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CHAPTER 4

Stochastic differential equations

Some pertinent topics in the present chapter consist of a discussion on mar-
tingale theory, and a few relevant results on stochastic differential equations in
spaces of finite dimension. In particular unique weak solutions to stochastic dif-
ferential equations give rise to strong Markov processes whose one-dimensional
distributions are governed by the corresponding second order parabolic type
differential equation. Essentially speaking this chapter is part of Chapter 1 in
[184]. (The author is thankful to WSPC for the permission to include this text
also in the present book.) In this chapter we discuss weak and strong solutions
to stochastic differential equations. We also discuss a version of the Girsanov
transformation.

1. Solutions to stochastic differential equations

Basically, the material in this section is taken from Ikeda and Watanabe [81].
In Subsection 1.1 we begin with a discussion on strong solutions to stochastic
differential equations, after that, in Subsection 1.2 we present a martingale
characterization of Brownian motion. We also pay some attention to (local)
exponential martingales: see Subsection 1.3. In Subsection 1.4 the notion of
weak solutions is explained. However, first we give a definition of Brownian
motion which starts at a random position.

4.1. Definition. Let pΩ,F,Pq be a probability space with filtration pFtqtě0.
A d-dimensional Brownian motion is a almost everywhere continuous adapted
process tBptq “ pB1ptq, . . . , Bdptqq : t ě 0u such that for 0 ă t1 ă t2 ă ¨ ¨ ¨ ă
tn ă 8 and for C any Borel subset of

`
Rd

˘n
the following equality holds:

P rpB pt1q ´ Bp0q, . . . , B ptnq ´ Bp0qq P Cs

“
ż

¨ ¨ ¨
ż

C

p0,d ptn ´ tn´1, xn´1, xnq ¨ ¨ ¨ p0,d pt2 ´ t1, x1, x2q p0,d pt1, 0, x1q

dx1 . . . dxn. (4.1)

This process is called a d-dimensional Brownian motion with initial distribution

µ if for 0 ă t1 ă t2 ă ¨ ¨ ¨ ă tn ă 8 and every Borel subset of
`
Rd

˘n`1
the

following equality holds:

P rpBp0q, B pt1q , . . . , B ptnqq P Cs

“
ż

¨ ¨ ¨
ż

C

p0,d ptn ´ tn´1, xn´1, xnq ¨ ¨ ¨ p0,d pt2 ´ t1, x1, x2q p0,d pt1, x0, x1q

255
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dµ px0q dx1 . . . dxn. (4.2)

For the definition of p0,d pt, x, yq see formula (4.26). By definition a filtration
pFtqtě0 is an increasing family of σ-fields, i.e. 0 ď t1 ď t2 ă 8 implies Ft1 Ă Ft2 .
The process of Brownian motion tBptq : t ě 0u is said to be adapted to the
filtration pFtqtě0 if for every t ě 0 the variable Bptq is Ft-measurable. It is
assumed that the P-negligible sets belong to F0.

1.1. Strong solutions to stochastic differential equations. In this sec-
tion we discuss strong or pathwise solutions to stochastic differential equations.
We also show that if the stochastic differential equation in (4.110) possesses
unique pathwise solutions, then it has unique weak solutions. We begin with a
formal definition.

4.2. Definition. The equation in (4.110) is said to have unique pathwise so-
lutions, if for any Brownian motion tpBptq : t ě 0q , pΩ,F,Pqu and any pair of
Rd-valued adapted processes tXptq : t ě 0u and tX 1ptq : t ě 0u for which

Xptq “ x `
ż t

0

σ ps,Xpsqq dBpsq `
ż t

0

b ps,Xpsqq ds and (4.3)

X 1ptq “ x `
ż t

0

σ ps,X 1psqq dBpsq `
ż t

0

b ps,X 1psqq ds (4.4)

it follows that Xptq “ X 1ptq P-almost surely for all t ě 0. If for any given
Brownian motion pBptqqtě0 the process pXptqqtě0 is such that for P-almost all
ω P Ω the equality

Xpt, ωq “ x `
ż t

0

σ ps,Xps, ωqqdBps, ωq `
ż t

0

b ps,Xps, ωqq ds

is true, then t ÞÑ Xptq is called a strong solution.

Strong solutions are also called pathwise solutions. In order to facilitate the
proof of Theorem 4.4 we insert the following lemma.

4.3. Lemma. Let γ be a positive real number. Then the following inequality
holds:

8ÿ

n“0

γn{2
?
n!

ď 1

2

´?
γ `

a
γ ` 4

¯
exp

ˆ
1

8

´?
γ `

a
γ ` 4

¯2

´ 1

2

˙
. (4.5)

Since
?
γ ` ?

γ ` 4 ď 2
?
γ ` 2, the inequality in (4.5) implies:

8ÿ

n“0

γn{2
?
n!

ď
a

γ ` 2 exp

ˆ
1

2
pγ ` 1q

˙
ă 8. (4.6)

We will use the finiteness of the sum rather than the precise estimate.
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Proof of Lemma 4.3. Let δ ą 0 be a positive number. Then we have by
the Cauchy-Schwarz inequality

˜
8ÿ

n“0

γn{2
?
n!

¸2

“
˜

8ÿ

n“0

γn{2

pδ ` γqn{2
pδ ` γqn{2

?
n!

¸2

ď
8ÿ

n“0

γn

pδ ` γqn
8ÿ

n“0

pδ ` γqn
n!

“ δ ` γ

δ
eδ`γ . (4.7)

The choice δ “ 1
2

´
´γ `

a
γpγ ` 4q

¯
yields the equalities

δ ` γ “ 1

4

´?
γ `

a
γ ` 4

¯2

´ 1, and
δ ` γ

δ
“ 1

4

´?
γ `

a
γ ` 4

¯2

,

and so the result in (4.5) follows and completes the proof of Lemma 4.3. �

A version of the following result can be found in many books on stochastic
differential equations: see e.g. [81, 139, 148].
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4.4. Theorem. Let σj,k ps, xq and bj ps, xq, 1 ď j, k ď d be continuous functions
defined on r0,8q ˆ Rd such that for all t ą 0 there exists a constant Kptq with
the property that

dÿ

j,k“1

|σj,k ps, xq ´ σj,k ps, yq|2 `
dÿ

j“1

|bj ps, xq ´ bj ps, yq|2 ď Kptq2 |x ´ y|2 (4.8)

for all 0 ď s ď t, and all x, y P Rd. Fix x P Rd, and let pΩ,F,Pq be a probability
space with a filtration pFtqtě0. Moreover, let tBptq : t ě 0u be a Brownian mo-

tion on the filtered probability space pΩ,Ft,Pq. Then there exists an Rd-valued

process tXptq : t ě 0u such that, for all 0 ă T ă 8, sup0ătďT E
“
|Xptq|2

‰
ă 8,

and such that

Xptq “ x `
ż t

0

σ ps,Xpsqq dBpsq `
ż t

0

b ps,Xpsqq ds, t ě 0. (4.9)

This process is pathwise unique in the sense of Definition 4.2.

The techniques in the proof below are very similar to a method to prove the
following version of Gronwall’s inequality: see e.g. [68]. Let f, g, h : r0, T s Ñ R

be continuous functions such that fptq ď gptq `
şt
0
hpsqfpsq ds, 0 ď t ď T . If

h ě 0, then by induction with respect to k it follows that

fptq ď gptq `
kÿ

j“1

ż t

0

´şt
s
hpρq dρ

¯j´1

pj ´ 1q! gpsq ds `
ż t

0

´şt
s
hpρq dρ

¯k

k!
hpsqfpsq ds,

and hence

fptq ď gptq `
ż t

0

gpsq exp
ˆż t

s

hpρq dρ
˙

ds.

Let C
`
r0, T s, L2

`
Ω,F,P;Rd

˘˘
be the space of all continuous L2

`
Ω,F,P;Rd

˘
-

valued functions supplied with the norm:

}X} “ sup
0ďtďT

`
E

“
|Xptq|2

‰˘1{2
, X P C

`
r0, T s, L2

`
Ω,F,P;Rd

˘˘
.

Define the operator T : C
`
r0, T s, L2

`
Ω,F,P;Rd

˘˘
Ñ C

`
r0, T s, L2

`
Ω,F,P;Rd

˘˘

by the formula

TXptq “ x `
ż t

0

σ ps,Xpsqq dBpsq `
ż t

0

b ps,Xpsqq ds.

Then the argumentation in the proof below shows that T is a mapping from
C

`
r0, T s, L2

`
Ω,F,P;Rd

˘˘
to C

`
r0, T s, L2

`
Ω,F,P;Rd

˘˘
indeed, and that T has

a unique fixed point X which is a pathwise solution to the equation in (4.9).

Proof. Existence. Fix 0 ă T ă 8. Put X0psq “ x, 0 ď s ď t, and, for
n ě 1, 0 ă t ď T ,

Xn`1ptq “ x `
ż t

0

b ps,Xnpsqq ds `
ż t

0

σ ps,Xnpsqq dBpsq. (4.10)
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By (4.10) we see, for n ě 1 and 0 ă t ď T ,

Xn`1ptq ´ Xnptq “
ż t

0

pb ps,Xnpsqq ´ b ps,Xn´1psqqq ds

`
ż t

0

pσ ps,Xnpsqq ´ σ ps,Xn´1psqqq dBpsq. (4.11)

By assumption there exists functions s ÞÑ Kjpsq and s ÞÑ Kijpsq, 0 ď s ď T ,
such that for

|bj ps, yq ´ bj ps, xq| ď Kjpsq |y ´ x| , 0 ď s ď T, x, y P Rd, and (4.12)

|σij ps, yq ´ σij ps, xq| ď Ki,jpsq |y ´ x| , 0 ď s ď T, x, y P Rd, (4.13)

and such that
şT
0

pKjpsq2 ` Ki,jpsq2q ds ă 8 for 0 ď 1 ď i, j ď d. Let the

function Kpsq ě 0 be such that Kpsq2 “ řd

j“1Kjpsq2 ` řd

i“1 max1ďjďdKijpsq2.
Then

şT
0
Kpsq2 ds ă 8. Moreover, for n ě 1 and 0 ď t ď T we infer, by using

(4.11). (4.12) and (4.13), by the definition of Kpsq, and by standard properties
of stochastic integrals relative to Brownian motion, the following inequality:

E
“
|Xn`1ptq ´ Xnptq|2

‰
ď 2

ż t

0

Kpsq2E
“
|Xnpsq ´ Xn´1psq|2

‰
ds. (4.14)

In order to obtain (4.14) we also used an inequality of the form p|a| ` |b|q2 ď
2

`
|a|2 ` |b|2

˘
, a, b P Rd. The proofs of (4.15) and (4.18) require equalities of

the form

ż

săs1ă¨¨¨ăsjăt

ż jź

i“1

K psiq2 ds1 . . . dsj “

´şt
s
Kpρq2 dρ

¯j

j!
, j P N, j ě 1.

By employing induction the inequality in (4.14) yields, for 1 ď j ď n and for
0 ď t ď T , the inequality:

E
“
|Xn`1ptq ´ Xnptq|2

‰

ď 2j
ż t

0

´şt
s
Kpρq2dρ

¯j´1

pj ´ 1q! Kpsq2E
“
|Xn´j`1psq ´ Xn´jpsq|2

‰
ds. (4.15)

Since X0psq “ x the equality in (4.10) for n “ 0 yields

X1psq ´ X0psq “
ż s

0

b pρ, xq dρ `
ż s

0

σ pρ, xq dBpρq,

and hence, for 0 ď s ď T ,

E
“
|X1psq ´ X0psq|2

‰
ď 2

˜ˇ̌
ˇ̌
ż s

0

b pρ, xq dρ

ˇ̌
ˇ̌
2

`
dÿ

i,j“1

ż s

0

|σij pρ, xq|2 dρ

¸
. (4.16)

Let Aps, xq ě 0 be such that

Aps, xq2 “ sup
0ăτďs

ˇ̌
ˇ̌
ż τ

0

b pρ, xq dρ

ˇ̌
ˇ̌
2

`
dÿ

i,j“1

ż s

0

|σij pρ, xq|2 dρ. (4.17)
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Then (4.17) together with (4.15) with j “ n yields

E
“
|Xn`1ptq ´ Xnptq|2

‰
ď 2n

ż t

0

´şt
s
Kpρq2dρ

¯n´1

pn ´ 1q! Kpsq2E
“
|X1psq ´ X0psq|2

‰
ds

ď 2n`1

ż t

0

´şt
s
Kpρq2dρ

¯n´1

pn ´ 1q! Kpsq2Aps, xq2 ds

ď 2n`1Apt, xq2
ż t

0

´şt
s
Kpρq2dρ

¯n´1

pn ´ 1q! Kpsq2 ds

“ 2n`1Apt, xq2
ż

0ăs1ă¨¨¨ăsnăt

ż nź

j“1

K psjq2 ds1 . . . dsn

“ 2n`1Apt, xq2
´şt

0
Kpsq2ds

¯n

n!
. (4.18)

From Lemma (4.3) and inequality (4.6) with γ “ 2
şt
0
Kpsq2 ds we infer:

8ÿ

n“0

`
E

“
|Xn`1ptq ´ Xnptq|2

‰˘1{2 ď 2Apt, xq
dż t

0

Kpsq2 ds ` 1 e
şt
0
Kpsq2 ds` 1

2 .

(4.19)
From (4.19) it easily follows that there exists an adapted Rd-valued process
pXptqq0ďtďT in L2

`
Ω,FT ,P;R

d
˘
such that

lim
nÑ8

E
“
|Xnptq ´ Xptq|2

‰
“ 0. (4.20)

From (4.19) it also follows that this convergence also holds P-almost surely.
The latter can be seen as follows. Fix η ą 0. Then the probability of the event
tlim supnÑ8 |Xnptq ´ Xptq| ą ηu can be estimated as follows:

P

„
lim sup
nÑ8

|Xnptq ´ Xptq| ą η


ď inf

mPN
P

«
8ď

n“m

t|Xnptq ´ Xptq| ą ηu
ff

ď inf
mPN

P

«
8ď

n1ąn2ěm

t|Xn1
ptq ´ Xn2

ptq| ą ηu
ff

ď inf
mPN

P

«#
8ÿ

n“m

|Xn`1ptq ´ Xnptq| ą η

+ff

ď inf
mPN

1

η
E

«
8ÿ

n“m

|Xn`1ptq ´ Xnptq|
ff

ď inf
mPN

1

η

8ÿ

n“m

E r|Xn`1ptq ´ Xnptq|s “ 0. (4.21)

The final equality is a consequence of Lemma 4.3 together with (4.19) and the

inequality E r|Xn`1ptq ´ Xnptq|s ď
`
E

“
|Xn`1ptq ´ Xnptq|2

‰˘1{2
. Since η ą 0 is

arbitrary in (4.21) we infer that limnÑ8 Xnptq “ Xptq (P-almost surely). This
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P-almost sure convergence (as n Ñ 8) also implies that we may take pointwise
limits in (4.10) to obtain:

Xptq “ x `
ż t

0

b ps,Xpsqq ds `
ż t

0

σ ps,Xpsqq dBpsq. (4.22)

The equality in (4.22) shows the existence of pathwise or strong solutions to the
equation in (4.9).

Uniqueness. Let pX1ptqq0ďtďT and pX2ptqq0ďtďT be two solutions to the stochas-
tic differential equation in (4.9). By using a stopping time argument we may
assume that sup0ďsďT |X2psq ´ X1psq| is P-almost surely bounded. Then

X2ptq ´ X1ptq “
ż t

0

pb ps,X2psqq ´ b ps,X1psqqq ds

`
ż t

0

pσ ps,X2psqq ´ σ ps,X1psqqq dBpsq. (4.23)

As in the proof of (4.15) with j “ n and (4.18) it then follows that

E
“
|X2ptq ´ X1ptq|2

‰
ď 2n

ż t

0

´şt
s
Kpρq2dρ

¯n´1

pn ´ 1q! Kpsq2E
“
|X2psq ´ X1psq|2

‰
ds

ď 2n sup
0ăsăt

E
“
|X2psq ´ X1psq|2

‰
´şt

0
Kpρq2dρ

¯n

n!
. (4.24)

Since the right-hand side of (4.24) tends to 0 as n Ñ 8 we see thatX2ptq “ X1ptq
P-almost surely. So uniqueness follows.

The proof of Theorem 4.4 is complete now. �
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1.2. A martingale characterization of Brownian motion. The fol-
lowing result we owe to Lévy.

4.5. Theorem. Let pΩ,F,Pq be a probability space with filtration (or reference
system) pFtqtě0. Suppose F is the σ-algebra generated by Ytě0Ft augmented with
the P-zero sets, and suppose Ft is continuous from the right: Ft “ XsątFs for all
t ě 0. Let tMptq “ pM1ptq, . . . ,Mdptqq : t ě 0u be an Rd-valued local P-almost
surely continuous martingale with the property that the quadratic covariation
processes t ÞÑ 〈Mi,Mj〉 ptq satisfy

〈Mi,Mj〉 ptq “ δi,jt, 1 ď i, j ď d. (4.25)

Then tMptq : t ě 0u is d-dimensional Brownian motion with initial distribution
given by µpBq “ P rMp0q P Bs, B P BRd, the Borel field of Rd.

It follows that the finite-dimensional distributions of the process t ÞÑ Mptq are
given by:

P rM pt1q P B1, . . . ,M ptnq P Bns

“
ż ˆż

B1

. . .

ż

Bn

p0,d ptn ´ tn´1, xn´1, xnq ¨ ¨ ¨ p0,d pt2 ´ t1, x1, x2q p0,d pt1, x, x1q

dxn ¨ ¨ ¨ dx1

˙
dµpxq.

Here p0,d pt, x, yq is the classical Gaussian kernel:

p0,d pt, x, yq “ 1
`?

2πt
˘d exp

˜
´|x ´ y|2

2t

¸
. (4.26)

4.6. Remark. There is even a nicer result which says the following. Let X be
a continuous Rd-valued process with stationary independent increments. Then,
there exist unique b P Rd and Σ P Rd2 such thatX ptq´X p0q is a pb,Σq-Brownian
motion. This means that Xptq is a Gaussian (or multivariate normal) vector
such that E rXptqs “ bt and

E rpXj1ptq ´ bj1tq pXj2ptq ´ bj2tqs “ tΣj1,j2.

For the one-dimensional case the reader is referred to Breiman [35]. For the
higher dimensional case, see, e.g., Lowther [116].

Proof of Theorem 4.5. Let ξ P Rd be arbitrary. First we show that it
suffices to establish the equality:

E
“
e´i〈ξ,Mptq´Mpsq〉 ˇ̌

Fs

‰
“ e´ 1

2
|ξ|2pt´sq, t ą s ě 0. (4.27)

For suppose that (4.27) is true for all ξ P Rd. Observe that (4.27) implies

E
“
e´i〈ξ,Mptq´Mpsq〉‰ “ e´ 1

2
|ξ|2pt´sq. Then, by standard approximation arguments,

it follows that the variable Mptq ´Mpsq is P-independent of Fs. In other words
the process t ÞÑ Mptq possesses independent increments. Since the Fourier
transform of the function y ÞÑ p0,d pt ´ s, 0, yq is given byż

Rd

e´i〈ξ,y〉p0,d pt ´ s, 0, yqdy “ e´ 1

2
|ξ|2pt´sq
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it also follows that the distribution of Mptq ´ Mpsq is given by

P rMptq ´ Mpsq P Bs “
ż

B

p0,d pt ´ s, 0, yqdy. (4.28)

Moreover, for 0 ă t1 ă ¨ ¨ ¨ ă tn we also have

P rMp0q P B0, M pt1q ´ Mp0q P B1, . . . ,M ptnq ´ M ptn´1q P Bns
“ P rMp0q P B0sP rM pt1q ´ Mp0q P B1s ¨ ¨ ¨P rM ptnq ´ M ptn´1q P Bns

“
ż

B0

ż

B1

¨ ¨ ¨
ż

Bn

p0,d pt1, 0, y1q ¨ ¨ ¨ p0,d ptn ´ tn´1, 0, ynq dµ py0q dy1 ¨ ¨ ¨ dyn.

Here B0, . . . , Bn are Borel subsets of Rd. Hence, if B is a Borel subset of
Rd ˆ ¨ ¨ ¨ ˆ Rdlooooooomooooooon

n`1times

, then it follows that

P rpMp0q,M pt1q ´ Mp0q, . . . ,M ptnq ´ M ptn´1qq P Bs

“
ż

¨ ¨ ¨
ż

B

p0,d pt1, 0, y1q ¨ ¨ ¨ p0,d ptn ´ tn´1, 0, ynq dµ py0q dy1 ¨ ¨ ¨ dyn. (4.29)

Next we compute the joint distribution of pMp0q,M pt1q , . . . ,M ptnqq by em-
ploying (4.29). Define the linear map ℓ : Rd ˆ ¨ ¨ ¨ ˆ Rd Ñ Rd ˆ ¨ ¨ ¨ ˆ Rd by

ℓ px0, x1, . . . , xnq “ px0, x1 ´ x0, x2 ´ x1, . . . , xn ´ xn´1q .
Let B be a Borel subset of Rd ˆ ¨ ¨ ¨ ˆ Rd. By (4.29) we get

P rpMp0q, . . . ,M ptnqq P Bs
“ P rℓ pMp0q, . . . ,M ptnqq P ℓ pBqs
“ P rpMp0q,M pt1q ´ Mp0q, . . . ,M ptnq ´ M ptn´1qq P ℓ pBqs

“
ż
. . .

ż

ℓpBq

p0,d pt1, 0, y1q ¨ ¨ ¨ p0,d ptn ´ tn´1, 0, ynq dµ py0q dy1 ¨ ¨ ¨ dyn

(change of variables: py0, y1, . . . , ynq “ ℓ px0, x1, . . . , xnq)

“
ż

¨ ¨ ¨
ż

B

p0,d pt1, x0, x1q ¨ ¨ ¨ p0,d ptn ´ tn´1, xn´1, xnq dµ px0q dx1 ¨ ¨ ¨ dxn. (4.30)

In order to complete the proof of Theorem 4.5 from equality (4.30) it follows
that it is sufficient to establish the equality in (4.27). Therefore, fix ξ P Rd and
t ą s ě 0. An application of Itô’s lemma to the function x ÞÑ e´i〈ξ,x〉 yields

e´i〈ξ,Mptq〉 ´ e´i〈ξ,Mpsq〉

“ ´i

dÿ

j“1

ξj

ż t

s

e´i〈ξ,Mpτq〉dMjpτq ´ 1

2

dÿ

j,k“1

ξjξk

ż t

s

e´i〈ξ,Mpτq〉d 〈Mj ,Mk〉 pτq

(formula (4.25))

“ ´i

dÿ

j“1

ξj

ż t

s

e´i〈ξ,Mpτq〉dMjpτq ´ 1

2
|ξ|2

ż t

s

e´i〈ξ,Mpτq〉 dτ. (4.31)
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Hence, from (4.31) it follows that

e´i〈ξ,Mptq´Mpsq〉 ´ 1 (4.32)

“ ´i

dÿ

j“1

ξj

ż t

s

e´i〈ξ,Mpτq´Mpsq〉dMjpτq ´ 1

2
|ξ|2

ż t

s

e´i〈ξ,Mpτq´Mpsq〉 dτ.

Since the processes

t ÞÑ
ż t

s

e´i〈ξ,Mpτq´Mpsq〉 dMjpτq, t ě s, 1 ď j ď d,

are local martingales, we infer by (possibly) using a stopping time argument
that

E
“
e´i〈ξ,Mptq´Mpsq〉 ˇ̌

Fs

‰
“ 1 ´ 1

2
|ξ|2

ż t

s

E
“
e´i〈ξ,Mpτq´Mpsq〉 ˇ̌

Fs

‰
dτ. (4.33)

Next, let vptq, t ě s, be given by

vptq “
ż t

s

E
“
e´i〈ξ,Mpτq´Mpsq〉 ˇ̌

Fs

‰
dτ.

Then vpsq “ 0, and (4.33) implies

v1ptq ` 1

2
|ξ|2 vptq “ 1. (4.34)

From (4.34) we infer

d

dt

´
e

1

2
pt´sq|ξ|2vptq

¯
“

ˆ
1

2
|ξ|2 vptq ` v1ptq

˙
e

1

2
pt´sq|ξ|2 “ e

1

2
pt´sq|ξ|2 . (4.35)

The equality in (4.35) implies:

e
1

2
pt´sq|ξ|2vptq ´ vpsq “ 2

|ξ|2
´
e

1

2
pt´sq|ξ|2 ´ 1

¯
,

and thus we see

v1ptq ` 1

2
vpsqe´ 1

2
pt´sq|ξ|2 “ e´ 1

2
pt´sq|ξ|2 (4.36)

Since vpsq “ 0 (4.36) results in

E
“
e´i〈ξ,Mpτq´Mpsq〉 ˇ̌

Fs

‰
“ v1ptq “ e´ 1

2
pt´sq|ξ|2 . (4.37)

The equality in (4.37) is the same as the one in (4.27). By the above arguments
this completes the proof of Theorem 4.5. �

As a corollary to Theorem 4.5 we get the following result due to Lévy.

4.7. Corollary. Let tMptq : t ě 0u be a continuous local martingale in R such
that the process t ÞÑ Mptq2 ´ t is a local martingale as well. Then the process
tMptq : t ě 0u is a Brownian motion with initial distribution given by µpBq “
P rMp0q P Bs, B P BR.

Proof. Since Mptq2 ´ t is a local martingale, it follows that the quadratic
variation process t ÞÑ 〈M,M〉 ptq satisfies 〈M,M〉 ptq “ t, t ě 0. So the result
in Corollary 4.7 follows from Theorem 4.5. �
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The following result contains a d-dimensional version of Corollary 4.7.

4.8. Theorem. Let tMptq “ pM1ptq, . . . ,Md1ptqq : t ě 0u be a continuous local
martingale with covariation process given by

〈Mj,Mk〉 ptq “
ż t

0

Φj,kpsqds, 1 ď j, k ď d1. (4.38)

Let the d1 ˆ d-matrix process tχptq : t ě 0u be such that χptqΦptqχptq˚ “ I,

where I is the d ˆ d identity matrix. Put Bptq “
şt
0
χpsq dMpsq. This integral

should be interpreted in Itô sense. Then the process t ÞÑ Bptq is d-dimensional
Brownian motion. Put Ψptq “ Φptqχptq˚, and suppose that Ψptqχptq “ I, the

d1 ˆ d1 identity matrix. Then Mptq ´ Mp0q “
şt
0
Ψpsq dBpsq.

4.9. Remark. Since

χptq pΦptqχptq˚χptq ´ Iq “ pχptqΦptqχptq˚ ´ Iqχptq “ 0

we see that the second equality in Ψptqχptq “ Φptqχptq˚χptq “ I is only possible
if we assume d “ d1. Of course here we take the dimensions of the null and
range space of the matrix χptq into account.
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Proof of Theorem 4.8. Fix 1 ď i, j ď d. We shall calculate the qua-
dratic covariation process

〈Bi, Bj〉 ptq “
〈

d1ÿ

k“1

ż p¨q

0

pχpsqqi,k dMkpsq,
d1ÿ

l“1

ż p¨q

0

pχpsqqj,l dMlpsq
〉

ptq

“
d1ÿ

k“1

d1ÿ

l“1

ż t

0

pχpsqqi,k pχpsqqj,l Φpsqk,lds

“
ż t

0

pχpsqΦpsqχpsq˚qi,j ds “ tδi,j. (4.39)

From Theorem 4.5 and (4.39) we see that the process t ÞÑ Bptq is a Brownian
motion. This proves the first part of Theorem 4.8. Next we calculate

ż t

0

Ψpsq dBpsq “
ż t

0

Ψpsqχpsq dMpsq “
ż t

0

dMpsq “ Mptq ´ Mp0q, (4.40)

which completes the proof of Theorem 4.8. �

1.3. Exponential local martingales. Let t ÞÑ Nptq, 0 ď t ď T , be a
continuous (local) martingale with variation process t ÞÑ 〈N,N〉 ptq, 0 ď t ď
T . In this subsection we discuss local martingales of the form t ÞÑ e´Zptq “
1 `

şt
0
e´Zpsq dNpsq, t ě 0, where Zptq “ Nptq ` 1

2
〈N,N〉 ptq. Such processes

are called exponential local martingales. The following proposition serves as a
preparation for Proposition 4.12. It also has some interest of its own.

4.10. Proposition. Let pΩ,F,Pq be a probability space endowed with a filtra-
tion pFtq0ďtďT , and let M “ pMptqq0ďtďT and N “ pNptqq0ďtďT be two local

continuous martingales with Mp0q “ Np0q “ 0. Put Zptq “ Nptq` 1
2
〈N,N〉 ptq,

and assume that E
“
e´Zptq‰ “ 1 for all 0 ď t ď T . Then the following assertions

are true.

(a) The process t ÞÑ e´Zptq, 0 ď t ď T , is a martingale;
(b) The process t ÞÑ e´Zptq pMptq ` 〈N,M〉 ptqq is a local martingale;
(c) The process t ÞÑ Mptq ` 〈N,M〉 ptq is a local martingale relative to the

filtration pFtq0ďtďT supplied with the measure QN : FT Ñ r0, 1s defined
by QN pAq “ E

“
e´ZpT q1A

‰
, A P FT .

The measure QN can be called a risk neutral measure. Observe that, by asser-
tion (a), QN pAq “ E

“
e´Zptq1A

‰
whenever A belongs to Ft with 0 ď t ď T . Let

τn be the stopping time defined by

τn “ inf

"
s ą 0 : |Nps ^ T q| ` 1

2
〈N,N〉 ps ^ T q ą n

*
,

and set Znptq “ Z pt ^ τnq. Then the processes t ÞÑ e´Znptq, 0 ď t ď T , n P N,
are martingales. It follows that E

“
e´Znptq‰ “ 1, for all 0 ď t ď T , and for all

n P N. By Fatou’s lemma we infer that

E
“
e´Zptq‰ “ E

”
lim
nÑ8

e´Znptq
ı

ď lim inf
nÑ8

E
“
e´Znptq‰ ď 1. (4.41)
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In fact we have a stronger result. It says that an exponential local martingale
is a super-martingale.

4.11. Theorem. Let the process t ÞÑ e´Zptq, 0 ď t ď T , be a continuous local
martingale. In general, this process is a super-martingale relative to the filtration
pFtq0tďtďT with Ft “ σ pNpsq : 0 ď s ď tq. Consequently, if E

“
e´Zptq‰ “ 1 for

all 0 ď t ď T , then the process t ÞÑ e´Zptq, 0 ď t ď T , is a martingale.

Proof. This result can be seen as follows. Let 0 ď t1 ă t2, and choose the
sequence of stopping times pτnqnPN as above. Then, for A P Ft1^τm , we have

E
“
e´Zpt2q1A

‰
“ E

”
lim
nÑ8

e´Zpt2^τnq1A

ı

ď lim inf
nÑ8

E
“
e´Zpt2^τnq1A

‰
“ E

“
e´Zpt1^τmq1A

‰
(4.42)

In (4.42) we employed Doob’s optional sampling Theorem 1.23 for martingales.
From (4.42) it follows that:

E
“
e´Zpt2q ˇ̌

Ft1^τm

‰
ď e´Zpt1^τmq. (4.43)

Since the event tτm ą t1u belongs to Ft1^τm , from (4.43) we infer

E
“
e´Zpt2q1tτmąt1u

ˇ̌
Ft1

‰
“ E

“
e´Zpt2q1tτmąt1u

ˇ̌
Ft1^τm

‰

ď e´Zpt1^τmq1tτmąt1u “ e´Zpt1q1tτmąt1u. (4.44)

The first equality in (4.44) is a consequence of the fact that, if an event A

belongs to Ft1 , then AX tτm ą t1u belongs to Ft1^τm . With A P Ft1 of the form
A “ tpN ps1q , . . . , N psnqq P Bu, where 0 ď s1 ă ¨ ¨ ¨ ă sn ď t1 and B is a Borel
subset of Rn, the identities

1tτmąt1u1A “ 1tτmąt1u1B pN ps1q , . . . , N psnqq
“ 1tτmąt1u1B pN ps1 ^ τmq , . . . , N psn ^ τmqq

are self-explanatory. Fix 1 ď j ď n. Right-continuity implies that the equality
N psj ^ τmq “ lim

kÑ8
N

``
2´k

P
2k psj ^ τmq

T˘
^ sj

˘
holds, and hence the variable

N psj ^ τmq is Fsj^τm-measurable. Consequently, the event A X tτm ą t1u be-
longs to Ft1^τm . Theorem 2.42 about π-λ systems then implies that for all
A P Ft1 the event tτm ą t1u X A belongs to the σ-field Ft1^τm . In the left-hand
side and the far right-hand side of (4.44) we let m Ñ 8 to obtain

E
“
e´Zpt2q ˇ̌

Ft1

‰
ď e´Zpt1q, P-almost surely. (4.45)

By definition, the inequality in (4.45) shows that the process t ÞÑ e´Zptq is a
super-martingale. If 0 ď t1 ă t2 ď T , and if E

“
e´Zpt2q‰ “ E

“
e´Zpt1q‰, then

(4.45) implies that

E
“
e´Zpt2q ˇ̌

Ft1

‰
“ e´Zpt1q, P-almost surely. (4.46)

This completes the proof of Theorem 4.11. �

Proof of 4.10. (a) An application of Itô’s formula and employing the
equality 〈Z,Z〉 ptq “ 〈N,N〉 ptq yields:

e´Zptq
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“ e´Zp0q ´
ż t

0

e´Zpρq dZpρq ` 1

2

ż t

0

e´Zpρq d 〈Z,Z〉 pρq

“ e´Zp0q ´
ż t

0

e´Zpρq dNpρq ´ 1

2

ż t

0

e´Zpρq d 〈N,N〉 pρq ` 1

2

ż t

0

e´Zpρq d 〈N,N〉 pρq

“ e´Zp0q ´
ż t

0

e´Zpρq dNpρq. (4.47)

From the equalities in (4.47) it follows that the process t ÞÑ e´Zptq, 0 ď t ď T , is a
local martingale. In view of the assumption that E

“
e´Zptq‰ “ 1 for all 0 ď t ď T

it follows that the process in (a) is a genuine martingale: see Theorem 4.11.

(b) Again we apply Itô’s lemma, now to the function px, yq ÞÑ e´xy. Then we
obtain:

e´Zptq pMptq ` 〈N,M〉 ptqq

“ ´
ż t

0

e´Zpρq pMpρq ` 〈N,M〉 pρqq dZpρq `
ż t

0

e´Zpρq pdMpρq ` d 〈N,M〉 pρqq

` 1

2

ż t

0

e´Zpρq pMpρq ` 〈N,M〉 pρqq d 〈Z,Z〉 pρq

´
ż t

0

e´Zpρqd 〈Z,M ` 〈N,M〉〉 pρq. (4.48)

By applying the equalities 〈Z,Z〉 “ 〈N,N〉 and 〈Z,M ` 〈N,M〉〉 “ 〈N,M〉 to
the equality in (4.48) we obtain

e´Zptq pMptq ` 〈N,M〉 ptqq

“ ´
ż t

0

e´Zpρq pMpρq ` 〈N,M〉 pρqq dNpρq

´ 1

2

ż t

0

e´Zpρq pMpρq ` 〈N,M〉 pρqq d 〈N,N〉 pρq

`
ż t

0

e´Zpρq pdMpρq ` d 〈N,M〉 pρqq

` 1

2

ż t

0

e´Zpρq pMpρq ` 〈N,M〉 pρqq d 〈N,N〉 pρq ´
ż t

0

e´Zpρqd 〈N,M〉 pρq

“ ´
ż t

0

e´Zpρq pMpρq ` 〈N,M〉 pρqq dNpρq `
ż t

0

e´Zpρq dMpρq. (4.49)

Being the sum of two stochastic integrals with respect to (local) martingales
the equality in (4.49) implies that the process in (b) is a local martingale.

(c) By using a stopping time argument we may and do assume that the process
t ÞÑ Mptq ` 〈N,M〉 ptq is bounded and so it belongs to L1 pΩ,FT ,QN q. Let
0 ď t1 ă t2 ď T , and put

Y pt1q “ EQN

“
M pt2q ` 〈N,M〉 pt2q

ˇ̌
Ft1

‰
.
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Then the stochastic variable Y pt1q is Ft1-measurable and, for all bounded Ft1-
measurable variables G we have

E
“
e´ZpT q pM pt2q ` 〈N,M〉 pt2qqG

‰
“ E

“
e´ZpT qY pt1qG

‰
. (4.50)

Since the process t ÞÑ e´Zptq, 0 ď t ď T , is a P martingale, the equality in (4.50)
implies:

E
“
e´Zpt2q pM pt2q ` 〈N,M〉 pt2qqG

‰
“ E

“
e´Zpt1qY pt1qG

‰
. (4.51)

From assertion (b) together with our stopping time argument we see that the
process t ÞÑ e´Zptq pM ptq ` 〈N,M〉 ptqq is a P-martingale. From (4.51) we then
infer:

E
“
e´Zpt1q pM pt1q ` 〈N,M〉 pt1qqG

‰
“ E

“
e´Zpt1qY pt1qG

‰
(4.52)

for all bounded Ft1-measurable variables G. So finally we get, P-almost surely,

e´Zpt1qY pt1q “ e´Zpt1q pM pt1q ` 〈N,M〉 pt1qq ,
and hence,

Y pt1q “ M pt1q ` 〈N,M〉 pt1q , P-almost surely.

This shows assertion (c) and completes the proof of Proposition 4.10. �
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A combination of Proposition 4.10 and Lévy’s characterization of Brownian
motion in Rd yields the following result.

4.12. Proposition. Let the Rd-valued process s ÞÑ cpsq be an adapted pro-
cess which is predictable relative to Brownian motion pBptqqtě0. Put Nptq “şt
0
cpsq dBpsq, and

Zptq “ Nptq ` 1

2
〈N,N〉 ptq “

ż t

0

cpsq dBpsq ` 1

2

ż t

0

|cpsq|2 ds, t ě 0.

Suppose that for all t ą 0 the equality E
“
e´Zptq‰ “ 1 holds. Then the process

pW ptqqtě0, defined by W ptq “ Bptq `
şt
0
cpsq ds is Brownian motion relative to

the measure A ÞÑ QN pAq, A P FT , as defined in Proposition 4.10.

Proof. An application of Proposition 4.10 with Mptq “ Bjptq shows that
the process

Wjptq “ Bjptq `
ż t

0

cjpsq ds “ Bjptq `
〈ż p¨q

0

cpsq dBpsq, Bj

〉

ptq

“ Bjptq ` 〈N,Bj〉 ptq
is a local QN -martingale. Moreover, 〈Wj1 ,Wj2〉 ptq “ δj1,j2t. From Theorem 4.5
we see that the process t ÞÑ W ptq is a QN -Brownian motion. This completes
the proof of Proposition 4.12. �

It will be very convenient to introduce Hermite polynomials phkpxqqkPN, and to
establish some of their properties. In the context of stochastic calculus they
also play a central role. The Hermite polynomial hkpxq is defined by

hkpxq “ p´1qke 1

2
x2

ˆ
d

dx

˙k ´
e´ 1

2
x2

¯
. (4.53)

For k P N, x P R, a ą 0, we write

Hkpx, aq “ ak{2hk

ˆ
x?
a

˙
.

Then we have H0px, aq “ 1, H1px, aq “ x, H2px, aq “ x2 ´a, H3px, aq “ x3 ´ax.
The Hermite polynomials satisfy the following recurrence relation:

hk`2pxq ´ xhk`1pxq ` pk ` 1qhkpxq “ 0, k ě 0, (4.54)

and therefore

Hk`2px, aq ´ xHk`1px, aq ` pk ` 1qaHkpx, aq “ 0, k ě 0. (4.55)

The equality in (4.54) can be proved by induction and the definition of hk in
(4.53). From the definition of hk`1pxq it follows that h1

k`1pxq “ xhk`1pxq ´
hk`2pxq, and so, by (4.54) we see

h1
k`1pxq “ pk ` 1qhkpxq, k ě 0. (4.56)

From (4.54) and (4.56) we infer

hk`2pxq ´ xhk`1pxq ` h1
k`1pxq “ 0, k ě 0,
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and hence

hk`1pxq ´ xhkpxq ` h1
kpxq “ 0, k ě 0. (4.57)

By differentiating the equality in (4.57) and again using (4.56) we obtain the
following differential equation:

h2
kpxq ´ xh1

kpxq ` khkpxq “ 0, k ě 0. (4.58)

In the following proposition we collect some of their properties.

4.13. Proposition. For τ, x P R and a ą 0 the following identities are true:

eτx´ 1

2
τ2a “

8ÿ

k“0

τk

k!
Hkpx, aq, (4.59)

eτx´ 1

2
τ2 “

8ÿ

k“0

τk

k!
Hkpx, 1q “

8ÿ

k“0

τk

k!
hkpxq, (4.60)

B
BxHk`1px, aq “ pk ` 1qHkpx, aq, and

1

2

B2

Bx2
Hkpx, aq ` B

BaHkpx, aq “ 0.

(4.61)

Proof. Let the sequence
´

rhkpxq
¯
kPN

be such that, for all x and τ P C, the

equality

eτx´ 1

2
τ2 “

8ÿ

k“0

τk

k!
rhkpxq (4.62)

holds. Then

rhkpxq “
ˆ B

Bτ

˙k ´
eτx´ 1

2
τ2

¯ ˇ̌
ˇ
τ“0

“ e
1

2
x2

ˆ B
Bτ

˙k ´
e´ 1

2
pτ´xq2

¯ ˇ̌
ˇ
τ“0

“ p´1qk
ˆ B

Bx

˙k ´
e´ 1

2
pτ´xq2

¯ ˇ̌
ˇ
τ“0

“ p´1qk
ˆ

d

dx

˙k ´
e´ 1

2
x2

¯

“ hkpxq. (4.63)

The equality in (4.63) implies the identity in (4.60). By a correct scaling (τ
?
a

replaces τ , and
x?
a

replaces x) the equality in (4.59) follows from (4.60) and

the definition of Hkpx, aq. The equalities in (4.61) follow from (4.56) and from
(4.58) respectively. Altogether this completes the proof of Proposition 4.13. �

In the following proposition the process t ÞÑ Mptq, t P r0, T s, is a martingale
on the probability space pΩ,F,Pq. Its quadratic variation process is denoted by
t ÞÑ 〈M,M〉 ptq, t P r0, T s.
4.14. Proposition. The following identities hold:

Hk`1 pMptq, 〈M,M〉 ptqq
pk ` 1q! “

ż t

0

Hk pMpsq, 〈M,M〉 psqq
k!

dMpsq

“
ż

0ăs1ă¨¨¨ăsk`1ăt

1dM ps1q . . . dM psk`1q . (4.64)
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In addition, the following equalities hold as well:

eτMptq´ 1

2
τ2〈M,M〉ptq

“ 1 ` τ

ż t

0

eτMpsq´ 1

2
τ2〈M,M〉psq dMpsq

“ 1 `
ℓ´1ÿ

k“1

τk
ż

0ăs1ă¨¨¨ăskăt

ż
1dM ps1q . . . dM pskq

` τ ℓ
ż

0ăs1ă¨¨¨ăsℓăt

ż
eτMps1q´ 1

2
τ2〈M,M〉ps1q dM ps1q . . . dM psℓq (4.65)

“
ℓ´1ÿ

k“0

τk

k!
Hk pMptq, 〈M,M〉 ptqq

` τ ℓ
ż

0ăs1ă¨¨¨ăsℓăt

ż
eτMps1q´ 1

2
τ2〈M,M〉ps1q dM ps1q . . . dM psℓq

“
ℓÿ

k“0

τk

k!
Hk pMptq, 〈M,M〉 ptqq

` τ ℓ
ż

0ăs1ă¨¨¨ăsℓăt

ż ´
eτMps1q´ 1

2
τ2〈M,M〉ps1q ´ 1

¯
dM ps1q . . . dM psℓq . (4.66)

Please notice that in the equalities in (4.64) through (4.66) the order of inte-
gration has to be respected: first we integrate with respect dM ps1q, then with
respect to dM ps2q and so on.
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Proof of Proposition 4.14. These equalities follow from Itô’s formula
and the equalities in Proposition 4.13. Itô’s lemma is applied to the functions
px, aq ÞÑ Hk`1px, aq, and px, aq ÞÑ eτx´ 1

2
τ2a with x “ Mpsq, and a “ 〈M,M〉 psq.

In particular the equalities in (4.61) are relevant. This completes the proof of
Proposition 4.14. �

In the following proposition we collect some equalities in case we consider an
exponential martingale t ÞÑ eMptq´ 1

2
〈M,M〉ptq in case the process t ÞÑ 〈M,M〉 ptq

is deterministic.

4.15. Proposition. Let t ÞÑ Mptq, 0 ď t ď T , be a martingale on pΩ,F,Pq
with the property that the variation process t ÞÑ 〈M,M〉 ptq, 0 ď t ď T , is
deterministic. The the following identities are true:

E

«ż

0ăs1ă¨¨¨ăsk1ăt

ż
dM ps1q . . . dM psk1q ¨

ż

0ăρ1ă¨¨¨ăρk2ăt

ż
dM pρ1q . . . dM pρk2q

ff

“ E

„
Hk1 pMptq, 〈M,M〉 ptqq

k1!

Hk2 pMptq, 〈M,M〉 ptqq
k2!



“ p〈M,M〉 ptqqk1
k1!

δk1,k2, and (4.67)

E

«ˇ̌
ˇ̌
ż

0ăs1ă¨¨¨ăsℓăt

ż
eMps1q´ 1

2
〈M,M〉ps1q dM ps1q . . . dM psℓq

ˇ̌
ˇ̌
2
ff

“
ż t

0

e〈M,M〉psq p〈M,M〉 ptq ´ 〈M,M〉 psqqℓ´1

pℓ ´ 1q! d 〈M,M〉 psq

“ e〈M,M〉ptq ´
ℓ´1ÿ

j“0

p〈M,M〉 ptqqj
j!

. (4.68)

Proof. Let the predictable processes s ÞÑ F1psq and s ÞÑ F2psq be such that

the quantities E
”şT

0
|F1psq|2 d 〈M,M〉 psq

ı
and E

”şT
0

|F2psq|2 d 〈M,M〉 psq
ı
are

finite. Then we have

E

„ż t2

t1

F1psq dMpsq ¨
ż t2

t1

F2psq dMpsq


“ E

„ż t2

t1

F1psqF2psq d 〈M,M〉 psq

,

(4.69)
for 0 ď t1 ă t2 ď T . By repeatedly employing the equality in (4.69) and
using the fact that the process s ÞÑ 〈M,M〉 psq is deterministic we infer, for
1 ď k1 ă k2, and 0 ă t ď T , with ℓ “ k2 ´ k1,

E

«ż

0ăs1ă¨¨¨ăsk1ăt

ż
dM ps1q . . . dM psk1q ¨

ż

0ăρ1ă¨¨¨ăρk2ăt

ż
dM pρ1q . . . dM pρk2q

ff

“ E

«ż

0ăs1ă¨¨¨ăsk2ăt

ż
dM ps1q . . . dM psℓq d 〈M,M〉 psℓ`1q . . . d 〈M,M〉 psk2q

ff
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“ E

«ż

0ăs1ă¨¨¨ăsℓăt

ż p〈M,M〉 ptq ´ 〈M,M〉 psℓqqk1
k1!

dM ps1q . . . dM psℓq
ff

“ 0.

(4.70)

If in (4.70) k1 “ k2, and so ℓ “ 0, then we obtain

E

»
–

ˇ̌
ˇ̌
ˇ

ż

0ăs1ă¨¨¨ăsk1ăt

ż
dM ps1q . . . dM psk1q

ˇ̌
ˇ̌
ˇ

2
fi
fl “ p〈M,M〉 ptqqk1

k1!
. (4.71)

The equalities in (4.70) and (4.71) show the equalities in (4.67). The proof of
the equalities requires an induction argument. For ℓ “ 1 we have

E

«ˇ̌
ˇ̌
ż t

0

eMps1q´ 1

2
〈M,M〉ps1q dM ps1q

ˇ̌
ˇ̌
2
ff

“
ż t

0

E
“
e2Mpsq´〈M,M〉psq‰ d 〈M,M〉 psq

“
ż t

0

E

”
e2Mpsq´ 1

2
〈2M,2M〉psq

ı
e〈M,M〉psq d 〈M,M〉 psq

“
ż t

0

e〈M,M〉psq d 〈M,M〉 psq “ e〈M,M〉ptq ´ 1. (4.72)

The equalities in (4.72) imply those in (4.68) for ℓ “ 1. The second equality
follows by partial integration and induction with respect to ℓ. The first equality
in (4.68) can be obtained by an argument which is very similar to the proof of
the equality in (4.67) with k1 “ k2 “ ℓ. The details are left to the reader.

This completes the proof of Proposition 4.15. �

4.16. Corollary. Let the hypotheses and notation be as in Proposition 4.14.
Then

lim
ℓÑ8

τ ℓ
ż

0ăs1ă¨¨¨ăsℓăt

ż
eτMps1q´ 1

2
τ2〈M,M〉ps1q dM ps1q . . . dM psℓq “ 0, (4.73)

P-almost surely. If the limit in (4.73) is in fact an L1-limit, then the pro-

cess t ÞÑ eτMptq´ 1

2
τ2〈M,M〉ptq is a martingale. In particular, it then follows that

E

”
eτMptq´ 1

2
τ2〈M,M〉ptq

ı
“ 1; compare with the inequality in (4.41) and with The-

orem 4.11.

If the process t ÞÑ 〈M,M〉 ptq is real-valued and deterministic, then the limit in
(4.73) is an L2-limit, and so also an L1-limit.

Proof. Equality (4.73) in Corollary 4.16 follows from the equality in (4.59)
in Proposition 4.13 with x “ Mptq and a “ 〈M,M〉 ptq together with the equal-
ities in (4.65) and (4.61). The assertion about the L1-convergence also follows
from these arguments. The only topic that requires some is the one about
the situation where the process t ÞÑ 〈M,M〉 ptq is deterministic. In this case
the terms in the sum in (4.65) are orthogonal in L2 pΩ,FT ,Pq, and this sum

converges in L2-sense to eτMptq´ 1

2
τ2〈M,M〉ptq. These assertions follow from the

Download free eBooks at bookboon.com



ADVANCED STOCHASTIC PROCESSES: PART II

275

STOCHASTIC DIFFERENTIAL EQUATIONS

275

1. SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS 275

identities (4.67) and (4.68) in Proposition 4.15. This completes the proof of
Corollary 4.16. �

The previous results, i.e. Proposition 4.14 and Corollary 4.16 are applicable if
the martingale Mptq is of the form Mptq “

şt
0
hpsq ¨ dW psq, where t ÞÑ W ptq

is standard Brownian motion. Then 〈M,M〉 ptq “
şt
0

|hpsq|2 ds. If s ÞÑ hpsq is
deterministic, then in (4.73) we have L2-convergence. These martingales play a
role in the martingale representation theorem: see Theorem 4.21.
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1.4. Weak solutions to stochastic differential equations. In the fol-
lowing theorem the symbols σi,j , 1 ď i ď d, 1 ď j ď n, and bj , 1 ď j ď d,
stand for real-valued locally bounded Borel measurable functions defined on
r0,8q ˆ Rd. The matrix pai,jps, xqqd

i,j“1
is defined by

aj,kps, xq “
nÿ

k“1

σi,kps, xqσj,kps, xq “ pσps, xqσ˚ps, xqqi,j .

For s ě 0, the operator Lpsq is defined on C2
`
Rd

˘
with values in the space of

locally bounded Borel measurable functions:

Lpsqfpxq “ 1

2

dÿ

i,j“1

ai,j ps, xqDiDjf pxq `
dÿ

j“1

bjps, xqDjfpxq, f P C2
`
Rd

˘
.

(4.74)
In Theorem 4.17 and its proof we use the following notation EN ps, xq is the
orthogonal projection from Rn onto the zero-space of the matrix σps, xq viewed
as an operator from Rn to Rd and ERps, xq is the orthogonal projection from
En
R onto the range-space of the matrix σps, xq. Formally these operators can be

written as

EN ps, xq “ I ´ σ ps, xq˚ pσps, xqσps, xq˚q´1
σps, xq

“ I ´ lim
εÓ0

σ ps, xq˚ pσps, xqσps, xq˚ ` εIq´1
σps, xq, and

ERps, xq “ σ ps, xq˚ pσps, xqσps, xq˚q´1
σps, xq

“ lim
εÓ0

σ ps, xq˚ pσps, xqσps, xq˚ ` εIq´1
σps, xq.

The following theorem shows the close relationship between weak solutions and
solutions to the martingale problem. A filtration tFtutě0 satisfies the standard
conditions if F0 contains the P-null sets.

4.17. Theorem. Let pΩ,F,Pq be a probability space with a right-continuous fil-
tration pFtqtě0 satisfying the standard conditions and determined by a Brownian
motion tW ptq “ pW1ptq, . . . ,Wnptqq : t ě 0u on pΩ,F,Pq. Suppose that

tXptq “ pX1ptq, . . . , Xdptqq : t ě 0u
is a d-dimensional continuous adapted process. Then the following assertions
are equivalent:

(i) For every f P C2
`
Rd

˘
the process

t ÞÑ f pXptqq ´ f pXp0qq ´
ż t

0

Lpsqf pXpsqq ds (4.75)

is a local martingale.
(ii) The processes

t ÞÑ Mjptq “ Xjptq ´
ż t

0

bj ps,Xpsqq ds, t ě 0, 1 ď j ď d, (4.76)
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are local martingales with covariation processes

t ÞÑ �Mi,Mj� ptq “
ż t

0

ai,j ps,Xpsqq ds, t ě 0, 1 ď i, j ď d. (4.77)

(iii) There exists a Brownian motion tBptq : t ě 0u starting at 0 such that

Xptq “ Xp0q `
ż t

0

b ps,Xpsqq ds `
ż t

0

σ ps,Xpsqq dBpsq, t ě 0. (4.78)

Notice that the covariation of the processes t ÞÑ
ż t

0

σ ps,Xpsqq dW psq and of

t ÞÑ
ż t

0

EN ps,Xpsqq dW psq vanish. The same is true for the processes t ÞÑ
ż t

0

ER ps,Xpsqq dW psq and t ÞÑ
ż t

0

EN ps,Xpsqq dW psq. Observe that the co-

variation of the processes t ÞÑ Mptq and t ÞÑ
ż t

0

EN ps,Xpsqq dW psq vanish if the

Brownian motion t ÞÑ W ptq is independent of the process t ÞÑ Mptq. This can
be accomplished by enlarging the probability space pΩ,F,Pq with an indepen-
dent copy

`
ΩW ,FW ,PW

˘
. On the probability space

`
Ω ˆ ΩW ,F b FW ,P ˆ PW

˘

the new variables rXptq and ĂW ptq are given by

rXptq pω, ω1q “ Xptqpωq and ĂW ptq pω, ω1q “ W ptq pω1q , pω, ω1q P Ω ˆ ΩW

respectively.

Examples of (Feller) semigroups can be manufactured by taking a continuous
function ϕ : r0,8q ˆE Ñ E with the property that ϕ ps ` t, xq “ ϕ pt, ϕ ps, xqq,
for all s, t ě 0 and x P E. Then the mappings f ÞÑ P ptqf , with P ptqfpxq “
f pϕ pt, xqq defines a semigroup. It is a Feller semigroup if limxÑ△ ϕ pt, xq “ △.
An explicit example of such a function, which does not provide a Feller-Dynkin

semigroup on C0 pRq is given by ϕpt, xq “ xb
1 ` 1

2
tx2

(example due to V.

Kolokoltsov [96], and [95]). Put upt, xq “ P ptqfpxq “ f pϕpt, xqq. Then
Bu
Bt pt, xq “ ´x3 Bu

Bxpt, xq. In fact this (counter-)example shows that solutions

to the martingale problem do not necessarily give rise to Feller-Dynkin semi-
groups. These are semigroups which preserve not only the continuity, but also
the fact that functions which tend to zero at △ are mapped to functions with
the same property. However, for Feller semigroups we only require that con-
tinuous functions with values in r0, 1s are mapped to continuous functions with
the same properties. Therefore, it is not needed to include a hypothesis like
(4.79) which reads as follows: for every pτ, s, t, xq P r0, T s3 ˆ E, τ ă s ă t, the
following equality holds:

Pτ,x rXptq P Es “ Pτ,x rXptq P E, Xpsq P Es . (4.79)

Nadirashvili [128] constructs an elliptic operator in a bounded open domain
U Ă Rd with a regular boundary such that the martingale problem is not
uniquely solvable. More precisely the result reads as follows. Consider an elliptic
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operator L “
dÿ

j,k“1

a2j,k
B2

BxjBxk

, where aj,k “ aj,k are measurable functions on Rd

such that

c´1 |ξ|2 ď
dÿ

j,k“1

aj,kξjξk ď c |ξ|2 , ξ P Rd,

for some ellipticity constant c ě 1. There exists a diffusion pXptq,Pxq corre-
sponding to the operator L which can be defined as a solution to the martin-
gale problem P rXp0q “ xs “ 1, f pXptqq ´ f pXp0qq ´

şt
0
f pXpsqq ds is a Px-

martingale for all f P C2
`
Rd

˘
. Nadirashvili is interested in non-uniqueness in

the above martingale problem and in non-uniqueness of solutions to the Dirich-
let problem Lu “ 0 in Ω, the unit ball in Rd, u “ g on BΩ, where Ω Ă Rd

is a bounded domain with smooth boundary and g P C2 pBΩq. In particular,
so-called good solutions u to the Dirichlet problem are investigated. A good
solution is a function u which is the limit of a subsequence of solutions un,

n P N, to the equation Lnun “
dÿ

j,k“1

anj,k
B2un

BxjBxk

“ 0 in Ω, un “ g on BΩ, where

the operators Ln are elliptic with smooth coefficients anj,k and a common el-
lipticity constant c such that anj,k Ñ aj,k almost everywhere in Ω as n Ñ 8.
The main result is the following theorem: There exists an elliptic operator L

of the above form defined in the unit ball B1 Ă Rd, d ě 3, and there is a
function g P C2 pBB1q such that the formulated Dirichlet problem has at least
two good solutions. An immediate consequence is non-uniqueness of solutions
to the corresponding martingale problem.

The following corollary easily follows from Theorem 4.17. It establishes a close
relationship between unique weak solutions to stochastic differential equations
and unique solutions to the martingale problem. For the precise notion of
“unique weak solutions” see Definition 4.19 below. This result should also be
compared with Proposition 3.43, where the connection with (strong) Markov
processes is explained.

