.

Ans. No locus.

Ans. Parabola,

Ahs. Hyperbola.

Ans. Point.

Ans. Two parallel lines.

Ans. One line.

Ans. No locus.

Ans. Intersecting lines.

Ans. p = V2.

Ans. a2 = l, 62:^4.

Ans. a2 = 3, 62 = 2.
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3. Show that A' and C in (I), p. 275, are the roots of the quadratic

4x2 — 4Hx — A = and show that they are always real. When will they

also be equal ?

110. Equal conies. The object of this section is to determine when two

conies whose equations are given are equal. The solution of this problem

affords a further application of the theory of invariants.

Theorem X. The axes of a non-degenerate central conic whose equation is

Ax^ + Bxy + Cy^ -{- DX + Ey + F=0
H2 H3

are determined by the values of the absolute invariants — and—
A

Proof. The equation of a central conic may be reduced to the form [(11),

P- 187]

^ + t = i
a p

The absolute invariants of this equation are

H'2 \a /3/ (a + i8)2

A' - 4 - 4 a^
'

0' - 4 - 4 a2^

a/3 a/3

Hence (Theorem VIII, p. 275)

(a + ^)2 _ H2 {a + (8)3 _ H3

- 4 a^ A
' - 4 a2/32 '

(1)

H2 H^
where — and — are known. These equations can be solved for a and /3,

A
and the values of the axes determined from them by 1 and 2, p. 187, and the

definition of the axes (p. 185). q.e.d.

Equations (1) may be solved as follows :

Dividing the second by the first,

(2)
^±1 = ^.

Dividing the first of equations (1) by (2),

(3) - ^™
Dividing (3) by (2),

A2

4 ©2

Then, by Theorem I, p. 3, a and /3 are the roots of the quadratic equation

4K© 4 ©2
(4) x^ + ^^x-^-^ = 0, or A3a;2 + 4AH©a;-4©2 = 0.

A2 A3

The roots of (4) are always real, for the discriminant is

(4 AH©)2 - 4 A3 (- 4 ©2) = 16 A2©2 (H^ + A)

= 16A2©2(^2 + 2^C+C2+52-4^0
= 16A202[(^-C)2+iB2],

which is always positive when the coefiicients A, B, C, D, E, and F are real numbers.



GENERAL EQUATION OF SECOND DEGREE 279

Theorem XI. The value ofp for a parabola whose equation is

Ax^ + Bxy +Cy^ + Dx-{-Ey + F=0
is determined by the value of the absolute invariant

Proof For the parabola

we have

7/2 = 2px
H'3 IS 1

0' -
4l)2 4p2

Hence (Theorem VIII)
1 H3

4p2
-

'

whence ^ = W-|3- Q.E.D.

As the value of p is always a real number, © and H must have opposite signs. This

may also be proved from the values of © and H by means of the condition A= 0.

Theorem XII. Two non-degenerate conies

C:Ax'^ + Bxy + Cy"^ + Dx + Ey + F =
and C : A'x^ + B'xy + C'y^ + D'x + E'y + F' =
are equal when and only when

A' "* A ' 0' " "

Proof If the conies are central conies, they are equal when and only when
their axes are equal. But the axes of C and C are determined in the same

JJ2 JJ3 JJ'2 JJ'3
manner from — and — and from — and — respectively (Theorem X).

A A' 0' ^ "^ ^ '

Hence the axes are equal when and only when

H'2 H2 ^ H'3 H3— =— and — =
A' A 0'

If C and C" are parabolas, they are equal when and only when they have

le same value of p, that is (Theorem XI), when and only when

= Q.E.D.
0'

111. Conies determined by five conditions. The equation of any conic

las the form

(1) ^x2 + Bxy + Cy^-\- Dx + Ey + F=0,

id the conic is completely determined if five of the coeflBcients are known

terms of the sixth. Any geometrical condition which the curve must

satisfy gives rise to an equation between one or more of the coeflBcients.

Hence five conditions will determine the equation of a conic. The locus may
be degenerate, or there may be no locus, which would mean that the five

conditions are inconsistent.
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Rule to determine the equation of a conic which satisfies five conditions.

First step. Assume that the equation of the conic is

Ax^ + Bxy + Cy"^ -{- Dx + Ey -\- F = 0.

Second step. Find five equations between the coefficients, each of which

expresses that the conic satisfies one of the given conditions.

Third step. Solve these equations for five of the coefficients in terms of the

Fourth step. Substitute the results of the third step in the equation in the

first step and divide out the remaining coefficient. The result is the required

equation.

PROBLEMS

1. Show that the following pairs of conies are equal and determine the

nature of the conies.

(a) x^-iy'^-2x-16y -U = 0, Sx^ + 10xy -\- Sy^ - 2 = 0.

(b) 9x2+ 24xy+ 16y2_80x+602/=0, x^-2xy+ y^-4:V2x-4:V2y=0.
(e) x2 + 2/2 _ 2x - 8?/ - 8 = 0, x'^-\-y^ + 6x- lOy + 9 = 0.

(d) 2 x2 + ?/2 - 12 X + 10 2/ + 41 = 0, 17 x^ -12xy -\- 22 y^ - 26 = 0.

2. Find the equations of the conies determined by the following condi-

tions and determine the nature of the conic in each ease.

(a) Passing through (0, 0), (2, 0), (0, 2), (4, 2), (2, 4).

Ans. x^ — xy + y^ — 2x — 2y = 0.

(b) Passing through (0, 0), (10, 0), (5, 3) and symmetrical to the A"-axis.

Ans. 9x2 + 25^2 _ 90x = 0.

*

(c) Passing through (- 4, 0), (0, 4), (0, - 4), (5, 6) if A = 0.

Ans. y^-4x-16 = 0.

(d) Passing through (0, 5), (5, 0) and symmetrical with respect to both

axes. Ans. x^ -\- y^ — 25 = 0.

(e) Passing through (0, 0), (2, 1), (- 2, 4), (- 4, - 2), (2, - 4).

Ans. 2 x2 - 3 X2/ - 2 ?/2 = 0.

(f) Passing through (0, 2), (— 2, 0), (2, — 8) and symmetrical with respect

to the origin. Ans. x^ -{ ixy + y^ — i = 0.

3. Show that, in general, two parabolas may be constructed which pass

through four given points.

4. Find the parabolas passing through the following points and construct

the figures.

(a) (0, 2), (0, -2), (4, 0), (-1, 0). Ans. x^ ±2xy -\- y^ - Sx - 4: = 0.

(b) (2,0), (0,-8), (-2,0), (0,2).

Ans. 4 x2 ± 4 xy + ?/2 + 6 y - 16 = 0.

(c) (0,1), (0,-1), (2,0), (-1,0).

Ans. x^±ixy + iy^ — x — 2y — 2 = 0.



CHAPTER XIII

EUCLIDEAN TRANSFORMATIONS WITH AN APPLICATION
TO SIMILAR CONICS

112. An operation which replaces a given figure by a second figure in

accordance with a given law is called a transformation. If a transformation

replaces the points of one figure by the points of a second, it is called a point

transformation. If a point transformation replaces P(x, y) by P'(x', y'),

then the equations expressing x' and y' in terms of x and y, or conversely,

are called the equations of the transformation. In this chapter we shall con-

sider the transformations which replace a given figure by one equal or similar

to it. They are called Euclidean transformations, because the properties of

equal and similar figures are studied in the Elementary Geometry of Euclid.

113. Equal figures. Two figures whose corresponding lines and angles

are equal may be brought into coinci-

dence and are therefore equal. Equal

figures in the same plane are said to be

congruent if the corresponding parts are

arranged in the same order, and sym-

metrical if they are arranged in the

opposite order. Thus the trianglesABC
and A'B'C are congruent, and either

is symmetrical to A"B"C'% because the

directions established on the perimeters by the corresponding vertices are the

same (clockwise) in the first case but are different in the second case.

In Plane Geometry we do not study symmetrical figures as such.

It is true that we study figures which are symmetrical with respect

to a point or with respect to a line. But it should be noticed, as

is seen from the figures, that figures which are symmetrical with

respect to & point are congruent, while figures which are symmetrical

with respect to a line are sym-

metrical in the sense defined

above.

The essential distinction be-

tween congruent and symmet-
rical figures is this : two con-

gruent figures may be brought

into coincidence by moving them

around in the plane, but before

two symmetrical figures can be
brought into coincidence one of them must be taken out of the plane and turned over.

281
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114. Translations. A translation is the transformation which moves all

points of a figure through the same distance in the same direction. Hence

if a translation replaces any point P by P', the projections of PP' on the

axes will be constant.

Theorem I. The equations of a translation through the directed length whose

projections on the axes are respectively h and k are

(I)

00^ = a^ -\- h,

Proof. By Theorem III, p. 31, the projections of PP^ on the axes are

respectively

x' - X, y' - y.

Then, by hypothesis,

x'— x= h, y'— y = k.

Solving for x' and y% we obtain (I). q.e.d.

If we solve (I) for x and y and substitute their

values in the equation of a curve, the result will

X evidently be the equation of the curve after it

has been translated.

If P is the origin (0, 0), then P^ is the point (h, k). If we solve (I) for x and y, we
obtain

x = x'-h, y = y'-k.

These may be regarded as the equations for translating the axes to a new origin

{-h, -k) (Theorem I, p. 160).

^>^

o'

^.<^^^P)

(1)

ri

(-hrk)

(3)

It is evident that the relative position of the new figure and the old axes (Fig. 1) is

the same as that of the old figure and the new axes (Fig. 2).

Hence it is. immaterial whether we regard equations (I) as the equations of a transla-

tion of a figure in one 'direction or as the equations of a translation of the axes in the

opposite direction. •

116. Rotations. The transformation which turns all points through the

same angle about a given point is called a rotation. is called the center

of the rotation. If a rotation replaces P by P', then OP' = OP.
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Theorem n. The equations of a rotation about the origin through an angle

e are

= acco89 — y sin 9^

05 sin ^ + y cos 0.
(H)

Proof. Let the polar coordinates of P be {p, <p). Then, by definition,

those of P' are {p, <!> + 6). Hence (Theorem

I, p. 155)

x' = p cos (0 + d)

= p cos
<f>
COS ^ — ^ sin sin 6

(by 10, p. 20)

= X cos ^ — y sin ^,

since [(I), p. 155]

X = p cos ^, y = p sin 0.

Similarly,

y^ = xshid + y cosd. q.e.d.

Q
/

/
/

Ad

If we solve (II) for x and y, we get

x = x' cos e + y^sine = x' cos (- 0) - y' sin (- 5),

y = -x'9>m.Q ^y' cos Q — x' sin (- 0) + y' cos (- 0).

(by 4, p. 19)

(by 4, p. 19)

These may be regarded (Theorem II, p. 162) as the equations for rotating the axes
tlirough an angle — Q. Hence it is immaterial whether we regard equations (II) as the

equations of a rotation of a, figure in one direction or of the axes in the opposite direction.

This should be illustrated by figures analogous to Figs. 1 and 2, p. 282.

PROBLEMS

1

.

Plot the following curves, translate them through the directed length

whose projections are given, and find the equations of the curves in their new
positions.

(a) y^ = Ax, h = -3,k = 2. Ans. ?/2-4x-4?/-8 = 0.

(b) xy = 6,h = 2,k = - 2. Ans. xy + 2x - 2y - 2 = 0.

(c) x2 + 92/2 = 25, /i = 0, A: = |. Ans. x^ + 9y^ - 30y = 0.

2. Plot the following curves, rotate them about the origin through the

given angle, and find the equations of the curves in their new positions.

Ans. y^ -x^ = 16.

Ans. x^-^y'^+Sx + 12 = 0..

Ans. 4 x2 + 2/2 4. 18 2/ = 0.

(a) xy = 8,d
It

~
4

(b) x2 + 2/2 - 8x + 12 = 0, ^ =- It.

(c) «2 + 42,2 -18x = 0, d = - It

'
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3. Translate the locus of x^ + 4 2/ = through a distance whose projec-

tions are A = 0, k = — 4 and then rotate it about the origin through an angle

of-. Ans. 2/2-4x + li3 = 0.

2

4. Rotate the curve in problem 3 through the given angle and then trans-

late it. Ans. 2/2 _ 4 X + 8 2/ + 16 = 0.

5. Prove from equations (II) that the origin is unchanged by a rotation,

that is, that the origin is a fixed point.

6. Find the equations of the straight lines which are unchanged by the

translation (I).

Hint. Translate Ax + By + C=0 and then determine A, B, and C so that this line

coincides with the line into which it is translated by Theorem III, p. 88.

Ans. kx — hy — 0.

7. Find the equations of all circles which are unchanged by the rotation (II).

Ans. x2 + 2/2 + F = 0.

8. Show that no straight lines are invariant under the rotation (II).

Hint. See the hint, problem 6, and apply Theorem IV, p. 90.

9. Prove analytically that no points are unchanged by a translation unless

all points are unchanged.

116. Displacements. A transformation which replaces any figure by one

congruent to it (p. 281) is called a displacement. Hence a figure is displaced

when it is moved in the plane from one position to another. This may evi-

dently be accomplished in many different ways. Two displacements which

move a figure from one position to the same second position are said to be

equivalent.

Lemma I. A displacement is equivalent to a translation or to a rotation

followed by a translation.

Proof. Let the given displacement replace any figure F by a figure F\
Then if corresponding lines in F and F^ are parallel and have the same direc-

tion, F may be translated into F', and hence the displacement is equivalent

to a translation.

If this is not the case, then F may be rotated into a position F'' such that

corresponding lines in F'' and F^ are parallel and have the same direction

and then F'' may be translated into F'. Hence the given displacement -is

equivalent to a rotation followed by a translation. q.e.d.
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Theorem HI. The equations of any displacement have theform

ajf = 05 cos ^ — 2/ sin ^ + /«,,Jaj' =iccosd — y sind -\-

\y^ =z gc sin 9 -{ y cos 6 +
(III)

1 .w _ ^ „;« fl I ., COS ^ + A;

ly^ere 6, h, and k are arbitrary constants.

Proof. Let the given displacement replace any figure F by a congruent

figure F\ Then by Lemma I it is equivalent to a translation whose equa-

tions have the form (III) when ^ = (Theorem I, p. 282), or to a rotation

which replaces F by a figure F'' followed by a translation which replaces F''

hy F\
By Theorem II,

x'' = xcosd — y sin d, y'' = xsmd + y cos ^,

and by Theorem I, x' = x" + h, y' — y" + A:.

Substituting the values of x" and y" in these equations, we obtain (III).

Q.E.D.

If a point is unchanged by a transformation, it is called a fixed or an

invariant point. Thus the center of a rotation is an invariant point.

Theorem IV. If a displacement is not equivalent to a translation, there is one

fixed point.

Proof The point (x, y) will be a fixed point when and only when x' = x

and y' = y. Substituting in (III) and transposing, we get

J (1 — cos ^) X + sin ^ ?/ = ^,

' ^

t - sin ^ • X +' (1 - cos d)y=h

These equations can be solved, in general, for one pair of values of x and y
(Theorem IV, p. 90), and hence there will be, in general, but one fixed point.

-„ ^ .. 1 — cos sin d
But if =

,— sin ^ 1 — cos d

or, reducing, cos ^ = 1

,

there will be no solution, that is, there is no fixed point. If cos = 1, then

sin ^ = (by 3, p. 19) and equations (III) become

x' = x-\-h, y' = y-^k,

which are the equations of a translation.

Hence there is one fixed point unless the displacement is a translation.

Q.E.D.

There cannot be an infinite number of solutions of (1) unless h = k = 0. For if

1 - cos 9 sin h
- sin " 1 - cos e~ Ic'

then, as above, cos = 1 and sin = 0. Substituting in (1), we get A = and k = 0. In this

case every point (x, y) is a fixed point, that is, there is no displacement.
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Theorem V. Every displacement which is not equivalent to a translation is

equivalent to a rotation.

Proof. If the displacement is not equivalent to a translation, then it has a

fixed point (Theorem IV). Let the fixed point be chosen as origin. Then if

ic = and y == 0, we get x' = and y' — 0. Substituting in (III), we obtain

^ = 0, k = Q

as the conditions that the origin is the fixed point. For these values of h

and k equations (III) reduce to (II), p. 283, and hence the displacement is

equivalent to a rotation. q.e.d.

Corollary I. Any two congruent figures may he brought into coincidence by

a rotation or a translation.

Corollary n. The perpendicular bisectors of the lines joining corresponding

points of two congruentfigures pass through the same point or are parallel.

For if the figures may be brought into coincidence by a rotation, they pass through the

center of tlie rotation; and if the figures may be brouglit into coincidence by a translation,

they are perpendicular to the direction of the translation. -,

^

PROBLEMS

1

.

Show analytically that the angle between two lines is unchanged by a

displacement.

Hint. Show that the value of tan Q given by (X), p. 109, is an absolute invariant of the

displacement (III).

2. Show analytically that the distance between two points is unchanged

by a displacement.

Hint. Show that the value of I given by (IV), p. 31, is an absolute invariant of (III).

3. Prove Corollary II geometrically and derive Theorem V from it.

4. Show that a rotation about the origin through an angle of 7t replaces

any figure by the figure symmetrical to it with respect to the origin.

5. Find the equations of a rotation about the point (1, 4) through an

angle of -. Ans. x' = i VSx -iy + 3 - i Vs, ?/' = ix + i V3y + | -2 V3.
6

6. Find the equations of a rotation about the point (3, — 2) through an

angle of Ans. x' = y + 6, y' = — x ~\- 1.

7. Find the equations of a rotation about the point (xi, 2/1) through an

angle 6. . Ans. x' = (x — Xi) cos 6 — {y — y\) sin ^ + Xi,

y' = {x- Xi) sin d + {y - yi) cos d + ?/i.
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117. The reflection in a line. A transformation which replaces any figure

by one symmetrical to it (p. 281) is called a symmetry transformation. The

simplest symmetry transformation is the reflection in a line, which replaces

a point by the point symmetrical to it with respect to that line. Hence a

reflection in a line replaces a figure by the figure which is symmetrical to it

with respect to that line.

Theorem VI. The equations of a reflection in ^^

the X-axis are

(VI) W = -y' a
C)-

118, Symmetry transformations.

Lemma II. A symmetry transformation is

equivalent to a reflection in any line followed

by a displacement.

Proof. Let the given transformation replace

a figure F by a symmetrical figure F\ Let F be

transformed into a figure F'' by a reflection in any line. Then since F' and

F'^ are both symmetrical to F, they are congruent to each other.

For the parts of F^ and F^^ are equal, since they are equal to the parts of F, and they

are arranged in the same order, for they are in each case arranged in the opposite order

to those of F.

Hence F'' can be brought into coincidence with F' by a displacement,

that is, F may be transformed into F' by a reflection in any line followed

by a displacement. q.e.d.

(VII)

Theorem VII. The equations of any symmetry transformation have the form

(oc' =aocosd -\- y sinO + h,

\y' = 00 sin6 — y cosd -{- k,

where 6, h, and k are arbitrary constants.

Proof Let the given transformation replace any figure i^ by a symmetrical

figure F'. Then by Lemma II it is equivalent to a reflection in the JT-axis

which replaces F by a figure F'% followed by a displacement which replaces

F'' by F\

By (VI), X-

and by (III), p. 285,

x' = x" cos d — y'' sin

y

h, y' = x'' sin ^ + y" q,q>%Q \- k.

Substituting the values of x'' and y" in these equations, we get (VII).

Q.E.D.
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Theorem VIII. The line whose equation is

X cos w 4- 2/ sin w — p =

is transformed by (VII) into the line whose equation is

X cos {6 — uj) -\- y sin {6 — w)— [p -\- h cos {6 — ca) + k sin {d — w)] = 0.

This is proved by solving (VII) for x and y, substituting in the given equation, simpli-

fying by 9 and 11, p. 20, and dropping primes.

A line is said to be invariant under a transformation if it is transformed

into itself by that transformation.

Theorem IX. There is always one line which is invariant under the sym-

metry transformation (VII), and if

h cos le -\-ksmld = 0,

then all of the lines perpendicular to that line are invariant.

Proof. If the lines in Theorem VIII coincide, then (Theorem III, p. 88)

cos w _ sin w _ p
cos (d — w) sin {d — u}) p -\- h cos {d — w) -\- k sin {6 — w)

From the first two ratios

sin (6 — w) cos w — cos {9 — w) sin w = 0,

or (9, p. 20) sin (6' - 2 w) = 0.

Hence ^ — 2 w =: or tt,

.: (a = Id or u = ^6 — ^ it.

Case I. ia — \d — \Tt. Substituting this value of w in the last two ratios

of (1) and simplifying by 4, p. 19, and 6, p. 20, we get

— cos \Q _ p
cos \Q p — h sin \d \- k cos \

6

Solving for p, p = | (Ji sin \d — k cos i 6).

Hence there is always one pair of values of w and p for which (1) is true,

that is, there is always one line which is transformed into itself by (VII).

Case II. w = i 6. Susbtituting this value of w in the last two ratios in

(1), we get sinig p
sin 1 ^ p -{- h cos \d -\- k^\n\d

The first of these ratios equals 1, but the second is never equal to 1 unless

(2) hcoQ\e -\-ksm\e = 0,

in which case p may have any value. Hence there is, in general, but one

invariant line. But if (2) is satisfied, all of the lines of a system of parallel

lines are invariant.

Since the values of w in Case I and Case II differ by — , the invariant system

of parallel lines is perpendicular to the single invariant line. q.e.d.
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Theorem X. If the invariant line ofa symmetry transformation is the X-axis^

then the equations of the transformation are

(X)
(xf = cc -{ h,

\yl =-y.
Proof. If the X-axis is invariant, then, if y = 0, we must have y' = for

all values of x. Substituting y = and y' = in the second of equations

(VII), we get X sin + A: = 0.

This is true for all values of x when and only when sin ^ = and A: = 0.

If sin ^ — 0, then cos ^ = ± 1-

Substituting A; = 0, sin = 0, and cos ^ = 1 in (VII), we get (X).

Substituting A: = 0, sin ^ = 0, and cos ^ = — 1 in (VII), we get

x' = — x-\-h, y' = y.

This transformation leaves all of the lines parallel to the JT-axis invariant,

for if y = a, then y' = a. Hence the X-axis is not the single invariant line,

so that this case is to be excluded ; that is, equations (VII) reduce to (X) if the

X-axis is the invariant line in Case I of Theorem IX. q.e.d.

Corollary I. A symmetry transformation is equivalent to a reflection in a line

or to a reflection in a line followed by a translation parallel to it.

For if ^ = 0, equations (X) reduce to equations (VI).

If h ^ 0, equations (X) are equivalent to the two transformations

f x" = x, -, x' = x" + ^,
i. ,, and
\y"=-y, y'=y'\

which are respectively a reflection in the X-axis and a translation parallel to it.

Corollary 11. The middle points of the lines joining corresponding points of

two symmetricalfigures lie on a straight line.

T ,'-'

For let (X) be the equations of the symmetry transformation which transforms one

figure into the other. The middle point of the line PP' is (Corollary, p. 39)

iiix + x'), i(y + y')].

Substituting the values of «' and y^trom (X), this becomes (x + ^k, 0), which is a point

on the JC-axis.

Ix
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PROBLEMS

1. Find the equations of the curves symmetrical to the following curves

with respect to the X-axis and construct the figure.*

(a) 2/2 - 4 ic = 0. (c) x2 + 4 2/2 - 4 X = 0.

(b) x2 + 0:2/ - 2 2/2 = 0. (d) x3 - 8 2/ = 0.

2. Show analytically that the distance between two points is unchanged

by (a) a reflection in a line, (b) any symmetry transformation.

3. Show analytically that the numerical value of the angle which one

line makes with another is unchanged by (a) a reflection in a line, (b) any

symmetry transformation, but that its sign is changed in both cases.

4. Find the equations of the invariant lines which are proved to exist in

Theorem IX.

1 9
5. Find the equations of a reflection in the Y-axis.

6. Prove that a reflection in a line followed by a reflection in a line per-

pendicular to the first is equivalent to a rotation through it.

7. Asymmetry transformation (VII) has, in general, no fixed points, but

if ^(1 4- cos ^) + jfcsin ^ = 0, then all of the points of the line x(l— cos B)

— y sin d = k are fixed points.

8. If /i (1 + cos e) -[-Icmid = 0, then (VII) is a reflection in a line.

9. Find the equations of a reflection in the line 3x + 42/ — 10 = 0.

Ans. X' =i^x- §4 2/ + V, y' = - ||x - J~,y + ^f.

Hint. The distances from the line to P{x, y) and P'{x\ y^) (Rule, p. 106) must be

equal numerically with opposite signs, and the slope of PP' (Theorem V, p. 35) must be

equal to the negative reciprocal of the slope of the given line (Theorem VI, p. 36). These

conditions give two equations which may be solved for x' and y' in terms of x and y.

10. Find the equations of a reflection in the line 5x — 12 2/ — 27 = 0.

Ans. X' = iifx + i||2/ + iih V' = Hf « -my - fu-

ll. Find the equations of a reflection in the line Ax + By -{- C = 0.

, &-A^ 2AB 2AC
Ans. X = —- — ^

A^+ B^ A'^ + B^ A^-h B^

2AB m-A^ 2BC
y =z — X y •

^ ^2 + 2^2 ^2 + ^^ A^-\-B^
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119. Congruent and symmetrical conies. The conditions that two conies

should be equal are given in Theorem XII, p. 279. We shall now prove

Theorem XI. Two equal conies are both congruent and symmetrical.

Proof. Since a conic is symmetrical with respect to its principal axis

(p. 174), it is unchanged by a reflection in that axis.

Let C and C be two congruent conies,

and let D be the displacement which

transforms C into C. Then C may be

transformed into C by a reflection in

its principal axis followed by the dis-

placement D, that is (Lemma II, p. 287),

by a symmetry transformation. Hence

C and C are also symmetrical.

Conversely, let C and C be two sym-

metrical conies, and let S be the symmetry transformation which transforms

C into C\ Then S is equivalent to a reflection in the principal axis of C
followed by a displacement D. Since C is unchanged by a reflection in its

principal axis it may be transformed into C" by the displacement D, and

hence C and C" are congruent.

Hence two equal conies are both congruent and symmetrical. q.e.d.

In the figure C may be transformed into C by a rotation about or by

a symmetry transformation consisting of (Corollary I, p. 289) a reflection in

the line S which replaces C by C, followed by a translation parallel to S.

120. nomothetic transformations. Given a fixed point O, the transfor-

mation which replaces a point P by a point P' on the line OP such that

0P'=\- OP,

.--'-"A

^-^,
::^9^'-^^

X<0

where X is constant, is called a homothetic transformation. is called the

center and X the ratio of the transformation. Corresponding figures are

called homothetic figures. They may easily be proved similar, with the ratio of

similitude (that is, the ratio of corresponding lines) equal to X. Homothetic
figures are also similarly placed.
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Theorem xn. The equations of a homothetic transformation whose center

is {h, k) and whose ratio is \ are

Proof. Let P and P' be two corresponding points. Then, by definition,

^>. > r OP'=\-OP.

Projecting on the X-axis (Theorem III,

p. 31),

x' — h = \{x — li).

> Hence x' = 'Kx + h{l— X).

Similarly, y' = \y -\-k (1— X). q.e.d.

X'

Corollary. The equations of a homothetic transformation whose center is the

origin and whose ratio is X are

foe' =Ax, \2

\y' = Ay.

121. Similitude transformations. A transformation which replaces any

figure by one similar to it is called a similitude transformation. It is said to

be direct or inverse according as corresponding figures are directly or inversely

similar, that is, according as the corresponding parts of the similar figures

are in the same or opposite order.

If F and F' are two similar figures whose ratio of similitude is X, then

a homothetic transformation with any centerand with the ratio X will transform

F into a figure F'' which is equal to F'. F" may be transformed into F'

either by a displacement or by a symmetry transformation according as F'

and F" are congruent or symmetrical, that is, according as F and F' are

directly or inversely similar. Hence

Theorem XIII. A similitude transformation is equivalent to a homothetic

transformation with any center and with its ratio equal to the ratio of simili-

tude of corresponding figures, followed by a displacement or a symmetry

transformation according as the similarity is direct or inverse.

PROBLEMS

Problems 1 to 4 and 5 to 10 are to be solved in order by using those preceding.

1. The equations of a transformation of direct similitude have the form

x' = X (x cos6 — y sin d + h), y' = \ {x sind -\-y cos d + k).

2. A transformation of direct similitude has one fixed point.
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3. If the fixed point is the origin, the equations of a transformation of

direct similitude have the form

x'=\(xcosd — y sin 6), y' =\{xsme + y cos d).

4. A transformation of direct similitude is equivalent to a rotation fol-

lowed by a homothetic transformation with the same center.

5. The equations of a transformation of inverse similitude have the form

^ x' =\{x cos 6 + ysind + h), y' = \ {x sind — y cos d + k).

6. The line a; cos w + y sin w — p = is transformed by a transformation

of inverse similitude into the line

X cos {d — <a) + y sin {d — (a) — \[p + h cos {6 — cj) + k sin {d — w)] = 0.

7. The perpendicular lines

{l — \)xcos^e + {l — \)ysinid-\{hcosid + k8m^d)=0
and {l-\-\)xsmie - {1 + \)ycosi0 -\{hsin^e — kcosid) =0

are invariant under a transformation of inverse similitude,

8. A transformation of inverse similitude has a fixed point.

9. If the invariant lines are the axes, the equations of a transformation

of inverse similitude have the form x' = \x, y' = — \y.

10. A transformation of inverse similitude is equivalent to a reflection in

a line followed by a homothetic transformation whose center is on that line.

11. The equations of two congruent, symmetrical, or similar curves are of

the same degree.

12. Show that the angle which one line makes with another is unchanged

by a homothetic transformation.

13. Show that the distance between two points is multiplied by X by a

homothetic transformation.

14. Show by means of problems 12 and 13 that a homothetic transforma-

tion is a similitude transformation.

15. Show that the angle which one line makes with another is unchanged

by a transformation of direct similitude, but that its sign is changed by a

transformation of inverse similitude.

122. Similar conies. We have seen (Theorem XI, p. 291) that it is un-

necessary to distinguish congruent and symmetrical conies, and hence it is

unnecessary to distinguish directly and inversely similar conies.
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Theorem XIV. If the non-degenerate conic

Ax^ + Bxy + Cy^-hDx+Ey -{F=0
is svbjected to a homothetic transformation whose center is the origin and

whose ratio is X, then the equation of the homothetic conic is

Ax'^ + Bxy + (72/2 + XDx + \Ey + T^^F = 0.

This is proved by solving the equations of the transformation (Corollary, p. 292) for a?

and y, substituting in the given equation, and simplifying.

Theorem XV. If two conies C and C are homothetic^ the origin being the

center and X the ratio, then

H'2 H^ H2 H3
where— and — are the absolute invariants of C\ and — and — are those

A' 0' "^
' A

of C*
Proof. Let the equation of C be

Ax'^ + Bxy + Cy'^ + I)x + Ey + F = 0,

and then by Theorem XIV that of C may be written in the form

^x2 + Bxy + C?/2 + XDx + \Ey + \^F = 0.

The absolute invariants of C are

H^2 _ (^ + C)2 _ H2

A'
~ m-^AC~ A

'

H^ {A + Cf -15!
Q' ~ AA CX^F + BXDXE - A (XE)^ - C (XDf - X^FB^ ~ X'^

'

Q.E.D.

Theorem XVI. If two non-degenerate conies C and C are similar^ then their

absolute invariants and their ratio of similitude X satisfy equations (XV),

Conversely, if the absolute invariants of two conies C and C satisfy the first of

equations (XV) and if the value of X determined by the second is real, then C
and C are similar, with the ratio X.

Proof. By Theorem XIII, p. 292, C may be transformed into C by a

homothetic transformation, whose center is the origin and whose ratio is X,

which transforms C into a conic C'\ followed by a displacement or symmetry

transformation which transforms C into C. Then, by Theorem XV,

^
' A^~ a' 0^~X2 0'

and by Theorem XII, p. 279,

H-2_Hr2 Er3_ir3
^'

A''
~

A' ' 0'' ~ 0'
*

* Theorem V, p. 272. The values of A, H, and © are given on p. 264.
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From equations (1) and (2) we obtain equations (XV).

Conversely, if equations (XV) are satisfied, the value of X determined by

the second being real, then C and C are similar. For let C be transformed

into a conic C" by a homothetic transformation whose center is the origin

and whose ratio is \.* Then equations (1) are true by Theorem XV. From
(1) and (XV) we get equations (2), and hence (Theorem XII, p. 279) C and

C are equal. Then C may be transformed into C by either a displacement

or a symmetry transformation. Hence C may be transformed into C by a

homothetic transformation followed by a displacement or a symmetry trans-

formation, that is (Theorem XIII, p. 292), by a similitude transformation.

Hence C and C are similar. q.e.d.

Corollary I. Two conies are similar if the coefficients of the terms of the

second degree are proportional, that is, if

and the value of X determined by the second of equations (XV) is real.

For if r is the common value of these ratios, then

A = rA', B^rB', C = rC',

H2 (rA' + rCQ^ r^jA'+Cy W^
and hence ^ -

^^^^^^ _ 4 rA'rC ~ r^ {B'^ - 4 A'C) ~ A'
'

Hence the first of equations (XV) is satisfied.

Corollary II. Any two parabolas are similar.

For if C and C are parabolas, then (Theorem IX, p. 277) A = and A' = 0. Hence the

first of equations (XV) is satisfied. Since A = 0, H and © have opposite signs (p. 279) and

similarly H' and 0' have opposite signs. Hence the value of A. obtained from the second

of equations (XV) is real.

Ex. 1. Show that the conies x^+2y^=36 and 3x'2+2xy-\-3y^-6x-2y-5=0
are similar and find the ratio of similitude.