4.18. Corollary. Let the notation and hypotheses be as in Theorem 4.17. Put
Ω “ C

`
r0,8q,Rd

˘
, and Xptqpωq “ ωptq, t ě 0, ω P Ω. Fix x P Rd. Then the

following assertions are equivalent:

(i) There exists a unique probability measure P on F such that the process

f pXptqq ´ f pXp0qq ´
ż t

0

Lpsqf pXpsqq ds

is a P-martingale for all C2-functions f with compact support, and such
that P rXp0q “ xs “ 1.

(ii) The stochastic integral equation

Xptq “ x `
ż t

0

σ ps,Xpsqq dBpsq `
ż t

0

b ps,Xpsqq ds (4.80)

has unique weak solutions.
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4.19. Definition. The equation in (4.80) is said to have unique weak solutions
on the interval r0, T s, also called unique distributional solutions, provided that
the finite-dimensional distributions of the process Xptq, ď t ď T , which satisfy
(4.80) do not depend on the particular Brownian motion Bptq which occurs in
(4.80). This is the case if and only if for any pair of Brownian motions

tpBptq : T ě t ě 0q , pΩ,F,Pqu and tpB1ptq : T ě t ě 0q , pΩ1,F,P1qu
and any pair of adapted processes tXptq : T ě t ě 0u and tX 1ptq : T ě t ě 0u
for which

Xptq “ x `
ż t

0

σ ps,Xpsqq dBpsq `
ż t

0

b ps,Xpsqq ds and

X 1ptq “ x `
ż t

0

σ ps,X 1psqq dB1psq `
ż t

0

b ps,X 1psqq ds

the finite-dimensional distributions of the process tXptq : T ě t ě 0u relative
to P coincide with the finite-dimensional distributions of tX 1ptq : T ě t ě 0u
relative to P1.
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Proof of Theorem 4.17. (i) ùñ (ii) With fj px1, . . . , xdq “ xj , 1 ď j ď
d, assertion (i) implies that the process

Mjptq “ Xjptq ´
ż t

0

bj ps,Xpsqq ds “ fj pXptqq ´
ż t

0

Lpsqfj pXpsqq ds (4.81)

is a local martingale. We will show that the processes
"
MiptqMjptq ´

ż t

0

ai,j ps,Xpsqq ds : t ě 0

*
, 1 ď i, j ď d,

are local martingales as well. To this end fix 1 ď i, j ď d, and define the
function fi,j : Rd Ñ R by fi,j px1, . . . , xdq “ xixj . From (i) it follows that the
process

"
XiptqXjptq ´

ż t

0

pai,j ps,Xpsqq ` bi ps,XpsqqXjpsq ` bj ps,XpsqqXipsqq ds
*

is a local martingale. For brevity we write

αi,jpsq “ ai,j ps,Xpsqq , βjpsq “ bj ps,Xpsqq , βipsq “ bi ps,Xpsqq ,

Mipsq “ Xipsq ´
ż s

0

βipτq dτ, Mjpsq “ Xipsq ´
ż s

0

βjpτq dτ,

Mi,jpsq “ XipsqXjpsq ´
ż s

0

pβipτqXjpτq ` βjpτqXipτq ` αi,jpτqq dτ. (4.82)

Then the processes Mi and Mi,j are local martingales. Moreover, we have
ˆ
Miptq `

ż t

0

βipsq ds
˙ ˆ

Mjptq `
ż t

0

βjpsq ds
˙

“ XiptqXjptq

“
ż t

0

pβipτqXjpτq ` βjpτqXipτq ` αi,jpτqq dτ ` Mi,jptq

“
ż t

0

pβipτq pXjpτq ´ Mjpτqq ` βjpτq pXipτq ´ Mipτqq ` αi,jpτqq dτ

`
ż t

0

pβipτqMjpτq ` βjpτqMipτqq dτ ` Mi,jptq

“
ż t

0

βipτq pXjpτq ´ Mjpτqq dτ `
ż t

0

βjpτq pXipτq ´ Mipτqq dτ

`
ż t

0

αi,jpτq dτ `
ż t

0

pβipτqMjpτq ` βjpτqMipτqq dτ ` Mi,jptq

“
ż t

0

βipτq
ż τ

0

βjpsq ds dτ `
ż t

0

βjpτq
ż τ

0

βipsq ds dτ

`
ż t

0

αi,jpτq dτ `
ż t

0

pβipτqMjpτq ` βjpτqMipτqq dτ ` Mi,jptq

“
ż ż

0ăsăτăt

βipτqβjpsq dτ ds `
ż ż

0ăτăsăt

βipτqβjpsq dτ ds

`
ż t

0

αi,jpτq dτ `
ż t

0

pβipτqMjpτq ` βjpτqMipτqq dτ ` Mi,jptq
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“
ż t

0

βipτq dτ
ż t

0

βjpsq ds `
ż t

0

αi,jpsq ds ` Mi,jptq

`
ż t

0

pβipsqMjpsq ` βjpsqMipsqq ds. (4.83)

Consequently, from (4.83) we see

MiptqMjptq ´
ż t

0

αi,jpsq ds

“ Mi,jptq ´
ż t

0

pβipsq pMjptq ´ Mjpsqq ` βjpsq pMiptq ´ Mipsqqq ds. (4.84)

It is readily verified that the processes
ż t

0

βipsq pMjptq ´ Mjpsqq ds “
ż t

0

ż τ

0

βipsq ds dMjpτq and

ż t

0

βjpsq pMiptq ´ Mipsqq ds “
ż t

0

ż τ

0

βjpsq ds dMipτq

are local martingales. It follows that the process
"
MiptqMjptq ´

ż t

0

αi,jpsq ds : t ě 0

*

is a local martingale. So that the covariation process 〈Mi,Mj〉 is given by

〈Mi,Mj〉 ptq “
şt
0
αi,jpsq ds.

(ii) ùñ (iii) This implication follows from an application of Theorem 4.8 with

Φi,jptq “ ai,j pt, Xptqq and χptq “ σ pt, Xptqq˚ `
σ pt, Xptqqσ pt, Xptqq˚˘´1

, and

where Bptq “
şt
0
χpsq dMpsq, provided that null-space of the matrix σ pt, Xptqq

is t0u. Observe that then 〈Bj1, Bj2〉 ptq “ tδj1,j2, because

χptqΦptqχptq˚ “ σ pt, Xptqq˚ `
σ pt, Xptqqσ pt, Xptqq˚˘´1

σ pt, Xptqq “ I.

In addition, the process t ÞÑ Bptq is a Brownian motion and for t ą 0 we have

Xptq ´ Xp0q ´
ż t

0

b ps,Xpsqq ds ´
ż t

0

σ ps,Xpsqq dBpsq

“ Xptq ´ Xp0q ´
ż t

0

b ps,Xpsqq ds ´
ż t

0

σ ps,Xpsqqχpsq dMpsq

“ Xptq ´ Xp0q ´
ż t

0

b ps,Xpsqq ds ´
ż t

0

dMpsq

“ Xptq ´ Xp0q ´
ż t

0

b ps,Xpsqq ds ´ Mptq ` Mp0q “ 0, (4.85)

where in the very final step of (4.85) we invoked the equalities in (4.76).

If the matrix process σ pt, Xptqqσ˚ pt, Xptqq is not invertible, then we proceed as
follows. We have a martingale Mpsq, 0 ď s ď t, on pΩ,Ft,Pq with the properties
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of assertion (ii). We introduce the matrix processes rψεpsq, ε ą 0, ERpsq, and
ENpsq as follows

rψεpsq “ σ˚ ps,Xpsqq pσ ps,Xpsqqσ˚ ps,Xpsqq ` εIq´1

ERpsq “ lim
εÓ0

σ˚ ps,Xpsqq pσ ps,Xpsqqσ˚ ps,Xpsqq ` εIq´1
σ ps,Xpsqq , and

EN psq “ I ´ ERpsq.
The matrix ERpsq can be considered as an orthogonal projection on the range
of the matrix σ˚ ps,Xpsqqσ ps,Xpsqq, and ENpsq as an orthogonal projection on
its null space. More precisely,

ERpsqσ˚ ps,Xpsqq “ σ˚ ps,Xpsqq , and σ ps,XpsqqEN psq “ 0.

The matrix process VNpτq is to be determined, but it satisfies VNpτqV ˚
Npτq “

ENpτq “ EN pτqVNpτqV ˚
N pτqE˚

N pτq. In terms of these processes we define the
following process:

Bpsq “ lim
εÓ0

ż s

0

rψεpτq dMpτq `
ż s

0

VNpτq dW pτq

“
ż s

0

VRpτq dW pτq `
ż s

0

VNpτq dW pτq. (4.86)

Here, we applied the martingale representation theorem to get the matrix pro-
cess VRpτq: see Theorem 4.22. It will turn out that

VRpτqV ˚
R pτq “ ERpτq “ ERpτqVRpτqV ˚

R pτqERpτq.
Next we will prove that the process s ÞÑ Bpsq is a Brownian motion, and that
Mpsq ´ Mp0q “

şs
0
σ pτ,Xpτqq dBpτq. Put

Bεpsq “
ż s

0

rψεpτq dMpτq `
ż s

0

VNpτq dW pτq. (4.87)

Then the restriction of the matrix process V ˚
R pτq to the range of the orthogonal

projection E˚
Rpτq is extended to a linear mapping V ˚pτq to the whole space Rn

in such a way that V ˚pτqERpτqx “ V ˚
R pτqx, x P Rn, and such that V ˚

Npτq :“
V ˚pτqEN pτq is an orthogonal transformation from the range of ENpτq onto the
range of I´V ˚

R pτqERpτqVRpτq which is the null-space of ERpτqVRpτq. If we define
V pτq “ ERpτqVRpτq on the range of V ˚

R pτqERpτq and as the adjoint VNpτq of
V ˚
Npτq on the range of I ´ V ˚

R pτqERpτqVRpτq. Then we see that V pτqV ˚pτq “
I. Such an orthogonal map can be obtained via a Gramm-Schmidt procedure
applied the finite sequences pI ´ V ˚

R pτqERpτqVRpτqq ek, and ENpτqek 1 ď k ď n,
where the vectors ek, 1 ď k ď n, form an ortho-normal basis for Rn. In addition
we get

ERpτqVRpτqV ˚
N pτqEN pτq “ ERpτqV pτqV ˚pτqEN pτq “ ERpτqEN pτq “ 0.

(4.88)
Moreover, we have

〈Bε,j1, Bε,j2〉 psq

“
dÿ

k1,k2“1

nÿ

ℓ“1

ż s

0

rψε,j1,k1pτq rψε,j1,k1pτqσk1,ℓ pτ,Xpτqqσk2,ℓ pτ,Xpτqq dτ
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`
nÿ

k“1

dÿ

k1“1

ż s

0

rψε,j1,k1pτqVN,j2,kpτq d 〈Mk1 ,Wk〉 pτq

`
nÿ

k“1

dÿ

k1“1

ż s

0

rψε,j2,k1pτqVN,j1,kpτq d 〈Mk1 ,Wk〉 pτq

`
nÿ

k“1

ż s

0

VN,j1,kpτqVN,j2,kpτq dτ

(employ the equality Mpsq ´ Mp0q “
şs
0
σ pτ,Xpτqq dBpτq)

“
ż s

0

´
rψεpτqσ pτ,Xpτqqσ˚ pτ,Xpτqq rψ˚

ε pτq
¯
j1,j2

dτ `
ż s

0

pVNpτqV ˚
N pτqqj1,j2 dτ

`
nÿ

k“1

dÿ

k1“1

dÿ

ℓ“1

ż s

0

rψε,j1,k1pτqVN,j2,kpτqσk1,ℓ pτ,Xpτqq d 〈Bℓ,Wk〉 pτq

`
nÿ

k“1

dÿ

k1“1

dÿ

ℓ“1

ż s

0

rψε,j2,k1pτqVN,j1,kpτqσk1,ℓ pτ,Xpτqq d 〈Bℓ,Wk〉 pτq. (4.89)

Notice that for ε Ó 0 the first term in (4.89) converges to the covariation of the
processes ˆż s

0

ERpτq dBpτq
˙

j1

“
ˆż τ

0

VRpτq dW pτq
˙

j1

“
ˆż τ

0

ERpτqVRpτq dW pτq
˙

j1

, and

ˆż s

0

ERpτq dBpτq
˙

j2

“
ˆż τ

0

VRpτq dW pτq
˙

j2

.
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On the one-hand this covariation is equal to
şs
0

pERpτqqj1,j2 dτ , but on the other

hand, by (4.86), it is also equal to
şτ
0

pVRpτqV ˚
R pτqqj1,j2 dτ . As a consequence we

infer pERpτqqj1,j2 “ pVRpτqV ˚
R pτqq, and hence ERpτq “ pVRpτqV ˚

R pτqqj1,j2. So the
procedure which we explained above can be carried out to obtain the matrix
process τ ÞÑ V pτq which satisfies, e.g., V pτqV ˚pτq “ I. From (4.89) we infer by
continuity and the definition of ERpτq that

〈Bj1, Bj2〉 psq “ lim
εÓ0

〈Bε,j1, Bε,j2〉 psq

“
ż s

0

pERpτqE˚
Rpτqqj1,j2 dτ `

ż s

0

pENpτqE˚
N pτqqj1,j2 dτ

`
〈˜ż p¨q

0

ERpτq dBpτq
¸

j1

,

˜ż p¨q

0

VNpτq dW pτq
¸

j2

〉

psq

`
〈˜ż p¨q

0

ERpτq dBpτq
¸

j2

,

˜ż p¨q

0

VNpτq dW pτq
¸

j1

〉

psq

“
ż s

0

pERpτqE˚
Rpτqqj1,j2 dτ `

ż s

0

pENpτqE˚
N pτqqj1,j2 dτ

`
〈˜ż p¨q

0

ERpτqVRpτq dW pτq
¸

j1

,

˜ż p¨q

0

VNpτq dW pτq
¸

j2

〉

psq

`
〈˜ż p¨q

0

ERpτqVRpτq dW pτq
¸

j2

,

˜ż p¨q

0

VNpτq dW pτq
¸

j1

〉

psq

(the covariations of the processes
şt
0
VRpτq dW pτq and

şt
0
VNpτq dW pτq vanish:

see (4.88))

“
ż s

0

pERpτqE˚
Rpτq ` EN pτqE˚

Npτqqj1,j2 dτ “ δj1,j2s. (4.90)

In the final step of (4.90) we used the fact that the processes ERpτq and EN pτq
are orthogonal projections such that ERpτq `EN pτq “ I. From Lévy’s theorem
4.5 it follows that the process s ÞÑ Bpsq, 0 ď s ď t, is a Brownian motion.

In order to finish the proof of the implication (ii) ùñ (iii) we still have to prove
the equality Mpsq ´ Mp0q “

şs
0
σ pτ,Xpτqq dBpτq and to construct the matrix

process VNpτq in such a way that the covariation of the processes Mptq andşt
0
VNpτq dW pτq vanishes. For brevity we write σpτq “ σ pτ,Xpτqq. Then by

definition and standard calculations with martingales we obtain:

Mpsq ´ Mp0q ´
ż s

0

σ pτq dBεpτq

“ Mpsq ´ Mp0q ´
ż s

0

σpτq rψεpτq dMpτq ´
ż s

0

σpτqVNpτq dW pτq

“
ż s

0

`
I ´ σpτqσ˚pτq pσpτqσ˚pτq ` εIq´1

˘
dMpτq
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“ ε

ż s

0

pσpτqσ˚pτq ` εIq´1
dMpτq. (4.91)

From (4.91) together with the fact that covariation process of the local martin-
gale Mpsq is given by

şs
0
σpτqσ˚pτq dτ , it follows that the covariation matrix of

the local martingale

Mpsq ´
ż s

0

σ pτq dBεpτq

is given by

ε2
ż s

0

pσpτqσ˚pτq ` εIq´1
σpτqσ˚pτq pσpτqσ˚pτq ` εIq´1

dτ. (4.92)

In addition, we have in spectral sense:

0 ď ε2 pσpτqσ˚pτq ` εIq´1
σpτqσ˚pτq pσpτqσ˚pτq ` εIq´1 ď ε

4
I, (4.93)

and thus in L2-sense we have

Mpsq ´ Mp0q ´
ż s

0

σpτq dBpτq “ L2- lim
εÓ0

ˆ
Mpsq ´ Mp0q ´

ż s

0

σpτqBεpτq
˙

“ 0.

(4.94)
The equality in (4.94) completes the proof of the implication (ii) ÝÑ (iii).

(iii) ùñ (i) Let f : Rd Ñ R be a twice continuously differentiable function. By
Itô’s lemma we get

f pXptqq ´ f pXp0qq ´
ż t

0

Lpsqf pXpsqq ds

“
ż t

0

∇f pXpsqq ¨ dXpsq ` 1

2

dÿ

i,j“1

ż t

0

DiDjf pXpsqq d �Xi, Xj� psq

´
ż t

0

Lpsqf pXpsqq ds

“
dÿ

j“1

ż t

0

bj ps,XpsqqDjf pXpsqq ds

` 1

2

dÿ

i,j“1

dÿ

k“1

ż t

0

σi,k ps,Xpsqqσj,k ps,XpsqqDiDjf pXpsqq ds

`
ż t

0

∇f pXpsqqσ ps,Xpsqq dBpsq ´
ż t

0

Lpsqf pXpsqq ds

“
ż t

0

∇f pXpsqqσ ps,Xpsqq dBpsq. (4.95)

The final expression in (4.95) is a local martingale. Hence (iii) implies (i).

This completes the proof of Theorem 4.8. �

4.20. Remark. The implication (ii) ùñ (i) in Theorem 4.17 can also be proved
directly by using Itô calculus. Suppose that the local martingales t ÞÑ Mjptq,
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1 ď j ď d, are defined as in assertion (ii) with covariation processes as in (4.77).
Let f be a C2-function defined on Rd. Then we have:

f pXptqq ´ f pXp0qq ´
ż t

0

Lpsqf pXpsqq ds

“
ż t

0

∇f pXpsqq dXpsq ` 1

2

dÿ

i,j“1

ż t

0

DiDjf pXpsqq d �Xi, Xj� psq

´
ż t

0

Lpsqf pXpsqq ds

“
ż t

0

∇f pXpsqq dMpsq `
ż t

0

∇f pXpsqq b ps,Xpsqq ds

` 1

2

dÿ

i,j“1

ż t

0

DiDjf pXpsqq d �Mi,Mj� psq ´
ż t

0

Lpsqf pXpsqq ds

“
ż t

0

∇f pXpsqq dMpsq `
ż t

0

∇f pXpsqq b ps,Xpsqq ds

` 1

2

dÿ

i,j“1

ż t

0

DiDjf pXpsqq ai,j ps,Xpsqq ds ´
ż t

0

Lpsqf pXpsqq ds

“
ż t

0

∇f pXpsqq dMpsq. (4.96)

Assertion (i) is a consequence of equality (4.96).
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2. A martingale representation theorem

In this section we formulate and prove the martingale theorem based on an
n-dimensional Brownian motion. Proofs are, essentially speaking, taken from
[138]. Let pW psqq0ďsă8 be standard Brownian motion in Rn, and let Ft be
the σ-field generated by pW psqq0ďsďt augmented with the P-null sets. For h P
L8 pr0, T s;Rnq we write Xhptq :“ e

şt
0
hpsq¨ dW psq´ 1

2

şt
0

|hpsq|2 ds.

4.21. Theorem. Let ΨT be the subspace of L2 pΩ,FT ,Pq spanned by the expo-

nentials XhpT q :“ e
şT
0
hpsq¨dW psq´ 1

2

şT
0

|hpsq|2 ds, h P L8
simple pr0, T s;Rnq. Then ΨT is

dense in the space L2 pΩ,FT ,Pq.

In Theorem 4.21 the space L8
simple pr0, T s;Rnq consists of those Rn-valued func-

tions h P L8 pr0, T s;Rnq which can be written in the form

hpsq “
Nÿ

k“1

1ptk´1,tkspsq
˜

Nÿ

j“k

λj

¸
“

Nÿ

j“1

1p0,tj spsqλj, 0 ď s ď T, N P N, (4.97)

where, for any N P N, 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T is an arbitrary partition of
the interval r0, T s, and where pλjq1ďjďN

are arbitrary vectors in Rn. Observe

that, for such functions h,
şT
0
hpsq ¨ dW psq “ řN

j“1 λj ¨ W ptjq. Also notice that,

by Itô’s lemma, XhpT q “ 1 `
şT
0
Xhpsqhpsq ¨ dW psq, h P L8 pr0, T s ;Rnq. In

the proof of Theorem 4.21 the following notation is employed. The symbol
C8

0

`
RnˆN

˘
stands for the vector space of those C8-functions ϕ defined on all

real n ˆ N matrices λ with the property that all functions of the form

λ ÞÑ
`
1 ` }λ}2HS

˘m
D

αj,k

j,k ϕpλq, m P N, 1 ď j ď N, 1 ď k ď n, αj,k P N,

are bounded. Here D
αj,k

j,k stands for the derivative of order αj,k relative to the
variable λj,k. The symbol }λ}HS stands for the Hilbert-Schmidt norm of the
matrix λ; that is

}λ}2HS “
Nÿ

j“1

nÿ

k“1

|λj,k|2 , λ “ pλj,kq
1ďjďN,1ďkďn

.

Functions of the form λ ÞÑ exp
`
´1

2
}λ}2HS

˘
belong to the space C8

0

`
RnˆN

˘
.

Observe that C8
0

`
RnˆN

˘
constitutes a dense subspace of C0

`
RnˆN

˘
, i.e. the

space of complex-valued continuous functions which tend to 0 at 8 equipped
with the supremum norm.

Proof of Theorem 4.21. This statement is true if there exists no g P
L2 pΩ,FT ,Pq, which is perpendicular to all XpT q P ΨT . We start by assum-
ing that there is a g P L2 pΩ,FT ,Pq such that g is orthogonal to all vari-
ables XpT q P ΨT . This orthogonality means that E rXhpT qgs “ 0, for all
h P L8

simple pr0, T s ;Rnq. Or, what is the same,
ż

Ω

e
şT
0
hpsq¨dW psq´ 1

2

şT
0
hpsq2 dsg dP “ 0, for all h P L8

simple pr0, T s ;Rnq. (4.98)
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The equalities in (4.98) are equivalent to

e´ 1

2

şT
0
hpsq2 ds

ż

Ω

e
şT
0
hpsq¨dW psqpwqg dP “ 0, for all h P L8

simple pr0, T s ;Rnq,

which amounts toż

Ω

e
şT
0
hpsq¨dW psqg dP “ 0, for all h P L8

simple pr0, T s ;Rnq, (4.99)

By taking h as in (4.97), we see that for all λ “ pλ1, . . . , λNq P pRnqN “ RnˆN

and for all pt1, . . . , tNq P r0, T sN with 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T , the following

equality holds:
ş
Ω
e

řN
j“1

λj ¨W ptjqg dP “ 0. Next, put Gpλq “
ş
Ω
e

řN
j“1

λj ¨W ptjqg dP.
The function λ ÞÑ Gpλq is real analytic on RnˆN , and thus has an analytic

extension to the complex space CnˆN : Gpzq :“
ş
Ω
e

řN
j“1

zj ¨W ptjqg dP for all z P
CnˆN . Here zj ¨ Wjptq “ řn

k“1 zj,kWkptq, zj “ pz1,k, . . . , zn,kq P Cn. Since
Gpλq “ 0 for λ P RnˆN , it follows that Gpzq “ 0 for z P CnˆN . However, for
ϕ P C8

0

`
RnˆN

˘
, and with

pϕ py1, . . . , yNq “
ż

Rn

. . .

ż

Rnloooomoooon
N times

e´i
řN

j“1
yj ¨xjϕ px1, . . . , xN q dxN . . . dx1,

where py1, . . . , yNq P RnˆN , we see that

E rϕ pW pt1q , . . . ,W ptNqq gs “
ż

Ω

ϕ pW pt1q , . . . ,W ptNqq g dP

(inverse Fourier transform)

“
ż

Ω

ˆ
1

p2πqnˆN

ż

RnˆN

ei
řN

j“1
W ptjq¨yj pϕpyq dy

˙
g dP

(Fubini’s theorem)

“ 1

p2πqnˆN

ż

RnˆN

ż

Ω

ei
řN

j“1
W ptjq¨yjg dPpϕpyq dy

“ 1

p2πqnˆN

ż

RnˆN

Gpiyqgpϕpyq dy “ 0. (4.100)

From the monotone class theorem, and the fact the space C8
0

`
RnˆN

˘
is dense

in C0

`
RnˆN

˘
for the uniform topology, it follows that the equality in (4.100),

i.e. the equality

E rϕ pW pt1q , . . . ,W ptN qq gs “ 0 (4.101)

can only be true for all ϕ P C8
0

`
RnˆN

˘
, and for all pt1, . . . , tNq P p0,8qN ,

0 ă t1 ă ¨ ¨ ¨ ă tN “ T , for all N P N, provided that E rFgs “ 0 for all
bounded FT -measurable random variables F . Consequently, E rXhpT qgs “ 0 for
all h P L8

simple pr0, T s ;Rnq if and only if the random variable g P L2 pΩ,FT ,Pq is
identically 0. This completes the proof of Theorem 4.21. �

The following theorem is known as the Itô representation theorem.
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4.22. Theorem. If the random variable XpT q belongs to L2 pΩ,FT ,Pq, then
there exists a unique predictable Rn-valued process t ÞÑ F ptq, 0 ď t ď T , for

which
şT
0
E

“
|F psq|2

‰
ds ă 8 and which is such that

XpT q “ E rXpT qs `
ż T

0

F psq ¨ dW psq. (4.102)

In other words the space

C `
"ż T

0

F psq ¨ dW psq : s ÞÑ F psq predictable and

ż T

0

E
“
|F psq|2

‰
ds ă 8

*

coincides with L2 pΩ,FT ,Pq.

Proof of Theorem 4.22. Let XpT q be as in Theorem 4.22. Then there

exists double sequences
´

pαj,kqNk

j“1

¯
kPN

in C and
´

phj,kqNk

j“1

¯
kPN

of elements in

L8
simple pr0, T s ;Rnq such that, with Fkptq “ řNk

j“1 αj,kXhj,k
ptqhj,kptq and with

XkpT q :“
Nkÿ

j“1

αj,kXhj,k
pT q “

Nkÿ

j“1

αj,ke
şT
0
hj,kpsq¨dW psq´ 1

2

şT
0 |hj,kpsq|2 ds

“
Nkÿ

j“1

αj,k `
ż T

0

Nkÿ

j“1

αj,kXhj,k
ptqhj,kptq ¨ dW ptq

“ E rXkpT qs `
ż T

0

Fkptq ¨ dW ptq, (4.103)

we have

0 “ lim
kÑ8

E
“
|XpT q ´ XkpT q|2

‰
“ lim

k,ℓÑ8
E

“
|XℓpT q ´ XkpT q|2

‰

“ lim
k,ℓÑ8

"
|E rXℓpT q ´ XkpT qs|2 `

ż T

0

E
“
|Fℓptq ´ Fkptq|2

‰
dt

*
. (4.104)

In the third equality in (4.103) we employed Itô’s lemma. From (4.104) we infer
that E rXpT qs “ limkÑ8 E rXkpT qs and that there exists a predictable process
t ÞÑ F ptq such that

lim
kÑ8

ż T

0

E
“
|F ptq ´ Fkptq|2

‰
“ 0. (4.105)

From (4.105) we obtain

L2- lim
kÑ8

ż T

0

Fkptq ¨ dW ptq “
ż T

0

F ptq ¨ dW ptq. (4.106)

A combination of (4.103), (4.104) and (4.106) yields the equality in (4.102). In

addition, we have
şT
0
E

“
|F psq|2

‰
ds ă 8, and so the existence part in Theo-

rem 4.22 has been established now. The uniqueness part follows from the Itô
isometry

E

„ż T

0

|F2psq ´ F1psq|2 ds


“ E

«ˇ̌
ˇ̌
ż T

0

pF2psq ´ F1psqq ¨ dW psq
ˇ̌
ˇ̌
2
ff

“ 0,
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if XpT q ´ E rXpT qs “
şT
0
F1psq ¨ dW psq “

şT
0
F2psq ¨ dW psq. Altogether this

completes the proof of Theorem 4.22. �

Next we formulate and prove the martingale representation theorem.

4.23. Theorem. Let pMptqq0ďtďT belong to M2 pΩ,FT ,Pq. Then there exists
a unique predictable Rn-valued process t ÞÑ ζptq “ pζ1ptq, . . . , ζnptqq, ζptq P
L2 pΩ,Ft,P;R

nq, such that

Mptq “ Mp0q `
ż t

0

ζpsq ¨ dW psq “ Mp0q `
nÿ

j“1

ż t

0

ζjpsq dWjpsq. (4.107)

Of course, if in Theorem 4.23 the process t ÞÑ Mptq, 0 ď t ď T , is a martingale
vector in Rd, then we obtain a predictable matrix Zptq P Rnˆd such that Mptq “
Mp0q `

ş
Zpsq˚ dW psq. (This is what one needs in the context of Backward

Stochastic Differential Equations or BSDEs for short.)
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Proof of Theorem 4.23. Let pMptqq0ďtďT be as in Theorem 4.23. The-
orem 4.22 yields the existence of a unique predictable Rn-valued process t ÞÑ
ζptq “ pζ1ptq, . . . , ζnptqq, ζptq P L2 pΩ,Ft,P;R

nq, such that

MpT q “ E rMpT qs`
ż T

0

ζpsq¨dW psq “ E rMpT qs`
nÿ

j“1

ż T

0

ζjpsq dWjpsq. (4.108)

Since the processes t ÞÑ Mptq and t ÞÑ
şt
0
ζjpsq dWjpsq, 1 ď j ď n, 0 ď t ď T ,

are martingales, from (4.108) we infer

Mptq “ E
“
MpT q

ˇ̌
Ft

‰
“ E

„
E rMpT qs `

ż T

0

ζpsq ¨ dW psq
ˇ̌
Ft



“ E rMpT qs `
ż t

0

ζpsq ¨ dW psq “ E rMp0qs `
ż t

0

ζpsq ¨ dW psq (4.109)

From (4.109) we get Mp0q “ E rMp0qs, and so the representation in (4.107)
follows from (4.109). The proof of Theorem 4.23 is complete now. �

3. Girsanov transformation

In this section we want to discuss the Cameron-Martin-Girsanov transformation
or just Girsanov transformation. Let pΩ,F,Pq be a probability space with a
filtration pFtqtě0. In addition, let the process tBptq : t ě 0u be a d-dimensional
Brownian motion. Let bj , cj, σi,j be Borel measurable locally bounded functions
on Rd. Suppose that the stochastic differential equation

Xptq “ x `
ż t

0

σ ps,Xpsqq dBpsq `
ż t

0

b ps,Xpsqq ds (4.110)

has unique weak solutions. For a precise definition of the notion of “unique
weak solutions” see Definition 4.19. For more information on transformations
of measures on Wiener space see e.g. Üstünel and Zakai [177]. In particular
these observations mean that if in equation (4.111) below (for the process Y ptq)
the process B1ptq is a Brownian motion relative to a probability measure P1,
then the P1-distribution of the process Y ptq coincides with the P-distribution of
the process Xptq which satisfies (4.110). Next we will elaborate on this item.
Suppose that the process t ÞÑ Y ptq satisfies the equation (in column vectors):

Y ptq “ x `
ż t

0

σ ps, Y psqq dBpsq `
ż t

0

pb ps, Y psqq ` σ ps, Y psqq c ps, Y psqqq ds

“ x `
ż t

0

σ ps, Y psqq dB1psq `
ż t

0

b ps, Y psqq ds, (4.111)

where B1ptq “ Bptq `
şt
0
c ps, Y psqq ds. The following proposition says that rela-

tive to a martingale transformation P1 of the measure P (Girsanov or Cameron-
Martin transformation) the process t ÞÑ B1ptq is a P1-Brownian motion. More
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precisely, we introduce the local martingale M 1ptq and the corresponding mar-
tingale measure P1 by

M 1ptq “ exp

ˆ
´

ż t

0

c ps, Y psqq dBpsq ´ 1

2

ż t

0

|c ps, Y psqq|2 ds

˙
and (4.112)

P1 rAs “ E rM 1ptq1As , A P Ft. (4.113)

We also need the process Z 1ptq defined by

Z 1ptq “ ´
ż t

0

c ps, Y psqq dBpsq ´ 1

2

ż t

0

|c ps, Y psqq|2 ds. (4.114)

In addition, we have a need for a vector function c1pt, yq satisfying cpt, yq “
c1pt, yqσpt, yq. Here cpt, yq and c1pt, yq are considered as row vectors. This is
equivalent to saying that the column vector cpt, yq˚ belongs to the range of
σ ps, yq˚. More precisely, put

P ps, yq “ σ ps, yq˚ `
σ ps, yq pσ ps, yqq˚˘´1

σ ps, yq . (4.115)

Observe that P ps, yq is well defined: it is the orthogonal projection from Rd on
the range of σ ps, yq˚. Then the row vector cps, yq can be written in the form

c ps, yq “ c ps, yqP ps, yq “ c1 ps, yqσ ps, yq , (4.116)

where c1ps, yq “ cps, yqσ ps, yq˚ `
σ ps, yq pσ ps, yqq˚˘´1

. Also notice that the

range of σps, yq˚ coincides with Rd provided the zero-space of σps, yq is triv-
ial. We assume that such a vector function c1pt, yq exists.

4.24. Proposition. Suppose that the process Y ptq satisfies the equation in
(4.111). Let the processes M 1ptq and Z 1ptq be defined by (4.112) and (4.114)
respectively. Then the following assertions are true:

(1) The process t ÞÑ M 1ptq is a local P-martingale. It is a martingale
provided E rM 1ptqs “ 1 for all t ě 0.

(2) Fix t ą 0. The variable M 1ptq only depends on the process s ÞÑ Y psq,
0 ď s ď t.

(3) Suppose that the process t ÞÑ M 1ptq is a P-martingale, and not just a
local P-martingale. Then P1 can be considered as a probability measure
on the σ-field generated by Ytą0Ft.

(4) Suppose that the process t ÞÑ M 1ptq is a P-martingale. Then the process
t ÞÑ B1ptq is a Brownian motion relative to P1.

Proof. (1) From Itô calculus we get

M 1ptq ´ M 1p0q “ ´
ż t

0

M 1psqc ps, Y psqq dBpsq,

and hence assertion 1 follows, because stochastic integrals with respect to Brow-
nian motion are local martingales. Next we choose a sequence of stopping times
τn which increase to 8 P-almost surely, and which are such that the processes
t ÞÑ M 1 pt ^ τnq are genuine martingales. Then we see E rM 1 pt ^ τnqs “ 1 for
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all n P N and t ě 0. Fix t2 ą t1. Since the processes t ÞÑ M 1 pt ^ τnq, n P N,
are P-martingales, we see that

E
“
M 1 pt2 ^ τnq

ˇ̌
Ft1

‰
“ M 1 pt1 ^ τnq P-almost surely. (4.117)

In (4.117) we let n Ñ 8, and apply Scheffé’s theorem to conclude that

E
“
M 1 pt2q

ˇ̌
Ft1

‰
“ M 1 pt1q P-almost surely. (4.118)

The equality in (4.118) shows that the process t ÞÑ M 1ptq is a P-martingale
provided that E rM 1ptqs “ 1 for all t ě 0. This completes the proof of assertion
(1).

(2) This assertion follows from the following calculation:

Z 1ptq “ ´
ż t

0

c ps, Y psqq dBpsq ´ 1

2

ż t

0

|c ps, Y psqq|2 ds (4.119)

“ ´
ż t

0

c ps, Y psqq dB1psq ` 1

2

ż t

0

|c ps, Y psqq|2 ds

(the equality cps, yq “ c1ps, yqσps, yq holds)

“ ´
ż t

0

c1 ps, Y psqqσ ps, Y psqq dB1psq ` 1

2

ż t

0

|c ps, Y psqq|2 ds

“ ´
ż t

0

c1 ps, Y psqq d

ˆż s

0

σ pτ, Y pτqq dB1pτq
˙

` 1

2

ż t

0

|c ps, Y psqq|2 ds

“ ´
ż t

0

c1 ps, Y psqq d

ˆ
Y psq ´

ż s

0

b pτ, Y pτqq dτ

˙
` 1

2

ż t

0

|c ps, Y psqq|2 ds.

From (4.119), (4.112), and (4.114) it is plain that M 1ptq only depends on the
path tY psq : 0 ď s ď tu.
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(3) This assertion is a consequence of Kolmogorov’s extension theorem. The
measure is P1 is well defined on Ytą0Ft. Here we use the martingale property.
By Kolmogorov’s extension theorem, it extends to the σ-field generated by this
union.

(4) The equality B1ptq “ Bptq `
şt
0
c ps, Y psqq ds entails the following equality

for the quadratic covariation of the processes B1
i and B1

j :
〈

B1
i, B

1
j

〉

ptq “ 〈Bi, Bj〉 ptq “ tδi,j. (4.120)

From Itô calculus we also infer

M 1ptqB1
iptq

“
ż t

0

M 1psqB1
ipsq dZ 1psq `

ż t

0

M 1psq dB1
ipsq

` 1

2

ż t

0

M 1psqB1psq d 〈Z 1, Z 1〉 psq `
ż t

0

M 1psqd 〈Z 1, B1
i〉 psq

“ ´
ż t

0

M 1psqB1
ipsqc ps, Y psqq dBpsq ´ 1

2

ż t

0

M 1psqB1
ipsq |c ps, Y psqq|2 ds

` 1

2

ż t

0

M 1psqB1
ipsq |c ps, Y psqq|2 ds `

ż t

0

M 1psq dBipsq

`
ż t

0

M 1psqci ps, Y psqq ds ´
ż t

0

M 1psqci ps, Y psqq ds

“ ´
ż t

0

M 1psqB1
ipsqc ps, Y psqq dBpsq `

ż t

0

M 1psq dBipsq. (4.121)

Upon invoking Theorem 4.5 and employing (4.120) and (4.121) assertion (4)
follows.

This concludes the proof of Proposition 4.24. �

4.25. Remark. Proposition 4.24 is still valid even if the null-space of σps, yq is
non-trivial, and so the range of σps, yq˚ is not the whole space Rd, provided we
replace the (local) martingale t ÞÑ M 1ptq with the local martingale:

t ÞÑ exp

ˆ
´

ż t

0

c ps, Y psqqP ps, Y psqq dBpsq ´ 1

2

ż t

0

|c ps, Y psqqP ps, Y psqq|2 ds

˙
,

(4.122)
where P ps, yq is as in (4.115).

Let the process Xptq solve the equation in (4.110), and put

Mptq “ exp

ˆż t

0

c ps,Xpsqq dBpsq ´ 1

2

ż t

0

|c ps,Xpsqq|2 ds

˙
, (4.123)

and assume that the processMptq is not merely a local martingale, but a genuine
P-martingale.

4.26. Theorem. Fix T ą 0, and let the functions

bps, yq, σps, yq, cps, yq, and c1ps, yq, 0 ď s ď T,
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be locally bounded Borel measurable vector or matrix functions such that cps, yq “
c1ps, yqσ ps, yq, 0 ď s ď T , y P Rd. Suppose that the equation in (4.110) pos-
sesses unique weak solutions on the interval r0, T s.

Uniqueness. If weak solutions to the stochastic differential equation in (4.111)
exist, then they are unique in the sense as explained next. In fact, let the couple
pY psq, Bpsqq, 0 ď s ď t, be a solution to the equation in (4.111) with the property
that the local martingale M 1ptq given by

M 1ptq “ exp

ˆ
´

ż t

0

c ps, Y psqq dBpsq ´ 1

2

ż t

0

|c ps, Y psqq|2 ds

˙
. (4.124)

satisfies E rM 1ptqs “ 1. Then the finite-dimensional distributions of the process
Y psq, 0 ď s ď t, are given by the Girsanov or Cameron-Martin transform:

E rf pY pt1q , . . . , Y ptnqqs “ E rMptqf pX pt1q , . . . , X ptnqqs , (4.125)

t ě tn ą ¨ ¨ ¨ ą t1 ě 0, where f : Rd ˆ ¨ ¨ ¨ ˆ Rd Ñ R is an arbitrary bounded
Borel measurable function.

Existence. Conversely, let the process s ÞÑ pXpsq, Bpsqq be a solution to the
equation in (4.110). Suppose that the local martingale s ÞÑ Mpsq, defined by

Mpsq “ exp

ˆż s

0

c pτ,Xpτqq dBpτq ´ 1

2

ż s

0

|c pτ,Xpτqq|2 dτ

˙
, 0 ď s ď t,

(4.126)

is a martingale, i.e. E rMptqs “ 1. Then there exists a couple
´

rY psq, rBpsq
¯
,

0 ď s ď t, where s ÞÑ rBpsq, 0 ď s ď t, is a Brownian motion on a probability

space
´

rΩ, rF, rP
¯
such that

rY psq “ x `
ż s

0

σ
´
τ, rY pτq

¯
d rBpτq `

ż s

0

σ
´
τ, rY pτq

¯
c

´
τ, rY pτq

¯
dτ

`
ż s

0

b
´
τ, rY pτq

¯
dτ, (4.127)

and such that

rE
„
exp

ˆ
´

ż t

0

c
´
s, rY psq

¯
d rBpsq ´ 1

2

ż t

0

ˇ̌
ˇc

´
s, rY psq

¯ˇ̌
ˇ
2

ds

˙
“ 1. (4.128)

4.27. Remark. The formula in (4.125) is known as the Girsanov transform
or Cameron-Martin transform of the measure P. It is a martingale measure.
Suppose that the process t ÞÑ M 1ptq, as defined in (4.112) is a P-martingale.
Then the proof of Theorem 4.26 shows that the process t ÞÑ Mptq, as defined
in (4.123) is a P-martingale. By assertion (1) in Proposition 4.24 the process
t ÞÑ M 1ptq is a P-martingale if and only E rM 1ptqs “ 1 for all T ě t ě 0, and a
similar statement holds for the process t ÞÑ Mptq. If the process t ÞÑ M 1ptq is a
martingale, then taking G ” 1 in (4.142) shows that E rMptqs “ 1, and hence
by 1 in Proposition 4.24 the process t ÞÑ Mptq is a P-martingale. Conversely, if
the process t ÞÑ Mptq is a P-martingale, then we reverse the implications in the
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proof of Theorem 4.26 and take F ” 1 in (4.146) to conclude that E rM 1ptqs “ 1
for all ě 0. But then the process t ÞÑ M 1ptq is a P-martingale.

4.28.Remark. Let P ps, yq be as in (4.115). Put cP ps, yq “ c ps, yqP ps, yq. Like
Proposition 4.24 Theorem 4.26 remains valid even if the null-space of σps, yq is
non-trivial, provided we replace the (local) martingale t ÞÑ M 1ptq with the local
martingale in (4.122) and we replace the local martingale t ÞÑ Mptq with

t ÞÑ exp

ˆż t

0

cP ps,Xpsqq dBpsq ´ 1

2

ż t

0

|cP ps,Xpsqq|2 ds

˙
. (4.129)

In addition the equality in (4.128) should be replaced by

rE
„
exp

ˆ
´

ż t

0

cP

´
s, rY psq

¯
d rBpsq ´ 1

2

ż t

0

ˇ̌
ˇcP

´
s, rY psq

¯ˇ̌
ˇ
2

ds

˙
“ 1. (4.130)

Observe that cP ps, yq is automatically of the form cP ps, yq “ c1ps, yqσ ps, yq: see
the equality in (4.116) and see Remark 4.25 as well.

Notice that the process t ÞÑ Mptq is a P-martingale provided Novikov’s con-

dition is satisfied, i.e. if E

„
exp

ˆ
1

2

ż t

0

|c ps,Xpsqq|2 ds
˙

ă 8. For a precise

formulation see Corollary 4.29 below. Define

EpMqptq “ eMptq´ 1

2
xM,Myptq. (4.131)
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4.29. Corollary. If sup
tě0

E

„
exp

ˆ
1

2
〈M,M〉 ptq

˙
ă 8, then

E

„
exp

ˆ
Mp8q ´ 1

2
〈M,M〉 p8q

˙
“ 1,

and consequently the process t ÞÑ EpMqptq is a P-martingale relative to the
filtration pFtqtě0, where Ft “ σ pMpsq : 0 ď s ď tq, the σ-field generated by the
variables Mpsq, 0 ď s ď t.

Novikov’s result is a consequence of results in [100]; see Chapter 1 of [184].
Observe that Mp8q “ limtÑ8 Mptq exists P-almost surely.

4.30. Remark. Let s ÞÑ cpsq be a process which is adapted to Brownian
motion in Rd, and let ρ ą 0 be such that Novikov’s condition is satisfied:

E

”
exp

´
1
2
ρ2

şt
0

|cpsq|2 ds
¯ı

ă 8. From assertion 4 in Proposition 4.24 and The-

orem 4.26 we see that the following identity holds for all bounded Borel mea-
surable functions F defined on

`
Rd

˘n
:

E rF pYρ pt1q , . . . , Yρ ptnqqs

“ E

„
exp

ˆ
ρ

ż t

0

cpsqdBpsq ´ 1

2
ρ2

ż t

0

|cpsq|2 ds
˙

F pB pt1q , . . . , B ptnqq


(4.132)

where 0 ď t1 ă ¨ ¨ ¨ ă tn ď t, and Yρpτq “ Bpτq ` ρ
şτ
0
cpsq ds, 0 ď τ ď t. In

particular, if n “ 1 we get

E

„
F

ˆ
Bptq ` ρ

ż t

0

cpsq ds
˙

“ E

„
exp

ˆ
ρ

ż t

0

cpsqdBpsq ´ 1

2
ρ2

ż t

0

|cpsq|2 ds
˙

F pB ptqq


(4.133)

Assume that the gradient DF of the function F exists and is bounded. The
equality in (4.133) can be differentiated with respect to ρ to obtain:

E

„〈
DF

ˆ
Bptq ` ρ

ż t

0

cpsq ds
˙
,

ż t

0

cpsq ds
〉

“ E

„
exp

ˆ
ρ

ż t

0

cpsq dBpsq ´ 1

2
ρ2

ż t

0

|cpsq|2 ds
˙

ˆ
ˆż t

0

cpsq dBpsq ´ ρ

ż t

0

|cpsq|2 ds
˙

F pBptqq

. (4.134)

The bracket in the left-hand side of (4.134) indicates the inner-product in Rd.
In (4.134) we put ρ “ 0 and we obtain the first order version of the famous
integration by parts formula:

E

„〈
DF pBptqq ,

ż t

0

cpsq ds
〉

“ E

„ż t

0

cpsq dBpsqF pBptqq

. (4.135)
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We mention that the Cameron-Martin-Girsanov transformation is a cornerstone
for the integration by parts formula, which is a central issue in Malliavin cal-
culus. For details on this subject see e.g. Nualart [135, 133], Malliavin [119],
Sanz-Solé [154], Kusuoka and Stroock [103, 104, 105], Stroock [164], and
Norris [129].

For a proof of Theorem 4.26 we will need the Skorohod-Dudley-Wichura repre-
sentation theorem: see Theorem 11.7.2 of Dudley [55]. It will be applied with
S “ C

`
r0, ts,Rd

˘
and can be formulated as follows.

4.31. Theorem. Let pS, dq be a complete separable metric space (i.e. a Polish
space), and let Pk, k P N, and P be probability measures on the Borel field BS of
S such that the weak limit w´ limkÑ8 Pk “ P, i.e. limkÑ8

ş
FdPk “

ş
FdP for

all bounded continuous functions of F P CbpSq. Then there exist a probability

space
´

rΩ, rF, rP
¯
and S-valued stochastic variables rYk, k P N, and rY , defined on

rΩ with the following properties:

(1) PkrBs “ rP
”

rYk P B
ı
, k P N, and P rBs “ rP

”
rY P B

ı
, B P BS.

(2) The sequence rYk, k P N, converges to rY rP-almost surely.

4.32. Remark. An analysis of the existence part of the proof of Theorem 4.26

shows that the invertibility of the matrix σ ps, yq is not needed. Let rNpsq,
0 ď s ď t, be a local martingale on a filtered probability space

´
rΩ, rFs, rP

¯
,

where the σ-field rFs is generated by
´

rY pτq : 0 ď τ ď s
¯
. Suppose that the

covariation process of rNpsq is given by
〈

rNj1 ,
rNj2

〉

psq “
ż s

0

´
σ

´
τ, rY pτq

¯
σ˚

´
τ, rY pτq

¯¯
j1,j2

dτ, 1 ď j1, j2 ď d.

Here rY is a local martingale on
´

rΩ, rF, rP
¯
. Then by assertion (iii) in Theorem

4.17 there exists a Brownian motion rBpsq, 0 ď s ď t, on this space such that
ż s

0

c1

´
τ, rY pτq

¯
d rNpτq “

ż s

0

c1

´
τ, rY pτq

¯
σ

´
τ, rY pτq

¯
d rBpτq

“
ż s

0

c
´
τ, rY pτq

¯
d rBpτq. (4.136)

Proof of Theorem 4.26. Uniqueness. Let the process Y psq, 0 ď s ď t,
be a solution to equation (4.111). So that

Y psq “ x `
ż s

0

σ pτ, Y pτqq dBpτq `
ż s

0

pb pτ, Y pτqq ` σ pτ, Y pτqq c pτ, Y pτqqq dτ

“ x `
ż s

0

σ pτ, Y pτqq dB1pτq `
ż s

0

b pτ, Y pτqq dτ. (4.137)

Let F
`
pY psqq0ďsďt

˘
be a bounded stochastic variable which depends on the

path Y psq, 0 ď s ď t. As observed in 4 of Proposition 4.24 the process B1ptq
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is a P1-Brownian motion, provided E rM 1ptqs “ 1. Uniqueness of weak solutions
to equation (4.110) implies that the P 1-distribution of the process s ÞÑ Y psq,
0 ď s ď t, coincides with the P-distribution of the process s ÞÑ Xpsq, 0 ď s ď t.
In other words we have

E1 “
F

`
pY psqq0ďsďt

˘‰

“ E

„
exp

ˆ
´

ż t

0

c1 ps, Y psqq dNY psq ´ 1

2

ż t

0

|c ps, Y psqq|2 ds
˙
F

`
pY psqq0ďsďt

˘

“ E
“
F

`
pXpsqq0ďsďt

˘‰
, (4.138)

where

NY psq “ Y psq ´
ż s

0

σ pτ, Y pτqq c pτ, Y pτqq dτ ´
ż s

0

b pτ, Y pτqq dτ

“
ż s

0

σ pτ, Y pτqq dBpτq. (4.139)

With

G
`
pY psqq0ďsďt

˘

“ exp

ˆ
´

ż t

0

c1 ps, Y psqq dNY psq ´ 1

2

ż t

0

|c ps, Y psqq|2 ds
˙
F

`
pY psqq0ďsďt

˘

we have

F
`
pY psqq0ďsďt

˘

“ exp

ˆż t

0

c1 ps, Y psqq dNY psq `
ż t

0

1

2
|c ps, Y psqq|2 ds

˙
G

`
pY psqq0ďsďt

˘

So, since

dNXpsq “ dXpsq ´ σ ps,Xpsqq c ps,Xpsqq ds ´ b ps,Xpsqq ds

“ σ ps,Xpsqq pdBpsq ´ c ps,Xpsqq dsq (4.140)

it follows that

F
`
pXpsqq0ďsďt

˘

“ exp

ˆż t

0

c1 ps,Xpsqq dNXpsq ` 1

2

ż t

0

|c ps,Xpsqq|2 ds
˙
G

`
pXpsqq0ďsďt

˘

“ exp

ˆż t

0

c ps,Xpsqq dBpsq ´ 1

2

ż t

0

|c ps,Xpsqq|2 ds
˙
G

`
pXpsqq0ďsďt

˘
.

(4.141)

From (4.138) and (4.141) we infer:

E
“
G

`
pY psqq0ďsďt

˘‰
(4.142)

“ E

„
exp

ˆż t

0

c ps,Xpsqq ds ´ 1

2

ż t

0

|c ps,Xpsqq|2 ds
˙
G

`
pXpsqq0ďsďt

˘
.

By inserting G ” 1 in (4.142) we see that

E

„
exp

ˆż t

0

c ps,Xpsqq ds ´ 1

2

ż t

0

|c ps,Xpsqq|2 ds
˙

“ 1
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in case there is a unique solution to the equation in (4.127). This proves the
uniqueness part of Theorem 4.26.

Existence. Therefore we will approximate the solution Y by a sequence Yk,
k P N, which are solutions to equations of the form:

Ykpsq “ x `
ż s

0

σ pτ, Ykpτqq dBpτq

`
ż s

0

pb pτ, Ykpτqq ` σ pτ, Ykpτqq ck pτ, Ykpτqqq dτ

“ x `
ż s

0

σ pτ, Ykpτqq dB1
kpτq `

ż s

0

b pτ, Ykpτqq dτ. (4.143)

Here

B1
kpsq “ Bkpsq `

ż s

0

ck pτ, Ykpτqq dτ,

and the coefficients ckps, yq “ c1,kps, yqσ ps, yq are chosen in such a way that
they are bounded and that cps, yq “ limkÑ8 ckps, yq for all s P r0, ts and y P Rd.
By Novikov’s theorem the corresponding local martingales M 1

k, given by

M 1
kpsq “ exp

ˆ
´

ż s

0

ck pτ, Ykpτqq dBpτq ´ 1

2

ż s

0

|ck pτ, Ykpτqq|2 dτ
˙
, k P N,

are then automatically genuine martingales: see Corollary 4.29. From the
uniqueness of weak solutions to equations in Xptq of the form (4.110) (and
thus to equations in Ykpsq of the form (4.143) we infer

E1
k

“
F

`
pYkpsqq0ďsďt

˘‰
“ E

“
F

`
pXpsqq0ďsďt

˘‰
. (4.144)

In equality (4.144) the process Ykpsq, 0 ď s ď t, solves the equation in (4.143).
The equality in (4.144) can be rewritten as

E
“
M 1

kptqF
`
pYkpsqq0ďsďt

˘‰
“ E

“
F

`
pXpsqq0ďsďt

˘‰
. (4.145)

By (4.119) the equality in (4.145) can be rewritten as

E

„
exp

ˆ
´

ż t

0

ck ps, Ykpsqq dBpsq ´ 1

2

ż t

0

|ck ps, Ykpsqq|2 ds

˙
F

`
pYkpsqq0ďsďt

˘

“ E

„
exp

ˆ
´

ż t

0

c1,k ps, Ykpsqq d

ˆ
Ykpsq ´

ż s

0

b pτ, Ykpτqq dτ

˙

`1

2

ż t

0

|ck ps, Ykpsqq|2 ds

˙
F

`
pYkpsqq0ďsďt

˘

“ E
“
F

`
pXpsqq0ďsďt

˘‰
. (4.146)

Let G
`
pYkpsqq0ďsďt

˘
be a (bounded) stochastic variable which depends on the

path Ykpsq, 0 ď s ď t. From the equality in (4.146) we infer

E
“
G

`
pYkpsqq0ďsďt

˘‰

“ E

„
exp

ˆż t

0

c1,k ps,Xpsqq d

ˆ
Xpsq ´

ż s

0

b pτ,Xpτqq dτ

˙
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´1

2

ż t

0

|ck ps,Xpsqq|2 ds

˙
G

`
pXpsqq0ďsďt

˘

“ E

„
exp

ˆż t

0

c1,k ps,Xpsqqσ ps,Xpsqq dBpsq ´ 1

2

ż t

0

|ck ps,Xpsqq|2 ds

˙

ˆ G
`
pXpsqq0ďsďt

˘

“ E
“
MkptqG

`
pXpsqq0ďsďt

˘‰
. (4.147)

Here the martingales Mkpsq are given by

Mkpsq “ exp

ˆż s

0

ck pτ,Xpτqq dBpτq ´ 1

2

ż s

0

|ck pτ,Xpτqq|2 dτ
˙
, k P N,

This fact together with the pointwise convergence of Mkpsq to Mpsq, as k Ñ 8,
and invoking the hypothesis that E rMptqs “ 1, shows that the right-hand side
of (4.147) converges to E

“
MptqG

`
pXpsqq0ďsďt

˘‰
. In other words the distribu-

tion PYk of Yk converges weakly to the measure PM,X defined by PM,XpAq “
E rMptq, X P As, where A is a Borel subset of the space C

`
r0, ts,Rd

˘
. By the

Skorohod-Dudley-Wichura representation theorem (Theorem 4.31) there exist

a probability space
´

rΩ, rF, rP
¯
and C

`
r0, ts,Rd

˘
-valued stochastic variables rYk,

k P N, and rY , defined on rΩ with the following properties:

(1) PYkrBs “ rP
”

rYk P B
ı
, k P N, and PM,X rBs “ rP

”
rY P B

ı
, for all

B P BCpr0,ts,Rdq.

(2) The sequence
´

rYk

¯
kPN

converges to rY rP-almost surely.
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By taking the limit in (4.147) for k Ñ 8 and using the theorem of Skorohod-
Dudley-Wichura we obtain

E

„
G

ˆ´
rY psq

¯
0ďsďt

˙
“ E

“
MptqG

`
pXpsqq0ďsďt

˘‰
(4.148)

where G is a bounded continuous function on C
`
r0, ts,Rd

˘
. Then we consider

the process rNpsq, 0 ď s ď t, defined by

rNpsq “ rY psq ´
ż s

0

σ
´
τ, rY pτq

¯
c

´
τ, rY pτq

¯
dτ ´

ż s

0

b
´
τ, rY pτq

¯
dτ. (4.149)

If rY psq were Y psq, then by (4.137) rNpsq would be NY psq, given by the formula
in (4.139). Hence the process s ÞÑ NY psq, s P r0, ts, is a stochastic integral
relative to Brownian motion on the space pΩ,Ft,Pq. We want to do the same

for the process s ÞÑ rNpsq, 0 ď s ď t, on the probability space
´

rΩ, rF, rP
¯
. Let

PMptq be the probability measure on pΩ,Ftq defined by PMptq rAs “ E rMptq, As,
A P Ft. Then like in item (4) of Proposition 4.24 we see that the process s ÞÑ
Bpsq ´

şs
0
σ pτ,Xpτqq dτ is a PMptq-Brownian motion. In addition, from (4.148)

and (4.149) we infer that the rP-distribution of the process rNpsq, 0 ď s ď t, is
given by the PMptq-distribution of the process

s ÞÑXpsq ´
ż s

0

σ pτ,Xpτqq c pτ,X pτqq dτ ´
ż s

0

b pτ,Xpτqq dτ

“
ż s

0

σ pτ,Xpτqq pdBpτq ´ c pτ, Y pτqq dτq

“
ż s

0

σ pτ,Xpτqq dBMptqpτq, (4.150)

where BMptqpsq is a PMptq-Brownian motion: see Proposition 4.24 item (4). It
also follows that the process in (4.150) has covariation process given by the
square matrix process

s ÞÑ
ż s

0

σ pτ,Xpτqq σ˚ pτ,Xpτqq dτ, 0 ď s ď t.

Consequently, the process s ÞÑ rNpsq, 0 ď s ď t, is a local rP -martingale with
covariation process given by

s ÞÑ
ż s

0

σ
´
τ, rY pτq

¯
σ˚

´
τ, rY pτq

¯
dτ, 0 ď s ď t. (4.151)

In order to prove (4.151) we must show that the process

s ÞÑ rNj1psq rNj2psq ´
dÿ

k“1

ż s

0

σj1,k

´
τ, rY pτq

¯
σj2,k

´
τ, rY pτq

¯
dτ

is a local rP-martingale. The latter can be achieved by appealing to the fact the
rP-distribution of the process s ÞÑ rY psq, 0 ď s ď t, coincides with the PMptq-
distribution of the process s ÞÑ Xpsq, 0 ď s ď t. Then we choose a Brownian

motion rBpsq, possibly on an extension of the probability space
´

rΩ, rF, rP
¯
, which
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we call again
´

rΩ, rF, rP
¯
such that rNpsq “

şs
0
σ

´
τ, rY pτq

¯
d rBpτq. For details see

the proof of the implication (ii) ùñ (iii) of Theorem 4.17. With such a Brownian
motion we obtain:

rY psq “ x `
ż s

0

σ
´
τ, rY pτq

¯
d rBpτq

`
ż s

0

σ
´
τ, rY pτq

¯
c

´
τ, rY pτq

¯
dτ `

ż s

0

b
´
τ, rY pτq

¯
dτ. (4.152)

Since

rE
„
exp

ˆ
´

ż t

0

c
´
s, rY psq

¯
d rBpsq ´ 1

2

ż t

0

ˇ̌
ˇc

´
s, rY psq

¯ˇ̌
ˇ
2

ds

˙
“ 1 (4.153)

it follows that the process s ÞÑ rBpsq `
şs
0
c

´
τ, rY pτq

¯
dτ is a Brownian motion

relative to the measure

A ÞÑ rE
„
exp

ˆ
´

ż t

0

c
´
s, rY psq

¯
d rBpsq ´ 1

2

ż t

0

ˇ̌
ˇc

´
s, rY psq

¯ˇ̌
ˇ
2

ds

˙
, A


, A P rF.

The equalities in (4.152) and (4.153) complete the proof of Theorem 4.26. �

3.1. Equations with unique strong solutions possess unique weak

solutions. The following theorem shows that stochastic differential equations
with unique pathwise solutions also have unique weak solutions. Its proofs puts
the Lévy’s characterization of Brownian motion at work: see Theorem 4.5.

4.33. Theorem. Let the vector and matrix functions bps, xq and σps, xq be as
in Theorem 4.26. Fix x P Rd. Suppose that the stochastic (integral) equation

Xptq “ x `
ż t

0

σ ps,Xpsqq dBpsq `
ż t

0

b ps,Xpsqq ds (4.154)

possesses unique pathwise solutions. Then this equation has unique weak solu-
tions.

In the proof we employ a certain coupling argument. In fact weak solutions to
the equations in (4.3) and (4.4) are recast as two pathwise solutions of the same
form as (4.154) on the same probability space.

Proof. Let tpBptq : t ě 0q , pΩ,F,Pqu and tpB1ptq : t ě 0q , pΩ1,F1,P1qu be
two independent Brownian motions. Without loss of generality it is assumed
that, for 0 ď t ă 8,

Ft “ σ
´

tBpsq : 0 ď s ď tu
ď �

A P F0 : P rAs “ 0
(¯

, and

F1
t “ σ

´
tB1psq : 0 ď s ď tu

ď
tA1 P F1 : P1 rA1s “ 0u

¯
.

Moreover, F “ σ
`Ť

tě0 Ft

˘
, and a a similar assumption is made for F1. Let

tXptq : t ě 0u be an adapted process which satisfies (4.3), and let tX 1ptq : t ě 0u
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be an adapted process which satisfies (4.4) with B1ptq instead of Bptq: see Def-
inition 4.19. Suppose that 0 ď t1 ă t2 ă ¨ ¨ ¨ ă tn ă 8, and let C1, . . . , Cn be
Borel subsets of Rd. We have to prove the equality:

P1 rX 1 pt1q P C1, . . . , X
1 ptnq P Cns “ P rX pt1q P C1, . . . , X ptnq P Cns . (4.155)

Let pΩ0,F
0,P0q be a probability space with a Brownian motion tB0ptq : t ě 0u

such that F0 “ σ ptB0ptq : t ě 0u Ť tA0 P F0 : P0 rA0s “ 0uq. Define the Rd-

valued processes Y ptq, Y 1ptq, and rB0ptq on Ω ˆ Ω1 ˆ Ω0 as follows:$
’&
’%

Y ptq pω, ω1, ω0q “ X ptq pωq, pω, ω1, ω0q P Ω ˆ Ω1 ˆ Ω0;

Y 1ptq pω, ω1, ω0q “ X 1ptq pω1q , pω, ω1, ω0q P Ω ˆ Ω1 ˆ Ω0;
rB0ptq pω, ω1, ω0q “ B0ptq pω0q , pω, ω1, ω0q P Ω ˆ Ω1 ˆ Ω0.

(4.156)

In fact we use the notation Ω0 instead of Ω to distinguish the third component
of the space Ω ˆ Ω1 ˆ Ω0 from the first. The role of the first two components
are very similar; the third component is related to the driving Brownian motion
tB0ptq : t ě 0u. The processes Y ptq and Y 1ptq are going to be the pathwise

solutions on the same probability space
´
Ω ˆ Ω1 ˆ Ω0,F b F1 b F0, rQx

¯
: see

(4.166) and (4.167) below. On Ω0 the probability measure P0 is determined by
prescribing its finite-dimensional distributions via the equality:

P0 rpB0 pt1q , . . . , B0 ptnqq P Ds “ P rpB pt1q , . . . , B ptnqq P Ds
“ P1 rpB1 pt1q , . . . , B1 ptnqq P Ds . (4.157)
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In (4.157) we have 0 ď t1 ă ¨ ¨ ¨ ă tn ă 8, and D is a Borel subset of
`
Rd

˘n
.

Let C be another Borel subset of
`
Rd

˘n
. On ΩˆΩ0 and Ω1 ˆΩ0 the probability

measures Qx and Q1
x are determined by, respectively, the equalities:

Qx rpX pt1q , . . . , X ptnqq P C, pB0 pt1q , . . . , B0 ptnqq P Ds
“ P rpX pt1q , . . . , X ptnqq P C, pB pt1q , . . . , B ptnqq P Ds , and

Q1
x rpX 1 pt1q , . . . , X 1 ptnqq P C, pB0 pt1q , . . . , B0 ptnqq P Ds

“ P1 rpX 1 pt1q , . . . , X 1 ptnqq P C, pB1 pt1q , . . . , B1 ptnqq P Ds . (4.158)

Notice that P0 rA0s “ 0 implies Qx rΩ ˆ A0s “ Q1
x rΩ1 ˆ A0s “ 0. Consequently,

by the Radon-Nikodym’s theorem there are (measurable) functions

Qx : F ˆ Ω0 Ñ r0, 1s, and Q1
x : F1 ˆ Ω0 Ñ r0, 1s

such that, respectively,

Qx rA ˆ A0s “
ż

A0

Qx pA, ω0q dP0 pω0q , A P F, A0 P F0, and

Q1
x rA1 ˆ A0s “

ż

A0

Q1
x pA, ω0q dP0 pω0q , A1 P F1, A0 P F0. (4.159)

Here Qx pΩ, ω0q “ Q1
x pΩ1, ω0q “ 1 for P0-almost all ω0 P Ω0. Moreover, the

functions
ω0 ÞÑ Qx pA, ω0q , and ω0 ÞÑ Q1

x pA, ω0q (4.160)

are measurable relative to the P0-completion of F0. In addition, the set functions
A ÞÑ Qx pA, ω0q, A P F, and A1 ÞÑ Q1

x pA1, ω0q, A1 P F1 are P0-almost surely
probability measures. Here we use the fact that, except for negligible sets, the
σ-fields F and F1 are countably determined. Finally, we define the measure

rQx : F b F
1 b F

0 Ñ r0, 1s via the equality

rQx rA ˆ A1 ˆ A0s “
ż
Qx pA, ω0qQ1

x pA1, ω0q1A0
pω0q dP0 pω0q

“ E0 rω0 ÞÑ Qx pA, ω0qQ1
x pA1, ω0q1A0

pω0qs . (4.161)

Here A, A1, and A0 belong to F, F1, and F0 respectively. First we prove that the

process
!

rB0ptq : t ě 0
)
is a Brownian motion with respect to the measure rQx.

The corresponding expectation is written as rEx. From the proof of Theorem
4.5 (i.e., Lévy’s characterization of Brownian motion) it follows that it suffices
to show that the following equality holds:

rEx

”
exp

´
´i

〈

ξ, rB0ptq ´ rB0psq
〉¯ ˇ̌

Fs b F1
s b F0

s

ı

“ exp

ˆ
´1

2
|ξ|2 pt ´ sq

˙
, t ą s ě 0, ξ P Rd. (4.162)

By definition Fs “ σ pBpρq : 0 ď ρ ď sq. Similar definitions are employed for
F1
s and for the σ-field F0

s . In order to prove (4.162) we pick A P Fs, A
1 P F1

s,
and A0 P F0

s . Then by (4.161) we get

rEx

”
exp

´
´i

〈

ξ, rB0ptq ´ rB0psq
〉¯

1AˆA1ˆA0

ı
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“
ż

AˆA1ˆA0

exp
´

´i
〈

ξ, rB0ptq ´ rB0psq
〉¯

drQx

“ E0 rω0 ÞÑ exp p´i 〈ξ, B0ptq pω0q ´ B0psq pω0q〉q
ˆQx pA, ω0qQ1

x pA1, ω0q 1A0
pω0qs . (4.163)

The process pω0, tq ÞÑ B0ptq pω0q is a Brownian motion relative to P0, and the
events A, A1, and A0 belong to Fs, F1

s, and F0
s respectively, and hence the

variable B0ptq ´ B0psq is P0-independent of the variable

ω0 ÞÑ Qx pA, ω0qQ1
x pA1, ω0q1A0

pω0q .
Therefore (4.163) implies

rEx

”
exp

´
´i

〈

ξ, rB0ptq ´ rB0psq
〉¯

1AˆA1ˆA0

ı

“
ż

A0

Qx pA, ω0qQ1
x pA1, ω0q dP0 pω0q ˆ

ż
exp p´i 〈ξ, B0ptq ´ B0psq〉q dP0

“ rQx rA ˆ A1 ˆ A0s exp
ˆ

´1

2
|ξ|2 pt ´ sq

˙
. (4.164)

The equality in (4.162) is a consequence of (4.164). Since, by definition (see
(4.157))

P0 rpB0 pt1q , . . . , B0 ptnqq P Cs “ P rpB pt1q , . . . , B ptnqq P Cs (4.165)

for 0 ď t1 ă ¨ ¨ ¨ ă tn ă 8, C Borel subset of
`
Rd

˘n
, and since the process

tBptq : t ě 0u is a Brownian motion relative to P, the same is true for the
process tB0ptq : t ě 0u relative to P0. Next we compute the quantity:

rEx

„ˇ̌
ˇ̌Y ptq ´ x ´

ż t

0

σ ps, Y psqq d rB0psq ´
ż t

0

b ps, Y psqq ds
ˇ̌
ˇ̌


“
ż ˇ̌

ˇ̌Xptq ´ x ´
ż t

0

σ ps,Xpsqq dBpsq ´
ż t

0

b ps,Xpsqqds
ˇ̌
ˇ̌ dP “ 0. (4.166)

Similarly we have

rEx

„ˇ̌
ˇ̌Y 1ptq ´ x ´

ż t

0

σ ps, Y 1psqq d rB0psq ´
ż t

0

b ps, Y 1psqq ds
ˇ̌
ˇ̌


“
ż ˇ̌

ˇ̌X 1ptq ´ x ´
ż t

0

σ ps,X 1psqq dB1psq ´
ż t

0

b ps,X 1psqq ds
ˇ̌
ˇ̌ dP1 “ 0. (4.167)

From (4.166) and (4.167) we infer that the following equalities hold rQx-almost
surely:

Y ptq “ x `
ż t

0

σ ps, Y psqq d rB0psq `
ż t

0

b ps, Y psqq ds and (4.168)

Y 1ptq “ x `
ż t

0

σ ps, Y 1psqq d rB0psq `
ż t

0

b ps, Y 1psqq ds. (4.169)

Moreover, the process
!

rB0ptq : t ě 0
)

is a Brownian motion relative to rQx.

From the pathwise uniqueness and the equalities (4.168) and (4.169) we see
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that, rQx-almost surely,
Y ptq “ Y 1ptq, t ě 0. (4.170)

Let 0 ď 0 ă t1 ă ¨ ¨ ¨ ă tn ă 8, and let C be a Borel subset of
`
Rd

˘n
. From

(4.170) it follows that

rQx rpY pt1q , . . . , Y ptnqq P Cs “ rQx rpY 1 pt1q , . . . , Y 1 ptnqq P Cs . (4.171)

Using (4.171) and the definition of the measure rQx shows that the following
identities are self-explanatory:

rQx rpY pt1q , . . . , Y ptnqq P Cs “ Qx rpX pt1q , . . . , X ptnqq P C, Ω0s
“ P rpX pt1q , . . . , X ptnqq P C, Ωs “ P rpX pt1q , . . . , X ptnqq P Cs . (4.172)

The definition of the measure rQx is given in (4.161). Similarly we conclude

rQx rpY 1 pt1q , . . . , Y 1 ptnqq P Cs “ P1 rpX 1 pt1q , . . . , X 1 ptnqq P Cs . (4.173)

From (4.172), (4.173), and (4.171) we obtain

P rpX pt1q , . . . , X ptnqq P Cs “ P rpX 1 pt1q , . . . , X 1 ptnqq P Cs . (4.174)

The equality in (4.174) implies that the finite-dimensional distributions of the
solution in equation in (4.3) are the same as those of the solution of equation
(4.4). So that stochastic differential equations with unique pathwise solutions
also possess unique weak (or distributional) solutions.

This concludes the proof of Theorem 4.33. �

4.34. Example (Tanaka’s example). Let the process t ÞÑ Bptq, t ě 0, be one-
dimensional Browmian motion on the probability space pΩ,F,Pq, and let the

continuous process t ÞÑ Xptq be such that Xptq “
şt
0
sgn pXpsqq dBpsq. Here

sgnpyq “ y

|y| for y ‰ 0, and sgnpyq “ 0, when y “ 0. It can be proved that such

a process exists. If t ÞÑ Xptq solves this equation, then the process t ÞÑ ´Xptq
is a solution as well. So we see that the equation dXptq “ sgn pXptqq dBptq,
Xp0q “ 0, does not have pathwise unique solutions. On the other hand the

process t ÞÑ Xptq is (local) martingale, and, since Bptq “
şt
0
sgn pXpsqq dXpsq,

we get

t “ 〈B,B〉 ptq “
ż t

0

|sgn pXpsqq|2 d 〈X,X〉 psq “ 〈X,X〉 ptq.

Hence, 〈X,X〉 ptq “ t. Lévy’s martingale characterization of Brownian motion
(see Corollary 4.7 and Theorem 4.5) then implies that the process t ÞÑ Xptq
is a Brownian motion on pΩ,F,Pq. So that the distribution of Xptq is that
of Brownian motion. Consequently, the equation dXptq “ sgn pXptqq dBptq has
unique weak solutions. For more details on Tanaka’s example and its connection
with local time see, e.g., Øksendal [138].

Conclusion. In this chapter we treated several aspects of the theory of stochas-
tic differential equations: strong and weak solutions, Lévy’s characterization
of Brownian motion, exponential martingales, Hermite polynomials with appli-
cations to exponential martingales, a version of the martingale representation
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theorem, and the Girsanov or the Cameron-Martin-Girsanov transformation.
Stochastic differential equations for processes with jumps, that is for Lévy pro-
cesses, are treated in, e.g., Applebaum [6].
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CHAPTER 5

Some related results

In this section we will discuss, among other things, Fourier transforms of dis-
tributions of random variables, positive-definite functions, Bochner’s theorem,
Lévy’s continuity theorem, weak convergence of measures, ergodic theorems,
projective limits of distributions, Markov processes with one initial probability
measure, Doob-Meyer decomposition theorem based on Komlos’ theorem.

1. Fourier transforms

Since we will also need signed measures, we will discuss them first.

1.1. Signed measures. Let M “ M pRν ,Cq be the vector space of all
complex Borel measures on Rν , and let M` be the convex cone of all positive
finite Borel measures op Rν . Then we haveM “ M`´M``i pM` ´ M`q. Thus,
every complex Borel measure µ on Rν can be written as µ “ µ1´µ2`i pµ3 ´ µ4q,
where µ1, µ2, µ3 and µ4 are finite positive Borel measures. In fact the measures
µj, 1 ď j ď 4, can be chosen in the following manner:

µ1pBq “ sup tRe µpCq : C Ď B, C Borel u ;
µ2pBq “ sup t´Re µpCq : C Ď B, C Borel u ;
µ3pBq “ sup tIm µpCq : C Ď B, C Borel u ;
µ4pBq “ sup t´Im µpCq : C Ď B, C Borel u .

For this choice of the measures µ1, µ2, µ3 and µ4, the measures µ1 and µ2 and
also the measures µ3 and µ4 are mutually singular in the sense that for certain
Borel subsets B1 and B3 the following equalities hold:

µ1pBq “ Re µ pB X B1q , µ2pBq “ Re µ pB X Bc
1q ;

µ3pBq “ Re µ pB X B3q , µ4pBq “ Re µ pB X Bc
3q .

This decomposition is known under the name Hahn decomposition. In addition,
we introduce the variation of a complex measure µ. This measure is denoted as
|µ|. It is the bounded positive measure defined by

|µ| pAq “ sup

#ÿ

j

|µpAjq| : A Ě Aj and Aj X Ak “ H for k ­“ j

+
. (5.1)

Here A is a Borel subset of Rν and the same is true for the elements of the
partition Aj , j P N. The norm }µ} of the complex Borel measure µ is then
defined by the equality: }µ} “ |µ| pRνq. Supplied with this norm M is turned
into a Banach space. By the Riesz representation theorem the space M can

309
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be taken as the topological dual of the space C0pRνq, being the Banach space
consisting of those complex continuous functions f : Rν Ñ C with the prop-
erty that limxÑ8 fpxq “ 0. Then C0pRνq is a closed subspace of the space
CbpRνq, the space of all bounded continuous functions on Rν , which is a Ba-
nach space relative to the supremum-norm }¨}8, given by }f}8 “ supxPRν |fpxq|,
f P CbpRνq.
5.1. Definition. A complex Radon measure on a locally compact space E is
a complex Borel measure with the property that for every ǫ ą 0 and every
Borel subset B there exists a compact subset K Ă B with the property that
|µ pBzKq| ă ǫ.

5.2. Theorem (Riesz). Let E be a locally compact Hausdorff space, which is σ-
compact, and let Λ : C0pEq Ñ C be a continuous linear functional. Then there
exists a unique complex Radon measure µ on the Borel field of E such that
Λpfq “

ş
fdµ, f P C0pEq. In addition, }Λ} “ }µ} “ |µ| pEq. If Λ is positive

in the sense that f ě 0 implies Λpfq ě 0, then the corresponding measure µ is
positive as well and }Λ} “ µpEq.

Proof. For a proof the reader is referred to the literature. In fact the fol-
lowing construction can be used. Let the measures µj , 1 ď j ď 4 be determined
by

µ1pOq “ sup tRe Λpfq : 0 ď f ď 1O, f P C0pEqu ;
µ2pOq “ sup t´Re Λpfq : 0 ď f ď 1O, f P C0pBqu ;
µ3pOq “ sup tIm Λpfq : 0 ď f ď 1O, f P C0pEqu ;
µ4pOq “ sup t´Im Λpfq : 0 ď f ď 1O, f P C0pEqu ,

where O is any open subset of E. Then it can be shown that, for each 1 ď j ď 4,
the set function µj extends to a genuine positive Borel measure on E. This
extension is again called µj. Moreover,

Λpfq “
ż
f dµ1 ´

ż
f dµ2 ` i

ˆż
f dµ3 ´

ż
f dµ4

˙
, f P C0pEq.

For details the reader is referred to, e.g., [174]. This completes the proof of
Theorem 5.2. �

5.3. Definition. Let µ be a complex Borel measure on Rν . Then the equality

pµpxq “
ż
exp p´i 〈x, y〉q dµpyq, x P Rν ,

defines the Fourier transform of the measure µ.

5.4. Proposition. Let µ be a complex measure on Rν with the property that its
Fourier transform is identically zero. Then the measure µ “ 0.

Proof. Let ν be an arbitrary other complex Borel measure on Rν with the
property that |pνpxq| ď 1, x P Rν . Then the following equality holds:ż

pµpxqdνpxq “
ż

pνpyqdµpyq.
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Hence,

}µ} “ sup

"ˇ̌
ˇ̌
ż
fpyqdµpyq

ˇ̌
ˇ̌ : f P Cb pRνq , }f}8 ď 1

*

“ sup

"ˇ̌
ˇ̌
ż

pνpyqdµpyq
ˇ̌
ˇ̌ : |pνpyq| ď 1, y P Rν

*

“ sup

"ˇ̌
ˇ̌
ż

pµpxqdνpxq
ˇ̌
ˇ̌ : |pνpyq| ď 1, y P Rν

*
“ 0.

This completes the proof of Proposition 5.4. �

5.5. Definition. Let ϕ : Rν Ñ C be a complex valued function. This function
is called positive-definite if for every n-tuple of complex numbers λ1, . . . , λn to-
gether with every choice of n vectors ξp1q, . . . , ξpnq in Rν , the following inequality
holds:

nÿ

j,k“1

λjλkϕ
`
ξpjq ´ ξpkq˘ ě 0,

and this for all n P N.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Develop the tools we need for Life Science
Masters Degree in Bioinformatics

Bioinformatics is the  
exciting field where biology, 
computer science, and  
mathematics meet.  

We solve problems from 
biology and medicine using 
methods and tools from  
computer science and  
mathematics.

Read more about this and our other international masters degree programmes at www.uu.se/master

http://www.uu.se/master


ADVANCED STOCHASTIC PROCESSES: PART II SOME RELATED RESULTS

312

312 5. SOME RELATED RESULTS

5.6. Proposition. Let µ be a complex Borel measure on Rν with Fourier trans-
form pµ. Then the following assertions are true:

(a) the following inequality holds: |pµpxq| ď }µ}.
(b) If µ is positive, then the equalities µpRνq “ pµp0q “ }µ} are valid.
(c) If µ is positive, then the function pµ is positive-definite.
(d) The function pµ is uniformly continuous.

Proof. The proof is left as an exercise to the reader. �

5.7. Definition. Define for µ and ν measures in M, the convolution-product

µ ˚ ν via the equalities:

µ ˚ νpBq “
ż ż

1Bpx ` yqdµpxqdνpyq

“ µ b ν
`
S´1B

˘
“ µ b ν tpx, yq P Rν : x ` y P Bu .

Here B is a Borel subset of Rν and S is the (sum) mapping S : px, yq ÞÑ x ` y.
Let x P Rν . Define thee Dirac-measure δx by δxpBq “ 1Bpxq, B Borel subset
of Rν . Instead of δ0 it is more customarily to write δ. Let µ P M. Then µ̌ is
defined by µ̌pBq “ µp´Bq, where B is a Borel subset of Rν . Let f : Rν Ñ C be
a complex function, which is defined on all of Rν . The function f̌ is given by
f̌pxq “ fp´xq, x P Rν .

5.8.Definition. A complex Banach algebra pA, }¨}q is a complex Banach space,
endowed with a product which is compatible with the norm. The latter means
that the product pa, bq ÞÑ ab, a, b in A, which is a bilinear operation, is contin-
uous in both variables simultaneously. In fact it is assumed that }ab} ď }a} }b}
for all a and b in A.

Examples of Banach algebras are the vector spaces C0pRνq and CbpRνq, equipped
with the supremum-norm and the pointwise multiplication. Let LpXq be the
vector space of all continuous linear operators on the Banach space X, supplied
with the operator norm and the composition as product. Then LpXq is a non-
commutative Banach algebra. The following theorem says that M, supplied
with the convolution product, constitutes a (complex) commutative Banach
algebra with identity δ. Recall that M stands for the space of all complex Borel
measures on Rν .

5.9. Theorem. The normed vector space pM, }¨}q supplied with the convolution
product ˚ is a commutative complex Banach algebra with identity δ. If µ and ν

belong to M, then the following equalities hold:

{µ ` ν “ pµ ` pν, xaµ “ apµ, zµ ˚ ν “ pµpν, pqµ “ qpµ.
Here a is a complex number.

Proof. The proof is left as an exercise for the reader. �

The Banach space L1pRνq can be considered as a closed subspace of MpRνq.
This can be done via the following inclusion-mapping: f ÞÑ µf , f P L1pRνq.
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Here µf is the complex measure B ÞÑ
ş
B
fpxqdx, B P B “ BpRνq, where B is

the Borel field of Rν . Let µf “ µf,1 ´ µf,2 ` i pµf,3 ´ µf,4q be the Hahn-Jordan
decomposition of the measure µf . Then the following equalities hold:

|µf | pBq “
ż

B

|fpxq| dx; µf,1pBq “
ż

B

max pRe fpxq, 0q dx;

µf,2pBq “
ż

B

max p´Re fpxq, 0q dx; µf,3pBq “
ż

B

max pIm fpxq, 0q dx;

µf,4pBq “
ż

B

max p´Im fpxq, 0q dx.

5.10. Theorem. Let C00pRνq be the space of all complex continuous functions
with compact support. Then C00pRνq is a dense subspace of L1pRνq for the topol-
ogy of convergence in mean.This means that C00pRνq is dense in L1pRνq relative
to the topology generated by the L1-norm: }f}1 “

ş
|fpxq| dx, f P L1pRνq.

Proof. Let ǫ ą 0 and let f ě 0 belong to L1pRνq. It suffices that there
exists a function g P C00pRνq such that

ş
|fpxq ´ gpxq| dx ď ǫ. Since

f “ sup
nPN

2´nt2nf u “ sup
nPN

2´n

n2nÿ

j“1

1tfěj2´nu

we only need to show that, for every pair of positive integers j and n, with
1 ď j ď n2n, there exists a function uj,n P C00pRνq such that

ż ˇ̌
1tfěj2´nupxq ´ uj,npxq

ˇ̌
dx ď ǫ

2n
. (5.2)

Because assume that the functions uj,n, 1 ď j ď n2n, satisfy (5.2). Then we
write fn “ 2´ntminpn, fq2nu and choose n P N so large that

0 ď
ż

pfpxq ´ fnpxqq dx ď 1

2
ǫ.

Then we have
ż ˇ̌

ˇ̌
ˇfpxq ´ 2´n

n2nÿ

j“1

uj,npxq
ˇ̌
ˇ̌
ˇ

ď
ż

|fpxq ´ fnpxq| dx ` 2´n

n2nÿ

j“1

ż ˇ̌
1tfěj2´nupxq ´ uj,npxq

ˇ̌
dx

ď 1

2
ǫ ` 2´n

n2nÿ

j“1

1

2

ǫ

n
“ ǫ. (5.3)

Let λ be the ν-dimensional Lebesgue measure. The inequality in (5.2) can be
proved by employing the following identities:

λpBq “ inf tλpUq : U Ě B,U open u “ sup tλpKq : K Ď B,K compact u
(5.4)

together with Tietsche’s theorem, which, among other things, says that with a
given open subset U and given compact subset K, with K Ă U , there exists a
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function u P C00pRνq with the property that 1K ď u ď 1U . The equalities in
(5.4) follow via an argument about Dynkin systems.

This completes the proof of Theorem 5.10. �

5.11. Proposition. Let f belong to L1pRνq. Then

lim
yÑ0

ż
|fpx ` yq ´ fpxq| dx “ 0. (5.5)

Proof. By theorem 5.10 it suffices to prove (5.5) for f P C00pRνq. Such
a function f is uniformly continuous. Let K be the support of the function
f P C00pRνq. Fix ǫ ą 0 and choose δ ą 0 in such a way that

λ pK ` Bpδqq sup
xPK,yPBpδq

|fpx ` yq ´ fpxq| ă ǫ.

Here the symbol Bpδq stands for Bpδq “ δBp1q “ tx P Rν : |x| ď δu. Then we
have ż

|fpx ` yq ´ fpxq| dx ď ǫ

for |y| ď δ. So the proof of Proposition 5.11 is complete now. �

5.12. Theorem (Riemann-Lebesgue). Let f P L1pRνq. Then lim
xÑ8

pfpxq “ 0.

Of course here we write pfpxq “
ş
exp p´i 〈x, y〉q fpyqdy.
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Proof of Theorem 5.12. By translation invariance of the Lebesgue mea-
sure we get the equality:

pfpxq “ 1

2

ż
exp p´i �x, y�q

ˆ
fpyq ´ f

ˆ
y ` π

x

|x|2
˙˙

dy. (5.6)

From (5.6) the inequality:
ˇ̌
ˇ pfpxq

ˇ̌
ˇ ď 1

2

ż ˇ̌
ˇ̌fpyq ´ f

ˆ
y ` π

x

|x|2
˙ˇ̌

ˇ̌ dy. (5.7)

A combination of (5.7) and Proposition 5.11 yields the desired result, and com-
pletes the proof of Theorem 5.12. �

5.13.Theorem (Stone-Weierstrass). Let E be a locally compact Hausdorff space
and let A be a subalgebra of C0pEq, which separates points of E and which is
closed under complex conjugation. That is, if f belongs to A, then f also belongs
to A. Then A is dense in C0pEq.

Proof. Let E△ be the one-point compactification (Alexandroff compacti-
fication) and A1 “ A ‘ C1 “ tf ` λ1 : f P A, λ P Cu. Here 1 is the constant
function with value 1 and functions f P A vanish in △. The theorem of Stone-
Weierstrass, applied to the compact Hausdorff space E△ results in the desired
result, and completes the proof of Theorem 5.13. �

5.14. Theorem. The set
!

pf : f P C00 pRνq
)

is a subalgebra of C0pRνq that is

closed under taking complex conjugates. This algebra is dense in C0pRνq with
the supremum-norm.

Proof. The fact that the set A :“
!

pf : f P L1pRνq
)

is a subalgebra of

C0pRνq follows from the standard properties of the Fourier transform in combi-

nation with Theorem 5.12. Since pf “ p̌
f it also follows that this algebra is closed

under complex conjugation. In order to apply the Theorem of Stone-Weierstrass
we still have to show that A separates the points of Rν . To this end take x0 and
y0 ‰ x0 P Rν . Then there exists a bounded open neighborhood V in Rν such
that exp p´i �x0, y�q ´ exp p´i �y0, y�q ­“ 0 for y P V . Next consider the function
f : y ÞÑ pexp pi �x0, y�q ´ exp pi �y0, y�qq vpyq, where v is a function in C00 pRνq
with v ě 1V . Then we see

pfpx0q ´ pfpy0q “
ż

|exp p´i �x0, y�q ´ exp p´i �y0, y�q|2 vpyqdy ą 0. (5.8)

From (5.8) it immediately follows that A separates the points of Rν . The asser-
tion in Theorem 5.14 now follows from Theorem 5.13. �

In the following theorem we collect some properties of positive-definite functions.

5.15. Theorem. Let ϕ : Rν Ñ C be a positive-definite function. Then ϕ pos-
sesses the following properties:

(a) ϕp´xq “ ϕpxq, x P Rν;
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(b) |ϕpxq| ď ϕp0q, P Rν ;

(c) |ϕpxq ´ ϕpyq|2 ď 2ϕp0q pϕp0q ´ Re ϕpx ´ yqq, x, y P Rν;
(d) ϕp0q2 |ϕpx ` yqϕp0q ´ ϕpxqϕpyq|2 ď

`
ϕp0q2 ´ |ϕpxq|2

˘ `
ϕp0q2 ´ |ϕpyq|2

˘
.

Proof. Fix x and y in Rν and consider the matrices

ˆ
ϕp0q ϕp´xq
ϕpxq ϕp0q

˙
en

¨
˝
ϕp0q ϕpxq ϕpyq
ϕpxq ϕp0q ϕpx ´ yq
ϕpyq ϕpx ´ yq ϕp0q

˛
‚.

(a) and (b) Since the first one of these two matrices is positive-hermitian it
follows that:

ϕp´xq “ ϕpxq en |ϕpxq| ď ϕp0q.
(c) Since the second matrix is positive-hermitian, we obtain by the choice of the
constants a1, a2 and a3:

a1 “ 1, a2 “ λ |ϕpxq ´ ϕpyq|
ϕpxq ´ ϕpyq , a3 “ ´a2

the following inequality for all λ P R:

ϕp0q
`
1 ` 2λ2

˘
` 2λ |ϕpxq ´ ϕpyq| ´ 2λ2Re ϕpx ´ yq ě 0. (5.9)

The inequality in (c) is a consequence of (5.9).

(d) The determinant of a positive hermitian matrix is non-negative. So that, if
the 3 ˆ 3 matrix ¨

˝
1 λ µ

λ 1 ξ

µ ξ 1

˛
‚ (5.10)

is positive-hermitian, then we get the inequality

1 ` λµξ ` λµξ ě |λ|2 ` |µ|2 ` |ξ|2 ,
which is equivalent with

ˇ̌
ξ ´ λµ

ˇ̌2 ď
`
1 ´ |λ|2

˘ `
1 ´ |µ|2

˘
. (5.11)

The inequality in (d) then follows from (5.11) by associating the second matrix
with the matrix in (5.10) and by employing (5.11).

The proof of Theorem 5.15 is complete now. �

5.16.Proposition. Let g be a function in L1pRνq. Then the following equalities
hold:

spectral radius of pgq “ lim
nÑ8

}g˚n}1{n
1 “ }pg}8 .

In the theory of Banach algebras the Beurling-Gelfand formula gives a relation-
ship between the spectral radius and the norm of an element. More precisely,
let pA, }¨}q be a Banach algebra with unit e. A Banach algebra is a Banach
space with a multiplication px, yq ÞÑ xy which satisfies the usual axioms of
distributivity and scalar multiplication. The norm satisfies }xy} ď }x} ¨ }y},
x, y P A, }e} “ 1. By definition, the spectrum σpxq of an element x P A is
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given by σpxq “ tλ P C : λe ´ x R GpAqu. Here GpAq is the group of invertible
elements of A: x P GpAq if and only if there exists a (unique) element y P A

such that xy “ yx “ e. Then σpxq is a non-empty compact subset of C con-
tained in the disc of radius }x}: σpxq Ă tλ P C : |λ| ď }x}u. In fact we have the
Beurling-Gelfand formula for the spectral radius:

sup
λPσpxq

|λ| “ lim sup
nÑ8

}xn}1{n “ inf
nPN

}xn}1{n
, x P A. (5.12)

Let A “ L1 pRνq‘Cδ, where δ is the Dirac measure at zero, with a multiplication
given by the convolution product:

pf ` αδq ˚ pg ` βδq “ f ˚ g ` αg ` αβ, f, g P L1 pRνq , α, β P C,

and with the norm given by }f ` αδ} “ }f}L1 ` |α|, f P L1 pRνq , α P C. Here
f ˚ gpxq “

ş
fpyqgpx ´ yq dy. Then A is a commutative Banach algebra with

unit δ. The spectral radius ρpfq of f P L1 pRνq is given by the supremum norm
of its Fourier transform:

ρpfq “ lim sup
nÑ8

}f˚n}1{n
L1 “ inf

nPN
}f˚n}1{n

L1 “ sup
xPRν

ˇ̌
ˇ pfpxq

ˇ̌
ˇ ,

where pfpxq “
ş
e´ix¨yfpyq dy. The interested reader can find more information

in Bonsall and Duncan [28], in Yosida [197], and in several other places like
Lax [106].

Proof of Proposition 5.16. For a proof we refer the reader to a book on
functional analysis with Banach algebras as a topic. Good references are Rudin
[153], Theorem 11.9 together with Example (e), and Folland [71], Theorem 1.30
combined with Theorem 4.2. �
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The following theorem is a very important representation theorem. It will be
used in Theorem 5.25 and in the continuity theorem of Lévy: Theorem 5.42.

5.17. Theorem (Bochner). Let ϕ : Rν Ñ C be a function. The following
assertions are equivalent:

(i) The function ϕ is continuous and positive-definite;
(ii) There exists a positive Borel measure µ op Rν such that ϕ “ pµ.

The Borel measure µ in piiq is unique.

Proof. (i) ñ (ii). Define the linear functional Λ : M Ñ C by means of
the equality: Λpνq “

ş
ϕpxqdνpxq, ν P M. Define the involution ν ÞÑ rν via the

equality: rνpAq “ νp´Aq. Because, by hypothesis, the function ϕ is positive-
definite we see that the functional Λ is positive in the sense that Λpν ˚ rνq ě 0
for all ν P M: see inequality (5.26) in Proposition 5.23 further on. By Cauchy-
Schwartz inequality we then obtain

|Λpνq| “ |Λpν ˚ δq| ď pΛ pν ˚ rνqq1{2
´
Λ

´
δ ˚ rδ

¯¯1{2

ď pΛ pν ˚ rνqq1{2
ϕp0q1{2

(by inductionwith respect to n)

ď
´
Λ

´
pν ˚ rνq˚2n

¯¯1{2n`1

ϕp0q
řn`1

j“1
2´j

ď }ϕ}1{2n`1

8

›››pν ˚ rνq˚2n
›››
1{2n`1

ϕp0q
řn`1

j“1
2´j

. (5.13)

By letting n tend to 8 in (5.13) we deduce

|Λpνq| ď lim inf
nÑ8

›››pν ˚ rνq˚2n
›››
1{2n`1

ϕp0q

“
a
spectral radius of ν ˚ rνϕp0q. (5.14)

By applying (5.13) and (5.14) to a measure ν of the form νpBq “
ş
B
fpxqdx,

where f belongs to L1pRνq we obtain
ˇ̌
ˇ̌
ż
ϕpxqfpxqdx

ˇ̌
ˇ̌ ď

b
spectral radius of f ˚ rfϕp0q. (5.15)

In (5.15) we wrote rfpxq “ fp´xq and f ˚ gpxq “
ş
fpyqgpx ´ yqdy, for f and g

belonging to L1pRνq. Next we realize that L1pRνq, equipped with the L1-norm
and the convolution product ˚, is a Banach-algebra and that the spectral radius
of an L1-function f is given by the supremum-norm the Fourier transform of f :
see Proposition 5.16. From (5.15) we infer

ˇ̌
ˇ̌
ż
ϕpxqfpxqdx

ˇ̌
ˇ̌ ď

d››››
ˇ̌
ˇ̌{f ˚ rf

ˇ̌
ˇ̌
››››

8
ϕp0q ď

››› pf
›››

8
ϕp0q. (5.16)
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Next define Λ0 :
!

pf : f P L1pRνq
)

Ñ C via the equality Λ0p pfq “
ş
ϕpxqfpxqdx,

f P L1pRνq. From (5.16) it follows that the functional Λ0 has a unique exten-
sion as a continuous linear functional, which we call again Λ0, on the uniform

closure of the subalgebra
!

pf : f P L1pRνq
)
. By the Stone Weierstrass theorem

(Theorem 5.14) this closure coincides with C0pRνq. The Riesz representation
theorem applies to the effect that there exists a bounded Borel measure µ such

that Λ0p pfq “
ş pfpxqdµpxq, f P L1pRνq. From this it follows that

ż
ϕpxqfpxqdx “ Λ0p pfq “

ż
pfpyqdµpyq “

ż
pµpxqfpxq dx.

Consequently, ϕ “ pµ. The function ϕ being positive-definite it follows that the
measure µ is positive. This proves the implication (i) ùñ (ii).

(ii) ñ (i). Let µ be a finite positive Borel measure. Then its Fourier trans-
form pµ is a uniformly continuous positive-definite function. The proof of these
assertions is left to the reader.

The proof of Theorem 5.17 is complete now. �

An alternative proof runs as follows: the idea is taken from Theorem 5.10 in
Lőrinczi et al [115]. We need the following lemmas.

5.18. Lemma. Let ϕ : Rν Ñ C be a (uniformly) continuous positive-definite

function, and fix t ą 0. Then the function ξ ÞÑ e´ 1

2
t|ξ|2ϕpξq is also (uniformly)

continuous and positive-definite.

Proof. Let ξj, 1 ď j ď n, belong to Rν , and let λj , 1 ď j ď n, be complex
numbers. Then

nÿ

j,k“1

λjλke
´ 1

2
t|ξj´ξk|2ϕ pξj ´ ξkq

“ 1`?
2πt

˘ν
ż

Rν

nÿ

j,k“1

λje
iξj ¨yλkeiξk¨yϕ pξj ´ ξkq e´|y|2{p2tq dy ě 0. (5.17)

The claim in Lemma 5.18 follows from (5.17). �

5.19. Lemma. Let ψ : Rν Ñ C be a function which belongs to L1 pRνq, and let
V1 be a bounded open neighborhood of the origin in Rν. Put Vn “ nV1, n P N.
Let m pVnq “

ş
1Vn

pξq dξ “ nνm pV1q be the Lebesgue measure of Vn. Then,
uniformly in x P Rν ,

ż

Rν

eiξ¨xψpξq dξ “ lim
nÑ8

ş
Vn

ş
Vn

eipξ´ηq¨xψ pξ ´ ηq dξ dη

m pVnq . (5.18)
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Proof. By employing standard properties, like translation invariance and
the homothety property of the Lebesgue measure, we deduce the following equal-
ities:

ż

Rν

eiξ¨xψpξq dξ ´
ş
Vn

ş
Vn

eipξ´ηq¨xψ pξ ´ ηq dξ dη

m pVnq

“
ż

Rν

eiξ¨xψpξq dξ ´
ş
Vn

ş
Vn´η

eiξ¨xψ pξq dξ dη

m pVnq

“
ş
Vn

ş
RνzpVn´ηq e

iξ¨xψ pξq dξ dη

m pVnq “
ş
V1

ş
RνzpnV1´nηq e

iξ¨xψ pξq dξ dη

m pV1q
. (5.19)

From (5.19) we inferˇ̌
ˇ̌
ˇ

ż

Rν

eiξ¨xψpξq dξ ´
ş
Vn

ş
Vn

eipξ´ηq¨xψ pξ ´ ηq dξ dη

m pVnq

ˇ̌
ˇ̌
ˇ ď

ş
V1

ş
RνzpnV1´nηq |ψ pξq| dξ dη

m pV1q
.

(5.20)
Hence, by using the Lebesgue’s dominated convergence theorem the equality in
(5.18) is readily established. Moreover, this limit is uniform in x P Rν . This
completes the proof of Lemma 5.19. �

5.20. Lemma. Let ψ : Rν Ñ C be a continuous positive-definite function which
belongs to L1 pRνq. Then, for all x P Rν the inequality

ş
Rν e

iξ¨xψpξq dξ ě 0 holds.
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Proof of Lemma 5.20. Since the function ψ is positive-definite and con-
tinuous the right-hand side of (5.18) is non-negative. So the assertion in Lemma
5.20 follows from Lemma 5.19. �

5.21. Lemma. Let ψ : Rν Ñ C be a continuous positive-definite function which
belongs to L1 pRνq, and let µ be a bounded complex-valued Borel measure on Rν

with Fourier transform pµpxq “
ş
Rν e

´ix¨y dµpyq. The the following equality holds:
ż

Rν

ψpξq dµpξq “ 1

p2πqν
ż

Rν

ż

Rν

eiξ¨xψpξq dξ pµpxq dx. (5.21)

If ϕ : Rν Ñ C is an arbitrary continuous positive-definite function, and if µ is
a bounded complex-valued Borel measure on Rν, thenż

Rν

ϕpξq dµpξq “ lim
tÓ0

1

p2πqν
ż

Rν

ż

Rν

eiξ¨xe´ 1

2
t|ξ|2ϕpξq dξ pµpxq dx, (5.22)

and ˇ̌
ˇ̌
ż

Rν

ϕpξq dµpξq
ˇ̌
ˇ̌ ď ϕp0q sup

xPRν

|pµpxq| . (5.23)

Proof. From Fubini’s theorem we get

1

p2πqν
ż

Rν

ż

Rν

eiξ¨xψpξq dξ pµpxq dx

“ 1

p2πqν
ż

Rν

ż

Rν

eiξ¨xψpξq dξ
ż

Rν

e´ix¨y dµpyq dx

“
ż

Rν

ż

Rν

ˆ
1

p2πqν
ż

Rν

eiξ¨xψpξq dξ
˙
e´ix¨y dx dµpyq

“
ż

Rν

FF´1 pψq pyq dµpyq “
ż

Rν

ψpyq dµpyq, (5.24)

where F denotes the Fourier transform with inverse F´1. The equalities in
(5.24) imply the equality in (5.21). In order to prove he equality in (5.22) we first

observe that by Lemma 5.18 the functions of the form ξ ÞÑ ϕtpξq :“ e´ 1

2
t|ξ|2ϕpξq,

t ą 0, are positive-definite and continuous, because ϕ is so. Applying the
equality in (5.21) to the function ϕt showsż

Rν

ϕpξq dµpξq “ lim
tÓ0

ż

Rν

e´ 1

2
t|ξ|2ϕpξq dµpξq

“ lim
tÓ0

1

p2πqν
ż

Rν

ż

Rν

eiξ¨xe´ 1

2
t|ξ|2ϕpξq dξ pµpxq dx. (5.25)

The equality in (5.22) follows from (5.25). Finally, the inequality in (5.23)
follows from (5.22) and Lemma 5.20. So the proof of Lemma 5.21 is complete
now. �

Second proof of Theorem 5.17. Let M “ M pRνq be the collection of
bounded complex Borel measures on R|nu, and consider the functional

Λϕ : pµ ÞÑ
ż

Rν

ϕpξq dµpξq, µ P M.
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Then Λϕ can be extended to the uniform closure of the collection tpµ : µ P Mu
such that |Λϕpfq| ď ϕp0q }f}8 for all f in this closure. This closure contains
all constant functions and all continuous functions on Rν which tend to 0 at 8.
By the Riesz representation theorem there exists a positive measure µϕ on the
Borel field of Rν such thatż

Rν

ϕpξq dµpξq “
ż

Rν

pµpxq dµϕpxq “
ż

Rν

ż

Rν

e´iξ¨x dµpξq dµϕpxq

“
ż

Rν

ż

Rν

e´iξ¨x dµϕpxq dµpξq “
ż

Rν

pµϕpξq dµpξq,

for all µ P M. It follows that ϕpξq “ pµϕpξq. This completes the proof of the
theorem of Bochner: Theorem 5.17. �

5.22. Lemma. Let ϕ : Rν Ñ C be a continuous function, and let µ be a complex
Borel measure on Rν with compact support. So |µ| pRνzKq “ 0 for some compact
subset K of Rν. Then

inf

#ˇ̌
ˇ̌
ˇ

ż ż
ϕpx ´ yqdµpxqdµpyq ´

nÿ

j,k“1

ajakϕ pxj ´ xkq
ˇ̌
ˇ̌
ˇ

+
“ 0,

where the infimum is taken over all aj P C, xj P K0, 1 ď j ď n, n P N, and
where K0 is the smallest compact set K with the property that |µ| pRνzKq “ 0.

Proof. Fix ǫ ą 0, and choose a partition pUj : 1 ď j ď nq of K0 with the
property that

|ϕ px ´ yq ´ ϕ px1 ´ y1q| ď ǫ

|µ| pK0q2
,

x, x1 P Uj and y, y1 P Uk, and write aj “ µpUjq. Then for xj P Uj, 1 ď j ď n,
we have ˇ̌

ˇ̌
ˇ

żż
ϕpx ´ yqdµpxqdµpyq ´

nÿ

j,k“1

ajakϕ pxj ´ xkq
ˇ̌
ˇ̌
ˇ

“
ˇ̌
ˇ̌
ˇ

nÿ

j,k“1

ż

Uj

ż

Uk

pϕpx ´ yq ´ ϕ pxj ´ xkqq dµpxqdµpyq
ˇ̌
ˇ̌
ˇ

ď
nÿ

j,k“1

ż

Uj

ż

Uk

|ϕpx ´ yq ´ ϕ pxj ´ xkq| d |µ| pxqd |µ| pyq

ď ǫ

|µ| pK0q2
nÿ

j,k“1

ż

Uj

ż

Uk

d |µ| pxqd |µ| pyq “ ǫ.

This proves Lemma 5.22. �

5.23. Proposition. (a) Let ϕ : Rν Ñ C be a continuous function. The follow-
ing assertions are equivalent.

(i) The function ϕ is positive-definite;

(ii) For every function f P C00pRνq the inequality
ş
ϕpxqf ˚ rfpxqdx ě 0

holds;
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(iii) Every Borel measure µ with compact support satisfies the inequality:
ż
ϕpxqd pµ ˚ rµq pxq ě 0. (5.26)

(b) If ϕ is positive-definite and if µ is a bounded complex Borel measure on Rν,
then inequality (5.26) in (iii) also holds.

Proof. (a) (iii) ñ (ii). Choose µ of the form µpBq “
ş
B
fpxqdx, with

f P C00pRνq fixed.

(ii) ñ (i). Let µ be of the form µ “ řn
j“1 ajδxj

. Approximate the de Dirac

measures δxj
by measures of the form B ÞÑ

ş
B

ş
fj,Npxqdx in the sense that

lim
NÑ8

ż
ϕpxqd pµN ˚ ĂµNq pxq “

ż
ϕpxqd pµ ˚ rµq pxq “

nÿ

j,k“1

ajakϕ pxj ´ xkq .

Here the measure µN is defined by µNpBq “ řn
j“1 aj

ş
B
fj,Npxqdx, B P BpRνq.

(i) ñ (iii). Let µ be a Borel measure of compact support. Then there ex-
ists a sequence of measures pµN : N P Nq,where every µN is of the form µN “řN

j“1 aj,Nδxj,N
and where

ż
ϕpxqd pµ ˚ rµq pxq “ lim

NÑ8

ż
ϕpxqd pµN ˚ ĂµNq pxq

“ lim
NÑ8

Nÿ

j,k“1

aj,Nak,Nϕ pxj,n ´ xk,Nq ě 0.

That such a sequence of measures exists pµN : N P Nq follows from Lemma 5.22.

(b) Let pKm : m P Nq be an increasing sequence of compact subsets of Rν such
that Rν “ Ť8

m“1 Km and such that Km Ă interior pKm`1q for all m P N. Since,
in addition,

ż
ϕpxqd pµ ˚ rµq pxq “ lim

mÑ8

ż
ϕpxqd

´
p1Km

µq ˚
´

Čp1Km
µq

¯¯
pxq

assertion (b) follows from the results in (a).

This completes the proof of Proposition 5.23. �

5.24. Definition. The weak topology (or Bernoulli topology) on M is the lo-
cally convex topology σ pM, CbpRνqq. Let µ0 P M. So that every σ pM, CbpRνqq-
neighborhood of µ0 contains a neighborhood of the form

nč

j“1

"
µ P M :

ˇ̌
ˇ̌
ż
fjd pµ ´ µ0q

ˇ̌
ˇ̌ ă ǫj

*
. (5.27)

Here, the functions f1, . . . , fn are bounded and continuous, and the numbers
ǫ1, . . . , ǫn are strictly positive. A net pµα : α P Aq M converges to the measure
µ for the topology σ pM, CbpRνqq if limα

ş
fdµα “

ş
fdµ for all f P CbpRνq.
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We write µ “ weak- limα µα. The space M can also be supplied with the vague

topology. This is the locally convex topology σ pM, C00pRνqq. For the vague
topology the functions f1, . . . , fn in (5.27) are required to belong to C00pRνq
and the net pµα : α P Aq converges to µ P M provided limα

ş
fdµα “

ş
fdµ for

all f P C00pRνq. We write µ “ vague- limα µα.

Let M` :“ tµ P M : µ ě 0u and let

CP :“ CP pRνq “ tϕ P CbpRνq : ϕ positive-definiteu .
The following theorem expresses the fact that the set M`, endowed with the
weak topology and CP , endowed with the compact-open topology T, are home-

omorphic. The compact-open topology is also called the topology of uniform
convergence on compact subsets of Rν . So that a net pϕα : α P Aq converges to
ϕ, if limα supxPK |ϕαpxq ´ ϕpxq| “ 0 for every compact subset K of Rν .
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5.25. Theorem. The Fourier transform µ ÞÑ pµ, µ P M`, is a homeomorphism
from `

M`, σ
`
M`, CbpRνq

˘˘
onto pCP,Tq .

Proof. Let pµα : α P Aq be a net in M` that weakly converges to µ P M`

relative to the weak topology. We will prove that the net ppµα : α P Aq converges
uniformly on compact subsets to pµ. Fix ǫ ą 0. Then choose δ ą 0 in such a
way that δ p3 ` µpRνqq ă ǫ and choose a function f P C00pRνq such that

0 ď f ď 1 and

ż
p1 ´ fqdµ ă δ.

Since weak- limµα “ µ there exists α0 P A such that

µαpRνq “
ż
1dµα ă

ż
1dµ ` 1 “ µpRνq ` 1 en

ż
p1 ´ fq dµα ă δ

for all α ě α0. Define the zero-neighborhood V by

V “ tx P Rν : |1 ´ exp p´i 〈x, y〉q| ď δ : for all y P supppfqu .
Then for those α P A and those x1 and x2 P Rν which satisfy α ě α0 and
x1 ´ x2 P V the following inequalities hold:

|pµαpx1q ´ pµαpx2q| ď
ż

|exp p´i 〈x1, y〉q ´ exp p´i 〈x2, y〉q| dµαpyq

ď
ż

|1 ´ exp p´i 〈x1 ´ x2, y〉q| fpyqdµαpyq

`
ż

|1 ´ exp p´i 〈x1 ´ x2, y〉q|
`
1 ´ fpyq

˘
dµαpyq

ď δ

ż
fpyqdµαpyq ` 2

ż `
1 ´ fpyq

˘
dµαpyq

ď δ pµpRνq ` 1q ` 2δ ď ǫ. (5.28)

By (5.28) it follows that |pµpx1q ´ pµpx2q| ď ǫ for x1 and x2 P Rν for which
x1 ´x2 P V . Next choose a compact subset K in Rν . Then there exist y1, . . . , yn
in Rν such that K Ď Ťn

j“1 pyj ` V q and thee exist αj P A, 1 ď j ď n, such that

|pµαpyjq ´ pµpyjq| ď ǫ for α ě αj , j “ 1, . . . , n.

Then choose α1 P A in such a way that α1 ě αj for j “ 1, . . . , n. For x P yj ` V

and α ě α1 we get

|pµαpxq ´ pµpxq| ď |pµαpxq ´ pµαpyjq| ` |pµαpyjq ´ pµpyjq| ` |pµpyjq ´ pµpxq| ď ǫ

and hence
sup
xPK

|pµαpxq ´ pµpxq| ď 3ǫ.

This proves that the Fourier transform is continuous for the indicated topologies.
Conversely, suppose that the net ppµα : α P Aq converges uniformly on compact
subsets to pµ. Then we will show the following two equalities:

(a) limµαpRνq “ µpRνq;
(b) lim

ş
ϕpxqdµαpxq “

ş
ϕpxqdµpxq for all functions ϕ P C00pRνq.
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From Theorem 5.26 below it then follows that weak- limµα “ µ. The equality
in (a) follows from:

limµα pRνq “ lim pµαp0q “ pµp0q “ µ pRνq .
Let ǫ ą 0 be arbitrary and let ϕ P C00pRνq. Choose a function f P C00pRνq with
the property that ›››ϕ ´ pf

›››
8

ď ǫ

2µ pRνq ` 1
.

Then we inferˇ̌
ˇ̌
ż
ϕpxqdµαpxq ´

ż
ϕpxqdµpxq

ˇ̌
ˇ̌

ď
ˇ̌
ˇ̌
ż ´

ϕpxq ´ pfpxq
¯
dµαpxq

ˇ̌
ˇ̌ `

ˇ̌
ˇ̌
ż

pfpxqd pµα ´ µq pxq
ˇ̌
ˇ̌ `

ˇ̌
ˇ̌
ż ´

pfpxq ´ ϕpxq
¯
dµpxq

ˇ̌
ˇ̌

ď
›››ϕ ´ pf

›››
8

pµα pRνq ` µ pRνqq `
ż

|pµαpxq ´ pµpxq| |fpxq| dx

ď ǫ pµα pRνq ` µ pRνqq
2µpRνq ` 1

` sup
xPsupppfq

|µαpxq ´ pµpxq|
ż

|fpxq| dx. (5.29)

The inequality

lim sup
α

ˇ̌
ˇ̌
ż
ϕpxqd pµα ´ µq pxq

ˇ̌
ˇ̌ ď ǫ.

follows from (5.29). As a consequence we see that (b) is proved now. Together
with Theorem 5.26 which follows next this completes the proof of Theorem
5.25. �

5.26. Theorem. A net pµα : α P Aq in M` converges weakly to µ P M` if and
only if the net pµα : α P Aq converges vaguely to µ and if

lim
α

µα pRνq “ µ pRνq . (5.30)

Proof. The weak topology is stronger than the vague topology and from
weak convergence the equality in (5.30) also follows. Hence, the indicated con-
ditions are necessary. Conversely, let a net pµα : α P Aq converge vaguely M`

to µ and assume that (5.30) is satisfied. We will prove that µ is the weak limit
of the net pµα : α P Aq. Therefore pick f P CbpRνq and ǫ ą 0 arbitrary but
fixed. Choose a compact subset K such that µ pRνzKq ă ǫ. In addition, choose
a function h P C00pRνq in such a way that 1K ď h ď 1. By these hypotheses
the following (in-)equalities hold:

lim

ż
p1 ´ hqdµα “

ż
p1 ´ hqdµ ď µ pRνzKq ă ǫ

and also

lim

ż
fhdµα “

ż
fhdµ.