Solution. Computing the absolute invariants of the given equations and substi-

tuting in (XV), we obtain

_(6)2__j3)2 (6)3 ^ 1 (3)8

- 32
~ - 8

' - 256
~ X2 - 288

'

Solving the second equation, we get X= ± ^. Hence the first of equations (XV)

is satisfied, and the second is satisfied if X = ± i. The conies are therefore similar,

with the ratio of similitude equal to ± i. The double sign means that they are

either directly or inversely similar.

* The proof would break down at this point if the value of \ determined by the second

of equations (XV) were imaginary, because the ratio of a homothetic transformation is

a real number.
That such cases arise is illustrated by the hyperbolas ix^- ]p = 16 and — 4 a:^ + 1/2 = 4,

whose absolute invariants satisfy the first of equations (XV) ; but from the second,
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PROBLEJMS

1. Show that the following pairs of conies are similar. Find the ratio

of similitude in each case and construct the figure.

(a) x^-4y^ = l, 3 x2 + 4 x?/ + 4 = 0.

(b) x2 + 4 y ^ 0, y^ -8x = 0.

(c) 9x2 4-2/2^9^ x2 + 92/2 _ 54 7/ = 0.

(d) 16 x2 + 9 2/2 = 144, 25 x2 + 14 xy + 25 ?/2 = 72.

(e) x2 - 2/2 = a2, 2 xy = a'2.

^?2S. X=±2.-
Ans. X = ±2.
Ans. X=±3.
Ans. X=±i.

Ans.

Ans. ^ = ±?
i>

(f) 2/2 = 2px, (X - /i)2 = 2p\y - k).

2. Show that the ellipses in Ex. 1, p. 200, are similar.

3. Show that the hyperbolas in Ex. 2, p. 201, for which k is positive or

for which k is negative, are similar.

4. Show that the locus of Ax^ + Bxy + Cy^ = k is, in general, a system

of similar conies. Discuss all possible special cases in which this statement

is not exact.

5. Any homothetic transformation is equivalent to a homothetie trans-

formation whose center is the origin followed by a translation.

6. By means of problem 4 prove that two conies are homothetic if the

coefficients of the terms of the second degree are proportional.

7. Find the center and ratio of the homothetic transformation which

transforms y^ = 2px into 2/^ = 2_p'x. ^^^^ /q q\ x = :^,

8. A homothetic transformation whose center is 0(0, 0) and whose ratio

is X followed by a homothetic transformation whose center is 0'{a, 0) and

whose ratio is X' is equivalent to a homothetic transformation whose center

is ( »
I , that is, a point on 00' and whose ratio is XX'.

V 1 - XX' /

9. A circle may be transformed into any other circle by two homothetic

transformations whose centers, called the centers of similitude of the circles,

lie on the line of centers.

Hint. Take the center of one circle for the origin and let the JT-axis pass through the

center of the other circle. Substitute from (XII), p. 292, in the equation of the first

circle and determine h, k, and A so that the result coincides with the second circle.

10. Given three circles, the line joining a center of similitude of one pair

with a center of similitude of a second pair will pass through a center of

similitude of the third pair.

Hint. Apply problem 8.

1 1 . The six centers of similitude of three circles taken by pairs lie three

by three on four straight lines.

Hint. Apply problem 10.



CHAPTER XIV

INVERSION

123. Definition. Let be a given point and let P be any point of a

figure F. Construct P' on OP such that

OP' • OP = 1.

By letting P assume different positions on P,

P" will move on a figure F\ The operation or

transformation which replaces P by P' is called

an inversion, while F and F' are called inverse

figures. is called the center of the inversion.

\ / The figure has been accurately constructed and indi-

^v ^^"^ cates tliat the inverse of a triangle is a figure bounded
"'

' by three curves. Hence we may expect to find that the

properties of inverse figures are, in general, quite different from those of equal or

similar figures.

Two important properties of an inversion are immediately evident from

the definition.

1. If P approaches the origin, Pi recedes to infinity, and conversely.

For if OP approaches zero, then OP' must become infinite since OP' • OP = 1, and
conversely.

2, The points of the circle of unit radius whose center is are fixed points.

For if OP = 1, then from OP' . OP = 1 we get OP' = 1. Hence P' coincides with P,

that is, P is a fixed point. This fact is useful in plotting inverse figures, for the points

in which a figure cuts this circle will be points of the inverse figure.

1 24. Equations of an inversion. By the equations of an inversion we mean
two equations involving the coordinates of two corresponding points P and

P'. These equations must express the two conditions :

1. That P and P' lie on a line through the center.

2. That OP' 0P = 1.

The first of these conditions is satisfied when the

triangles 0PM and OP'M' are similar, whence

X _y _ OP
x'~y'~~dP''

(1)

p'(:^',y')

(2)

The second condition may be written, by dividing by OP'^

OP _ 1 _ 1

OP'" OP'2"~x'2 + y'2'

297

(by (IV), p. 31)
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From (1) and (2),
V ^ 1

y' x'2 + 2/'2'

;:;' V
y

Hence we have

Theorem I. The equations of an inversion whose center is the origin are

(I)
_ X' _ V

Ex. 1. Find the inverse of the line 2a; + 4y — 1 = 0.

Solution. Substitute the values of x and y given by (I) in the given equation.

We thus obtain

2x'
+

4?/'
1 = 0.

Reducing and dropping primes, we get

a;2 + 2/2 _ 2x — 4?/ = 0.

This is the equation of a circle_whose center is the

X point (1, 2) and whose radius is Vs (Theorem I, p. 131).

In the figure a number of inverse points are indicated

by the dotted lines.

Ex. 2. Find the inverse of the straight line Ax + By + C — 0.

Solution. Substitute in the given equation the values of x and y given by (I).

This gives
Ax'

+ C7=0.

Simplifying and dropping primes,

Cx^ + Cy^ + Ax-\-By = 0.

The locus of this equation is a circle (Theorem II, p. 132) which passes through

the origin (Theorem VI, p. 73). If C = 0, the locus is the given line. Hence

The inverse of a straight line which does not pass through the origin is a circle,

and a line which passes through the origin is invariant under an inversion.

Ex. 3. Find the inverse of the circle x^ + y"^ -{- Dx -\-

Solution. Substituting from (I), we get

4-
Dx' W

+ i^=0.

+ i^=0.
(x'2 + l/'2)2 (a.-2 + y/2)2 cc'2 + |/'2 ^"^ ^ y'l

Multiplying by x"^ + y"^ and dropping primes,

(3) Fx'^ + i^?/2 + Dx + JE;?/ + 1 = 0.

The locus is a circle (Theorem II, p. 132) unless J^ = 0, in which case (3) is an
equation of the first degree and its locus is a straight line (Theorem II, p. 86) . Hence

The inverse of a circle is, in general, a circle, but the inverse of a circle which
passes through the origin is a straight line.
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PROBLEMS

1. If the origin is the center of inversion, find the inverse of each of the

following curves. Construct the figure in each case.

(a) 2x = l.

(b) 42/ = 1.

(c) X + y - 1 = 0.

(d) x2 +
(e) x2 + ?/ = 4.

(f

)

x2 + 2/2 - 2 X

4x = 0.

4 2/ + 1 = 0.

(g) x2 + 2/2 + 4 X -

(h) 3x-42/ = 0.

(i) x^-y^ = 0.

(j) 4x-32/ = l.

(k) x2 + 2/2 + 2 2/

:

(1) 2/2 = 4 X.

62/

0.

I

2. Find the inverse of the points (0, 2), (3, 0), (3, 4), (2, 1), (i, 0), (i, i),

(a, 0), and (0, b). Plot the given and inverse points.

3. Prove by (I) that the points on the unit circle are fixed points.

4. Find the equation of all circles which are unchanged by an inversion

whose center is the origin. Ans. x"^ -\- y^ + Dx -}- Ey + 1 = 0.

5. Show that the inverse of the center of a circle is not, in general, the

center of the inverse circle.

6. Show that the center of the circle obtained in Ex. 2 lies on the perpen-

dicular drawn from the origin to the given line.

7. Show that the inverse of a circle whose center is the center of inver-

sion is a concentric circle.

125. Inversion of conic sections. In this section we shall discuss several

curves which are obtained by inverting a conic section. These curves have

been otherwise defined in Chapter XI.

Theorem II. The inverse of the parabola is the cissoid if the vertex of the

parabola is the center of inversion.

Proof. If the vertex of the parabola is the origin, its equation is

y^ = 2px.

Then, from (I), p. 298,

r 2px'

(X'2 + 2/'2)2 x'2 + y'2

Reducing and dropping primes.

This is the equation of the cissoid of Diodes

(problem 10, p. 253). If we replace — by 2 a,
2p

we obtain the form of the equation usually

given, namely,

(1) x^ = y^{2a-x). q.e.d.



300 ANALYTIC GEOMETRY

A general discussion (p. 74) gives us the following properties of the

cissoid.

1. The cissoid passes through the origin (Theorem VI, p. 73).

2. It is symmetrical with respect to the X-axis (Theorem V, p. 73).

3. Its intercepts on both axes are zero (Rule, p. 73).

4. The cissoid lies entirely between the F-axis and the line x = 2 a.

For, solving (1) for y,

(2) -~^<^

If X is negative, tlie numerator is negative and the denominator positive ; and if a; > 2 a,

the numerator is positive and the denominator negative. In either case the fraction is

negative and y is imaginary.

5. The cissoid recedes indefinitely from the X-axis and approaches the

line x= 2 a.

For as x approaches 2 a the fraction in (2) becomes larger and approaches infinity as a
limit.

This may also be seen by transforming (1) to polar coordinates, vrhich gives

p= 2a sine tan

as the polar equation of the cissoid ; and hence, if = - or — > p = oo.

Theorem III. The inverse of the equilateral hyperbola is the lemniscate if

the center of inversion is the center of the hyperbola.

Proof. The equation of the equilateral hyperbola is (p. 186)

x2 - 2/2 = a2.

The equation of the inverse

curve is (by (I), p. 298)

Reducing and dropping primes,

(X2 + 2/2 (X2-2/2).

The locus is the lemniscate of

Bernoulli (problem 1, (g), p. 248,

and problem 4, p. 262) . Replacing

by a'2, we get the form of the equation usually given, namely,

(3) (X2 + 2jY = a'2 (x2 - 2/2). Q.E.D.

A discussion of the equation of the lemniscate in polar coordinates is given in Ex. 2,

p. 152. From (3) it is evident that the lemniscate is symmetrical with respect to both axes

and the origin (Theorem V, p. 73).

In the figure a< 1 and a' > 1. If a = a'=l, the lemniscate will be tangent to the

hyperbola at its vertices. If a > 1 and a' < 1, the two curves will not intersect.
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Theorem IV. The inverse of the equilateral hyperbola is the strophoid if the

center of inversion is a vertex of the hyperbola.

The equation of the equilateral hyperbola, when the origin is the right-

hand vertex, is

x2 - 2/2 + 2 ax = 0.

This is obtained from a;2 - ?/2 = a^ by setting (Theorem I, p. 160) x- x' + a,y = y', and
dropping primes.

The inverse curve, from (I), p. 298, is

2nx'

(X^2 + y^2y2 (;^^2 + y^2y2

Reducing and dropping primes,

1

0.

0.

X(x2 + ?/2) + -— (X2-2/2
2 a

The locus of this equation is the

strophoid (problem 9, p. 262). Repla-

cing — by a' and solving for y^, we
2a

get the form of the equation usually

given, namely.

(4) y
., a + X

x^
a' — X

Q.B.D.

In the figure a'=2a = l. If a' >1 and

2a < 1, the left-hand branch of the hyperbola

will intersect the loop of the strophoid. If a' < 1 and 2 a > 1, the left-hand branch of the

hyperbola will not meet the strophoid.

A general discussion of (4) gives us the following properties of the

strophoid.

1. It passes through the origin (Theorem VI, p. 73).

2. It is symmetrical with respect to the X-axis.

3. Its intercepts are'?/ = or and x = — a', 0, or 0. Hence it passes

twice through the origin.

4. The strophoid lies entirely between the lines x = a' and x = — a\

For, solving (4) for y,

(5) Va' + X X /—-
= ± Va'2 - x^ .

a' — X a' - X

The quadratic under the radical is negative for values of x not lying between the

roots (Theorem III, p. 11), and for these values y is imaginary.

5. The strophoid recedes indefinitely from the X-axis and approaches the

line X = a\

For, from (5), y becomes infinite when x approaches a'.
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Theorem V. The inverse of a conic is a limaQon if the center of inversion is

a focus of the conic.

Proof. The equation of a conic whose focus is the origin is (Theorem II,

p. 178)

(1 - e2) x2 + 2/2 _ 2 e^px - e^p^ = 0.

Substituting from (I), p. 298, the equation of the inverse curve is

(l-e2)x'2 2 e'^px' - e2p2 = 0.
(X'2 + 2/'2)2 (x'2 4. y^y a;'2 + y^2

Clearing of fractions, transposing, and dropping primes,

e2p2 (x2 4- 2/2)2 4_ 2 e^x {x^ + 2/2) = (1 - e2) x^ + 2/2.

Adding 6^x2 to both sides and dividing by e2_p2^

(x2 + 2/2 + ia:)2 = J-(x2 + y2).

p e2p2

The locus of this equation is the lima9on (problem 11, p. 253). If we set

— = a and —— = b^, we get the form of the equation usually given, namely,
p e2p2

(6) (x2 + 2/2 + ax)2 = 62 (a;2 + yzy q e.d.

The lima9on has three distinct forms corresponding to the three forms of conies,

according as a is less than, equal to, or greater than b. If a= b, the lima9on is some-
times called the cardioid (Ex. 2, p. 158).

a >b

A general discussion of (6) gives us the following properties of the limagon.

1. It passes through the origin (Theorem VI, p. 73).

2. It is symmetrical with respect to the X-axis (Theorem V, p. 73).

3. Its intercepts are x = 0, 0, — a — b, and — a + 6 and y = 0, 0, 6, and
b. Hence the lima^on passes twice through the origin.

4. The lima9on is a closed curve.

For, transforming to polar coordinates, (6) becomes (Theorem I, p. 155)

(p2 + ap cos 0)2 = 62p2.

Solving for p, p = 6 - a cos fl.

Since — 1 ^ cos ^1, p cannot become infinite.
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PROBLEMS

1. Construct the following conies, find the equations of the inverse curves,

and discuss and construct their loci.

(a) y2 = a;, 2/2 = 8a;, x^ = iy.

(b) x^ - y^ = i, x^ - y^ = I, x^ - ?/ = l,2xy = l.

(c) x2 - 2/2 + V2 x = 0, a;2 _ 2/2 + X = 0, x2 - ?/2 + 4 X = 0.

(d) 3x2 + 4?/2-4x = 4, 2/2 -4x =16, 3x2 - 2/2 + 16x + 16 = 0.

2. Find the inverse of the hyperbola Srx^ — ry^ + 2x = 0, and discuss its

properties.
Ans. The trisectrix of Maclaurin x (x2 + 2/^) = - (2/'"^ 3x2).

3. Prove that the inverse of

(a) the cissoid is a parabola
;

(b) the lemniscate is an equilateral hyperbola

;

(c) the strophoid is an equilateral hyperbola
;

(d) the limagon is a conic, if the origin is the center of inversion.

4. Prove analytically and geometrically that if a curve C inverts into C,
then C inverts into C.

5. Show that the inverse of the locus of an equation of the second degree

is, in general, a curve whose equation is of the fourth degree. In what
combination of x and y will the terms of the fourth degree enter ? What
will be the degree if the given locus passes through the origin ?

126. Angle formed by two circles. If

radii be drawn to a point of intersection of

two circles, the angle formed is equal to one

of the angles formed by the tangents at that

point, since their sides are respectively per-

pendicular. That angle d is called the angle

formed by two circles.

Theorem VI. The angle 6 formed hy two

intersecting circles

Ci : x2 + 2/2 + 1^1^ + ^12/ + Fi =
and Oa : x2 + 2/2 + DgX + ^22/ + -^^2 =

is given hy

(VI) COS e
J>il>2 + E^E^ -^F^-^F^

Vl>i2 _|_ J5:^2 _ 4 p^ ^Jj2 _,_ jg;^2 _ 4 j^^
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Proof. By definition d equals the angle formed by tlie radii drawn to a

point of intersection. Hence from tlie figure and 17, p. 20,

(1)
2rir2

where ri and r^ are the radii of C\ and C2 respectively and d is the length of

the line of centers. By Theorem I, p. 131,

r2-iVD22 + ^22_4j.2,

and the centers of C\ and C% are respec-

«ve„(-f,-f)a„d(-f,-f).
Hence (by (IV), p. 31)

Substituting in (1) and reducing, we get (VI). ^ q.e.d.

Corollary. Ci and C2 are orthogonal if BiD^ + J&i£'2 - 2 i^i - 2 i^2 = 0.

127. Angles invariant under inversion.

Theorem VII. The angle between two circles is equal to the angle formed by

the inverse circles.

Proof. Let the equations of two circles be

Oi : x2 + ?/2 + Dix + Eiy + F^ =
and C2 : x^ + 2/2 + I)2X + E2y + F2 == 0.

Then the equations of the inverse circles are respectively [(3), p. 298]

J_
Fi

1

Ci':.2 + ,. + ^^ + ^l +

and C2':x2 + y2 + :^a;
F2 -F2 i'a

By Theorem VI the angle formed by Ci and C2' is given by

^ _ 2

Fi F2
cos r =

D1D2
.
E\E2

F1F2 F1F2

Mhrn-rMhrnH
D1D2 + -E^ijEJa - 2 i?'i - 2 F2

VDi2 + J?i2

cos ^.

4 Fi VDs^ + ^2^ - 4 i<^2

where 6 is the angle formed by Ci and C2.

Since 6' and ^ are both less than 7t, we therefore have 6' = 6. Q.E.D.
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Corollary. The angles formed by two intersecting curves are equal to the

angles formed by the inverse curves.

For draw two circles respectively tangent to the given curves at a point of inter-
section. The inverse circles will be tangent to the inverse curves at a point of intersec-

tion. The angles formed by either pair of curves and the tangent circles are identical,

and the angles formed by the two pairs of circles are equal. Hence the angles formed
by the given curves and by the inverse curves are equal.

PROBLEMS

1. Find the angles formed by the following pairs of curves and the angles

formed by the inverse curves, and show that they are equal.

(a) x-y = 0, x + 2y = 0.

(b) x-\-3y -2 = 0, x-2y = 0.

(c) x^ + y^-^ix-Sy = 0, x^-hy^-^x = 0.

(d) x^+y^-4x + 12 = 0, x^ + y^ -8y = 0.

(e) x2 -f 2/2_6x + 4y = 0, 6x-4y-l = 0.

2. Show that the circles found in problem 4, p. 299, are orthogonal to the

circle x^ -{- y'^ = 1.

3. If P and P' are two inverse points, show that all of the circles which
pass through P and are orthogonal to x^ + y^ = 1 will also pass through P\

4. How may problem 3 be used to define an inversion ?
*

5. Into what kind of a figure will three lines forming a triangle invert if

the center of inversion is not on one of these lines ?

6. Into what kind of a figure will three circles which have a point in

common invert if that point is the center of inversion ?

7. Three circles pass through a point and intersect each other in three

other points. Show that the sum of the angles formed by the circles at

these three points is two right angles.

Hint. Invert the figure, using the point common to the three circles as the center of

inversion.

8. Three circles pass through the same point. Show how to construct

four circles tangent to the three given circles.

Hint. Suppose the required circles constructed. Invert the figure, using the common
point as the center of inversion and show how to construct the inverse of the required

circles. Then invert the figure so constructed, using the same center of inversion.

9. Show that the sign of an angle is changed by an inversion.
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128. Inversion of systems of straight lines.

Theorem "VIII. The inverse of a system of parallel lines is a system of tan-

gent circles whose centers lie on a line perpendicular to the lines of the system.

Proof Choose one of the lines of the system for the Y-axis. Then the

equation of the system is x = a, where a. is an arbitrary constant. The

inverse system is therefore (by (I), p. 298)
x'2 + y's

a, or, reducing and

X'

dropping primes, cc^ + ?/2 x = 0. This is the equation of a system of

circles whose centers lie on the X-axis and which are tangent to each other

at the origin (Theorem VIII, p. 144). q.e.d.

Theorem IX. The inverse of a system of lines passing through a point is a

system, of circles passing through the origin and through the inverse of that

point.

Proof Let the system of lines be y = mx + 6, where h is constant and m
varies. By Theorem I, p. 298, the inverse of the system is, after reducing

and dropping primes,

x-^ + 2/2 + y = 0.

This is the equation of a system of circles passing through the origin

(Theorem VI, p. 73) and through (0, t )
(Corollary, p. 53), which is the

inverse of (0, b) through which the lines pass, q.e.d.
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129. Inversion of a system of concentric circles.

Theorem X. The inverse of a system of concentric circles is a system with

two limiting points, one at the origin and the other at the inverse of the center

of the concentric circles.

Proof. The equation

(1) ic2 -f 2/2 _ 2 /3?/ + (82 - r2 =

represents a system of concentric circles if j8 is constant and r varies

(Tlieorem II, p. 58).

(2)

The inverse of (1) is [(3), p. 298]

2^
X'^ + y-^

^2
y +

The locus of (2) is a system of circles with their centers on the F-axis

(Corollary, p. 131). The radius of any one is (Theorem I, p. 131)

r"
2 \\B2-r^/

Hence r'= if r = 0, and the locus of (2) is then the point-circle (0, -
j

»

which is the inverse of (0, /3), the center of (1). If r = co, (2) becomes

x'2 _j_ ^2 — 0, whose locus is the origin. Hence the system (2) has two limiting

points (p. 144), at the origin and at the inverse of the center of (1). q.e.d.

PROBLEMS

1. Why do we not consider tlie system of lines passing through the origin

in proving Theorem IX ?

2. Why do we not take the origin for the center of the system of circles

in proving Theorem X ?

3. Construct a number of lines of the system x = a and the inverse circles.
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4. Construct a number of lines of the system y = mx + I and the

inverse circles.

5. Construct a number of circles of the system x^ -{- y^ — Sx i- 1 — r^ =
and the inverse circles.

6. What is the inverse of a system of tangent circles if the point of tan-

gency is the center of inversion ?

7. What is the inverse of a system of circles passing through two points

one of which is the center of inversion ?

8. What is the inverse of a system of circles with two limiting points

one of which is the center of inversion ?

9. The point Pi(xi, yi) may be regarded as a point-circle whose equa-

tion is (x — Xi)2 + (y — ?/i)2 =: 0. Show that the system of circles repre-

sented by (x — Xi)2 + (y — y\Y -f A; (x^ + y^ — 1) = has two limiting points,

namely, Pi and the inverse of Pi. What is the nature of the system if Pi
lies on the circle x^ + y^ = 1 ?

10, How may problem 9 be used to define an inversion ?

130. Orthogonal systems of circles. Two systems of circles are said to be

orthogonal if each circle of one system is orthogonal (p. 143) to every circle

of the other system. The preceding sections enable us to construct such

systems with ease.

Consider two systems of parallel lines such that the lines of one system

are perpendicular to the lines of the other. If we invert these systems of

lines, we get two systems of tangent circles whose centers lie respectively on

two perpendicular lines (Theorem VIII, p. 306). Since angles are preserved

by inversion (Corollary, p. 306) these systems are orthogonal. Hence
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Theorem XI. Two systems of tangent circles are orthogonal if they have the

same point of tangency and if their centers lie on perpendicular lines.

It is also evident that all of the lines passing through the same point P
and all of the circles having the center P intersect orthogonally. The
inverse of the system of lines is the system of circles passing through

the origin, and the inverse of P (Theorem IX^ p. 306), and the inverse of

the system of concentric circles is the system of circles having the origin

and the inverse of P as limiting points (Theorem X, p. 307). Hence

Theorem XII. Two systems of circles are orthogonal if all the circles of one

system pass through two points which are the limiting points of the other.

MISCELLANEOUS PROBLEMS

1. Show that the degree of an equation is, in general, doubled by an

inversion. Will this be true if the terms of the highest ^degree contain

x2 + 2/2 as a factor ?

2. Construct a linkage consisting of a deformable rhombus APBP' and

two bars of equal length OA and OB which are free to rotate about the fixed

point 0. Show that P and P' describe inverse curves if is the center of

inversion and OA^ — AP^ is the unit of length.

3. If P is that point of the rhombus in problem 2 which lies nearest to 0,

then by adding a bar O'P, which is free to rotate about the fixed point 0',

P will be constrained to move in a circle. How will P' move ? This linkage

is known as Peaucellier's Inversor.

4. Show how to construct four circles passing through a given point and

tangent to each of two given circles which do not intersect.

Hint. Invert the figure, using the given point as the center of inversion.

5. Find the properties of the cissoid, lemniscate, strophoid, cardioid, and

limaQon, which may be obtained from problems 3, 4, 5, 6, 9, 10, 12, and 13,

p. 220, by inversion with a proper center.

6. Show that the angle which one line makes with a second equals the angle

between the inverse circles, without using the Corollary on p. 305.



CHAPTER XY

POLES AND POLARS. POLAR RECIPROCATION

131. Pole and polar with respect to a circle. Let Pi(xi, yi) be any point

and let the equation of a given circle C be

(1) a;2 + 2/2 = r2.

The line ii, whose equation is

(2) a?iX + i/i2/ = ^^

is called the polar of Pi (xi, yi) with respect to C, and Pi is called the pole of Xi.

Theorem I. The polar of a point on a circle is the tangent to the circle at

that point

The proof follows at once from the definition and from the fact that (2) has the same
form as the equation of the tangent (Theorem T, p. 212).

Theorem II. The polar of a point Pi vjith respect to a circle is perpendicular

to the line passing through Pi and the center of the circle.

Proof. Thp equation of the line passing through Pi and the origin, the

center of the circle (1), is (Theorem VII, p. 97)

yix - Xiy = 0.

This line is perpendicular to (2), the polar of Pi (Corollary III, p. 87).

Q.E.D.

Corollary. The angle formed by the polars of two points with respect to a

circle is equal to the angle formed by the lines joining those points to the center

of the circle.

Theorem III. The polar of any point of a

given linepasses through thepole of that line.

Proof Let Li be the given line and let

Pi (-^1, yi) l)e its pole. Then the equation

of ii is

(3) xix + yiy = r^.

Let P2 (X2, 2/2) he any point on ii; then

(Corollary, p. 53)

(4) X1X2 + yiyz = r2.

The equation of the polar L2 of the point

P2is
X2X + 7/oy = r2.

310
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This line passes through Pi, for if the coordinates of Pi be substituted

for X and y, we obtain equation (4), which is known to be true.

Corollary. The pole of any line is the point of intersection of the polars of

any two of its points.

Theorem IV. The pole of any line passing through a given point lies on the

polar of that point.

Proof. Let Pi (xi, yi) be the given point. Its polar is the line

(5) Xi : Xix + yiy = r^.

Let P2(iC2, 2^2) l>e the pole of a line L2 which passes through Pi.' The

equation of L^ is then
X2X + 2/22/ = r^-

Since L2 passes through Pi we have (Corollary, p. 53)

(6) xgxi + y^yi = r2.

Then P2 lies on ii, for when the coordinates of P2 are substituted in (5)

for X and y, we obtain equation (6), which is known to be true. q.e.d.

Corollary. The polar of any point is the line passing through the poles of

any two lines which pass through the given point.

132. Construction of poles and polars.

Construction I. To construct the polar of a point P outside of a circle,

draw the tangents to the circle which pass through P. The line joining the

points of contact of these tangents is the polar of P.

Proof. Let Xi and Lo be the tan-

gents to 0, and let Pi and P2 be their

points of tangency. Then the polars

of Pi and P2 are the lines ii and L2

(Theorem I). Since ii and L2 pass

through P, the polar of P is the line L
passing through Pi and P2 (Corollary

to Theorem IV). q.e.d.

In like manner the following con-

structions are proved.

Construction II. To construct the pole

>f a line L which cuts the circle, draw

le tangents at the points at which L
itersects the circle. The point of inter-

action of these tangents is the pole of L (Corollary to Theorem III).
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Construction III. To construct the polar of a point P within a circle,

construct the poles Pi and P2 of

two lines Xi and L^ passing through

P (Construction II). The line join-

ing Pi and P2 is the polar of P
(Corollary to Theorem IV).

Construction IV. To construct

the pole of a line L which does not

cut the circle, construct the polars

Xi and L2 of two points Pi and P^
on L (Construction I) . The inter-

section of ii and L2 is the pole of

L (Corollary to Theorem III).

Y' -

\

X'
{

^

X
1
^rC^\^ \ I

r' -T--

PROBLEMS
19

1. Find the equation of the polar of each of the following points with

respect to the given circle and construct the figure.

(a) (3, _ 4), x2 + 2/2 = 4. (d) (3, 4), x^ + ?/2 = 36.

(b) (- 1, 2), x2 + y2 ^ 25. (e) (5, 0), x^ + y^ = 49.

(C) (7,
- 2), X2 + 2/2 ^ 9. (f) (_ 3, 4), x2 + 2/2 = 25.

2. Find the pole of each of the following lines with respect to the given

circle and construct the figure.

(a) 3 x + ?/ = 25, £c2 + y2 ^ 25. Ans. (3, 1).

(b) 3x - 2?/ = 18, x2 + 2/2 ^ 36. Ans. (6, - 4)

(c) x-4y + 8 = 0, x2 + ?/2 = 16. Ans. (-2,8)
(d) 2x-y = 64, x2 + 2/^ = 64. Ans. (2, - 1)

(e) x-32/ + 16 = 0, x2 + 2/2 = 16. Ans. (-1,3)

if) x-^y = 18, x2 + 2/2 ^ 9. Ans. (i, -
|)

(g) Ax + By + C = ^, x2 + 2/2 = r^. Ans. (^-^
J5r2\

Hint. Let Pi(«i, ?/i) be the pole of the given line and write down the equation of the

polar of Pt with respect to the given circle. From the conditions that this line shall

coincide with the given line (Theorem III, p. 88) determine x^ and y^.

3. Find the distance from the origin to the polar of Pi with respect to

x2 + 2/2 = r2. Ans.
Vxi2 + yi'

4. By problem 3 show that (a) if Pi approaches the origin its polar recedes

to infinity; (b) if Pi recedes to infinity its polar approaches the origin.
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6. By problem 2, (g), show that if a line recedes to infinity its pole

approaches the origin, and if the line approaches the origin its pole recedes

to infinity.

6. Find the pole of the line joining Pi {xi, y\) and P2 (X2, 2/2) and prove

that it is the point of intersection of the polars of Pi and P2.

\X1y2 - iczz/i' Xiy2 - x^yj

7. Find the polar of -the point of intersection of AiX -f Biy + Ci = and

A<iX + B^y + C2 = and prove that it passes through the poles of these lines.

Ans. {Bid - B2C1) X + {C1A2 -C2A1) y = {A1B2 - A2B1) r^.

8. If the line y — yi = m{x — Xi) revolves about Pi, the locus of its pole

is the polar of Pi.

9. The radius of a circle is a mean proportional between the distances

from its center to any point and to the polar of that point.

133. Polar reciprocation with respect to a circle. The transformation

which replaces a given line by its pole with respect to a circle is called a

polar reciprocation with respect to that circle. Analytically the transforma-

tion is defined by

Theorem V. The pole of the line

Ax + By + C =

with respect to the circle x^ 4- ?/2 = r^

is the point

Proof. Let Pi (xi, yi) be the pole of the given line. Then the polar of

Pi is the line

XiX + yiy - r2 = 0.

Then, by Theorem III, p. 88, X

Xi =

xi^yi
A B

Ar^

C
'

_ _r2

C

2/1 = - Q.E.D.

The locus C of the poles of the tangents

to a curve C is called the polar reciprocal

of C.
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Theorem VI. If C is the polar reciprocal of a curve C, then C is the polar

reciprocal of C\

Proof. Let I and m be two tangents to C at i and M. Let M' be the

pole of m and L' of I. Then L' and M' are

two points on C by definition.

Let p^ be the line passing through L'

and M\ Then the pole of p' is P, the

point of intersection of I and m (Corollary

to Theorem III, p. 311).

Let L' move along C" until it comes into

coincidence with if. Then the limiting

position of p' is the tangent to C at M'.

But as i' approaches M% I must approach m,

and the limiting position of P is evidently

the point M. Hence M is the pole of the

tangent to C at Jf'. Hence O is the polar reciprocal of C". q.e.d.

The method of finding the equation of C from that of C is illustrated by

Ex. 1. Find the polar reciprocal of the parabola 2/^= 4cc with respect to the

circle x^ -\-y'^ = 4.

Solution. Let Pi (a^i, yi) be any point on the parabola. Then

(1) 2/i2=4ki.

The equation of the tangent to the parabola

at Pi is (Theorem III, p. 214)

(2)

yiy^2{x + x{), or

2 X - 2/11/ + 2 a^i == 0.

By Theorem V, the pole of (2) is the point

P' {x'f 2/0 > where

x' =
4

Xi
y' = 2 2/1

Xi

Hence Xi=-
4

x''
yi =

2 2/'

X'

Substituting in (1),

y'-2 = -4a'

>
Vs

— -1^ — h^ ^

V
s.

^1>^

x '

^^
•'sc7^

>*
\

X ^X ^
X

^s/ S.
y k

^y' SX^
1

-1-
^

1

This is the equation of the locus of P', that is, of the polar reciprocal of the

given parabola. The polar reciprocal is therefore a parabola of the same size,

turned to the left instead of to the right.

The method consists in finding the pole P' of the tangent to the given curve at

Pi, expressing xi and 2/1 in terms of x' and y^, and substituting in the given

equation.
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PROBLEMS

1. Find the polar reciprocal of each of the following circles with respect

to the circle x^ -^ y^ = 4.

(a) x2 + 2/2 _ 4 x = 0. Ans. y^ + 4x = ^.

(b) x2 + 2/2 - 2 X - 3 = 0. Ans. 3 x2 + 4 y2 + g x - 16 = 0.

(c) x2 + 2/2 - 6 X + 5 = 0. Ans. 5 x2 - 4 2/2 - 24 x + 16 = 0.