Download free eBooks at bookboon.com



ADVANCED STOCHASTIC PROCESSES: PART II

327

SOME RELATED RESULTS

327

1. FOURIER TRANSFORMS 327

Hence, there exists an α0 P A such that (for α ě α0)ż
p1 ´ hqdµα ă ǫ en

ˇ̌
ˇ̌
ż
fhd pµα ´ µq

ˇ̌
ˇ̌ ă ǫ.

But then for α ě α0 we getˇ̌
ˇ̌
ż
fd pµα ´ µq

ˇ̌
ˇ̌

ď
ˇ̌
ˇ̌
ż
fhd pµα ´ µq

ˇ̌
ˇ̌ `

ˇ̌
ˇ̌
ż
fp1 ´ hqdµ

ˇ̌
ˇ̌ `

ˇ̌
ˇ̌
ż
fp1 ´ hqdµα

ˇ̌
ˇ̌

ď ǫ p1 ` 2 }f}8q ,
which shows that lim

ş
fdµα “

ş
fdµ.

This completes the proof of Theorem 5.26. �

5.27. Corollary. The following assertions are true:

(a) The set CP is a convex cone, which is closed for the topology of uniform
convergence on compact subsets.

(b) With ϕ the functions ϕ and Re ϕ also belong to CP .
(c) If ϕ1 and ϕ2 belong to CP , then the same is true for the product ϕ1ϕ2.
(d) For every y P Rν the function x ÞÑ exp p´i 〈x, y〉q belongs to CP .

Convex combinations of such functions belong to CP .

Proof. The proof is left as an exercise for the reader. �
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5.28. Definition. A function ψ : Rν Ñ C is called negative-definite if for all
n P N and for all complex numbers a1, . . . , an and for all vectors xp1q, . . . , xpnq

in Rν the inequality

nÿ

j,k“1

ajak

´
ψ

`
xpjq˘ ` ψ pxpkqq ´ ψ

`
xpjq ´ xpkq˘¯

ě 0 (5.31)

holds. The symbol CN denotes the collection of all continuous negative-definite
functions on Rν . If ψ belongs to CN , then the same is true for ψ andRe ψ. The
collection CN is a convex cone. If ψ belongs to CN , then ψp0q ě 0 and
ψpxq “ ψp´xq for all x P Rν . A function ψ is negative-definite if and only if ψ
has the following properties:

(1) ψp0q ě 0;
(2) For every x P Rν the equality ψpxq “ ψp´xq holds;
(3) For every n P N and for every n-tuple of complex numbers a1, . . . , an, for

which
řn

j“1 aj “ 0, and for all vectors xp1q, . . . , xpnq in Rν the following
inequality holds:

nÿ

j,k“1

ajakψ
`
xpjq ´ xpkq˘ ď 0.

If the function ψ is negative-definite, then so is the function ψ ´ ψp0q. If ϕ is
positive-definite, then the function ϕp0q ´ ϕ is negative-definite.

The following theorem establishes an important connection between negative-
and positive-definite functions.

5.29. Theorem (Schoenberg). A function ψ belongs to CN if and only the
following two conditions are satisfied:

(i) ψp0q ě 0;
(ii) For every t ą 0 the function exp p´tψq is continuous and positive-

definite.

Let ψ be a negative-definite function. Then, by Bochner’s theorem together
with the theorem of Schoenberg, there exists for every t ą 0 a sub-probability
measure µt on the Borel field of Rν such that pµt “ exp p´tψq. We return to this
aspect when we discuss the notion convolution semigroup of measures.

Proof. First suppose that ψ belongs to CN . Let xp1q, . . . , xpnq belong to Rν .
Write aj,k “ ψ

`
xpjq˘`ψ

`
xpkq˘´ψ

`
xpjq ´ xpkq˘. Then the matrix with entries aj,k

is positive hermitian. But then the matrix with entries exp paj,kq is also positive

hermitian. Let a1, . . . , an belong to C and write a1
j “ exp

`
´ψ

`
xpjq˘˘

aj . Then
we see

nÿ

j,k“1

exp
`
´ψ

`
xpjq ´ xpkq˘˘

ajak “
nÿ

j,k“1

exppaj,kqa1
ja

1
k ě 0. (5.32)
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From (5.32) it follows that the function exp p´ψq is then positive-definite. The
same procedure can be repeated for the function tψ. Conversely, if (i) and
(ii) are satisfied, then, for every t ą 0, the function ψt :“ 1 ´ exp p´tψq “
1 ´ exp p´tψp0qq ` exp p´tψp0qq ´ exp p´tψq is negative-definite. But then the

function ψ is negative-definite as well, because ψ “ lim
tÓ0

ψt

t
. Since

ψpxq “ 1 ´ exp p´tψpxqqşt
0
ds exp p´sψpxqq

,

for t ą 0 but small enough, we see that the function ψ is continuous at x.

So the proof of Theorem 5.29 is now complete. �

5.30. Definition. A family of Borel measures pµt : t ě 0q with the following
properties:

(a) µt pRνq ď 1 for t ą 0;
(b) µs ˚ µt “ µs`t for all s and t ě 0;
(c) limtÓ0

ş
fdµt “

ş
fdµ0 “ fp0q “ δ0pfq for all f P C00 pRνq;

is called a (vaguely continuous) convolution semigroup of measures on Rν .

The following theorem says that a vaguely continuous convolution semigroups
is in fact everywhere weakly continuous.

5.31. Theorem. There exists a one-to-one correspondence between vaguely con-
tinuous semigroups of measures and negative-definite functions.

(a) If pµt : t ě 0q is a vaguely continuous convolution semigroup of mea-
sures, then there exists a unique continuous negative-definite function
ψ such that pµt “ exp p´tψq, for all t ě 0.

(b) Conversely, if ψ is a negative-definite function, then there exists a
vaguely continuous convolution semigroup of measures pµt : t ě 0q such
that pµt “ exp p´tψq for all t ě 0. Of course, this semigroup is unique.

Proof. (a) Define, for t ą 0, the function ψ via the equality

ψ “ 1 ´ pµtż t

0

pµsds

. (5.33)

Since pµspµt “ pµs`t we see that ψ does not depend on the choice of t. Put

gptq “
şt
0

pµsds. Then we see that gp0q “ 0 and gptqψ ` g1ptq “ 1, and hence

gptq “ 1 ´ exp p´tψq
ψ

. From the latter it follows that pµt “ exp p´tψq. The

Theorem of Schoenberg (Theorem 5.29) implies then that the function ψ is
negative-definite. The functions pµs, s ě 0, are continuous. So the same is true
for ψ.

(b) Since ψ is a negative-definite function, the functions exp p´tψq are positive-
definite by the theorem of Schoenberg. The theorem of Bochner (Theorem
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5.17) yields the existence of sub-probability measures pµt : t ě 0q such that pµt “
exp p´tψq. Since

lim
tÓ0

pµtpξq “ lim
tÓ0

exp p´tψpξqq “ 1 “ pµ0pξq

Theorem 5.43 in the next section implies that limtÓ0
ş
fdµt “ fp0q for functions

f P C00 pRνq.
The proof of Theorem 5.31 is now complete. �

5.32. Remark. In the proof of Theorem 5.31 part (a) there is a problem if

the integral
şt
0

pµsds vanishes somewhere. However, notice that lim
tÓ0

1

t

ż t

0

pµsds “
pµ0 pointwise. It follows that, certainly, for t “ tpξq ą 0 small enough, the

expression
şt
0

pµspξqds ­“ 0. This fact can be used to circumvent this problem.

5.33. Remark. In the proof of Theorem 5.31 part (b) Theorem 5.43 of the
next section was employed. This can be averted as well. Therefore con-

sider pf , with f P L1pRνq. Then limtÓ0
ş pfpxqdµtpxq “ limtÓ0

ş
fpxqpµtpxqdx “ş

fpxqdx “ pfp0q “
ş pfdµ0. By the theorem of Stone-Weierstrass from this we

obtain limtÓ0
ş
fpxqdµtpxq “ fp0q “

ş
fpxqdµ0pxq.
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5.34. Proposition. Let pµt : t ě 0q be a vaguely continuous semigroup of Borel
measures on Rν. Suppose that all these measures are probability measures. Then
the following assertions hold:

(a) weak- limtÑt0,tą0 µt “ µt0 for all t0 ě 0;
(b) limtÑt0 supxPRν

ˇ̌ş
fpx ´ yqdµtpyq ´

ş
fpx ´ yqdµt0pyq

ˇ̌
“ 0 for all t0 P

r0,8q and for all functions f P C0pRνq.

Proof. (a) First we look at

µt pRνq ´ µt0 pRνq “ exp p´tψp0qq ´ exp p´t0ψp0qq .
It follows that

lim
tÑt0

µt pRνq ´ µt0 pRνq “ 0.

For the same reason we see that

lim
tÑt0

pµtpξq “ lim
tÑt0

exp p´tψpξqq “ exp p´t0ψpξqq “ pµt0pξq.

By using theorem 5.43 in the next section we see that

weak- lim
tÑt0,tą0

µt “ µt0 .

Of course, in this proof the function ψ denotes the negative-definite function
from Theorem 5.31.

(b) Let g P C0 pRνq be of the form g “ pf with f P L1pRνq. Then we see
ˇ̌
ˇ̌
ż

pfpx ´ yqdµtpyq ´
ż

pfpx ´ yqdµt0pyq
ˇ̌
ˇ̌

“
ˇ̌
ˇ̌
żż

ppµtp´zq ´ pµt0p´zqq exp p´i 〈x, z〉q fpzqdz
ˇ̌
ˇ̌

ď
ż

|exp p´tψp´zqq ´ exp p´t0ψp´zqq| |fpzq| dz

ď
ż

|exp p´ |t ´ t0|ψp´zqq ´ 1| |fpzq| dz. (5.34)

The assertion in (b) now follows from (5.34) together with the theorem of Stone-
Weierstrass, and completes the proof of Proposition 5.34. �

5.35. Proposition. Let pµt : t ě 0q be a vaguely continuous semigroup of prob-
ability measures on the Borel field of Rν. Define for every n-tuple t1, . . . , tn with
0 ď t1 ă ¨ ¨ ¨ ă tn, the probability measure Pt1,...,tn on the Borel field of pRνqn via
de formula

Pt1,...,tnpBq
“ µt1 b µt2´t1 b ¨ ¨ ¨ b µtn´tn´1

ppx1, . . . , xnq P pRνqn : Vn px1, . . . , xnq P Bq

“
ż
dµt1px1q . . .

ż
dµtn´tn´1

pxnq1B pVn px1, . . . , xnqq , (5.35)
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where B is a Borel subset of pRνqn and where Vn : pRνqn Ñ pRνqn is the linear
mapping given by: Vn : px1, x2, . . . , xnq ÞÑ px1, x1 ` x2, . . . , x1 ` ¨ ¨ ¨ ` xnq. Then
the family

tppRνqn ,B pRνqn ,Pt1,...,tnq : pt1, . . . , tnq P r0,8qn, n P Nu
forms a projective system of probability measures.

Proof. Let B P B pRνqn and let B1 P B
`
pRνqn`1

˘
be defined by

B1 “
�

pz1, . . . , zn`1q P pRνqn`1 : pz1, . . . , zk, zk`2, . . . , zn`1q P B
(
.

Let t1 ă ¨ ¨ ¨ ă tk ă s ă tk`1 ă ¨ ¨ ¨ ă tn be an pn ` 1q-tuple of increasing times.
We have to prove the following equality:

Pt1,...,tk ,s,tk`1,...,tnpB1q “ Pt1,...,tnpBq.
Since the vector

Vn`1 py1, y2, . . . , yn`1q :“ py1, y1 ` y2, . . . , y1 ` ¨ ¨ ¨ ` yn`1q
belongs to B1 if and only if the vector

py1, y1 ` y2, . . . , y1 ` ¨ ¨ ¨ ` yk, y1 ` ¨ ¨ ¨ ` yk`2, . . . , y1 ` ¨ ¨ ¨ ` yn`1q
belongs to B, we get what follows:

Pt1,...,tk ,s,tk`1,...,tn pB1q
“ µt1 b ¨ ¨ ¨ b µtk´tk´1

b µs´tk b µtk`1´s b ¨ ¨ ¨
b µtn´tn´1

tpy1, . . . , yn`1q : Vn`1 py1, . . . , yn`1q P B1u

“
ż
dµt1py1q . . .

ż
dµtk´tk´1

pykq
ż
dµs´tkpyq

ż
dµtk`1´spzq

ż
dµtk`2´tk`1

pzk`2q . . .
ż

dµtn´tn´1
pznq1B1 pVn`1 py1, . . . , yk, y, z, zk`2, . . . , znqq

“
ż
dµt1py1q . . .

ż
dµtk´tk´1

pykq
ż
dµs´tkpyq

ż
dµtk`1´spzq

ż
dµtk`2´tk`1

pzk`2q . . .
ż

dµtn´tn´1
pznq1B pVn py1, . . . , yk, y ` z, zk`2, . . . , znqq

(apply Fubini’s theorem, integrate relative to µs´tk bµtk`1´s and use the equalityş
gpy ` zqdµupyqdµvpzq “

ş
g pzk`1q dµu`vpzk`1q)

“
ż
dµt1py1q . . .

ż
dµtk´tk´1

pykq
ż
dµtk`1´tkpzk`1q

ż
dµtk`2´tk`1

pzk`2q

. . .

ż
dµtn´tn´1

pznq

1B pVn py1, . . . , yk, zk`1, . . . , znqq

“
ż
dµt1py1q . . .

ż
dµtn´tn´1

pynq1B py1, . . . , y1 ` . . . ` ynq

“ Pt1,...,tnpBq.
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This proves the required equality in case 1 ď k ď n´ 2. The other cases, which
are tn´2 ă s ă tn´1, tn´1 ă s ă tn, tn ă s and t1 ą s, are left as an exercise for
the reader.

So the proof of Proposition 5.35 is complete now. �

5.36. Proposition. Let pµt : t ě 0q be a vaguely continuous semigroup of prob-
ability measures on the Borel field of Rν. Define, for every n-tuple t1, . . . , tn the
probability measure Pt1,...,tn, where t1 ă ¨ ¨ ¨ ă tn, as in Proposition 5.35. Then

there exists a unique probability measure P on the product field of pRνqr0,8q such
that

P ppXpt1q, . . . , Xptnqq P Bq “ Pt1,...,tn pBq ,
for all Borel subsets B of pRνqn. Likewise there exists, for every x P Rν, a

unique probability measure Px on the product field of pRνqr0,8q such that

Px ppXpt1q, . . . , Xptnqq P Bq “ P ppx ` Xpt1q, . . . , x ` Xptnqq P Bq

“
ż
dµt1px1q b ¨ ¨ ¨ b dµtn´tn´1

pxnq1B px ` x1, . . . , x ` x1 ` . . . ` xnq ,

for all Borel subsets B of pRνqn.

Here the state variable Xptq : pRνqr0,8q Ñ Rν is defined by Xptqpωq “ ωptq,
where ω belongs to the product pRνqr0,8q.

Proof. Apply Kolmogorov’s extension theorem to get the result in 5.36.
�
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5.37. Theorem. Let pµt : t ě 0q be a vaguely continuous semigroup of prob-
ability measures on the Borel field of Rν . Define for every n-tuple t1, . . . , tn
the probability measure Pt1,...,tn, where t1 ă ¨ ¨ ¨ ă tn, as in Proposition 5.35
and let Px, x P Rν, be the unique probability measure on the product field of

Ω “ pRνqr0,8q such that

Px ppXpt1q, . . . , Xptnqq P Bq

“
ż
dµt1px1q . . .

ż
dµtn´tn´1

pxnq1B px ` x1, . . . , x ` x1 ` . . . ` xnq . (5.36)

Let Fs be the σ-field on Ω generated by Xpuq, 0 ď u ď s. For t ą s the
variable Xptq ´ Xpsq is independent of Fs and Xptq ´ Xpsq possesses the same
Px-distribution as Xpt ´ sq ´ x, which is µt´s.

Proof. Fix t ą s, let f : pRνqn Ñ R be a Borel measurable function, and
suppose that 0 ď s1 ă ¨ ¨ ¨ ă sn “ s. Let g : Rν Ñ R be another bounded Borel
measurable function. Then the following equalities hold true:

E pf pXps1q, . . . , Xpsnqq g pXptq ´ Xpsqqq

“
ż
dµs1px1q . . .

ż
dµsn´sn´1

pxnq
ż
dµt´spxqf px1, . . . , x1 ` . . . ` xnq gpxq

“ E pf pXps1q, . . . , XpsnqqqE pg pXptq ´ Xpsqqq .
Now let H be the vector space of Fs-measurable bounded random variables Y
with the property that E pY gpXptq ´ Xpsqqq “ E pY qE pgpXptq ´ Xpsqqq. Then
H satisfies the hypotheses of Lemma 5.100. Whence, H contains all bounded Fs-
measurable random variables. Since, in addition, the function g is an arbitrary
bounded continuous function, it follows that the state variable Xptq ´ Xpsq is
independent of Fs. This completes the proof of Theorem 5.37. �

5.38. Theorem. Let pΩ,F,Pq be a probability space and let pXptq : t ě 0q be a
family of state variables with state space Rν. Assume that these state variables
are measurable relative to the σ-fields F and BpRνq. Suppose that

lim
tÓ0

E rfpXptqqs “ fp0q for all f P C00 pRνq,

and also that for every t ą s the variable Xptq ´ Xpsq is independent of the σ-
field σ pXpuq : 0 ď u ď sq and that Xptq ´Xpsq possesses the same distribution
as Xpt ´ sq. Then the mapping B ÞÑ µtpBq :“ P pXptq P Bq defines a vaguely
continuous semigroup of probability measures on Rν .

Proof of Theorem 5.38. It is clear that every measure µt is a proba-
bility measure is on the Borel σ-field of Rν . Since

ş
fdµt “ E pfpXptqqq, for

f P C00 pRνq, the equality limtÓ0 EpfpXptqqq “ fp0q, entails that the family
pµt : t ě tq is vaguely continuous at 0. The convolution property still has to be
proved. It suffices to prove that pµspξqpµtpξq “ pµs`tpξq for all s and t ě 0, and
for all ξ P Rν . To this end consider

ż
exp p´i 〈ξ, x〉q dµspxq

ż
exp p´i 〈ξ, y〉q dµtpyq
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“ E pexp p´i 〈ξ,Xpsq〉qqE pexp p´i 〈ξ,Xptq〉qq

(the variable Xptq has the same distribution as Xps ` tq ´ Xpsq)

“ E pexp p´i 〈ξ,Xpsq〉qqE pexp p´i 〈ξ,Xps ` tq ´ Xpsq〉qq

(Xps ` tq ´ Xpsq does not depend on Xpsq)

“ E pexp p´i 〈ξ,Xpsq ` Xps ` tq ´ Xpsq〉qq
“ E pexp p´i 〈ξ,Xps ` tq〉qq “ pµs`tpξq.

Since 0 “ Xp0q ´ Xp0q it follows that µ0 has the distribution δ0. This proves
Theorem 5.38. �

5.39. Definition. Let pΩ,F,Pq be a probability space and let the mapping
X : pt, ωq ÞÑ Xpt, ωq “ Xptqpωq satisfy the hypotheses mentioned in Theorem
5.38. (So that for t ą s the state variable Xptq ´ Xpsq does not depend on the
σ-field σ pXpuq : 0 ď u ď sq and Xptq ´ Xpsq possesses the same distribution
as Xpt ´ sq; moreover, the equality limsÓ0 E pfpXpsqqq “ fp0q holds for all
f P C0 pRνq). Then the process X is called a Lévy-process, that begins at
Xp0q “ 0.

Important Lévy-processes are the Poisson process with jumps 1 and the Brow-

nian motion. The one-dimensional distributions of a Poisson process X (with
jumps 1 and of intensity λ) are given by

P pXptq “ kq “ pλtqk
k!

exp p´λtq, k P N.

For details on Poisson processes see Subsection 5.4 in Chapter 1. The Brownian
motion B (with drift 0, intensity I and which starts in 0) possesses as one-
dimensional distributions:

P pBptq P Bq “ 1a
p2πtqν

ż

B

exp

˜
´|y|2

2t

¸
dy.

For more details on Brownian motion see the Section 4 in Chapter 1 and Sec-
tion 3 in Chapter 2. In addition, see Chapter 3. A Lévy-process with initial

distribution µ is a family of F-B-measurable mappings Xptq : Ω Ñ Rν such that
Xp0q has the distribution µ, and such that the process t ÞÑ Xptq ´ Xp0q is a
Lévy-process that starts at 0. If the initial distribution µ “ δx, then it said that
the process X starts at x. If X “ pXptq : t ě 0q is a Lévy-process that starts
at 0, then px ` Xptq : t ě 0q is a Lévy-process, which starts at x. The Poisson
process Xj (with jumps 1 and intensity λ) which starts at j P N possesses as
marginal or one-dimensional distributions:

P pXjptq “ kq “ pλtqk´j

k!
exp p´λtq1r0,8qpk ´ jq, k P N.

Thus the distributions of the processes pXjptq : t ě 0q and pj ` Xptq : t ě 0q,
where X is the Poisson-process which starts at 0, are the same. The Brownian
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motionBx (with drift 0, intensity I and which starts at x) possesses the following
one-dimensional distributions:

P pBxptq P Bq “ 1a
p2πtqν

ż

B

exp

˜
´|x ´ y|2

2t

¸
dy.

5.40. Definition. Let E be a locally compact Hausdorff space and let

tP ptq : t ě 0u
be a family of linear operators of C0pEq to the space L8pE,Eq. Here E is the
Borel field of E. This family is called a Feller semigroup, or Feller-Dynkin

semigroup provided it possesses the following properties:

(i) semigroup-property: P ps ` tq “ P psqP ptq and P p0q “ I;
(ii) positivity preserving: f ě 0, f P C0pEq, implies P ptqf ě 0;
(iii) contractive: 0 ď f ď 1, f P C0pEq, implies 0 ď P ptqf ď 1;
(iv) continuity: limtÓ0 rP ptqf s pxq “ fpxq for all f P C0pEq and for all x P E;
(v) invariance: P ptqC0pEq Ď C0pEq for all t ě 0.

In the presence of (i), (v) and (iii) assertion (iv) is equivalent with

(iv1) limtÑt0,tą0 }P ptqf ´ P pt0qf}8 “ 0 for all f P C0pEq.
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5.41. Theorem. Let pΩ,F,Pq be a probability space, and pXptq : t ě 0q be a
family of state variables with state space Rν . Suppose that these state variables
are measurable relative to the σ-fields F and BpRνq. In addition, suppose that
limtÓ0 E pfpXptqqq “ fp0q for all f P C00 pRνq and also that for every t ą s the
variable Xptq ´ Xpsq does not depend on the σ-field σ pXpuq : 0 ď u ď sq, an d
this for all t ą s ě 0. Moreover, by hypothesis, the variable Xptq ´ Xpsq has
the same distribution as Xpt ´ sq. Define the operator P ptq from L8 pRνq to
itself by rP ptqf s pxq “ E pf px ` Xptqqq, f P L8 pRνq. The restriction of P ptq to

C0 pRνq leaves the space C0 pRνq invariant, and the family
!
P ptq

ˇ̌
C0pRνq: t ě 0

)

is a Feller semigroup (also called a Feller-Dynkin semigroup).

Proof of Theorem 5.41. It is clear that every operator P ptq is contrac-
tive and positivity preserving. It is also clear that limtÓ0 rP ptqf s pxq “ fpxq for
all x P Rν and for all f P C0 pRνq. We still have to prove the invariance property.
Let f “ pg, where g belongs to L1 pRνq. Then we obtain

rP ptqf s pxq “ E pf px ` Xptqqq “ E ppg px ` Xptqqq

“
ż
exp p´i 〈ξ, x〉qE pexp p´i 〈ξ,Xptq〉qq gpξqdξ. (5.37)

By the lemma of Riemann-Lebesgue (Theorem 5.12), the equalities in (5.37)
imply the equality

lim
xÑ8

rP ptqf s pxq “ 0.

The continuity of the function P ptqf is clear as well. As a consequence, P ptq
maps the space tpg : g P L1 pRνqu to C0 pRνq. The theorem of Stone-Weierstrass
implies that the space tpg : g P L1 pRνqu is dense in C0 pRνq for the uniform
topology. Because of the contractive character of the operator P ptq it then
follows that P ptq leaves the space C0 pRνq invariant. In order to finish we prove
the semigroup-property. Again we take the Fourier transform pg of a function
g P L1 pRνq and we consider

rP ps ` tqpgs pxq
“ E ppgpx ` Xps ` tqqq

“
ż
e´i〈ξ,x〉E pexp p´i 〈ξ,Xps ` tq〉qq gpξqdξ

“
ż
e´i〈ξ,x〉E pexp p´i 〈ξ,Xps ` tq ´ Xpsq〉q exp p´i 〈ξ,Xpsq〉qq gpξqdξ

(the variable Xps ` tq ´ Xpsq is independent of Xpsq)

“
ż
e´i〈ξ,x〉E pexp p´i 〈ξ,Xps ` tq ´ Xpsq〉qqE pexp p´i 〈ξ,Xpsq〉qq gpξqdξ

(the variable Xps ` tq ´ Xpsq has the same distribution as Xptq)

“
ż
e´i〈ξ,x〉E pexp p´i 〈ξ,Xptq〉qqE pexp p´i 〈ξ,Xpsq〉qq gpξqdξ

“ E pω ÞÑ E pω1 ÞÑ pg px ` Xpsqpωq ` Xptq pω1qqqq . (5.38)
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The semigroup-property then follows from (5.38) together with the Theorem of
Stone-Weierstrass which, among other things, implies that the space

�
pg : g P L1 pRνq

(

is dense in C0 pRνq for the uniform topology.

This completes the proof of Theorem 5.41. �

2. Convergence of positive measures

We begin with the continuity theorem of Lévy.

5.42. Theorem (Lévy). Let pµn : n P Nq be a sequence of bounded positive Borel
measures on Rν. Assume that there exists a function ϕ : Rν Ñ C, which is
continuous at 0, such that

lim
nÑ8

pµnpxq “ ϕpxq

for all x P Rν . Then there exists a bounded positive Borel measure such that

weak- lim
nÑ8

µn “ µ.

Proof. The function ϕ is a point-wise limit of positive-definite functions
and so it is itself positive-definite as well. Since the function ϕ is continuous
at 0, inequality (c) in Theorem 5.15 implies the continuity of ϕ. By Bochner’s
theorem (Theorem 5.17) there exists a positive bounded Borel measure µ such
that

lim
nÑ8

pµnpxq “ ϕpxq “ pµpxq (5.39)

for all x P Rν . Next, let f be an arbitrary function in C00 pRνq. Then we see

lim sup
nÑ8

ˇ̌
ˇ̌
ż

pfdµn ´
ż

pfdµ
ˇ̌
ˇ̌ “ lim sup

nÑ8

ˇ̌
ˇ̌
ż
fpxq ppµnpxq ´ pµpxqq

ˇ̌
ˇ̌ dx

ď lim sup
nÑ8

ż
|fpxq| |pµnpxq ´ pµpxq| dx. (5.40)

In view of (5.39) we see that the integrand in (5.40) converges pointwise to 0.
Write c “ supnPN ppµnp0q ` pµp0qq. Then c is finite and |fpxq| |pµnpxq ´ pµpxq| is
dominated by the L1-function c |fpxq|. By the dominated convergence theorem
(Lebesgue) it follows from (5.40) that

lim sup
nÑ8

ˇ̌
ˇ̌
ż

pfdµn ´
ż

pfdµ
ˇ̌
ˇ̌ “ 0. (5.41)

Since the subspace
!

pf : f P C00 pRνq
)
is uniformly dense in C0 pRνq (see The-

orem 5.14), from (5.41) it follows that limnÑ8
ş
ϕdµn “

ş
ϕdµ for all functions

ϕ P C00 pRνq. Theorem 5.26 then implies weak- limnÑ8 µn “ µ. This proves the
continuity theorem of Lévy: Theorem 5.42. �
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In the following theorem we compare several equivalent forms of weak conver-
gence. If a “ pa1, . . . , aνq and b “ pb1, . . . , bνq belong to Rν and if aj ă bj ,
1 ď j ď ν, then we write a ă b and also pa, bs “ pa1, b1s ˆ ¨ ¨ ¨ ˆ paν , bνs.

5.43. Theorem. Let pµα : α P Aq be a directed system (a net) in M` consisting
of sub-probability measures (so that µα pRνq ď 1, α P A) and let µ P M` be
a sub-probability measure as well. Let pfk : k P Nq be a sequence in C0 pRνq
with a linear span which is dense in C0 pRνq. The following assertions are then
equivalent:

(1) The net pµα : α P Aq converges weakly to µ;
(2) For every bounded Borel measurable function f : Rν Ñ C which is

continuous in µ-almost all points the equality limα

ş
fdµα “

ş
fdµ holds;

(3) The net pµα : α P Aq converges vaguely to µ and limµα pRνq “ µ pRνq;
(4) For every closed subset F of Rν the inequality lim supα µαpF q ď µpF q

holds and

lim
α

µα pRνq “ µ pRνq ;

(5) For every open subset G of Rν the inequality lim infα µαpGq ě µpGq
holds and

lim
α

µα pRνq “ µ pRνq ;

(6) For every Borel subset B of Rν, for which µ

ˆ
Bz

˝
B

˙
“ 0, the equality

limα µαpBq “ µpBq holds;
(7) For every pair of points pa, bq P Rν ˆ Rν such that aj ă bj, 1 ď

j ď ν, where a “ pa1, . . . , aνq, b “ pb1, . . . , bνq, with the property
that µ tx P Rν : xj “ aju “ µ tx P Rν : xj “ bju “ 0, j “ 1, . . . , ν, the
equality limα µα

`
a, b

‰
“ µ

`
a, b

‰
holds and limα µα pRνq “ µ pRνq.

(8) For every k P N the equalities limα

ş
fkdµα “

ş
fkdµ and limα µα pRνq “

µ pRνq hold;
(9) For every x P Rν the equality limα pµαpxq “ pµpxq holds.
(10) For every a P Rν for which µ tx P Rν : xj “ aju “ 0, j “ 1, . . . , ν, the

equality

lim
α

µα rp´8, a1s ˆ ¨ ¨ ¨ ˆ p´8, aνss “ µ rp´8, a1s ˆ ¨ ¨ ¨ ˆ p´8, aνss

holds and limα µα pRνq “ µ pRνq.

Proof. The equivalence of the assertions (1) and (9) is a consequence of
Theorem 5.25. The equivalence of (1) and (3) is a consequence of Theorem 5.26.
The implication (1) ñ (8) is trivial. The implication (8) ñ (3) can be proved
as follows. From (8) it follows that limα

ş
ϕdµα “

ş
ϕdµ for all ϕ in the linear

span of pfk : k P Nq Y t1u. So that for f P C0 pRνq ` C1 and ϕ in the span of
pfk : k P Nq Y t1u we see that

lim sup
α

ˇ̌
ˇ̌
ż
f d pµα ´ µq

ˇ̌
ˇ̌
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ď lim sup
α

ˇ̌
ˇ̌
ż

pf ´ ϕq d pµα ´ µq
ˇ̌
ˇ̌ ` lim sup

α

ˇ̌
ˇ̌
ż
ϕd pµα ´ µq

ˇ̌
ˇ̌

ď }f ´ ϕ}8 lim sup
α

pµα pRνq ` µ pRνqq

“ 2 }f ´ ϕ}8 µ pRνq . (5.42)

Assertion (3) follows because the linear span of pfk : k P Nq Y t1u is uniformly
dense in C0 pRνq`C1. From the previous arguments it follows that the assertions
(1), (3), (8) and (9) are equivalent.

(2) ñ (1). This implication is trivial.

(1) ñ (4). Let F be a closed subset of Rν . Choose a sequence of functions
puj : j P Nq in CbpRνq in such a way that 1F ď uj`1 ď uj ď 1, j P N, and such
that 1F pxq “ limjÑ8 ujpxq for all x P Rν . Then the equality

lim sup
α

µαpF q ď inf
jPN

lim sup
α

ż
ujdµα “ inf

jPN

ż
ujdµ “ µpF q

holds. This proves assertion (4) starting from (1).

(4) ô (5). These implications are easy to verify.
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(5) ñ (6). Let B be a Borel subset of Rν such that µ

ˆ
Bz

˝
B

˙
“ 0. Then, from

(5), what is equivalent to (4), it follows that

lim sup µαpBq ď lim sup
α

µα

`
B

˘
ď µ

`
B

˘
“ µ

ˆ
˝
B

˙

ď lim inf
α

µα

ˆ
˝
B

˙
ď lim inf

α
µα pBq . (5.43)

Hence, limα µαpBq “ µpBq.

(6) ñ (1). Let 0 ď f ď 1 be a continuous function. Because

ż
fdµ “

ż 1

0

µ tf ě ξu dξ “
ż 1

0

µ tf ą ξu dξ

we see that
ş1
0
µ tf “ ξu dξ “ 0. Thus for almost all ξ the equality µ tf “ ξu “ 0

follows. For a certain sequence pαℓ : ℓ P Nq in A, we then obtain by (6) the
following (in-)equalities

ż
fdµ “

ż 1

0

tf ą ξu dµ “
ż 1

0

µ tf ě ξu dξ

“
ż 1

0

lim
α

µα tf ě ξu dξ “
ż 1

0

lim
α

µα tf ą ξu dξ

ď 1

2n

2nÿ

k“1

lim
α

µα

�
f ą k2´n

(
` 1

2n
ď 1

2n

2nÿ

k“1

lim
ℓÑ8

µαℓ

�
f ą k2´n

(
` 1

2n

(Fatou’s lemma)

ď lim
ℓÑ8

ż
1

2n

2nÿ

k“1

1tfěk2´nudµαℓ
` 1

2n

ď lim
ℓÑ8

ż
fdµαℓ

` 1

2n
“ lim inf

α

ż
fdµα ` 1

2n
. (5.44)

From (5.44) it then follows that, always for 0 ď f ď 1,
ż
fdµ ď lim inf

α

ż
fdµα, (5.45)

and also ż
p1 ´ fqdµ ď lim inf

α

ż
p1 ´ fqdµα. (5.46)

Since, in addition, limα µα pRνq “ µ pRνq we see by (5.45) and (5.46) that
limα fdµα “

ş
fdµ for every function f P Cb pRνq for which 0 ď f ď 1. Since

the linear span of such functions coincides with Cb pRνq assertion (1) follows
from (6). (5) ñ (2). Let f be a real-valued bounded function which µ-almost
everywhere continuous. Without loss of generality we assume that 0 ď f ď 1
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(otherwise replace f with af ` b, with a and b appropriately chosen constants).
Then define the functions fX and fY respectively by

fXpxq “ inf
UPUpxq

sup
yPU

fpyq en fYpxq “ sup
UPUpxq

inf
yPU

fpyq. (5.47)

It follows that
ş

pfX ´ fYq dµ “ 0 and also fY ď f ď fX. Hence, for an
appropriately chosen sequence pαℓ : ℓ P Nq,

ż
fdµ “

ż
fYdµ ď 1

2n
` 1

2n

2nÿ

k“1

µ
�
fY ą k2´n

(

ď 1

2n
` 1

2n

2nÿ

k“1

lim inf
ℓÑ8

µαℓ

�
fY ą k2´n

(

ď 1

2n
` lim inf

ℓÑ8

1

2n

2nÿ

k“1

µαℓ

�
fY ą k2´n

(

ď 1

2n
` lim inf

α

ż
fYdµα ď 1

2n
` lim inf

α

ż
fdµα. (5.48)

From (5.48) it follows that
ż
fdµ ď lim inf

α

ż
fdµα.

For the same reason the inequality
ş
p1 ´ fqdµ ď lim infα

ş
p1 ´ fqdµα holds.

Because, in addition, limα µα pRνq “ µ pRνq we see that
ş
fdµ “ limα

ş
fdµα.

This proves (2) starting from (5).

(6) ñ (7). This assertion is trivial.

(7) ñ (8). In this part of the proof we write pa, bs for the interval pa1, b1s ˆ
¨ ¨ ¨ ˆ paν , bνs, if a and b are points in Rν for which aj ă bj for 1 ď j ď ν. From
(7) it follows that limα µα

`
a, b

‰
“ µ

`
a, b

‰
for all points a and b in Rν with the

property that µty P Rν : xj “ aju “ µty P Rν : xj “ bju “ 0 for all 1 ď j ď ν.
Next pick for f a function in C00 pRνq with values in R. Let g be an arbitrary
function of the form g “ řn

j“1 fpxjq1paj ,bj s, where aj and bj are points in Rν with

the following properties: µty P Rν : yk “ aj,ku “ µty P Rν : yk “ bj,ku “ 0, for
1 ď k ď ν, and aj,k ă bj,k for j “ 1, . . . , n, and 1 ď k ď ν. In addition, suppose
that xj belongs to the “interval”

`
aj, bj

‰
. The we get

lim sup
α

ż
fdµα ď lim sup

α

ż
pf ´ gqdµα ` lim sup

α

ż
gdµα

ď }f ´ g}8 µ pRνq `
ż
gdµ ď 2 }f ´ g}8 µ pRνq `

ż
fdµ.

Since f is uniformly continuous we are able to choose, for a given ǫ ą 0, a
function g of the form as above in such a way that }f ´ g}8 ď ǫ. This proves
the inequality lim supα

ş
fdµα ď

ş
fdµ. The same argument can be applied to

the function ´f . It follows that limα

ş
fdµα “

ş
fdµ for functions f P C00 pRνq

that are real valued. But then (8) follows.
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(10) ñ (7) Let a ă b be as in (7). Then µα pa, bs can be written in the form

µα pa, bs “
ÿ

ΛĂt1,...,νu
p´1q#Λµα

«
νź

j“1

p´8, cΛ,js
ff
, (5.49)

where cΛ,j “ aj , j P Λ, cΛ,j “ bj , j P t1, . . . , νu zΛ. The implication (10) ñ (7)
then easily follows from (5.49). The equality in (5.49) can be found in Durrett
[60] Theorem 1.1.6 page 7.

(7) ñ (10) Let a be as in assertion (10). Put F “ śν
k“1 p´8, aks. Then the

subset F is closed, and since assertion (7) is equivalent to (4) we know that
lim supα µα pF q ď µpF q. Since assertion (7) is equivalent to (5) we know that

lim infα µα pF q ě lim infα µα

ˆ
˝
F

˙
ě µ

ˆ
˝
F

˙
. Since µ

ˆ
˝
F

˙
“ µpF q assertion

(10) follows.

The proof of these implications completes the proof Theorem 5.43. �
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5.44. Remark. The implication (10) ñ (1) in Theorem 5.43 can also be proved
by employing the equality

ż

Rν

fpxq dµαpxq “ p´1qν
ż

Rν

D1 ¨ ¨ ¨Dνfpxqµα

«
νź

j“1

p´8, xjs
ff
dx (5.50)

“ p´1qν
ż

Rν

ż 8

y1

¨ ¨ ¨
ż 8

yν

D1 ¨ ¨ ¨Dνfpxq dxν . . . dx1 dµαpyq,

where the function f is ν times continuously differentiable, and where Dj de-
notes differentiation with respect to the j-th coordinate, 1 ď j ď ν. The
equality in (5.50) can be proved by successive integration. The second equality
is a consequence of Fubini’s theorem.

5.45. Definition. A topological space E is called a Polish space if E possesses
the following properties:

(i) E is separable;
(ii) E is metrizable;
(iii) There exists a metric d on E that determines the topology and relative

to which E is complete.

Since E is metrizable property (i) is equivalent with the existence of a countable
basis for the topology.

5.46. Lemma. Let E be a Polish space.

(a) A closed subset F of E is, with the induced metric, again Polish.
(b) An open subset G of E is again Polish.

Proof. (a) The proof of assertion (a) is not difficult. If pUj : j P Nq is a
countable basis for the topology of E, then pUj X F : j P Nq is a countable basis
for the topology on F . Moreover, F is closed and hence it is complete with
respect to the induced metric.

(b). Let d be a metric on E, which turns E into a complete metric topological
space. Then the open subset G is Polish for the metric dG defined by

dGpx, yq “ dpx, yq `
ˇ̌
ˇ̌ 1

d px,Gcq ´ 1

d py,Gcq

ˇ̌
ˇ̌ , (5.51)

where x and y belong to G, where Gc “ EzG and where d px,Gcq “ inf
zPGc

dpx, zq.
The separability of G is also clear. The proof of Lemma 5.46 is now complete.

�

5.47. Theorem. A subset A of a Polish space E is again a Polish space if and
only if A is the countable intersection of open subsets of E.

Proof. Let A “ Ş
jPNGj , where every Gj is an open subset of E. Let d be

a metric on E, which makes E into a Polish space. Define then the metrics dj
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on Gj , j P N, as in (5.51) and define the metric dA on A via

dApx, yq “
8ÿ

j“1

1

2j
djpx, yq

1 ` djpx, yq .

Then, endowed with the relative topology, A is a Polish space with respect to
the dA. Conversely, let d ď 1 be a metric on A which is compatible with the
topology that A inherits from E, and which turns A into a complete metric
space. Let A be the closure of A. Then there exists a decreasing sequence
of open subsets pGnqnPN such that A “ Ş

n Gn; i.e. closed subsets of E are

Gδ-subsets. For n P N, n ‰ 0, we define the open subset An of A as follows:

An “
�
x P A : there exists an open neighborhood Upxq in E of x

for which dpy, zq ă 1

n
for all z, y P Upxq X A

*
.. (5.52)

Then the following assertions about the sets An will be proved:

(1) For all n P N we have A Ă An.
(2) The sets An, n P N, are open in A.
(3) The inclusion

Ş
n An Ă A holds, and so by (1) A “ Ş

n An.

Since, by (2), the subsets An, n P N, are open in A there exist open subsets On,
n P N, of E such that An “ On X A, n P N. It follows that

A “
č

n

An “
č

n

On X A “
č

n

On X
č

m

Gm “
č

n

On X Gn,

and hence, A is a countable intersection of open subsets of E. Next we prove
the assertions (1), (2) and (3).

(1) Pick x P A, and consider the ball

B1{p2nqpxq “
"
w P A : d pw, xq ă 1

2n

*
.

There exists an open neighborhood Upxq of x in E such that B1{p2nqpxq “
A X Upxq. If y, z belong to A X Upxq we have dpz, yq ď dpz, xq ` dpx, yq ă 1{n.
It follows that x P An. This is true for all n P N.

(2) That the subset An is open in A can be seen as follows. Pick x P A. There
exists an open neighborhood Upxq in E of x such that dpz, yq ă 1{n for all
z, y P A X Upxq. The set Upxq X A is an open neighborhood of x in A. It
suffices to show that Upxq X A Ă An. To this end choose x1 P Upxq X A. Then
Upxq is an open neighborhood in E of x1 as well, and since x1 belongs to A it
follows from the definition of An that x1 is a member of An.

(3) Let x belong to An for all n P N. Then x belongs to A. We will prove that
x P A. Let D ď 1 be a metric on E which is compatible with its topology, and
which turns E into complete metric space. For the moment fix n P N. Since
x P An there exists an open ball Bn in E relative to the metric D centered at x
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and with radius ă 1{n such that

dpz, yq ă 1

n
whenever y, z P A X Bn. (5.53)

Since x P A there exists xn P A X Bn. In this way we obtain a sequence of balls
tBn : n P Nu relative to the metric D centered at x, which we take decreasing,
and which are such that the D-radius of Bn is strictly less than 1{n. In addition,
we obtain a sequence of points txn : n P Nu in A such that xn P Bn for all n P N.
Since the balls Bn are decreasing we have xm P Bn form ě n. From this fact and
(5.53) it follows that d pxm, xnq ă 1{n for m ě n. Consequently, it follows that
the sequence txn : n P Nu is a d-Cauchy sequence in A. Since A is d-complete
there exists a point x1 P A such d pxn, x

1q ď 1{n, n P N. Since D and d are
topologically compatible on A it also follows that limnÑ8 D pxn, x

1q “ 0. We
also have limnÑ8 D pxn, xq “ 0, and consequently x “ x1 P A.

This completes the proof of Theorem 5.47. �

For a proof of the following theorem the reader is referred to the literature. We
will give an outline of a proof. A Gδ-set in a topological space is a countable
intersection of open subsets.

5.48. Theorem. A Polish space E is homeomorphic with a Gδ-subset of the
Hilbert-cube r0, 1sN, endowed with the product topology.
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Proof of Theorem 5.48. Let d : E ˆ E Ñ r0, 1s be a metric op E

which is compatible with its topology, and which turns E into a Polish space,
and let pxℓ : ℓ P Nq be a countable dense subset of E. Define the mapping

Ψ : E Ñ r0, 1sN by Ψpxq “ pd px, xℓqℓPNq. Then, as can be checked, the mapping
Ψ is a homeomorphism from E onto a subset of r0, 1sN. So far we have not
yet used the fact that E, equipped with the metric d is complete; we did use
the fact that E is a metrizable separable space. Since E is complete with
respect to d and Ψ is a homeomorphism, it follows that the image of E under
Ψ, that is A “ Ψ pEq, is complete subspace of the Hilbert cube r0, 1sN. Let
D : r0, 1sN ˆ r0, 1sN Ñ r0, 1s be the metric defined by

D ppξℓqℓPN , pηℓqℓPNq “
8ÿ

ℓ“1

2´ℓ |ξℓ ´ ηℓ| , pξℓqℓPN , pηℓqℓPN P r0, 1sN.

Then D is a metric on r0, 1sN which turns this space into a Polish space. It
follows that A is a subset of r0, 1sN which is homeomorphic to a Polish space,
and so it itself is Polish. Since it is a Polish subspace of the Polish space r0, 1sN,
A is a countable intersection of open subsets of r0, 1sN: see Theorem 5.47. This
completes the proof of Theorem 5.48. �

The space N of positive integers with the usual metric inherited from the real
numbers R is Polish. Then the countable product NN with metric

d ptmiu , tniuq “
8ÿ

i“1

1

2i
|mi ´ ni|

1 ` |mi ´ ni|
(5.54)

is Polish. The proofs of Propositions 5.49 and 5.50 are taken from Garrett [75].

5.49. Proposition. Totally order NN lexicographically. Then every closed sub-
set C of NN has a least element.

The lexicographic ordering of NN can be recursively defined. An element a “
pa1, a2, . . .q precedes an element b “ pb1, b2, . . .q if a1 ď b1; however, if a1 “ b1,
then a2 ď b2; however, if a1 “ b1 and a2 “ b2, then a3 ď b3, and so on.

Proof. Let n1 be the least element in N such that there is x “ pn1, . . .q
belonging to C. Let n2 be the least element in N such that there is x “
pn1, n2, . . .q belonging to C, and so on. Choosing the ni inductively, let x0 “
pn1, n2, n ` 3, . . .q. This x0 satisfies x0 ď x in the lexicographic ordering for
every x P C, and x0 belongs to the closure of C in the metric topology introduced
in (5.54). This completes the proof of Proposition 5.49. �

5.50. Proposition. Let E be a Polish space. Then there exists a continuous
surjective mapping F0 : N

N Ñ E. Moreover, there exists a measurable function
G0 : E Ñ NN such that F0 ˝ G0pyq “ y for all y P E.

Proof. The mapping F0 can be constructed as follows. For a given ε ą 0
there is a countable covering of E by closed sets of diameter less than ε. From
this one may contrive a map F from finite sequences tn1, . . . , nku in N to closed
sets F pn1, . . . , nkq in E such that
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(1) F pHq “ E;
(2) F pn1, . . . , nkq “ Ť8

ℓ“1 F pn1, . . . , nk; ℓq;
(3) The diameter of F pn1, . . . , nkq is less than 2´k.

Then for x “ tniu P NN the sequence Ek “ F pn1, . . . , nkq is a nested sequence
of closed subsets of E with diameters less than 2´k, respectively. Thus, the
subset

Ş
k Ek consists of a single point F0pyq of E. On the other hand, every

x P E lies inside some
Ş

k Ek. Continuity is easy to verify. The mapping G0

can be constructed as follows. The space NN, endowed with the lexicographical
ordering is totally ordered, and by Proposition 5.49 every closed subset contains
a least element for this order. For y P E the subset F´1

0 pyq is closed in NN, and
therefore it contains a least element G0pyq. This assignment is a measurable
choice (because it can be performed in countably many steps). Then F0˝G0pyq “
y for y P E. The proof of Proposition 5.50 is complete now. �

The proof of the following theorem is based on the fact that a Polish space is
homeomorphic with a Gδ-subset of the Hilbert cube, which, being a countable
product of closed intervals, is a compact metrizable space.

5.51. Theorem. Let µ be a finite positive measure on the Borel field of a Polish
space. Then µ is regular in the sense that

µpBq “ inf tµpOq : O open, B Ă Ou “ sup tµpKq : K compact, K Ă Bu .
(5.55)

Proof. Let Ψ and A be as in the proof of Theorem 5.48. Then Ψ : E Ñ A

is a homeomorphism. Let µ ě 0 be a finite measure on the Borel field of E.
Define the measure ν on the Borel field of r0, 1sN by

νpBq “ µ
“
Ψ´1 pB X Aq

‰
“ µ rΨ P B X As , B Borel subset of r0, 1sN. (5.56)

Then, since the Hilbert cube is compact and complete metrizable, and A is a
Gδ-subset of the Hilbert cube, we see that the measure ν is regular on the Borel
field of r0, 1sN. It also follows that the restriction of ν to the Borel field of A
is regular. However, under the homeomorphism Ψ : E Ñ A the Borel subsets
of E are in a one-to-one correspondence with those of A. It easily follows that
the measure µ is regular in the sense of (5.55), which completes the proof of
Theorem 5.51. �

5.52. Theorem. The following assertions hold for Banach spaces.

(a) Let E be a separable Banach space. Then its dual unit ball B1, endowed
with the weak˚-topology, is a Polish space.

(b) (Helly) The set M`
ď1 is compact-metrizable, and thus Polish for the

vague topology.

Let E 1 be the topological dual space of E. The weak˚-topology is denoted by
σ :“ σ pE 1, Eq.

Proof. (a) Let pxn : n P Nq be a sequence in the unit ball B of E of which
the linear span is dense in E. Define the mapping Φ : pB1, σq Ñ r0, 1sN via the
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map x1 ÞÑ pă xn, x
1 ąq8

n“1. The mapping Φ is continuous and, by the Theorem of
Banach-Alaoglu, the dual unit ball B1 is compact relative the topology σ pE 1, Eq.
It follows that ΦpB1q is a compact subset of r0, 1sN. This image is Polish, and
because the inverse of Φ is continuous, B1 itself is Polish as well.

Let r be a positive real number. Let the set M`
ďr be defined by

M`
ďr “

�
µ P M` : µ pRνq ď r

(
,

and let M`
r be given by

M
`
r “

�
µ P M

` : µ pRνq “ r
(
.

(b) Since M`
ď1 is a vaguely closed subset of M “ C0 pRνq˚, by the Theorem of

Banach-Alaoglu it follows that M`
ď1 is compact for the vague topology. The

fact that the set M`
ď1 is Polish will be proved in Theorem 5.54. This completes

the proof of Theorem 5.52. �

5.53. Definition. A subset A of M is a Prohorov subset, if it satisfies the
following two conditions:

(a) supµPA |µ| pRνq is finite;
(b) For every ǫ ą 0 there exists a compact subset K of Rν such that

sup
µPA

|µ| pRνzKq ď ǫ.

5.54. Theorem. The following assertions are true:

(a) The spaces M`
ď1 and M`

1 are Polish with respect to the vague topology.
(b) The spaces M`

ď1 and M`
1 are Polish with respect to the weak topology.
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Proof of Theorem 5.54. The countable collection
8ď

n“1

#
nÿ

j“1

αjδxj
: αj P Q, αj ě 0,

nÿ

j“1

αj “ 1

+

is dense in M`
1 for the vague as well as for the weak topology. The countable

collection
8ď

n“1

#
nÿ

j“1

αjδxj
: αj P Q, α ě 0, 0 ď

nÿ

j“1

αj ď 1

+

is dense in M`
ď1 for de vague as well as the weak topology. This can be seen

as follows. Let f be a bounded continuous function defined op Rν . Fix ǫ ą 0,
and choose a partition of Rν in Borel subsets pAj : j P Nq in such a way that

|fpxq ´ fpyq| ď ǫ

µ pRνq for all x, y P Aj , and this for all j P N. In addition,

choose N P N so large that
˜
µ pRνq ´

Nÿ

j“1

µ pAjq
¸

}f}8 ď ǫ.

Put aj “ µ pAjq and choose xj P Aj . Then we have
ˇ̌
ˇ̌
ˇ

ż
fdµ ´

řN
j“1 ajfpxjqřN

j“1 aj
µ pRνq

ˇ̌
ˇ̌
ˇ

ď
ˇ̌
ˇ̌
ˇ

8ÿ

j“1

ż

Aj

pfpxq ´ fpxjqq dµpxq
ˇ̌
ˇ̌
ˇ `

ˇ̌
ˇ̌
ˇ
Nÿ

j“1

ajfpxjq
#
1 ´ µ pRνqřN

j“1 aj

+ˇ̌
ˇ̌
ˇ

`
ˇ̌
ˇ̌
ˇ

8ÿ

j“N`1

ż

Aj

fpxqdx
ˇ̌
ˇ̌
ˇ

ď ǫ

µ pRνq
8ÿ

j“1

µ pAjq ` 2 }f}8

#
µ pRνq ´

Nÿ

j“1

µ pAjq
+

ď 3ǫ.

Appealing another time to the continuity of the function f , and using the fact
that the rational numbers are dense in R we obtain the separability of the
sets M`

r and M`
ďr relative tot the vague as well as the weak topology. We

indicate metrics which turn these spaces into Polish spaces. Therefore we choose
a sequence of functions pfk : k P Nq in tf P C00 pRνq : 0 ď f ď 1u whose linear
span is uniformly dense in C0 pRνq. We also choose a sequence puℓ : ℓ P Nq in
C00 pRνq such that 1 ě uℓ`1 ě uℓ ě 0 and such that 1 “ limℓÑ8 uℓpxq for all
x P Rν .

(a) Define the distance dv on M`
ď1 via the formula

dvpµ, νq “
8ÿ

j“1

1

2j

ˇ̌
ˇ̌
ż
fjdµ ´

ż
fjdν

ˇ̌
ˇ̌ , (5.57)

where µ and ν are members of M`
ďr. Supplied with this metric the space M`

ďr

is Polish for the vague topology. The spaces M`
ďr, 0 ă r ď 1, are also closed for
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the vague topology. Since

M`
1 “

8č

n“1

M`
ď1zM`

ď1´1{n (5.58)

we see that M`
1 is a Polish space: see the Theorems 5.47 and 5.52.

(b) Let f0 ” 1 and let the sequences pfk : k P Nq and puℓ : ℓ P Nq be as above.
We define the metric dw by the equality

dwpµ, νq “ sup
ℓPN

ˇ̌
ˇ̌
ż
uℓdµ ´

ż
uℓdν

ˇ̌
ˇ̌ `

8ÿ

j“1

1

2j

ˇ̌
ˇ̌
ż
fjdµ ´

ż
fjdν

ˇ̌
ˇ̌ , (5.59)

where µ and ν belong toM`
ďr. Supplied with this metric the space M`

ďr is Polish
for the weak topology. If we are also able to prove that the spaceM`

ďr is complete
relative to the metric dw, then it follows that the spaces M`

ďr, r ě 0, are Polish.
These spaces are also weakly closed. By the equality in (5.58) in Theorem 5.47
then implies that M`

1 is a Polish space as well. Now let pµm : m P Nq be a dw-
Cauchy sequence in M`

ďr. We will prove that this sequence is a Prohorov set in
M`

ďr. Choose ǫ ą 0 arbitrary. Then there exists Mǫ P N such that for m and
m1 ě Mǫ the inequality

sup
ℓPN

ˇ̌
ˇ̌
ż
uℓdµm ´

ż
uℓdµm1

ˇ̌
ˇ̌ ď ǫ

4
(5.60)

holds. So it follows that

|µm pRνq ´ µm1 pRνq| ď ǫ

4
, m, m1 ě Mǫ. (5.61)

From (5.60) and (5.61) it follows that

sup
ℓPN

ˇ̌
ˇ̌
ż

p1 ´ uℓq dµm ´
ż

p1 ´ uℓq dµm1

ˇ̌
ˇ̌ ď ǫ

2
, (5.62)

for m and m1 ě Mǫ. Then from (5.62) it follows that
ż

p1 ´ uℓq dµm ď
ż

p1 ´ uℓq dµMǫ
` ǫ

2
. (5.63)

From (5.63) it then follows that for ℓ ě ℓǫ and m ě Mǫ the following inequality
holds:

ż
p1 ´ uℓq dµm ď ǫ

4
` ǫ

2
“ 3ǫ

4
. (5.64)

From (5.64) it then follows that for all ℓ ě Lǫ and for all m P N the inequality
ż

p1 ´ uℓq dµm ď ǫ. (5.65)

holds. Then choose the compact subset Kǫ equal the support of the function
uLℓ

. It follows that µm pRνzKǫq ď ǫ for all m P N. Let µ be the vague limit of
the sequence pµm : m P Nq. This limit exists, because M`

ďr is compact for the
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metric dv. Then pick a function u P C00 pRνq in such a way that 1 ě u ě 1Kǫ
.

By the equalityż
fdµm ´

ż
fdµ “

ż
pf ´ fuqdµm `

ż
fudµm ´

ż
fudµ ´

ż
pf ´ fuq dµ

we infer the inequalityˇ̌
ˇ̌
ż
fdµm ´

ż
fdµ

ˇ̌
ˇ̌

ď }f}8

ˆż
p1 ´ uq dµm `

ż
p1 ´ uq dµ

˙
`

ˇ̌
ˇ̌
ż
fudµm ´

ż
fudµ

ˇ̌
ˇ̌

ď }f}8 pµm pRνzKǫq ` µ pRνzKǫqq `
ˇ̌
ˇ̌
ż
fudµm ´

ż
fudµ

ˇ̌
ˇ̌

ď }f}8

ˆ
µm pRνzKǫq ` sup

m

µm pRνzKǫq
˙

`
ˇ̌
ˇ̌
ż
fudµm ´

ż
fudµ

ˇ̌
ˇ̌

ď 2ǫ }f}8

ˇ̌
ˇ̌
ż
fudµm ´

ż
fudµ

ˇ̌
ˇ̌ . (5.66)

Since µ “ vague- limm µm from (5.66) it also follows that µ is the weak limit of
the sequence pµm : m P Nq.
The proof Theorem 5.54 is now complete. �

Part of the proof of Theorem 5.54 comes back in the proof of Theorem 5.55.

5.55. Theorem. A subset S of M`
ďr is relatively weakly compact if and only if

S is a Prohorov subset.
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Proof of Theorem 5.55. First, suppose that S is a Prohorov subset of
M`

ďr. Let pµm : m P Nq be a sequence in S. We will prove that there exists a sub-
sequence that converges weakly. We may assume that, possibly by passing to a
subsequence, that this sequence converges vaguely. By employing the Prohorov
property we will show that, in fact, this sequence converges weakly. Let ǫ ą 0
be arbitrary. Then there exists a compact subset K such that µm pKcq ď ǫ and
also that µ pKcq ď ǫ. Then choose u P C00 pRνq in such a way that 1 ě u ě 1K .
Then we have (see the final part of the proof of Theorem 5.54):

ˇ̌
ˇ̌
ż
fdµm ´

ż
fdµ

ˇ̌
ˇ̌

ď }f}8

ˆż
p1 ´ uq dµm `

ż
p1 ´ uq dµ

˙
`

ˇ̌
ˇ̌
ż
fudµm ´

ż
fudµ

ˇ̌
ˇ̌

ď }f}8 pµm pRνzKq ` µ pRνzKqq `
ˇ̌
ˇ̌
ż
fudµm ´

ż
fudµ

ˇ̌
ˇ̌

ď }f}8

ˆ
µm pRνzKq ` sup

m

µm pRνzKq
˙

`
ˇ̌
ˇ̌
ż
fudµm ´

ż
fudµ

ˇ̌
ˇ̌

ď 2ǫ }f}8

ˇ̌
ˇ̌
ż
fudµm ´

ż
fudµ

ˇ̌
ˇ̌ . (5.67)

Since µ “ vague- limm µm from (5.67) it also follows that µ is the weak limit of
the sequence pµm : m P Nq.
Conversely, suppose that the set S is weakly compact. We will prove that S

possesses the Prohorov property. Assume the contrary. Then there exists an
η ą 0 and there exists an increasing sequence of compact subsets pKm : m P Nq
with the following properties:

(a) Km Ă
˝
Km`1 and Rν “ Ť8

m“1 Km;
(b) For every m P N there exists a measure µm P S such that µm pKc

mq ě η.

Then choose a sequence of functions pum P C00 pRνqq such that 1Km
ď um`1 ď

1Km`1
. From (b) it follows then that, for m ě ℓ,

η ď
ż

p1 ´ 1Km
q dµm ď

ż
p1 ´ 1Kℓ

q dµm ď
ż

p1 ´ uℓq dµm. (5.68)

Since the subset S is relatively weakly compact, there exists a subsequence
pµmk

: k P Nq which converges weakly to a measure µ. From (5.68) we then
see that η ď

ş
p1 ´ uℓq dµ for all ℓ P N. From this we obtain a contradiction,

because the sequence p1 ´ uℓ : ℓ P Nq decreases to 0.

This completes the proof of Theorem 5.55. �

5.56. Corollary. Let pµm : m P Nq be a sequence of measures in M` and let
µ also belong to M`. Choose a sequence of functions pfk : k P Nq in

tf P C00 pRνq : 0 ď f ď 1u
with a linear span that is uniformly dense in C0 pRνq and choose another se-
quence puℓ : ℓ P Nq in C00 pRνq such that 1 ě uℓ`1 ě uℓ ě 0 and such that
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1 “ limℓÑ8 uℓpxq for all x P Rν. Define the metric dw by the equality

dwpν1, ν2q “ sup
ℓPN

ˇ̌
ˇ̌
ż
uℓdν2 ´

ż
uℓ dν1

ˇ̌
ˇ̌ `

8ÿ

j“1

1

2j

ˇ̌
ˇ̌
ż
fjdν2 ´

ż
fjdν1

ˇ̌
ˇ̌ ,

where ν1 and ν2 belong to M`. Then the following assertions are equivalent:

(i) The sequence pµm : m P Nq converges weakly to µ;
(ii) limmÑ8 dw pµm, µq “ 0.

Proof. The proof is left as an exercise for the reader. �

3. A taste of ergodic theory

In this section we will formulate and prove the pointwise ergodic theorem of
Birkhoff. We also indicate its relation with the strong law of large numbers.
We will also show that the strong law of large numbers (SLLN) implies the
weak law of large numbers (WLLN). However, we begin with von Neumann’a
ergodic theorem in a Hilbert space. In what follows the symbol H stands for
a (complex) Hilbert space with inner-product 〈¨, ¨〉 and norm }¨}. An operator
U : H Ñ H is called unitary if it satisfies U˚U “ UU˚ “ I. An operator
P : H Ñ H is called an orthogonal projection if P ˚ “ P “ P 2. Let L be closed
subspace of H . Then H can be written as

H “ L ‘ LK “ PH ` pI ´ P qH,

where P : H Ñ H is an orthogonal projection with range L. The following
theorem is the same as Theorem 7.1 in Romik [151].
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5.57. Theorem. Let H be a Hilbert space, and let U be a unitary operator on
H. Let P be the orthogonal projection operator onto the subspace N pU ´ Iq
(the subspace of H consisting of U-invariant vectors). For any vector v P H the
equality

lim
nÑ8

1

n

n´1ÿ

k“0

Ukv “ Pv.

holds. (Equivalently, the sequence of operators

#
1

n

n´1ÿ

k“0

Uk : n P N

+
converges

to P in the strong operator topology.)

Proof. Define the subspace V Ă H by V “ NpU´Iq “ tv P H : Uv “ vu “
N pU˚ ´ Iq. Then

V “ pRpU ´ IqqK :“ tv P H : 〈pU ´ Iqu, v〉 “ 0 for all u P Hu , (5.69)

where RpU ´ Iq is the range of the operator U ´ I, i.e.

RpU ´ Iq “ tUu ´ u : u P Hu .
Let L be any linear subspace of H . From Hilbert space techniques it is known

that
`
LK˘K

coincides with the closure of the linear subspace L. From these
observations it follows that the subspace N pU ´ Iq ` R pU ´ Iq is dense in H ,
and that the subspaces N pU ´ Iq and R pU ´ Iq are orthogonal. Moreover, we
have ›››››

1

n

n´1ÿ

k“0

Ukv

››››› ď 1

n

n´1ÿ

k“0

››Ukv
›› ď }v} , v P H. (5.70)

Define the subspace L Ă H by

L “
#
v P H : lim

nÑ8

1

n

n´1ÿ

k“0

Ukv “ Pv

+
, (5.71)

where P is the orthogonal projection onto the space V “ NpU ´Iq. From (5.70)
it follows that L is a closed subspace of H . If v P V , i.e. if Uv “ v, then v

belongs to L. If v “ pU ´ Iq u belongs to the range of U ´ I, then

1

n

n´1ÿ

k“0

Ukv “ 1

n

n´1ÿ

k“0

Uk pU ´ Iqu “ 1

n
pUn ´ Iqu, (5.72)

and so by (5.70) and (5.71) it follows that

lim
nÑ8

1

n

n´1ÿ

k“0

Ukv “ 0 “ Pv, (5.73)

whenever v belongs to RpU ´ Iq. Again appealing to (5.70) shows that (5.73)
also holds for v belonging to the closure of RpU ´ Iq. Altogether it shows that
the subspace L coincides withH . This completes the proof of Theorem 5.57. �
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Let pΩ,F,P;T q be a measure preserving system. We associate with the measure
preserving mapping T : Ω Ñ Ω an operator UT on the Hilbert space L2 pΩ,F,Pq
defined by UT pfq “ f˝T , f P L2 pΩ,F,Pq. The fact that T is measure preserving
implies that U˚

TUT “ I:

〈UTf, UTg〉 “ E
“
UTfUTg

‰
“ E

“
f ˝ Tg ˝ T

‰
“ E rpfgq ˝ T s “ E rfgs “ 〈f, g〉 .

(5.74)
From (5.74) it follows that U˚

TUT “ I. In order that UT is a unitary operator
it should also be surjective. Since the range of UT is closed, this is the case
provided that the set of functions f ˝ T , f P L2 pΩ,F,Pq, constitutes a dense
subspace of L2 pΩ,F,Pq. The latter is true if the mapping T has the property

that there exists a measurable mapping rT : Ω Ñ Ω such that rT ˝ T pωq “ ω for

P-almost all ω. Then the operator rU defined by rUf “ f ˝ rT , f P L2 pΩ,F,Pq
is the adjoint of UT . This can be seen as follows. Now we do not only have
U˚
TUT “ I, but we also have UT

rUf “ rUf ˝ T “ f ˝ rT ˝ T “ f , f P L2 pΩ,F,Pq.
Hence, we see

rU “ pU˚
TUT q rU “ U˚

T

´
UT

rU
¯

“ U˚
T .

Note also that the subspace NpU ´ Iq consists exactly of the invariant (square-
integrable) random variables, or equivalently those random variables which are
measurable with respect to the σ-algebra I of invariant events. Recalling the
discussion of conditional expectations in Theorem 1.4, item (11), in Chapter 1,
we also see that the orthogonal projection operator P is exactly the conditional
expectation operator E

“
¨

ˇ̌
I
‰
with respect to the σ-algebra of invariant events

I. Thus, Theorem 5.57 applied to this setting gives the following result.

5.58. Theorem (The L2 ergodic theorem). Let pΩ,F,P;T q be a measure pre-
serving system. For any random variable X P L2 pΩ,F,Pq the equality

lim
nÑ8

1

n

n´1ÿ

k“0

X ˝ T k “ E
“
X

ˇ̌
I
‰

(5.75)

holds in L2 pΩ,F,Pq. In particular, if the system is ergodic then

L2- lim
nÑ8

1

n

n´1ÿ

k“0

X ˝ T k “ E rXs . (5.76)

Since the operator S : L2 pΩ,F,Pq Ñ L2 pΩ,F,Pq, defined by Sf “ f ˝ T ,
f P L2 pΩ,F,Pq, is not necessarily unitary, Theorem 5.58 requires a proof. It
only satisfies S˚S “ I. The proof is based on the proof of Theorem 5.66 below.

Proof. Theorem 5.58 is a consequence of Theorem 5.59 which includes the
L1-version of Theorem 5.58. More precisely, we have to prove that

lim
nÑ8

E

»
–

ˇ̌
ˇ̌
ˇ
1

n

n´1ÿ

k“0

X ˝ T k ´ E
“
X

ˇ̌
I
‰
ˇ̌
ˇ̌
ˇ

2
fi
fl “ 0. (5.77)

Let X P L2 pΩ,F,Pq be bounded. Then we can use Theorem 5.59 together
Lebesgue’s theorem of dominated convergence that the equality in (5.77) holds
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for X. A general function X P L2 pΩ,F,Pq can be approximated by bounded

functions in L2-sense. Since
ş

|f ˝ T |2 dµ “
ş

|f |2 dµ, and so the convergence in
(5.77) also holds for all L2-functions. The precise argument follows as in (5.122)
below with Sf “ f ˝ T , f P L2 pΩ,F,Pq, and relative to the L2-norm instead
of the L1-norm. So let f belong to L2 pΩ,F,Pq, and let M ą 0 be an arbitrary
real number. Then we have:›››››

1

n

n´1ÿ

k“0

Skf ´ Pµf

›››››
L2

ď
›››››

˜
1

n

n´1ÿ

k“0

Sk ´ Pµ

¸
`
f1t|f |ăMu

˘
›››››
L2

`
›››››

˜
1

n

n´1ÿ

k“0

Sk ´ Pµ

¸
`
f1t|f |ěMu

˘
›››››
L2

ď

¨
˝

ż ˇ̌
ˇ̌
ˇ

˜
1

n

n´1ÿ

k“0

Sk ´ Pµ

¸
`
f1t|f |ăMu

˘
ˇ̌
ˇ̌
ˇ

2

dP

˛
‚

1{2

` 2

ˆż

t|f |ěMu
|f |2 dP

˙1{2
.

(5.78)

As in the proof of Theorem 5.66 in (5.78) we first let n Ñ 8, and then M Ñ 8
to obtain the L2-convergence in Theorem 5.58. �
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The pointwise ergodic theorem of Birkhoff requires some more work. In what
follows pΩ,F, µq is positive measure space, and T : Ω Ñ Ω is a measure preserv-
ing mapping, i.e. µ tT P Au “ µ tT´1Au “ µ tAu for all A P F with µ tAu ă 8.
An equivalent formulation reads as follows. For all f P L1 pΩ,F, µq the equalityş
f ˝T dµ “

ş
f dµ holds. In other words the quadruple pΩ,F,P;T q is a measure

preserving system, or dynamical system. The operator Pµ in (5.80) is a projec-
tion mapping from L1 pΩ,F, µq onto a space consisting of T -invariant functions.
Hence a function of the form g “ Pµf satisfies g ˝ T “ g µ-almost everywhere,
and so g is measurable with respect to the invariant σ-field I. In addition, if h
is a bounded, T -invariant function in L1 pΩ,F, µq, then we have

ż
pPµfq h dµ “

ż
Pµ pfhq dµ “

ż
fh dµ. (5.79)

In other words the function Pµf is the µ-conditional expectation of the function
f on the σ-field of invariant subsets. A measure preserving system pΩ,F, µ;T q
is called ergodic if a T -invariant function is constant µ-almost every, and so the
σ-field I is trivial, i.e. I consists, up to sets of µ-measure zero, of the void set
and of Ω.

5.59. Theorem (The pointwise ergodic theorem in L1). Let pΩ,F, µ;T q be a
measure preserving system. For any function f P L1 pΩ,F, µq the equality

lim
nÑ8

1

n

n´1ÿ

k“0

f ˝ T k “ Pµf (5.80)

holds µ-almost everywhere. In particular, if the system is ergodic then the equal-
ity

lim
nÑ8

1

n

n´1ÿ

k“0

f ˝ T k “
ż
f dµ. (5.81)

holds µ-almost everywhere. If µ is a probability measure, then the limits in
(5.80) and (5.81) also hold in L1-sense, and Pµf “ Eµ

“
f

ˇ̌
I
‰
.

Proof. The proof of Theorem 5.59 follows from Theorem 5.66 and its Corol-
lary 5.67 with µ pΩq “ 1, and Sf “ f ˝ T , f P L1 pΩ,F, µq. �

Let pΩ0,F0,Pq be a probability space, and let Xj : Ω0 Ñ R, j “ 0, 1, . . ., be
a sequence of independent and identically distributed variables (i.i.d.). Let us

show that the SLLN is a consequence: see Theorem 2.54. Put Sn “ řn´1

k“0 Xk.

5.60. Theorem (Strong law of large numbers). The equality

lim
nÑ8

Sn

n
“ α, holds P-almost surely

for some finite constant α, if and only if E r|Xk|s ă 8, and then α “ E rX1s.

Proof. Let Ω “ RN, endowed with the product σ-field F “ b8
j“0Bj where

Bj is the Borel field on R. Define the probability measure µ on F by

µpAq “ E r1A pX0, X1, . . .qs “ P rpX0, X1, . . .q P As , A P F.
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Put Sf px0, x1, . . .q “ f px1, x2, . . .q, f P L1 pΩ,F, µq, px0, x1, . . .q P Ω. Thenş
Sf dµ “

ş
f dµ, f P L1 pΩ,F, µq. The assertion in Theorem 5.60 follows from

Theorem 5.66 and its Corollary 5.67 by applying them to the function f0 : Ω Ñ
R defined by f0 px0, x1, . . .q “ x0, px0, x1, . . .q P Ω. Then

n´1ÿ

k“0

`
Skf0

˘
pX0, X1, X2, . . .q “

n´1ÿ

k“0

f0 pXk, Xk`1, . . .q “
n´1ÿ

k“0

Xk, k “ 0, 1, . . . ,

and hence Theorem 5.60 is a consequence of Theorem 5.66 and its Corollary 5.67.
Theorem 5.60 also follows from Theorem 5.59 by applying it to the mapping
T : Ω Ñ Ω given by T px0, x1, . . .q “ px1, x2, . . .q, px0, x1, . . .q P Ω. �

We will formulate some of the results in terms of positivity preserving operators
S : L1 pΩ,F, µq Ñ L1 pΩ,F, µq.
5.61. Lemma. Let S : L1 pΩ,F, µq Ñ L1 pΩ,F, µq be a linear map, and let f ě 0
belong to L1 pΩ,F, µq. Then the following assertions are equivalent:

(i) min pSf, 1q “ S pmin pf, 1qq;
(ii) max pSf ´ 1, 0q “ S pmax pf ´ 1, 0qq;
(iii) min pSf, 1q ď S pmin pf, 1qq, and max pSf ´ 1, 0q “ S pmax pf ´ 1, 0qq.

Suppose that for every f ě 0, f P L1 pΩ,F, µq the operator S satisfies one, and
hence all of the conditions (i), (ii) and (iii). In addition, assume thatż

|Sf | dµ ď
ż
f dµ, for all f P L1 pΩ,F, µq, f ě 0. (5.82)

Then S is positivity preserving in the sense that f ě 0, f P L1 pΩ,F, µq, implies
Sf ě 0, and contractive in the sense that

ş
|Sf | dµ ď

ş
|f | dµ for all f P

L1 pΩ,F, µq. Then the equivalent conditions (iv), (v), (vi). and (vii) given by

(iv) The equality S pfgq “ pSfq pSgq holds for all f P L1 pΩ,F, µq, and for
all g P L1 pΩ,F, µq Ş

L8 pΩ,F, µq,
(v) S pmin pf, gqq “ min pSf, Sgq is true for all f , g P L1 pΩ,F, µq,
(vi) The equality S pmax pf ´ 1, 0qq “ max pSf ´ 1, 0q holds for every f P

L1 pΩ,F, µq.
(vii) The S1tfą1u “ 1tSfą1u holds for every f P L1 pΩ,F, µq.

are also true. Moreover, (vi) implies that if the assertions (i), (ii) and (iii)
are true for all positive functions f in L1 pΩ,F, µq, then they are true for all
functions f in L1 pΩ,F, µq. If the measure µ is finite, then all assertions (i),
(ii), (iii) (for all f ě 0, f P L1 pΩ,F, µq,) and (iv), (v), (vi) and (vii) are
equivalent. Finally, the operator S : L1 pΩ,F, µq Ñ L1 pΩ,F, µq is continuous,
more precisely,ż

|Sf | dµ “
ż
S |f | dµ ď

ż
|f | dµ, f P L1 pΩ,F, µq . (5.83)
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5.62.Remark. Assertion (iv) also holds for all f, g P L1 pΩ,F, µq Ş
L2 pΩ,F, µq.

The equality in (v) can be replaced with

S pmax pf, gqq “ max pSf, Sgq for all f, g P L1 pΩ,F, µq. (5.84)

The latter is true because minpf, gq ` maxpf, gq “ f ` g.

Proof of Lemma 5.61. The equivalence of the assertions (i), (ii) and (iii)
follows from the following identities:

min pSf, 1q ` S pmax pf ´ 1, 0qq “ Sf “ min pSf, 1q ` max pSf ´ 1, 0q .
Now assume that for all f ě 0, the operator S satisfies (i), (ii) or (iii), and
assume that S is contractive in the sense of (5.82). Let f ě 0 belong to
L1 pΩ,F, µq, and put fn “ max pf ´ n´1, 0q. Then the sequence pf ´ fnqn de-
creases to 0, and hence, by (5.82), limnÑ8

ş
|Sf ´ Sfn| dµ “ 0. Then there

exists a subsequence pfnk
qk such that the sequence pSfnk

qk converges to Sf µ-
almost everywhere. Hence Sf ě 0 µ-almost everywhere. In fact it follows that
the sequence pSfnqn increases to Sf µ-almost everywhere. Let f P L1 pΩ,F, µq,
and write f “ f` ´ f´ where f` “ max pf, 0q, and f´ “ max p´f, 0q. Then
|f | “ f` ´ f´, and |Sf | ď Sf` ` Sf´. From (5.82) it the follows thatż

|Sf | dµ ď
ż

pSf` ` Sf´q dµ “
ż
S pf` ` f´q dµ “

ż
S |f | dµ ď

ż
|f | dµ.
(5.85)
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The inequalities in (5.85) prove the contraction property of the operator S. Next
we prove the assertions (iv), (v) and (vi) starting from (i), (ii) or (iii) for all f P
L1 pΩ,F, µq, f ě 0. Let the function f ě 0 belong to L1 pΩ,F, µq Ş

L2 pΩ,F, µq.
Then we write

f 2 “ 2

ż 8

0

max pf ´ α, 0q dα “ sup
n

2´n`1

n2nÿ

j“1

max
`
f ´ j2´n, 0

˘
,

ad so

S
`
f 2

˘
“ 2

ż 8

0

Smax pf ´ α, 0q dα

“ sup
n

2´n`1

n2nÿ

j“1

S
`
max

`
f ´ j2´n, 0

˘˘

(apply assertion (ii))

“ sup
n

2´n`1

n2nÿ

j“1

max
`
Sf ´ j2´n, 0

˘

“ 2

ż 8

0

max pSf ´ α, 0q dα “ pSfq2 . (5.86)

The equality in (5.86) shows that the assertion in (iv) is true provided that
f “ g ě 0. For general f “ g we split f in its positive and negative part.
For general f and g belonging to L1 pΩ,F, µq Ş

L2 pΩ,F, µq we write 2fg “
pf ` gq2 ´f 2 ´g2. Altogether this shows assertion (iv). (iv) ñ (v) Let f belong
to L1 pΩ,F, µq Ş

L2 pΩ,F, µq. Then we write

|f | “ 2

π

ż 8

0

f 2

t2 ` f 2
dt,

and so by assertion (iv) we get

S |f | “ 2

π

ż 8

0

S

"
f 2

t2 ` f 2

*
dt

(for explanation see below: equality (5.89))

“ 2

π

ż 8

0

S pf 2q
t2 ` S pf 2q dt

((iv) implies S pf 2q “ pSfq2)

“ 2

π

ż 8

0

pSfq2

t2 ` pSfq2
dt “ |Sf | . (5.87)

The equality in (5.87) shows that (5.84) is true for g “ ´f . For general
f, g P L1 pΩ,F, µq Ş

L2 pΩ,F, µq we write 2max pf, gq “ |f ´ g| ` f ` g. Conse-
quently, assertion (v) follows for f, g P L1 pΩ,F, µq Ş

L2 pΩ,F, µq. If f and g are
arbitrary functions in L1 pΩ,F, µq, then we approximate them by fn :“ f1t|f |ďnu
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and by gn :“ g1t|g|ďnu respectively. This shows that assertion (v) is a conse-
quence of (iv), except that the proof of the second equality in (5.87) is not
provided yet. In order to prove this equality it suffices to prove that, for a ą 0
and g ě 0, g P L1 pΩ,F, µq the equality

S

"
g

a ` g

*
“ Sg

a ` Sg
(5.88)

holds. By assertion (iv) we have

S

"
g

a ` g

*
pa ` Sgq “ S

"
ag

a ` g

*
` S

"
g

a ` g

*
Sg

“ S

"
ag

a ` g

*
` S

"
g2

a ` g

*
“ Sg. (5.89)

The equality in (5.89) shows the validity of (5.88). Therefore the second equality
in (5.87) is proved now.

(ii) plus (v) ñ (vi) We apply (5.84), which is equivalent to (v), with f P
L1 pΩ,F, µq arbitrary and g “ 0 to obtain

S pmax pf ´ 1, 0qq “ S pmax pmax pf, 0q ´ 1, 0qq

(employ assertion (ii))

“ max pSmax pf, 0q ´ 1, 0q

(apply assertion (v))

“ max pmax pSf, S0q ´ 1, 0q
“ max pmax pSf, 0q ´ 1, 0q “ max pSf ´ 1, 0q .

Hence, assertion (vi) follows from (ii) and (v).

(vi) ñ (v) Let f P L1 pΩ,F, µq. By assertion (vi) we have

Smax pf, 0q “ lim
εÓ0

Smax pf ´ ε, 0q “ lim
εÓ0

max pSf ´ ε, 0q “ max pSf, 0q .
(5.90)

Whence, Smax pf, 0q “ max pSf, 0q. Since |f | “ 2max pf, 0q ´ f we easily infer
S |f | “ |Sf |, and assertion (v) follows: see the proof of the implication (iv) ñ
(v).

(ii) plus (v) ñ (iv) Let f belong to L1 pΩ,F, µq Ş
L2 pΩ,F, µq. Then we write

f 2 “ 2

ż 8

0

max p|f | ´ α, 0q dα,

and so by assertion (ii) and (v) we get

S
`
f 2

˘
“ 2

ż 8

0

max pS |f | ´ α, 0q dα

“ 2

ż 8

0

max p|Sf | ´ α, 0q dα

“ |Sf |2 “ pSfq2 ,
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and hence (iv) follows. (vi) ñ (vii) Let f belong to L1 pΩ,F, µq. Then 1tfą1u is
µ-integrable as well. Then we have

S1tfą1u “ lim
mÑ8

S pmin pmmax pf ´ 1, 0qqq
“ lim

mÑ8
pmin pmmax pSf ´ 1, 0qqq “ 1tSfą1u. (5.91)

The equality of the ultimate terms in (5.91) proves the implication (vi) ñ (vii).

(vii) ñ (vi) Let f belong to L1 pΩ,F, µq. Then the functions 1tfąαu, α ą 0, are
µ-integrable as well. We have

S pmax pf ´ 1, 0qq “ S

ż 8

0

1tf´1ąαu dα “
ż 8

0

S1tf´1ąαu dα

“
ż 8

0

1tSf´1ąαu dα “ max pSf ´ 1, 0q . (5.92)

The equality of the ultimate terms in (5.92) proves the implication (vii) ñ (vi).

If the measure µ is finite, then the constant functions belong to L1 pΩ,F, µq.
Since S1 “ 1, it is easy to see that assertion (iv) implies assertion (i), and hence
by what is proved above, we see that for a finite measure µ all assertion (i)
through (vi) are equivalent. The equality and inequality in (5.83) follow from
assertion (v) and the inequality in (5.82). This completes the proof of Lemma
5.61. �

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 WHY WAIT FOR 
PROGRESS?

Discovery means many different things at 
Schlumberger. But it’s the spirit that unites every 
single one of us. It doesn’t matter whether they 
join our business, engineering or technology teams, 
our trainees push boundaries, break new ground 
and deliver the exceptional. If that excites you, 
then we want to hear from you.

careers.slb.com/recentgraduates

DARE TO DISCOVER

http://s.bookboon.com/Schlumberger


ADVANCED STOCHASTIC PROCESSES: PART II SOME RELATED RESULTS

364

364 5. SOME RELATED RESULTS

5.63. Proposition. Let g and h be functions in L1 pΩ,F, µq. Define, for ´8 ă
a ă b ă 8, the subset C

tg,hu
a,b by

C
tg,hu
a,b “ tg ă a ă b ă hu . (5.93)

Then the following equality holds:

S1
C

tg,hu
a,b

“ 1
C

tSg,Shu
a,b

. (5.94)

Proof. Since C
t´h,´gu
´b,´a “ tg ă a ă b ă hu we may assume that b ą 0. If

a ă 0, then 1tgăaăbăhu “ 1t´gą´au1thąbu. From assertions (iv) and (vii) of
Lemma 5.61 it follows that

S1tgăaăbăhu “ 1t´Sgą´au1tShąbu “ 1tSgăaăbăShu,

and consequently (5.94) follows for a ă 0 ă b. If a “ 0, then we replace a with
a ´ ε and let ε Ó 0. If a ą 0, then we consider, for 0 ă ε ă a,

1tgďa´εăbăhu “ 1thąbu ´ 1tgąa´εu1thąbu. (5.95)

Another application of the assertions (iv) and (vii) of Lemma 5.61 then yields
by employing (5.95) the equality:

S1tgďa´εăbăhu “ 1tShąbu ´ 1tSgąa´εu1tShąbu “ 1tSgďa´εăbăShu. (5.96)

In (5.96) we let ε Ó 0 to obtain the equality in (5.93) for 0 ă a ă b. This
completes the proof of Proposition 5.63. �

We also need the following proposition. It will be used with gn “ hn of the form

hn “ 1

n

n´1ÿ

k“0

Skf where f P L1 pΩ,F, µq.

5.64. Proposition. Let tgnun and thnun be sequences in L1 pΩ,F, µq with the
property that for every c ą 0 the subsets tsupn |gn| ą cu and tsupn |hn| ą cu have

finite µ-measure. Define, for ´8 ă a ă b ă 8, the subset C
tgnun,thnun
a,b by

C
tgnun,thnun
a,b “

"
lim inf
nÑ8

gn ă a ă b ă lim sup
nÑ8

hn

*
. (5.97)

Then the following equality holds:

S1
C

tgnun,thnun
a,b

“ 1
C

tSgnu,tShnun
a,b

. (5.98)

Proof. We write the function 1
C

tgnun,thnun
a,b

as follows:

1
C

tgnun,thnun
a,b

“ sup
N1

inf
N 1

1

sup
N2

inf
N 1

2

min
N1ďn1ďN 1

1

max
N2ďn2ďN 1

2

1tgn1
ăaăbăhn2u, (5.99)

where the suprema and infima are monotone limit operations in L1 pΩ,F, µq.
An appeal to assertion (v) in Lemma 5.61, to (5.83), and to (5.84) the equality
in (5.99) implies

S1
C

tgnun,thnun
a,b

“ sup
N1

inf
N 1

1

sup
N2

inf
N 1

2

min
N1ďn1ďN 1

1

max
N2ďn2ďN 1

2

S1tgn1
ăaăbăhn2u. (5.100)
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The equality in (5.96) in combination with (5.100) then shows

S1
C

tgnun,thnun
a,b

“ sup
N1

inf
N 1

1

sup
N2

inf
N 1

2

min
N1ďn1ďN 1

1

max
N2ďn2ďN 1

2

1tSgn1
ăaăbăShn2u

“ 1
C

tSgnun,tShnun
a,b

. (5.101)

The equality in (5.101) completes the proof of Proposition 5.64. �

5.65.Theorem (Maximal ergodic theorem). Let S : L1 pΩ,F, µq Ñ L1 pΩ,F, µq
be a linear map, which is positivity preserving and contractive. So that f P
L1 pΩ,F, µq and f ě 0 implies Sf ě 0 and }Sf}1 ď }f}1. Define for f P
L1 pΩ,F, µq the to S corresponding maximal function rf by

rf “ sup
nPN

1

n

n´1ÿ

k“0

Skf. (5.102)

Then the following assertions are valid:

(a) If f belongs to L1 pΩ,F, µq, then
ż

t rfą0u
f dµ ě 0;

(b) If, in addition, min pSf, 1q “ S pminpf, 1qq, for all f P L1 pΩ,F, µq,
f ě 0, then for any a ą 0 and any f P L1 pΩ,F, µq, the following
inequalities hold:

µ tSf ą au ď µ tf ą au , and aµ
!

rf ą a
)

ď }f}1 . (5.103)

Observe that the second inequality in (5.103) resembles the Doob’s maximal
inequality for sub-martingales: see Theorem 5.110 or Proposition 3.107.

Proof. (a) Let f P L1 pΩ,F, µq, and define, for n a positive integer, the
function hn by

hn “ max
0ďkďn´1

max

˜
0,

kÿ

j“0

Sjf

¸
. (5.104)

Then we have hn`1 ě hn ě 0, and for ω P Ω such that hn`1pωq ą 0, we have
Shnpωq`fpωq ěn`1 pωq. The latter inequality is a consequence of the inequality

f ` Shn “ f ` S

˜
max

0ďkďn´1
max

˜
0,

kÿ

j“0

Sjf

¸¸

ě f ` max
0ďkďn´1

S

˜
max

˜
0,

kÿ

j“0

Sjf

¸¸

ě max
0ďkďn´1

˜
max

˜
f ` S0, f `

kÿ

j“0

Sj`1f

¸¸

“ max
0ďkďn´1

˜
max

˜
f,

k`1ÿ

j“0

Sjf

¸¸
“ max

0ďkďn

˜
kÿ

j“0

Sjf

¸
. (5.105)
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From (5.105) it readily follows that

f ` Shn ě hn`1 on thn`1 ą 0u . (5.106)

Notice that in the arguments leading to hn`1 ě hn, and also to (5.105), we
employed the fact that g ě 0, g P L1 pΩ,F, µq, implies Sg ě 0. From (5.106) we
infer ż

thn`1ą0u
f dµ ě

ż

thn`1ą0u
phn`1 ´ Shnq dµ

“
ż

thn`1ą0u
hn`1 dµ ´

ż

thn`1ą0u
Shn dµ

ě
ż
hn`1 dµ ´

ż
Shn dµ ě

ż
hn`1 dµ ´

ż
hn dµ

“
ż

phn`1 ´ hnq dµ ě 0. (5.107)

From (5.107) we obtainż

t rfą0u
f dµ “

ż
Ť8

n“0
thn`1ą0u

f dµ “ lim
nÑ8

ż

thn`1ą0u
f dµ ě 0. (5.108)

The inequality in (5.108) entails assertion (a).
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(b) Let f ě 0 belong to L1 pΩ,F, µq, and fix a ą 0. We first prove that
µ tSf ą au ď µ tf ą au, i.e. the first inequality in (5.103). Let m be a positive
integer. By the extra hypothesis in (b), together with assertion (ii) in Lemma
5.61, we have

min pmmax pSf ´ a, 0q , 1q “ S pmin pmmax pf ´ a, 0q , 1qq . (5.109)

From (5.109) we deduce
ż
min pmmax pSf ´ a, 0q , 1q dµ “

ż
S pmin pmmax pf ´ a, 0q , 1qq dµ

ď
ż
min pmmax pf ´ a, 0q , 1q dµ. (5.110)

In (5.110) we let m tend to 8 to obtain:

µ tSf ą au “ lim
mÑ8

ż
min pmmax pSf ´ a, 0q , 1q dµ

ď lim
mÑ8

ż
min pmmax pf ´ a, 0q , 1q dµ “ µ tf ą au . (5.111)

This proves the first inequality in (5.103). In order to show the second inequality
in (5.103) we proceed as follows. Let f be a member of L1 pΩ,F, µq, and define,

always for a ą 0 fixed, the subset D by D “
!

rf ą a
)
. Here rf is as in (5.106).

In addition, define for n a positive integer, the subset Dn by

Dn “
nď

k“0

�
Skf ą a

(
X D.

Then we have

µ tDnu ď
nÿ

k“0

µ
�
Skf ą a

(
ď

nÿ

k“0

µ tf ą au “ pn ` 1qµ tf ą au ď n ` 1

a
}f}1 ,

and so µ tDnu is finite. We also have D Ą Dn`1 Ą Dn, and D “
8ď

n“1

Dn. Hence,

because for f P L1 pΩ,F, µq we have

rf ´ a ď rf ´ aĄ1Dn
ď Čpf ´ a1Dn

q,
it follows that

aµ tDnu “
ż

t rfąau
a1Dn

dµ “
ż

t rf´aą0u
a1Dn

dµ ď
ż

t Čpf´a1Dn qą0u
a1Dn

dµ

“
ż

t Čpf´a1Dn qą0u
pa1Dn

´ fq dµ `
ż

t Čpf´a1Dn qą0u
f dµ (5.112)

(apply assertion (a) to the first terem in (5.112))

ď 0 `
ż

t Čpf´a1Dn qą0u
f dµ ď }f}1 . (5.113)
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In (5.113) we let n tend to 8 and infer aµ
!

rf ą a
)

ď }f}1. This is the second

inequality in (5.103), and completes the proof of Theorem 5.65. �

5.66. Theorem (Theorem of Birkhoff). Let S : L1 pΩ,F, µq Ñ L1 pΩ,F, µq be
a linear operator such that for every f ě 0, f P L1 pΩ,F, µq, the following two
conditions are satisfied:

(i) S pmin pf, 1qq “ min pSf, 1q;
(ii) }Sf}1 :“

ş
|Sf | dµ ď

ş
f dµ “ }f}1.

(It follows that all properties mentioned in Lemma 5.61 are available as well
as the Propositions 5.63 and 5.64, and Theorem 5.65.) Then for every f P
L1 pΩ,F, µq the pointwise limit

lim
nÑ8

1

n

n´1ÿ

k“0

Skf “: Pµf (5.114)

exists µ-almost everywhere. In addition, Pµf belongs to L1 pΩ,F, µq, and the
operator Pµ is a projection operator, i.e. P 2

µ “ Pµ, with the following properties:

(a)
ş

|Pµf | dµ ď
ş

|f | dµ, and
(b) SPµf “ PµSf “ Pµf , where f belongs to L1 pΩ,F, µq.

If the measure µ is a probability measure, then the limit in (5.114) is also an L1-
limit, and Pµf “ Eµ

“
f

ˇ̌
I
‰
, f P L1 pΩ,F, µq, where Eµ

“
f

ˇ̌
I
‰
denotes the con-

ditional expectation on the σ-field of invariant events: I “ tA P F : S1A “ 1Au.

Before we prove this theorem we insert a corollary.

5.67. Corollary. Let the notation and hypotheses be as in Theorem 5.66.
Suppose that the operator S is ergodic in the sense that S1 “ 1, and Sf “ f ,
f P L1 pΩ,F, µq, implies f “ constant µ-almost everywhere. If µ pΩq “ 8, then
Pµf “ 0, f P L1 pΩ,F, µq. If µ pΩq “ 1, then Pµf “

ş
f dµ, f P L1 pΩ,F, µq.

Proof. Let f P L1 pΩ,F, µq. Then SPµf “ Pµf , and so by ergodicity Pµf

is a constant µ-almost everywhere. If µ pΩq “ 8, then this constant must be
zero, because Pµf belongs to L1 pΩ,F, µq. If µ pΩq “ 1, then, by the L1-version
of Theorem 5.66, we have

ż
Pµf dµ “ lim

nÑ8

1

n

n´1ÿ

k“0

ż
Skf dµ “

ż
f dµ, (5.115)

and the inequality in (5.115) completes the proof of Corollary 5.67. �

Proof of Theorem 5.66. Define for f P L1 pΩ,F, µq, and ´8 ă a ă b ă
8 the subset Cf

a,b by

C
f
a,b “

#
lim inf
nÑ8

1

n

n´1ÿ

k“0

Skf ă a ă b ă lim sup
nÑ8

1

n

n´1ÿ

k“0

Skf

+
. (5.116)
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Then C
f
a.b belongs to F, and by Theorem 5.65 it follows that µ

”
C

f
a,b

ı
ă 8. By

Proposition 5.64 we see that

S1
C

f
a,b

“ 1
C

Sf
a,b

“ 1
C

f
a,b
. (5.117)

As in equality (5.102) in Theorem 5.65 we write rg for the maximal function

corresponding to g P L1 pΩ,F, µq. Then, with C “ C
f
a,b, we see

Čppa ´ fq 1Cq “ sup
n

1

n

n´1ÿ

k“0

Sk tpa ´ fq 1Cu “ sup
n

1

n

n´1ÿ

k“0

�
a ´ Sk´1f

(
1C

“
˜
a ´ inf

n

1

n

n´1ÿ

k“0

Skf

¸
1C , (5.118)

and so from (5.118) and the definition of C “ C
f
a,b we see that

C Ă
!

Čppa ´ fq 1Cq ą 0
)
. (5.119)

The inclusion in (5.119) together with Theorem 5.65 yields
ż

pa ´ fq 1C dµ “
ż

C

pa ´ fq 1C dµ “
ż

t Čppa´fq1Cqą0u
pa ´ fq 1C dµ ě 0. (5.120)

As a consequence (5.120) implies
ş
C
f dµ ď aµ pCq. A similar reasoning shows

that C Ă
!

Čppf ´ bq 1Cq ą 0
)
, and therefore, like in (5.120),

ż
pf ´ bq 1C dµ “

ż

t Čppf´bq1Cqą0u
pf ´ bq 1C dµ ě 0,

and hence bµ pCq ď
ş
C
f dµ. Since (5.120) entails

ş
C
f dµ ď aµ pCq, we obtain

bµ pCq ď aµ pCq. Since b ą a and µ pCq we get µ
´
C

f
a,b

¯
“ 0. The subset C0

defined by

C0 “
#
lim inf
nÑ8

1

n

n´1ÿ

k“0

Skf ă lim sup
nÑ8

1

n

n´1ÿ

k“0

Skf

+

can be written in the form

C0 “
ď

´8ăaăbă8, a,bPQ
C

f
a,b,

where the symbol Q denotes the set of rational numbers. So, by what is proved
above the set C0 can be covered by a countable collection of subsets of the form
C

f
a,b, ´8 ă a ă b ă 8, all of which have µ-measure 0. Whence, µ pC0q “ 0. So

the pointwise limit in (5.114) exists µ-almost everywhere.

(a) Next we prove assertion (a), and therefore Pµf belongs to L1 pΩ,F, µq. By
Fatou’s lemma we have

ż
|Pµf | dµ “

ż ˇ̌
ˇ̌
ˇ limnÑ8

1

n

n´1ÿ

k“0

Skf

ˇ̌
ˇ̌
ˇ dµ ď

ż
lim inf
nÑ8

1

n

n´1ÿ

k“0

ˇ̌
Skf

ˇ̌
dµ
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ď lim inf
nÑ8

1

n

n´1ÿ

k“0

ż ˇ̌
Skf

ˇ̌
dµ ď lim inf

nÑ8

1

n

n´1ÿ

k“0

ż
|f | dµ “

ż
|f | dµ.

(5.121)

The inequality in (5.121) shows property (a).

The fact that P 2
µ “ Pµ follows from (b). First let f ě 0 belong to L1 pΩ,F, µq.

Then

Pµf “ lim inf
nÑ

1

n

n´1ÿ

k“0

Skf “ sup
N

inf
N 1ěN

min
NďnďN 1

1

n

n´1ÿ

k“0

Skf,

and hence

SPµf “ lim inf
nÑ

1

n

n1ÿ

k“0

Skf “ sup
N

inf
N 1ěN

min
NďnďN 1

1

n

n´1ÿ

k“0

Sk`1f

“ lim inf
nÑ8

1

n

n´1ÿ

k“0

Sk`1f “ PµSf “ Pµf,

which implies property (b) for non-negative functions in L1 pΩ,F, µq. A general
function can be written as a difference of non-negative functions in L1 pΩ,F, µq.
This proves property (b).

Next we assume that µ pΩq “ 1. First we will show that the pointwise limit in
(5.114) is in fact also an L1-limit. For this purpose we fix f P L1 pΩ,F, µq and
a real number M ą 0. Then we have
ż ˇ̌

ˇ̌
ˇ
1

n

n´1ÿ

k“0

Skf ´ Pµf

ˇ̌
ˇ̌
ˇ dµ

ď
ż ˇ̌

ˇ̌
ˇ

˜
1

n

n´1ÿ

k“0

Sk ´ Pµ

¸
`
f1t|f |ăMu

˘
ˇ̌
ˇ̌
ˇ dµ `

ż ˇ̌
ˇ̌
ˇ

˜
1

n

n´1ÿ

k“0

Sk ´ Pµ

¸
`
f1t|f |ěMu

˘
ˇ̌
ˇ̌
ˇ dµ

ď
ż ˇ̌

ˇ̌
ˇ

˜
1

n

n´1ÿ

k“0

Sk ´ Pµ

¸
`
f1t|f |ăMu

˘
ˇ̌
ˇ̌
ˇ dµ ` 2

ż

t|f |ěMu
|f | dµ. (5.122)

Since |g| ď M , g P L1 pΩ,F, µq implies |Sg| ď M and |Pµg| ď M , the integrand
in the first term of the right-hand side of (5.122) is dominated by the constant
L1-function 2M . So from Lebesgue’s dominated convergence theorem, (5.114)
and (5.122) it follows that

lim sup
nÑ8

ż ˇ̌
ˇ̌
ˇ
1

n

n´1ÿ

k“0

Skf ´ Pµf

ˇ̌
ˇ̌
ˇ dµ ď 2

ż

t|f |ěMu
|f | dµ. (5.123)

Since M ą 0 is arbitrary and f P L1 pΩ,F, µq the inequality in (5.123) implies

lim sup
nÑ8

ż ˇ̌
ˇ̌
ˇ
1

n

n´1ÿ

k“0

Skf ´ Pµf

ˇ̌
ˇ̌
ˇ dµ “ 0,

which is the same as saying that the limit in (5.114) also holds in L1-sense. The
equality Pµf “ Eµ

“
f

ˇ̌
I
‰
, f P L1 pΩ,F, µq, follows from the following two facts:
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(a) the collection tA P F : S1A “ 1Au is a σ-field, which is readily estab-
lished.

(b) Moreover, if f ě 0 is such that Sf “ f , and if α ą 0, then S1tfąαu “
1tSfąαu “ 1tfąαu.

This completes the proof of Theorem 5.66. �

4. Projective limits of probability distributions

This section is dedicated to a proof of Kolmogorov’s extension theorem. We
will also present Carathédory’s extension theorem. Let I be an arbitrary set
of indices. Denote by H pIq the class of all finite subsets of I, by H1 pIq the
collection of all countable subsets of I, and by H2 pIq “ 2I the class of all
subsets of I. Consider a collection of measurable spaces pΩi,Aiq indexed by
i P I. For J P H2 pIq we write ΩJ “ ś

jPJ Ωj , and for J Ă K Ă I we denote

by pKJ the canonical projection of ΩK onto ΩJ . If J “ tju Ă K we write pKj
instead of pKtju, and if K “ I we write pJ instead of P I

J . Hence pj denotes

the (one-dimensional-)projection of ΩI on its j-th coordinate Ωj. Often these
coordinate functions tpj : j P Iu serve as a canonical stochastic process. On
each ΩJ , J P H2 pIq, we consider the σ-field AJ “ bjPJAj , generated by the set
of projections

�
pJj : j P J

(
, i.e. the smallest σ-field containing the sets

!`
pJj

˘´1 pAq : j P J, A P AJ

)
“

��
pJj P A

(
: j P J, A P AJ

(
.
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The collection AJ is called the product σ-algebra on ΩJ . One easily sees that,
if J P H pIq, then AJ is generated by the set of rectangles, i.e. by

ź

jPJ
Aj “

#
ź

jPJ
Aj : Aj P Aj, j P J

+
.

If J Ă K Ă L Ă I, then we clearly have

pLJ “ pKJ ˝ pLK . (5.124)

It is easily seen that the projection pKJ , where K, J P H2 pIq, J Ă K, from ΩK

onto ΩJ is measurable for the σ-fields AK and AJ . The latter is also written
as: pKJ is AK-AJ-measurable. On ΩI we consider two classes of subsets:

B “
�

tpJ P Au “ p´1
J pAq : J P H pIq , A P AJ

(
, and (5.125)

B1 “
�

tpJ P Au “ p´1
J pAq : J P H1 pIq , A P AJ

(
. (5.126)

The subsets belonging to B are called cylinders or cylinder sets. If Z P B,
respectively Z P B1, then there exists J P H pIq, respectively J 1 P H1 pIq, such
that

Z “ A ˆ ΩIzJ . (5.127)

The inclusions B Ă B1 Ă AI are obvious.

5.68. Definition. Let B be a subset of the powerset of ΩI . Then B is called a
Boolean algebra, if it is closed under finite union, and under taking complements.

5.69. Lemma. The set B is a Boolean algebra, B1 is a σ-field, and

σ tBu “ B1 “ AI . (5.128)

Proof. First we show that B is a Boolean algebra. Let Z “ ppJq´1 pAq “
tpJ P Au, J P H pIq, A P AJ , be a cylinder. Then

Zc :“ ΩIzZ “ ΩIz ppJq´1 pAq “ tpJ P ΩJzAu “ p´1
J pAcq ,

which shows that Zc belongs to B whenever Z P B. Furthermore, let Zi “
p´1
Ji

pAiq, Ji P H pIq, Ai P AJi, i “ 1, . . . , n, be n cylinders. Then for J “
J1 Y ¨ ¨ ¨ Y Jn we have

Z1 Y ¨ ¨ ¨ Y Zn “ p´1
J1

pA1q Y ¨ ¨ ¨ Y p´1
Jn

pAnq
“ p´1

J

`
pJJ1

˘´1 pA1q Y ¨ ¨ ¨ Y p´1
J

`
pJJn

˘´1 pAnq

“ p´1
J

´`
pJJ1

˘´1 pA1q Y ¨ ¨ ¨
`
pJJn

˘´1 pAnq
¯
. (5.129)

Since the sets p´1
Ji

pAiq belong to AJ for i “ 1, . . . , n the set Z1 Y ¨ ¨ ¨Zn is a
cylinder.

In the same manner one proves that B1 is a σ-field.

In order to get the equalities in (5.128) it remains to show that AI Ă σ tBu.
Considering the definition of AI it is sufficient to prove that pi, i P I, is mea-
surable for σ tBu and AI . However, this follows from (5.125). So the proof of
Lemma 5.69 is complete now. �
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5.70. Remark. The fact that B1 “ AJ is important. It shows that each B P AI

only depends on at most a countable number of indices, in the sense that B can
be written as B “ A ˆ ΩIzJ where J is countable or finite and where A P AJ .

The observation in this remark shows that the product σ-field is relatively
“poor” when the index set I is uncountable. The following two examples will
clarify this.

5.71. Example. Take I uncountable, let each Ωi, i P I, be an arbitrary topo-
logical Hausdorff space with at least two points, and let Ai be the Borel field
of Ωi. For every i P I we select ωi P Ωi. Since the singleton tpωiqiPIu is a closed
subset of ΩI with respect to the product topology, it belongs to the Borel σ-field
of ΩI . But it does not belong to AI because it cannot be written as the set B
in Remark 5.70.

5.72. Example. Take I “ r0,8q and suppose that Ωi “ Ω, where Ω is a
topological Hausdorff space consisting of at least two points. Hence Ωr0,8q “
Ωr0,8q is the set of all mappings from r0,8q to Ω. Let B be the subset of Ωr0,8q

consisting of all right-continuous (or all continuous) mappings from r0,8q to Ω.
Assuming that B belongs to Ar0,8q “ Abr0,8q, where A is the Borel σ-field of Ω
will lead to a contradiction. Because, if B belongs to Ar0,8q, then by Remark
5.70 B is of the form B “ AˆΩr0,8qzJ where J Ă r0,8q is countable, and where
A P AJ . We may suppose that J contains all rational numbers. Pick f P B and
t P r0,8q zJ . We define the function g : r0,8q Ñ Ω as follows: gpsq “ fpsq
if s ‰ t, and gpsq ‰ fptq if s “ t. Then g P B, but it is not right-continuous,
which can be seen as follows. In J there exists a sequence ptnqn which decreases
to t. Then

lim
nÑ8

g ptnq “ lim
nÑ8

f ptnq “ fptq ‰ gptq.
It follows that B R Ar0,8q.

5.73. Definition. Consider a family of measurable spaces pΩi,Aiq, i P I. Sup-
pose that for every J P H pIq PJ is a probability measure on pΩJ ,AJq such
that

PK

“
pKJ P A

‰
“ PK

”`
pKJ

˘´1 pAq
ı

“ PJ rAs , (5.130)

whenever J, K P H pIq, J Ă K, and A P AJ . Then the family tPJ : J P H pIqu,
or the family tpΩJ ,AJ ,PJq : J P H pIqu, is called a projective system of proba-
bility measures, or spaces. Such a system is also called a consistent system, or
a cylindrical measure.

The following theorem says that a cylinder measure is a genuine measure pro-
vided that the spaces Ωi are topological Hausdorff spaces which are Polish,
endowed with their Borel σ-fields Bi. From Theorem 5.51 it follows that all
probability measures µ on a Polish space S are inner and outer regular in the
sense that

µpBq “ sup tµpKq : K Ă B, K compactu “ inf tµpOq : O Ą B, O openu
(5.131)

Download free eBooks at bookboon.com



ADVANCED STOCHASTIC PROCESSES: PART II

374

SOME RELATED RESULTS

374

374 5. SOME RELATED RESULTS

whenever B belongs to the Borel σ-field of S. The following theorem is a slight
reformulation of Theorem 3.1. We also make the following observations. A
second-countable locally-compact Hausdorff space is Polish. See Theorem 1.16,
and see the formula in (1.18) which gives the metric. As mentioned earlier this
construction can be found in Garrett [75].

A countable disjoint union of Polish spaces pEj, djq is Polish, with metric

dpx, yq “
#
1, pfor x, y in distinct spaces in the unionq,
dnpx, yq pfor x, y in the nth space in the unionq. (5.132)

Here we assume that djpx, yq ď 1, x, y P Ej. From this result it follows that a
σ-compact metrizable Hausdorff space E “ Y8

j“1Kj, Kj Ă Kj`1, Kj compact,
is a Souslin space, i.e. a continuous image of a Polish space. This is so because
every subset Kj is compact metrizable, and therefore separable. Therefore the
complements Kj`1zKj, j P N, are Polish, and since E is the disjoint union of
such spaces E itself is Polish. It is known that probability measures on the class
of Borel subsets of Souslin spaces are regular. For details the reader is referred
to Bogachev [27]. Before we formulate and prove the Kolmogorov’s extension
theorem we will discuss the Carathéodory’s extension theorem. We need the
notion of semi-ring, ring, and (Boolean) algebra of subsets of a given set Ω.
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5.74. Definition (Definitions). Let Ω be a given set. A semi-ring is a subset
S of PpΩq, the power set of Ω, which has the following properties:

(i) H P S;
(ii) For all A, B P S, the intersection AXB belongs to S (S is closed under

pairwise intersections);
(iii) For all A, B P S, there exist disjoint sets Ki P S, with i “ 1, 2, . . . , n,

such that AzB “ Ťn
i“1 Ki (relative complements can be written as

finite disjoint unions).

A ring R is a subset of the power set of Ω which has the following properties:

(i) H P R;
(ii) For all A, B P R, the union A Y B belongs to R (R is closed under

pairwise unions);
(iii) For all A, B P R, the relative complement AzB belongs to R (R is

closed under relative complements).

Thus any ring on Ω is also a semi-ring.

A Boolean algebra B is defined as a subset of the power set of Ω with the
following properties:

(i) H P B;
(ii) For all A P B and B P B the union A Y B belongs to B;
(iii) If A belongs to B, then its complement Ac “ ΩzA belongs to B.

Sometimes, the following constraint is added in the measure theory context: Ω
is the disjoint union of a countable family of sets in S.

Without proof we mention some properties. Arbitrary (possibly uncountable)
intersections of rings on Ω are still rings on Ω. If A is a non-empty subset of
PpΩq, then we define the ring generated by A (noted R pAq) as the smallest
ring containing A. It is straightforward to see that the ring generated by A is
equivalent to the intersection of all rings containing A.

For a semi-ring S, the set containing all finite disjoint union of sets of S is the
ring generated by S:

R pSq “
#
A : A “

nď

i“1

Ai, Ai P S

+
.

This means that R pSq is simply the set containing all finite unions of sets in S.

A content µ defined on a semi-ring S can be extended on the ring generated by
S. Such an extension is unique. The extended content is necessarily given by:

µpAq “
nÿ

i“1

µpAiq for A “
nď

i“1

Ai, with the Ai P S’s mutually disjoint.
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In addition, it can be proved that µ is a pre-measure if and only if the extended
content is also a pre-measure, and that any pre-measure on R pSq that extends
the pre-measure on S is necessarily of this form.

Some motivation is at place here. In measure theory, one is usually not inter-
ested in semi-rings and rings themselves, but rather in σ-algebras (or σ-fields)
generated by them. The idea is that it is possible to build a pre-measure on a
semi-ring S (for example Stieltjes measures), which can then be extended to a
pre-measure on R pSq, which can finally be extended to a genuine measure on a
σ-algebra through Carathéeodory’s extension theorem. As σ-algebras generated
by semi-rings and rings are the same, the difference does not really matter (in
the measure theory context at least). Actually, the Carathéodory’s extension
theorem can be slightly generalized by replacing ring with semi-ring.

5.75. Definition. Let S be a semi-ring in P pΩq. A pre-measure on S is a map
µ : S Ñ r0,8s such that

(i) µ pHq “ 0.
(ii) If pAnqn is a mutually disjoint sequence in S, and if A :“ Ť

n An belongs

to S, then µpAq “ ř
n µ pAnq “ lim

NÑ8

Nÿ

n“1

µ pAnq.
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We also need the concept of outer or exterior measure.

5.76. Definition. An outer measure on P pΩq is a map λ : P pΩq Ñ r0,8s with
the following properties:

(i) λ pHq “ 0.
(ii) A Ă B implies λpAq ď λpBq.
(iii) If pAnqn is a sequence in P pΩq, then λ pŤ

n Anq ď ř
n λ pAnq.

By taking all but finitely many An to be the empty set one sees that an outer
measure is sub-additive: λ pA Y Bq ď λpAq ` λpBq, A, B P P pΩq. Let λ be an
outer measure on P pΩq. We define Σλ to be the set of all subsets A Ă Ω such
that for any D Ă Ω we have

λpDq “ λ pA X Dq ` λ pAc X Dq . (5.133)

Since an outer measure λ is sub-additive we may replace the equality in (5.133)
be an inequality of the form

λpDq ě λ pA X Dq ` λ pAc X Dq . (5.134)

In other words, Σλ consists of all subsets A Ă Ω that split Ω in two in a good
way. Clearly, Ω P Σλ and by the very form of the definition of Σλ, we have a
subset A belongs to Σλ if and only if its complement Ac belongs to Σλ. We now
present the following proposition, whose proof is a bit tedious. For details the
reader is referred to, e.g., [7] or [15]. The reader may also want to consult the
Probability Tutorials by Noel Vaillant: http://www.probability.net/. The
sets in Σλ are called Carathéodory measurable relative to the outer measure λ.