2. Find the polar reciprocal of each of the following curves with respect

to the given circle.

(a) x2 + 4 2/2 = 16, x2 + 2/2 = 1. Ans. 16 x2 + 4 2/2 = 1.

(b) 2/^ = 2x -6, x2 + 2/^ = 9. Ans. 6x2 - 2/2 - 18x = 0.

(c) 4x2 + 2/2 = 8x, x2 + 2/2 = 4. Ans. 2/^ + 2x - 4 = 0.

3. Verify the answers to problems 1 and 2 by finding the polar recipro-

cals of the curves given in the answers and applying Theorem VI.

4. Show that the equilateral hyperbola 2 X2/ = 9 is transformed into itself

by a polar reciprocation with respect to the circle x^ + y^ = 9.

5. Show that the locus of'x2 — y"^ = a'^ is transformed into itself by a polar

reciprocation with respect to the circle x^ -{- y^ = a^.

134. Pole and polar with respect to the locus of any equation of the

second degree. Let Pi (xi, 2/1) be any point and let any equation of the

second degree be

(1) ^x2 + Bxy i-Cy^-h Dx + Ey + F=0.

The line Xi, whose equation has the same form as the tangent, namely

(Theorem II, p. 212),

(2) A...+B^i^^^ + Cp.y+1>'^ +B^ + F=0,

is called the polar of the point Pi with respect to the locus of (1)^ Pi is

called the pole of Li.

In what follows we speak always of poles and polars with respect to

the locus of (1) unless the contrary is stated. The following theorems are

generalizations of the theorems indicated, and are proved in the same way
by using (1) and (2) of this section instead of (1) and (2) of section 131,

p. 310.

Theorem VII. (Generalization of Theorem I.) The polar of a point on the

locus of (1) is the tangent at that point.

Theorem VIII. (Generalization of Theorems III and IV.) The polar of any

point on a given line passes through the pole of that line. Conversely., the pole

of any line passing through a given point lies on the polar of that point.
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Corollary I. The pole of any line is the point of intersection of the polars of

any two of its points.

Corollary II. The polar of any point is the line passing through the poles of

any two lines which pass through the given point.

The constructions on pp. 311 and 312 enable us to construct poles and
polars with respect to (1), for the theorems by which the constructions are

proved have been generalized for the locus of (1).

A good idea of the direction of the polar of a point with respect to a conic is

afforded by

Theorem IX. The polar of a point Pi with respect to a conic is parallel to the

tangent to the conic at the point where the diameter through Pi cuts the conic.

Proof. The proof is separated into two cases according as the conic is a central

conic or a parabola.

Case I. Central conic. If the center is the origin, its equation may be written

Ax'^ -{ Cy2 -{- F= 0.

The equation of the polar of Pi is \P

(3) Axix + Cyiy + F = 0.

Let the diameter through Pi cut the conic at P2. The equation of the tangent

at P2 is

(4) Ax2X + Cyip + F= 0.

Since Pi and P2 are on a line through the origin (Corollary, p. 242),

xi_yi^

and hence the lines (3) and (4) are parallel (Corollary II, p. 87).

, Case II. Parabola. Its equation is y^ = 2px.

The equation of the polar of Pi is

(5) yiy^p{x-\-^\)-

Let the diameter through Pi cut the parabola at P2. The equation of the

tangent at P2 is

(6) 2/22/=p(« + iC2).

Since (Theorem X, p. 242) y^ = ?/2, the lines (5) and (6) are parallel. q.e.d.

PROBLEMS

1 . Find the equations of the polars of the following points with respect to

the given conies and construct the figures.

(a) (3, 4), 9x2 + 4y2 = 36. (e) (- 1, 3), a;2 + a;?/ - 6y + 4 = 0.

(b) (2, - 1), 16 x2 - ?/2 = 64. (f
) (4, 5), xy -{- ^x - Qy -^ = 0.

(c) (3, 6), x2 + 4 y = 0. (g) (2,-6), x'^ + 'lxy ^y^ + x -y = 0.

(d) (2, - 4), xy -\Q = 0. (h) (3, 2), 5x2 + 6a:?/ + 5?/2 - 12 = 0.
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2. Find the poles of the following lines with respect to the given conies

and construct the figures.

(a) 9x + 4y = 36, 9x2 + ^/^ = 36. Ans. (1, 4).

(b) 2x-3y + 4 = 0, 2/2 = 4x. Ans. {2, - S).

(c) x-2y = 16, xy = 8. Ans. (- 2, 1).

(d) 14x + 2/ = 8, 4x2 - ?/2 = 16. Ans. (7, - 2).

(e) 2x - y + 13 = 0, x2 4- 4?/ = 16. Ans. (- 4, - 6).

(f ) X + 4 = 0, x2 + 4 xy + y2 + 2 X + 4 = 0. Ans. (0, 0).

(g) llx + 2y + 18 = 0, 17x2-12x?/ + 82/2-68x + 24y - 12 = 0.

Ans. (0, -2).

3. Tangents are drawn from the point (8, 4) to the ellipse x2 + 4^/2 = 16.

Find the equation of the line joining their points of tangency.

Ans. x + 2?/-2 = 0.

4. Tangents are drawn to the hyperbola 16x2 _ y2 — 64 at the points

of intersection of the hyperbola and the line 8x + 3?/ + 32 = 0. Find the

coordinates of their point of intersection. Ans. (—1,^).

5. How does the polar of a point with respect to a central conic behave

if the point approaches the center ? if the point recedes to infinity ?

6. The polar of the focus of any conic with respect to that conic is the

corresponding directrix.

7. The polar of any point on the directrix of a conic passes through the

corresponding focus.

8. The polars of a point with respect to conjugate hyperbolas are parallel.

9. The polar of a focus of an ellipse with respect to the major auxiliary

circle is the corresponding directrix.

10. What is the locus of a point which lies on its polar with respect to a

given conic ?

1 1 . That part of the diameter of a parabola included between any point

on it and its polar is bisected by the point of contact.

135. Polar reciprocation with respect to the locus of any equation of the

second degree. Let

(1) ^x2 + Bxy + Cy^ + Dx + Ey + F=0
be any equation of the second degree. Let C be any curve and let C be the

locus of the poles of the tangents to C with respect to the locus of (1). C is

called the polar reciprocal of C with respect to (1).

Theorem X. (Generalization of Theorem VI.) IfC is the polar reciprocal

of C with respect to (1), then C is the polar reciprocal of C.

The proof is identical with that of Theorem VI, p. 314. For the theorems on poles

and polars with respect to a circle, used in proving that theorem, have been extended to

the locus of (1).
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Corollary. The polar reciprocal of C is a curve C whose tangents are the

polars of the points of C.

The polar reciprocal of a curve C with respect to (1) may therefore be

regarded in either one of two ways

:

1. As the locus of the poles of the tangents to C.

2. As the curve whose tangents are the polars of the points of C.

In either case the fact to be observed is that to a point of one figure corre-

sponds a straight line of the other figure and vice versa. The transformation

which replaces C by C is called a polar reciprocation with respect to (1).

Analytically the polar reciprocation with respect to (1) is completely defined

by the equation

2
-"2

2

For, in the first place, the locus of (2) gives us at once the polar of

Pi i^u yi)'

In the second place, the pole of any line

(3) A'x -\- B'y -{ C = > ->

is found from (2) as follows. Let Pi (xi, 2/1) be the pole of (3). Then since

(2) and (3) are the equations of the polar of the same point Pi, their loci

coincide. Hence (Theorem III, p. 88)

^Xi + -^1 + - -x,+ Cy, + - D E ^-Xi + -yi + P

A' B' C
These equations can, in general, be solved for Xi and yi (Theorem IV, p. 90).

The .method of finding the equation of the polar reciprocal of a given

curve C is illustrated in the following example.

Ex. 1. Find the equation of the polar reciprocal of the ellipse

(7:4x2 + 92/2-1 =
with respect to the ellipse

(4) a;2 + 4?/2 + 2x = 0.

Solution. Let Pi (xi, yi)

be any point on C. Then

(5) 4a;i2 + 9?/i2-l = 0.

The equation of the tan-

gent to C at Pi is (Theorem

III, p. 214)

(6) 4:xix + 9 yiy -1 = 0.

Let P'{x\ y') be the pole

of (6) with respect to (4) . The
equation of the polar of P' is

(7) {x'-\-l)x + ^y'y + x'=0.

s». y^ ZP

x. y
^. y

r 25"\ t >
^ V 3^-.r t i

--—z^ ^VZ S
.^ "S.

^'^ ^s,^
-r-—

^;:
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Since (6) and (7) have the same locus (Theorem III, p. 88),

'

4a;i ^^yi^ -1,
x' + l 4 y' x'

Solving for xi and yi, we obtain

Substituting in (5) , we have the required equation

Reducing and dropping primes, we obtain

27x2 _64y2_i8x- 9 = 0,

whose locus is an hyperbola.

In the figure three divisions are taken for unity.

PROBLEMS

1. Find the polar reciprocal of the first of the following curves with

respect to the second. Construct the figure in each case.

(a) y2 _ 4 a; = 0, x^ + iy = 0. Ans. xy -2 = 0.

(b) ic2 + ?/2 = 1, x^-y^ = 4. Ans. x^ -{- y^ = 16.

(c) x2 + 4?/2 = 4, 4x2 + y2 = 4. j^y^s. 64x2 + 2/2 = 16.

(d) x2 -42/2 = 16, x2 + 4^2:^ 2x. Ans. 16x2 - 64 2/2 - 32x + 16 = 0.

(e) xy - 4 = 0, x^ - y^ = 16. Ans. xy + 16 = 0.

(f) 8 2/ - x3 = 0, x2 - 2/2 = 4. Ans. 2 x^ = 27 y.

2. Verify the answers to problem 1 by showing that the polar reciprocals

of the curves in the answers are the given curves.

3. Show that either of the following curves is unchanged by a polar recip-

rocation with respect to the other.

(a) 62x2 + a22/2 = aW, hH'^ - a^y'^ = a^"^.

(b) &2x2 _ a^y2 - c^252^ 12x2 _ a^y2 ^ _ ^252.

(c) 2/2 - 2px = 0, 2/2 + 2px = 0.

4. If the vertices of one triangle are the poles of the sides of a second

triangle, then the vertices of the second are the poles of the sides of the first.

Two triangles such that the vertices of either are the poles of the sides of

the other are called conjugate triangles. If the vertices of a triangle are the

poles of the opposite sides, the triangle is said to be self-conjugate.

5. Show that (2, 1), (4, 4), and (3, 2) are the vertices of a self-conjugate

triangle with respect to the hyperbola x^ — y^ = 4.

6. Show how to construct a self-conjugate triangle with respect to a given

conic if one vertex is given. How many may be constructed ?
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7. Show that if we reciprocate the figure which is given or implied in one

of the following statements, we obtain the corresponding statement.

(a) Two points determine the line

on which they lie.

(b) Three points on the same line.

(c) Three points at the vertices of a

triangle.

(d) n points at the vertices of a poly-

gon.

(e) An infinite number of points

lying on a curve.

(f) A line intersecting a curve in n
points.

(g) A curve passing twice through

the same point.

(h) A conic section.

(i) A conic may be constructed which

passes through five given points.

(j) Two conies intersect in general

in four points.

Two lines determine the point in

which they intersect.

Three lines through the same point.

Three lines forming a triangle.

n lines forming the sides of a poly-

gon.

An infinite number of lines tangent

to a curve.

A point through which pass n lines

tangent to a curve.

A curve tangent twice to the same
line.

A conic section.

A conic may be constructed which
is tangent to five given lines.

Two conies have in general four

common tangents.

136. Polar reciprocation of a circle with respect to a circle. The equa-

tions of any two circles C and Oi may be put in the forms

C : a:2 + y2 ^ r2

and Ci : x2 + ?/2 + Zte + i?' =
by taking the center of C as origin and the line of centers of C and C\ as

the X-axis, We shall now find the polar reciprocal of C with respect to C\.

Let Pi (xi, 2/i) be any point on C. Then (Corollary, p. 53)

(1) Xi2 + yi2 = r\

and the equation of the tangent to C at Pi is (Theorem I, p. 212)

(2) xix + yiy - r2 = 0.

Let P' (x', y") be the pole of (2) with respect to Ci ; then the polar of P' is

X'X ^y'y^B?^^ + F
OX

(3) x' + -)x + 2/'2/ + -x' + P

0,

0.

Since (2) and (3) have the same locus (Theorem III, p.

xx _yi_ -y^
^

y'

Solving for Xi and yi, we obtain

r2 (2 x' + D)

x' + F

Xi =
Bx' + 2F y\ =

2r^y'

Dx' -\-2F
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Substituting these values in (1), reducing, and dropping primes, we have

the equation of C\ namely,

C : (4r2 - 2)2) x2 + 4r22/2 + 4i)(r2 -F)x-\- {r^B^ - 42^2) _ o.

The discriminant of C is (p. 265)

0' = 16 r2 (4 r2 - 2)2) (rW^ -iF^)- 64 rW^ (r^ -F)^ = -167^ (2)2 - 4 2?')2.

As ^ v2)2 - 4 2^ is the radius of Ci (Theorem I, p. 131), it follows that

0' is not zero if the radii of C and Ci are not zero. Hence (Theorem I,

p. 266)

Theorem XI. The polar reciprocal of the circle C : x^ + y^ = r^ with respect

to the circle Ci : x^ + y^ + Dx -\- F = is the non-degenerate conic C whose

equation is

(XI) (4r2 - 2)2)a;2 + 4r22/2 + 42)(r2 - F)x + (r22)2 - 42^2) = q.

The nature of the conic C depends upon the sign of

A' = _ 4 . 4 r2 (4 r2 - 2)2).

It is evident that
2)2

A' < if 4 r2 - 2)2 > 0, or r2 > —

;

4

2)2
A' > if 4 r2 - 2)2 < 0, or r2 < —

;

4

A' = if 4 r2 - 2)2 = 0, or r2 = —

.

Hence (Theorem IX, p. 277)

2)2
the conic C is an ellipse if r2 > —

;

4

the conic C is an hyperbola \ir^ <—^

the conic C" is a parabola if r2

4

4

2)2 / 2) \
But — is the square of the distance from the origin to (

— — , ) , the
4 \ 2 /

center of Ci (Theorem I, p. 131), and therefore

2)2
the center of Ci is inside of C if r2 >—

;

4

2)2
the center of Ci is outside of C if r2 < —

;

4

and the center of Ci is on C
2)2

ifr2=—

.

4
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Hence

Theorem XII. The polar reciprocal of a circle C with respect to a circle C\

is an ellipse, hyperbola, or parabola according as the center of Ci is inside of,

outside of, or on the circle C.

PROBLEMS

1. Find the polar reciprocal of the circle x^ -\- y^ = i with respect to each

of the following circles and construct the figure.

(a) x2 + 2/2-4x-5 = 0. Ans. 4?/2-36iK-9 = 0.

(b) x2 + 2/2_2a;-;3:=0. Ans. 3x2 + 42/2 -Ux- 5 = 0.

(c) x'^ + y^-6x = 0. Ans. 5x2 _ 42/2 + 24x- 36 = 0.

2. Show that the center of Ci (Theorem XI) is a focus of (XI) and that the

corresponding directrix is the polar of the center of C with respect to Ci.

Hint. Transform (XI) by moving the origin to the center of C^, find the focus and
directrix by comparison with (II), p. 178, and transform to the old coordinates.

3. If Pi and P2 are two points whose polars with respect to a circle Ci are

ii and L2, then — = — , where Zi and I2 are the distances from the center of
di di

C\ to Pi and P2, d\ is the distance from L^ to Pi, and ^2 from Li to P2.

Hint. The center of C^ may be taken as the origin. Apply (IV), p. 31, and the Rule,

p. 106.

4. Prove Theorem XII and problem 2 by means of problem 3 and the defi-

nition of a conic (p. 173).

Hint. Let P^ of problem 3 be the center of C.

6. The angles which two lines L\ and L^. (Fig., p. 311), which are tan-

gent to a circle (7, make with the polar L of their point of intersection

are evidently equal. If we reciprocate the figure with respect to a circle

Ci, what will be the corresponding theorem in the new figure ?

Hint. The polar reciprocal of C is a conic whose focus is the center of C^ (problem 2).

To i, and L^ correspond two points on the conic, and to their points of contact correspond
the tangents to the conic at these points. To L corresponds the point of intersection of

these tangents. Draw lines from the focus to the points of contact of the tangents and
to their point of intersection, and apply the Corollary to Theorem II, p. 310.

Ans. If two tangents be drawn to a conic, the line joining the focus to

their point of intersection bisects the angle between the focal radii drawn to

the point of contact.
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6, Obtain the following theorems in the right-hand column from those in

the left-hand by means of a polar reciprocation with respect to a circle.

(a) Any tangent to a circle is per- The lines from a focus to any point

pendicular to the radius drawn to the on a conic and to the point where the

point of contact. tangent at that point meets the directrix

are perpendicular.

(b) The angle formed by two tan- The angle formed by the focal radii

gents to a circle is bisected by the line of a conic drawn to its points of inter-

drawn from the center to their point 'Section with any line is bisected by the

of intersection. line joining the focus to the intersec-

tion of that line and the directrix.

(c) The points of intersection of Chords of a conic which subtend

tangents to a circle which intersect at equal angles at the focus are tangent

a constant angle lie on a concentric to a conic with the same focus and
circle. directrix.

137. Correlations. Any transformation which makes the points of one

figure correspond to the lines of a second figure is called a correlation. Polar

reciprocations with respect to conies are the most important correlations.

A correlation is completely determined when we are able to find

1. The equation of the line corresponding to a given point.

2. The coordinates of the point corresponding to a given line.

We shall now see that a correlation is defined by an equation of the form

(1) {aiXi -f biyi + Ci) X + (a2Xi + 622/1 + 02)2/+ {a^Xi + 632/1 + Cs) = 0,

which is of the first degree in x and y and in Xi and yi.

The locus of (1) is the line corresponding to a given point Pi{xi, 2/1).

To find the point corresponding to a given line

(2) Ax + By + C = 0,

we suppose that Pi (cci, yi) is the required point. The equation of the line

jorresponding to Pi is (1). Hence (1) and (2) have the same locus and

lerefore

aiXi + 6iyi + ci _ ^23:1 + 62^1 + C2 _ «3a^i + 63^1 + Cs

' Z ~
B

~
C

'

These equations may, in general, be solved for Xi and 2/1.

As far as defining the line corresponding to a given point is concerned, the parenthe-

in (1) might be any complicated expressions in x^ and y^. But if the expressions in

lose parentheses were not of the first degree, then the equations (3) would have more

lan one pair of solutions for x^ and y^, and hence there would be more than one point

corresponding to a given line.

In general the point Pi will not lie upon the locus of (1). The condition

that Pi should lie on the locus of (1) is (Corollary, p. 63)

(aiXi + 6i?/i + ci) xi + {a2Xi + 622/1 + Cg) 2/1 + (as^i + 632/1 + a^) = 0,

or aiXi2 + (61 + 02) xiyi + 622/1^ + (ci + as) Xi + (C2 + 63) yi + as = 0.
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This is also the condition that Pi shall lie upon the locus of the equation

(4) aix2 + (61 + a^) xy + &22/^ + (ci + as) x + (cg + 63) y + as = 0.

The manner in which the conic sections enter into the theory of correlations

is thus given by

Theorem XIII. The locus of the points which lie upon the lines corresponding

to them in the correlation defined by (1) is the conic or degenerate conic whose

equation is (4). •

It should be noticed that the correlation defined by (1) is not, in general,

a polar reciprocation in the curve (4), for (1) is not the equation of the polar

of Pi(xi, yi) with respect to (4).

Suppose, however, that 61 = a^, Ci = as, and Cg = &3- Then (4) becomes

(5) ttix^ + 2 a^xy + hy^ + 2 asx + 2 b^y + as = 0,

and (1) becomes

(aiXi + azyi + az)x-\- (a2Xi + 622/1 + 63) 2/ + (as^i + 632/1 + C3) = 0,

or

(6) aixix + a2 {yiX + Xiy) + 622/12/ + as (x + Xi) + 63 (y + 2/1) + C3 = 0.

The locus of (6) is the polar of Pi(Xi, 2/1) with respect to (5). Hence we

have

Theorem XIV. Ifbi = ao, Ci = as, and c^ = b^, then the correlation defined

by (1) is a polar reciprocation with respect to the locus of (5).



CHAPTER XYI

CARTESIAN COORDINATES IN SPACE

138. Cartesian coordinates. The foundation of Plane Analytic

Geometry lies in the possibility of determining a point in the

plane by a pair of real numbers (x, y) (p. 25). The study of

Solid Analytic Geometry is based on the determination of a point

in space by a set of three real numbers x, y, and z. This deter-

mination is accomplished as follows :

Let there be given three mutually perpendicular planes inter-

secting in the lines XX\ YY\ and ZZ' which will also be mutually

perpendicular. These three

planes are called the coordinate

planes and may be distin-

guished as the ZF-plane, the

FZ-plane, and the ZX-plane.

Their lines of intersection

are called the axes of coordi-

nates, and the positive direc-

tions on them are indicated

by the arrowheads.* The

point of intersection of the

coordinate planes is called

the origin.

Let P be any point in space and let three planes be drawn

through P parallel to the coordinate planes and cutting the axes

2it A, B, and C. Then the three numbers OA =>: x, OB = y, and

OC = z are called the rectangular coordinates of P.

* XX' and ZZ' are supposed to be in the plane of the paper, the positive direction on

XX' being to the right, that on ZZ' being upward. YY' is supposed to be perpendicular

to the plane of the paper, the positive direction being in front of the paper, that is, from

the plane of the paper toward the reader.

325
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Any point P in space determines three numbers, the coordinates

of P. Conversely, given any three real numbers x, y, and z, a

point P in space may always be constructed whose coordinates

are x, y, and z. For if we lay off OA = x, OB = y, and OC = z,

and draw planes through A, B, and C parallel to the coordinate

planes, they will intersect in such a point P. Hence

Every point determines three real numbers, and conversely, three

real numbers determine a point.

The coordinates of P are written (x, y, z), and the symbol

P(x, y, z) is to be read, "The point P whose coordinates are

x, y, and zJ'

The coordinate planes divide all space into eight parts called

octants, designated hj.O-XYZ, 0-X'YZ, etc. The signs of the

coordinates of a point in any octant may be determined by the

Rule for signs.

X is positive or negative according as P lies to the right or left

of the YZ-plane.

y is positive or negative according as P lies in front or in back

of the ZX-plane.

z is positive or negative according as

P lies above or below the XY-plane.

If the coordinate planes are not

mutually perpendicular, we still have

an analogous system of coordinates

called oblique coordinates. In this

system the coordinates of a point

^

are its distances from the coordi-

^ nate planes measured parallel to the

axes instead of perpendicular to the

planes. We shall confine ourselves

to the use of rectangular coordinates.

Points in space may be conveniently plotted by marking the same scale on XX'
and ZZ' and a somewhat smaller scale on YY\ Then to plot any point, for example

(7, 6, 10), we lay ofi OA — 1 on OX, draw ylQ parallel to OF and equal to 6 units

on r, and QP parallel to OZ and equal to 10 units on OZ.
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PROBLEMS

1. What are the coordinates of the origin ?

2. Plot the following sets of points.

(a) (8, 0,2), (-3, 4, 7), (0,0, 5).

(b) (4, -3,6), (-4, 6,0), (0,8, 0).

(c) (10, 3, -4), (-4, 0,0), (0,8,4).

(d) (3, -4, -8), (-5, -6,4), (8,6, 0).

(e) (-4, -8, -6), (3, 0,7), (6, -4,2).
(f) (-6,4, -4), (0,-4, 6), (9, 7, -2).

3. Where can a point move ifcc = 0? if y = 0? if z = 0?

4. Where can a point move if ic = and y = 0? it y = and z = ?

if 2; = and X = ?

5. Show that the points {x, y, z) and (— x, y, z) are symmetrical with

respect to the FZ-plane
;

(x, y, z) and (x, — y, z) with respect to the ZX-
plane

;
(x, y, z) and ^, y, — z) with respect to the XZ-plane.

6. Show that the points (x, y, z) and (— x, - y, z) are symmetrical with

respect to ZZ'
;

(x, y, z) and (x, — y, —z) with respect to XX'
;

(x, y, z) and

(- X, y, —z) with respect to YY'
;

(x, y, z) and (- x, — y, - z) with respect

to the origin.

7. What is the value of z if P (x, y, z) is in the JTF-plane ? of x if P is in

the FZ-plane ? of ?/ if P is in the ZA"-plane ?

8. What are the values of y and z if P (x, y, z) is on the JT-axis ? of z and

X if P is on the F-axis ? of x and ?/ if P is on the Z-axis ?

9. A rectangular parallelopiped lies in the octant 0-XYZ with three

faces in the coordinate planes. If its dimensions are a, 6, and c, what are

the coordinates of its vertices ?

139. Orthogonal projections. To extend the first theorem of

projection (p. 30) we define the angle between two directed lines

in space which do not intersect to be the angle between two

intersecting directed lines (p. 28) drawn parallel to the given

lines and having their positive directions agreeing with those of

the given lines.

The definitions of the orthogonal projection (p. 29) of a point

upon a line and of a directed length AB upon a directed line

^hold when the points and lines lie in space instead of in the

plane. It is evident that the projection of a point upon a line
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may also be regarded as the point of intersection of the line and

the plane passed through the point perpendicular to the line.

As two parallel planes are equidistant, then the projections of a

directed length AB upon two parallel lines whose positive directions

agree are equal.

Theorem I. First theorem of projection. If A and B are points

upon a directed line making an angle of y ivith a directed line CD,

then the

projection of the length AB upon CD = AB cos y.

Proof Draw CD' through A
parallel to CD. Then by defini-

D' tion the angle between AB and

^ CD' equals y. Since CD' and AB
^ intersect we may apply the first

theorem of projection in the plane

(p. 30), and hence the

projection of the length AB upon C'D' = AB cos y.

Since the projection of AB on CD equals the projection of AB
upon CD' we get (I). q.e.d.

Theorem II. Second theorem of projection. If each segment of a

broken line in space he given the direction determined in passing

continuously from one extremity to the other, then the algebraic

sum of the projections of the segments upon any directed line equals

the projection of the closing line.

The proof given on p. 48 holds whether the broken line lies in the plane or in

space.

Corollary I. The projections on the axes of coordinates of the

line joining the origin to any point P are respectively the coordi-

nates of P.

For the projection of OP (Fig., p. 325) upon OX equals the sum of the projec-

tions of OA, AQ, and QP, which are respectively equal to x, 0, and [by (I)].

Similarly for the projections on OTand OZ.



CARTESIAN COORDINATES IN SPACE 329

Corollary II. Given any two points P^ {x^, y^, z^) and P^ {x^, 2/2? ^i)i

then

a?2 — a?! = projection of JP^P^, upon XX',

y^ — y^ = projection of ^Pi-Pg upon YY^,

z^ — z^z= projection of -Pi1*2 upon ZZK

For if we project P\OP<i and P\Pi upon XX\ we have the

proj. of PiO + proj. of OPi = proj. of PxP%.

But by Corollary I,

proj. of P\0 — — cci, proj. of OP2 = 'X,^.

.'. a;2 — a;i = proj. of P1P2 upon XX\

In like manner the other formulas are proved.

Corollary III. If the sides of a polygon be given the direction

established by passing continuously around the perimeter, the sum

of the projections of the sides tipon any directed line is zero.

PROBLEMS

1. Find the projections upon each of the axes of the sides of the triangles

whose vertices are the following points and verify the results by Corollary III.

(a) (- 3, 4, - 8), (5, - 6, 4), (8, 6, 0).

(b) (-4, -8, -6), (3, 0,7), (6, 4, -2).

(c) (10,3, -4), (-4, 0,2), (0,8, 4).

(d) (-6,4,-4), (0, -4,6), (9,7,-2).

2. If the projections of P1P2 on the axes are respectively 3, — 2, and 7,

and if the coordinates of Pi are (—4, 3, 2), find the coordinates of P2.

Ans. (-1, 1, 9).

3. A broken line joins continuously the points (6, 0, 0), (0, 4, 3), (— 4, 0, 0),

and (0, 0, 8). Find the sum of the projections of the segments and the pro-

jection of the closing line on (a) the X-axis, (b) the F-axis, (c) the Z-axis,

and verify the results by Theorem II. Construct the figure.

4. A broken line joins continuously the points (6, 8, — 3), (0, 0, — 3),

(0, 0, 6), (-8, 0, 2), and (- 8, 4, 0). Find the sum of the projections of

the segments and the projection of the closing line on (a) the X-axis, (b) the

F-axis, (c) the Z-axis, and verify the results by Theorem II. Construct the

figure.

5. Find the projections on the axes of the line joining the origin to each

of the points in problem 1.
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6. Find the angles between the axes and the line drawn from the origin to

(a) the point (8, 6, 0).

(b) the point (2, - 1, - 2).

Ans. cos-^

Ans. cos-i-» cos
3

3 TT

6' 2

-i-l>-i-l)
7. Find two expressions for the projections upon the axes of the line

drawn from the origin to the point P{x, y, z) if the length of the line is

p and the angles between the line and the axes are a, /3, and y.

8. Find the projections of the coordinates of P(x, y, z) upon the line

drawn from the origin to P if the angles between that line and the axes

are a, j3, and y. Ans. x cos a, y cos j3, z cos 7.

140. Direction cosines ^of a line. The angles a, /3, and y
between a directed line and the axes of coordinates are called

the direction angles of the line.

If the line does not intersect the axes, then by definition (p. 327) a, j3, and y
are the angles between the axes and a line drawn through the origin parallel to

the given line and agreeing with it in direction.

The cosines of the direction angles of a line are called the

direction cosines of the line.

Reversing the direction of a line changes the signs of the direc-

tion cosines of the line.

For reversing the direction of a line changes a, /3, and 7 into (p. 28) it — a,

TT — /3, and it — y respectively, and (5, p. 20) cos (jt — x) = — cos x.

Theorem III. If a.,
ft,

and y are the direction angles of a line, then

(III) cos'* a + cos^^ + cos^* 7 = 1-

That is, thesum ofthe squares ofthe

direction cosines of a line is unity.

Proof. Let ^S be a line whose

direction angles are a, ji, and y.

Through draw OP parallel to

AB and let OP= p. By definition

(p. 327) Z XOP = a, Z Y0P= (3,

ZZOP=y. Projecting OP on the

axes, we get by Corollary I, p. 328,

and Theorem I, p. 328,

p cos (3, z = p cos y.
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Projecting OP and OCQP on OP, we get (Theorems I and II)

(2) p = xcosa -^ y cosft -\- z cos y.

Substituting from (1) in (2) and dividing by p, we obtain

(HI). Q.E.D.

^. cosa COS/8 cosy
Corollary, if = —r-^ =

} then

a
'

b
cos a = J cos £j =

± Va2 + 62 _^ c^ ± Va^ + &2 + c2

c
COS y = ^

That is, if the direction cosines of a line are proportional to three

numbers, they are respectively equal to these numbers each divided

by the square root of the sum of their squares.

For if r denotes the common value of the given ratios, then

(3) cos a = ar, cos j3 = br, cos y = cr.

Squaring, adding, and applying (III)

,

I=:r2(a2 + 62 + 02).

± Va2 + 62 _|. c2

Substituting in (3), we get the values of cos a, cos /3, and cos y to be derived. '

If a line cuts the XF-plane, it will be directed upward or downward according

as cos 7 is positive or negative.

If a line is parallel to the XF-plane, cos 7 — and it will be directed in front

or in hack of the ZX-plane according as cos j8 \& positive or negative.

If a line is parallel to the X-axis, cos /S = cos 7 = 0, and its positive direction

will agree or disagree with that of the X-axis according as cos or = 1 or — 1

.

These considerations enable us to choose the sign of the radical in the Corollary

so that the positive direction on the line shall be that given in advance.

141. Lengths.

Theorem IV. The length I of the line joining two points

Pi(xi, 1/1, ^1) «^^ A (^2, 1/2, ^2) ^'-^ ff^^en by

(IV) I = V(^, - ^.,y + (y, - y,y +. (z, - z,y.
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Proof. Let the direction angles of the line PiPg he a, ^, and y.

Projecting P^P^ on the axes, we get, by Theorem I, p. 328,

and Corollary II, p. 329,

(1) I cos a = X2 — Xi, I COS /3 = 1/2 — ^Jl) I cos y = ^2 — ^1-

Squaring and adding,

Z^ (cos^ a + cos^^ /? + cos^ y) = {x^ — x^y-\- (2/2 — ViY + («2 — ^l)^

= (^1 - ^lY + (i/i - 2/2)' + («i - ^2)'.

Applying (III), p. 330, and taking the square root, we get (IV).

Q.E.D.

Corollary. The dh'ection cosines of the line drawn from P^ to

P2 are proportional to the projections of P1P2 on the axes.

cos a _ cos /3
For, from (1),

X2 — Xl -2/1

cos 7
^2 - 21

'

since each ratio equals -y and the denominators are the projections of P1P2 on

the axes (Corollary II, p, 329).^t

V

rj;E=n'-i
/I

~

1/

V

If we construct a rectangular parallelepiped

by passing planes through P^ and P2 parallel

to the coordinate planes, its edges will be paral-

lel to the axes and equal numerically to the

projections of P1P2 upon the axes. P1P2 will

be a diagonal of this parallelepiped, and hence

/ ^ l^ will equal the sum of the squares of its

three dimensions. AVe have thus a second

method of deriving (IV).

PROBLEMS

1. Find the length and the direction cosines of the line drawn from

(a) Pi (4, 3, -2) to P2(-2, 1, —5).

(b) Pi (4, 7, -2) to P2(3, 5, -4).

(c) Pi (3, - 8, 6) to P2 (6, - 4, 6).

Ans. 7, - f,
-

f,
-

f.

Ans. 3, -i, -
I,
-

f.

Ans. 5. f, f, 0.