5.77. Proposition. Let λ be an outer measure on Ω, and let Σλ be as defined
above. Then Σλ is a σ-algebra on Ω.

The Lebesgue-Stieltjes integral
şb
a
fpxq dgpxq is defined when f : ra, bs Ñ R

is Borel-measurable and bounded and g : ra, bs Ñ R is of bounded variation
in ra, bs and right-continuous, or when f is Borel-measurable and non-negative
and g is non-decreasing, and right-continuous. Define wpps, tsq :“ gptq ´ gpsq
and wptauq :“ 0 (Alternatively, the construction works for g left-continuous,
wprs, tqq :“ gptq ´ gpsq and wptbuq :“ 0). By Carathéodory’s extension theorem
(Theorem 5.79), there is a unique Borel measure µg on ra, bs which agrees with
w on every interval I Ă ra, bs. The measure µg arises from the outer measure

µgpEq “ inf

#ÿ

i

µgpIiq : E Ă
ď

i

Ii

+
,

where the infimum is taken over all coverings of E by countably many semi-open
intervals Ii. This measure is sometimes called the Lebesgue-Stieltjes, or Stielt-

jes measure associated with g. The Lebesgue-Stieltjes integral
şb
a
fpxq dgpxq is

defined as the Lebesgue integral of f with respect to the measure µg in the usual

way. If g is non-increasing, then define
şb
a
fpxq dgpxq :“ ´

şb
a
fpxq dp´gqpxq. If

the function g : ra, bs Ñ R is right-continuous, and of bounded variation on
ra, bs, then g may be written in the form g “ g1 ´ g2, where the functions g1
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and g2 are monotone non-decreasing and right-continuous. So that µg ps, ts “
gptq ´ gpsq, a ď s ă t ď b, extends to a real-valued measure on the Borel field
of ra, bs. Of course, if g were right-continuous, complex-valued and of bounded
variation, then g can be split as follows g “ Re g ` iIm g “ g1 ´ g2 ` i pg3 ´ g4q
where the functions gj, 1 ď j ď 4, are right-continuous, and non-decreasing.
To the function g we can associate a complex-valued measure µg such that
µg ps, ts “ gptq ´ gpsq, a ď s ă t ď b. For more details on Riemann-Stieltjes
integrals the reader is referred to [167]. The book by Tao [175] contains a
discussion on Stieltjes measures. The definition of semi-ring may seem a bit
convoluted, but the following simple example shows why it is useful.

5.78. Example. Think about the subset of P pRq defined by the set of all half-
open intervals pa, bs for a and b reals. This is a semi-ring, but not a ring. Stieltjes
measures are defined on intervals; the countable additivity on the semi-ring is
not too difficult to prove because we only consider countable unions of intervals
which are intervals themselves. Proving it for arbitrary countably union of
intervals is proved using Carathéodory’s extension theorem.

Now we are ready to formulate the Carathéodory’s extension theorem.

5.79. Theorem (Carathéodory’s extension theorem). Let R be a ring on Ω
and µ : R Ñ r0,8s be a pre-measure on a R. Then there exists a measure
µ1 : σ pRq Ñ r0,8s such that µ1 is an extension of µ. (That is, µ1 ˇ̌

R
“ µ). Here

σ pRq is the σ-algebra generated by R.

If µ is σ-finite then the extension µ1 is unique (and also σ-finite).

If R is a Boolean algebra, then Theorem 5.79 is also called the Hahn-Kolmogorov
extension theorem. A complete proof can also be found in [27] Theorem 1.5.6.
We will present just an outline. Another interesting book is Tao [175]; in partic-
ular see Theorems 1.7.3 (Carathéodory’s extension theorem) and 1.7.8 together
with Exercise 1.7.7 (Hahn-Kolmogorov’s extension theorem). An (older) paper,
which treats Carathéodory’s extension theorem thoroughly, is Maharam [117].

Proof. The proof is based on the σ-field corresponding to the outer (or
exterior) measure associated to pre-measure µ. This exterior measure µ˚ is
defined by

µ˚ pAq “ inf

#
8ÿ

k“1

µ pAkq : Ak P R, A Ă
8ď

k“1

Ak

+
, A Ă Ω. (5.135)

(If A can not be covered by a countable union of sets in R, then we put µ˚ pAq “
8.) Then it is not too difficult to prove that µ˚ is an outer measure. Like in
Proposition 5.77 let Σµ˚ be the σ-field consisting of those subsets A of Ω for
which

µ˚ pDq ě µ˚ pA X Dq ` µ˚ pAc X Dq
for all D Ă Ω. Then it follows that the σ-field Σµ˚ contains the ring R. Put
µ1 pBq “ µ˚ pBq, B P Σµ˚ . Then µ1 is a measure on Σµ˚ which extends µ, and
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which unique provided that µ is σ-finite. For details see [27] Theorem 1.5.6.
This concludes an outline of the proof of Theorem 5.79. �

5.80. Example. Let E be a σ-compact topological Hausdorff space, and assume
that each compact subset Kj is metrizable, and hence separable. Define the
sequence of open subsets pOjqj of E as follows: O0 “ H, O1 “ EzK1, Oj`1 “
pEzK1qX¨ ¨ ¨XpEzKjq, j ě 1. Then, for an appropriate metric px, yq ÞÑ djpx, yq,
x, y P Kj XOj, 0 ď djpx, yq ď 1, the spaces Kj XOj is complete metrizable and
separable, and so a Polish space. Moreover, by construction the spaces Kj XOj,
j “ 0, 1, . . ., are mutually disjoint, and so the E can be supplied with the metric
dpx, yq defined by dpx, yq “ 1, if x, y belong to different spaces Kj X Oj, and
dpx, yq “ djpx, yq, if x and y belong to Kj X Oj, j “ 0, 1, . . .. Then this metric
turns E written as a disjoint union of Kj XOj into a Polish space. Its topology
is stronger than the original one, and hence E itself is continuous image of a
Polish space (via the identity map). It follows that E is a Souslin space.

Example 5.80 should be compared with the notion of disjoint unions of Polish
spaces are again Polish: see (5.132).
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5.81. Theorem (Kolmogorov’s extension theorem). Let

tpΩJ ,BJ ,PJq : J P H pIqu
be a projective system of probability spaces. Suppose that for every i P I, Ωi is
a Polish space (or Souslin space) endowed with its Borel σ-field Bi. Then there
exists a unique probability measure PI on pΩI ,BIq such that

PI rpJ P As “ PI

“
p´1
J pAq

‰
“ PJ rAs , A P BJ , (5.136)

for every J P H pIq.

Proof. If Z “ tpJ P Au “ p´1
J pAq, J P H pIq, A P BJ , is a cylinder in ΩI ,

then we define PI rZs by
PI rZs “ PJ rAs . (5.137)

This definition is unambiguous. Indeed, let

Z “ tpJ P Au “ p´1
J pAq “ p´1

K pBq “ tpK P Bu , with A P BJ and B P BK ,

with J, K P H pIq. We have to show that PJ rAs “ PK rBs. Indeed, with
L “ J Y K, we get

Z “ p´1
L

`
pLJ

˘´1 pAq “
�
pLJ ˝ pL P A

(

“
�
pLJ P A

(
“

`
pLJ

˘´1 pAq “
`
pLK

˘´1 pBq “
�
pLK P B

(

“
�
pLK ˝ pL P B

(
“ p´1

L

`
pLK

˘´1 pBq . (5.138)

From (5.130) together with (5.138) we infer

PJ rAs “ PL

”`
pLJ

˘´1 pAq
ı

“ PL

”`
pLK

˘´1 pBq
ı

“ PK rBs . (5.139)

The equality in (5.139) shows that PI is well defined. We also have

PI rΩIs “ PI

“
p´1
i pΩiq

‰
“ Ptiu rΩis “ 1.

Next we show that PI is finitely additive on B, the collection of cylinders. Let
Z “ p´1

J pAq, with J P H pIq and A P BJ , and Z 1 “ p´1
K pBq, with K P H pIq

and B P BK be two disjoint cylinders. Put L “ J Y K. Then we have

H “ Z X Z 1 “ p´1
L

`
pLJ

˘´1 pAq X p´1
L

`
pLK

˘´1 pBq

“ p´1
L

´`
pLJ

˘´1 pAq X
`
pLK

˘´1 pBq
¯
. (5.140)

From (5.140) we infer
`
pLJ

˘´1 pAq X
`
pLK

˘´1 pBq “ H. Consequently, we obtain

PI rZ Y Z 1s “ PI

”
p´1
L

`
pLJ

˘´1 pAq Y p´1
L

`
pLK

˘´1 pBq
ı

“ PI

”
p´1
L

´`
pLJ

˘´1 pAq Y
`
pLK

˘´1 pBq
¯ı

“ PL

”`
pLJ

˘´1 pAq Y
`
pLK

˘´1 pBq
ı

“ PL

”`
pLJ

˘´1 pAq
ı

` PL

”`
pLK

˘´1 pBq
ı

(apply the equality in (5.130))

“ PJ rAs ` PK rBs “ PI rAs ` PI rBs . (5.141)
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The equality in (5.141) proves the finite additivity of the mapping PI on the
collection of cylinder sets B.

Finally we prove that the mapping PI is σ-additive on B. For that purpose we
consider a decreasing sequence pZnqn of cylinder sets such that PI rZns ě a ą 0
for all n P N. We will show that

Ş
n Zn ‰ H. By contraposition it then

follows that
Ş

n Zn “ H implies limnÑ8 PI rZns “ 0. For each n we have
Zn “ p´1

J pAnq with Jn P H pIq and An P BJn. Of course we may suppose that
J1 Ă J2 Ă ¨ ¨ ¨ Ă Jn Ă ¨ ¨ ¨ . Put J “ Ť

n Jn. Then

Zn “ p´1
J

`
pJJn

˘´1 pAnq “
`
pJJn

˘´1 pAnq ˆ ΩIzJ .

Since
č

n

Zn “
˜

č

n

`
pJJn

˘´1 pAnq
¸

ˆ ΩIzJ (5.142)

we see that
Ş

n Zn ‰ H if and only if
Ş

n

`
pJJn

˘´1 pAnq ‰ H. This means that
our problem is reduced to the problem with I “ J , i.e. to a countable problem.
For every m P N there exists a compact subset Ljm of Ωjm with

Pjm rΩjmzLjms ď a

4 ˆ 2m
.

Then L :“ ś
m Ljm is a compact subset of ΩJ . Furthermore, for every n P N

we have

PJn

«˜ź

jPJn
Lj

¸cff
“ PJn

« ď

jPJn

`
pJnj

˘´1 `
Lc
j

˘
ff

ď
ÿ

jPJn
Pj rΩjzLjs ă a

4
. (5.143)

On the other hand for every n P N we choose a compact subset Kn of An (in
BJn) such that

PJn rAnzKns ď a

4 ˆ 2n
. (5.144)

For every n P N the set Yn defined by

Yn “
`
pJnJ1

˘´1 pK1q X ¨ ¨ ¨ X
´
pJnJn´1

¯´1

pKn´1q X Kn

is a closed subset ΩJn , and so Z 1
n :“ p´1

Jn
pYnq is a closed cylinder in ΩJ , and

Z 1
n Ă Zn. In addition, we have

Z 1
n “ p´1

J1
pK1q X ¨ ¨ ¨ X p´1

Jn´1
pKn´1q X p´1

Jn
pKnq

the sequence pZ 1
nqn is decreasing. We also have

PI rZnzZ 1
ns “ PI

«
Znz

˜ č

1ďkďn

p´1
Jk

pKkq
¸ff

ď
nÿ

k“1

PI

“
Znzp´1

Jk
pKkq

‰
ď

nÿ

k“1

PI

“
Zkzp´1

Jk
pKkq

‰

“
nÿ

k“1

PI

“
p´1
Jk

pAkq zp´1
Jk

pKkq
‰

“
nÿ

k“1

PI

“
p´1
Jk

pAkzKkq
‰
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“
nÿ

k“1

PJk rAkzKks ă a

4
. (5.145)

Since, by assumption, PI rZns ě a, (5.145) implies

PJn rYns “ PI rZ 1
ns “ PI rZns ´ PI rZnzZ 1

ns ą a ´ a

4
“ 3a

4
. (5.146)

Since, by (5.146) and (5.143) we have

PJn

«
Yn

č ź

jPJn
Lj

ff
ě 1´ PJn rY c

n s ´ PJn

«˜
ź

jPJn
Lj

¸cff
ě 3a

4
´ a

4
“ a

2
, (5.147)

it follows that Yn

Ş ś
jPJn Lj ‰ H. Moreover, observe that

Z 1
n X L “

`
Yn ˆ ΩJzJn

˘ č ˜ź

m

Ljm

¸
“

˜
Yn

č ź

jPJn
Lj

¸
ˆ

ź

jPJzJn
Lj , (5.148)

and consequently, Z 1
n X L ‰ H. Hence, the decreasing sequence pZ 1

n X Lqn
consists of non-empty compact subsets of ΩJ . By compactness we get thatŞ

n Z
1
n X L ‰ H. So we infer

č

n

p´1
Jn

pAnq Ą
č

n

Z 1
n Ą

č

n

pZ 1
n X Lq ‰ H. (5.149)

As a consequence of the previous arguments, we see that PI is a σ-additive
on the Boolean algebra B which consists of cylinders in ΩI . This measure PI

satisfies (5.136). By the classical Carathéodory theorem the mapping PI extends
in a unique fashion as a probability measure on the σ-field σ tBu “ BI . Then,
technically speaking, the mapping PI , defined on the Boolean algebra B, is a
pre-measure. This corresponding exterior measure P˚

I is defined by

P˚
I pAq “ inf

#
8ÿ

k“1

µ pZkq : Zk P B, A Ă
8ď

k“1

Zk

+
. (5.150)

Then it is not so difficult to prove that the set function defined by (5.150) is an
outer measure indeed. Define the associated σ-field D by

D “ tA Ă ΩI : P
˚
I pDq ě P˚

I pA X Dq ` P˚
I pAc X Dq : for all D Ă ΩIu .

(5.151)
The fact that D is a σ-field indeed follows from Proposition 5.77: see Theorem
5.79 as well. It is fairly easy to see that D contains the Boolean algebra B which
consists of the cylinder sets in ΩI .

This completes the proof of Theorem 5.81. �

5. Uniform integrability

The next Theorem is often used as a replacement for the dominated convergence
theorem of Lebesgue.
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5.82. Theorem (Theorem of Scheffé). Let pΩ,F, µq be an arbitrary measure
space and let pfn : n P Nq be a sequence of non-negative functions in L1pΩ,F, µq.
In addition, let the function f belong to L1 pΩ,F, µq. Suppose that fpxq “
limnÑ8 fnpxq for µ-almost all x P Ω. The following assertions are equivalent:

(i) limnÑ8
ş

|fn ´ f | dµ “ 0;
(ii) The sequence pfn : n P Nq is uniformly integrable;
(iii) limnÑ8

ş
fndµ “

ş
fdµ.

Instead of uniformly integrable the term equi-integrable is often used. A family
pfα : α P Aq in L1 pΩ,F, µq is uniformly integrable, if for every ǫ ą 0 there exists
a function g ě 0 in L1 pΩ,F, µq such that

ş
tfαěgu |fα| dµ ď ǫ for all α P A.

5.83. Proposition. If µ is a probability measure, then a family pfα : α P Aq in
L1 pΩ,F, µq is uniformly integrable, if and only if for every ǫ ą 0 there exists a
constant Mε ě 0 such that

ş
t|fα|ěMεu |fα| dµ ď ǫ for all α P A.
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Proof of Proposition 5.83. The sufficiency is clear: choose for gε a con-
stant function Mε. Next we show that, if the family pfα : α P Aq is uniformly
integrable, then necessarily for every ε ą 0 there exists a constant Mε such thatż

t|fα|ěMεu
|fα| dµ ď ε, α P A. (5.152)

Fix ε ą 0. By hypothesis we know that there exists a function gε P L1 pΩ,F, µq,
gε ą 0, such that ż

t|fα|ěgεu
|fα| dµ ď ε

2
, α P A. (5.153)

Then we choose Mε so large thatż

tgεěMεu
gε dµ ď ε

2
. (5.154)

Then by (5.153) and (5.154) we have
ż

t|fα|ěMεu
|fα| dµ “

ż

tMεď|fα|ămaxpMε,gεqu
|fα| dµ `

ż

t|fα|ěmaxpMε,gεqu
|fα| dµ

ď
ż

tgεąMεu
gε dµ `

ż

t|fα|ěgεu
|fα| dµ ď ε

2
` ε

2
“ ε. (5.155)

The inequality in (5.155 completes the proof of Proposition 5.83. �

Proof of Theorem 5.82. (i) ñ (ii). Put g “ supnPN fn. The following
inequalities hold for m P N:ż

tfněmfu
fndµ ď

ż

tfněmfu
|fn ´ f | dµ `

ż

tfněmfu
fdµ

ď
ż

|fn ´ f | dµ `
ż

tfněmfu
fdµ

ď
ż

|fn ´ f | dµ `
ż

tgěmfu
fdµ. (5.156)

Let ǫ ą 0, but arbitrary. By (i) there exists Npǫq P N such that
ş

|fn ´ f | dµ ď
ǫ{2 for n ě Npǫq ` 1. The inequalities below then follow for m ě Mpǫq:ż

tgěmfu
fdµ ď ǫ{2, and

ż

tfněmfu
fndµ ď ǫ, 1 ď n ď Npǫq. (5.157)

From (5.156) and (5.157) we see
ş

tfněMpǫqfu fndµ ď ǫ. But this means that the

sequence pfn : n P Nq is uniformly integrable.

(ii) ñ (iii). Let ǫ ą 0 be arbitrary and choose a function gǫ P L1 pΩ,F, µq such
that ż

tfněgǫu
fndµ `

ż

tfněgǫu
fdµ ď ǫ. (5.158)

From (5.158) we obtainˇ̌
ˇ̌
ż
fndµ ´

ż
fdµ

ˇ̌
ˇ̌ ď

ż

tfnďgǫu
|fn ´ f | dµ `

ż

tfněgǫu
fndµ `

ż

tfněgǫu
fdµ
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ď
ż

tfnďgǫu
|fn ´ f | dµ ` ǫ. (5.159)

By the theorem of dominated convergence, it follows from (5.159) that

lim sup
nÑ8

ˇ̌
ˇ̌
ż
fndµ ´

ż
fdµ

ˇ̌
ˇ̌ ď ǫ.

Since ǫ is arbitrary assertion (iii) follows. The same argumentation shows the
implication (ii) ñ (i).

(iii) ñ (i). The equality

|fn ´ f | “ fn ´ f ` 2 pf ´ min pf, fnqq
is obvious. From (iii) together with the theorem of dominated convergence it
then follows that

lim
nÑ8

ż
|fn ´ f | dµ

“ lim
nÑ8

ż
pfn ´ fq dµ ` 2

ż
lim
nÑ8

pf ´ min pf, fnqq dµ “ 0.

The proof of Theorem 5.82 is now complete. �

5.84. Corollary. Let pµm : m P Nq be a sequence of probability measures on
the Borel σ-field of Rν. Let every measure µm have a probability density gm
relative to the Lebesgue measure λ. Furthermore, let g ě 0 be a probability
density. Suppose that for λ-almost all x P Rν the equality limmÑ8 gmpxq “ gpxq
is true. Let the measure µ have density g. Then the sequence pµm : m P Nq
converges weakly to µ.
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Proof of Corollary 5.84. From the theorem of Scheffé (Theorem 5.82)
we see

lim
mÑ8

ż
|gmpxq ´ gpxq| dx “ 0.

Let f be a bounded continuous function. Then
ˇ̌
ˇ̌
ż
fdµm ´

ż
fdµ

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ż

pfpxqgmpxq ´ fpxqgpxqq dx
ˇ̌
ˇ̌ ď }f}8

ż
|gmpxq ´ gpxq| dx.

(5.160)
The assertion in Corollary 5.84 follows from (5.160). �

5.85. Theorem. Let pXm : m P Nq be a sequence of stochastic variables, which
are defined on a probability space pΩ,F,Pq.

(a) If the sequence pXm : m P Nq converges in probability to a stochastic
variable X, then the sequence of probability measures pPXm

: m P Nq
converges weakly to the distribution PX ;

(b) If the sequence pPXm
: m P Nq converges vaguely to the Dirac-measure

δa, then the sequence pXm : m P Nq converges in probability to a sto-
chastic variable X, which is P-almost surely equal to the constant a.

Proof. (a) Suppose that the sequence pXm : m P Nq converges in proba-
bility to X. We pick f P C00 pRνq and we will prove that limmÑ8

ş
fdPXm

“ş
fdPX . The latter is equivalent to limmÑ8

ş
fpXmq dP “

ş
fpXq dP. The func-

tion f is uniformly continuous. So, for ǫ ą 0 given, there exists δ ą 0 such
that

|x2 ´ x1| ď δ impliceert |fpx2q ´ fpx1q| ď ǫ. (5.161)

Put Am “ t|X ´ Xm| ě δu. For ω R Am the inequality

|f pXmpωqq ´ f pXpωqq| ď ǫ

holds. From this it follows thatˇ̌
ˇ̌
ż
fdPXm

´
ż
fdPX

ˇ̌
ˇ̌ ď

ż

Ac
m

|fpXq ´ F pXmq| dP `
ż

Am

|fpXq ´ f pXmq| dP

ď ǫP pAc
mq ` 2 }f}8 P t|Xm ´ X| ě δu

ď ǫ ` 2 }f}8 P t|Xm ´ X| ě δu . (5.162)

The assertion in (a) follows from (5.162) together with assertion (3) in Theorem
5.43.

(b) Suppose that the sequence pPXm
: m P Nq vaguely converges to the Dirac-

measure δa. Let Ipǫq be the interval Ipǫq “ ra ´ ǫ, a ` ǫs and choose functions
f and g P C00 pRνq such that f ď 1I ď g and such that fpaq “ gpaq “ 1. Then
the equalities follow:

fpaq “ lim inf
m

ż
fdPXm

ď lim inf
m

PXm
pIq ď lim sup

m

PXm
pIq

ď lim sup
m

ż
gdPXm

“ gpaq. (5.163)
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From (5.163) it follows that

lim
m

P p|Xm ´ a| ď ǫq “ 1,

which amounts to the same as

lim
m

P p|Xm ´ a| ą ǫq “ 0.

This proves assertion (b). So the proof of Theorem 5.85 is now complete. �

6. Stochastic processes

We begin with some definitions.

5.86. Definition. Let pΩ,F,Pq be a probability space, and let pE,Eq be a
locally compact Hausdorff space, that satisfies the second countability axiom,
with Borel σ-field E. Often E will be chosen as R or as Rν . A stochastic

process X with values in the state space E is a mapping X : r0,8q ˆ Ω Ñ E.
For every ω P Ω the mapping t ÞÑ Xpt, ωq defines a path of the process. A
path is sometimes also called a realization. If we fix n P N, then the mappings
Pt1,...,tn : E b ¨ ¨ ¨ b Elooooomooooon

nˆ

Ñ r0, 1s, where pt1, . . . , tnq varies over r0,8qn, and which

are defined by

Pt1,...,tnpBq “ P tpXpt1q, . . . , Xptnqq P Bq , B P E b ¨ ¨ ¨ b Elooooomooooon
nˆ

, (5.164)

are called the n-dimensional distributions of the process X. Here Xptq is the
mapping Xptqpωq “ Xpt, ωq, ω P Ω.

Sometimes we write Xt instead of Xptq. If n “ 1, then the distributions in
(5.164) are also called the marginal distributions, or marginals. However, no-
tice that a process is much more than the corresponding collection of finite-
dimensional distributions. In particular the paths or realizations of a process
are very important. For example, the continuity properties of the paths are
relevant. Often we will suppose that the paths are continuous, or that they are
continuous from the right, and possess limits from the left {càdlàg paths}, or
cadlag paths. So that the process X is cadlag provided that for all t ě 0 the
equality limsÓtXpsq “ Xptq holds P-almost surely (this is continuity from the
right, or continue à droite in French) and if the limit limsÒtXpsq exists in E

(this means that the left limits exist in E, limité à gauche in French).

5.87.Definition. A family sub-σ-fields pFt : t ě 0q of F is called a filtration (or,
sometimes, also called history), if t ă s implies Ft Ă Fs. Thus the probability
P is defined on all σ-fields Ft. With F8, or also F8´ the σ-field generated
by

Ť
tě0 Ft is meant. If for every t ě 0 the equality Ft “ Ş

sąt Fs holds,
then the filtration pFt : t ě 0q is called continuous from the right, or right-

continuous. Let pFt : t ě 0q be a filtration, and put Ft` “ Ş
sąt Fs. Then the

family pFt` : t ě 0q is a right-continuous filtration. This filtration is called the
right closure of the filtration pFt : t ě 0q. A subset A of Ω is called a P-null
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set if there exists a subset A0 P F with the following properties: A Ď A0 and
PrA0s “ 0. Usually this is expressed by saying that A is a null set instead
of A is a P-null set. Often it is assumed that F0 contains all null sets, and
that the filtration pFt : t ě 0q is right-continuous. Sometimes it is said that
F0 has the usual properties. The process X is called adapted to the filtration
pFt : t ě 0q if for every t ě 0 the state variable Xptq is measurable with respect
to σ-fields Ft and E. Let Ht “ σ pXpuq : 0 ď u ď tq be the σ-field generated
by the state variables Xpuq, 0 ď u ď t. The filtration pHt : t ě 0q is called
the internal history of the process X. If t ą 0 is given, then Ht is called
the (information from the) past, σ pXptqq is called the (information from the)
present, and σ pXpuq : u ě tq the (information from the) future. The process X
is adapted if and only if Ht Ď Ft for every t ě 0.

5.88. Definition. Let X and Y be two processes. The processes X and Y are
said to be non-P-distinguishable or P-indistinguishable provided there exists a
P-null subset N with the property that for every ω R N and for every t ě 0
the equality Xpt, ωq “ Y pt, ωq holds. The process X is called a modification of
the process Y (or also Y is a modification of X) if for every t ě 0 there exists
a P-null set Nt with the property that Xpt, ωq “ Y pt, ωq for ω R Nt. Thus the
null set is t-dependent. If the processes X and Y are not distinguishable, then
X is a modification of Y . In general, the converse statement is not true.

5.89. Theorem. Suppose that the process X as well as the process Y possesses
right-continuous paths. If X is a modification of Y , then X and Y are not
distinguishable (also called stochastically equivalent).
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Proof of Theorem 5.89. Let X be a modification of the process Y . For
every t ě 0 there then exists a null set Nt such that Xptq “ Y ptq on the
complement of Nt. Put N “ Ť

tPQ Nt. Then PpNq “ 0 and for every t P Q the
equality Xptq “ Y ptq holds on the complement of N . By right-continuity of the
paths it then follows that

Xptq “ lim
sÓ0,sPQ

Xpsq “ lim
sÓt,sPQ

Y psq “ Y ptq

on the complement of N and completes the proof of Theorem 5.89. �

5.90. Definition. Let pFt : t ě 0q be a filtration and let T : Ω Ñ r0,8s be a
“stochastic time”. The function T is called a stopping time for the filtration
pFt : t ě 0q if for every fixed time t the event tT ď tu belongs to Ft. Since
the event tT ă 8u “ Ť

nPN tT ď nu belongs to F8, the complementary event
tT “ 8u is also an element of F8.

5.91. Theorem. Let pFt : t ě 0q be a filtration. Let pFt` : t ě 0q be the so-called
right closure of the filtration pFt : t ě 0q. Then a stochastic time T : Ω Ñ r0,8s
is a stopping time for the filtration pFt` : t ě 0q if and only if, for every t ą 0,
the event tT ă tu belongs to Ft.

Proof. “Sufficiency” Suppose that for every t ě 0 the event tT ă tu be-

longs to Ft. Then the event tT ď tu “
č

nPN

"
T ă 1 ` 1

n

*
belongs to the σ-field

Ş
nPN Ft`n´1 “ Ft.

“Necessity” Assume that for every t ě 0 the event tT ď tu belongs to Ft`.

Then the event tT ă tu “
ď

nPN

"
T ď 1 ´ 1

n

*
belongs to

Ť
nPN Ft´n´1` Ă Ft.

This completes the proof of Theorem 5.91. �

5.92. Corollary. Let pFt : t ě 0q be a right-continuous filtration. Then the
stochastic time T is a pFt : t ě 0q-stopping time if and only if for every t ě 0
the event tT ă tu belongs to Ft and this is the case for every t ą 0 if and only
if for every t ą 0 the event tT ď tu belongs to Ft.

5.93. Theorem. Let pFt : t ě 0q be a right-continuous filtration, let X be an
adapted cadlag process, let G be an open subset and let F be a closed subset of
E. In addition, let pGn : n P Nq be a sequence of open subsets of E such that
F “ Ş

n Gn and such that Gn Ą Gn`1, n P N. Finally, let pFn : n P Nq be an
increasing sequence of closed subsets with the property that G “ Ť

n Fn. Define
the times S, Sn, T and Tn by means of the equalities:

S “ inf ts ě 0 : Xpsq P F or Xps´q P F u ;
Sn “ inf ts ě 0 : Xpsq P Fn or Xps´q P Fnu ;
Tn “ inf ts ě 0 : Xpsq P Gnu and T “ inf ts ě 0 : Xpsq P Gu . (5.165)

Then these times are stopping times and the following assertions hold: Sn Ó T

and Tn Ò S.
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Proof. Let t ą 0. Since the paths are continuous from the right se see

tT ă tu “
ď

0ărăt

tXprq P Gu “
ď

0ărăt,rQ

tXprq P Gu P Ft.

This proves that T is a stopping time. Since

tS ď tu “ tXptq P F or Xpt´q P F u Y
˜

č

nPN

ď

răt,rPQ
tXprq P Gnu

¸
P Ft

it follows that S is a stopping time as well. Since Gn Ą Gn`1 it follows that
Tn`1 ě Tn. Put S0 “ supTn. The ultimate equalities in

tS0 ă tu “
8ď

m“1

8č

n“1

ď

0ďsďt´m´1

tXpsq P Gnu

“
8ď

m“1

ď

0ďsďt´m´1

tXpsq P F of Xps´q P F u

“
ď

0ďsăt

tXpsq P F of Xps´q P F u “ tS ă tu

prove the equalities tS0 ă tu “ tS ă tu for all t ą 0 and hence, S “ S0. The
fact that Sn Ó T is left to the reader as an exercise. This completes the proof
of Theorem 5.93. �

5.94. Theorem. Let S and T be stopping times for the filtration pFt : t ě 0q.
Then minpS, T q, maxpS, T q and S`T are also stopping times for this filtration.
If pSn : n P Nq is a sequence of stopping times, then supn Sn is also a stopping
time, and if, moreover, the filtration pFt : t ě 0q is right continuous, then infn Sn

is stopping time as well.

Proof. The proof is left as an exercise for the reader. �

5.95. Definition. Let T be a stopping time for the filtration pFt : t ě 0q. The
σ-field of events which precedes T is defined by

FT :“
č

tě0

tA P F8 : A X tT ď tu P Ftu .

Indeed, the collection FT is a σ-field and if T “ t is a fixed time, then FT “ Ft.
If S ď T is also a stopping time, then FS Ă FT . If the filtration pFt : t ě 0q
is continuous from the right, then an event A belongs to FT if and only if A
belongs to F8, and if for every t ą 0 the event A X tT ă tu belongs to Ft. If S
and T are stopping times, then FminpS,T q “ FS XFT . If the filtration pFt : t ě 0q
is right continuous and if pSn : n P Nq is a sequence of stopping times which
converges downward to S, then S is a stopping time and

Ş
nPN FSn

“ FS.

5.96. Definition. A process X : r0,8q ˆ Ω Ñ E is called progressively mea-

surable for the filtration pFt : t ě 0q if for every t ą 0 the restriction of X to
r0, ts ˆ Ω is measurable for the σ-fields Br0, ts b Ft and E.

5.97. Theorem. If X is right-continuous adapted process, then X is progres-
sively measurable.
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Proof. Define the sequence of processes pXn : n P Nq by means of the for-
mula:

Xnpu, ωq “
#
X

`
k`1
2n

t, ω
˘
, if k2´nt ă u ď pk ` 1q2´nt, 0 ď k ď 2n ´ 1;

0, if u “ 0.

(5.166)
Let B P E. Then we have

tXn P Bu

“ t0u ˆ tXp0q P Bu Y
ď

0ďkď2n´1

ˆˆ
k

2n
,
k ` 1

2n


ˆ

"
X

ˆ
k ` 1

2n

˙
P B

*˙

P Br0, ts b Ft. (5.167)

So Xn is progressively measurable. Because the process X is P-almost surely
right-continuous it follows that limnÑ8 Xn “ X, and, consequently, X is pro-
gressively measurable. This completes the proof of Theorem 5.97. �

5.98. Theorem. Suppose that X is progressively measurable for the filtration
pFt : t ě 0q. Let T be a stopping time. The the state variable XpT q : ω ÞÑ
XpT pωq, ωq measurable for the σ-fields E and FT .
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Proof of Theorem 5.98. On the event tT ď tu the mapping

ω ÞÑ X pT pωq, ωq
is the composition of the mapping ω ÞÑ pT pωq, ωq, which goes from tT ď tu to
r0, ts ˆ Ω and which is measurable for the σ-fields Ft and Br0, ts b Ft, and the
mapping pu, ωq ÞÑ Xpu, ωq, which goes from r0, tsˆΩ to E and which is measur-
able for the σ-fields Br0, ts b Ft and E. In the latter argument the progressive
measurability of X was used. The composition of measurable mappings is again
measurable, and hence XpT q is measurable for de σ-fields FT and E.

This completes the proof of Theorem 5.98. �

5.99. Corollary. If T is a stopping time and if X is progressively measurable,
then the process XT defined by XT puq “ XpminpT, uqq is adapted to the stopped
filtration

`
FminpT,uq : u ě 0

˘
.

Proof. The proof is left as an exercise for the reader. �

The next lemma is often employed instead of the monotone class theorem.

5.100. Lemma. Let F be a σ-field on Ω and H a vector space consisting of
F-measurable real-valued bounded functions on Ω. Suppose that the following
hypotheses are fulfilled:

(1) H contains the constant functions;
(2) If f and g belong to H, then the product fg belongs to H;
(3) If f is the pointwise limit of a sequence of functions pfn : n P Nq in H,

for which |fn| ď 1, then f belongs to H;
(4) F “ σ pf : f P Hq.

Then H contains all bounded F-measurable functions.

Proof. Let D be the collection D “ tA P F : 1A P Hu. Then D is a Dynkin
system and by (2) D is closed for taking finite intersections. So D is a σ-field.
Pick f P H and let a P R. We will prove that the set tf ě au belongs to D.
By taking an appropriate combination of f and the constant function 1 we may
assume that 0 ď f ď 1 and that 0 ď a ď 1. Let p be a polynomial. By (2) ppfq
belongs to H . Let ϕ : r0, 1s Ñ R be a continuous function. By the theorem
of Stone-Weierstrass there exists a sequence of polynomials ppn : n P Nq such
that supxPr0,1s |ϕpxq ´ pnpxq| ď n´1. Consequently, ϕpfq belongs to H . Since
the function 1ra,8q is a (decreasing) pointwise limit of a sequence of continuous
functions, it follows that 1ra,8qpfq “ 1tfěau belongs to H . So the set tf ě au
belongs to D. From which it follows that D “ F. But then we infer F Ă
tA P F : 1A P Hu. From this the assertion in Lemma 5.100 immediately follows.

�
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5.101. Definition. Let pFt : t ě 0q be a filtration on the probability space

pΩ,F,Pq ,
and let X be an adapted process.

(i) The process X is called a martingale (relative to P and to the filtration
pFt : t ě 0q) if for every t ě 0 the variable Xptq belongs to L1 pΩ,F,Pq
and if for every pair 0 ď s ă t the equality Xpsq “ E

`
Xptq

ˇ̌
Fs

˘
holds

P-almost surely.
(ii) The process X is called a sub-martingale (relative to P and to the

filtration pFt : t ě 0q) if for every t ě 0 the variable Xptq belongs to
L1 pΩ,F,Pq and if for every s ă t the inequality Xpsq ď E

`
Xptq

ˇ̌
Fs

˘

holds P-almost surely.
(iii) The process X is called a super-martingale (relative to P and to the

filtration pFt : t ě 0q) if for every t ě 0 the variable Xptq belongs to
L1 pΩ,F,Pq and if for every s ă t the inequality Xpsq ě E

`
Xptq

ˇ̌
Fs

˘

holds P-almost surely.

Instead of assuming Xptq P L1 pΩ,F,Pq in (ii) it is sometimes assumed that the
variable Xptq` “ maxpXptq, 0q belongs to L1 pΩ,F,Pq. In (iii) it is sometimes
only assumed that Xptq´ “ max p´Xptq, 0q belongs to L1 pΩ,F,Pq. If T is a
(discrete) subset of r0,8q and if pXptq,Ftqtě0 is a martingale (sub-martingale,
super-martingale), then the process pXptq,FtqtPT is so as well. Then we can use
“discrete results” and via a limiting procedure we then obtain results in the
“continuous case”.

5.102. Definition. Let f : r0,8q Ñ R be a function, let T Ď r0,8q and let
a ă b be real numbers. Define the number of upcrossings UT pf, a, bq of f

ˇ̌
T

between a and b by

UT pf, a, bq
“ sup tm : there exist t1 ă t2 ă . . . ă t2m, tj P T f pt2k´1q ď a, f pt2kq ě bu .

(5.168)

5.103. Lemma. Let D by the set of non-negative dyadic numbers and let f : D Ñ
R be a function, which is bounded on D X r0, ns for all n P N. Assume that,
for all n P N and for all real numbers a ă b, with a and b (dyadic) rational,
the number of upcrossings UDXr0,nspf, a, bq of f is finite. Then the following
assertions are true:

(a) For every t P R the following left and right limits exist:

lim
sÒt,sPD

fpsq and lim
sÓt,sPD

fpsq; (5.169)

(b) Define the function g by gptq “ lim
sÓt,sPD

fpsq. Then g is right-continuous

and for every t ą 0 the left limit limsÒt gpsq exists.

Proof. (a) We will show that the limit limsÓt,sąt fpsq exists. Since the func-
tion f is bounded it suffices to prove that lim infsÓt,sąt fpsq “ lim supsÓt,sąt fpsq.
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Assume that this not the case. Then there exist dyadic rational numbers a and
b such that lim infsÓt,sąt fpsq ă a ă b ă lim supsÓt,sąt fpsq. This means that
there exists s0 ą t, s0 P D, with fps0q ą b. There also exists s1 ă s0, s1 ą t,
s1 P D, such that fps1q ă a. In general we obtain t ă s2k´1 ă s2k´2, s2k´1 P D,
for which fps2k´1q ă a and we obtain t ă s2k ă s2k´1, s2k P D, with fps2kq ą b.
For m P N we write t2m “ s0, t2m´1 “ s1, . . ., t2 “ s2m´1, t1 “ s2m´1. Pick
n ą s0. Then we have UDXr0,nspf, a, bq ě m. Since m P N is arbitrary it follows
that UDXr0,nspf, a, bq “ 8. So we obtain a contradiction. The existence of the
left limit can be treated similarly.

(b) Put gptq “ limsÓt,sąt,sPD fpsq. By (a) this function is well defined. Since,
for every n P N, the function f is bounded on the set D X r0, ns the function
g possesses this property as well. Let now ptn : n P Nq be a sequence that
decreases to t and for which tn ą t for all n P N. We will prove limnÑ8 gptnq “
gptq. Then this shows that g is right-continuous at t. Assume lim infnÑ8 gptnq ă
gptq. This will lead to a contradiction. By passing to a subsequence, which we
call again ptn : n P Nq, we may suppose that lim infnÑ8 gptnq “ limnÑ8 gptnq
and that there are numbers a and b P D such that for all n P N, gptnq ă
a ă b ă gptq. Then pick s0 ą t0 such that fps0q ă a: this possible, because
gpt0q ă a. The pick s0 ą t0 ą s1 ą t in such a way that fps1q ą b: this is
possible, because gptq ą b. Then choose tn2

, s1 ą tn2
ą t, with gptn2

q ă a. Then
there exists s1 ą s2 ą tn2

, such that fps2q ă a. This is so because gptn2
q ă a.

This procedure can be continued. Like in (a) we arrive at UDXr0,nspf, a, bq “ 8,
for a certain nN, n ą t. This is a contradiction. But then it follows that
lim infnÑ8 gptnq ě gptq. In the same fashion we see that lim supnÑ8 gptnq ď
gptq. Consequently, gptq “ limnÑ8 gptnq. In order to prove the existence of the
left limit of the function g at t, we choose a sequence ptn : n P Nq, that increases
to t, and which has the property that tn ă t for all n P N. Assuming that
lim infnÑ8 gptnq ă lim supnÑ8 gptnq, then, as above, we arrive at the conclusion
that, for certain dyadic numbers a ă b, for which lim infnÑ8 gptnq ă a ă b ă
lim supnÑ8 gptnq, the number of upcrossings of the function f on the interval
D X r0, ns with n ą t is infinite.

This completes the proof of Lemma 5.103. �

5.104. Theorem (Doob’s optional time theorem for sub-martingales). Let

pXpjq : j P Nq
be a sub-martingale relative to the filtration pFn : n P Nq, and let T ě S be
stopping times. Suppose that E r|XpT q|s ă 8 and also E r|XpSq|s ă 8. If,
additionally, lim

mÑ8
E rXpmq : T ě m ě Ss “ 0, then XpSq is measurable for the

σ-field FS and the inequality E
“
XpT q

ˇ̌
FS

‰
ě XpSq holds P-almost surely.

Proof. Let A be an event in FS. For every j, j ě 1, and for every ℓ P N,
ℓ ě 0, the event A X tT ě ℓ ` ju X tS “ ℓu X A then belongs to the σ-field
Fℓ`j´1. To see this, observe that the event tT ě ku “ Ωz tT ď k ´ 1u belongs
to Fk´1. Since

pXpminpT,mqq ´ XpminpS,mqqq 1A
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“
mÿ

ℓ“0

m´ℓÿ

j“1

pXpℓ ` jq ´ Xpℓ ` j ´ 1qq 1tTěℓ`juXtS“ℓuXA,

it follows that

E ppXpminpT,mqq ´ XpminpS,mqqq 1Aq

“
mÿ

ℓ“0

m´ℓÿ

j“1

E
`
pXpℓ ` jq ´ Xpℓ ` j ´ 1qq 1tTěℓ`juXtS“ℓuXA

˘
.

Hence, E ppXpminpT,mqq ´ XpminpS,mqqq 1Aq ě 0. Since, in addition,

E pXpT q ´ XpSq ´ XpminpT,mqq ` XpminpS,mqqq
“ E pXpT q ´ XpSq : S ě mq ` E pXpT q ´ Xpmq : T ě m ą Sq ,

the claim in Theorem 5.104 follows. �

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Do you like cars? Would you like to be a part of a successful brand?
As a constructer at ŠKODA AUTO you will put great things in motion. Things that will 
ease everyday lives of people all around Send us your CV. We will give it an entirely 
new new dimension.

Send us your CV on
www.employerforlife.com

WE WILL TURN YOUR CV 
INTO AN OPPORTUNITY 

OF A LIFETIME

WE WILL TURN YOUR CV 
INTO AN OPPORTUNITY 

OF A LIFETIME

http://s.bookboon.com/skoda-eng


ADVANCED STOCHASTIC PROCESSES: PART II SOME RELATED RESULTS

396

396 5. SOME RELATED RESULTS

5.105. Proposition. Let pXpnq : n P Nq be a (sub-)martingale relative to the
discrete filtration pFn : n P Nq.

(a) Let H “ pHpnq : n P N, n ě 1q be a positive bounded process with the
property that Hn is measurable for the σ-field Fn´1. Define the process
pY pnq : n P Nq by

Y p0q “ Xp0q, Y pnq “ Xp0q `
nÿ

k“1

Hpkq pXpkq ´ Xpk ´ 1qq , n ě 1.

Then the process Y is a (sub-)martingale. By putting Hpnq “ 1tnďT u,
where T is a stopping time we see that process

XT :“ pXpminpT, nqq : n P Nq
is a (sub-)martingale.

(b) Let S and T be a pair of bounded stopping times such that 0 ď S ď T .
Then

XpSq ď E
`
XpT q

ˇ̌
FS

˘
, P-almost surely, (5.170)

and if X is a martingale, then there is an equality in (5.170).

Moreover, an adapted and integrable process X is a martingale if and only if
E pXpT qq “ E pXpSqq for each pair of bounded stopping times S and T for which
S ď T .

Proof. (a) The first assertion in (a) is easy to see. To understand the sec-
ond assertion we observe that 1tTěnu “ 1´1tTďn´1u is measurable for the σ-field
Fn´1 and we notice thatXp0q`řn

k“1 1tTěku pXpkq ´ Xpk ´ 1qq “ XpminpT, nqq.
This proves assertion (a) in Proposition 5.105.

(b) De inequality XpSq ď E
`
XpT q

ˇ̌
FS

˘
, P-almost surely was already proved in

Theorem 5.104 and can be obtained from (a) by putting Hpnq “ 1tTěnu ´1tSěnu.
If we use the equality EpXpSBqq “ EpXpTBqq for de times SB “ S1B ` M1Bc

and TB “ T1B ` M1Bc , where B belongs to FS and where M ě T ě S, then
we get

E pXpT q1B ` XpMq1Bcq “ E pXpSq1B ` XpMq1Bcq .
But, then it follows that E pXpT q1Bq “ E pXpSq1Bq for all B P FS and hence
XpSq “ E

`
XpT q

ˇ̌
FS

˘
.

The proof of Proposition 5.105 is now complete. �

5.106. Theorem (Doob-Meyer decomposition for discrete sub-martingales).
Let pXpjq : j P Nq be a sub-martingale. Then there exists a unique martin-
gale M “ pMpkq : k P Nq together with a unique predictable increasing process
A “ pApkq : k P Nq, with Ap0q “ 0, such that Xpkq “ Mpkq ` Apkq, for k P N.

5.107. Remark. This theorem is, in an appropriate form, also true for sub-
martingales X of de form X “ pXptq : t ě 0q (continuous time). A process
A “ pApkq : k P Nq is called predictable, if Apkq is measurable for Fk´1, and
this for every k P N.
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Proof. Existence Define the process A by Ap0q “ 0 and

Apkq “
kÿ

j“1

E
`
Xpjq ´ Xpj ´ 1q

ˇ̌
Fj´1

˘
.

Define the process M by Mpkq “ Xpkq ´ Apkq. Then the process M is a
martingale and the process A is increasing (i.e. non-decreasing) and predictable.
Moreover, the equality X “ M ` A holds.

Uniqueness Let the process X be such that X “ M`A where M is a martingale
and where A is predictable and increasing. In addition, suppose that Ap0q “ 0.
Then the equalities

kÿ

j“1

E
`
Xpjq ´ Xpj ´ 1q

ˇ̌
Fj´1

˘

“
kÿ

j“1

E
`
Mpjq ´ Mpj ´ 1q

ˇ̌
Fj´1

˘
`

kÿ

j“1

E
`
Apjq ´ Apj ´ 1q

ˇ̌
Fj´1

˘

“
kÿ

j“1

pApjq ´ Apj ´ 1qq “ Apkq,

hold for k ě 1. So the proof of Theorem 5.106 is complete now. �

5.108. Theorem. Let X “ pXpkq : 1 ď k ď Nq be a sub-martingale. Then the
following inequality holds:

E
`
Ut1,...,NupX, a, bq

˘
ď E rmaxpXpNq ´ a, 0qs

b ´ a
.

Proof. For a proof we refer the reader to Proposition 3.71 of Chapter 3.
Notice that, with X the process maxpX ´ a, 0q is also a sub-martingale. �

5.109. Theorem. Let X “ pXptq : t ě 0q be a sub-martingale for the filtration
pFt : t ě 0q. For a ă b the inequality

E
`
UDXr0,Ns pX, a, bq

˘
ď E rmax pXpNq ´ a, 0qs

b ´ a
.

holds.

Proof. Write Dn “ Z

2n
and define Un by Un “ UDnXr0,NspX, a, bq. The

sequence Un then increases to UDXr0,NspX, a, bq. So it follows that

E
`
UDXr0,ns

˘
“ lim

nÑ8
E pUnq ď E rmaxpXpNq ´ a, 0qs

b ´ a
.

This completes the proof of Theorem 5.109. �

The following theorem contains Doob’s maximal inequalities for submartingales.
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5.110. Theorem. Let X “ pXp0q, . . . , Xpnqq be a sub-martingale. Then the
following maximal inequalities of Doob hold:

P

ˆ
max
0ďjďn

Xj ě λ

˙
ď 1

λ
EpXpnqq; (a)

P

ˆ
max
0ďjďn

|Xj | ě λ

˙
ď 2

λ
E p5 |Xpnq| ´ 2Xp0qq ; (b)

and if X is a martingale

P

ˆ
max
0ďjďn

|Xj | ě λ

˙
ď 1

λ
tE p|Xpnq|qu . (c)

Proof. We begin with a proof of (c). Consider the mutually disjoint events

A0 “ t|X0| ą λu , and Ak :“
"

|Xpkq| ą λ, max
0ďjďk´1

|Xpjq| ď λ

*
,

1 ď k ď n. Then
Ťn

k“0Ak “ tmax0ďjďn |Xpjq| ě λu. Therefore

P

„
max
0ďjďn

|Xpjq| ě λ


“

nÿ

j“0

P pAjq ,

and so, using the martingale property

PpAkq “ E p1Ak
q ď 1

λ
E r1Ak

|Xpkq|s (5.171)

(martingale property)

“ 1

λ
E

“
1Ak

|Xpnq|
ˇ̌
Fk

‰
ď 1

λ
E

“
1Ak

E
`
|Xpnq|

ˇ̌
Fk

˘‰
“ 1

λ
E r1Ak

|Xpnq|s .

By summing over k in (5.171)we get (c).
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(a) The proof of (a) follows almost the same lines, except that in the definitions
of the events Ak the absolute value signs have to be omitted.

(b) For the proof of this assertion we employ the Doob-Meyer decomposition
theorem (Theorem 5.106). Write X “ M ` A with M a martingale, and A

(predictable) increasing process. We let Mp0q “ Xp0q. Then, by (c), we see

P

ˆ
max
0ďjďn

|Xpjq| ě λ

˙
ď P

ˆ
max
0ďjďn

|Mpjq| ě λ

2

˙
` P

ˆ
Apnq ě λ

2

˙

ď 2

λ
E |Mpnq| ` 2

λ
EpAnq ď 2

λ
E p|Mpnq| ´ Mpnq ` Xpnqq

ď 2

λ
E p2 |Xpnq| ` 2Apnq ` Xpnqq ď 2

λ
E p5 |Xpnq| ´ 2Xp0qq .

This proves assertion (b).

The proof of Theorem 5.110 is complete now. �

5.111. Lemma. Let pAn : n P Nq be a sequence of σ-fields decreasing to the σ-
field A8. So that An`1 Ď An, n P N, and A8 “ Ş

nPN An. Let pfn : n P Nq Y
tf8u be a sequence of stochastic variables with the following properties:

(i) fn is An-measurable, n P N, and f8 is A8-measurable;
(ii) fm ď E

`
fn

ˇ̌
Am

˘
, for all m ě n, and f8 ď E

`
fn

ˇ̌
A8

˘
, n P N;

(iii) limnÑ8 E pfnq “ E pf8q.

Then the sequence pfn : n P Nq is uniformly integrable.

Proof. For m “ 1, 2, . . . ,8 we have

fm ď E
`
f1

ˇ̌
Am

˘
and maxpfm, 0q ď E

`
maxpfm, 0q

ˇ̌
Am

˘
.

From this it follows that the sequence pmaxpfm, 0q : 1 ď m ď 8q is dominated
by an integrable function (in fact by E pmaxpf1, 0qq). So it follows that this se-
quence is uniformly integrable. The fact that the sequence pmaxp´fn, 0q : n P Nq
is also uniformly integrable, is much less trivial. To this end we consider

´ λP pfn ă ´λq ě E pfn : fn ă ´λq “ E pfnq ´ E pfn : fn ě ´λq
ě E

`
E

`
fn

ˇ̌
A8

˘˘
´ E

`
E

`
f1

ˇ̌
An

˘
: fn ě ´λ

˘

ě E pf8q ´ E pf1 : fn ě ´λq
ě E pf8q ´ E pmaxpf1, 0qq . (5.172)

From (5.172) it follows that

λP pfn ă ´λq ď E pmaxpf1, 0q ` maxp´f8, 0qq ă 8.

Then choose ǫ ą 0 and m0 in such a way that E pfm0
q ď E pf8q ` ǫ. For n ě m0

we then see E pfm0
q ď E pfnq ` ǫ. Hence, E pfnq ě E pfm0

q ´ ǫ. Then choose
δ ą 0 such that PpAq ď δ implies E p|fk| : Aq ď ǫ for k “ 1, . . . , m0. After that
choose λ0 so large that P pfk ă λq ď δ for all k P N and for all λ ě λ0. For
1 ď k ď m0 we then get E p|fk| : fk ď ´λq ď ǫ, λ ě λ0. For k ě m0 we see

E pfk : fk ă ´λq “ E pfkq ´ E pfk : fk ě λq (5.173)
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ě E pfm0
q ´ E

`
E

`
fm0

ˇ̌
Ak

˘
: fk ě ´λ

˘
´ ǫ ě E pfm0

: fk ă ´λq ´ ǫ.

By (5.173) we obtain

E p|fk| : fk ă ´λq “ ´E pfk : fk ă ´λq
ď |E pfm0

: fk ă ´λq| ` ǫ ď 2ǫ

for a certain λ ą 0. Thus we see that the sequence pmaxp´fn, 0q : n P Nq is also
uniformly integrable. This yields the desired result in Lemma 5.111. �

5.112. Theorem. Let, relative to the right-continuous filtration pFt : t ě 0q,
the process X be a sub-martingale. Suppose that F0 contains the zero-sets, and
that the function t ÞÑ E pXptqq is right-continuous. Then there exists a process
Y “ pY ptq : t ě 0q which is cadlag is which cannot be distinguished from X. So
for every t ě 0 the equality Y ptq “ Xptq holds P-almost surely.

Proof. There exists an event Ω1 in Ω, with PpΩ1q “ 1, such that on Ω1 the
following claims hold:

sup
tPDXr0,ns

|Xptq| ă 8, for all n P N;

UDXr0,nspX, a, bq ă 8, or all n P N and for all a ă b, a and b rational.

Since P pΩ1q “ 1 we see that Ω1 belongs to F0 and, hence Ω1 belongs to Ft for
all t ě 0. On Ω1 we define the process Y “ pY ptq; t ě 0q as follows: Y ptq “
limsÓt,sąt,sPD Xpsq. Then Y ptq is measurable for all σ-fields Fu with u ą t. By the
right continuity of the filtration pFt : t ě 0q we then see that Y ptq is measurable
for the σ-field Ft. Then take t “ limnÑ8 sn, where sn Ó t, and where, for every
n P N, sn belongs to D. Then Y ptq “ limnÑ8 Xpsnq in probability. Then
apply Lemma 5.111 to conclude that the sequence pXpsnq : n P Nq is uniformly
integrable, and hence Y ptq “ L1 ´ limnÑ8 Xpsnq. We may apply Lemma 5.111.
for fn :“ Xpsnq, f8 “ Y ptq, A8 “ Ft and An “ Fsn. Then notice that
Xptq ď E

`
Xpsnq

ˇ̌
Ft

˘
, P-almost surely. By L1-convergence, from the latter we

see that Xptq ď E
`
Y ptq

ˇ̌
Ft

˘
and thus Xptq ď Y ptq P-almost surely. Since,

in addition, E pY ptqq “ limnÑ8 EpXpsnqq “ EpXptqq, the equality Y ptq “ Xptq
follows P-almost surely.

This completes the proof of Theorem 5.112. �

5.113. Theorem. Let X “ pXptq : t ě 0q be a sub-martingale with property that
sup
tě0

E
“
Xptq`‰

ă 8. The following assertions hold true.

(a) The limit Xp8q :“ limsÑ8,sPD Xpsq exists P-almost surely.
(b) If X is a cadlag process, then the limit Xp8q :“ limsÑ8 exists P-almost

surely.
(c) If, in addition, the process pXptq` : t ě 0q is uniformly integrable, then

the inequality Xptq ď E
`
Xp8q

ˇ̌
Ft

˘
holds.
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Proof of Theorem 5.113. (a) From the maximal inequality of Doob it
follows that, for λ ą 0, the following inequality holds:

λP

˜
sup

tPDXr0,ns
|Xptq| ą λ

¸
ď 10E

`
Xpnq` ` Xp0q´˘

. (5.174)

By letting n tend to 8 in (5.174) we obtain

λP

ˆ
sup
tPD

|Xptq| ą λ

˙
ď 10 sup

n

E
`
Xpnq` ` Xp0q´˘

,

and hence, suptPD |Xptq| ă 8 P-almost surely. In the same manner we see

E
`
UDXr0,8qpX, a, bq

˘
ď sup

n

E pXpnq ´ aq`

b ´ a
. (5.175)

From (5.175) we see that UDXr0,8qpX, a, bq ă 8 P-almost surely. As we proved
regularity starting from (5.175) and (5.174) (in fact from their consequences),
we now obtain that Xp8q :“ limsÑ8,sPD Xpsq exists.

(b) If X is cadlag, then, like in the proof of the regularity, the limit Xp8q “
limsÑ8 Xpsq exists.

(c) Since the process pXptq` : t ě 0q is uniformly integrable, it also follows that
the process t ÞÑ maxpXptq, aq “ pXptq ´ aq` `a is uniformly integrable as well.
So, for A P Ft and for u ą t, the folowing (in-)equalities hold true:ż

A

maxpXptq, aq dP ď lim
uÑ8

ż

A

maxpXpuq, aq dP

“
ż

A

lim
uÑ8

maxpXpuq, aq dP “
ż

A

maxpXp8q, aq dP.
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Since ż
Xp8q` dP “ lim

uÑ8

ż
Xpuq` dP ă 8

we see that Xp8q` belongs to L1 pΩ,F,Pq. But then we get
ż

A

Xptq dP “ lim
aÑ´8

ż

A

maxpXptq, aq dP ď lim
aÑ´8

ż

A

maxpXp8q, aq dP

“
ż

A

Xp8q dP. (5.176)

From (5.176) the inequality Xptq ď E
`
Xp8q

ˇ̌
Ft

˘
follows. This proves item

(c). The proof of Theorem 5.113 is now complete. �

5.114. Theorem. Let X “ pXptq : t ě 0q be a sub-martingale with the property
that the process pXptq` : t ě 0q is uniformly integrable. In addition, suppose that
X is cadlag. If S and T is a pair of stopping times such that 0 ď S ď T ď 8,
then the following inequality holds: XpSq ď E

`
XpT q

ˇ̌
FS

˘
.

Proof. Put Sn “ 2´nr2nT s and, similarly, Tn “ 2´nr2nT s. Then the stop-
ping times Sn and Tn attain exclusively discrete values (in fact they take their
values in 2´nN). It is true that Sn Ó S (if n Ñ 8) and the same is true for the
sequence pTn : n P Nq. Moreover, Sn ď Tm for n ě m. From Doob’s theorem
about discrete optional stopping times it follows that

XpSnq ď E
`
XpTmq

ˇ̌
FSn

˘
, XpSnq ď E

`
Xp8q

ˇ̌
FSn

˘
,

XpSnq ď E
`
Xp8q

ˇ̌
FSn

˘
.

From this it follows that the processes pXpSnq` : n P Nq and pXpTnq` : n P Nq
are uniformly integrable. For all n, m in N, n ě m, the following inequality
holds for A P FS:ż

A

maxpXpSnq, aq dP ď
ż

A

maxpXpTmq, aq dP; (5.177)

(let n tend to 8 in (5.177) to obtain)
ż

A

maxpXpSq, aq dP ď
ż

A

maxpXpTmq, aq dP; (5.178)

(in (5.178) let m tend to 8 to obtain)
ż

A

maxpXpSq, aq dP ď
ż

A

maxpXpT q, aq dP; (5.179)

(in (5.179) let a tend to ´8 to obtain)
ż

A

XpSq dP ď
ż

A

XpT q dP, (5.180)

and that limnÑ8 XpSnq “ XpSq and that the same is true for the stopping time
T . By (5.180) we then see XpSq ď E

`
XpT q

ˇ̌
FS

˘
. This completes the proof of

Theorem 5.114. �
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5.115. Corollary. Let X “ pXpsq : 0 ď s ď tq be a cadlag martingale and let
0 ď S ď T ď t be two stopping times. The following equalities are true:

XpSq “ E
`
XpT q

ˇ̌
FS

˘
and E pXpT qq “ E pXp8qq “ EpXp0qq.

Proof. The proof is left as an exercise for the reader. Among other things
we notice that the martingale pXpsq : 0 ď s ď tq is uniformly integrable. �

5.116. Corollary. Let X be a cadlag martingale in L1 pΩ,F,Pq which is uni-
formly integrable. Then the limit Xp8q :“ limtÑ8 Xptq exists P-almost surely,
and if S and T are stopping times such that 0 ď S ď T ď 8, then the following
equalities hold:

XpSq “ E
`
XpT q

ˇ̌
FS

˘
and E pXpT qq “ E pXp8qq “ EpXp0qq.

Proof. The proof of this corollary is left as an exercise for the reader.
Observe that for n P N fixed the martingale pXpminpn, tqq : t ě 0q is uniformly
integrable. �

In what follows the process X : r0,8q ˆΩ Ñ Rν is a process with values in Rν ,
where ν may be 1.

5.117. Definition. Let X be a stochastic process, which is adapted to the
filtration pFt : t ě 0q. The process X is said to be a Lévy process if X possesses
the following properties:

(a) For all s ă t the variable Xptq ´ Xpsq is independent of Fs;
(b) For all s ď t the variable Xptq ´ Xpsq has the same distribution as

Xpt ´ sq;
(c) For all t ě 0 and for every sequence ptn : n P Nq in r0,8q that converges

to t, the limit limnÑ8 Xptnq “ X exists in P-law (or in P-measure).
Sometimes this is denoted by P-limnÑ8 Xptnq “ Xptq.

5.118.Theorem. Let X be a stochastic process, which is adapted to the filtration
pFt : t ě 0q, and which takes it values in Rν. The following assertions are true:

(a) Let X be a Lévy-process. Define for t ě 0 the probability measure µt as
being the distribution of Xptq. So µtpBq “ P pXptq P Bq, where B is a
Borel subset of Rν. Then the family tµt : t ě 0u is a vaguely continuous
semigroup of probability measures.

(b) Conversely, let tµt : t ě 0u be a vaguely continuous semigroup of prob-
ability measures on Rν. Then there exists a Lévy-process

X “ tXptq : t ě 0u
with cadlag paths such that µtpBq “ P pXptq P Bq for all Borel subsets
B of Rν.

Proof of Theorem 5.118. (a) Define for t ě 0 the characteristic func-

tion ft of Xptq as being the Fourier transform of the P-distribution of Xptq. So
that

ftpξq “ E pexp p´i 〈ξ,Xptq〉qq , ξ P Rν .
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Since, for t, s P r0,8q, Xps ` tq “ Xps ` tq ´ Xpsq ` Xpsq, since, in addition,
Xps` tq ´Xpsq is independent of Xptq, and because Xps` tq ´Xpsq possesses
the same distribution as Xptq we infer

fs`tpξq “ E pexp p´i 〈ξ,Xps ` tq〉qq
“ E pexp p´i 〈ξ,Xps ` tq ´ Xpsq〉q exp p´i 〈ξ,Xpsq〉qq
“ E pexp p´i 〈ξ,Xps ` tq ´ Xpsq〉qqE pexp p´i 〈ξ,Xpsq〉qq
“ E pexp p´i 〈ξ,Xptq〉qqE pexp p´i 〈ξ,Xpsq〉qq
“ ftpξqfspξq. (5.181)

Since Xp0q and Xp0q ´ Xp0q “ 0 have the same distribution we see f0pξq “ 1.
Since P-limuÓ0Xpuq “ Xp0q we see, for example by Theorem 5.85 in combination
with the implication (1) ñ (9) of Theorem 5.43, that limsÓ0 fspξq “ f0pξq “ 1.
From (5.181) it then follows that

lim
tÓs

ftpξq ´ fspξq “ lim
tÓs

fspξq pft´spξq ´ f0pξqq “ 0

for all s ě 0. Because, by applying equality (5.181) repeatedly, we see ftpξq “
pft2´npξqq2n . In addition we have limsÓ0 fspξq “ 1. So it follows that for no value
of t P r0,8q the function ftpξq vanishes for any ξ. Since, for t ă s, ftpξq´fspξq “
pf0pξq ´ fs´tpξqq ftpξq, it also follows that limtÒs ftpξq “ fspξq, for s ą 0. From
the previous considerations it follows that the function t ÞÑ ftpξq, t P r0,8q,
is a continuous function, which satisfies the relation fs`tpξq “ fspξqftpξq for
all s, t ě 0 and this for all ξ P Rν . Furthermore, we define the family of
measures tµt : t ě 0u as being the P-distributions of the Lévy process X. So
that µtpBq “ P pXptq P Bq, B Borel subset of Rν .
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that µtpBq “ P pXptq P Bq, B Borel subset of Rν .

404 5. SOME RELATED RESULTS

Since, for t, s P r0,8q, Xps ` tq “ Xps ` tq ´ Xpsq ` Xpsq, since, in addition,
Xps` tq ´Xpsq is independent of Xptq, and because Xps` tq ´Xpsq possesses
the same distribution as Xptq we infer

fs`tpξq “ E pexp p´i 〈ξ,Xps ` tq〉qq
“ E pexp p´i 〈ξ,Xps ` tq ´ Xpsq〉q exp p´i 〈ξ,Xpsq〉qq
“ E pexp p´i 〈ξ,Xps ` tq ´ Xpsq〉qqE pexp p´i 〈ξ,Xpsq〉qq
“ E pexp p´i 〈ξ,Xptq〉qqE pexp p´i 〈ξ,Xpsq〉qq
“ ftpξqfspξq. (5.181)

Since Xp0q and Xp0q ´ Xp0q “ 0 have the same distribution we see f0pξq “ 1.
Since P-limuÓ0Xpuq “ Xp0q we see, for example by Theorem 5.85 in combination
with the implication (1) ñ (9) of Theorem 5.43, that limsÓ0 fspξq “ f0pξq “ 1.
From (5.181) it then follows that

lim
tÓs

ftpξq ´ fspξq “ lim
tÓs

fspξq pft´spξq ´ f0pξqq “ 0

for all s ě 0. Because, by applying equality (5.181) repeatedly, we see ftpξq “
pft2´npξqq2n . In addition we have limsÓ0 fspξq “ 1. So it follows that for no value
of t P r0,8q the function ftpξq vanishes for any ξ. Since, for t ă s, ftpξq´fspξq “
pf0pξq ´ fs´tpξqq ftpξq, it also follows that limtÒs ftpξq “ fspξq, for s ą 0. From
the previous considerations it follows that the function t ÞÑ ftpξq, t P r0,8q,
is a continuous function, which satisfies the relation fs`tpξq “ fspξqftpξq for
all s, t ě 0 and this for all ξ P Rν . Furthermore, we define the family of
measures tµt : t ě 0u as being the P-distributions of the Lévy process X. So
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From the previous arguments it then follows that

pµs`tpξq “ fs`tpξq “ fspξqftpξq “ pµspξqpµtpξq (5.182)

and that limsÓ0 pµspξq “ 1. So that the family tµt : t ě 0u is a vaguely continuous
semigroup of probability measures on Rν . By Theorem 5.31 there then exists a
continuous negative-definite function ψ such that ftpξq “ pµtpξq “ exp p´tψpξqq.

(b) Define pΩ,F,Pq as in Proposition 5.36. Likewise we define the state vari-
ables Xptq : Ω Ñ Rν as in Proposition 5.36. Let the filtration pFt : t ě 0q
be determined by Ft “ σ pXpuq : 0 ď u ď tq. So the filtration pFt : t ě 0q is
the internal history of the process X. Then X is a Lévy-process, which pos-
sesses the properties as described in (b). The fact that for t ą s the variable
Xptq ´ Xpsq is independent of Fs was proved in Theorem 5.37. We must show
that, for ǫ ą 0 fixed, limsÓ0 P p|Xpsq ´ Xp0q| ą ǫq “ 0. Therefore, notice first
that P pXp0q “ 0q “ µ0t0u “ 1. Hence, with Bpǫq “ tx P Rν : |x| ď ǫu, we have

P p|Xpsq ´ Xp0q| ą ǫq “ P p|Xpsq ´ Xp0q| ą ǫ,Xp0q “ 0q
“ P p|Xpsq| ą ǫ,Xp0q “ 0q
“ P p|Xpsq| ą ǫq
“ µs tRνzBpǫqu “ 1 ´ µs tBpǫqu . (5.183)

Since the convolution semigroup tµt : t ě 0u is vaguely continuous it follows that
lim
sÓ0

µs tBpǫqu “ 1. From (5.183) we then see that limsÓ0 P p|Xpsq ´ Xp0q| ą ǫq “
0. The only problem which is still left, is the fact that the process X is not
necessarily cadlag. In the following propositions and lemmas we will, among
other things, resolve this problem. From Theorem 5.121 it follows that the
process X is also a Lévy process for the filtration pGt : t ě 0q, where Gt “ FtYN.
By Theorem 5.123 we then see that the process X possesses a cadlag version.

The proof of Theorem 5.118 is now complete. �

5.119. Proposition. Suppose 0 ď s1 ă ¨ ¨ ¨ ă sm and choose t ě 0. Let X be a
Lévy process for the filtration pFt : t ě 0q, where Ft “ σ tXpuq : 0 ď u ď tu. Let
tµt : t ě 0u be the corresponding convolution semigroup and ψ the corresponding
negative-definite function. So µtpBq “ P pXptq P Bq for all Borel subsets B and
pµtpξq “ exp p´tψpξqq for all t ě 0. For ξ1, . . . , ξm in Rν the following equalities
hold:

E

«
exp

˜
´i

mÿ

j“1

〈

ξj, Xpt ` sjq
〉

¸
ˇ̌
Ft

ff

“ E

«
exp

˜
´i

mÿ

j“1

〈

ξj, Xpt ` sjq
〉

¸
ˇ̌
Ft`

ff

“ exp

˜
´i

〈

mÿ

j“1

ξj, Xptq
〉¸

exp

˜
´

mÿ

j“1

psj ´ sj´1qψ
˜

mÿ

k“j

ξk

¸¸
. (5.184)

Here we write Ft` “ Ş
sąt Fs and s0 “ 0.
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Proof. We apply induction with respect to m. We begin with the condi-
tioning on Ft. For m “ 1 we have

E
“
exp

`
´i

〈

ξ1, X pt ` s1q
〉˘ ˇ̌

Ft

‰

“ E
“
exp

`
´i

〈

ξ1, X pt ` s1q ´ Xptq
〉˘ ˇ̌

Ft

‰
exp

`
´i

〈

ξ1, Xptq
〉˘

(Xpt ` s1q ´ Xptq does not depend on Ft)

“ E
“
exp

`
´i

〈

ξ1, X pt ` s1q ´ Xptq
〉˘‰

exp
`
´i

〈

ξ1, Xptq
〉˘

(Xpt ` s1q ´ Xptq has the same distribution as Xps1q)

“ E
“
exp

`
´i

〈

ξ1, X ps1q
〉˘‰

exp
`
´i

〈

ξ1, Xptq
〉˘

“ pµs1

`
ξ1

˘
exp

`
´i

〈

ξ1, Xptq
〉˘

“ exp
`
´s1ψ

`
ξ1

˘˘
exp

`
´i

〈

ξ1, Xptq
〉˘

“ exp
`
´ ps1 ´ s0qψ

`
ξ1

˘˘
exp

`
´i

〈

ξ1, Xptq
〉˘

. (5.185)

Notice that (5.185) is the same as the equality in (5.184) form “ 1. Suppose now
that we already know (5.184) for every t ě 0, for every m-tuple s1 ă ¨ ¨ ¨ ă sm
and for every m-tuple ξ1, . . . , ξm in Rν . We keep working with the original
filtration pFt : t ě 0q. For sm`1 ą sm and for ξm`1 P Rν we then see

E

«
exp

˜
´i

m`1ÿ

j“1

〈

ξj, X pt ` sjq
〉

¸
ˇ̌
Ft

ff

“ E

«
exp

˜
´i

mÿ

j“1

〈

ξj, X pt ` sjq
〉

¸

E
“
exp

`
´i

〈

ξm`1, X pt ` sm`1q
〉˘ ˇ̌

Ft`sm

‰ ˇ̌
Ft

ff

(employ (5.185) for t ` sm`1 instead of t)

“ E

«
exp

˜
´i

mÿ

j“1

〈

ξj, X pt ` sjq
〉

¸

exp
`
´i

〈

ξm`1, X pt ` sm`1q
〉˘

exp
`
´ psm`1 ´ smqψ

`
ξm`1

˘˘ ˇ̌
Ft

ff

(induction hypothesis)

“ exp

˜
´i

〈

m`1ÿ

j“1

ξj, Xptq
〉¸

exp

˜
´

m`1ÿ

j“1

psj ´ sj´1qψ
˜

m`1ÿ

k“j

ξk

¸¸
. (5.186)

But (5.186) is the same as (5.184) with m replaced by m ` 1. Next we look
at the situation for the filtration tFt` : t ě 0u which is closed from the right.
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Without loss of generality we may assume that s1 ą 0. In case s1 “ 0 we have
indeed

E

«
exp

˜
´i

mÿ

j“1

〈

ξj, X pt ` sjq
〉

¸
ˇ̌
Ft`

ff

“ exp
`
´i

〈

ξ1, Xptq
〉˘

E

«
exp

˜
´i

mÿ

j“2

〈

ξj, X pt ` sjq
〉

¸
ˇ̌
Ft`

ff
.

So assume that s1 ą 0 and choose n P N such that s1 ą n´1. Then we see, by
(5.184) for t ` n´1 instead of t,

E

«
exp

˜
´i

mÿ

j“1

〈

ξj, X pt ` sjq
〉

¸
ˇ̌
Ft`

ff
(5.187)

“ E

«
E

«
exp

˜
´i

mÿ

j“1

〈

ξj, X pt ` sjq
〉

¸
ˇ̌
Ft`n´1

ff
ˇ̌
Ft`

ff

(write s0 “ n´1 in what follows)

“ E

«
exp

˜
´i

〈

mÿ

j“1

ξj, X
`
t ` n´1

˘
〉¸

exp

˜
´

mÿ

j“1

psj ´ sj´1qψ
˜

mÿ

k“j

ξk

¸¸
ˇ̌
Ft`

ff
.

In (5.187) we let n tend to 8. Apparently it follows that

E

«
exp

˜
´i

mÿ

j“1

〈

ξj, X pt ` sjq
〉

¸
ˇ̌
Ft`

ff

“ E

«
exp

˜
´i

〈

mÿ

j“1

ξj, Xptq
〉¸

exp

˜
´

mÿ

j“1

psj ´ sj´1qψ
˜

mÿ

k“j

ξk

¸¸
ˇ̌
Ft`

ff

“ exp

˜
´i

〈

mÿ

j“1

ξj, Xptq
〉¸

exp

˜
´

mÿ

j“1

psj ´ sj´1qψ
˜

mÿ

k“j

ξk

¸¸
. (5.188)

From (5.188) it then follows that (5.184) holds for the filtration tFt` : t ě 0u
which is closed from the right.

This completes the proof of Proposition 5.119. �

5.120. Corollary. Let the assumptions and hypotheses be as in Proposition
5.119. For every bounded complex-valued random variable Y , that is measurable
for the σ-field σ tXpuq : u ě 0u the following equality holds P-almost surely de
equality:

E
“
Y

ˇ̌
Ft

‰
“ E

“
Y

ˇ̌
Ft`

‰
. (5.189)
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Proof. Put Y “ exp
´

´i
řm

j“1 〈ξ
j, Xpsjq〉

¯
. By Proposition 5.119 we see

that for all such random variables Y the equality in (5.189) holds, provided
that sj ě t, for 1 ď j ď m. By splitting and using the standard properties
of a conditional expectation we see that the restriction sj ě t is superfluous.
In other words the equality in (5.189) holds for all variables Y of the form

Y “ exp
´

´i
řm

j“1 〈ξ
j, Xpsjq〉

¯
where all sj belong to r0,8q and where all ξj

are members of Rν . Let Y0 be a bounded complex-valued random variable, which

belongs to the linear span of variables of the form exp
´

´i
řm

j“1 〈ξ
j, Xpsjq〉

¯
.

Then consider the vector space HpY0q defined by

HpY0q
“ tY : Ω Ñ C : Y is bounded and measurable for the σ-field σ tXpuq : u ě 0u

and E
`
Y Y0

ˇ̌
Ft

˘
“ E

`
Y Y0

ˇ̌
Ft`

˘(
.

By employing Lemma 5.100 or, even better, the monotone class theorem we see
that HpY0q contains all complex-valued bounded random variables, which are
measurable for the σ-field σ tXpuq : u ě 0u. Among others we may put Y0 “ 1,
and the claim in Corollary 5.120 follows. �

5.121.Theorem. Let X “ tXptq : t ě 0u be a Lévy-process. Let H“tHt : tě0u
be the internal history of the process X. Let N be the null sets in H8. Then
the filtration G, with Gt “ σ tHt Y Nu, is continuous from the right.
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Proof of Theorem 5.121. Let A P Gt`. By Corollary 5.120 we have
1A “ E

`
1A

ˇ̌
Ft

˘
. Let B P Ft be such that 1B “ E

`
1A

ˇ̌
Ft

˘
, P-almost surely.

Then P pA△Bq “ 0. Since A “ B△ pA△Bq, we see that A in fact belongs to
Gt. �

5.122. Lemma. Let pxn : n P Nq be a sequence of vectors in Rν with the property
that the sequence pexp p´i �ξ, xn�q : n P Nq converges for almost all ξ P Rν. Then
the sequence pxn : n P Nq converges.

Proof. Fix 1 ď j ď ν, and let U j be a vector valued stochastic variable
which is zero for the coordinates k ­“ j and with the property that U j

j is uni-
formly distributed on the interval r0, 1s. The following inequalities are true for
0 ă δ ă 1:

2Re E
`
1 ´ exp

`
´i

〈

U j , xn ´ xm

〉˘˘
“ E

ˇ̌
1 ´ exp

`
´i

〈

U j , xn ´ xm

〉˘ˇ̌2

“ 4E

ˆ
sin2 1

2

〈

U j , xn ´ xm

〉

˙
ě 4δ2P

"
sin2 1

2

〈

U j , xn ´ xm

〉

ě δ2
*

ě 4δ2P

#ˆ
2

π

˙2

min

ˆ
1

4

〈

U j , xn ´ xm

〉2
,
π2

4

˙
ě δ2

+

ě 4δ2P
�ˇ̌〈

U j , xn ´ xm

〉ˇ̌
ě δπ

(

“ 4δ2max

ˆ
1 ´ δπ

|xn,j ´ xm,j |
, 0

˙
.

Since this inequality holds for every 0 ă δ ă 1, it follows that the j-th coordinate
pxn,j : n P Nq of the sequence pxn : n P Nq converges. This holds for 1 ď j ď
ν. Hence, the limit limnÑ8 xn exists. This makes the proof of Lemma 5.122
complete. �

Among other things, in Theorem 5.123 the proof of item (b) in 5.118 is com-
pleted.

5.123.Theorem. Let pXptq,Ftqtě0 be a Lévy-process. Suppose that the filtration
pFt : t ě 0q is right-continuous, and that F0 contains the null sets. Then there
exists a cadlag modification of X “ pXptq : t ě 0q.

The result in Theorem 5.123 can be applied in case we take the internal history,
completed with null sets, as the filtration pFtqtě0.

Proof of Theorem 5.123. We will make use of the following product
set:

E “ CQ` “
!

pαtqtPQ`
: αt P C for all t P Q`

)
,

endowed with the product-σ-field E “ btPQ`BpCq. Put

D “
!

pαtqtPQ`
: Dϕ : r0,8q Ñ C cadlag with ϕptq “ αt for all t P Q`

)
.
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Upon writing ϕ as the pointwise limit ϕptq “ limnÑ8 ϕnptq, where

ϕnptq “
8ÿ

k“0

ϕ
`
pk ` 1q2´n

˘
1rk2´n,pk`1q2´nqptq,

it can be proved that D belongs to the σ-field E. Consider the mapping:

Φ : Rν ˆ Ω Ñ E

defined by

Φpξ, ωq “ exp p´i 〈ξ,Xptq〉q “: αt. (5.190)

The mapping Φ is measurable for the σ-fields F8 and E. As a consequence
Λ :“ Φ´1pDq belongs to the σ-field BpRνqbF8. So for every pair pξ, ωq P Rν ˆΩ
there exists a cadlag function f : r0,8q Ñ C with the property that the equality
fptq “ exp p´i 〈ξ,Xptq〉q holds for all t P Q`. Now let the negative-definite
function corresponding to the process X be given by ψ. Then the process
t ÞÑ exp p´i 〈ξ,Xptq〉 ` tψpξqq is a martingale. This is so, because, for 0 ď s ă t,
we have the following equalities:

E
`
exp p´i 〈ξ,Xptq〉 ` tψpξqq

ˇ̌
Fs

˘

“ E
`
exp p´i 〈ξ,Xptq ´ Xpsq〉 ` pt ´ sqψpξqq

ˇ̌
Fs

˘
exp p´i 〈ξ,Xpsq〉 ` sψpξqq

(Xptq ´ Xpsq does not depend on Fs)

“ E pexp p´i 〈ξ,Xptq ´ Xpsq〉 ` pt ´ sqψpξqqq exp p´i 〈ξ,Xpsq〉 ` sψpξqq

(Xptq ´ Xpsq heeft dezelfde distribution als Xpt ´ sq)

“ E pexp p´i 〈ξ,Xpt ´ sq〉 ` pt ´ sqψpξqqq exp p´i 〈ξ,Xpsq〉 ` sψpξqq

(definition of ψ)

“ exp p´i 〈ξ,Xpsq〉 ` sψpξqq . (5.191)

From martingale theory it follows that there exists a cadlag version M ξ “`
M ξptq : t ě 0

˘
of the martingale t ÞÑ exp p´i 〈ξ,Xptq〉 ` tψpξqq. By this we

mean that for every pξ, tq P Rν ˆ r0,8q there exists an event Nt,ξ with the
following properties: P pNt,ξq “ 0 and for ω R N c

t,ξ the equality M ξptqpωq “
exp p´i 〈ξ,Xpt, ωq〉 ` tψpξqq holds. Hence, for every ξ P Rν there exists a P-null
set Nξ such that for every t P r0,8q X Q the equality

M ξptqpωq “ exp p´i 〈ξ,Xpt, ωq〉 ` tψpξqq
holds for all ω R Nξ. In other words for all ξ P Rν the equality:

P tω : pξ, ωq P Λu ě P
�
N c

ξ

(
“ 1 (5.192)

holds. From (5.192) it then follows that

0 “
ż

Rν

dξ

ż

Ω

dP1Λc “
ż

Ω

dP

ż

Rν

1Λc dξ. (5.193)
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The equality in (5.193) implies that for P b λ-almost all pω, ξq the function
t ÞÑ exp p´i 〈ξ,Xpt, ωq〉q belongs to D. By Lemma 5.122 we see that P-almost
surely the following limits exist for all t ě 0:

lim
sÓt
sPQ

Xpsq and lim
sÒt
sPQ

Xpsq.

Define the process Y by Y ptq “ lim
sÓt, sPQ

Xpsq. Then the process Y is cadlag:

see (the proof of) Lemma 5.103 (b). Furthermore, Xptq “ lim
sÓt,sPQ

Xpsq (in P-

distributional sense), and thus Xptq “ Y ptq P-almost surely. The proof of
Theorem 5.123 is now complete. �

5.124. Theorem (Dynkin-Hunt). Let pXptq,Ftqtě0 be a cadlag Lévy process
with a right-continuous filtration pFt : t ě 0q. Let T : Ω Ñ r0,8q be a stopping
time which is not identically 8. So that P tT ă 8u ą 0. On the event tT ă 8u
the process Y “ tY ptq : t ě 0u is defined by Y ptq “ Xpt ` T q ´ XpT q.

(a) Under rP the process Y has the same distribution as the process X under
P.

(b) The σ-fields FT and σ tY psq : s ě 0u are P-independent.
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Proof of Theorem 5.124. (a) For n P N we write Tn “ 2´nr2nT s. Then
pTn : n P Nq is a sequence of stopping times with the following properties:

(i) tTn ă 8u “ tT ă 8u;
(ii) T ď Tn`1 ď Tn ď T ` 2´n, n P N.

Define the sequence of processes pY n : n P Nq via the formula:

Y nptq “ Xpt ` Tnq ´ XpTnq op de event tTn ă 8u “ tT ă 8u .
Let now f : pRνqm Ñ C be a bounded continuous function, let A be an event
in FT Ď FTn

, and let s1 ă ¨ ¨ ¨ ă sm be an increasing sequence of fixed times.
Then the following equalities hold:

E
“
f pY nps1q, Y nps2q ´ Y nps1q, . . . , Y npsmq ´ Y npsm´1qq 1AXtTă8u

‰

“
8ÿ

k“0

E
“
1AXtTn“k2´nuf

`
X

`
s1 ` k2´n

˘
´ X

`
k2´n

˘
, . . .

, X
`
sm ` k2´m

˘
´ X

`
sm´1 ` k2´m

˘˘‰

(Xpsj ` k2´nq ´ Xpsj´1 ` k2´nq does not depend on Fsj´1`k2´n)

“
8ÿ

k“0

P
“
A X

�
Tn “ k2´n

(‰

E
“
f

`
X

`
s1 ` k2´n

˘
´ X

`
k2´n

˘
, . . . , X

`
sm ` k2´m

˘
´ X

`
sm´1 ` k2´m

˘˘‰

(Xpsj ` k2´nq ´Xpsj´1 ` k2´nq has the same distribution as Xpsjq ´Xpsj´1q)

“
8ÿ

k“0

P
“
A X

�
Tn “ k2´n

(‰
E rf pX ps1q ´ X p0q , . . . , X psmq ´ X psm´1qqs

“ P rA X tTn ă 8usE rf pX ps1q ´ X p0q , . . . , X psmq ´ X psm´1qqs
“ P rA X tT ă 8usE rf pX ps1q ´ X p0q , . . . , X psmq ´ X psm´1qqs . (5.194)

In (5.194) we let n tend to 8. Since the process X is right-continuous it follows
that lim

nÑ8
Y nptq “ Y ptq P-almost surely on the event tT ă 8u. By the continuity

of the function f the equality

E
“
f pY ps1q, Y ps2q ´ Y ps1q, . . . , Y psmq ´ Y psm´1qq 1AXtTă8u

‰

“ P rA X tT ă 8usE rf pX ps1q ´ X p0q , . . . , X psmq ´ X psm´1qqs (5.195)

follows. By taking, in (5.195), the function f of the form f “ f0 ˝ Vm, where
Vm : pRνqm Ñ pRνqm is give by Vm px1, . . . , xmqq “ px1, . . . , x1 ` ¨ ¨ ¨ ` xmq we
see

rE
“
f0 pY ps1q, . . . , Y psmqq 1AXtTă8u

‰

“ P rA X tT ă 8usE rf0 pXps1q, . . . , Xpsmqqs . (5.196)

Here f0 : pRνqm Ñ C is an arbitrary bounded continuous function. By passing
to limits (5.196) follows for arbitrary bounded Borel measurable functions f0 :
pRνqm Ñ C. Via the monotone class theorem the assertion in (a) follows.
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(b) By taking the function f of the form f “ f0˝Vm, where Vm : pRνqm Ñ pRνqm
is given by Vm px1, . . . , xmqq “ px1, . . . , x1 ` ¨ ¨ ¨xmq in (5.195), we get

rE
“
f0 pY ps1q, . . . , Y psmqq 1AXtTă8u

‰

“ P rA X tT ă 8usE rf0 pXps1q, . . . , Xpsmqqs , (5.197)

where f0 : pRνqm Ñ C is an arbitrary bounded continuous function. Then
choose A “ Ω and divide by P tT ă 8u. We get

rE rf0 pY ps1q, . . . , Y psmqqs “ E rf0 pXps1q, . . . , Xpsmqqs . (5.198)

Inserting the result in (5.198) into (5.197) entails

rE rf0 pY ps1q, . . . , Y psmqq 1Aq “ rE rf0 pY ps1q, . . . , Y psmqqs rPpAq. (5.199)

From (5.199) it follows that the σ-field FT is independent of the one generated
by tY psq : s ě 0u: for this employ the monotone class theorem.

This completes the proof of Theorem 5.124. �
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7. Markov processes

Let pΩ,F,Pq be a probability space and let X, Y and Z be stochastic variables
on Ω with values in a topological Hausdorff space E. We assume that E is
locally compact and that E is second countable, or, what is the same, that
E satisfies the second countability axiom. In other words E has a countable
basis for its topology. The space E is supplied with the Borel σ-field E and
we suppose that the variables X, Y and Z are measurable for the σ-fields F

and E. The symbol PX stands for the image measure on E of the probability P

under the mapping X. So PXpBq “ P pX P Bq, B P E. The symbol P
Y

ˇ̌
X

is a

probability kernel from Ω to E with the property that
ż

B

P
Y

ˇ̌
X

px, CqPXpdxq “ P pY P C,X P Bq

for all B and C in E. As function of the first variable the probability ker-
nel P

Y

ˇ̌
X

is PX-almost surely determined. Putting it differently, the func-

tion x ÞÑ P
Y

ˇ̌
X

px, Cq is the Radon-Nikodym derivative of the measure B ÞÑ
P pY P C,X P Bq with respect to the measure B ÞÑ PXpBq “ P pX P Bq. In the
following proposition we collect some useful formulas for (conditional) proba-
bility kernels.

5.125. Proposition. Let pΩ,F,Pq, E, X, Y and Z be as described above. Let
g : E ˆ E Ñ C be a bounded measurable function and let B and C belong to E.
Then the following equalities hold:

ż ż
gpx, yqP

Y

ˇ̌
X

px, dyqPXpdxq “ E pgpX, Y qq ; (5.200)
ż

B

P
Y

ˇ̌
X

px, CqPXpdxq “ E p1CpY q, X P Bq ; (5.201)

P
Y

ˇ̌
X

pX,Cq “ E
`
1CpY q

ˇ̌
σpXq

˘
; (5.202)

ż
P
Z

ˇ̌
Y

py, CqP
Y

ˇ̌
X

px, dyq “ P
Z

ˇ̌
X

px, Cq, PX-almost surely, (5.203)

provided that E
`
Z

ˇ̌
σpY q

˘
“ E

`
Z

ˇ̌
σpX, Y q

˘
.

Proof. The equality in (5.201) follows in fact from the definition of P
Y

ˇ̌
X
.

By choosing the function g of the form gpx, yq “ 1Bpxq1Cpyq in (5.200) we see
that (5.200) coincides with (5.201). An arbitrary bounded measurable function
g can be approximated by linear combinations of functions of the form px, yq ÞÑ
1Bpxq1Cpyqi, with B and C in E. Let g : E Ñ E be a bounded measurable
function. Then the following equalities hold:

E

ˆ
gpXqP

Y

ˇ̌
X

pX,Cq
˙

“
ż
gpxqP

Y

ˇ̌
X

px, CqPXpdxq “ E pgpXq1CpY qq . (5.204)

From (5.204) the equality in (5.202) follows. Let g : E Ñ C be a bounded
measurable function. Then by, among others, (5.202) the following equalities
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are true:ż
gpxq

ż
P
Z

ˇ̌
Y

py, CqP
Y

ˇ̌
X

px, dyqPXpdxq

“ E

ˆ
P
Z

ˇ̌
Y

pY, CqgpXq
˙

“ E
`
E

`
1CpZq

ˇ̌
σpY q

˘
gpXq

˘

“ E
`
E

`
1CpZq

ˇ̌
σpX, Y q

˘
gpXq

˘
“ E

`
E

`
1CpZqgpXq

ˇ̌
σpX, Y q

˘˘

“ E p1CpZqgpXqq “
ż
gpxqP

Z

ˇ̌
X

px, CqPXpdxq. (5.205)

From (5.205) the equality in (5.203) follows, and completes the proof of Propo-
sition 5.125. �

5.126. Theorem. Let pΩ,F,Pq and pE,Eq be as above. Let X “ tXptq : t ě 0u
be a stochastic process with values in the state space E adapted to the filtration
pFt : t ě 0q. So every state variable Xptq is a mapping from Ω to E, measurable
for the σ-fields Ft and E. In addition, suppose that the family of operators
tϑt : t ě 0u from Ω to Ω satisfies the translation property Xpsq˝ϑt “ Xps`tq for
all s and t ě 0. Then the following assertions are equivalent (for the implication
(iii) ñ (i) it is assumed that Ft “ σ tXpuq : 0 ď u ď tu):

(i) For every C P E and every s and t ě 0 the following equality holds:

E
“
1CpXps ` tqq

ˇ̌
Ft

‰
“ E

“
1CpXps ` tqq

ˇ̌
σ pXptqq

‰
P-almost surely; (5.206)

(ii) For every bounded random variable Y : Ω Ñ C, that is measurable for
F8 and E, and for every t ě 0 the following equality holds:

E
“
Y ˝ ϑt

ˇ̌
Ft

‰
“ E

“
Y ˝ ϑt

ˇ̌
σ pXptqq

‰
P-almost surely; (5.207)

(iii) For every m P N and for all pm` 1q-tuple of bounded Borel measurable
functions f0, . . . , fm : E Ñ C the equality:

E rf0 pXp0qq f1 pXps1qq . . . fm pXpsmqqs (5.208)

“
ż ż

. . .

ż

loooomoooon
m`1 times

f0 px0q f1 px1q . . . fm pxmq

P
Xpsmq

ˇ̌
Xpsm´1q

pxm´1, dxmq . . .P
Xps1q

ˇ̌
Xp0q

px0, dx1qPXp0qpdx0q,

holds for every s1 ă ¨ ¨ ¨ ă sm in r0,8q.
If the process X is right-continuous, then (i) and (ii) are also equivalent
with the following assertions:

(iv) For every bounded Borel measurable function f : E Ñ C and for every
stopping time T : Ω Ñ r0,8s the following equality holds P-almost
surely on the event tT ă 8u:

E
“
fpXps ` T qq

ˇ̌
FT

‰
“ E

“
fpXps ` T qq

ˇ̌
σ pT,XpT qq

‰
;

(v) For every bounded random variable Y : Ω Ñ C, which is measurable
for F8, and for every stopping time T : Ω Ñ r0,8s the equality

E
“
Y ˝ ϑT

ˇ̌
FT

‰
“ E

“
Y ˝ ϑT

ˇ̌
σ pT,XpT qq

‰
(5.209)
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holds P-almost surely on the event tT ă 8u.

If the process X is right-continuous and if as filtration the internal history is
chosen, then all assertions (i) through (v) are equivalent.

Proof. (i) ñ (ii). Upon invoking the monotone class theorem it suffices to
prove (ii) for functions Y : Ω Ñ C of the form Y “ śm

j“1 fj pXpsjqq, where the

functions fj , 1 ď j ď m are bounded and measurable. For m “ 1 (i) is clearly

equivalent with (ii). Next we prove (ii) for Y “ śm`1

j“1 fj pXpsjqq starting from

(ii), but with Y “ śk
j“1 fj pXpsjqq, with 1 ď k ď m. The equalities below then

show that (5.207) follows for Y “ śm`1

j“1 fj pXpsjqq:

E

«
m`1ź

j“1

fj pXpsj ` tqq
ˇ̌
Ft

ff

“ E

«
E

˜
m`1ź

j“1

fj pXpsj ` tqq
ˇ̌
Fsm`t

¸
ˇ̌
Ft

ff

“ E

«
mź

j“1

fj pXpsj ` tqqE
`
fm`1 pXpsm`1 ` tqq

ˇ̌
Fsm`t

˘ ˇ̌
Ft

ff

(the equality in (5.207) for Y “ fm`1 pXpsm`1qq)

“ E

«
mź

j“1

fj pXpsj ` tqqE
“
fm`1 pXpsm`1 ` tqq

ˇ̌
σ pX psm ` tqq

‰ ˇ̌
Ft

ff

(the equality in (5.207) for Y “ śm
j“1 gj pXpsjqq, where gj “ fj , 1 ď j ď m´ 1,

and where gmpxq “ fmpxq
ş
fm`1pyqP

Xpsm`1`tq
ˇ̌
Xpsm`tq

px, dyq)

“ E

«
mź

j“1

fj pXpsj ` tqqE
`
fm`1 pXpsm`1 ` tqq

ˇ̌
σpX psm ` tq

˘ ˇ̌
σpXptqq

ff

“ E

«
mź

j“1

fj pXpsj ` tqqE
`
fm`1 pXpsm`1 ` tqq

ˇ̌
Fsm`t

˘ ˇ̌
σpXptqq

ff

“ E

«
E

˜
mź

j“1

fj pXpsj ` tqq fm`1 pXpsm`1 ` tqq
ˇ̌
Fsm`t

¸
ˇ̌
σpXptqq

ff

“ E

«
mź

j“1

fj pXpsj ` tqq fm`1 pXpsm`1 ` tqq
ˇ̌
σpXptqq

ff
. (5.210)

Then observe that (5.210) is the same as (5.207), but for Y “ śm`1

j“1 fj pXpsjqq.
This proves the implication (i) ñ (ii).

(ii) ñ (i). This implication follows by putting Y “ 1CpXpsqq.
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(ii) ñ (iii). The equality in (5.208) is correct for m “ 0 and for m “ 1. This is
a consequence of Proposition 5.125. Again we will apply induction with respect
to m. We assume that (5.208) is correct for m and for the increasing m-tuple
s1 ă s2 ă ¨ ¨ ¨ sm. Then we see

E

«
m`1ź

j“0

fj pXpsjqq
ff

“ E

«
E

˜
m`1ź

j“0

fj pXpsjqq
ˇ̌
Fsm

¸ff

“ E

«
mź

j“0

fj pXpsjqqE
`
fm`1 pXpsm`1qq

ˇ̌
Fsm

˘
ff

“ E

«
mź

j“0

fj pXpsjqqE
`
fm`1 pXpsm`1qq

ˇ̌
σ

`
Xpsmq

˘˘
ff

(Proposition 5.125)

“ E

«
mź

j“0

fj pXpsjqq
ż
fm`1 pxm`1qP

Xpsm`1q
ˇ̌
Xpsmq

pXpsmq, dxm`1q
ff

“
ż ż

. . .

ż

loooomoooon
m`2 times

f0px0q . . . fm`1pxm`1qP
Xpsm`1q

ˇ̌
Xpsmq pxm, dxm`1q . . .

P
Xps1q

ˇ̌
Xp0q px0, dx1qPXp0q pdx0q . (5.211)

From the equality in (5.208) for m the equality in (5.200) follows for m ` 1
instead of m.
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(iii) ñ (i). Let C P E and let s and t ą 0. Starting from (iii) we will prove that
the following equality holds P-almost surely:

E
`
1C pXps ` tqq

ˇ̌
Ft

˘
“ E

`
1C pXps ` tqq

ˇ̌
σ pXptqq

˘
. (5.212)

Choose 0 ă t1 ă ¨ ¨ ¨ ă tm “ t and choose bounded Borel measurable functions
f0, . . . , fm. The following equality is a consequence of (iii):

E pf0pX0q . . . fm pXptmqq 1CpXps ` tqqq

“
ż ż

. . .

ż ż

looooomooooon
m`2 times

f0px0q . . . fmpxmq1Cpxm`1q

P
Xps`tq

ˇ̌
Xptmq pxm, dxm`1qP

Xptmq
ˇ̌
Xptm´1q pxm´1, dxmq . . .

P
Xpt1q

ˇ̌
Xp0q

px0, dx1qPXp0qpdx0q

“
ż ż

. . .

ż ż

looooomooooon
m`1 times

f0px0q . . . fmpxmq

P
Xps`tq

ˇ̌
Xptmq pxm, CqP

Xptmq
ˇ̌
Xptm´1q pxm´1, dxmq . . .

P
Xpt1q

ˇ̌
Xp0q px0, dx1qPXp0qpdx0q

“ E

„
f0pX0q . . . fm pXptmqqP

Xps`tq
ˇ̌
Xptq pXptmq, Cq


. (5.213)

The monotone class theorem applies to the effect that (5.212) follows from
(5.213), provided that the internal history is chosen as filtration.

(iv) ñ (v). By the monotone class theorem it suffices to prove (ii) for functions
Y : Ω Ñ C of the form Y “ śm

j“1 fj pXpsjqq, where the functions fj , 1 ď j ď m

are bounded and measurable. For m “ 1 it is clear that (iv) is equivalent

to (v). We prove (v) for Y “ śm`1

j“1 fj pXpsjqq starting from (iv), but with

Y “ śk
j“1 fj pXpsjqq, for 1 ď k ď m. The following equalities show that the

equality (5.209) then follows for Y “ śm`1

j“1 fj pXpsjqq:

E

«
m`1ź

j“1

fj pXpsj ` T qq
ˇ̌
FT

ff

“ E

«
E

˜
m`1ź

j“1

fj pXpsj ` T qq
ˇ̌
Fsm`T

¸
ˇ̌
FT

ff

“ E

«
mź

j“1

fj pXpsj ` T qqE
“
fm`1 pXpsm`1 ` T qq

ˇ̌
Fsm`T

‰ ˇ̌
FT

ff

(apply equality (5.209) for Y “ fm`1 pXpsm`1qq)

“ E

«
mź

j“1

fj pXpsj ` T qqE
“
fm`1 pXpsm`1 ` T qq

ˇ̌
σ psm ` T,X psm ` T qq

‰ ˇ̌
FT

ff
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(use equality (5.209) for Y “ śm
j“1 gj pXpsjqq, where gj “ fj , 1 ď j ď m ´ 1,

and where gmpxq “ fmpxq
ş
fm`1pyqPpsm`T,Xpsm`1`T qq

ˇ̌
psm`T,Xpsm`T qq px, dyq)

“ E

«
mź

j“1

fj pXpsj ` T qqE
“
fm`1 pXpsm`1 ` T qq

ˇ̌
σ pT,X psm ` T qq

‰ ˇ̌

σpT,XpT qq
ff

“ E

«
mź

j“1

fj pXpsj ` T qqE
“
fm`1 pXpsm`1 ` T qq

ˇ̌
Fsm`T

‰ ˇ̌
σpT,XpT qq

ff

“ E

«
E

«
mź

j“1

fj pXpsj ` T qq fm`1 pXpsm`1 ` T qq
ˇ̌
Fsm`T

ff
ˇ̌
σpT,XpT qq

ff

“ E

«
mź

j“1

fj pXpsj ` T qq fm`1 pXpsm`1 ` T qq
ˇ̌
σpT,XpT qq

ff
. (5.214)

Then realize that (5.214) is the same as (5.209) for Y “ śm`1

j“1 fj pXpsjqq. This
proves the implication (iv) ñ (v). The implication (v) ñ (iv) is again trivial.

(i) ñ (iv). By the fact E satisfies the second countability axiom, and by the
fact E is the Borel field it suffices to prove (iv) for functions f P C0pEq instead
of 1C (verify this precisely). So we have to show the following equality:

E
“
f pXps ` T qq

ˇ̌
FT

‰
1tTă8u “ E

“
f pXps ` T qq

ˇ̌
σpT,XpT qq

‰
1tTă8u, (5.215)

for f P C0pEq and for s ě 0. By employing the right-continuity of paths, it
suffices to prove (5.215) for the stopping times Tn :“ 2´nr2nT s, n P N, instead
of T . The equality for T then follows from those of Tn by letting n tend to 8.
For this notice that 0 ď T ´ Tn`1 ď T ´ Tn ď 2´n. Choose the event A P FTn

.
Then the event A X tTn “ k2´nu belongs to Fk2´n and the following equalities
hold:

E
“
f pXps ` Tnqq , A X

�
Tn “ k2´n

(‰

“ E
“
E

`
f pXps ` Tnqq

ˇ̌
Fk2´n

˘
, A X

�
Tn “ k2´n

(‰

“ E

„ż
fpyqP

Xps`k2´nq
ˇ̌
Xpk2´nq

`
Xpk2´nq, dy

˘
, A X

�
Tn “ k2´n

(

“ E

„
ω ÞÑ

ż
fpyqP

Xps`Tnpωqq
ˇ̌
XpTnpωqq pXpTnqpωq, dyq1tAXtTn“k2´nuupωq


.

(5.216)

We also have

E
“
f pXps ` Tnqq , A X

�
Tn “ k2´n

(‰

“ E
“
E

`
f

`
Xps ` k2´nq

˘ ˇ̌
Fk2´n

˘
, A X

�
Tn “ k2´n

(‰
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(because of (i))

“ E
“
E

`
f

`
Xps ` k2´nq

˘ ˇ̌
σ

`
X

`
k2´n

˘˘˘
, A X

�
Tn “ k2´n

(‰

“ E

„ż
fpyqP

Xps`k2´nq
ˇ̌
Xpk2´nq

`
Xpk2´nq, dy

˘
, A X

�
Tn “ k2´n

(

“ E

„
ω ÞÑ

ż
fpyqP

Xps`Tnpωqq
ˇ̌
XpTnpωqq

pXpTnqpωq, dyq1tAXtTn“k2´nuupωq

.

(5.217)

We see that (5.216) and (5.217) are the same. It follows that the assertion in
(iv) is proved for Tn instead of T . By letting n tend to 8 we then obtain (iv)
for T (by employing the right-continuity of paths of the process).

So the proof of Theorem 5.126 is complete now. �
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We continue with some definitions.

5.127. Definition. Let pΩ,F,Pq be a probability space, and let E be a locally
compact Hausdorff space with a countable basis for its topology. In addition, let
pFt : t ě 0q be a filtration on Ω. Let X “ tXptq : t ě 0u be a process attaining
values in E. The state space E is equipped with the Borel filed and it is assumed
thatX is an adapted process. Suppose that for every x P E the (sub-)probability
kernel P

Xps`tq
ˇ̌
Xptqpx, Cq, C P E, is defined. Here the (sub-)probability kernel

PY |Xpx, Cq possesses the following defining property:
ż

B

P
Y

ˇ̌
X

px, CqP pX P dxq “ P tY P C, X P Bu ,

where B and C are Borel subsets of E and where X and Y are stochastic
variables with values in E. In addition, it is assumed that there are so-called
translation operators ϑt : Ω Ñ Ω with the property that Xpsq˝ϑt “ Xps`tq for
all s, t ě 0. Moreover, by hypothesis the process X is cadlag. We say that the
process X is a Markov process if for every C P E and every t ě 0 the equality

E
“
1CpXps ` tqq

ˇ̌
Ft

‰
“ E

“
1CpXps ` tqq

ˇ̌
σpXptqq

‰
(5.218)

is P-almost surely true for all s ě 0. The process X is called a strong Markov

process if equality (5.218) also holds for stopping times. More precisely, if for
every s ě 0, for every C P E and for every stopping time T : Ω Ñ r0,8s the
equality

E
“
1CpXps ` T qq

ˇ̌
FT

‰
“ E

“
1CpXps ` T qq

ˇ̌
σpT,XpT qq

‰

holds P-almost surely on the event tT ă 8u. If the process X is cadlag is, then
a Markov process is automatically a strong Markov: see Theorem 5.126. We
say that a Markov process X is time homogeneous if for all C P E and for all s
and t ě 0 the equality

P
Xps`tq

ˇ̌
Xptqpx, Cq “ P

Xpsq
ˇ̌
Xp0qpx, Cq (5.219)

is true for all x P E. In what follows we always suppose that X is a cad-
lag, time homogeneous Markov process. Furthermore we define the operators
tP ptq : t ě 0u via the formula

rP psqf s pxq “
ż
fpyqP

Xpsq
ˇ̌
Xp0q

px, dyq. (5.220)

Here s ě 0 and f belongs to C0pEq. Since we have (see equality (5.203) in
Proposition 5.125)ż

P
Xps`tq

ˇ̌
Xptqpy, CqP

Xptq
ˇ̌
Xp0qpx, dyq “ P

Xps`tq
ˇ̌
Xp0qpx, Cq, PXp0q-almost surely,

(5.221)
we get, for a time-homogeneous Markov process X the following equalities:

rP psqP ptqf s pxq “
ż

rP ptqf s pyqP
Xpsq

ˇ̌
Xp0qpx, dyq

“
ż ż

fpzqP
Xptq

ˇ̌
Xp0qpy, dzqP

Xpsq
ˇ̌
Xp0qpx, dyq
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(X is time homogeneous)

“
ż ż

fpzqP
Xps`tq

ˇ̌
Xpsqpy, dzqP

Xpsq
ˇ̌
Xp0qpx, dyq

(employ equality (5.221))

“
ż ż

fpzqP
Xps`tq

ˇ̌
Xp0qpx, dzq “ rP ps ` tqf s pxq

The cadlag property ofX implies limsÓ0 rP psqf s pxq “ fpxq for all f P C0pEq and
for all x P E. If P psqf belongs to C0pEq for every f P C0pEq and for every s ě 0,
then the family tP ptq : t ě 0u apparently constitutes a Feller semigroup. Put
P ps, x, Cq “ P

Xpsq
ˇ̌
Xp0q

px, Cq, s ě 0, x P E, C P E. Let the expectation values

of ExpY q, x P E, Y “ śm

j“1 fj pX psjqq, s1 ă s2 ă . . . ă sm, be determined by
the formula:

Ex

˜
mź

j“1

fjpXpsjqq
¸

“
ż
. . .

ż mź

j“1

fj pxjqP ps1, x, dx1q . . . P psm ´ sm´1, xm´1, dxmq . (5.222)

Instead of (5.222) most of the time we write ExpY q “ E
“
Y

ˇ̌
Xp0q “ x

‰
, for a

bounded stochastic variable Y . Since X is a time homogeneous Markov process
we see that the following equality also holds Px-almost surely:

Ex

`
Y ˝ ϑt

ˇ̌
Ft

˘
“ EXptqpY q, (5.223)

for all t ě 0 and for all bounded random variables Y . The equality in (5.223)
is first proved for random variables Y of the form Y “ śm

j“1 fjpXpsjqq, where
the functions fj , 1 ď j ď m, are bounded Borel functions. Equality (5.223) is
also true if Px and Ex are replaced by P and E respectively.

5.128. Remark. The expectation value ExpY q is in fact the Radon-Nikodym

derivative of de measure B ÞÑ E rY,Xp0q P Bs with respect to the measure B ÞÑ
P rXp0q P Bs. If in this definition we take for Y the variable Y “ 1C pXpsqq,
then we obtain the probability kernel P

Xpsq
ˇ̌
Xp0px, Cq. Hence, these quanti-

ties are defined as Radon-Nikodym derivatives. So, in general, the expression
P
Xpsq

ˇ̌
Xp0qpx, Cq is not defined for every x P E. However, we will assume that

these probability kernels exist for every x P E indeed, and that the correspond-
ing semigroup is a Feller. Many authors define a (time homogeneous) Markov
process X relative to a family of probability measures tPx : x P Eu by means of
the following equality:

Ex

`
Y ˝ ϑt

ˇ̌
Ft

˘
“ EXptq pY q , (5.224)

Px-almost surely for all x P E, for all t ě 0 and for all bounded random variables
Y : Ω Ñ C. In fact we also do this. In the time homogeneous case the equality
in (5.224) also holds for stopping times T :

Ex

`
Y ˝ ϑT

ˇ̌
FT

˘
“ EXpT q pY q , (5.225)
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Px-almost surely on the event tT ă 8u, provided that the process X is cadlag.
The equality in (5.225) can be proved in the same manner as equality (5.209) in
Theorem 5.126. Therefore pick f P C0pEq and a stopping time T : Ω Ñ r0,8s.
Consider the stopping times Tn :“ 2´nr2nT s, n P N, instead of T . Then, for an
event A P FTn

, we have

Ex

“
f pXps ` Tnqq 1AXtTn“k2´nu

‰

“ Ex

“
f

`
Xps ` k2´nq

˘
1AXtTn“k2´nu

‰

“ Ex

“
Ex

`
f

`
Xps ` k2´nq

˘ ˇ̌
Fk2´n

˘
1AXtTn“k2´nu

‰

“ Ex

“
Ex

`
f

`
Xps ` k2´nq

˘ ˇ̌
Fk2´n

˘
1AXtTn“k2´nu

‰

“ Ex

“
EXpk2´nq pf pXpsqqq 1AXtTn“k2´nu

‰

“ Ex

“
EXpTnq pf pXpsqqq 1AXtTn“k2´nu

‰
. (5.226)

From (5.226) it follows that (5.225) for Y “ fpXpsqq and for Tn in the place of
T . By taking the limit in (5.226) for n Ñ 8 the equality in (5.225) follows for
Y “ fpXpsqq. Precisely as in the proof of the implication (iv) ñ (v) in Theorem
5.126 the equality in (5.225) then follows for arbitrary random variables Y : Ω Ñ
C, which are bounded and measurable for the σ-field F8.
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8. The Doob-Meyer decomposition via Komlos theorem

Let pΩ,F,Pq be a probability space, let tFt : t ě 0u be a right continuous filtra-
tion in F and let tXptq : t ě 0u be a real-valued Ft-submartingale. The Doob-
Meyer decomposition theorem states that there exists an Ft-martingale tMptq :
t ě 0u together with an increasing predictable adapted process tAptq : t ě 0u,
which is right continuous P-almost surely, such that Xptq “ Mptq `Aptq, t ě 0,
provided that the process tXptq : t ě 0u is of class (DL). The latter means that
for every t ą 0 the family tXpτq : 0 ď τ ď t, τ stopping timeu is uniformly inte-
grable. Moreover this decomposition is unique in case we assume that Ap0q “ 0.
By Doob’s optional sampling theorem every martingale is automatically of class
(DL) (see e.g. Ikeda and Watanabe [81], p.35, Ethier and Kurtz [68], p.74). An
interesting discussion of the Doob-Meyer decomposition and (sub-)martingale
theory can be found in Kopp [98]. For a nice account of the Doob-Meyer de-
composition theorem the reader may also consult van Neerven [188].

We shall employ the following result of Komlos [97]. In fact it can be interpreted
as kind of a law of large numbers.

5.129. Theorem (Komlos). Let tfk : k P Nu be a sequence in L1pΩ,F,Pq such
that

sup tE p|fk|q : k P Nu ă 8.

Then there exists an infinite large subset Λ0 of N together with a function f in
L1pΩ,F,Pq such that for every infinite subset Λ of Λ0

lim
nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
fj “ f, P-almost surely. (5.227)

Examples show that this limit need not be an L1-limit. Set Ω “ N with the
discrete σ-field and with Ptku “ 2´k, k P N. Let tfk : k P Nu be the sequence
defined by fk “ 2kek, k P N, where tek : k P Nu is the sequence of the unit
vectors. Then n´1

řn

j“1 fj Ñ 0 pointwise, but n´1
ş řn

j“1 fjdP “ 1, n P N.

Standard results on continuity properties of submartingales yield the existence
of a realization (version) which is continuous from the right and possesses left
limits P-almost surely. Henceforth we shall assume that the Ft-submartingale
tXptq : t ě 0u is continuous from the right and has left limits P-almost surely.
We shall prove that there exists a predictable increasing process tAptq : t ě 0u
together with an infinite Λ0 of N such that for every infinite subset Λ of Λ0 and
every t ě 0 the variable Aptq is given as the limit:

Aptq “ lim
nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Ajptq, (5.228)

where

Ajptq “
ÿ

0ďkă2jt

"
E

ˆ
X

ˆ
k ` 1

2j

˙
| Fk2´j

˙
´ X

ˆ
k

2j

˙*
. (5.229)

Moreover the process tXptq ´ Aptq : t ě 0u is an Ft-martingale. The limit in
(5.228) is a point-wise almost sure limit as well as an L1-limit.
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Again let pΩ,F,Pq be a probability space, let tFt : t ě 0u be a right-continuous
filtration in F and let tXptq : t ě 0u be right continuous submartingale of class
(DL) which possesses almost sure left limits. We want to prove the following
version of the Doob-Meyer decomposition theorem.

5.130. Theorem. There exists a unique predictable right continuous increasing
process tAptq : t ě 0u with Ap0q “ 0 such that the process tXptq ´ Aptq : t ě 0u
is an Ft-martingale.

It is perhaps useful to insert the following proposition.

5.131. Proposition. Processes of the form Mptq ` Aptq, with M a martingale
and with A an increasing process in L1pΩ,F,Pq are of class (DL).

Proof of Proposition 5.131. Let tXptq “ Mptq ` Aptq : t ě 0u be the
decomposition of the submartingale tXptq : t ě 0u in a martingale tMptq : t ě
0u and an increasing process tAptq : t ě 0u with Ap0q “ 0 and 0 ď τ ď t be any
Ft-stopping time. Here t is some fixed time. For N P N we have

E p|Xpτq| : |Xpτq| ě Nq ď E p|Mpτq| : |Xpτq| ě Nq ` E pApτq : |Xpτq| ě Nq
ď E p|Mptq| : |Xpτq| ě Nq ` E pApτq : |Xpτq| ě Nq
ď E p|Mptq| ` Aptq : |Xpτq| ě Nq

ď E

ˆ
|Mptq| ` Aptq : sup

0ďsďt

|Xpsq| ě N

˙
. (5.230)

Since N ˆ P tsup0ďsďt |Xpsq| ě Nu ď E p|Xptq|q, it follows that
lim
NÑ8

sup tE p|Xpτq| : |Xpτq| ě Nq : 0 ď τ ď t, τ stopping timeu “ 0. (5.231)

This shows Proposition 5.131 �
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Similarly we have the following result.