2. Find the direction cosines of a line directed upward if they are propor-

tional to (a) 3, 6, and 2
;

(b) 2, 1, and - 4 ;
(c) 1,-2, and 3.

Ans. (a)
f, f, f; (b) ^

^ -2
^ ^ •(c)J-, ,

V21' -V2T' + V21' V14' VTi' Vi4
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3. Find the lengths and direction cosines of the sides of the triangles

whose vertices are the following points ; then find the projections of the sides

upon the axes by Theorem I, p. 328, and verify by Corollary III, p. 329.

(a) (0, 0, 3), (4, 0, 0), (8, 0, 0).

(b) (3,2,0), (-2,5,7), (1, -3, -5).

(c) (-4,0, 6), (8, 2,-1), (2, 4, 6).

(d) (3, - 3, - 3), (4, 2, 7), (- 1, - 2, - 5).

4. In what octant {0-XYZ, 0-X'YZ, etc) will the positive part of

a line through lie if

(a) cos a > 0, cos ^3 > 0, cos 7 > ? (e) cos a < 0, cos j8 > 0, cos 7 > ?

(b) cosa>0, cos/3>0, cos7<0? (f) cosa<0, cos/3<0, cos7>0?
(c) cos a: > 0, cos j3 < 0, cos 7 < ? (g) cos a < 0, cos /3 < 0, cos 7 < ?

(d) cos a > 0, cos /3 < 0, cos 7 > ? (h) cos or < 0, cos /3 > 0, cos 7 < ?

5. What is the direction of a line if cos a = 0? cosjQ = ? cos 7 = 0?
cos a = cos /3 = ? cos /3 = cos 7 = 0? cos 7 = cos ex = 0?

6. Find the projection of the line drawn from the origin to Pi (5, — 7, 6)

upon a line whose direction cosines are f,
— 7, and

f.
Ans. 9.

Hint. The projection of OP^ on any line equals the projection of a broken line whose
segments equal the coordinates of P^.

7. Find the projection of the line drawn from the origin to Pi (xi, ?/i, Zi)

upon a line whose direction angles are a, p, and 7.

Ans. Xi cos a + yi cos ^ + Zi cos 7.

8. Show that the points (- 3, 2, - 7), (2, 2, - 3), and (- 3, 6, - 2) are

the vertices of an isosceles triangle.

9. Show that the points (4, 3, - 4), (- 2, 9, - 4), and (- 2, 3, 2) are the

vertices of an equilateral triangle.

10. Show that the points (-4, 0, 2), (-1, 3 V3, 2), (2, 0, 2), and

(-1, V3, 2 + 2 Vq) are the vertices of a regular tetraedron.

11. What does formula (IV) become if Pi and P2 lie in the XF-plane ?

in a plane parallel to the XF-plane ?

12. Show that the direction cosines of the lines joining each of the points

(4, - 8, 6) and (- 2, 4, - 3) to the point (12, - 24, 18) are the same. How
are the three points situated ?

13. Show by means of direction cosines that the three points (3, — 2, 7),

(6, 4, — 2), and (5, 2, 1) lie on a straight line.

14. What are the direction cosines of a line parallel to the X-axis ? to the

F-axis ? to the Z-axis ?
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15. What is the value of one of the direction cosines of a line parallel

to the XY-plane ? the YZ-plane ? the ZX-plane ? What relation exists

between the other two ?

16. Show that the point (—1, — 2, — 1) is on the line joining the points

(4, — 7, 3) and (— 6, 3, — 5) and is equally distant from them.

7t It
17. If two of the direction angles of a line are — and - , what is the third ?

3 * , TT 27r
Ans. —or

3 3

18. Find the direction angles of a line which is equally inclined to the

three coordinate axes. Ans. a = p = y = cos-i ^^S.

19. Find the length of a line whose projections on the axes are respectively

(a) 6, - 3, and 2. Ans. 7.

(b) 12, 4, and - 3. Ans. 13.

(c) - 2, - 1, and 2. Ans. 3.

142. Angle between two directed lines.

Theorem V. If a, ^, y and a', /3', y' are the direction angles of

two directed lines, then the angle 6 between them is given by

(V) cos ^ = cos a cos a' + cos p cos jff' + cos y cos y'.

Proof Draw OP and OP'

parallel to the given lines and

let OP == p. Then by definition,

p. 327,

Z POP' = 6.

Project OP and OABP on OP'.

^ Then by Theorem I, p. 328, and

Theorem II, p. 328,

(1) p cos 6

= X cos a'-\- y cos ^'+ ^ COS y'.

Projecting OP on the axes (Corollary I, p. 328, and Theorem I),

(2). X = p cos a, y = p COS ^, z = p cos y.

Substituting in (1) from (2) and dividing by p, we obtain (V).

Q.E.D.

'AX



CARTESIAN COORDINATES IN SPACE 336

Theorem VI. If a, ^, y and a', p\ y' are the direction angles of

two lines, then the lines are

(a) parallel and in the same direction* when and only when

a=a',/3 = /3',y = y'',

(b) perpendicular "f
ivhen and only ivhen

cos a cos a'-\- COS P COS /8' H- cos y COS y'= 0.

That is, two lines are parallel and in the same direction when

and only luhen their direction angles are equal, and perpendicular

when and only when the sum of the products of their direction

cosines is zero.

Proof The condition for parallelism follows from the fact

that both lines will be parallel to and agree in direction with the

same line through the origin when and only when their direction

angles are equal.

The condition for perpendicularity follows from (Y), for if

IT= —} then cos ^ == 0, and conversely. q.e.d.
Li

Corollary. If the direction cosines of the lines are proportional

to a, h, c and a\ b', c', then the conditions for parallelism and

perpendicularity are respectively

^ b C
, T 7 I t r.— = - = -, aa'+ bb' -\- cc'= 0.

a' b c'

143. Point of division.

Theorem VII. The coordinates (x, y, z) of the point of division

P on the line joining Pi(xi, yi, Zi) and P2(^2> y2} ^2) such that the

ratio of the segments ^s

are given by the formulas

(VII) «= = ^Vtx'' ^ = ^ttx'' " = ttx-
This is proved as on p. 39.

* They will he parallel and differ in direction when and only when the direction

angles are supplementary.

t Two lines in space are said to he perpendicular when the angle hetween them is —

»

but the lines do not necessarily intersect.
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Corollary. The coordinates (x, y, z) of the middle point P of the

line joining P\{xi, yi, z^) and ^2(^2? 1/21 ^2) ^^^

03 = i(Xi + a?2), 2/ = i(2/i + Vi), « = 1(^1 + «2)- •

PROBLEMS

1. Find the angle between two lines whose direction cosines are

respectively

(a) f, f, -f and a, - |, f Ans. |.

(b) f,
- 1, I and -

T?3, r%, {h ^ns. cos-iif.

(c) f,
-

f,
1 and

f, f, f. ^ns. cos-i(-
f^).

3. Show that the lines joining the following pairs of points are either

parallel or perpendicular, -^

(a) (3, 2, 7), (1, 4, 6) and (7, - 5, 9), (5, - 3, 8).

(b) (13, 4, 9), (1, 7, 13) and (7, 16, - 6), (3, 4, - 9).

(c) (- 6, 4, - 3), (1, 2, 7) and (8, - 6, 10), (15, - 7, 20).

4. Find the coordinates of the point dividing the line joining the follow-

ing points in the ratio given.

(a) (3, 4, 2), (7, - 6, 4), \ = \. Ans.
(-V-, |, |).

(b) (- 1, 4, - 6), (2, 3, - 7), X =3 - 3. Ans. (|, |, - ^i).

(c) (8, 4, 2), (3, 9, 6), \ = - i. Ans. (V, f , 0).

(d) (7, 3, 9), (2, 1, 2), X = 4. Ans. (3, |, -U).

5. Show that the points (7, 3, 4), (1, 0, 6), and (4, 5, — 2) are the

vertices of a right triangle.

6. Showthatthepoints(-6, 3, 2), (3, - 2, 4), (5, 7, 3), and (- 13, 17,-1)

are the vertices of a trapezoid.

7. Show that the points (3, 7, 2), (4, 3, 1), (1, 6, 3), and (2, 2, 2) are the

vertices of a parallelogram.

8. Show that the points (6, 7, 3), (3, 11, 1), (0, 3, 4), and (- 3, 7, 2) are

the vertices of a rectangle.

9. Show that the points (6, - 6, 0), (3, - 4, 4), (2, - 9, 2), and (- 1,

— 7, 6) are the vertices of a rhombus.

10. Show that the points (7, 2, 4), (4, - 4, 2), (9, - 1, 10), and (6, - 7, 8)

are the vertices of a square.
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11. Show that each of the following sets of points lies on a straight line,

and find the ratio of the segments in which the third divides the line joining

the first to the second.

(a) (4, 13, 3), (3, 6, 4), and (2, - 1, 5). Ans. - 2.

(b) (4, - 5, - 12), (- 2, 4, 6), and (2, - 2, - 6). Ans. ^
(c) (- 3, 4, 2), (7, - 2, 6), and (2, 1, 4). Ans. 1.

'

12. Find the lengths of the medians of the triangle whose vertices are

the points (3, 4, - 2), (7, 0, 8), and (- 6, 4, 6). Ans. VTlS, V89, 2V29.

13. Show that the lines joining the middle points of the opposite sides of

the quadrilaterals whose vertices are the following points bisect each other.

(a) (8, 4, 2), (0, 2, 5), (- 3, 2, 4), and (8, 0, -6).

(b) (0, 0, 9), (2, 6, 8), (- 8, 0, 4), and (0, - 8, 6).

(c) Pi(xi, yi, zi), P2{X2, 2/2, 22), Psixs, 2/3, Zs), P^ix^, 2/4, Z4).

14. Show that the lines joining successively the middle points of the sides

of any quadrilateral form a parallelogram.

15. Find the projection of the line drawn from Pi (3, 2, — 6) to P2(— 3,

5, — 4) upon a line directed upward whose direction cosines are proportional

to 2, 1, and - 2. Ans. 4i.

16. Find the projection of the line djawn from Pi (6, 3, 2) to P2(4, 2, 0)

upon the line drawn from P3(7, - 6/6) to P4(- 5, - 2, 3). Ans. ff.

17. Find the coordinates of the point of intersection of the medians of the

triangle whose vertices are (3, 6, — 2), (7, — 4, 3), and (— 1, 4, — 7).

Ans. (3, 2, - 2).

18. Find the coordinates of the point of intersection of the medians of

the triangle whose vertices are any three points Pi, P2, and P3.

Ans. [i (xi + X2 + X3), i {yi + 2/2 + 2/3), i (^i + Z2 + 23)].

19. The three lines joining the middle points of the opposite edges of a

tetraedron pass through the same point and are bisected at that point.

20. The four lines drawn from the vertices of_any tetraedron to the point

of intersection of the medians of the opposite face meet in a point which

is three fourths of the distance from each vertex to the opposite face (the

center of gravity of the tetraedron).



CHAPTER XYII

SURFACES, CURVES, AND EQUATIONS

144. Loci in space. In Solid Geometry it is necessary to con-

sider two kinds of loci

:

1. The locus of a point in space which satisfies one given con-

dition is, in general, a surface.

Thus the locus of a point at a given distance from a fixed point is a sphere,

and the locus of a point equidistant from two fixed points is the plane which is
,

perpendicular to the line joining the given points at its middle point.

2. The locus of a point in space which satisfies two conditions *

is, in general, a curve. For the locus of a point which satisfies

either condition is a surface, and hence the points which satisfy

both conditions lie on two surfaces, that is, on their curve of

intersection.

Thus the locus of a point which is at a given distance r from a fixed point Pi
and is equally distant from two fixed points P^. and P3 is the circle in which the

sphere whose center is Pi and whose radius is r intersects the plane which is

perpendicular to P2P3 at its middle point.

These two kinds of loci must be carefully distinguished.

145. Equation of a surface. First fundamental problem. If

any point P which lies on a given surface be given the coordinates

(x, y, z), then the condition which defines the surface as a locus

will lead to an equation involving the variables x, y, and z.

The equation of a surface is an equation in the variables x, y,

and z representing coordinates such that

:

1. The coordinates of every point on the surface will satisfy

the equation.

2. Every point whose coordinates satisfy the equation will lie

upon the surface.

* The number of conditions must be counted carefully. Thus if a point is to be equi-

distant from three fixed points P^, P^, and P3, it satisfies two conditions, namely, of being

equidistant from P^ and P^ and from P^ and P3.

338
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If the surface is defined as the locus of a point satisfying one

condition, its equation may be found in many cases by a Rule

analogous to that on p. 53.

Ex. 1. Find the equation of the locus of a point whose distance from

Pi (3, 0, - 2) is 4.

Solution. Let P {x, y, z) be any point on the locus. The given condition

may be written p p _ 4

By (IV), p. 331, PiP = V{x - 3)2 + y2 + ^^ 4. 2)2.

.-. V(x - 3)2 + 2/2 + (z + 2)2 = 4.

Simplifying, we obtain as the required equation

x2 + 2/2 + 22 _ 6x + 42; - 3 = 0.

That this is indeed the equation of the locus should be verified as in Ex. 1,

52, and Ex. 1, p. 53.

PROBLEMS

1

.

Find the equation of the locus of a point which is

(a) 3 units above the XF-plane.

(b) 4 units to the right of the FZ-plane.

(c) 5 units below the XF-plane.

(d) 10 units back of the ZX-plane.-*-

(e) 7 units to the left of the FZ-plane.

(f) 2 units in front of the ZX-plane.

2. Find the equation of the plane which is parallel to

(a) the XF-plane and 4 units above it.

(b) the XF-plane and 5 units below it.

(c) the ZX-plane and 3 units in front of it.

(d) the FZ-plane and 7 units to the left of it.

(e) the ZX-plane and 2 units back of it.

(f) the FZ-plane and 4 units to the right of it.

3. Find the equation of the sphere whose center is the point

(a) (3, 0, 4) and whose radius is 5.

Ans. ic2 + 2/2 + 2=2 - 6x - 8 2; = 0.

(b) (—3, 2, 1) and whose radius is 4.

Ans. ic2 4-2/2 + z2 + 6x-42/-22;-2=0.
(c) (6, 4, 0) and whose radius is 7.

Ans. x2 -f 2/2 + z2 - 12 X - 8 2/ -f- 3 = 0.

(d) {a, /3, 7) and whose radius is r.

Ans. x2 + y2 + 22 _ 2 ax - 2 /??/ - 2 72; + ^2 + ^2 + ^2 _ y2 = 0.
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4. What are the equations of the coordinate planes ?

5. What is the form of the equation of a plane which is parallel to the

XY-plane ? the FZ-plane ? the ZX-plane ?

6. Find the equation of the locus of a point which is equally distant from

the points

(a) (3, 2, - 1) and (4, - 3, 0).

'

Ans. 2x -lOy -\- 2 z -11 = 0.

(b) (4, - 3, 6) and (2, - 4, 2). Ans. 4x + 2?/ + 82 - 37 = 0.

(c) (1, 3, 2) and (4, - 1, 1). Ans. Sx - 4:y - z - 2 = 0.

(d) (4, - 6, - 8) and (- 2, 7, 9). Ans. 6x - 13?/ - 172 + 9 = 0.

7. Find the equations of the six planes drawn through the middle points

of the edges of the tetraedron whose vertices are the points (5, 4, 0),

(2, —5, —4), (1, 7, —5), and (—4, 3, 4) which are perpendicular to the

edges, and show that they all pass through the point (—1, 1, — 2).

8. What are the equations of the faces of the rectangular parallelepiped

which has one vertex at the origin, three edges lying along the coordinate

axes, and one vertex at the point (3, 5, 7) ?

9. Find the equation of the sphere whose center is the point (6, 2, 3)

which passes through the origin. Ans. x^ -]- y'^ -{ z^ — 12 x — 4y — 6z = 0.

10. Find the equation of the locus of a point which is three times as far

from the point (2, 6, 8) as from (4, — 2, 4) and determine the nature of the

locus by comparison with the answer to problem 3, (d).

11. Find the equation of the locus of a point the sum of the squares of

whose distances from (1, 3, — 2) and (6, — 4, 2) is 50 and determine the

nature of the locus by comparison with the answer to problem 3, (d).

146. Planes parallel to the coordinate planes. We may easily

prove

Theorem I. The equation of a plane which is

parallel to the XY-plane has the form z = constant;

parallel to the YZ-plane has the form x = constant;

parallel to the ZX-plane has the form y = consta7it.

147. Equations of a curve. First fundamental problem. If

any point P which lies on a given curve be given the coordinates

{x, y, z), then the two conditions which define the curve as a

locus will lead to two equations involving the variables x, y,

and z.
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The equations of a curve are two equations in the variables
X, y, and z representing coordinates such that:

1. The coordinates of every point on the curve will satisfy-

both equations.

2. Every point whose coordinates satisfy both equations will

lie on the curve.

If the curve is defined as the locus of a point satisfying two
conditions, the equations of the surfaces defined by each condi-
tion separately may be found in many cases by a Rule analogous
to that on p. 53. These equations will be the equations of the curve.

Ex. 1. Find the equations of the locus of a point whose distance from
the origin is 4 and which is equally distant from the points Pi (8, 0, 0) and
A (0,8,0).

^^
Solution. First step. Let P{x, y, z)

be any point on the locus.

Second step. The given conditions are

(1) P0 = 4, PPi = PP2.

Third step. By (IV), p. 331,

Vx2 + ?/2 + Z^,PO
PPl = V(X - 8)2 + 2/2 + z%

PP2 = Vx2 + (y - 8)2 + z2.

Substituting in (1), we get

(8,0,0)

^ Vx2 + y2 + 2;2 = 4, V(a; - 8)2 + 2/2 + ^2 = Vx"^ + {y - 8)2 + z^

Squaring and reducing, we have the required equations, namely,

x2 + 2/2 + 22 = 16, x-y = 0.

These equations should be verified as in Ex, 1, p, 52.

Ex. 2. Find the equations of the circle lying in the XF-plane whose center

is the origin and whose radius is 5.

Solution. In Plane Geometry the equation of the circle is (Corollary, p. 68)

(2) x^ + y^ = 25.

Regarded as a problem in Solid Geometry we must have two equations

which the coordinates of any point P(x, y, z) which lies on the circle must

satisfy. Since P lies in the XF-plane,

(3) 2 = 0.

Hence equations (2) and (3) together express that the point P lies^m the

XF-plane and on the given circle. The equations of the circle are therefore

x2 + ?y2 = 25, z = 0.
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The reasoning in Ex. 2 is general. Hence

If the equation of a curve in the XY-jplane is known, then the

equations of that curve regarded as a curve in space are the given

equation and « = 0.

An analogous statement evidently applies to the equations of a

curve lying in one of the other coordinate planes.

From Theorem I, p. 340, we have at once

Theorem II. The equations of a line ivhich is parallel to

the X-axis have the form y = constant, z = constant;

the Y-axis have the form z = constant, x = constant;

the Z-axis have the form x = constant, y = constant.

PROBLEMS

1. Find the equations of the locus of a point which is

(a) 3 units above the JTF-plane and 4 units to the right of the FZ-plane.

• (b) 5 units to the left of the YZ-plan.e and 2 units in front of the ZX-plane.

(c) 4 units back of the ZX-plane and 7 units to the left of the FZ-plane.

(d) 9 units below the XY-plane and 4 units to the right of the rZ-plane.

2. Find the equations of the straight line which is

(a) 5 units above the XY-plane and 2 units in front of the ZX-plane.

(b) 2 units to the left of the YZ-plane and 8 units below the JTF-plane.

(c) 3 units to the right of the FZ-plane and 5 units from the Z-axis.

(d) 13 units from the X-axis and 5 units back of the ZX-plane.

(e) parallel to the F-axis and passing through (3, 7, — 5).

(f) parallel to the Z-axis and passing through (—4, 7, 6).

3. Find the equations of the locus of a point which is

(a) 5 units above the XF-plane and 3 units from (3, 7, 1).

Ans. z = 5, x^ + y^ + z^-Gx-Uy -2z + 60 = 0.

(b) 2 units from (3, 7, 6) and 4 units from (2, 5, 4).

Ans. x2 -h ?/2 + ^2 - 6 X - 14 i/ - 12 2; + 90 = 0,

x2 -f- 2/2 -I-
22 _ 4x _ 10 ?/ - 8 2; + 29 ^ 0.

(c) 5 units from the origin and equidistant from (3, 7, 2) and (
— 3, - 7, —2).

Arts. x2 -f- ?/2 -}- z2 _ 25 = 0, Sx + 7 y -\- 2z = 0.

(d) equidistant from (3, 5, — 4) and (— 7, 1, 6), and also from (4, — 6, 3)

and (- 2, 8, 5). Ans. 6x -\- 2y - 5z + 11 =0, 3x-7y-z + 8 = 0.

(e) equidistant from (2, 3, 7), (3, - 4, 6), and (4, 3, - 2).

Ans. 2x-Uy -2z-{-l=:0, x+ly-Sz + 16 = 0.
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4 . What are the equations of the edges of a rectangular parallelepiped whose
dimensions are a, b, and c, if three of its faces coincide with the coordinate

planes and one vertex lies in 0-XYZ ? in 0-XY'Z ? in 0-X'Y'Z ?

5. What are the equations of the axes of coordinates ?

6. The following equations are the equations of curves lying in one of the

coordinate planes. What are the equations of the same curves regarded as

curves in space?

(a) 2/2 = 4a;, (e) x2 + 42 + 6x = 0.

(b) x^ + z^ = 16. (f) y2-z^-4y = 0.

(c) 8x2 - 2/2 = 64. (g) yz^-\-z^-Qy = 0.

(d) 4 22+ 9 2/2 = 36. (h) z2_4a;2 + 82 = 0.

7. Find the equations of the locus of a point which is equally distant from

the points (6, 4, 3) and (6, 4, 9), and also from (— 5, 8, 3) and (— 5, 0, 3), and
determine the nature of the locus. Ans. 2 = 6, y = 4.

8. Find the equations of the locus of a point which is equally distant from

the points (3, 7, — 4), (— 5, 7, — 4), and (— 6, 1, — 4), and determine the

nature of the locus. Ans. x = — 1, y = ^.

148. Locus of one equation. Second fundamental problem.

The locus of one equation in three variables (one or two may be

lacking) representing coordinates in space is the surface passing

through all points whose coordinates satisfy that equation and

through such points only.

The coordinates of points on the surface may be obtained as follows

:

Solve the equation for one of the vai'iables, say z, assume pairs of values of

a; and y, and compute the corresponding values of z.

A rough model of the surface might then be constructed by taking a thin board

for the XF-plane, sticking needles into it at the assumed points (x, y) Avhose

lengths are the computed values of z, and stretching a sheet of rubber over their

extremities.

The second fundamental problem, namely, of constructing the

locus, is usually discarded in space on account of the mechanical

difficulties involved.

149. Locus of two equations. Second fundamental problem.

The locus of two equations in three variables representing coor-

dinates in space is the curve passing through all points whose

coordinates satisfy both equations and through such points only.

The coordinates of points on the curve may be obtained as follows

:

Solve the equations for two of the variables, say x and y, in terms of the third,

z, assume values for z, and compute the corresponding values of x and y.
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150. Discussion of the equations of a curve. Third funda-

mental problem. The discussion of curves in Elementary Ana-

lytic Geometry is largely confined to curves which lie entirely in

a plane which is usually parallel to one of the coordinate planes.

Such a curve is defined as the intersection of a given surface

with a plane parallel to one of the coordinate planes. The method

of determining its nature is illustrated in

Ex. 1. Determine the nature of the curve in which the plane 2 = 4 inter

sects the surface whose equation is y^ + z^ = 4 x.

Solution. The equations of the curve are, by definition,

(1) 2/2 + z2 = 4 X, 2; = 4.

Eliminate z by substituting from the second equation in the first. This gives

(2) *?/'^-4x + 16 = 0, z = 4.

Equations (2) are also the equations of the curve.
'

For every set of values of {x, y, z) which satisfy both of ecLuations (1) will evidently

satisfy both of equations (2), and conversely.

If we take as axes in the plane 2 = 4 the lines O'X' and O'Y' in which the

plane cuts the ZX- and YZ-planes, then the equation of the curve when

referred to these axes is the first of equations (2), namely,

(3) y^ -4tx^\Q = 0.

For the second of equations (2) is satisfied by all points in the plane of X^, O', and Y\
and the first of equations (2) is satisfied by the points in that plane lying on %e curve (3),

because the values of the first two coordinates of a point are evidently the same when
referred to the axes O'X', O' Y', and O'Z as when referred to the axes OX, O Y, and OZ.

The locus of (3) is a parabola (Rule, p. 197) whose vertex, in the plane

z = A, m the point (4, 0) for which p = 2.
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The method employed in Ex. 1 enables us to state the

Rule to determine the nature of the curve in which a plane par-

allel to one of the coordinate planes cuts a given surface.

First step. Eliminate the variable occun^ng in the equation of

the plane from the equations of the plane and surface. The result

is the equation of the curve referred to the lines in which the given

plane cuts the other two coordinate planes as axes.

Second step. Determine the nature of the curve obtained in the

second step by the methods of Plane Analytic Geometry.

PROBLEMS

1. Determine the nature of the following curves and construct their loci.

(a) x2 - 4 ?/2 = 8 z, z = 8. (e) x2 + 4 2/2 + 9 z2 zr 36, ?/ = 1.

(b) x2 + 9?/2 = 9z* z = 2. (f) a;2 - 4?/2 + ^2 = 25, x = - 3.

(c) x2-4?/2 = 4z, 2/ = -2. (g) x2-2/2-4z2 + 6x = 0, x=2.

(d) x2 + ?/2 + z2 = 25, X = 3. (h) 2/2 + z2 - 4 X + 8 = 0, y = 4.

2. Construct the curves in which each of the following surfaces intersect

the coordinate planes.

(a) x2 + 4 2/2 + 16 z2 = 64. (d) x2 + 92/2 = 10 z.

(b) x2 + 4 2/2-16z2 = 64. (e) x2-9 2/2=10z.

(c) x2 - 4 2/2 - 16 z2 = 64. (f) x2 + 4 2/2 - 16 z2 = 0.

3. Show that the curves of intersection of each of the surfaces in problem

2 with a system of planes parallel to one of the coordinate planes are similar

conies. In what cases must'this statement be modified ?

4. Determine the nature of the intersection of the surface x2 + 2/2 + 4 z2= 64

with the plane z = k. How does the curve change as k increas^^ irom 0-

to 4? from — 4 to 0? What idea of the appearance of tiie surface is thus

obtained ?

6. Determine the nature of the intersection of the surface 4x — 2 2/ = 4

with the plane y = k; with the plane z = k'. How does the intersection

change as k or ¥ changes ? What idea of the form of the surface is obtained ?

151. Discussion of the equation of a surface. Third funda-

mental problem.

Theorem III. The locus of an algebraic equation passes through

the origin if there is no constant term in the equation.

The proof is analogous to that of Theorem VI, p. 73.
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Theorem IV. If the locus of an equation is unaffected by chang-

ing the sign of one variable throughout its equation, then the locus

is symmetrical with resj^ect to the coordinateplane from which that

variable is measured.

If the locus is unaffected by changing the signs of two variables

throughout its equation, it is symmetrical with respect to the axis

along which the third variable is measured.

Ifthe locus is unaffected by changing the signs ofall three variables

throughout its equation, it is symmetrical with respect to the origin.

The proof is analogous to tliat of Theorem IV, p. 72.

Rule to find the intercepts of a surface on the axes of coordinates.

Set each pair of variables equal to zero and solve for real values

of the third.

The curves in which a surface intersects the coordinate planes

are called its traces on the coordinate planes. From the first

step of the Rule, p. 345, it is seen that

The equations of the traces of a surface are obtained by succes-

sively setting x = 0, y = 0, and z = in the equation of the surface.

By these means we can determine some properties of the surface.

The general appearance of a surface is determined by considering

the curves in which it is cut by a system of planes parallel to each

of the coordinate planes (Eule, p. 345). This also enables us to

determine whether the sur-

face is closed or recedes to

infinity.

Ex. 1. Discuss the locus of

the equation y^ 4- z'^ = iz.

Solution. 1. Tha surface

passes through the origin since

there is no constant term in

its equation.

2. The surface is sym-

metrical with respect to the

XF-plane, the ZX-plane, and

the X-axis.

For.the locus of the given equation is unaffected by changing the sign of z, of y, or of

both together.
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3. It cuts the axes at the origin only.

4. Its traces are respectively the point-circle y^-\-z^ = and the parabolas

z2 = 4 cc and y^ = 4:X.

5. It intersects the plane x = A: in the curve (Rule, p. 345)

2/2 + 2;2 = 4 A;.

This curve is a circle whose center is the origin, that is, is on the X-axis,

and whose radius is 2 Vfc if A; > 0, but there is no locus if k<0. Hence the

surface lies entirely to the right of the FZ-plane.

If k increases from zero to infinity, the radius of the circle increases from

zero to infinity while the plane x = k recedes from the FZ-plane.

The intersection of a plane z= k or y=k', parallel to the XY- or ZX-plane,

is seen (Rule, p. 345) to be a parabola whose equation is (compare Ex. 1, p. 344)

y2 = 4x-fe2 or z^ = 4:X-k'^.

These parabolas are found to have the same value of p, namely, p = 2,

and their vertices recede from the YZ- or ZX-plane as k or k' increases

numerically.

PROBLEMS

1 . Discuss the loci of the following equations.

(a) x2 + 22 = 4 a;. (f ) X2 + 2/2 - 22 = 0.

(b) x2-fy2 + 422 = 16. (g) X2 - 2/2 _ 22 ^ 9.

(C) X2 + ?/2 - 4 Z2 = 16. (h) x2 + 2/2-2;2 + 2xy =
(d) 6x + 4?/+3z = 12. (i) x + y-6z = e.

(e) Sx + 2y + z = 12. (j) 2/2 + 22 = 25.

2. Show that the locus of Ax + By + Cz + D — is a. plane by considering

its traces on the coordinate planes and the sections made by a system of

planes parallel to one of the coordinate planes.

3. Find the equation of the locus of a point which is equally distant from

the point (2, 0, 0) and the FZ-plane and discuss the locus.

Ans. 2/2 -1- 22 _ 4 X + 4 = 0.

14.

Find the equation of the locus of a point whose distance from the

point (0, 0, 3) is twice its distance from the XF-plane and discuss the locus.

Ans. x2 + 2/2- 3 22-62 + 9 = 0.

[

5. Finj^ the equation of the locus of a point whose distance from the point

(0, 4, 0) is three fifths its distance from the ZX-plane and discuss the locus.

Ans. 25x2 + 16 2/2 + 2522 -200?/ + 400 = 0.



CHAPTER XVIII

THE PLANE AND THE GENERAL EQUATION OF THE
FIRST DEGREE IN THREE VARIABLES

152. The normal form of the equation of the plane. Let

ABC be any plane, and let ON be drawn from the origin per-

pendicular to ABC at D. Let the positive direction on ON he

from O toward N, that is, /ro7^ the origin toward the plane, and

denote the directed length OD by p and the direction angles of

ON (p. 330) by a, (3, and y. Then the position of any j^^ci.ne

is determined by given positive values of p, a, (3, and y.

Conversely, a given plane determines a single set of positive values of p, a, ^,

and 7 unless p = 0. lip= 0, the positive direction on ON becomes meaningless.

Ifp — 0, we shall suppose that ON is directed upward, and hence cos 7 > since
It

7 < — • If the plane passes through OZ, then ON lies in the XF-plane and
2

It
cos 7 = 0; in this case we shall suppose ON so directed that /3 < 17 and hence

cos /3 > 0. Finally, if the plane coincides with the TZ-plane, the positive direction

on ON shall be that on OX.

348
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Theorem I. Normal form. TJie equation of a plane is

(I) X cos a + 2/ cos ^ + 5! cos y — jp = O,

where p is the perpendicular distance from the origin to the plane,

and a, ^, and y are the direction cosines of that perpendicular.

Proof Let P(x, y, z) be any point on the given plane ABC.

Project OEFP and OP on the line ON. By Theorem II, p. 328,

proj. of OE + proj. of EF + proj. of FP = proj. of OP.

Then by Theorem I, p. 328, and by the definition, p. 29,

X cos a + y cos ^ + z cos y = p.

Transposing, we obtain (I). q.e.d.

Corollary. The equation of any plane is of the first degree in

X, y, and z.

153. The general equation of the first degree, Aoc + By + Cz

+ 1> = 0.

Theorem II. (Converse of the Corollary.) The locus of the gen-

eral equation of the first degree in x, y, and z,

(II) Aic-\- By -\-Cz + D = 0,

is a plane.

Proof We shall prove the theorem by showing that (II) may'

be reduced to the form (I) by multiplying by a proper constant.

To determine this constant, multiply (II) by k, which gives

(1) kAx + kBy + kCz + kD = 0.

Equating corresponding coefficients of (1) and (I), we get

(2) kA = cos a, kB = cos (3, kC = cos y, kD = —p.

Squaring the first three of equations (2) and adding,

k^(A^ -\-B^ -{- C^) = cos^a + cos^^ + cos^y = 1.

(by (III), p. 330)

(3) .\ k= ^ -
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From the last of equations (2) we see that the sign of the

radical must be opposite to that of D in order that p shall be

positive.

If Z) = 0, then p = 0; and from the third of equations (2) the sign of the radical

must be the same as that of C, since when p = cos 7 > 0. If D = and C = 0,

then p—0 and cos 7=0 ; and from the second of equations (2) the sign of the radical

must be the same as that of B, since when p — and cos 7 = cos /3 > 0.

Substituting from (3) in (2), we get

COS « = , ) COS B = i

C -D
COS y

We have thus determined values of a, /?, y, and p such that (I)

and (II) have the same locus. Hence the locus of (II) is a

plane. q.e.d.

Corollary I. The direction cosines of a normal to the plane (II)

are respectively A, B, and C each divided hy ± Vvl^ -\- B'^ -\- C^.

The sign of the radical is opposite to that of D, the same as that of

C if D = 0, the same as that of B if C = D = 0, or the same as

that of A ifB = C = D = 0.

Corollary II. To reduce the equation of a plane to the normal

form divide its equation hy zt V^^ -\- B'^ -\- C^, choosing the sign of

the radical as in Corollary I.

Corollary III. Two planes whose equations are

Ax + By + Cz + D = 0, A'x + B'y -i- C'z -[- D' =
are parallel when and only when the coefficients of x, y, and z are

proportional, that is,

A__B__C^
A'~B'~C''

For from Corollary I the direction cosines of a normal to (II) are proportional

to A, B, and C, and two planes are evidently parallel when and only when their

normals are parallel (Corollary, p. 335)

.

Corollary IV. Two planes are perpendicular when and only when

AA' ^BB^ ^- CC = 0.

This follows from Corollary I by the Corollary on p. 335, since two planes are

perpendicular when and only when their normals are perpendicular.
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Corollary V. A plane whose equation has the form

Ax -{- By -\- D = is perpendicular to the XY-plane;

By -\- Cz -{- D z= is perpendicular to the YZ-plane;
Ax-\- Cz -\- D = (i is perpendicular to the ZX-plane.

That is, 4f one variable is lacking, the plane is perpendicular to

the coordinate plane corresponding to the two variables which occur

in the equation.

For these planes are respectively perpendicular to'the planes 2; = 0, x = 0, and

y = by Corollary IV.

Corollary VI. A plane whose equation has the form

Ax -^ D = is perpendicular to the axis of x;

By + D = is perpendicular to the axis of y

;

Cz -{- D = is perpendicular to the axis of z.

That is, if two variables are lacking, the plane is perpendicular to

the axis corresponding to the variable which occurs in the equation.

For by Corollary I two of the direction cosines of the normal to the plane are

zero and hence the normal is parallel to one of the axes and the plane is therefore

perpendicular to that axis.

PROBLEMS

1. Eind the intercepts on the axes and the traces on the coordinate planes

of each of the following planes and construct the figures.

(a) 2ic + 3?/ + 4z - 24 = 0. (e) 5a; - 7y - 35 = 0.

Xb) Tx-Sy + 2-21=0. (f) 4X + 32; +36 = 0.

^^
(c) 9x-7y-9z + 6S = 0. (g) 5?/ - 82 - 40 = 0.

(d) 6x + 4y -2+ 12 = 0. (h) 3x + 52 + 45 = 0.

2. Find the equations of the planes and construct them by drawing their

traces, for which

Ans. V2 X + 2/ + z - 12 = 0.

Ans. x + V2y-2; + 16 = 0.

Ans. 6x-2y + Sz-2Sz=0.

Ans. 2x + y + 22 + 6 = 0.

,p = e

(b)a = ?^,^ = 5^,.=
It

= 3'^

cos a cos/3 C0S7
^'^

6 - -2 3 '

1> = 4,

,,, cos or cosjS cos 7
(^) _2 = -l = -2' p = 2,
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3. Find the equation of the plane such that the foot of the perpendicular

from the origin to the plane is the point

(a) (-3,- 2, a). Ans. 3x - 2 ?/ - 62 + 49 = 0.

(b) (4, 3, - 12). Ans. 4 x + 3 ?/ - 12 z - 169 = 0.

(c) (2, 2, - 1). Ans. 2x + 2y -z-9 = 0.

4. Reduce the following equations to the normal form and find a-, j8, 7,

and p.

(a) 6x-Sy + 2z-7 = 0. Ans. cos-if, cos-i(- f), cos-if, 1.

(b) x-V2y + z + 8 = 0. Ans. ?^, j, ^, 4.
o 4 o

(c) 2x-2y -z + 12 = 0. Ans. cos-i(- |), cos-if, cos-ii, 4.

(d) y-z + 10 = 0. Ans. -, — , -, 5V2.

(e) Sx-{-2y -6z = 0. Ans. cos-i(- f), cos-i(-f), cos-if, 0.

5

.

Find the distance from the origin to the plane 12x — 4?/ + 3z — 39 = 0.

Ans. 3.

6. Find the distance between the parallel planes 6x + 2y — Sz — 6Pi =
and6x + 22/-32; + 49 = 0. Ans. 16.

7. What may be said of the position of the plane (I) if

(a) cos a = 0? (c) cos 7 = ? (e) cos j3 = cos 7 = ?

(b) cos /3 = ? (d) cos « = cos/3 = ? (f ) cos 7 = cos or = ?

8. What are the equations of the traces on the coordinate planes of the

plane Ax + By + Cz -{ D = 0?

9. Show that the following pairs of planes are either parallel or perpen-

dicular.

J2x-hBy-ez + S = 0, fex-Sy + 2z-1 =0,
W \6x+l^y-lSz-6 = 0.

^^' \sx + 2y-6z-\-28 = 0.

3x-5?y-4z + 7 = 0, ,^,^
(Ux - 7 y - 21 z - 50 = 0,

3z + 12 = 0.

fSx-6y-4z + 7 = 0, ri4x-7;
^ ^ \6x + 2y + 2z-7 = 0. ^ ^ \ 2x-y

10. For what values of a, )3, 7, and p will the locus of (I) be parallel

to the XF-plane ? the YZ-plane ? the ZX-plane ? coincide with each of

these planes ?

11. For what values of a, ^, 7, and p will the locus of (I) pass through

the X-axis ? the F-axis ? the Z-axis ?

12. Show that the coordinates of the point of intersection of three planes

may be found by solving their equations simultaneously for x, y, and z.
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13. Find the coordinates of the point of intersection of the planes

x-{-2y -{ z = 0, X -2y -8 = 0, and x + y-\-z-S = 0.

Ans. (2, - 3, 4).

14. Show that the plane x + 2y — 2z — 9 = passes through the point

of intersection of the planes x + y-^z — 1 = 0, x—y — z — l = 0, and

2xi-Sy -8 = 0.

15. Show that the four planes x + y + 2z — 2 = 0, x + y — 2z -\- 2 = 0,

X — y + 8 = 0, and 3x — y-2z + 18 = pass through the same point.

16. Show that the planes 2x — y-\-z + S = 0, x — ?/ + 4z = 0, Sx + y
-2z + 8 = 0,^x-2y + 2z-5 = 0,9x + Sy-6z-T=0,a,nd7x-7y
-\- 28z — 6 = bound a parallelopiped.

17. Show that the planes Qx — Sy + 2z = i, Sx + 2y -6z =10, 2x + 6y
+ 32 = 9, Sx + 2y -6z = 0, 12x + 36y + 18z-ll = 0, and I2x -6y
+ 42 — 17 =0 bound a rectangular parallelopiped.

18. Show that the planes x+2y— z= 0, y+1 z—2=0, Xj2)f—z—A=0,
2x + y — 8 = 0, and 3x + 3y — z — 8 = bound a quadranaj^lar pyramid.

19. Derive the conditions for parallelism of two plane^'from the fact that

two planes are parallel if their traces are parallel lines. /
/

154. Planes determined by three conditions. If three of the

coefficients of

(1) . Ax+By -{-Cz^D =

are known in terms of the fourth, then the plane is completely

determined, for if their values be substituted in (1), the equation

may be divided by the fourth coefficient. Three conditions which

the plane satisfies will lead to three equations in the coefficients

which may be solved for three of the coefficients in terms of the

fourth. Hence a plane is, in general, determined by three con-

ditions. Its equation may be obtained by a Rule analogous to

that on p. 93, using equation (1) in the first step.

Thus to find the equation of a plane passing through three points we proceed

as in Ex. 1, p. 93, using equation (1) in the first step. In the second step three

equations involving A, B, C, and 7) are obtained, which may be solved for three

of these coefl&cients in terms of the fourth.
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Ex. 1. Find the equation of the plane which passes through the point

Pi (2, -7, I) and is parallel to the plane 21 ic - 12 ?/ + 28 z - 84 = 0.

Solution. Let the equation of the required plane be

(2) Ax + By-{-Cz + D = 0.

Since Pi lies on (2),

(3) 2A-7B + IC + D = 0,

and since (2) is parallel to the given plane (Corollary III, p. 350),

A _ Ji^ _ C^

21
~ -12" 28*(4)

Solving (3) and (4) for J., J5, and D in terms of C, we get

A = ^C, B = -^C, D=-6C.-

Substituting in (2), we obtain

lCx-^Cy + Cz-6C = 0.

Clearing of fractions and dividing by C,

21 X - 12 2/ + 28 z - 168 = 0.

PROBLEMS

1. Find the equation of the plane which passes through the points

(2, 3, 0), (-2, -3, 4), and (0, 6, 0). Ans. Sx + 2y -{- 6z -12 = 0.

\y 2. Find the eqiiation of the plane which passes through the points
"

1, i, -1), (-2, -2, 2), and (1, -1, 2). Ans. x-Sy -2z = 0.

3. Find the equation of the plane which passes through the point

(3, — 3, 2) and is parallel to the plane Sx — y + z — 6 = 0.

Ans. 3x — y-\-z — 14: = 0.

\)
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4. Find the equation of the plane which passes through the points

(0, 3, 0) and (4, 0, 0) and is perpendicular to the plane 4x*— 6y — z = 12.

Ans. Sx + iy -12z-l2 = 0.

5. Find the equation of the plane which passes through the point

(0, 0, 4) and is perpendicular to each of the planes 2x — Sy = b and

x-iz = 3. Ans. 12a: + 82/ + 32 -12 = 0.

6. Find the equation of the plane whose intercepts on the axes are

3, 5, and 4. Ans. 20x + 12?/ + 15 2 - 60 = 0.

\/t. Find the equation of the plane which passes through the point

(2, — 1, 6) and is parallel to the plane a>— 2^ — 32 + 4 = 0.

Ans. x-2y-3z + 14: = 0.

8, Find the equation of the plane which passes through the points

(2, —1, 6) and (1, -2, 4) and is perpendicular to the plane x— 2?/ — 2 2+ 9=0.

Ans. 2x + 4y-32; + 18 = 0.

9. Find the equation of the plane w^ose intercepts are —1, —1, and 4.

Ans. 4x + 42/-2 + 4=0.

10. Find the equation of the plane which passes through the point

(4, —2, 0) and is perpendicular to the planes x+y—z=0 and 2x—4y+ z=5.

Ans. x-\-y + 2z-2 = 0.

11. Show that the four points (2, -3,4), (1,0,2), (2, -1,2), and

(1, — 1, 3) lie in a plane.

12. Show that the four points (1, 0, -1), (3, 4, -3), (8, -2, 6), and

(2, 2, — 2) lie in a plane.

13. Find the equation of the plane which is perpendicnlai" to the line

joining (3, 4, — 1) to (5, 2, 7) at its middle point. 4iP^ '*
\ .

Ans. x ^'t^ 2 -^ 13 = 0.

^'^ i \
14. Find the equations of the faces of the tetraedraiBf^hose v^tices^rfe'

the points (0, 3, 1), (2, - 7, 1), (0, 5, - 4), and (2, 0, l).''

Ans. 25x + 52/ + 22 = 17, 5x- 22 = 8, 2 = 1, 15x + lOy + 42 = 34.

15. The equations of three faces of a parallelepiped are x — 4?/ = 3,

2x-2/ + 2 = 3, and 3x + y-22 = 0, and one vertex is the point (3, 7, - 2).

What are the equations of the other three faces ?

' Ans. x-42/ + 25 = 0, 2x-?/ + 2 + 3 = 0, 3x + ?/-22 = 20.

16. Find the equation of the plane whose intercepts are a, 6, c

y

b
Ans. - + - + -

V-
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17. What are the equations of the traces of the plane in problem 16?

How might these equations have been anticipated from Plane Analytic

Geometry ?

18. Find the equation of the plane which passes through the point

-Pi {^ii 2/i5 Zi) and is parallel to the plane AiX + Biy + dz + Di = 0.

Ans. Ai (X - Xi) + Bx{y - yi) + Ci (2 - Zi) = 0.

19. Find the equation of the plane which passes through the origin and

-Pi i^u 2/1? ^1) a-nd is perpendicular to the plane AiX + Biy + CiZ + Di = 0.

Ans. {Bizi - Ciyi)x + (CiXi - AiZi) y + {AiVi - BiXi) z = 0.

155. The equation of a plane in terms of its intercepts.

Theorem III. If a, b, and c are the intercepts of a plane on the

X-j Y-, and Z-axes respectively, then the equation of the plane is

(III) ^ + ^ + ^ = 1. ?

Proof By Theorem II the equation of any plane has the form

(1) Ax-\-Bij -\-Cz^D = 0.

By the Rule, p. 346, we get

D

^ D
whence A= 5 B= — —i C=

a G

Substituting in (1), dividing by — D, and transposing, we

obtain (III)- q.e.d.

Equation (III) should be compared with (VI), p. 96.

156. The distance from a plane to a point. The positive direc-

tion on any line perpendicular to a plane is assumed to agree with

that on the line drawn through the origin perpendicular to the

plane (p. 348). Hence the distance from a plane to the point Pi

is positive or negative according as Pi and the origin are on oppo-

site sides of the plane or not.

If the plane passes through the origin, the sign of the distance from the plane

to Pi must be determined by the conventions for the special cases on p. 348.

D — F

a "-T



THE PLANE 357

Theorem IV. The distance d from the plane

X cos cc -\- y cos y8 + ^ cos y — p =

to the point P^ (x-i, yi, z-^) is given by ^

(IV) ci = Xi cos a + 2/1 cos p + z^cosy — p.

Proof. Projecting OP^ on ON, we evidently get jo + d.

Projecting OE, EF, and FP^ on ON, we get respectively (Theo-

rem I, p. 328) Xi cos a, 2/1 cos (3, and Zi cos y.

Then by Theorem II, p. 328,

p -\- d z= Xi cos a + 2/1 cos y8 H- ^1 cos y.

.-. d = XiGOSa -\- 2/1 cos ft
-\- Zi cos y —p. Q.E.D.

Prom Theorem lY we have at once the

Rule to find the distance from a given plane to a given point.

First step. Reduce the equation of the plane to the normalform
{Corollary II, p. S50).

Second step. Substitiite the coordinates of the given point in the

left-hand side of the equation. The result is the required distance.

157. The angle between two planes. The plane angle of one

pair of diedral angles formed by two intersecting planes is evi-

dently equal to the angle between the positive directions of the

normals to the planes. That angle is called the angle between the
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Theorem V. The angle 6 hetiveen two planes

is given by

^7ie si(7W5 o/ ^Ae radicals being chosen as in Corollary I, p. 350.

Proof. By definition the angle between the planes is the angle

between their normals.

By (4), p. 350, the direction cosines of the normals to the planes

are

cos oTi = ,

"''
? cos cr.

cos Pi = .

^
? cos ^2 =

^ii

±^A, + c\'

±Va{' + B,'

c.

+ Ci^

±vi;' + B, '^ci

±Va,'+B^''^c^
C,

cos yi
=

,
? COS 72 .

By (V)^ P- 334, we have

COS ^ = COS «i COS CTs + COS ^1 COS ^2 + COS yi COS ya.

Substituting the values of the direction cosines of the normals,

we obtain (V). q.e.d.

PROBLEMS

1. Find the distance from the plane

(a) 6x - 3 ?/ + 2 2: - 10 = to the point (4, 2, 10). Ans. 4.

(b) X + 2 2/ - 2 z - 12 = to the point (1, - 2, 3). Ans. - 7.

(c) 4 X 4- 3 ?/ + 12 2; + 6 = to the point (9, -1,0). Am. - 3.

(d) 2x - 5?/ + 3 2; - 4 = to the point (-2, 1, 7). Ans. y% V38.

2. Do the origin and the point (3, 5, — 2) lie on the same side of the

plane 7x — 2/ — 32 + 6 = 0? An&. Yes.

3. Find the distance from the plane ^x + % + Cz + D = to the point

-Pi(a^i, 2/1, ^i)- ^^^ Axx + Byx + Czx + D
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4. Find the locus of points which are equally distant from the planes

2x-y -2z-3 = 0and6x-Sy + 2z-\-4i = 0.

Ans, 32x-16y-82-9 = 0.

5. Find the length of the altitude of the tetraedron whose vertices are

(0, 3, 1), (2, - 7, 1) (0, 5, - 4), and (2, 0, 1) which is drawn from the first

vertex. Ans. ^^V29.

6. Find the volume of the tetraedron whose vertices are (3, 4, 0),

(4, - 1, 0), (1, 2, 0), and (6, - 1, 4). Ans. 8.

7. Find the angles between the following pairs of planes.

(a) 2x + y -2z-9 = 0,x-2y -\-2z = 0. Ans. cos-i(-f).

(b) x-\-y-4.z = 0,Sy-3z + 7 = 0. Ans. cos- 1 1.

(c) ^x + 2y -{-4z-7 = 0, 3x~4y = 0. Ans. cos-i(-^2^).

{d)2x-y-^z = 7,x-\-y + 2z = ll. . Ans. -.
o

8. Show that the angle given by (V) is that angle formed by the planes

which does not contain the origin.

9. Find the vertex and the diedral angles of that triedral angle formed by

the planes x + y + z = 2^x — y — 2z=^^ and 2x-\-y — z = 2\n which the

origialies. ^^ ^^_ _^^ 2), cos-.iVi, ^, cos->(-l%^).
o o \ 3 /

^ 10. Find the equation of the plane which passes through the points

(0, —1, 0) and (0, 0, — 1) and which makes an angle of — with the plane

y + z = l. r- ^
Ans. ±V6x + y + 2; + l = 0.

11. Find the locus of a point which is 3 times as far from the plane

Zx — Qy — 2z = Q as from the plane 2x — y + 2z = ^.

Ans. 17x-13y + 12z-63 = 0.

158. Systems of planes. The equation of a plane which satis-

fies two conditions will, in general, contain an arbitrary constant,

for it takes three conditions to determine a plane. Such an equa-

tion therefore represents a system of planes.

Systems of planes are used to find the equation of a plane

satisfying three conditions in the same manner that systems of

lines are used to find the equation of a line satisfying two condi-

tions (Eule, p. 114).
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Theorem VI. The system ofplanes parallel to a given plane

Ax+Bij -^Cz + D^^)
is represented by

(VI) Ax + By -\-Cz-]-h = 0,

where k is an arbitrary constant.

Hint. Show that all of the planes (VI) are parallel to the given plane by Corollary III,

p. 350, and that every plane parallel to the given plane is represented by (VI), by finding

a value of k for which (VI) passes through a given point P^.

Theorem VII. The system of planes passing through the line of

intersection of two given planes

A^x + B^y + C^z + Z)i = 0, A^x + B^ + Cg^ + A =

is represented by

(VII) A^oc + Biu + C^z + I>i + A; {A^x + B^y + C^z + D^) = O,

where k is an arbitrary constant.

Hint. Show that (VII) passes through any point on the intersection of the given planes,

and find a value of k for which (VII) passes through any point not on the intersection.

Theorem VIII. If the equations of the planes in Theorem VII are

in normal form, then — k is the ratio of the distances from those

planes to any point in (^VII).

Hint. Let P-^ (a;,, y^, z^) be any point on the plane

X cos a^ 4- 2/ cos Pi + s cos y^- Pi + k (x cos a^ + y cos ^2 + ^ cos yg - ^2)= 0.

Then x^ cos a^ + y^ cos ^^ + z^ cos yi - i?i + k (x-^ cos a^ + 2/1 cos p^ + ^1 cos yj — Pz)= ^^

Solve for A; and interpret the result by Theorem IV, p. 357.

Corollary. The equations of the planes bisecting the anglesfor7ned

by two giveii planes are found by reducing their equations to the

normal form and adding and subtracting them.

The plane (VII) will lie in the external or internal angles

(p. 121) formed by the given planes according as k is positive or

negative.

The equation of a system of planes which satisfy a single con-

dition must contain two arbitrary constants. One of the most

important systems of this sort is given in
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Theorem IX. The system ofplanes passing through a given point

Pi (xi, )/i, Zi) is represented by

(IX) A(oo-aOi) + B(y-yi)-\-C{z-Zi)=0.

Proof. Equation (IX) is the equation of a plane which'passes

through Pi, for the coordinates of Pi satisfy (IX).

If any plane whose equation is

Ax -\- By -{- Cz -\- D =

passes through Pj, then

Axi + %i + C^, + p = 0.

Subtracting, we get (IX). Hence (IX) represents all planes

passing through Pi. q.e.d.

Equation (IX) contains two arbitrary constants, namely, the ratio of any two
coefficients to the third.

PROBLEMS

1. Determine the vakie of k such that the plane x-\-ky — 2z — ^ = shall

(a) pass through the point (5, — 4, — 6). Ans. 2.

(b) be parallel to the plane 6a; — 2?/ — 12 2 = 7, Ans. — \.

(c) be perpendicular to the plane 2x — 42/4-2 = 3. Ans. 0.

(d) be 3 units from the origin. Ans. ± 2.

(e) make an angle of — with the plane 2x — 2y -\- z — 0. Ans. —
f
V35.

o

2. Find the equation of the plane which passes through the point (3, 2, — 1)

and is parallel to the plane 7 x — y + z = 14.

Ans. 7x — y-^z — IS = 0.

3. Find the equation of the plane which passes through the intersection

of the planes 2x + y — i = and 2/ + 2 z = and which (a) passes through

the point (2, — 1, 1); (b) is perpendicular to the plane Sx -\- 2y — Sz = 6.

Ans. (a) cc + y + 2 -2 = 0; (b) 2x -f 3?/ + 42 - 4 = 0.

4. Find the equations of the planes which bisect the angles formed by the

planes 2x — y + 2z = and x-\-2y — 2z = 6. ^
Ans. 3x + 2/-6 = 0, x-3y + 4z + 6 = 0.

5. Find the equations of the planes passing through the intersection of the

planes 2x + y — z = 4: and x — y -\-2z = which are perpendicular to the

coordinate planes. Ans. 5ic + y = 8, 3x + z = 4, 3?/ — 52=4,
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6. Find the equations of the planes which bisect the angles formed by the

planes 6x — 2y — 3z = and ix-\-Sy — ISz = 10, and verify by means of (V).

7. Find the equation of the plane passing through the intersection of the

planes AiX + Biy + C12; + Di = and A^x + ^22/ + C22; + A = which
passes through the origin.

Arts. (JliDg - A2B1) X + {B1B2 - A^Bi) y + (CiA - C2B1) z = 0.

8. Find the equations of the planes which bisect the angles formed by the

planes ^ix + Biy + Ciz + Di = and A^x + Biy + C^z + D2 = 0.

Aix + Biy + Ciz + Di _ A^x + Biy + C^z + B^
-a.7lS. . = — ± —

•

V^i2 + 5^2 + Ci^ VvlaS + ^a^ + C22

9. Find the equations of the planes passing through the intersection of

the planes AiX + B^y 4- C\Z + Di = and A^x + B^y + C2Z + I>2 = which

are perpendicular to the coordinate planes.

Ans. (^iBg - AiBx) y - (Ci^2 - C^Ai) z + A^B^ - A^Bi = 0,

{A^Bi - A2B{)x - {B1C2 - B2C1) z - {B1B2 - B2B1) = 0,

{C1A2 - C2Ai)x - {B1C2 - B2Ci)y + C1B2 - C2B1 = 0.

10. Find the equation of the plane which passes through Pi (xi, yi, Zi)

and is perpendicular to the planes

Aix + Biy 4- Ciz + X)i = and A2X + -B22/ + C^z + D2 = 0.

Ans. {BiG2-B2Ci){x-Xi)+{CiA2-C2Ai){y-yi) + {AiB2-A2Bi){z-Zi)=0.



CHAPTER XIX

THE STRAIGHT LINE IN SPACE

159. General equations of the straight line. A straight line

may be regarded as the • intersection of any two planes which

pass through it. The equations of the planes regarded as simul-

taneous are the equations of the line of intersection, and hence

(Corollary, p. 349)

Theorem I. The equations of the straight line are of the first

degree in x, y, and z.

Conversely, the locus of two equations of the first degree is

a straight line unless the planes which are the loci of the separate

equations are parallel. Hence, by Corollary III, p. 350, we have

Theorem II. The locus of two equations of the first degree^

^ ^ \A^x^B^y-\-C^z + D^ = 0,

is a straight line unless the coefficients ofx, y, and z are proportional.

To plot a straight line we need to know only the coordinates of two points on

the line. The easiest points to obtain are usually those lying in the coordinate

planes, which we get by setting one of the variables equal to zero and solving for

the other two. If a line cuts but one of the coordinate planes, we get only one point

in this way, and to plot the line we draw a line through that point parallel to the

axis which is perpendicular to that plane.

The direction of a line is known when its direction cosines are

known. The method of obtaining these is illustrated in

Ex. 1. Find the direction cosines of the line whose equations are

3x + 2y-2;-l=:0, 2x-y + 22;-3 = 0.

Solution. Let the direction cosines of the line be cos a, cos j9, and cos y.

The direction cosines of the normals to the planes in which the line lies

are respectively (Corollary I, p. 350)

3 2 __^ ^^^2 _ 1 2

Vli' Vli VTi 3 3 3

363
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Since the intersection of the two planes is perpendicular to the normals to

both, we have (Theorem VI, p. 335)

o 2 1 2 12—izz COS a + —^= cos j3 =z cos 7 = 0, - cos (^^ — ~ cos i3 + - cos 7 = 0.

Vl4 Vl4 Vl4 3 3 3

Solving for cos /3 and cos 7 in terms of cos a, we get

cos j8 = — I cos a, cos 7 = — | cos a,

3cos/3 3 cos 7
and hence cos a = — = — •

Dividing by 3, the least common multiple of the numerators, we get

cos a _ cos /3 _ cos 7

3 ~ - 8
~ -7

*

Then by the Corollary, p. 331,3^-8 -7
cos p = ;

—

J cos 7
±Vl22 ±Vl22 ±Vl22

The line will be directed downward or upward according as the positive

or negative sign of the radical is chosen.

The method is general and may be formulated as the

Rule tofind the direction cosines ofa line whose equations are given.

First step. Find the direction cosines of the 7iormals to the planes

in which the line lies (^Corollary I, p. 350).

Second step. Find the conditions that the given line is perpen-

dicular to the normals in the first step (^Theorem VI, p. S35) and

solve for two of the direction cosines of the line in terms of the third.

Third step. Express the results of the third step as a continued

proportion and apply the Corollary, p. 331.

Ex. 2. Find the direction cosines of the line whose equations are

4x + 3z-10 = 0, 4a;-2y + 3z-l = 0.

Solution. First step. The direction. cosines of the normals to the given

planes are
4 3,4 2 3

0, - and —=, --=^ —=
5 5 V29 V29 V29

Second step. If the direction cosines of the line are cos a, cos jS, and cos 7,

then

- cos a + - cos 7 = 0, ——: cos a —=. cos p -\—~= cos 7 = 0,
5 5 V29 V29 V29

and hence cos 7 = — | cos a, cos ^ = 0.
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COS Ct COS 'V

Third step. From these equations ——- = , cos /3 = 0, and hence
3 — 4

cos a, cos 13, and cos 7 are proportional to 3, 0, and —4. Then (Corollary,

P- ^'^^^'
cosa: = ±|, cosi8 = 0, cos7 = :f|.

The line will be directed downward or upward according as the upper or

lower signs are used.

Theorem III. If a, ^, and y are the direction cosines of the line

{II), then

cos a cos p cos y

This is proved by the ahove Rule without carrying out the last part of the third

step.

PROBLEMS

1. Find the points in which the following lines pierce the coordinate planes

and construct the lines.

(a) 2a: + 2/-z = 2, x-y + 2z = 4. (c) x + 2y = 8, 2a;-4y = 7.

(b) 4x + 3?/-62 = 12, 4x-3y = 2. (d) y + z = 4, x - ?/ + 2z = 10.

2. Find the direction cosines of the following lines.

(a) 2x-2/ + 2z = 0, x+ 22/-22; = 4. _
Ans. ± 6^3 V65, T g'^V^, T rV^65.

(b) x + 2/ + z = 5, x-2/ + z = 3. Ans. ± i V2, 0, T i ^2.

(c) 3x + 2y-z = 4, x-2y-22; = 5. Ans. ± /^ V5, :f_l V5, ± ^s^ V5.

(d) X + 2/ - 32; = 6, 2 X - 2/ + Sz = 3. Ans. 0, ± tV VlO, ± yV VlO.

(e) X + ?/ = 6, 2 X - 3 z = 5. Ans. ± ^V V22, T ^h^/^, ± jV^^-
(f) y + 3z = 4, 32/-5z = l. Ans. ±1,0,0."

(g) 2x-3?/ + z = 0, 2x-3i/-2z = 6. _
Ans. ± x^a

Vl3, ± fV Vi3, 0.

(h) 5x- 14z- 7 =0, 2x + 7z = 19. ^ns. 0, ± 1, 0.

3. Show that the following pairs of lines are parallel and construct the

lines.

(a) 2?/ + 2: = 0, 3?/ - 4z = 7 and 5?/ - 2z = 8, 4?/ + 11 z = 44.

(b) x + 2?/-z = 7, 2/ + 2;- 2x = 6 and 3x + 6?/ - 3z = 8, 2x- ?/ - z = 0,

(c) 3x + z = 4, 2/ + 2z=:9 and 6x-2/ = 7, 3?/+.6z = l.

4. Show that the following pairs of lines meet in a point and are

perpendicular.

(a) x4-22/ = l, 2y — z = l and x — y = l,x — 2z = 3.

(b) 4x-fy-3z + 24 = 0, z = 5 and x + y + 3 = 0, x + 2 = 0.

(c) 3x + ?/-z = l, 2x-z = 2 and 2x-2/+2z = 4, x-?/ + 2z = 3.
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6, Find the angles between the following lines, assuming that they are

directed upward or in front of the ZJT-plane.

(a) X

(b) X

y — z = 0, y-^z = and x — y = l, x — Sy + z = 0. Ans.

2y + 2z = l,x-2z = l and 4x + 3y z-\-l=0,2x+Sy = 0.

Ans. cos-i^f.

(c) x-2y -\-z = 2,2y-z = l Siud x - 2y -^ z'= 2, x - 2y + 2 z = 4.

Ans. cos-ii.

6. Find the equations of the planes through the line

x-\-y — z = 0, 2x — y-\-Sz = 6

which are perpendicular to the coordinate planes.

Ans. 3x + 2z = 5, 3y^5z-{-6 = 0, 5x + 2y = 5.

7. Show analytically that the intersections of the planes x — 2y — z = Z

and 2x — 4y — 2z = 6 with the plane x + y — Sz = are parallel lines.

8. Verify analytically that the intersections of any two parallel planes

with a third plane are parallel lines.

160. The projecting planes of a line. The three planes passing

throngh a given line and perpendicular to the coordinate planes

are called the projecting planes of the line.

If the line is perpendicular to one of

the coordinate planes, any plane con-

taining the line is perpendicular to that

plane. In this case we speak of but

two projecting planes, namely, those

drawn through the line perpendicular

to the other coordinate planes.

If the line is parallel to one of the

coordinate planes, two of the projecting

~j^ planes coincide.

By Theorem VII, p. 360, the

equation of any plane through

the line

(1) A^x + B^y + C^z 4- Z)i = 0, A^x -f B^y -^ C^z + D^ =

has the form

(2) (Ai + kA^) ^ + (5i + kB^) 2/ 4- (Ci + A^Cs) ^ + (A + kD^) = 0.

If (2) is to be perpendicular to the ZF-plane, z = 0, then

(Corollary IV, p. 350) C, + kC^ = 0, whence k = --^- Substi-

tuting in (2) and reducing, we get

(3) (C1J2 - C^A,)x - (B,C, - B,C{)7j + CiA - C2A = 0.
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Similarly, if (2) is perpendicular to the YZ- or ZX-plane, it

becomes

(4) (yliZ^a - A^B^) y - (C^A^ - C^A{) z + AJ)^ - A^D, = 0,

(5) (A,B^ - A^B,) X - (B,C^ - B^C^) z - (B^D^ - B^D,) = 0.

Equations (3), (4), and (5) are the equations of the projecting

planes of the line (1), and any two of

them may be used as the equations

of the line.

If ^1^2 - A^Bi-^ 0, that is, if the

-^ line is not parallel to the ZF-plane

(Theorem III), equations (5) and (4)

may be written in the forms

X = mz -\- a, y = nz -\- b.

n,

/

If A^B^ — J 2^1 = and B^C^ — B^C^^^ 0, that is, if the line is

parallel to the ZT-plane but

is not parallel to the F-axis,

equations (5) and (3) may be

written in the forms

z = a, ?/ = mx + b.

If A^B^ — A^Bi = and

BiC^ — B2Ci = 0, that is, if the

line is parallel to the F-axis,

equations (4) and (3) may be

written in the forms

z = a, X = b.

Hence we have

Theorem IV. The equations of a line which pierces the XY-plane,

or which is parallel to the XY-plane but not to the Y-axis, or

which is parallel to the Y-axis, may be put in the following forms

respectively

:

(oc = mz-\-a, (z = a, ( z = a,

^ ^ \y=nz-\-b, \y = rnoc-\-b, \qc = b.
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To find the equations of the projecting planes of a given line we may proceed

as above by considering the system of planes which pass through the given line

(Theorem VII, p. 3G0) and determining the parameter k so that the plane shall be

perpendicular to each of the coordinate planes in turn. These equations may
also be found by eliminating 2;, x, and ij in turn from the equations of the line.

To reduce the equations of a given line to one of the forms (IV) we solve them

for X and y in terms of z. If there is no solution for x and y (Theorem IV, p. 90),

we solve for y and z. Finally, if there is no solution for y and z, we solve them

for z and x.

PROBLEMS

1. Find the equations of the projecting planes of the following lines.

(a) 2x + y-2; = 0, x-2/ + 22; = 3.

Ans. 5x '+?/ = 3, 3x + 2; = 3, 3^-52 + 6-0.
(b) X + ?/ + z = 6, X - ?/ - 2 z = 2.

Ans. 3x + y = 14, 2x-z = 8, 2y+3z = 4.

(c) 2x + 2/-z = l, x-?/ + z = 2. Ans. x = l, 2/-z + l = 0.

(d)x4-2/-4z = l, 2x + 22/ + z = 0. Ans. 9x + 92/ = l, 9z + 2 = 0.

(e) 2 2/ + 3 z = 6, 2 1/ - 3 z = 18. Ans. y = Q, z=-2.
(f) 2x-2/ + z = 0, 4x + 3y + 2z = 6. Ans. 5?/ = 6, lOx + 5z = C.

(g) X + z = 1, X — z = 3. Ans. x = 2, z = — 1.

2. Reduce the equations of the following lines to one of the forms (IV)

and construct the lines.

(a) x + y — 2z = 0, X — ?/ + z = 4. Ans. x = i z + 2, y = | z — 2.

(b)x + 2y-z = 2, 2x + 42/ + 2z = 5. Ans. z = i, y = - ^ x + |.

(c) X — 2?/ + z = 4, x + 2?/ — z = 6. Ans. x = 5, y = iz-\-^.

(d) x + 3z = 6, 2x + 5z = 8. Ans. z =4,x=-6.
(e)x + 22/ — 2z = 2, 2x + ?/ — 4z=:l. Ans. x = 2z,y = l.

(f) x-2/ + z = 3, 3x-3?/ + 2z=:6. Ans. z = S, y = x.

3. Interpret geometrically the meaning of the constants in each of equa-

tions (IV) by determining numbers proportional to the direction cosines of

each line and the point in which the first line cuts the JTY-plane, the second

the FZ-plane, and the third the ZX-plane.

4. Interpret the geometric significance of the constants in equations (IV)

by considering the traces of the planes which are the loci of those equations

taken separately.

5. Show that a straight line in space is determined by four conditions, and
formulate a rule by which to find its equations.

6. Find the equations of the line passing through the points (—2, 2, 1)

and (- 8, 5, - 2). Ans. x — 2 z - 4, y = — z -\- S.
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7. Find the equations of the projection of the line a; = z + 2, 2/ = 2z — 4

upon the plane x + y — z = 0. Ans. x = ^ z + Y, 2/ = 1 2; — Y-.

8. Find the equations of the projection of the line z = 2, y = x — 2 upon

the plane X — 2y — 3z = 4. Ans. x=:— 6z + 4, y = — 4^;.

9. Show that the equations of a line may be written in one of the forms

fy = mx + a, fx = a, Jx — a,

\z= nx +b, \z = my -]-b, \y = b,

according as it pierces the FZ-plane, is parallel to the FZ-plane, or is parallel

to the Z-axis.

10. Show that the condition that the line x = mz -\- a, y = nz -\- b should

, ,. , , , ^, . a — a' b —b'
mtersect the Ime x — m'z + a, y = nz + 0' is = -•

m — m n — n

161. Various forms of the equations of a straight line.

Theorem V. Parametric form. The coordinates of any point

P(x, 1/, z) on the line through a given point Pxioc\, yi, z-^ whose

direction angles are a, /3, and y are given by

(V) oc = oci-\- p cos a, y = y^-\- pcos p, z = z^ + p cos y,

where p denotes the variable directed length PiP.

Proof. The projections of PiP on the axes are respectively

(Corollary II, p. 329)

x-x^, y-yi, « - «i,

or (Theorem I, p. 328)

p cos a, p COS /3, p cos y.

Hence

X — Xi = p cos ct, y — yi = p cos p, z — Zi = p cos y.

Solving for x, y, and z, we obtain (Y). q.e.d.

Theorem VI. Symmetric form. The equations of the line passing

through the point P^ (xi, y^, z^) whose direction angles are a, ^, and

y have the form

^ ^ cos a cos p cos y
Hint. Solve each of equations (V) for p and equate the values obtained.
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^ ,, ^. cosa cos/8 cosy
Corollary. If = —y~- — -y then the sijmmetnc equations

of the line may he written in the form

X — Xj_ y — Vi z — Zi

a h c

Theorem VII. Two-point form. The equations of the straight line

passing through Pi (iCj, y^, z^ and Pg (^2? 2/2? --2) <^^^

^ ^ i»2 — «i 2/2 — 2/1 «2 — «i"

Froof. The line (VI) passes through. Pj. If it also passes

through P2, then

cos a cos ^ COS y

Dividing (VI) by this equation, we obtain (VII). q.e.d.

Equations (VI) and (VII) each involve three equations, namely, those obtained

by neglecting in turn each of the three ratios. These equations are, in different

form, the equations of the projecting planes, since one variable is lacking in each

(Corollary V, p. 351). Any two of the three equations are independent and may
be used as the equations of the line, but all three are usually retained for the sake

of their symmetry.

PROBLEMS

1. Find the equations of the lines which pass through the following pairs

of points, reduce them to one of the forms (IV), p. 367, and construct the

lines.

(a) (3, 2, - 1), (2, - 3, 4). Ans. x = -\z^ V, 2/ = - 2 + 1-

(b) (1, 6, 3), (3, 2, 3).* An». 2=^3, y = -2x + 8.

(c) (1, - 4, 2), (3, 0, 3). Ans. x = 2z - S, y = 4z - 12.

(d) (2, - 2, - 1), (3, 1, - 1). Ans. z = -l,y = Sx-8.
(e) (2, 3,' 5), (2, - 7, 5). Ans. z = 6,x = 2.

2. Show that the two-point form of the equations of a line become
^~^^ = y ~y^

, z = Zi, if zi = Z2. What do they become if 2/1 = 2/2?
X2 -xi 2/2 - 2/1

if xi = X2 ?

* From (VII), '^^ = ^-^ = ^-^- • The value of the last ratio is infinite unless 2-3=0.
3-1 2-6 3-3

If 3-3 = 0, then the last ratio may have any value and may be equal to the first two.

Hence the equations of the line become ^-^ = , z = 3. Geometrically, it is evident
2 -4

that the two points lie in the plane z = 3, and hence the line joining them also lies in that

plane.
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3. What do the two-point equations of a line become if Xi = X2 and
2/1 = 2/2? if yi = 2/2 and zi = Z2? if Zi = Z2 and xi — x^?

4. Do the following sets of points lie on straight lines ?

(a) (3, 2, - 4), (5, 4, - 6), and (9, 8, - 10). Ans. Yes.

(b) (3, 0, 1), (0, - 3, 2), and (6, 3, 0). Ans. Yes.

(c) (2, 5, 7), (- 3, 8, 1), and (0, 0, 3). Ans. No.

5. Show that the conditions that the three points Pi(iCi.yi, 21), P2(iC2, 2/2, 2^2),

and Ps (X3, 2/3, 23) should lie on a straight line are ^LH^ = Vs - Vi ^ Zs - Zi

«2 -xi 2/2 - 2/1 22 - 2l

6. Find the equations of the line passing through the point (2, -1, - 3)

whose direction cosines are proportional to 3, 2, and 7, and reduce them to

the form (IV), p. 367. Ans. x = f 2 + V, y = ^z- ^.

7. Find the equations of the line passing through the point (0, — 3, 2)

which is parallel to the line joining the points (3, 4, 7) and (2, 7, 5).

X 2/ + 3 z -2
Ans. 1-3 2

8. Show that the lines^^ = ^^^ .. " and ^±i = ^^ = ^±^ are

parallel.
^ -2 4 -3 2 -4

9. Find the equations of the line through the point (—2, 4, 0) which is

jjj ?/ -I- 2 z 4
parallel to the line - = =

, and reduce them to the form (IV), p. 367.
^ ~^ Ans. x = -iz-2,y = -3z + 4.

tn ax, *u^^i,T x + 2 y — S z — 1 ,x — 3 y z + 3
10. Show that the hues —— = -—— = and = -^ = —— are

perpendicular.
^ ~^ ^ 2 6 3

11. Find the angle between the lines = - —
~

and
2 1-1

cc + 22/-72;.-,^, J. ,j ^ ^ 27r—:;— = = - if both are directed upward. Ans.12 1
^

• 3

12. Find the parametric equations of the line passing through the point

(2, — 3, 4) whose direction cosines are proportional to 1, — 2, and 2.

Ans. x = 2 + ip, 2/ = - 3 - f /), 2 = 4 + f p.

13. Construct the lines whose parametric equations are

(a) X = 2 + fp, 2/ = 4 - ip, z = 6 + f p.

(b) X = - 3 - f /), ?/ = 6 - f p, z = 4 + f p.

14. Find the distance, measured along the line x = 2 — ^gp, 2/ = 4 + j|/),

2 = — 3 + j-**3 p, from the point (2, 4, — 3) to the intersection of the line with

the plane 4x — 2/ — 2z = 6. Ans. If.

16. Show that the symmetric equations of the straight line become

^ = -——
» 2 = 2i if cos 7 = 0. What do they become if cos a = ?

cos or cos/3

if cos/3 = 0?
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16. Show that the symmetric equations of the straight line become z = zi,

x = Xi if cos 7 = cos a = 0. What do they become if cos a = cos j3 = ?

if cos /3 = cos7=0?

17. Reduce the equations of the following lines to the symmetric form.

(a) x-2y + z = 8, 2x-3?/ = 13. Ans. ^^I^ = ^-±-? = -

.

O JJ 1.

(b) 4x-5?/ + 3z = 3, 4x-5y + z + 9 = 0. Ans. - = ^-^ , z = Q.

5 4

(c) 2x + z + 5 = 0, x + 32;-5=0. Ans. 2 = 3, x = - 4.

(d)x + 22/ + 62 = 5, 3x-2y-10z = 7. Ans. ?-^l- = ^^^ = 1
2 — 7 2

/;p 3 2
(e)3x-2/-22; = 0, 6x-3?/-42; + 9 = 0. ^ns. = -,2/ = 9.

2 o

(f) 3 X - 4 y = 7, X + 3 2/ = 11. ^ns. x = 5, y = 2.

(g) 2x + y + 22 = 7, x + 3y+62; = ll. Ans. ^—— = —- , x = 2.
A — i

(h)2x-3?/ + z = 4, 4x-6y-z = 5. Ans. -=y^^, z =1.
o 2

(i) 3 2 + ?/ = 1, 4 2; - 3 y = 10. Ans. y = -2,z = l.

^ X — a y — h z
(]) X = mz -}- a, y = nz -{- b. Ans. = = -

m n 1

Hint. Find the coordinates of a point on the line hy assuming a value of one variahl*

and solving the equations of the line for the other two variables. In the answers thi

point is the point in which the line pierces the X T-plane, or the point in which it pierce

the FZ-plane if it is parallel to the XF-plane, or the point in which it pierces the ZX-

plane if it is parallel to the T-axis.

Find the direction cosines of the line by the Rule, p. 364 (or numbers proportional to

them by Theorem III, p. 365), and substitute in the symmetric equations of the line (oi

in the form given in the Corollary to Theorem VI).

If one or two of the direction cosines are zero, the symmetric equations take the fori

given in problems 15 and 16.

18. Find the equations of the line passing through the point ^2, 0, —2) which

is perpendicular to each of the lines = - = and - = —
- = —

—

2 1 2 o — 1 2

Ans. l^ = ?^ = i±?.
4 2 -5

19. Find the equations of the line passing through the point (3, —1,2) which

Ls perpendicular to each of the lines x = 2z — 1, y = z + B, and - = - = -.

^ o 4

. x-3 y+1 z-2
Ans. —-— = — = —-—
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20. Find the equations of the line through Pi(xi, 2/1, Zi) parallel to

, . x-Xi y -Vi Z-Z2
(a) = —7—

-
=

a b c

(b) X = mz + a, y = nz + h.

(c) z = a, y = mx + b.

(d) Aix + Biy + Ciz + Di = 0, A^x + B^y + C^z

A X-Xi
Ans.

A X-Xi
Ans. - =

a
y.-yi

b

Z-Zi
c

. X — X\
Ans. i =

m
y.-yi

n

Z-Zx
1

X — Xi
Ans. =

1

L~yi,
m

Z = Zi.

B^y + C2Z + AJ
= 0.

y-yi z -zx

BIC2 — B2CI CIA2 — A2CI AIB2 — A2BI

21. Find the equations of the line passing through Pi(Xi, 2/1, Zi) which is

perpendicular to each of the lines

X — X2 _ y — z/2 _ z - Z2 , x-xs _ y - ys _ z - zz

a% &2 C2 Ct3 63 C3

-xx y -y\ z-zi
Ans.

&2«3 — bsCz Citts — Cza2 ^263 — «3&2

162. Relative positions of a Hne and plane. If the equations

of a line have the general form (II), p. 363, then the line will lie

in a given plane if a value of k in (VII), p. 360, may be found

such that the locus of that equation is the given plane.

If the equations of the line have the form (IV), we substitute

the values of two of the variables given by (IV) in the equation

of the plane and see whether the result is true for all values of

the third variable. If such is the case, the line lies in the plane.

An analogous procedure may be followed if the equations of

the line have the form (V), (VI), or (VII).

Theorem VIII. A line ivhose direction angles are a, ^, and y and

the plane Ax -{- By -\- Cz -\- D = are

(a) parallel when and only when

Acqs a + B cos p -\- C cosy = 0\

(h) perpendicular when and only when

A B C
cos a ~ COS jff

~ cos y
Proof. The direction cosines of the normal to the plane are

(Corollary I, p. 350)

A B C



374 ANALYTIC GEOMETRY

The line and plane are parallel when and only when the line

is perpendicular to the normal to the plane, "* that is (Theorem VI,

p. 335), when and only when

A Gos a -{- Bcos 13 + C cos y _

Multiplying by the radical, we get the condition for parallelism.

The line and plane are perpendicular when and only when
the line is parallel to the normal to the plane, that is (Theorem VI,

p. 335), when and only when

cos a = —— , COS /? =
±V^2 + i>'' + C' ±-^A-' + B-' + C^

C
cos V =

± Va^ -^B^ + C^

Dividing these equations by A, B, and C respectively and

inverting, we at once obtain the conditions for perpendicularity.

Q.E.D.

163. Geometric interpretation of the solution of three equa-

tions of the first degree. The coordinates of a point which lies

on each of three planes will satisfy the equations of the three

planes, and hence to each point common to three planes there

will correspond a solution of their equations. Hence we have

the following correspondence between the relative positions of

three planes and the number of solutions of their equations.

Position ofplanes Number of solutions of equations

forming a triedral angle. One solution.

Forming a prismatic surface, t No solution.

Passing through the same line.$ A singly infinite number. §

Three parallel planes. $ No solution.

Three coincident planes. A doubly infinite number.
||

* If the line is perpendicular to the normal to the plane, it may, in a special case, lie

in the plane.

t Two of the planes may be parallel in a special case.

X Two of the planes may coincide in a special case.

§ The solution contains one arbitrary constant.

II
The solution contains iwo arbitrary constants.
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If the three planes form a triedral angle, the point of intersection is found

without difficulty by solving their equations.

If the three planes form a prismatic surface, their lines of intersection are par-

allel. Whether this is the case or not may be determined by Theorem III, p. 365,

and the Corollary, p. 331.

If the three planes pass through the same line, the intersection of two planes

lies in the third. Whether this is the case or not may be determined by the

method on p. 373. To solve their equations set one variable equal to k and solve

tioo of the equations for the remaining variables. The results will be solutions

for all values of k.

Whether the three planes are parallel or not may be determined by Corollary III,

p. 350.

If the three planes coincide, all of their coefficients are proportional. To solve

their equations set two of the variables equal to k\ and k-z, and solve one of the

equations for the remaining variable. The results will be solutions for all values

of k\ and ki.

PROBLEMS

jc _j. 3 y 4 z
1

.

Show that the line = = - is parallel to the plane 4 x + 2 y

+ 22 = 9.
^ -7 3

2. Show that the line - = - = - is perpendicular to the plane 3x + 2?/

+ 7z = 8.
3 2 7

3. Show that the line x = 2; — 4, 2/ = 2z— 3 lies in the plane 2x — Zy

+ 42-1 = 0.

4. Show that the line x=-2 + f/3, y = -|p, z = 6 + ip lies in the plane

x-2y-6z + 38 = 0.

5. Find the coordinates of the points of intersection of the following

planes and determine the relative positions of the planes.

(a) 2x + y-22; = ll,x-?/ + 2; = 0, jc + 2?/-2; = 7.

Ans. (3, 1, — 2); planes form a triedral angle.

(b)2x + 42/ + 22 = 3, 3x + 3?/ + 2; = 0, 3x-6y-52;==8.
Ans. None; planes form a prismatic surface,

(c) X — ?/ — 32 = 1, x + y + 2;=:2, 3x — y — 5-2; = 4.

Ans. (I + A:, I — 2 fc, A:); planes pass through a line.

(d)3x-2/ + 52; = 0, 21x-7y + 35z = 8, 22/-10z-6x = 4.

Ans. None
;
planes are parallel.

(e)2x-3y + 42 = 3, 6y-4x-8z + 6 = 0, 6x-9y + 12 z = 9.

Ans. [fci, ^2, 1(3 — 2 A;i + 3 ^2)] ;
planes coincide.

6. Show that the line ^-^- = ^ = —-— lies in the plane 2 x + 2 2/

-2 + 3 = 0.
^ -^ ^
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7. Find the equations of the line passing through the point (3, 2, — 6)

which is perpendicular to the plane ix — y + Sz = d.

x-3 y -2 2+6
Ans. = =4-13

8. Find the equations of the line passing through the point (4, — 6, 2)

which is perpendicular to the plane x-{- 2y — Sz = 8.

. ic-4 y + 6 2-2
1 2 -3

9. Find the equations of the line passing through the point (—2, 3, 2)

which is parallel to each of the planes Bx — y -i- z = and x — z = 0.

x + 2 y - S z - 2
Ans.

1 4 1

10. Find the equation of the plane passing through the point (1,3, — 2)

which is perpendicular to the line = =

Ans. 2x + 5y — z = 19.

11. Find the equation of the plane passing through the point (2, — 2, 0)

which is perpendicular to the line z = 3, y = 2x — i. Ans. x-\-2y +2 = 0.

12. Find the equation of the plane passing through the line x + 2 z = 4,

3j 3 j/_l4 2; 7
y — z = 8 which is parallel to the line = = .

2 3 4
Ans. x + lOy -8z-84: = 0.

13. Find the equation of the plane passing through the point (3, 6, — 12)

which is parallel to each of the lines —— = ^
~

= ^-^ and ^
~

_z+2 3-13 2

-—^'2/ -3. Ans. 2x-\-3y -z = S6.

14. Find the equations of the line passing through the point (3, 1, — 2)

which is perpendicular to the plane 2x — y — 5z = 6.

Ans. x = -|z + -U, 2/ = i2; + |.

15. Show that the lines ^^ ^ ^±i ^^ ^^d ^^ = ^±i ^ ^
3 4-2 -1 32

intersect, and find the equation of the plane determined by them.

Ans. 14 X - 4 2/ + 13 z = 32.

/>. 2 y I 3
16. Find the equation of the plane determined by the line =:

z-1 2-2
1

and the point (0, 3, - 4). Ans. x-^2y + 2z-^2 = 0.

17. Find the equation of the plane determined by the parallel lines

x-^l _ y -2 _z X -S _ y + 4 _z -1
3 2 13 2 1 Ans. 8x + y-26z-\-6 = 0.
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18. Find the equations of the line passing through Pi(xi, ?/i, Zi) which is

perpendicular to the plane Ax -{- By i- Cz + D = 0.

Ans. ^^1^ = 2^1-1 = ^^111.ABC
19. Find the equation of the plane passing through the point Pi (cci, yi, zi)

which is perpendicular to the line = —;

—

- = .

a c

Ans. a{x-Xi)-\-b{y- yi) -\- c{z-Zi) = 0.

20. Find the angle 6 between the line = — = and the

plane ^x + ^y + C2; + D = 0. "*
. ^

.,. ^^
, . ^ Aa + Bb + Cc
Ans. sm 9 = —

Hint. The angle between a line and a plane is the acute angle between the line and

its projection on the plane. This angle equals ~ increased or decreased by the angle

between the line and the normal to the plane.

21. Find the equation of the plane passing through Ps{xs, ys? Zs) which

11 w u r *i T x-xi y -y\ z-zi .x-x^ v -yi
IS parallel to each of the lines = —-— = and = f__^

ai &i ci ai 02
Z — Z2

Ans. (61C2-&2C1) {x-Xz)+ {cia2-a2C\) (2/-2/3) + (ai?>2-a2&i) {z-Zz)=Q.

22. Find the condition that the plane A^x + B\y + C\Z + Di = should

be parallel to the line A^x + B^y + C^z + D2 = 0, A^x + B^y + C^z +1)3 = 0.

Ans. Ai{B2Cs -^3C2) + 5i(C2^3-C3^2)+Ci(^2^3-^3-B2)= 0.

23. Find the equation of the plane determined by the point Pi {xi, yi, Zi)

and the line Aix -{ Biy + CiZ +Di = 0, A2X +B2y+ C^z +D2 = 0.

Ans. [A^xi+ B^yi + C^Zi +D2) {A-LX+B^y+ C^z +i)i)

= (^ixi + jBi2/i + Cizi +Di) {A2X +B2y + C^z +D2).

24. Find the equation of the plane determined by the intersecting lines

x-xi _ y-yi _ z -zi ^^^ x - xi _ y - yi _ z - zi
_

ai 6i ci a2 62 C2

Ans. (61C2- &2C1) (x- Xi) + (cia2- C2ai) {y- yi) + (ai62— aa&i) {z- Zi) = 0.

25. Find the equation of the plane determined by the parallel lines

X — xi _y — yi _z — zi , x — X2 _ y — 1/2 _ z — Z2
^

a b c a b c

Ans. [(2/1 - 2/2) c - (zi - Z2) b]x + [(zi - Z2) a - (xi - X2) c] y

+ [(xi - X2) & - (^1 - 2/2) a] z + (yiZ2 - y2Zi) a

+ (2:1X2 - Z2X1) b -1- (Xi?/2 - iC22/l) c = 0.
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26. Find the conditions that the line x = mz -{- a, y = nz +h should lie in

the plane Ax + By -\- Cz + D = 0.

Ans. Aa + Bb-\-D = 0, Am + Bn + C = 0.

27. Find the equation of the plane passing through the line

6i C\ a^ 62 C2

Ans. (61C2— 62C1) (x— cci) + (cia2— C2ai) (2/— 2/1) + (ai&2— a2&i) (2 — Zi) = 0.

i;^



CHAPTER XX

SPECIAL SURFACES

164. In this chapter we shall consider spheres, cylinders, and

cones ^ (surfaces considered in Elementary Geometry) and sur-

faces which may be generated by revolving a curve about one of

the coordinate axes or by moving a straight line.

165. The sphere.

Theorem I. The equation of the sphere whose center is the point

(tr, /?, y) and whose radius is r is

(a^-ay + (v-l3y + (z-Yy =A or

(I)_ 3c''-^y^ + z^-2ax-- Q^y - 2 ys; + a^ +)8'^ + y^ - r-^ = O.

Froof. Let P (x, y, z) be any point on the sphere, and denote

the center of the sphere by C. Then, by definition, PC = r.

Substituting the value of PC given by (IV), p. 331, and squar-

ing, we obtain (I). q.e.d.

Theorem II. The locus of an equation of the form

(II) ic'-^tf + z' + GQC-\- Hy -^Iz + KzzzO

is determined as follows

:

(a) When G'^ -\- H"^ -\- P — ^ K > 0, the locus is a sphere whose

center is (
——^ —^j "~

o )
^^^ whose radius is

{h) When G'^ + H^ + I^ — 4:K= Q, the locus is thepoint-spheret

(g_ _H _/
V 2' 2' 2,

(c) When G^ + H^ -^ I^ - 4:K < 0, there is no locus.

* In Analytic Geometry the terms sphere, cylinder, and cone are usually used to

denote the spherical surface, cylindrical surface, and conical surface of Elementary

Geometry, and not the solids bounded wholly or in part by such surfaces.

+ That is, a point or sphere of radius zero.

379
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Proof. Comparing (II) with (I), we obtain

whence

G ^ H I

Hence, if G^ + H^ -{ I^ - 4: K > 0, the locus is a sphere.

To determine the general appearance of the locus of (II) when

G^ -{- H^ -\- I^ — 4:K^0, we consider the section formed by the

plane z = k, whose equation is (Eule, p. 345)

(1) x'' + 2f-{-Gx-{-Hi/-^k'' + Ik-^K= 0.

The discriminant of (1) is (p. 131)

© = G'^ + 7/2 _ 4 A;2 _ 4 Ik - 4 k'^^

= - 4 7^2 - 4 //i: + G^2 ^ iy2 _ 4K

The discriminant of this quadratic in k is (p. 2)

A = 16 /2 + 16 (9^ + 16 ^2 - 64 ii:

= 16(G'2 + //2_^/2_4 7r).

In discussing the locus of (1) three cases arise which depend

upon the sign of © (Theorem I, p. 131).

(a) If (92 + iy2 + 72 _ 4 7^ > 0, is positive for values of k

lying between the roots of © (Theorem III, p. 11), and the

section (1) formed by th,e plane ^ = A; is a circle. Equation (II)

has a locus, as we have seen.

(b) If (92 + 7^2 4- 72 - 4 7: = 0, © is negative for all real values

of k (Theorem III, p. 11) except the roots, which are real and

equal (Theorem II, p. 3), and for this single value of k the locus

of (1) is a point-circle. As but one plane, z = k, intersects the

locus of (II), and as this intersection is a point-circle, the locus

is a point which may be regarded as a sphere of zero radius.

(c) If (92 -f TT^ + 72 - 4 A^ < 0, © is negative for all real values

of k (Theorem III, p. 11). Hence (1) has no locus whatever the

value of k may be, and therefore (II) has no locus. q.e.d.
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Theorem III. The locus of the general equation of the second

degree in three vanables

(III) Ax^-\- Bi/+ Cz^ + Dgz H- Ezx + Fxij+ Gx -\- Hg -\-Iz + 7i =

{5 a sphere when and only when A =z B = C, D = E = F = Oj and

G^ + !{'-{- 1^-4: AK .

—^ is positive.

This is proved by comparing (III) with (II).

PROBLEMS

1

.

Find the equation of the sphere whose center is the point

(a) {a, 0, 0) and whose radius is a. Ans. x^ -{- y^ + z^ — 2 ax = 0.

(b) (0, iS, 0) and whose radius is /3. Ans. x^ -\- y^ -\- z^ - 2 ^y =0.
(c) (0, 0, 7) and whose radius is 7. Ans. x^ -{- y^ + z^ — 2yz =0.

2. Determine the nature of the loci of the following equations and find the

center and radius if the locus is a sphere, or the coordinates of the point-

sphere if the locus is a point-sphere.

(a) x2 -f 2/^ -H 22 - 6 X + 4 z = 0. (c) x^ -{- y"^ + z^ + ix - z + 7 = 0.

(b) x2-|-2/2 + 22 + 2a;-4y-5 = 0. (d) x'^ -\- y^ -{- z^ - 12x + 6y + 4: z = 0.

3. Where will the center of (II) lie if

(a) G = 0? (c)7=0? (e) H = I=0?
{h) H = 0? {d) G=R=0? {t) I=G = 0?

4. Show that a sphere is determined by four conditions and formulate a

rule by which to find its equation.

5. Find the equation of the sphere which

(a) has the center (3, 0, — 2) and passes through (1, 6, — 5).

Ans. x2 + y^ + z^-Qx-\-4z-3G = 0.

(b) passes through the points (0, 0, 0), (0, 2, 0), (4, 0, 0), and (0, 0, - 6).

Ans. x^ -]-y^ + z^ -4:X-2y + 6z = 0.

(c) has its center on the F-axis and passes through the points (0, 2, 2) and

(4, 0, 0). Ans. x2 -f y2 _|. 22 _[. 4 y _ 16 = 0.

(d) passes through the points (1, 1, 0), (0, 1, 1), and (1, 0, 1) and whose

radius is 11. Ans. x2 4- y2 _}_ ^2 _ 14 x - 14 2/ - 14 z + 26 = 0.

(e) has the line joining (4, - 6, 5) and (2, 0, 2) as a diameter.

Ans. x2 + ?/2-^22_6x + 62/-7z-Hl8 = a
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6. Given two spheres Si : x"^ + ij^ + z"- -^ GiX + Hiy + Iiz + -^i = and

>S2 : x2 + ?/2 -f 2;2 + G2X + HiV + hz + 7^2 = ; show that the locus of

Sk : x2 + 2/2 + z2 + Gix + Ihy + hz + K^

+ /b (x2 + 2/2 + 2;2 + G2X + H^y + J22; + X2) =

is a circle except when k = — 1. In this case the locus is a plane called the

radical plane of Si and S^.

7. The center of the sphere Sk in problem 6 lies on the line of centers of Si

and S-i and divides it into segments whose ratio is equal to k.

8. The equation of the radical plane of Si and ^2 (problem 6) is

((?i - G2)x + {Hi-H2)y-\- {Ii-h)z + {K1-K2) = 0.

9. The radical plane of two spheres is perpendicular to their line of

centers.

10, The radical planes of three spheres taken by pairs intersect in a line

perpendicular to their plane of centers which is called the radical axis of the

spheres,

11, The radical planes of four spheres taken by pairs intersect in a point

Called the radical center of the spheres.

12, When two spheres Si and S2 (problem 6) intersect, the system Sk con-

sists of all spheres passing through their circle of intersection,

13, When the spheres Si and S2 (problem 6) are tangent, the system Sk

consists of all spheres tangent to Si and -82 at their point of tangency,

14, The equation of the system Sk (problem 6) may be written in the form

x^-\-y^ + z^ + k'x + K= 0,

where ¥ is an arbitrary constant, if the X-axis is chosen as the line of

centers and the YZ-plane as the radical plane of ^1 and ^2-

15, The spheres of the system in problem 14 have their centers on the

X-axis and

(a) pass through the circle y^ + z^ + E = 0, x = ii K <0.

(b)- are tangent to each other at the origin if K = 0.

(c) are orthogonal to the sphere x^ -}- y^ + z^ = K it K> 0,

16, The product of a secant of a sphere drawn from a fixed point and its

external segment is constant.

17, Find the square of the length of a tangent from a point Pi (xi, 2/1, 2:1)

to the sphere x^ -{- y^ + z"^ -\- Gx -{- Hy -\- Iz + K = 0.

Ans. Xi2 + 2/i2 + zi^ + Gxi + Hyi + Izi + K.

18, Show that the equations of an inversion (p. 297) in space are

x' y'
^ z'y-

X'2 + /2 + 2'2 x'2 + ?/'2 + 2;'2 x'2 + ?/'2 + 2'2
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19. Show that the inverse of a plane is a sphere unless the plane passes
through the origin, and that in this case the plane is invariant.

20. Show that the inverse of a sphere is a sphere unless it passes through
the origin, when the inverse is a plane.

166. Cylinders.

Ex. 1. Determine the nature of the locus ofy^ = ix.

Solution. The intersection of the surface with a plane parallel to the

FZ-plane, x = k, are the lines (Rule, p. 345)

(1) X = fc, y = ±2Vk,

which are parallel to the Z-axis

(Theorem II, p. 342) . If A; > 0,

the locus of equations (1) is a

pair of lines ; if A; = 0, it is a

single line (the Z-axis) ; and

if Aj < 0, equations (1) have no

locus.

Similarly, the intersection

with a plane parallel to the

ZX-plane, y = k, is a, straight

line whose equations are (Rule,

p. 345)

X = ^ A;2, y = k,

and which is therefore parallel to the Z-axis.

The intersection with a plane parallel to the JTZ-plane is the parabola

z = k, 2/2 = 4 X.

For different values of k these parabolas are equal and placed one above

another.

It is therefore evident that the surface is a cylinder whose elements are

parallel to the Z-axis and intersect the parabola in the XF-plane

2/2 _ 4 a;, z = 0.

It is evident from Ex. 1 that the locus of any equation which

contains but two of the variables x, y, and z will intersect planes

parallel to two of the coordinate planes in one or more straight

lines parallel to one of the axes and planes parallel to the third

coordinate plane in equal curves. Such a surface is evidently a

cylinder. Hence

Theorem IV. The locus of an equation in which one variable is

lacking is a cylinder whose elements are parallel to the axis along

which that variable is measured.
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167. The projecting cylinders of a curve. The cylinders whose

elements intersect a given curve and are parallel to one of the

coordinate axes are called the projecting cylinders of the curve.

Their equations may be found by elimiDating in turn each of the

variables x, y, and z from the equations of the curve; for if we

eliminate z, for example, the result is the equation of a cylinder

(Theorem IV) which passes through the curve, since values of x,

y, and z which satisfy each of two equations satisfy an equation

obtained from them by eliminating one variable.

The equations of two of the pi:ojecting cylinders may be con-

veniently used as the equations of the curve.*

The figure shows the curve whose equations are

2if- + z'^-\-^x--=^z, ?/2 + 322_8a; = i2z. ^

Eliminating x, y, and z in turn, we obtain the equations of the projecting

cylinders
4 2, 4x= 4z, + 4X:

The figure shows the first and third of these cylinders.

If the curve lies in a plane parallel to one of the coordinate

planes, then two of these cylinders coincide with the plane of the

curve, or part of it.

* In general, the equations of a curve may be replaced by any two independent equa-

tions to which they are equivalent, that is, by two independent equations which are

satisfied by all values of x, y, and z satisfying the equations of the curve, and only by

such values.
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The projecting cylinders of a straight line are evidently planes.

The equations of a line in terms of its projecting cylinders or

planes have already been given (Theorem IV, p. 367).

168. Cones.

Ex. 1. Determine the nature of the locus of the equation 16 x^ + y2 _ z^=0.

Solution. Let Pi {xi, ?/i, Zi) be a point on a curve C in which the locus

intersects any plane, for example z = k. Then

(1) 16 xi2 + yi2 - zi^ = 0, zi = k.

The origin lies on the surface (Theorem III, p. 345). We shall- show
that the line OPi lies entirely on the surface.

The direction cosines of OPi are (Corollaries,

Xi
pp. 332 and 331) — , — , and -, where

Pi Pi Pi

Pi2 ^ xi"^ + 2/i2 + zi"^ = 0Pi2. Hence the coordi-

nates of any point on OPi are (Theorem V,

p. 369)

Xi
x = — p,

PI Pi
z = -p.

PI

Substituting these values of cc, y, and z in

the given equation, we obtain

(2) 16
a^lV^ yi2^2 2;i2p2+ 0.

pr pr pi''

This is true for all values of p since it may
be obtained from the first of equations (1) by

multiplying by — • Hence every point on

OPi lies on the surface, that is, the entire

line lies on the surface. Hence the surface

is a cone whose vertex is the origin.

The essential thing in the solution

of Ex. 1 is that (2) may be obtained

from the first of equations (1) by multiplying by a power of — •

This may be done whenever the equation of the surface is

homogeneous* in the variables x, y, and z. Hence

Theorem V. The locus of an equation which is homogeneous in

the variables ic, y, and z is a cone whose vertex is the origin.

* An equation is homogeneous in x, y, and z when all the terms in the equation are of

the same degree (footnote, p. 17).
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PROBLEMS

1 . Determine the nature of the following loci ; discuss and construct them.

(a) a;2 ^ y% = 36. (e) a;2 _ 2/2 + 36 22 = 0.

(b) x2 + 2/2 = 22. (f) 2/2 - 16 x2 + 4 z2 = 0.

(c) ?/2 + 4 2;2 = 0. (g) x2 + 16?/2 - 4x = 0.

(d) X2 - Z2 3:: 16. (h) x2 + yz

2. Find the equations of the cylinders whose directrices are the following

curves and whose elements are parallel to one of the axes.

(a) 2/2 + 22 _ 4 y = 0, a; = 0. (c) Wx'^ - a'^y'^ = a%^, z = 0.

(b) z2 _|. 2x = 8, 2/ = 0. (d) 2/2 + 2pz = 0, x = 0.

3. Find the equations of the projecting cylinders of the following curves

and construct the curve as the intersection of two of these cylinders.

(a) x2 + y2 _^2;2 = 25, x2 + 4 2/2 - z2 = 0.

(b) x2 + 42/2 - 22 = 16, 4x2 + 2/2 + z2 =:

^c) x2 + 2/2 = 4 z, x2 - 2/2 = 8 z.

(d) x2 + 2 2/2 + 4 22 = 32, x2 + 4 2/2 = 4z.

(e) 2/2 + zx = 0, 2/2 + 2 X + 2/ - z = 0.

16.

v

4. Discuss the following loci.

(a) x2 + 2/2 = 22tan2 7.

(b) 2/2 + z2 = ic2tan2a:.

(c) 22 + x2 = 2/2tan2^.

(d) x2 + 2/2 = r2.

(e) 2/2 + 22 rz r2.

(f) z2 + x2 = r2.

169. Surfaces of revolution. The surface generated by revolv-

ing a curve about a line lying in its plane is called a surface of

revolution.

Ex. 1.- Find the equation of the surface of revolution generated by revolv-

ing the ellipse x2 + 4 2/2 — 12 x = 0, z = about the JT-axis.

Solution. Let P (x, 2/, z) be any point on the surface. Pass a plane through

P and OX which cuts the surface along one position of the ellipse, and in this

plane draw OF' perpendicular

to OX. Referred to OX and

OY' as axes, the equation of

the ellipse is evidently

x2 + 4 2/'2 - 12 X = 0.

But from the right triangle

PAB we get y'^ = y^ + z''.

Substituting in (l), we get

(2) x2 + 42/2 + 4z2-12x=:0.
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This equation expresses the relation which any point on the surface must
satisfy, and it is easily shown that any point whose coordinates satisfy equa-

tion (2) lies on the surface. It is therefore the equation of the surface.

The method of the solution enables us to state the

Rule to find the equation of the surface generated by revolving

a curve in one of the coordinate planes about one of the axes in

that plane.

Substitute in thejequation of the curve the square root of the sum

of the squares of the two variables not measured along the axis of

revolution for that one of these two variables which occurs in the

equation of the curve.

If the intersections of a surface with all planes parallel to one

of the coordinate planes are circles, then the surface is evidently a

surface of revolution whose axis is the coordinate axis perpen-

dicular to the planes of the circular sections. This enables us to

determine whether or not a given surface is gaseurface of revolu-

tion whose axis is one of the coordinate axes.

170. Ruled surfaces. A surface generated by a moving straight

line is called a ruled surface. If the equations of a straight line

involve an arbitrary constant, then the equations represent a sys-

tem of lines which form a ruled surface. If we eliminate the

parameter from the equations of the line, the result will be the

equation of the ruled surface.

For if («!, yi, Z\) satisfy the given equations for some vakie of the parameter,

they will satisfy the equation obtained by eliminating the parameter, that is, the

coordinates of every point on every line of that system satisfy that equation.

Cylinders and cones are the simplest ruled surfaces.

Ex. 1. Find the equation of the surface generated by the line whose

equations are -^

x-{-y = kz, x-y = ~z.
Ic

Solution. We may eliminate k from these equations of the line hy multi-

plying them. This gives

(1) x2 - y2 ^ z^.

This is the equation of a cone (Theorem V, p. 385) whose vertex is the origin.

As the sections made hy the planes x = k are circles, it is a cone of revolution

whose axis is the X-axis.
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We may verify that the given line lies on the surface (1) for all values

of A; as follows

:

Solving the equations of the line for x and y in terms of z, we get

2\ k

Substituting in (1), we obtain

^-\i.--> -K-D^-

4^ k) 4V k)

an equation which is true for all values of k and z, as is seen by removing

the parentheses. Hence every point on any line of the system lies on (1),

since its coordinates satisfy (1).

Ex. 2. Determine the nature of the surface z^ — 3 zx + 8 y = 0.

Solution. The intersection of the surface with the plane z = k is the

straight line (Rule, p. 345)

k^-Skx-\-8y = 0, z = k. ^

Hence the surface is the ruled surface generated by this line as k varies.

To construct the surface consider the intersections with the planes x = and

jc = 8 whose equations are respectively

x = 0, 8 y + z3 = and X = 8, Sy -24z + z^ = 0.

Joining the points on these curves which have the same value of z gives

the lines generating the surface.
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PROBLEMS

1

.

Find the equations of the surfaces of revolution generated by revolving

the following curves about the axes indicated, and construct the figures.

(a) ?/2 = 4a;-16, JT-axis. Ans. y^ -{- z^ = ix - 16.

(b) x2 + 4 y2 = iG, r-axis. Ans. x^ + i y^ -{- z^ = 16.

(c) x2 — 4 2, Z-axis. Ans. x"^ -\-y^ = iz.

(d) x2 - ?/2 _ 16^ r-axis. Ans. x^ - y^ + z^ = 16.

(e) x2 - 2/2 = 16, X-axis. Ans. x^ - y^ - z^ = 16.

(f) 2/2 -^ 22 _ 25, Z-axis. Ans. x^ + y^ + z^ - 25.

(g) 2/2 = 2j9z, Z-axis. Ans. A paraboloid of revolution, x^ + 2/2 = 2pz.

X2 ?/2 X^ ?/2 z2
(h) 1— =1, JT-axis. Ans. An ellipsoid of revolution, h — -\— = 1.

a2 62 (j2 52 52

a;2 1/2
—

(i) -^ - ^ = 1, r-axis.
^ ^ a;2 y^ z2

-4 ns. An hyperboloid of revolution of one sheet, — 1 = 1.

X^ y^ ^' ^'
«^

^ °
iC2 ^2 22*

^ns. An hyperboloid of revolution of two sheets, =1.
a2 52 52

2. Show that the following loci are either surfaces of revolution or ruled

surfaces whose generators are parallel to one of the coordinate planes. Con-

struct and discuss the loci.

(a) 2/2 + z2 = 4 X. (e) 4 x2 + 4 2/2 - 2;2 = 16.

(b) 0:2 - 4 2/2 + 2:2 = 0. (f ) r,fiy _ 22 = 0.

(c) z^-zx + y = 0. (g) x2 -h z2 = 4.

(d) x-hf + xz = y. (h) {x^ + z'^)y = ia'^{2a - y).

3. Verify analytically that a sphere is generated by revolving a circle

about a diameter.

4. Show that the systems of spheres in problem 15, p. 382, may be gen-

erated by revolving the systems of circles in Theorem VIII, p. 144, about

the X-axis.

6. Find the equation of the surface of revolution generated by revolving

the circle ic2 + 2/2 — 2 ax + a2 - r2 = about the T-axis. Discuss the sur-

face when a>r^ ix = r^ and a<r.

Ans. (x2 + 2/2 -j- 2;2 + a2 _ ,.2)2 = 4 ^2 (x2 + z2). When a > r the surface

is called an anchor ring or torus.

6. Find the equations of the ruled surfaces whose generators are the

following systems of lines, and discuss the surfaces.

(a) x + y = k,k{x-y) = a'^. Ans. x'^ - y"^ - a2.

(b) 4x-2 2/ = A:z, A:(4x-f-2 2/) = z. Ans. 16x2-4 2/2 = ^2.

(c) x-22/ = 4^2, A;(x-22/) = 4. Ans. x^-4y^ = lQz.

(d) X -1- A;2/ -I- 4 2 = 4 A;, fcx - 2/ - 4 fcz = 4. Ans. x^ + y^ - 16 z^ = 16.
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7. Find the equation of the cone whose vertex is the origin and whose

elements cut the circle x'-^ + y'^ = W, z = 2. Ans. x^ + ^/^ — 4 2^ = 0.

8. Find the equations of the cones of revolution whose axes are the

coordinate axes and whose elements make an angle of with the axis of

revolution. Ans. y^ + z'^ = x^ tan2 ; z^ -\- x^ = y^ tan2 ; x"^ + y^ = z^ tan2 0.

9. Find the equations of the cylinders of revolution whose axes are the

coordinate axes and whose radii equal r.

Ans. y^ -{-
z"^ = r^ ; z^ + x'^ = r'^; x^ + y^ = r^.

IP



CHAPTER XXI

TRANSFORMATION OF COORDINATES. DIFFERENT
SYSTEMS OF COORDINATES

171. Translation of the axes.

Theorem I. The equations for translating the axes to a new

origin 0' (h, k, I) are

(I) x = x'-\-7i, y = yf+k, z = z*+l.

Proof. Let the coordinates

of any point before and after

the translation of the axes be

(cc, y, z) and {x\ y\ z') respec-

tively. Projecting OP and

OO'P on each of the axes

(Theorem II, p. 328), we get

equations (I). q.e.d.

172. Rotation of the axes.

Theorem II. If a^, fi^, y^ a^, ft, ys, a'^id a^, ft, yg are respec-

tively the direction angles of three mutually ijerpendicular lines

0X\ OY', and OZ', then the equations for rotating the axes to the

position 0-X'Y'Z' are

(ijc = x^ cos tti + 2/' cos ttg + z^ cos as,

(II) J 1/ = cc' cos ^1 + y^ cos ft + 2!' cos
ft,

[ s = a?' cos yi + y^ cos y^ + z^ cos yg.^*

* By Theorem III, p. 330, and Theorem VI, p. 335, we see that the direction cosines of

OX', O Y', and OZ' satisfy the six equations

cos2 a, + cos2 j3i + cos2 Yi = 1, cos Oj cos Oj + cos /3i cos ^^ + cos y, cos 72 = 0.

cos2 02 + C082 (8j + cos2 V2 = 1 > ^^s o^ COS flg + COS 182 COS ^3 + cos 72 «os Vs = 0,

C082 flg + COS2 Pg 4- COS2 73 = 1, cos Og COS O^ + COS /Bg COS Pi + COS 73 COS Yj = 0.

Hence only three of the nine constants in (II) are independent.

391
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Proof. Let the coordinates of any point P before and after

the rotation of the axes be respec-

tively {x, y, z) and (x\ y\ z'). Pro-

jecting OP and OA'B'P on each of

the axes OX, Y, and OZ, we get, by

Corollary I, p. 328, and Theorems I

and II, p. 328, equations (II). q.e.d.

Theorem III. The degree of an equa-

tion is unchanged hy a transforma-

tion of coordinates.

Hint. Show that any transformation of coordinates may be effected by applying

Theorems I and II successively, then that the degree cannot be raised by changing to new
coordinates, and finally that it cannot be lowered.

Z' ^

\ P

)

/
/

y A .

/ ^^

B

PROBLEMS V

1

.

Transform the equation x'^-\-y^ — ^x-\-2y — Az-\-l=0 by trans-

lating the origin to the point (2, — 1, — 1). Ans. x'^ + y"^ — ^z = 0.

2. Transform the equation bx^ ^Sy"^ + 5z^ — 4:yz + Szx-\-4:Xy — ix + 2y
-f 4 2 = by rotating the axes to a position in which their direction cosines

are respectively f , f^
i

.
i, _ 2^ i ; 2^ _ i, _ i. Ans. Sx^ + Sy^ = 2 z.

3. Formulate a rule by which to simplify a given equation (a) by trans-

lating the axes, (b) by rotating the axes. How many terms may, in general,

be removed from a given equation by a general transformation of coordinates ?

4. Derive the equations for rotating the axes through an angle 6 about

(a) the Z-axis, (b) the X-axis, (c) the F-axis. rx = x' cosd — y' sin d,

Ans. (a) < y = x' sin Q -\- y' cos ^,

Vz — z'.

5. Simplify the following equations by translating the axes or by rotating

them about one of the coordinate axes.

(a) x2 + 2/^ - 2;2 _ 6 x - 8 ^ -h 10 z = 0. Ans.

(b) 3x2- 8x?/ -32/2 _ 5^2 + 5 :=0. Ans.

(c) ?/2 + 4 2;2 _ 16 x - 6 ?/ + 16 z -}- 9 = 0. Ans.

(d) 2x2 - 5?/2 - 5^2 - 62/z = 0. Ans.

(e) 9x2-25y2_i_i6z2_242x-80x-60z = 0. Ans. x2 - 2/2 = 4 z.

6. Show that Ax -\- By -\- Cz + D =z may be reduced to the form x =
by a transformation of coordinates.

Hint. Remove the constant term by translating the axes, then remove the z-term

by rotating the axes about the T-axis, and finally remove the y-term by rotating about

the ^-axis.

y 22 = 0.

x^ -y^ + z^ = 1.

?/2 + 4z2=:16x.

X2 _ 4 y2 - 2;2 =r 0.
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7. Show that the xy-term may always be removed from the equation

Ax^ + By^ + Cz^ + Fxy -\-K = by a rotation of the axes.

8. Show that the y2;-term may always be removed from the equation

Ax^ + By^ + Cz'^ + Dyz + K = by rotating the axes,

9. What are the direction cosines of OX, OZ, and OZ (Fig., p. 392)

referred to 0X% 0Y\ and OZ'? What six equations do they satisfy?

10. Show that the six equations obtained in problem 9 are equivalent to

the six equations in the footnote, p. 391.

11. If (x, y, z) and {x% y', z') are respectively the coordinates of a point

before and after a rotation of the axes, show that

x2 + y2 + 2;2 ^ X'2 -f-
2/^2 + 2/2,

173. Polar coordinates. The line OP drawn from the origin

to any point P is called the radius vector of P. Any point P
determines four numbers, its radius vector p and the direction

angles of OP, namely, a, yS, and y, which are called the polar

coordinates of P.

These numbers are not all independent

since a, jS, and 7 satisfy (III), p. 330. If two

are known, the third may then he found, hut

all three are retained for the sake of symmetry.

Conversely, any set of values of

p, a, /?, and y which satisfy (III),

p. 330, determine a point whose polar

coordinates are p, or, /8, and y. /
Projecting OP on each of the axes,

we get, by Corollary I, p. 328, and Theorem I, p. 328,

Theorem IV. The equations of transformation from rectangular

to polar coordinates are

(IV) Qc = pcosa, y = pcosfi, z = p cos y.

From Theorem (IV), p. 331, we obtain

(1) p' = Gc' + y^ + z\

which expresses the radius vector in terms of x, y, and ».
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174. Spherical coordinates. Any point P determines three

numbers, namely, its radius vector p, the angle 6 between the

radius vector and the Z-axis, and the angle <^ between the pro-

jection of its radius vector on the

JTF-plane and the Z-axis. These num-

bers are called the spherical coordinates

of P. 6 is called the colatitude and <^

the longitude.

^ Conversely, given values of p, 6, and <^

-^ determine a point P whose spherical

coordinates are (p, 0, cf>).

Projecting OP on OA, we get

OM = p sin Oj

and then projecting OP and OMP on each of the axes, we obtain

Theorem V. The equations of transformation from rectangular

to spherical coordinates are

(V) a; = /> sin ^ cos ^, y = p sin ^ sin ^, « = /) cos 9.

The equations of transformation from spherical to rectangular

coordinates may be obtained by solving (V) for p, 6, and <^.

Z<

P

175. Cylindrical coordinates. Any point P (x, y, z) determines

three numbers, its distance z from the

XF-plane and the polar coordinates (r, <^)

of its projection (x, y, 0) on the ZF-plane.

These three numbers are called the cylin-

drical coordinates of P. Conversely, three

values of r, <^, and z determine a point

whose cylindrical coordinates are (r,
<f>,

z).

From Theorem I, p. 155, we have at once ^^

Theorem VI. The equations of transformation from rectangular

to cylindrical coordinates are

(VI) Qc = r cos
<f>,

-y = r sin ^, z = z.

The equations of transformation from cylindrical to rectangu-

lar coordinates may be obtained by solving (VI) for r, <^, and z.
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PROBLEMS

1. What is meant by the "locus of an equation " in the polar coordinates

P, a, ^, and 7 ? in tlie spherical coordinates p, 6, and ? in the cylindrical

coordinates r, 0, and z ?

2. Show that the locus of an equation in polar coordinates is symmet-
rical with respect to the pole if only the form of the equation is changed
when p is replaced by — p ; with respect to one of* the coordinate planes

if only the form of the equation is changed when a is replaced by ;r — or,

/3 by ;r — /8, or 7 by TT — 7. Under what conditions will it be symmetrical

with respect to each of the rectangular axes ?

3. Find rules by which to determine when the locus of an equation in

spherical or cylindrical coordinates is symmetrical with respect to the origin,

each of the rectangular axes, and each of the coordinate planes.

4. How may the intercepts of a surface on the rectangular axes be found

if its equation in polar coordinates is given? if its equation in spherical

coordinates is given ? if its equation in cylindrical coordinates is given ?

5. Transform the following equations into polar coordinates.

(a) x2 + 2/2 + 22 ^ 25. Ans. p = 5.

(b) x2 + y2 _ ^2 = 0. Ans. 7 = -•
4

(c) 2x2-2/2-22:^0. Ans. a = cos-iiV3.

6. Transform the following equations into spherical coordinates,

(a) x2 + y^ + z'^ = 16. Ans. p = 4.

(b)2x + 3?/ = 0. Ans. = tan-i(-|).

(c) 3 x2 + 3 2/2 =: 7 2;2. Ans. 6 = tan-i i V2T.

7. Transform the following equations into cylindrical coordinates.

(a) 5x — ?/ = 0. An^. 0=rtan-^5.

(b) x2 + 2/2 = 4. Ans. r = 2.

8. Find the equation in polar coordinates of

(a) a sphere whose center is the pole.

(b) a cone of revolution whose axis is one of the coordinate axes.

Ans. (a) p = constant
;
(b) a = constant, /3 = constant, or 7 = constant.

9. Find the equation in spherical coordinates of

(a) a sphere whose center is the origin.

(b) a plane through the Z-axis.

(c) a cone of revolution whose axis is the Z-axis.

Ans. (a) p = constant
;

(b) = constant
;

(c) 6 = constant.
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10. Find the equation in cylindrical coordinates of

(a) a plane parallel to the XY-plane.

(b) a plane through the Z-axis.

(c) a cylinder of revolution whose axis is the Z-axis.

Ans. (a) z = constant; (b) = constant; (c) r = constant.

11. In rectangular coordinates a point is determined as the intersection

of three mutually perpendicular planes (p. 326). Show that

(a) in polar coordinates a point is regarded as the intersection of a sphere

and three cones of revolution which have an element in common.

(b) in spherical coordinates a point is regarded as the intersection of a

sphere, a plane, and a cone of revolution which are mutually orthogonal.

(c) in cylindrical coordinates a point is regarded as the intersection of

two planes and a cylinder of revolution which are mutually orthogonal.

12. Show that the square of the distance between two points whose polar

coordinates are (pi, cri, j8i, 71) and {p2, a^^ ^21 72) is

r2 = p-^ + p2^ _ 2 P1P2 (cos ai cos a^ + cos /3i cos ^2. + cos 71 cos 72).

13. Find the general equation of a plane in polar coordinates.

Ans. p {A cos a -\- B cos jS + C cos 7) + D = 0.

14. Find the general equation of a sphere in polar coordinates.

Ans. /)2 + yo (G^ cos a + JBTcos /3 + I cos 7) + ii = 0.



CHAPTER XXII

QUADRIC SURFACES AND EQUATIONS OF THE SECOND
DEGREE IN THREE VARIABLES

176. Quadric surfaces. The locus of an equation of the second

degree, of which the most general form is

(1) Ax'^-^Bi/^Cz'^-^Dyz+Ezx+Fxy-{-Gx-\-Hy+rz4K = 0,

is called a quadric surface or conicoid.

Theorem I. The intersection of a quadric with any plane is a

conic or a degenerate conic.

Proof. By a transformation of coordinates any plane may be

taken as the ZF-plane, z = 0, and referred to any axes the equa-

tion of a quadric has the form (1) (Theorem III, p. 392). Then

the equation of the curve of intersection referred to axes in its

plane is (Kule, p. 345)

Ax^ + Fxy 4- By^ -\- Gx -{- Hy -j- K = 0,

and the locus is therefore a conic or a degenerate conic (Theo-

rem XIII, p. 196). Q.E.D.

Corollary. The intersection of a cone of revolution with a plane

is an ellipse, hyperbola, or parabola according as the plane cuts all

of the elements, is parallel to two elements (cutting some on one side

of the vertex and some on the other), or is parallel to one element

(cutting all the others on the same side of the vertex).

Theorem II. The intersections of a quadric with a system ofpar-

allel planes are, in general, similar conies.

Proof. By a transformation of coordinates one of the planes

of the system may be taken as the ZF-plane, and hence the equa-

tion of the system is z — k^ while that of the quadric has the

397
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form (1) (Theorem III, p. 392). Hence the equation of the curve

in which the plane z = k intersects the quadric is (Kule, p. 345)

(2) Ax^-\-Fxy+By''+{Ek+G)x+{Dk+H)y + Ck'^+Ik+K=().

For different values of k this equation represents a system of

similar conies^ (Corollary I, p. 295). q.e.d.

177. Simplification of the general equation of the second degree

in three variables. If equation (1) be transformed by rotating

the axes (Theorem II, p. 391), it can be shown that the new axes

may be chosen so that the terms in yz, zx, and xy drop out and

hence (1) reduces to the form

A '^2
-f Bhf 4- C'^2 _^ Qt^ j^ jj^y _|_ p^ ^ j^^ ^ Q^

Transforming this equation by translating the axes (Theorem I,

p. 391), it can be shown that the axes may be chosen so that the

transformed equation has either the forni

(1) AV + B^'if + C"^2 _p j^v ^ Q

or the forin

(2) A"x^ + B'Y -\- I"z = 0.

If all of the coefficients in (l)'and (2) are different from zero,

(1) and (2) may, with a change in notation, be respectively written

in the forms

(3) ±$±$±$ = 1,

(4) S^S=2-
* If the invariants of (2) (Theorem YIII, p. 275) for two different values of k are respec-

tively A, H, © and A', H', ©' then in order that the conies be similar the value of A given

by = —— must be a real number.
©' A2 ©
All the sections will belong to the same type because A will have the same sign for all

valvies of k. If the sections are ellipses, H and © have opposite signs (Theorem IX, p. 277)

and A will be real. The same is true if the sections arcparabolas (p. 279). If the sections

are hyperbolas, then, in general, for values of A; between certain limits the hyperbolas will

be similar, and for the remaining values of k, exclusive of the limits, the sections will also

be similar (compare problem 3, p. 296).
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The purpose of the following sections is to discuss the loci of

these equations,* which are called central and non-central quadrics

respectively.

If one or more of the coefficients in (1) or (2) are zero, the locus

is called a degenerate quadric.

If K" = 0, the locus of (1) is a cone (Theorem V, p. 385) unless the signs of A'%

B", and C" are the same, in which case the locus is a point, namely, the origin.

If one of the coefficients A", B", and C" is zero, the locus is a cylinder (Theo-

rem IV, p. ;^3) whose elements are parallel to one of the axes and whose directrix

is a conic of the elliptic or hyperbolic type (p. 195). If K" = 0, the locus will be a

pair of intersecting planes or a line.

If tioo of the coefficients J.'', B'\ and C" are zero, the locus is a, pair ofparallel

planes (coincident if K'^ = 0) or there is no locus.

If one of the coefficients in (2) is zero, the locus is a cylinder (Theorem IV, p. 383)

whose directrix is a parabola or a degenerate central conic.

If two of the coefficients are zero, the locus is a pair of coincident planes.

{A" and B'^ cannot be zero simultaneously, as the equation would cease to be of

the second degree.)

PROBLEMS

1. Construct and discuss the loci of the following equations.

(a) 9x2 _ 362/2 + 4^2 ^ q. (e) 4y2 _ 25 = 0.

(b) 16x2 _ 4^/2 - z2 = 0. (f) 3y2 + 7 22 = 0.

(c) 4x2 + 22 - 10 = 0. (g) 8 ^2 ^. 25 z = 0.

(d) 2/2 - 9 z2 + 36 zz 0. (h) z^-\-lQ = 0.

3.2 y2 ^2
2. Discuss the locus of the equation ± — ± — ± — = (a) if all the

a2 52 c2

signs agree
;

(b) if two signs are positive. When will the locus be a cone of

revolution about the X-axis ? the F-axis ? the Z-axis ?

3. Show geometrically by means of Theorem I that the sections of a

cylinder whose equation is of the second degree made by planes cutting all

of the elements are conies of the same type. Show also that the orthogonal

projection on a plane of an ellipse is an ellipse ; of an hyperbola is an hyper-

bola ; and of a parabola is a parabola.

4. Show how to find the equations of the projections of a curve upon the

coordinate planes by means of their projecting cylinders.

5. Prove the Corollary to Theorem I by determining the nature of the

intersection of the cone x2 + y2 _ tan2 7 • z"^ with the plane x = tan /3 • z + &•

6. Prove the Corollary to Theorem I by transforming x"^ + y^ = tan2 7 . z^

by rotating the axes about OY through an angle and considering the sec-

tions formed by the plane z' = fc if ^ = 7-

* There is a locus unless all of the coefficients of (3) are negative, when there is no locus.
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178. The ellipsoid _ + f- + _ = i. If all of the coefficients in
a? W c^

(3), p. 398, are positive, the locus is called an ellipsoid. A discus-

sion of its equation gives us the following properties.

1. The ellipsoid is symmetrical with respect to each of the

coordinate planes and axes and the origin (Theorem IV, p. 346).

These planes of symmetry are called the principal planes of the

ellipsoid.

2. Its intercepts on the axes are respectively (Eule, p. 346)

X —±. a, y =±b, z =:k c.

The lines AA' = 2 a, BB' =2b,CC' = 2G are called the axes of

the ellipsoid.

3. Its traces on the principal planes are the ellipses ABA'B',

BCB'C, and ACA'C, whose equations are (p. 346>'

x^ z' = \.

4. The equation of the curve in which a plane parallel to the

ZF-plane, z — k, intersects the ellipsoid is (Rule, p. 345)

(1)
x"^ ?/ _ k^
-2 + ^ = 1-7 or + r

(C2 -k"")
IP-

= 1.

X

The locus of this equa-

tion is an ellipse, and for

different values of k the

ellipses are similar. If k

increases from to c, or

decreases from to — c,

the plane recedes from the

J^F-plane, and the axes of

the ellipse decrease from

2 a and 2 h respectively

to when the ellipse degenerates (p. 195). \ik> c oy k < — c,

there is no locus, and hence the ellipsoid lies entirely between

the planes ;^ = ± c.

/C^ Z-i:).^;r^
r^^^^^~-—

\/r _:>A
X'-4'W^ i/'jo

; ^
^^..^r7 \ i

'' _---^



^-m



IP
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In like manner the sections parallel to the YZ- and ZX-planes
are similar ellipses whose axes decrease as the planes recede,' and
the ellipsoid lies entirely between the planes x = ±a and y = ±b.
Hence the ellipsoid is a closed surface.

If a = bj the section (1) is a circle for values of k such that

— c <k <c, and hence the ellipsoid is an ellipsoid of revolution

whose axis is the Z-axis. If ^ = c or c = a, it is an ellipsoid of

revolution whose axis is the X- or F-axis.

\i a = b = c, the ellipsoid is a sphere, for its equation may be

written in the form x^ + y"^ -{- z^ — a^.

179. The hyperboloid of one sheet
3:2 + 72 ;

= 1. If two of
a" o" c

the coefficients in (3), p. 398, are positive and one is negative, the

locus is called an hyperboloid of one

sheet. Consider first the equation ^"'^

(1)
r
b''

= 1.

A discussion of this equation gives

us the following properties.

1. The hyperboloid is symmetrical

with respect to each of the coordinate

planes and axes and the origin (Theo-

rem IV, p. 346).

2. Its intercepts on the X- and

F-axes are respectively (Rule, p. 346)

a; = ± a, y =±b,

but it does not meet the Z-axis.

3. Its traces on the coordinate planes (p. 346) are the conies

^ _L. 1^' _ 1

a'-b'~'
r
b^ ^.

= 1.

of which the first is the ellipse whose axes are AA' =2a and

BB' =2b, and the others are the hyperbolas whose transverse

axes are BB' and A A' respectively.
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4. The equation of the curve in which a plane parallel to the

^F-plane, z — h, intersects the hyperboloid is (Rule, p. 345)

(2) ^ +
f-:
= l + ^\ or ^^—^-J^- = l.

-(c2 + /^0 -(c-' + Zc^)

The locus of this equation is an ellipse. If A; increases from

to 00, or decreases from to — oo, the plane recedes from the

XF-plane, and the axes of the ellipse increase indefinitely from

2 a and 2 h respectively. Hence the surface recedes indefinitely

from the AT-plane and from the Z-axis.

In like manner the sections formed by the planes x = k^ and

y — k" are seen to be hyperbolas. As k' and k" increase numer-

ically the axes of the hyperbolas decrease, and when k' = ± a oi

k" =±b, the hyperbolas degenerate into intersecting lines. As
k' and k" increase beyond this point, the directions of the trans-

verse and conjugate axes are interchanged, and the lengths of

these axes increase indefinitely.

If either system of hyperbolas is projected orthogonally on the coordinate

plane to which the planes of the hyperbolas are parallel, the projected system

will have the appearance of the system on p. 201.

The hyperboloid (1) is said to '^ lie along the Z-axis."

The equations

^ ^ a^ 0^ c^ . a^ ¥ c^

are the equations of hyperboloids of one sheet which lie along

the Y- and A-axes respectively.

If a = &, the hyperboloid (1) is a surface of revolution whose

axis is the Z-axis, because the section (2) becomes a circle. The

hyperboloids (3) will be hyperboloids of revolution \i a = c and

b = c respectively.

180. The hyperboloid of two sheets — — ^—2 = 1* ^^ ^^^7

.one of the coefficients in (3), p. 398, is positive, the locus is

called an hyperboloid of two sheets. Consider first the equation

^ > a' 6^ c^
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1. The hyperboloid is symmetrical with respect to each of the

coordinate planes and axes and the origin (Theorem IV, p. 346).

2. Its intercepts on the X-axis ai'e x =±.a, but it does not

cut the Y- and Z-axes.

3. Its traces on the XY- and ZZ-planes (p. 346) are respec-

tively the hyperbolas

r
1,

which have the same transverse axis AA' = 2a, but it does not

cut the FZ-plane.

4. The equation of the curve in which a plane parallel to

the yz-plane, x = k, intersects the hyperboloid of one sheet is

(Rule, p. 345)

y
or

r

Xk-'-a^)

1.

a" ^ a^^ ^

This equation has no locus \i — a < k < d. li k =±a, the

locus is a degenerate ellipse, and as k increases from a to oo, or

decreases from —a to — oo, the

locus is an ellipse whose axes

increase indefinitely. Hence the

surface consists of two branches

or sheets which recede indefi-

nitely from the FZ-plane and

from the X-axis.

In like manner the sections, formed by all planes parallel

to the XY- and ZZ-planes are hyperbolas whose axes increase

indefinitely as their planes recede from the coordinate planes.

The hyperboloid (1) is said to " lie along the Z-axis."

The equations

(2)
r +

are the equations of hyperboloids of two sheets which lie along

the Y- and Z-axes respectively.
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If h = Cj c = a, or a = h, the hyperboloids (1) and (2) are

respectively hyperboloids of revolution.

It should be noticed that the locus of (3), p. 398, is an ellipsoid if all the terms

on the left are positive, an hyperboloid of one sheet if but one term is negative,

and an hyperboloid of two sheets if two terms are negative. If all the terms on

the left are negative, there is no locus. If the locus is an hyperboloid, it will lie

along the axis corresponding to the term whose sign differs from that of the other

two terms.

PROBLEMS

1. Discuss and construct the loci of the following equations.

(a) 4x2 + 97/2 + I6z2 ^ 144. (e) 9x2 _ ^/S + 9^2 ^ 35.

(b) 4x2 + 9^,2 _ i6;22 ^ 144. (f) 22 _ 4x2 _ 4^/2 = \q,

(c) 4x2 _ 9^/2 _ i6z2 := 144. (g) i6a;2 j^yij^iQ^'^^ 64.

(d) x2 + 16 2/2 + z2 ^ 64. (h) x2 + y2 _ ^2 = 26.

2. For what values of k or ¥ will the sections of the hyperboloid of one
^2 y2 2;2

sheet, —\-~ = 1, formed by the planes x = k or y — V be similar
a' ^"^ ^' x2 2/2 z2

hyperbolas ? the hyperboloid of two sheets 1— =1?
a2 62 q1

3. Show analytically that the intersection of an ellipsoid with any plane

is a conic of the elliptic type.

4. Show analytically that the section of an hyperboloid of (a) one sheet,

(b) two sheets formed by a plane passing through the axis along which the

hyperboloid lies, is an hyperbola.

rffh 2/2 ^2
5. Show that 1 f-

— = {Ax -\- By \- Czf is the equation of the cone
a2 62 Q%

whose vertex is the origin which passes through the intersection of the
r^ y1 2;2

ellipsoid f-
— H— = 1 and the plane J.x + JBy + C2; = 1.

a2 62 c2

6. Show that xsfi - i^ + 2/2('i - -") + ^2/1 _ i\ = is the equa-
\a2 r2/ \62 r2/ \c2 r'^)

^

tion of the cone whose vertex is the origin which passes through the

intersection of the ellipsoid and the sphere x2 + 2/2 + 22 = r^.

7. If, in problem 6, a>b>c and r = 6, show that the cone degenerates

into a pair of planes whose intersections with the ellipsoid are circles. What
is the nature of the cone if r=:a? ifr = c?

8. Find the equations of the planes whose intersections with the ellipsoid

9 x2 -I- 25 2/2 + 169 z2 = 1 are circles. Ans. 4 x = ± 12 z + ^.
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9. Find the equation of the cone whose vertex is the origin which
2;2 yl ^2

through the intersection of (a) the hyperboloid of one sheet 1- ^ = 1.

« o o a^ ^' c2
2j2 y1 ^2

(b) the hyperboloid of two sheets -^ — rr—^ = 1 with the sphere x^ + y^

+ 2^ = r2. For what value of r will the cone degenerate into a pair of planes

whose intersections with the hyperboloid are circles ?

An.. (a)x^(l-i) + 2,^(l-I)-.^(i + l) = 0;r=aif«>6.

10. Find the equations of the two systems of planes whose intersections

with (a) an ellipsoid, (b) an hyperboloid of one sheet, (c) an hyperboloid of

two sheets, are circles.

2 2

181. The elliptic paraboloid ^ + ^ = 2 cs;. If the coefficient
a o

of y^ in (4), p. 398, is positive, the locus is called an elliptic

paraboloid. A discussion of its

equation gives us the following

properties.

1. The elliptic paraboloid is

symmetrical with respect to the

YZr and ZZ-planes and the Z-axis

(Theorem IV, p. 346).

2. It passes through the origin

(Theorem III, p. 345) but does not

intersect the axes elsewhere (Rule,

p. 346).

3. Its traces on the coordinate planes (p. 346) are respectively

the conies „ „ „

0, 2r^ ^ 2cz,

of which the first is a degenerate ellipse (p. 195) and the others

are parabolas.

4. The equation of the curve in which a plane parallel to the

AT-plane, z = k, cuts the paraboloid is (Rule, p. 345)

or ir
^^^'' '' 2^k +

?r
x:

2b'ck
1.

" i-

<5)
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The curve is an ellipse if c and k have the same sign, but there

is no locus if c and k have opposite signs. Hence, if c is positive,

the surface lies entirely above the XF-plane. If k increases

from to oc, the plane recedes from the ZF-plane and the axes

of the ellipse increase indefinitely. Hence the surface recedes

indefinitely from the ZF-plane and from the Z-axis.

In like manner the sections parallel to the YZ- and ZX-planes

are parabolas whose vertices recede from the ZF-plane as their

planes recede from the coordinate planes.

The loci of the equations

(1) |! + S = 2-. 5 + S = 2*^

are elliptic paraboloids which lie along the X- and F-axes

respectively.

If a = h, the first surface considered is a paraboloid of revolu-

tion whose axis is the Z-axis ; and ii b = c and a = c, the parab-

oloids (1) are surfaces of revolution whose axes are respectively

the X- and T-axes.

An elliptic paraboloid lies along the axis corresponding to the term of the first

degree in its equation, and in the positive or negative direction of the axis

according as that term is positive or negative.

182. The hyperbolic paraboloid —-^ = ^cz. If the coeffi-

cient of y"^ in (4), p. 398, is negative, the locus is called an hyperbolic

paraboloid.

1. The hyperbolic paraboloid is symmetrical with respect to

the YZ- and ZA-planes and the Z-axis (Theorem IV, p.' 346).

2. It passes through the origin (Theorem III, p. 345) but does

not cut the axes elsewhere (Rule, p. 346).

3. Its traces on the coordinate planes (p. 346) are respectively

the conies

of which the first is a degenerate hyperbola (p. 195) and the

others are parabolas.
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4. The equation of the curve in which a plane parallel to the

ZF-plane, z = kj cuts the paraboloid is (Kule, p. 345)

—„ — T7: = 2ch or
2a''ck 2b''ck

If c is positive, the transverse axisThe locus is an hyperbola,

of the hyperbola is parallel to the

.Y- or F-axis according as k is posi-

tive or negative. If k increases

from to 00, or decreases from

to — 00, the plane recedes from the

XF-plane and the axes of the

hyperbolas increase indefinitely.

Hence the surface recedes indefi-

nitely from the ZF-plane and the

Z-axis. The surface has approximately the shape of a saddle.

In like manner the sections parallel to the other coordinate

planes are parabolas whose vertices recede from the XF-plane as

their planes recede from the coordinate planes.

The loci of the equations

..--. = ^by,
f,-

2 ax
x" Z'

are hyperbolic paraboloids lying along the F- and Z-axes

respectively.

An hyperbolic paraboloid also lies along the axis which corresponds to the

term of the first degree in its equation.

PROBLEMS

1. Discuss and construct the following loci.

(a) ?/2 + z2^4a;.

(b) y2_22^4a;.

(c) 9z2_4a;2

(d) 16 x2 + z2 :

: 288 y.

64 y.

2. Prove that the parabolas of the systems obtained by cutting (a) an

elliptic paraboloid, (b) an hyperbolic paraboloid by planes parallel to one

of the coordinate planes, are all equal.

3. Show analytically that any plane parallel to the axis along which

(a) an elliptic paraboloid, (b) an hyperbolic paraboloid lies, intersects the

surface in a parabola.
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4. Show analytically that any plane not parallel to the axis of an elliptic

paraboloid intersects the surface in an ellipse.

5. Show analytically that any plane not parallel to the axis of an hyper-

bolic paraboloid intersects the surface in an hyperbola.

6. Find the equation of the cone whose vertex is the origin which passes

through the intersection of the paraboloid 1- — = 2 cz and the sphere

x2 + 2/2 + ^2 = 2 rz.
^^

^ns. x2(^^-c) + y2(^^-c)-cz2 = o.

7. By means of problem 6 find the equations of two systems of planes

whose intersections with the paraboloid are circles.

183. Rectilinear generators. The equation of the hyperboloid

of one sheet (p. 401) may be written in the form

^^ W" C" h'' ]9

As this equation is the result of eliminating h from the equa-

tions of the system of lines

a G I bJ a G ky b

the hyperboloid is a ruled surface (p. 387). Equation (1) is also

the result of eliminating k from the equations of the system of

lines / \ -, /

a G ^\ bj a c k\ b

and the hyperboloid may therefore be regarded in two ways as a

ruled surface.

In like manner the hyperbolic paraboloid contains the two

systems of lines

a b a b k

T X
, y . X y 2g

and - -\- ^ — kz, 7 = -^^
a b a b k

These lines are called the rectilinear generators of these surfaces.

Hence

Theorem III. The hyperboloid of one sheet and the hyperbolic

paraboloid have two systems of reetilinear generators, that is, they

may be regarded in tivo ways as mled surfaces.
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MISCELLANEOUS PROBLEMS

1. Construct the following surfaces and shade that part of the first inter-

cepted by the second.

(a) ^2 + 4 y2 _|. 9 2;2 = 36, x2 + y^ + 2;2 = 16.

(b) x2 + 2/2 _|. 2;2 ^ 64, x2 + 2/2 - 8x = 0.

(c) 4 x2 + 2/2 - 4 z = 0, x2 + 4 2/2 - 22 = 0.

2. Construct the solids bounded by the surfaces (a) x2 + 2/2 = a2, z = mx,

2 = ; (b) x2 + 2/2 = az, x2 + 2/2 = 2 ox, z = 0.

3. Show that two rectilinear generators of (a) an hyperbolic paraboloid,

(b) an hyperboloid of one sheet, pass through each point of the surface.

4. If a plane passes through a rectilinear generator of a quadric, show

that it will also pass through a second generator and that these generators do

not belong to the same system.

5. The equation of the hyperboloid of one sheet (p. 401) may be written

in the form = 1 By treating this equation as we treated equa-
62 c2 a2

tion (1), p. 408, we obtain the equations of two systems of lines on the sur-'

face. Show that these systems of lines are identical with those already

obtained.

6. Show that a quadric may, in general, be passed through any nine

points.

7. If a > 6 > c, what is the nature of the locus of

x2 2/^
j

2^ ^-,

a2 - X 62 _ X c2 - \

ifX>a2? ifa2>X>62? if62>X>c2? ifX<c2?

8, Show that the traces of the system of quadrics in problem 7 are confogal

conies.

9. Show that every rectilinear generator of the hyperbolic paraboloid
/J.2 1/2 X V— = 2 cz is parallel to one of the planes - ± - = 0.

a^ b'2 ah
10. Prove that the projections of the rectilinear generators of (a) the

hyperboloid of one sheet, (b) the hyperbolic paraboloid, on the principal

planes are tangent to the traces of the surface on those planes.

11. A plane passed through the center and a generator of an hyperboloid

of one sheet intersects the surface in a second generator which is parallel to

the first.

12. Show how to generate each of the central quadrics by moving an

ellipse whose axes are variable.

13. Show how to generate each of the paraboloids by moving a parabola.



CHAPTER XXIII

RELATIONS BETWEEN A LINE AND QUADRIC. APPLICA-
TIONS OF THE THEORY OF QUADRATICS

184. The equation in p. Relative positions of a line and quadric. Con-

sider any equation of the second degree, whose locus is a quadric surface,

degenerate or non-degenerate, and a line whose parametric equations are

(Theorem V, p. 369)

(1) x = Xi-i- p cos a, y — yi + p cos ^, z = Zi + p cos y.

If these values of x, y, and z satisfy the equation of the quadric, then the

point P(x, y, z) on the line (1) will also lie on the quadric. Substituting

from (1) in the equation of the quadric and arranging the result according

to powers of p, the result is a quadratic

(2) Ap^ -\- Bp -\- C =

whose roots are the directed distances from Pi (xi, 2/1, zi) to the points of

intersection of the line (1) and the quadric. The quadratic (2) is called

the equation in p for the given quadric (compare § 94, p. 235). Hence we
have the

Rule to derive the equation in p for any quadric.

Substitute the values of x, y, and z given by (1) in the equation of the quadric

and arrange the result according to powers of p.

"Denoting the discriminant of (2), B^ — 4lAC, by A, it is evident from

Theorem II, p. 3, that

(a) the line is a secant of the quadric if A is positive.

(6) the line is tangent to the quadric if A is zero.

(c) the line does not meet the quadric if A is negative.

If C= 0, one root of (2) is zero (Case I, p. 4), and hence P^ lies on the qviadric.

If B = 0, the roots of (2) are numerically equal with opposite signs (Case II, p. 4) and P,

is the middle point of the chord formed by (1).

If ^ = 0, one root of (2) is infinite (Theorem IV, p. 15) and the line is said to intersect

the quadric at infinity.

If B = C = 0, both roots are zero (Case III, p. 5) and the line is said to be tangent to the

quadric at P^.

If A = B = 0, both roots are infinite and the line is said to be tangent to the quadric at

infinity.

If A = B = C = 0, any number is a root of (2), and hence all points on the line lie on the

quadric (compare p. 226).

410
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PROBLEMS

1. Determine the relative positions of the following lines and quadrics.

(a) X = - 6 + I/), 2/ = 6 - f /), z = 3 - ip, x2 + 2/2 + 4z2 = le.

Ans. Secant.

(b) X = f /3, y = 9 + ^ /3, z = 1 - f /), 2/^ + 4 z2 = 8 X. Ans. Do not meet.

(c) X = 4 + f p, 2/ = - 2 + |p, z = 5 + ip, x2 + 2/2 + 2;2 ^ 36.

Ans. Tangent.

(d) X = 3 + i ^P, y = I + i V3p, z = _ 2 - 1 V3p, x2 - z2 ^ 2 2/.

J.ns. Line lies on quadric.

(e) ?^ = ^ = ^^, x2 + 4 2/2 - z2 _ 4 a; = 0. Ans. Secant.
z o t)

(f) ^^ = ^ = ^^, x2 + 42/2 - 9z2 = 36.
9 6 — 5

Ans. Secant with one point of intersection at infinity.

2. Find the condition that the line x=2+pcosar, 2/ = l+PCOS/3,

z = — 1 + p cos 7 should be tangent to the paraboloid x2 — 2/2 + 3 z = 0.

Ans. 4 cos a: — 2 cos /3 — 3 cos 7 = 0.

3. Find the condition that Pi (xi, yi, Zi) should be the middle point of the

chord of the hyperboloid x2 — 2/2 + 4 z2 = 16 formed by the line x = Xi + | p,

Ans. 2 xi + 2/1 — 8 zi = 0.

185. Tangent planes. Consider the elliptic paraboloid

x2 v2
(>>

a^ + l = "''

and the line

(2) X = Xi + p cos a, 2/ = 2/1 + p cos i3, z = Zi + p cos 7.

Substituting from (2) in (1), we obtain the equation in p (p. 410)

If Pi(xi, 2/1, zi) is to lie on (1), and (2) is to be tangent to (1) at Pi, both

roots of (3) must be zero, and hence (Case III, p. 6)

scicosa 2/1 cos /3 . Xi*
,

2/1^ „ ^
(4)

.J__ + ?^-ccos7 = 0, _ + _-2«i = 0.

Solving (2) for the direction cosines, we get

X -Xi ^ y -Vi z — z\

(5) cos a — -, cos /3 = , cos 7 = •
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Substituting from (5) in the first of equations (4), we get

(Q)
^i(^-'gi)

,
y{y- yi) ^ c (g - ^i)

as the condition that P{x, y, z) should lie on a line tangent to (1) at Pi.

Simplifying (6) by means of the second of equations (4), we obtain

(') f + f^ -(--)•

This is the equation of a plane (Theorem II, p. 349). Hence all of the

lines tangent to (1) at Pi lie in a plane which is called the tangent plane.

This method may be summed up in the

Rule to derive the equation of the plane which is tangent to a quadric at a

given point Pi(xi, y^ ^i)-

First step. Derive the equation in.p and set the coefficient of p and the

constant term equal to zero.

Second step. Solve the parametric equations of the line for its direction

cosines and substitute in the first equation obtained in the first step.

Third step. Simplify the equation obtained in the second step by means of

the second equation obtained in the first step. The result is the required

equation.

By means of this Rule we obtain

Theorem I. The equation of the plane which is tangent at Pi (xi, ?/i, Zi) to the

central quadric ± _ ± |- ± _ = 1 is ±^ ±^ ± -J^ = 1;

x2 7/2 sc.ac y^y
non-central quadric —± — = ^cz is —— 4-—— = c{z -\- Zj).

a^ b^ a b

Theorem n. The equation of the plane which is tangent to any quadric at

Pii^h 2/ii ^i) *s found by substituting X\X, yiy, and ZiZ for x^, y^, and z^;

i {yix + xiy), i {ziy + yiz), and i {xiz + zix) for xy, yz, and zx; and i (x + Xi),

i (y + 2/i)» ttw<^ H^ + ^i) f^'"' ^» y^ ^"•^ g ^^ ^^^ equation of the quadric.

186. Polar planes. If Pi is a point on a quadric, the equation of the

tangent plane at Pi may be found by Theorem II. If Pi is not on the quad-

ric, the plane found by Theorem II is called the polar plane of Pi, and Pi is

called the pole of that plane.

In particular, the polar plane of a point on a quadric is the plane tangent

to the quadric at that point, and the pole of a tangent plane is the point of

tangency.

187. Circumscribed cones. All of the lines passing through a point not

on a given quadric which are tangent to the surface form a cone which is

said to be circumscribed about the quadric.
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Ex. 1. Find the equation of the cone circumscribed about the ellipsoid a;2 + 3 ^2

+ 3 ^2 = 9 whose vertex is the point P^ (4, — 2, 4)

.

Solution. The parametric equations of any line through P^ are (Theorem V,

p. 369)

(1) a; = 4 + /) cos a, y = - 2 + pcosjS, 2; = 4 + /) cos 7.

Substituting these values of x, y, and z in the equation of the ellipsoid, we obtain

the equation in p

(2) (cos2a + 3 cos2/3 + 3 cos2 7) p2 _^ (g cos or - 12 cos /3 + 24 cos 7) /o + 67 = 0.

If (1) is tangent to the ellipsoid, then [(6), p. 410]

(3) (8 cos a - 12 cos iS + 24 cos 7)2 - 4 • 67 (cos2a + 3 cos2/3 + 3 cos2 7) = 0.

Solving (1) for the direction cosines, substituting in (3), and multiplying by p^,

we get

(4) [8(a;-4)-12(y + 2) + 24(z-4)]2-268[(x-4)2+ 3(y+ 2)2+ 3(z-4)2] =

as the condition that P {x, y, z) should lie on a line passing through P^ which is

tangent to the ellipsoid. Hence (4) is the equation of the required cone.

That the locus of (4) is really a cone whose vertex is Pi is easily seen by moving

the origin to Pi and applying Theorem V, p. 385.

In constructing the figure, two divisions on each axis were taken for the unit.

The reasoning employed in the solution of Ex. 1 justifies the

Rule to find the equation of the cone whose vertex is Pi (xi, yi, Zi) which

circumscribes a given quadric.

First step. Derive the equation in p and set its discriminant equal to zero.

Second step. In the result of the first step substitute the values of the direc-

tion cosines of a line through Pi obtained from the parametric equations of the

line. The result is the required equation.
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PROBLEMS

, 1. Prove that the plane of the two rectilinear generators which pass

through any point on a ruled quadric is the tangent plane at that point.

2. Prove that every plane which passes through a rectilinear generator of

a ruled quadric is tangent to the quadric at some point of that generator.

3. Prove analytically that every plane tangent to a cone passes through

the vertex.

4. Prove that the polar plane of any point in a given plane passes through

the pole of that plane.

5. Prove that the pole of any plane which passes through a given point

lies in the polar plane of that point.

6. Prove that the curve of contact of a cone circumscribed ahout a

quadric lies in the polar plane of the vertex.

7. Show how to construct (a) the polar plane of a point outside of a

quadric, (b) the pole of a plane which cuts the quadric, (c) the polar plane of

a point within a quadric, (d) the pole of a plane which does not meet the

quadric.

8. Show that the polar plane of a point Pi with respect to a sphere is

perpendicular to the line drawn from the center to Pi-

9. Show analytically that the polar plane of a point Pi with respect to a

central quadric recedes from the center as Pi approaches the center, and

conversely.

10. Show that the distances from two points to the center of a sphere are

proportional to the distances of each of these points from the polar plane of

the other.

11. Show how the ideas of "polar reciprocal curves" and "polar recip-

rocation" with respect to a conic may be generalized to "polar reciprocal

surfaces" and "polar reciprocation" with respect to a quadric.

12. What is the polar reciprocal of a cone or cylinder with respect to a

sphere 2 of a plane curve ?

13. Generalize problem 7, p. 320, for polar reciprocation with respect to

a quadric. •'

14. Prove that the distance p from the origin to the plane which is tangent

to the ellipsoid + |- + ^ 1 at Pi is given by -^ = :^ + ^^ + ^.
a2 62 (.2 p2 (j4 ^4 c*

15. Prove that the plane Ax + By -\- Cz -\- D = is tangent to the ellipsoid

X2 w2 2;2- + ^ + 1 = lif ^2^2 + ^252 4. C2c2 = X>2.
a2 o2 c2
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16. The locus of the point of intersection of three mutually perpendicular

tangent planes to an ellipsoid is a sphere whose radius is Va^ + b^ -\^^.

Hint. From problem 15 we get the equations of three tangent planes. Square and
add these equations, making use of the conditions that the planes shall be mutually
perpendicular.

17. Show that the plane Ax + By + Cz + D = is tangent to the parabo-

loid — ±y^ = 2czit A^a^c ± B^b^c = 2 CD.

18. Show that the locus of the point of intersection of three mutually

perpendicular tangent planes to a paraboloid is a plane.

The line perpendicular to a plane which is tangent to a surface

at the point of tangency is called the normal to the surface at

that point.

19. Find the equation of the normal to each of the quadrics at a point Pi.

20. If the normal to an ellipsoid at Pi meets the principal planes in ^, B,

and C, then Pi^, PiB, and PiC are in a constant ratio.

21. Find the equation of the cone circumscribing a paraboloid whose

vertex is Pi (xi, ?/i, Zi).

22. Find the equation of the cylinder circumscribing an ellipsoid if the

direction angles of the elements of the cylinder are a, j8, and y.

188. Asymptotic directions and cones. If the coefficient of p"^ in the

equation in p for any quadric is zero, one root is infinite (Theorem IV, p. 15),

and the line meets the quadric in one point which is at an infinite distance

from Pi. The direction of such a line is called an asymptotic direction. It is

evident that a line having an asijmptotic direction of a quadric meets the

quadric in but one point in the finite part of space.

It is easily proved that the coefficient of p2 is formed by substituting

cos a, cos jS, and cos y for x, y, and z in the terms of the second degree in

the equation of the quadric (compare the footnote, p. 236). Hence the

direction cosines of the asymptotic directions of the non-degenerate quadrics

±^±^±?^.l, ^^i^^ = 2c.

respectively satisfy the equations

cos^a cos2/3 COS27 cos^a cos^/S

(1) "^-aT^-^^"^^^' ~ar^~^=^'
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By considering the number of sets of real numbers satisfying these

equations for the various combinations of signs we obtain

Theorem m. The hyperboloids and the hyperbolic paraboloid have an

infinite number of asymptotic directions, the elliptic paraboloid has one, and

the ellipsoid has none.

The lines passing through a given point Pi(xi, yi, Zi) which have the

asymptotic directions of a quadric will, in general, form a cone. The

equation of this cone for the hyperboloid of one sheet

a^2 y2 2;2

^ '
a2 62 c2

is found as follows. The direction cosines of an asymptotic direction

satisfy the equation

(3)
c^^c^_c<|.^„^

^^^^^^^

If the equations of a line through Pi are

(4) x = Xi + p cos a, 2/ = 2/1 + P cos /5, z — Zi + p cos 7,

then
X — Xi ^ y — y\ z — Zi

(5) cos a = , cos /3 = —
, cos 7 = .

P P P

Substituting in (3) and multiplying by p^, we get

^ '
a2 52 c2

as the condition that P (x, y, z) should lie on a line through Pi which has an

asymptotic direction of (2). Hence (6) is the equation of the cone whose

vertex is Pi and whose elements have the asymptotic directions of (2).

That (6) is really the equation of a cone is verified by translating the origin to P^.

In general, we have the

Rule to find the equation of the cone of asymptotic directions of a quadric

whose vertex is a given point.

Set the coefficient of p^ in the equation in p equal to zero, and substitute the

values of the direction cosines derived from the parametric equations of the

line.

If the coefficients of p^ and p in the equation in p are both zero, then both

roots are infinite * (Theorem IV, p. 15) and the line is called an asymptotic

line.

* This assumes that the constant term is not zero. If the constant term is zero,

Pi lies on the quadric, and when the coefficients of p^ and p are both zero, any number
is a root and the line lies entirely on the quadric.
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Let Pi be any point not on the hyperboloid (2) and let us seek the condi-

tions that a, j8, and 7 must satisfy if the line (4) is an asymptote.

The equation in p for the hyperboloid is

cos^a cos2/3 COS27

\ a2 62 y+2(
ccicosa 2/1 cos ^ 2^ COS 7

•

+
\ a2 62

+
62 C2

0.

(7)

If (4) is an asymptote, then, by definition,

COS27cos2a cos2/3

a2 "^ 62 c2

= 0,
Xi COS a yi cos /S

a2 62

Zi COS 7

C2
= 0.

These are therefore the conditions which a, /3, and 7 must satisfy. Equa-
tions (7) can be solved for cos a and cos /3

in terms of cos 7 and there will be two

solutions which may be real and unequal,

real and equal, or imaginary, and from these

we can determine two sets of numbers to

which cos a:, cos/3, and cos 7 are propor-

tional. Hence there will pass through Pi
either two asymptotes, one, or none.

But if xi = yi = zi = 0, that is, if Pi is

the center of the hyperboloid, the second of

equations (7) is true for all values of a, jS,

and 7 ; and as the first of equations (7) is

identical with (3), we see that the elements

of the cone of asymptotic directions whose
vertex is the center (0, 0, 0) are all asymp-

totic lines. From (6) the equation of this cone, which is called the asymptotic

cone, is seen to be

a2 62 c2

Hence we have

Theorem IV. The equation of the asymptotic cone of the hyperboloid of one

sheet

62 a^ Ir &•

The figure shows the hyperboloid (2) in outline and its asymptotic cone

which lies entirely within the surface. As the hyperboloid recedes to infinity

it approaches closer and closer to its asymptotic cone in the same way that

an hyperbola approaches its asymptotes (Theorem IX, p. 190).
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In like manner we may prove the following theorem,

P

Theorem V. The equation of the asymptotic cone of the

,2 ^,2 ^2

hyperboloid of two sheets

hyperbolic paraboloid 2cz

1 is O;

The latter cone degenerates into a pair of intersecting planes.

PROBLEMS

1. Show that a plane perpendicular to the axis of an hyperbolic parab-

oloid intersects the surface in an hyperbola whose asymptotes form the

intersection of the plane with the asymptotic cone.

2. Show that a plane passing through the axis of an hyperboloid inter-

sects the surface in an hyperbola whose asymptotes form the intersection of

the plane with the asymptotic cone.

Hint. Rotate the axes about the axis of the hyperboloid.

3. Show that the asymptotic directions of any quadric are detern ined

by the locus of the equation obtained by setting the terms of the second

degree equal to zero.

4. Show that a plane passing through the center and a generator of an

hyperboloid of one sheet is tangent to the asymptotic cone.

6. Show that any plane parallel to an element of the asymptotic cone of

an hyperboloid intersects the hyperboloid in a parabola.

6. Show that a plane tangent to the asymptotic cone of an hyperboloid

cuts the hyperboloid in two parallel lines.

7. Show that every asymptotic line of an hyperboloid is parallel to an

element of the asymptotic cone and lies in the plane tangent to the cone

along that element.
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8. By means of problem 7 show how to construct the asymptotic lines

of an hyperboloid which pass through any point Pi other than the center.

Show that there will be two, one, or no asymptotic lines through Pi
according as Pi is outside of, on, or inside of the asymptotic cone.

x^ ?/2 z2 ^.2 yl ^2
9. Show that the hyperboloids = 1 and h — H— = 1

have the same asymptotic cone. How are they situated relative to this cone ?

10. Show that two asymptotes of an hyperbolic paraboloid pass through

every point not on the asymptotic cone, and that each of these lines is par-

allel to one of the planes which fortn the cone.

189. Centers. A point Pi(xi, yi, Z\) is a center of symmetry of a quadric

if it is the middle point of every chord passing through it. In order that Pi
shall be the middle point of a chord, the roots of the equation in p must be

equal numerically with opposite signs, and hence (Case II, p. 4) the coefficient

of p must be zero. The coefficient of p in the equation in p for the general

equation of the second degree is easily seen to be

(2 Axx + Fyi + Ezi + G) cos a

+ (PiCi + 2 %i + Dzx + H) cos iS + {Ex^ + Dyi + 2 Czi + I) cos 7.

This is zero for all lines passing through Pi, that is, for all values of

cos a, cos j3, and cos 7, when and only when the three parentheses are zero.

Setting these 'parentheses equal to zero and solving for Xi, 2/1, and Zi, we obtain

the coordinates of the center.

By means of the discussion in § 163, p. 374, we see that a quadric may
have a single center, that there may be no center, or that all of the points

of a line or of a plane may be centers.

190. Diametral planes. The locus of the middle points of a system of

parallel chords of a quadric is found to be a plane which is called a diametral

planp.

Consider the ellipsoid

(1)

• t + yl + ^ = i^'
a'^ b^ c^

and the system of parallel lines

(2) x = xi + p cos a, y = yi + p cos jS, z = zi + p cos 7.

These equations represent a system of parallel lines if x^,yi, and Zj are arbitrary

while a, /3, and y are constant.

The equation in p for (1) is

/cosVr cos2/3 cos27 \ ^ / Xicoscr yi Cos/3 2i_cos7\

^^ V a2 "^ 62 + c2 r V a2 "^ 62 c^ J^

^ V a2 ^ 62 ^ c2 /
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If Pi is the middle point of the chord of (1) formed by the line (2), then

the roots of (3) must be numerically equal with opposite signs ; and hence

(Case II, p. 4)

xi cos a yicos^ ziC0S7 _ ^
^

^
a^ Ifi c^

is the condition that Pi shall be the middle point of the chord.

But (4) is the condition that Pi should lie in the plane

X cos a y cos /3 z cos 7 _ ^
^2 + 62 + c2 "" '

and this is therefore the equation of the locus of the middle points of all

chords whose direction angles are or, /3, and 7.

By proceeding in this manner with the other quadrics we obtain

Theorem VI. The equation of the diametral plane bisecting all chords whose

direction angles are a, /3, and 7 of the

x2 7/2 ^2 Oleosa ycosB zcosy
central quadric ± - ± _ ± - = Hs ± _^— i —^+_^ = O;

x^ v^ ^ occosa ycosB
non-central quadric — ± -- = 2cz is r-i- = c COS v.

PROBLEMS

1. Determine geometrically the number of centers of each of the types of

quadrics and degenerate quadrics.

2. Find the equation of the diametral plane of the locus of the general

equation of the second degi-ee bisecting all chords whose direction angles are

a, /3, 7. From the form of the equation prove that the plane passes through

the center of the quadric if there is a center.

3. Prove that every plane through the center of a central quadric or

parallel to the axis of a paraboloid is a diametral plane, and find the direc-

tion cosines of the chords which it bisects.

4. The line of intersection of two diametral planes is called a diameter.

Show that a central quadric has three diameters such that the plane of any

two bisects all chords parallel to the third. Such lines are called conjugate

diameters, and the plane of any two is said to be conjugate to the third.

5. Find the equation of the plane which bisects all chords of (a) a cen-

tral quadric, (b) a paraboloid, which are. parallel to the diameter passing

through a point Pi on the quadric.

6. The planes tangent to a quadric at the extremities of a diameter are

parallel to the conjugate diametral plane.
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7. The sum of the squares of the projections of three conjugate semi-

diameters of an ellipsoid on each of the axes of the ellipsoid is constant.

Hint. Let P^, P^, and P^ be the extremities of three conjugate diameters. Find tlie

conditions that tliese points are on the ellipsoid and that any two are on the plane

conjugate to the diameter through the third. Then show that

a^ b^ c^ a' b ^ c' a ' b ^ c

are the direction cosines of three mutually perpendicular lines, and that if these lines

be chosen as axes, then

a^ a^ a^ b^ b ' b
'

c ' c ' c

are also the direction cosines of three lines. Then apply Theorem III, p. 330.

8. By means of problem 7 show that the sum of the squares of three

conjugate semi-diameters of an ellipsoid is equal to a^ + 6^ 4. c2.
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Abscissa, 24

Absolute invariant, 270

Algebraic equation, 17 ; curve, 72

Anchor ring, 389

Arbitrary constant, 1

Auxiliary circle, 206

Euclidean transformation, 281

External angle, 121

Fixed point, 285

Focal radii of conies, 193,

Four-leaved rose, 263

194

Cardioid, 158, 253, 302

Center of similitude of circles, 296

Central conic, 183
;
quadric, 399

Cissoid of Diodes, 253, 263, 299

Complete quadrilateral, 123

Conchoid of Nicomedes, 251

Condition for tangency, 230

Confocal conies, 203

Congruent figures, 281

Conicoid, 397

Conjugate diameters of quadrics, 420

Cubical parabola, 72

Curtate cycloid, 259

Cycloid, 256

Degenerate ellipse, 195; hyperbola,

195; parabola, 196; quadric, 399

Direction cosines of a line, 123, 330,

364

Director circle, 261

Discriminant of the equation of a

circle, 131 ; of the general equation

of the second degree, 265; of a

quadratic, 2

Graph of an equation, 83

nomothetic figures, 291 *

Hyperbolic spiral, 249

Hypocycloid, 259 ; of four cusps, 257

Intercepts, 73

Internal angle, 121

Invariant, 270 ; line, 288
;
point, 285

Involute of a circle, 259

Latus rectum, 181

Lemniscate of Bernoulli, 153, 248,

262, 300

Lima^on of Pascal, 253, 262, 302

Limiting points of a system of circles,

144

Normal to a curve, 210; length of,

214 ; to a surface, 415

Ordinate, 24

Orthogonal circles, 143; systems of

circles, 308

Epicycloid, 259 Parabolic spiral, 263

Equations of a transformation, 281 Parameter, 1

423
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Peaucellier's Inversor, 309

Point-circle, 131

Polar reciprocal curves, 313, 317

Prolate cycloid, 259

Radian, 19

Radical axis, 137, 382

Reciprocal spiral, 249

Subnormal, 214

Subtangent, 214

Torus, 389

Traces of a surface, 346

Transcendental equation, 17

Transformation, 281

Trisectrix of Maclaurin, 303

Self-conjugate triangles, 319

Semicubical parabola, 209

Spiral of Archimedes, 249

Strophoid, 262, 263, 301

Vertex of a conic, 174, 175

Witch of Agnesi, 250
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