5.132. Proposition. Let tXptq : t ě 0u be an Ft-submartingale. For any real
number N the process tmaxpXptq, Nq : t ě 0u is an Ft-submartingale which is
of class (DL).

Next we come to the heart of the matter. The symbol rxs, x P R, denotes the
integer k with k ă x ď k ` 1.

Proof of Theorem 5.130. It will be convenient to introduce the follow-
ing processes:

Xjptq “ E

ˆ
X

ˆ
r2jts

2j

˙
| Ft

˙
, t ě 0, j P N; (5.232)

Ajptq “
ÿ

0ďkă2jt

"
E

ˆ
X

ˆ
k ` 1

2j

˙
| Fk2´j

˙
´ X

ˆ
k

2j

˙*
. (5.233)

The processes tAjptq : t ě 0u are right continuous and have left limits. The
processes tAjptq : t ě 0u are predictable in the sense that, for j, N in N, the
functions pt, ωq ÞÑ Ajpt, ωq are measurable with respect to the σ-field generated
by the collection

�
1pa,bs ˆ A : 0 ď a ă b, A P Fa

(
: see e.g. Durrett [58], p. 49.

Moreover it is readily verified that the process

tXjptq ´ Ajptq : t ě 0u (5.234)

is an Ft-martingale and that

lim
jÑ8

E pAjptq ´ Ajpt´qq “ 0. (5.235)

Equality (5.235) is true because

lim
sÓt

E pXpsqq “ E pXptqq . (5.236)

Equality (5.236) can be proved in the following manner. Put

X2ptq “ lim
hÓ0

E pXpt ` hq | Ftq “ inf
hą0

E pXpt ` hq | Ftq .

Then X2ptq ě Xptq, P-almost surely. The following argument shows that
X2ptq “ Xptq, P-almost surely. Define for m P N the stopping time τm by

τm “ infts ą 0 : |Xpsq| ą mu.
Then, P-almost surely, τm Ò 8. Moreover, we have

E rX2ptq ´ Xptq : τm ą ts (5.237)

“ lim
hÓ0

E rE pXpt ` hq | Ftq ´ Xptq : τm ą ts

“ lim
hÓ0

E
“
E

`
pXpt ` hq ´ Xptqq 1tτmątu

˘
| Ft

‰

“ lim
hÓ0

E rXpt ` hq ´ Xptq : τm ą ts

“ lim
hÓ0

tE rXpt ` hq ´ Xptq : τm ą t ` hs

`E rXpt ` hq ´ Xptq : t ă τm ď t ` hsu
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ď lim
hÓ0

tE rXpt ` hq ´ Xptq : τm ą t ` hs

`E rE pXpt ` 1q | Ft`hq ´ Xptq : t ă τm ď t ` hsu
“ lim

hÓ0
tE rXpt ` hq ´ Xptq : τm ą t ` hs

`E rXpt ` 1q ´ Xptq : t ă τm ď t ` hsu “ 0,

by dominated convergence (twice: on tτm ą t ` hu we have |Xpt ` hq ´ Xptq| ď
2m, P-almost surely). Consequently

0 ď E pX2ptq ´ Xptqq “ lim
mÑ8

E pX2ptq ´ Xptq : τm ą tq “ 0, (5.238)

and hence X2ptq “ Xptq, P-almost surely. We also infer

EpXptqq “ EpX2ptqq “ E

ˆ
lim
hÓ0

E pXpt ` hq | Ftq ´ Xptq
˙

` EpXptqq

“ E

ˆ
lim
hÓ0

E ppXpt ` hq ´ Xptqq | Ftq
˙

` EpXptqq

“ lim
hÓ0

E pE ppXpt ` hq ´ Xptqq | Ftqq ` EpXptqq

“ lim
hÓ0

E pXpt ` hq ´ Xptqq ` EpXptqq “ lim
hÓ0

E pXpt ` hqq . (5.239)

This proves (5.236). In addition we write

fptq “ E pXptq ´ Xp0qq (5.240)

and we define the countable dense subset D of r0,8q by

D “ tt ě 0 : t P Qu Y tt ě 0 : fpt`q ą fpt´qu . (5.241)

(Notice that the functions f is increasing.)

Let Λ0 be any infinite subset of N and let tAΛ0
ptq : t P Du be a process such

that for every infinite subset Λ of Λ0 and P-almost surely,

AΛ0
ptq “ lim

nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Ajptq, t P D. (5.242)

By Komlos’ theorem (Theorem 5.129) and a diagonal procedure such a subset
Λ0 exists. We shall prove that for t P D the limit in (5.241) also exists in L1-
sense. In view of a theorem of Scheffé (Corollary 2.12.5 in Bauer [15], p. 105,
it suffices to prove that

E pAΛ0
ptqq “ lim

nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
E pAjptqq . (5.243)

It is readily verified that

E pAjptqq “ E

ˆ
X

ˆ
r2jts

2j

˙˙
´ E pXp0qq , (5.244)

so that

lim
nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
E pAjptqq “ fpt`q, t P D.q (5.245)

Download free eBooks at bookboon.com



ADVANCED STOCHASTIC PROCESSES: PART II SOME RELATED RESULTS

428

428 5. SOME RELATED RESULTS

On the other hand we have, by Fatou’s lemma,

E pAΛ0
ptqq ď lim inf

nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
E pAjptqq “ fpt`q. (5.246)

In addition we have for λ ą 0

E pAΛ0
ptqq ě E

ˆ
lim sup
nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Ajptq

˙

ě E

ˆ
lim sup
nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Aj pmin pt, τλq ´q

˙
, (5.247)

where τλ is the stopping time defined by

τλ “ inf

"
s ą 0 : s P D, sup

nPN

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Ajpsq ě λ

*
. (5.248)

Since
1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Aj pmin pt, τλq ´q ď λ, (5.249)

we infer from (5.247) and (5.235) that, for any λ ą 0,

E pAΛ0
ptqq ě lim sup

nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
E pAj pmin pt, τλq ´qq

ě E pXptq : τλ ą tq ` E pX pminpτλ, tqq : τλ ď tq ´ E pXp0qq .
(5.250)

Since τλ Ò 8, P-almost surely, as λ tends to infinity, we infer from (5.250)
together with the fact that the collection tXpτq : τ ď t, τ stopping timeu is
uniformly integrable,

E pAΛ0
ptqq ě E pXptq ´ Xp0qq “ fptq. (5.251)

(In fact in (5.250) we first take the sum, then we write Ω “ tτλ ą tu Ytτλ ď tu.)
The right continuity of the submartingale tXptq : t ě 0u together with (5.236)
implies the equality

fptq “ fpt`q. (5.252)

Hence the equality in (5.243) now follows from (5.251), (5.252) and (5.246). So
the limit in (5.241) is also an L1-limit. Since the submartingale tXptq : t ě 0u
is continuous from the right we also deduce

lim sup
jÑ8

E p|Xjptq ´ Xptq|q “ lim sup
jÑ8

E

ˆ
X

ˆ
r2jts

2j

˙˙
´ E pXptqq

“ lim
sÓt

fpsq ´ fptq “ 0. (5.253)

Hence the L1-convergence in the equality

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Xjptq

“ 1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Mjptq ` 1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Ajptq

yields
Xptq “ MΛ0

ptq ` AΛ0
ptq, t P D, (5.254)
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where the process tAΛ0
ptq : t P Du is increasing and predictable. We shall extend

(5.254) to all t ě 0 and we shall prove that the process tAΛ0
ptq : t P Du has right

continuous extensions to all of r0,8q. In order to achieve this fix t0 R D, t0 ą 0,
and let s, t be arbitrary numbers in D with 0 ă s ă t0 ă t ă 8. Then

AΛ0
psq ď lim inf

nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Ajpsq

ď lim inf
nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Ajpt0q

ď lim sup
nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Ajptq ď AΛ0

ptq. (5.255)

From (5.255) it follows that

E

ˆ
lim sup
nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Ajpt0q ´ lim inf

nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Ajpt0q

˙

ď E pAΛ0
ptq ´ AΛ0

psqq “ E pXptq ´ Xpsqq “ fptq ´ fpsq. (5.256)

So that

E

ˆ
lim sup
nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Ajpt0q ´ lim inf

nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Ajpt0q

˙

ď fpt0`q ´ fpt0´q “ fpt0q ´ fpt0q “ 0, (5.257)

since t0 does not belong to D. Hence, for every t0 ě 0,

AΛ0
pt0q “ lim sup

nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Ajpt0q

“ lim inf
nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Ajpt0q, (5.258)

P-almost surely. In addition, as above we also have

E pAΛ0
ptqq “ fptq, t ě 0, q (5.259)

and hence
E pAΛ0

ptq ´ AΛ0
psqq “ fptq ´ fpsq. (5.260)

So that the process tAΛ0
ptq : t ě 0u is almost surely right continuous. Again we

have decomposition (5.254) for all t ě 0. From (5.236) and (5.258) it follows
that, P-almost surely,

AΛ0
pt0q “ lim

nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Ajpt0´q

and consequently the process tAΛ0
ptq : t ě 0u is predictable. �
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The uniqueness of the Doob-Meyer decomposition does not depend on the (DL)-
property. So the processes tMΛ0

ptq : t ě 0u and tAΛ0
ptq : t ě 0u do not depend

on the particular choice of Λ0. Henceforth we write

Xptq “ Mptq ` Aptq, t ě 0, (5.261)

where tMptq : t ě 0u is an Ft-martingale and where tAptq : t ě 0u is an increas-
ing right continuous process which is predictable. Proposition 5.131 shows that
the process tXptq : t ě 0u must possess the (DL)-property. Let D0 be the count-
able dense subset of r0,8q given by

D0 “ tt P Q : t ě 0u Y tt ě 0 : fpt`q ą fpt´qu (5.262)

and choose Λ0 Ď N, |Λ0| “ 8, and the process tBptq : t P D0u in such a way
that for every infinite subset Λ of Λ0,

Bptq “ lim
nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Ajptq, t P D0. (5.263)

Then, as in the case of tAjptq : j P Nu it follows that the convergence in (5.263)
is an L1-convergence as well. Again as above the convergence in (5.263) occurs
for all t ě 0. Consequently the process tXptq ´ Bptq : t ě 0u is a martingale,
because the processes tXjptq ´ Ajptq : t ě 0u, j P N, are martingales. Here

Xjptq “ E

„
X

ˆ
r2jts

2j

˙
| Ft


.
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These remarks prove the following corollary.

5.133. Corollary. Write a submartingale tXptq : t ě 0u in the form Xptq “
Mptq ` Aptq, t ě 0, where the process tMptq : t ě 0u is a martingale and where
tAptq : t ě 0u is a right continuous increasing predictable process with Ap0q “ 0.
Then there exists an infinite subset Λ0 of N such that for every infinite subset
Λ of Λ0 and every t ě 0:

Aptq “ lim
nÑ8

1

|Λ X r1, ns|
ÿ

jPΛXr1,ns
Ajptq. (5.264)

Here

Ajptq “
ÿ

0ďkă2jt

ˆ
E

ˆ
X

ˆ
k ` 1

2j

˙
| Fk2´j

˙
´ X

ˆ
k

2j

˙˙

and the convergence in (5.264) is a P-almost sure as well as an L1-convergence.
Of course the process tAptq : t ě 0u does not depend on the particular choice of
Λ0 for which all the limits in (5.264) exist.

Next the uniqueness part of the Doob-Meyer decomposition will follow from
Proposition 5.134.

5.134. Proposition. Let Z “ tZptq : t ě 0u be a bounded martingale and let
A “ tAptq : t ě 0u and tBptq : t ě 0u be adapted increasing processes such that
B ´ A is a martingale. Also suppose that EpAptqq ă 8, for t ě 0. Then

E rZpt`q pBpt`q ´ Apt`qq ´ Zp0q pBp0q ´ Ap0qqs

“ E

ˆż t

0

pZps`q ´ Zps´qq dpB ´ Aqpsq
˙
. (5.265)

5.135. Remark. The integral
şt
0

pZps`q ´ Zps´qq dpB ´Aqpsq should be inter-
preted as follows:
ż t

0

pZps`q ´ Zps´qq dpB ´ Aqpsq

“
ż 8

0

pZps`q ´ Zps´qq 1p0,tspsqdBpsq ´
ż 8

0

pZps`q ´ Zps´qq 1p0,tspsqdApsq.

Proof of Proposition 5.134. Let n P N. Since Z is a martingale we
have:

E
“
Z

`
r2nts2´n

˘ `
B

`
r2nts2´n

˘
´ A

`
r2nts2´n

˘˘‰
´ E rZp0q pBp0q ´ Ap0qqs

“ E

»
– ÿ

0ďjăr2nts

Z
`
pj ` 1q2´n

˘

�`
B

`
pj ` 1q2´n

˘
´ B

`
j2´n

˘˘
´

`
A

`
pj ` 1q2´n

˘
´ A

`
j2´n

˘˘(
fi
fl .

Since B ´ A is a martingale, it follows that:

E
“
Z

`
r2nts2´n

˘ `
B

`
r2nts2´n

˘
´ Bp0q ´ A

`
r2nts2´n

˘
` Ap0q

˘‰
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´ E rZp0q pBp0q ´ Ap0qqs

“ E

´ÿ
0ďjăr2nts

`
Z

`
pj ` 1q2´n

˘
´ Z

`
j2´n

˘˘

``
B

`
pj ` 1q2´n

˘
´ B

`
j2´n

˘˘
´

`
A

`
pj ` 1q2´n

˘
´ A

`
j2´n

˘˘˘¯
.

Put

Z`
n psq “ Z

`
r2nss2´n

˘
“

ÿ8

j“0
Z

`
pj ` 1q2´n

˘
1pj2´n,pj`1q2´nspsq, and

Z´
n psq “ Z

`
pr2nss ´ 1q 2´n

˘
“

ÿ8

j“0
Z

`
j2´n

˘
1pj2´n,pj`1q2´nspsq.

Then we obtain

E
`
Z

`
r2nts2´n

˘ `
B

`
r2nts2´n

˘
´ A

`
r2nts2´n

˘˘˘
´ E rZp0q pBp0q ´ Ap0qqs

“ E

ˆż 8

0

`
Z`

n psq ´ Z´
n psq

˘
1p0,r2nts2´nspsqd pBpsq ´ Apsqq

˙
.

So, upon letting n tend to infinity, Proposition 5.134 follows. �

5.136. Proposition. In addition to the hypotheses in Proposition 5.134, sup-
pose that the martingale B ´ A is predictable. Then Bpt`q “ Apt`q P-almost
surely. So that, if B ´ A is right-continuous, then B “ A P-almost surely,
provided Bp0q “ Ap0q “ 0.

Proof. First we prove that E
´şt

0
pZps`q ´ Zps´qq dpB ´ Aqpsq

¯
“ 0. Here

we shall employ the predictability of the process B´A. It suffices to prove that,
for all s ą 0,

E ppZps`q ´ Zps´qq pBps`q ´ Aps`q ´ Bps´q ` Aps´qqq “ 0. (5.266)

Since the predictable field on Ωˆr0,8q is generated by the collection tCˆpa, bs :
C P Fa, 0 ď a ă bu it suffices to prove (5.266) for all s ě 0 if B ´ A is of the
form

Bpsq ´ Apsq “ 1C ˆ 1pa`ε,8qpsq, C P Fa. (5.267)

So let C belong to Fa and let Bpsq´Apsq “ 1C ˆ1pa`ε,8qpsq. Then, for s “ a`ε

(and C P Fa), we have by the martingale property of Z,

E pZ ppa ` εq`q ´ Z ppa ` εq´q 1Cq
“ E pE pZpppa ` εq`q ´ Z ppa ` εq´q | Faq 1Cq
“ E ppZpaq ´ Zpaqq 1Cq “ 0. (5.268)

Notice that, for s “ a ` ε,

E ppZps`q ´ Zps´qq pBps`q ´ Aps`q ´ Bpsq ` Apsqqq
“ E ppZ ppa ` εq`q ´ Z ppa ` εq´qq 1Cq .

From Proposition 5.134 it now follows that

E pZpt`q pBpt`q ´ Apt`qqq “ E rZp0q pBp0q ´ Ap0qqs “ 0.

Next, fix t ą 0 and define the martingale Zpsq by

Zpsq “ E

ˆ
Bpt`q ´ Apt`q

|Bpt`q ´ Apt`q| ` 1
| Fs

˙
.
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Then

0 “ E pZpt`q pBpt`q ´ Apt`qqq “ E

˜
|Bpt`q ´ Apt`q|2

|Bpt`q ´ Apt`q| ` 1

¸

and hence Bpt`q “ Apt`q, P-almost surely for all t ě 0. It also follows that
Bpt´q “ Apt´q, P-almost surely for all t ą 0. If the process B ´ A is right
continuous almost surely, we infer Bptq “ Aptq, t ě 0, P-almost surely. This
completes the proof of Proposition 5.136. �

As a special case the following result contains the uniqueness part of the Doob-
Meyer decomposition theorem.

5.137. Proposition. Let A and B be increasing adapted processes. Suppose
that B ´ A is a predictable right continuous martingale. Then Bptq “ Aptq `
Bp0q ´ Ap0q, P-almost surely.

Proof. This result is an immediate consequence of Proposition 5.134 and
Proposition 5.136. �

5.138. Corollary. There is only one way to write a semi-martingale Y in the
form Y “ M `A, where M is a (local) martingale and where A is a predictable
right continuous process of finite variation locally with Ap0q “ 0.

5.139.Remark. An increasing, predictable right continuous real-valued process
tAptq : t ě 0u, with E pAptqq ă 8 for t ě 0, is called a Meyer process.

It is perhaps worthwhile to isolate the following result in the existence part of
Doob-Meyer decomposition theorem: notation is that of the proof of Theorem

5.130. We also use AΛptq “ 1

|Λ|
ÿ

nPΛ
Anptq, for a finite subset Λ of N.
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5.140.Theorem. Let tXptq : t ě 0u be a right continuous submartingale of class
(DL). For every infinite subset Λ0 of N there exists an infinite subset Λ of Λ0

such that for every further infinite subset Λ1 of Λ, the limit

AΛptq :“ lim
NÑ8

AΛ1Xr1,Nsptq, exists P-almost surely,

and does not depend on the choice of Λ1. Moreover, since we are dealing with
(DL)-submartingales, limNÑ8 E

“ˇ̌
AΛptq ´ AΛ1Xr1,Nsptq

ˇ̌‰
“ 0. In addition, the

process tAΛptq : t ě 0u is predictable and right continuous.

Proof. Write

Q1 “ ttℓ : ℓ P Nu “ tt ě 0 : E pXpt`qq ą E pXpt´qqu
ď

pQ X r0,8qq .
Define the measure µ on Q1 by

µ pIq “
ÿ

ℓPI

1

2ℓ
1

1 ` E pXptℓq ´ Xp0qq .

Let Λ0 be an infinite subset of N. Komlos’ theorem, applied to the sequence
tAnptℓq : ℓ P NunPN on the measure space tN ˆ Ω,PpNq b F, µ b Pu applies to
the effect that there exists an infinite subset Λ of Λ0 such that for every further
infinite subset Λ1 of Λ, AΛptq “ limNÑ8 AΛ1Xr1,Nsptℓq exists for ℓ “ 1, 2, . . . and
does not depend on the particular choice of Λ1. In addition,

lim
NÑ8

E
`ˇ̌
AΛptℓq ´ AΛ1Xr1,Nsptℓq

ˇ̌˘
“ 0.

Next let t ě 0 be arbitrary with EpXptqq “ EpXpt´qq “ EpXpt`qq and let
Λ1 Ď Λ0, Λ

1 infinitely large. For t1 ă t ă t2, t1, t2 in Q1, we have

E

ˆ
lim sup
NÑ8

AΛ1Xr1,Nsptq
˙

ď E

ˆ
lim sup
NÑ8

AΛ1Xr1,Nspt2q
˙

“ E

´
lim inf
NÑ8

AΛ1Xr1,Nspt2q
¯

ď E pXpt2q ´ Xp0qq .

Similarly we have

E

´
lim inf
NÑ8

AΛ1Xr1,Nsptq
¯

ě E

´
lim inf
NÑ8

AΛ1Xr1,Nspt1q
¯

“ E

ˆ
lim sup
NÑ8

AΛ1Xr1,Nspt1q
˙

ě E pXpt1q ´ Xp0qq .

Since E pXpt`qq “ E pXpt´qq, it follows that the limit

AΛ1ptq :“ lim
NÑ8

AΛ1Xr1,Nsptq

exists P-almost surely. Consequently, the limits

AΛptq :“ lim
NÑ8

AΛ1Xr1,Nsptq, t ě 0,

all exist P-almost surely and limNÑ8 E
`ˇ̌
AΛptq ´ AΛ1Xr1,Nsptq

ˇ̌˘
“ 0. Finally we

shall prove that the process tAΛptq : t ě 0u is right continuous. Fix t0 ě 0 and
let t ą t0. Then

E pAΛptq ´ AΛpt0qq “ E pXptq ´ Xpt0qq ě 0.
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Since t ÞÑ EpXptqq is right continuous we infer that limtÓt0 E pAΛptq ´ AΛpt0qq “
0. It follows that, P-almost surely, limtÓt0 AΛptq “ AΛpt0q.
This completes the proof of Theorem 5.140. �

5.141. Corollary. Let X “ M ` A be the Doob-Meyer decomposition of a
submartingale into a martingale and an increasing right continuous predictable
process A. Then, for an appropriate sequence pnℓ : ℓ P Nq in N,

Aptq “ lim
NÑ8

1

N

Nÿ

k“1

8ÿ

j“0

`
E

`
A

`
pj ` 1q2´nk

˘
| Fj2´nk

˘
´ A

`
j2´nk

˘˘
1pj2´nk ,8qptq.

This limit is an P-almost sure limit as well as a limit in L1pΩ,F,Pq.

Proof. A combination of the existence and uniqueness of the Doob-Meyer
decomposition yields the desired result. Notice that by Proposition 5.131 a
process of the formM`A, whereM is a martingale and where A is an increasing
adapted process in L1pΩ,F,Pq is of class (DL): see (5.230) and (5.231). So the
proof of Corollary 5.141 is complete now. �

Another corollary is the following one.

5.142. Corollary. Let tXptq : t ě 0u be a right continuous submartingale of
class (DL) with left limits. Fix t0 ą 0 and let tτℓ : ℓ P Nu be sequence of stopping
times which increases to the fixed time t0. Suppose τℓ ă t0, P-almost surely, for
all ℓ P N. Then E p|Xpt0´q|q ă 8 and limℓÑ8 E p|X pτℓq ´ X pt0´q|q “ 0. In
addition, limhÓ0 E p|X pt0 ` hq ´ X pt0q|q “ 0.

The following result also follows from our discussion.

5.143. Corollary. Let tXptq : t ě 0u be a submartingale. If the function t ÞÑ
E pXptqq is P-almost surely continuous, then the process tAptq : t ě 0u is P-
almost surely continuous as well.

5.144. Remark. Several people have reformulated and extended Komlos’ result
as a principle of subsequences, e.g. see Chatterji [40]. Others have treated an
infinite dimensional version, e.g. see Balder [12]. In [124], Exercise 3, p. 103
the authors give an example of a submartingale which is not of class (DL). In
fact Métivier and Pellaumail give the following example. Let Ω be the interval
r0, 1s with Lebesgue measure and let 0 “ t0 ă t1 ă . . . ă tn ă . . . ă 1 be a
sequence such that limnÑ8 tn “ 1. Define the process X by

Xpt, ωq “ ´
ÿ8

n“1
2n1rtn´1,tnqptq1p1´2´n,1spωq, ω P r0, 1s, t ě 0.

Then X is a submartingale, X is not of class (DL) and X is a martingale on
the interval r0, 1q. If tn´1 ď t ă tn, we write Ft for the σ-field generated by
tpj ´ 1q2´n, j2ns : 1 ď j ď 2nu. If t ě 1, then Ft is the Borel field of r0, 1s.
5.145. Definition. Let tY ptq : t ě 0u be a martingale in L2pΩ,F,Pq. Then
t|Y ptq|2 : t ě 0u is a submartingale of class (DL). So by Theorem 5.130 there
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exists a unique martingale tMptq : t ě 0u withMp0q “ |Y p0q|2 and an increasing
predictable right-continuous process t〈Y 〉 ptq : t ě 0u in L1pΩ,F,Pq such that

|Y ptq|2 “ Mptq ` 〈Y 〉 ptq, P-almost surely.

The process t〈Y 〉 ptq : t ě 0u is called the (quadratic) variation or variance pro-
cess of tY ptq : t ě 0u.
5.146. Example. Let tBptq : t ě 0u be ν-dimensional Brownian motion. Then
the process tt ÞÑ νt : t ě 0u is the corresponding quadratic variation process.

5.147. Example. let t ÞÑ
şt
0
F1psq dBpsq and t ÞÑ

şt
0
F2psq dBpsq be two local

martingales. Then the process t ÞÑ
şt
0
F1psqF2psq ds is the corresponding covari-

ation process.
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Subjects for further research and presentations

The following topics may be of interest for a presentation and/or further re-
search:

(1) Certain pseudo-differential operators of order less than or equal to 2
can be put into correspondence with space-homogeneous or non-space-
homogeneous Markov processes. A detailed exposition can be found in
Jacob [83, 84, 85].

(2) Viscosity solutions to partial differential equations. The standard ref-
erence for this subject is Crandall, Ishii, and Lions [47]. This topic
can also be treated in the context of Backward Stochastic Differential
Equations (BSDEs): see, e.g., Pardoux [142].

(3) Elliptic differential operators of second order (and Markov processes);
see, e.g., Øksendael [138]. A recent interesting book on stochastic
calculus is Stroock [170].

(4) Parabolic differential operators (of second order and Markov processes).
An interesting article in this context is Bossy and Champagnat [29].
The abstract of this paper reads: “We present the main concepts of the
theory of Markov processes: transition semigroups, Feller processes, in-
finitesimal generator, Kolmogorov’s backward and forward equations,
and Feller diffusion. We also give several classical examples includ-
ing stochastic differential equations (SDEs) and backward stochastic
differential equations (BSDEs) and describe the links between Markov
processes and parabolic partial differential equations (PDEs). In par-
ticular, we state the Feynman-Kac formula for linear PDEs and BSDEs,
and we give some examples of the correspondence between stochastic
control problems and Hamilton-Jacobi-Bellman (HJB) equations and
between optimal stopping problems and variational inequalities. Sev-
eral examples of financial applications are given to illustrate each of
these results, including European options, Asian options, and Ameri-
can put options.”

(5) Solutions to stochastic differential equations and the corresponding sec-
ond order differential equation (of parabolic type) satisfied by the one-
dimensional distributions. For stochastic differential equations with
singularities see, e.g., [44]. For classical partial differential equations,
see, e.g., [186] and the references therein.

(6) Backward stochastic differential equations and their viscosity solutions;
see, e.g. Pardoux [142], Van Casteren [185], Boufoussi and Van Cast-
eren [30, 31], Boufoussi, Van Casteren and Mhardy [32]. For more
recent work on backward stochastic differential equations, the reader is
referred to Pardoux and Răşcanu [143], and Zhang [198].

(7) Heat equation on a Riemannian manifold. A relevant book in this
context is [78]. For connections with stochastic differential equations
on manifolds see, e.g., Elworthy [66, 67].

(8) Oscillatory integrals and related path integrals. There is a lot of lit-
erature on this subject. Nice papers on this topic are Albeverio and
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Mazzucchi [1, 2]. Interesting books are, e.g., Mazzucchi [123], Johnson
and Lapidus [86], and Kleinert [93].

(9) Malliavin calculus, or stochastic calculus of variations, and applica-
tions to regularity properties of integral kernels. For details see e.g.
Nualart [135, 136]. Other references which contain results on and ap-
plications of Malliavin calculus include: Cruzeiro and Malliavin [49],
Stroock [164, 165, 166], Cruzeiro and Zambrini [50], [51]. Of course
the original work by Malliavin should not be forgotten: [119]. The
book by Bismut [23] combines Malliavin calculus with the theory of
large deviations. For a discussion on Malliavin calculus in relation to
Lévy processes see, e.g., Osswald [140]. A rather elementary approach
to Malliavin calculus can be found in Friz [74]. For application to
stochastic differential equations see, e.g., Takeuchi [173]. For appli-
cations of Malliavin calculus to operator semigroups see, e.g., Léandre
[108, 109]. For Malliavin calculus without probability theory see [107].
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(10) Books and papers with literature on financial mathematics include:
León, Solé, Utzet, and Vives [112], Nualart and Schoutens [137], Malli-
avin and Thalmaier [120], Karatsas and Shreve [89], Gulisashvili [79],
El Karoui and Mazliak [65], El Karoui, Pardoux and Quenez [63], Lim
[114]. Other references include Zhang and Zhou (editors) [199] and
Tsoi, Nualart and Yin [176].

(11) Another interesting subject is “Ergodic theory” and, correspondingly,
invariant measures. We mention some references: Krengel [99], Karlin
and Taylor [90], Meyn and Tweedie [125], Eisner and Nagel [62], Van
Casteren [184], Seidler [155], Goldys [77], [151].

(12) Central limit theorems and related results are also relevant. Again
we mention some references: Bhattaraya and Waymire [20], Nourdin
and Peccati [131], Barbour and Chen [13], Berckmoes, Lowen and Van
Casteren [16, 17, 18, 19], Tao [175], Stein [161, 162], Chen, Goldstein
and Shao [41], Barbour and Hall [14].

(13) Investigate Markov processes with a Polish space as state space: see,
e.g., Sharpe [156], Swart and Winter [172], Van Casteren [184], Bovier
[33].

(14) Discuss and make a careful study of the Skorohod space as described
in Remark 3.40. Try to include applications to convergence properties
of stochastic processes.

(15) Discuss stochastic analysis in the infinite-dimensional context. A nice
and relevant survey paper is [190] written by van Neerven, Veraar and
Weis. A simplified version in Dutch is authored by van Neerven: see
[189].

(16) Make a (further) study of models in financial mathematics, like the sto-
chastic volatility model (Heston model), stochastic interest rate model
(Vasicek model) and others. Some details can be found in Klebaner
[92], in Cont and Tankov [46], Gulisashvili [79] and others. The books
[52] and [72] also contains much interesting information. A book with
numerical applications is [200].

(17) Applications of stochastic processes in cell biology or population dy-
namics: references include [36, cell biology] and [5, population dy-
namics]. A Ph.D. thesis with interesting material is Ferreira [70]. It
contains a discussion on the stochastic Lotka-Volterra equation which
serves as a predator-prey model.

(18) An interesting topic is a combination of functional analysis, operator
theory and stochastic processes with applications in among others data
processing. A main theorem is the Karhunen-Loève expansion theorem.
A relevant book in this context is [141] by Papadopoulos and Giova-
nis. Furthermore there are at least two Ph.D. theses with a theoretical
background and applications of these expansions: one by Wang [191]
and another by Giambartolomei [76].
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CHAPTER 6

Advanced stochastic processes: a summary of the

lectures

0.1. Abstract. The aim of this work is to present some of the main top-
ics which will be explained during the lectures to come. In particular, we will
explain the following notions: Brownian motion as a Gaussian process with
values in Rd, Brownian motion as a Markov process, and last but not least
Brownian motion as a martingale. In order to achieve this we will need the
concept of conditional expectation on sub-σ-fields. Since we also want to dis-
cuss the strong Markov property, and, more generally, stopped processes, we
will introduce stopping times. In addition, we will pay attention to stochastic
differential equations (SDEs), and to a lesser extent backward stochastic differ-
ential equations (BSDEs). Let pΩ,F,Pq be a probability space endowed with
a filtration pFtqtě0. This means that the latter collection consists of σ-fields
contained in F and that Ft1 Ă Ft2 for 0 ď t1 ă t2. During this course enti-
tled “Advanced stochastic processes” our attention will be focused on adapted
processes tXptq : t ě 0u which are called semi-martingales. This means that,
for every t ą 0, Xptq : Ω Ñ R is Ft-BR-measurable, and that Xptq can be
written in the form Xptq “ Aptq ` Mptq. Here, the process t ÞÑ Aptq is a
real-valued process of bounded variation (i.e. Aptq can be written as a differ-
ence of two non-decreasing processes), and t ÞÑ Mptq is a martingale, that is
E

“
M pt2q

ˇ̌
Ft1

‰
“ M pt1q, P-almost surely, for all 0 ď t1 ă t2. Extensions to

other state spaces like Rd can be made.

Introduction

During the lectures which lie at the basis of this course we will explain, in
mathematical details, which concepts and notions are involved and relevant to
understand the ideas around stochastic processes. As a leading example, and an
important process we will consider Brownian motion and related processes which
include Ornstein-Uhlenbeck process, Brownian bridge, Itô process. Several of
these processes are Gaussian processes and, in the appropriate context, semi-
martingales and/or Markov processes.

However, before we go into the more technical details, we will describe, very
briefly, possible contents of papers which can be presented as part of the exam:

(1) Martingale representation theorem. An interesting reference is [147].
(2) Stationary or invariant measure and its relation with ergodic theory.

This topic is contained in an interesting book [126].

441
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(3) Strong law of large numbers (SLLN), weak law of large numbers
(WLLN) and connections with renewal theory. For an account on this
see e.g. [163].

(4) Central limit theorem using Stein’s method, or, more generally, a ver-
sion of the functional central limit theorem (FCLT). In the context of
FCLT the limiting process may coincide with Brownian motion. The
reader may consult several papers among which [111], [130], [132],
[18] and [19].

(5) Black-Sholes-Merton model for option pricing: see e.g. [127].
(6) Poisson processes, Lévy processes, Markov chains and their connection

with invariant measures: see e.g. [163].
(7) Stochastic differential equations: concrete examples: see e.g. [139].
(8) Ornstein-Uhlenbeck processes and stochastic interest rates: Vasicek

model. For example, see [134].
(9) Discrete models and their limits for option pricing. For example, see

[157]
(10) Stochastic volatility models like the Heston model or implied volatility:

see e.g. [79].
(11) Itô calculus for models in financial mathematics: see e.g. [157].
(12) Singular stochastic differential equations: see e.g. [44].
(13) Backward stochastic differential equations (BSDEs) and hedging mod-

els: a combination a (forward) stochastic differential equations and BS-
DEs: see e.g. [142] and [65]. Another interesting source of information
is [48]. A recent book is [143].

(14) Stochastic Partial differential equations: see e.g. [80].
(15) Applications of stochastic processes in cell biology or population dy-

namics: references include [36, cell biology] and [5, population dynam-
ics].

(16) A combination of analysis, geometry and Markov process theory is an-
other possibility. There are relations with the spectral gap, logarithmic
inequalities, Poincaré inequalities iso-perimetric inequalities and others.
The interested reader can find details in, e.g., [9, 110, 26, 11, 10, 69].

Anyway the idea is that after this course the students should be able to under-
stand and work with the concepts which are employed in the above topics. In
the sequel we will be more precise about the kind of techniques and processes
we have in mind.

1. Brownian motion as a Gaussian process

In this section we describe Brownian motion as a Gaussian process. Let pΩ,F,Pq
be a probability space, and let X “ pX1, . . . , XNq : Ω Ñ RN , with N P N, be
a random or stochastic or random vector. This vector is called Gaussian or
(multivariate) normal provided its distribution only depends on its expectation
and its covariance. More precisely, if its characteristic function is given by

E

”
e´i

řN
j“1

Xjξj

ı
“ e´i

řN
j“1

µjξj´ 1

2

řN
j1, j2“1

σj1,j2
ξj1 ξj2 , (6.1)
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where pµ1, . . . , µNq is a (deterministic) vector in RN , and where the matrix

pσj1,j2q
1ďj1, j2ďN

is a symmetric NˆN -matrix. It then follows that, for 1 ď j ď N , Xj belongs to
L2 pΩ,F,Pq Ă L1 pΩ,F,Pq, that µj “ E rXjs, and that σj1,j2 “ cov pXj1 , Xj2q “
E rXj1Xj2s ´ E rXj1sE rXj2s, 1 ď j1, j2 ď N . Since the characteristic function
of a random vector determines its distribution, the equality in (6.1) entails that
the distribution of a Gaussian vector only depends on its expectation and its
covariance matrix.
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As above, let pΩ,F,Pq be a probability space and let, for t ě 0, W ptq : Ω Ñ Rd

be a random vector with the following properties:

(1) The function t ÞÑ W ptq is P-almost surely continuous. This means that
there exists an event Ω1 Ă Ω of full P-measure, i.e. P rΩ1s “ 1, such
that the function t ÞÑ W ptq pωq “ Xpt, ωq is continuous for all ω P Ω1.

(2) For every finite choice pt1, . . . , tnq P r0,8qn the vector

pW pt1q , . . . ,W ptnqq
is a Gaussian (or a multi-variate normally distributed) vector in

`
Rd

˘n “
Rd ˆ ¨ ¨ ¨ ˆ Rdlooooooomooooooon

n times

such that E rW ptkqs “ xk “
`
xk
1, . . . , x

k
d

˘
P Rd, and

E
“`
Wj1 ptk1q ´ xk1

j1

˘ `
Wj2 ptk2q ´ xk2

j2

˘‰
“ min ptk1 , tk2q δj1,j2,

for 1 ď j1, j2 ď d, and 1 ď k1, k2 ď n.

It was Einstein ([61]) who posed the problem whether or not the properties in
(1) and (2) are compatible. Indeed, it was proved by Wiener in 1923 that they
indeed are: see [192], and for more details see Mazliak [122]. We observe that

E
“〈
W ptk1q ´ xk1 , ξk1

〉 〈

W ptk2q ´ xk2 , ξk2
〉‰

“ E

«
dÿ

j1,j2“1

`
Wj1 ptk1q ´ xk1

j1

˘
ξk1j1 ˆ

`
Wj2 ptk2q ´ xk2

j2

˘
ξk2j2

ff

“
dÿ

j1,j2“1

E
“`
Wj1 ptk1q ´ xk1

j1

˘
ˆ

`
Wj2 ptk2q ´ xk2

j2

˘‰
ξk1j1 ξ

k2
j2

“
dÿ

j“1

min ptk1, tk2q ξk1j ξk2j “ min ptk1 , tk2q
〈

ξk1, ξk2
〉

, (6.2)

and so the characteristic function of the Gaussian vector

pW pt1q , . . . ,W ptnqq P
`
Rd

˘n

is given by

E

”
e´i

řn
k“1〈W ptkq,ξk〉

ı
“ e´i

řn
k“1〈xk,ξk〉´ 1

2

řn
k1,k2“1

minptk1 ,tk2q〈ξk1 ,ξk2〉, (6.3)

for all 0 ď t1, . . . , tn ă 8 and all pξ1, . . . , ξnq P
`
Rd

˘n
. In most cases it is

assumed that x1 “ ¨ ¨ ¨ “ xn P Rd. In the latter case the process t ÞÑ W ptq
which starts at x. In particular when x “ 0 our Brownian motion, or Wiener
process, t ÞÑ W ptq starts at 0. More details on Gaussian vectors can be found
in the main text; see, e.g., Section 4 in Chapter 2, Propositions 3.5 and 3.6 in
Chapter 3.

2. Brownian motion as a Markov process

In this section we will give a too short survey of Brownian motion viewed as a
Markov process. We will assume that the Brownian motion t ÞÑ W ptq can start
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at any position (initial state) x P Rd. We will consider the following quadruple
�

pΩ,F,PxqxPRd , pW ptq, t ě 0q , pϑt, t ě 0q ,
`
Rd,BRd

˘(
. (6.4)

In (6.4) for every x P Rd the triple pΩ,F,Pxq denotes a probability space. The
σ-field F contains the union of an increasing family of σ-fields pFtqtě0; i.e. 0 ď
t1 ď t2 implies Ft1 Ă Ft2 Ă F. Moreover it is assumed that F is the smallest
σ-field containing all the σ-fields Ft, t ě 0. In addition, for every t ě 0 the
random vector W ptq : Ω Ñ Rd is supposed to be Ft-BRd-measurable. In other
words the process t ÞÑ W ptq is adapted to the filtration pFtqtě0. Often it is
assumed that Ft coincides with, or is some completion of the smallest σ-field
which makes all variables W psq : Ω Ñ Rd, 0 ď s ď t, Ft-BRd-measurable.
In other words, we often have Ft “ σ tW psq : 0 ď s ď tu or some completion
of σ tW psq : 0 ď s ď tu. For example, it is often assumed that Ft satisfies the
standard assumptions (SDA). This means that all Px-null sets are contained in
F0. Then it follows that Ft contains these null sets as well, because Ft contains
F0. The σ-field Ft can be identified with the information which one has at time
t. If t is considered as the present time, then Ft is the information from the
past. The time translation or time shift operators ϑs : Ω Ñ Ω, s ě 0, have the
property that W ptq ˝ ϑs “ W pt ` sq, Px-almost surely, for all s, t ě 0. In other
words, if fj : Rd Ñ C are bounded Borel measurable functions on Rd, and if
0 ď t1, . . . , tn and t ą 0 represent times, then

nź

j“1

fj pW ptjqq ˝ ϑt “
nź

j“1

fj pW ptj ` tqq , (6.5)

and hence, with Y “ śn
j“1 fj pW ptjqq the random variable Y ˝ϑt is measurable

with respect to the σ-field Ft :“ σ pW psq : s ě tq. The σ-field Ft is called
the information from the future. Next let Y : Ω Ñ C be a bounded random
variable. This means that the bounded variable Y is F-BC-measurable. Then
Brownian motion has the Markov property, or is a Markov process, provided
the following identity holds Px-almost surely for all bounded random variables
Y with values in R or C:

Ex

“
Y ˝ ϑt

ˇ̌
Ft

‰
“ EW ptq rY s , for all t ě 0 and for all x P Rd. (6.6)

It requires the monotone class theorem that the Markov property of the Brow-
nian motion as defined in (6.6) is equivalent to the following assertion. The
Markov property of Brownian motion is equivalent to the following claim. For
every real or complex valued bounded continuous function f defined on Rd, and
for every s ě 0 the equality

Ex

“
Y ˝ ϑt

ˇ̌
Ft

‰
“ EW ptq rY s , holds for all t ě 0 and for all x P Rd. (6.7)

Here Y is of the form Y “ f pW psqq. Of course, for a variable Y of the form
Y “ f pW psqq, Y ˝ϑt “ f pW ps ` tqq, and hence (6.7) is equivalent to: for every
continuous function f : Rd Ñ C and for every s ě 0 the equality

Ex

“
f pW ps ` tqq

ˇ̌
Ft

‰
“ EW ptq rf pW psqqs (6.8)

holds Px-almost surely for all t ě 0 and for all x P Rd. The passage from
(6.8) to (6.6) goes via stochastic (or random) variables of the form (6.5). An
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application of the monotone class theorem then enables us to conclude (6.6).
For more details on the monotone class theorem see Theorems 2.42 and 2.43,
and the Propositions 2.44 and 2.45 in Chapter 2.

Put, for t ą 0, x, y P Rd,

pdpt, x, yq “ 1

p2πtqd{2 exp

˜
´|x ´ y|2

2t

¸
“ 1

p2πtqd{2 e
´ |x´y|2

2t .

Then, by definition, the marginal distributions, or one-dimensional distribu-
tions, of Brownian motion are given by

Ex rf pW ptqqs “
ż

Rd

pdpt, x, yqfpyq dy, t ą 0, (6.9)

where f is a bounded continuous function attaining values in R. From the
equality, for s, t ą 0, x, y, z P Rd,

pd ps, x, zq pd pt, z, yq “ pdps ` t, x, yqpd
ˆ

st

s ` t
,
sy ` tx

s ` t
, z

˙
, (6.10)

we infer that collection probability densities tpdpt, x, yq : t ą 0u satisfies the
following version of the Chapman-Kolmogorov equation. For all s, t ą 0, and
all x, y P Rd, the equalities

ż

Rd

pdps, x, zqpdpt, z, yq dz “ pdps ` t, x, yq
ż

Rd

pd

ˆ
st

s ` t
,
sy ` tx

s ` t
, z

˙
dz

“ pdps ` t, x, yq (6.11)

are true. Put P ptqfpxq “ Ex rf pW ptqqs, t ě 0, f P Cb

`
Rd

˘
. Then by the

Markov property we have

P ptqP psqfpxq “ Ex rP psqf pW ptqqs “ Ex

“
EW ptq rf pW psqqs

‰

“ Ex

“
Ex

“
f pW psqq ˝ ϑt

ˇ̌
Ft

‰‰

“ Ex

“
Ex

“
f pW ps ` tqq

ˇ̌
Ft

‰‰

“ Ex rf pW ps ` tqqs “ P pt ` sqfpxq. (6.12)

In other words the family tP ptq : t ě 0u has the semigroup property. In addi-
tion, we have

lim
tÓ0

P ptqfpxq “ lim
tÓ0

Ex rf pW ptqqs

“ lim
tÓ0

ż

Rd

pdpt, x, yqfpyq dy

“ lim
tÓ0

ż

Rd

pdp1, 0, yqf
´
x `

?
ty

¯
dy

“
ż

Rd

pdp1, 0, yqf pxq dy “ fpxq, (6.13)

for all bounded continuous functions f defined on Rd. Another relevant property
is the following one. If f P Cb

`
Rd

˘
is such that 0 ď f ď 1, then 0 ď P ptqf ď 1,

t ě 0. Let C0

`
Rd

˘
denote the space of all continuous functions f : Rd Ñ C
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with the property that lim
|x|Ñ8

fpxq “ 0. Then it is fairly easy to see that P ptqf
belongs to C0

`
Rd

˘
whenever f does so. All this means that, by definition,

the family tP ptq : t ě 0u is a Feller or, even better, a Dynkin-Feller semigroup.
Such semigroups have the property that

lim
sÑt, sě0

}P psqf ´ P ptqf}8 “ lim
sÑt, sě0

sup
xPRd

|P psqfpxq ´ P ptqfpxq| “ 0 (6.14)

for all t ě 0 and for all f P C0

`
Rd

˘
. A calculation shows the following equalities

for t ą 0 and ξ P Rd:

Ex

“
e´i〈W ptq,ξ〉‰ “

ż

Rd

e´i〈y,ξ〉pd pt, x, yq dy

“ e´i〈x,ξ〉

ż

Rd

e´i〈y,ξ〉pdpt, 0, yq dy

“ e´i〈x,ξ〉

ż

Rd

e´i
?
t〈y,ξ〉pdp1, 0, yq dy

“ e´i〈x,ξ〉e´ 1

2
t|ξ|2 . (6.15)
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Since x “ Ex rW ptqs and t |ξ|2 “ Ex

“
p〈W ptq ´ x, ξ〉q2

‰
, it is clear from (6.15)

that W ptq, distributed with density pdpt, x, yq, is a Gaussian vector. In fact, let
0 ă t1 ă ¨ ¨ ¨ ă tn and let fj , 1 ď j ď n, be bounded Borel measurable functions
defined on Rd. Then, with t0 “ 0 and x0 “ x P Rd, we have

Ex

«
nź

j“1

fj pW ptjqq
ff

“
ż

Rd

. . .

ż

Rd

nź

j“1

fj pxjq
nź

j“1

pd ptj ´ tj´1, xj´1, xjq dx1 ¨ ¨ ¨ dxn. (6.16)

Fix f : Rd Ñ C, let 0 ă t1 ă ¨ ¨ ¨ ă tn ă t, and gj : Rd Ñ C, 1 ď j ď n, be
bounded Borel measurable functions. From (6.16) together with the Chapman-
Kolmogorov equation (see (6.11)) we infer the following equality

Ex

«
EW ptq rf pW psqqs

nź

j“1

gj pW ptjqq
ff

“ Ex

«
f pW ps ` tqq

nź

j“1

gj pW ptjqq
ff
. (6.17)

Applying the monotone class theorem, and, possibly, employing some other
approximation arguments, the equality in (6.17) implies

Ex

“
f pW ps ` tqq

ˇ̌
Ft

‰
“ EW ptq rf pW psqqs , Px-almost surely. (6.18)

Let fk : Rd Ñ C, 1 ď k ď m, be bounded Borel measurable functions. Let
0 ă s1 ă ¨ ¨ ¨ ă sm. Repeating the previous arguments leads to

Ex

«
EW ptq

«
mź

k“1

fk pW pskqq
ff

nź

j“1

gj pW ptjqq
ff

“ Ex

«
mź

k“1

fk pW psk ` tqq
nź

j“1

gj pW ptjqq
ff
. (6.19)

Assume that the σ-field F is generated by pW ptq : t ě 0q. In other words F

is the smallest σ-field which makes all variables W ptq : Ω Ñ Rd measurable.
Let Y : Ω Ñ C be bounded random variable. This means that Y is F-BC-
measurable. Another application of the monotone class theorem and using
(6.19) then implies, for t ě 0,

Ex

“
Y ˝ ϑt

ˇ̌
Ft

‰
“ EW ptq rY s , Px-almost surely. (6.20)

The reader should compare the results above with Subsection 4.2 in Chapter
1 and with Theorems 3.29 of Chapter 3. In this chapter can find much more
information on Brownian motion.

3. Brownian motion as a martingale

In this section we will give a brief review of the martingale properties of Brow-
nian motion: see Section 6 of Chapter 2. Let pΩ,F,Pq be a probability space
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(sample path space), and let tW ptq : t ě 0u be Brownian motion on Ω starting
at 0 P Rd. We consider Brownian motion as a Gaussian process in Rd. Then
W ptq ´ W psq is P-independent of Fs. In other words Brownian motion has in-
dependent increments, and consequently it is a martingale in L2 pΩ,F,Pq. In
addition, we have E rWj1psqWj2ptqs “ min ps, tq δj1,j2, 0 ď s, t, 1 ď j1, j2 ď d.
It also follows that the process t ÞÑ Wj1ptqWj2ptq ´ tδj1,j2 is a P-martingale.
The Lévy’s characterization theorem says that Brownian motion is the only
continuous time martingale with the latter property. For d “ 1 the process
t ÞÑ W ptq2 ´ t is a martingale. In other words the positive sub-martingale

t ÞÑ |W ptq|2 can be written in the form |W ptq|2 “ Aptq `Mptq where Aptq “ d t

is an increasing process, and where Mptq “ |W ptq|2 ´d t is a martingale. This is
a very special case of the Doob-Meyer decomposition theorem which says among
other things that continuous sub-martingales Sptq of class DL (a certain uniform
integrability property) can be written in the form Sptq “ Aptq`Mptq where the
process Aptq is a non-decreasing adapted process, and Mptq is a martingale. In
fact throughout the lectures of this course we will frequently encounter semi-
martingales Sptq. Such processes Sptq are of the form Sptq “ Aptq `Mptq where
Aptq is a process of bounded variation, and where Mptq is a martingale. An
real-valued adapted process Aptq is of bounded variation (BV) whenever it can
be written in the form Aptq “ A`ptq ´A´ptq where the processes t ÞÑ A˘ptq are
increasing, or more precisely, non-decreasing adapted processes. The bounded
variation part is usually considered as the trend or the drift of the process, and
the martingale part is considered as the uncertainty, the risk or volatility part.
Let f : Rd Ñ C be a C2-function with bounded first and second derivatives.
Then by Itô’s formula we have

f pW ptqq “ f pW p0qq `
ż t

0

∇f pW psqq dW psq ` 1

2

ż t

0

∆f pW psqq ds

“ Mptq ` Aptq, (6.21)

where

Aptq “ 1

2

ż t

0

∆f pW psqq ds and

Mptq “ f pW p0qq `
ż t

0

∇f pW psqq dW psq. (6.22)

Since the Itô integral
şt
0
∇f pW psqq dW psq is a martingale, the process t ÞÑ

f pW ptqq is decomposed into a martingale part Mptq and a bounded variation
part Aptq which is also called the Itô correction term. Other important examples
of semi-martingales are solutions to stochastic differential equations (SDEs)
t ÞÑ Xptq. Such processes satisfy an equation of the form

Xptq “ Xp0q `
ż t

0

b ps,Xpsqq ds`
ż t

0

σ ps,Xpsqq dW psq “ Aptq ` Mptq, (6.23)

where Aptq “
şt
0
b ps,Xpsqq ds and Mptq “ Xp0q `

şt
0
σ ps,Xpsqq dW psq. Under

appropriate conditions on the coefficients bps, xq and σps, xq the process t ÞÑ Aptq
is an adapted process of bounded variation, and the process t ÞÑ Mptq is an
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adapted process which is a martingale. Observe that solutions to stochastic
differential equations are supposed to be adapted (and continuous). Often the
equation in (6.23) is written in differential form:

dXptq “ b pt, Xptqq dt ` σ pt, Xptqq dW ptq “ dAptq ` dMptq. (6.24)

Moreover, the fact that processes of the form t ÞÑ Wj1ptqWj2ptq ´ tδj1,j2, 1 ď
j1, j2 ď d are martingales forms the basis for stochastic or Itô calculus with
respect to Brownian motion. Processes closely related to Brownian motion
include

(1) Ornstein-Uhlenbeck processes have the form

Xptq “ e´tAXp0q `
ż t

0

e´pt´sqAσpsq dW psq.

Here A is a square d ˆ d-matrix. The corresponding SDE reads as
follows:

dXptq “ ´AXptq dt ` σptq dW ptq.
Such processes can be used in the context of models with stochastic
interest rates (Vasicek model).

(2) Processes of the form

Sptq “ e
şt
0pµ´ 1

2
|σpsq|2q ds`

şt
0
σpsq dW psq,

where s ÞÑ σpsq is an adapted Rd-valued process and µ is a (positive)
constant, play a crucial role in the modelling of stock prices. The Black-
Sholes-Merton model is an important example. The process t ÞÑ Sptq
satisfies the following SDE:

dSptq “ Sptq pµ dt ` σptq dW ptqq .
If µ “ 0 and σ is a constant vector, then the process t ÞÑ Sptq is called
a geometric Brownian motion. Such processes play a relevant role in
the construction of the risk neutral measure. These measures have a
(stochastic) density of the form SpT q with µ “ 0 provided T is the
time of maturity. Mathematically speaking the risk neutral measure
is the Girsanov transformation of a Brownian motion with drift: it
neutralizes the drift.

(3) Another Gaussian process which plays a role in the construction of
(deterministic) densities to describe the distribution of certain processes
is the Brownian bridge. Such a process takes the form:

s ÞÑ X1
t psq :“

´
1 ´ s

t

¯
x ` s

t
y `

´
1 ´ s

t

¯
W

ˆ
st

t ´ s

˙
, or

s ÞÑ X2
t psq :“

´
1 ´ s

t

¯
x ` s

t
y ` W psq ´ s

t
W ptq , (6.25)

where t ą 0 is fixed and x and y belong to Rd, and where W ptq is a
Brownian motion in Rd which starts at 0. Observe that these processes
are not adapted to Brownian motion, because at time s one needs
information from a later time to describe the processes in (6.25). In
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fact for the first process one needs W

ˆ
st

t ´ s

˙
, and for the second W ptq

is needed. The processes in (6.25) have realizations which connect x

(at time 0) with y (at time t. It is not so difficult to see that the
expectations and covariances of the processes X1

t psq and X2
t psq are the

same. Since both processes are Gaussian, their distributions are the
same. For instance for d “ 1 and 0 ď s1, s2 ă t we have

E
“`
X1

t ps1q ´ E
“
X1

t ps1q
‰˘ `

X1
t ps2q ´ E

“
X1

t ps2q
‰˘‰

“ E

„´
1 ´ s1

t

¯
W

ˆ
s1t

t ´ s1

˙ ´
1 ´ s2

t

¯
W

ˆ
s2t

t ´ s2

˙

“
´
1 ´ s1

t

¯ ´
1 ´ s2

t

¯
E

„
W

ˆ
s1t

t ´ s1

˙
W

ˆ
s2t

t ´ s2

˙

“
´
1 ´ s1

t

¯ ´
1 ´ s2

t

¯
min

ˆ
s1t

t ´ s1
,

s2t

t ´ s2

˙

“ min ps1, s2q ´ s1s2

t
. (6.26)

By a similar token we get

E
“`
X2

t ps1q ´ E
“
X2

t ps1q
‰˘ `

X2
t ps2q ´ E

“
X2

t ps2q
‰˘‰

“ E

”´
W ps1q ´ s1

t
W ptq

¯ ´
W ps2q ´ s2

t
W ptq

¯ı

“ min ps1, s2q ´ s1s2

t
. (6.27)

Since E rW ptqq “ 0, and since the processes s ÞÑ X1
t psq and s ÞÑ

X2
t psq are Gaussian, the equalities in (6.26) and (6.27) entail that their

distributions are the same.
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It is perhaps useful to include a formal definition of a function of bounded
variation on a finite interval r0, T s. Let f : r0, T s Ñ C be a right-continuous
function. Then f is said to be of bounded variation, BV for short, if

sup

#
nÿ

j“1

|f ptjq ´ f ptj´1q| : 0 ď t0 ă t1 ă ¨ ¨ ¨ ă tn ď T

+
ă 8.

Here the supremum is taken over all subdivisions 0 ď t0 ă t1 ă ¨ ¨ ¨ ă tn ď T

of the interval r0, T s. If f is real-valued and of bounded variation, then f can
be written as a difference of two increasing (in fact non-decreasing) functions:
f “ f` ´ f´. If f is continuous from the right and has limits from the left,
in other words, if f is càÒdlàg, then the functions f` and f´ can be chosen
to possess the same properties. It is also mentioned that for a function f :
r0, T s Ñ C of bounded variation which is continuous from the right and has left
limits there exists a unique complex-valued measure µf on the Borel subsets of
r0, T s such that µf p0, tq “ fptq ´ fp0q. In other words it makes sense to writeşT
0
gptq dfptq “

şT
0
gptq dµfptq “

şT
0
gptq

`
dµf`ptq ´ dµf´ptq

˘
, g P L8 pr0, T s,Cq.

4. Some relevant martingales

Let pΩ,F,Pq be a probability space with filtration pFtqtě0. Let the stochastic

variable Y : Ω Ñ R belong to L1 pΩ,F,Pq, and put Y ptq “ E
“
Y

ˇ̌
Ft

‰
. Then the

process t ÞÑ Y ptq is a so-called closed martingale; i.e. for some Y P L1 pΩ,F,Pq
the equality Y ptq “ E

“
Y

ˇ̌
Ft

‰
holds P-almost surely for all t ě 0. If a martingale

tMptq : t ě 0u is uniformly integrable, then its pointwise limit M “ lim
tÑ8

Mptq
exists in L1 pΩ,F,Pq and Mptq “ E

“
M

ˇ̌
Ft

‰
P-almost surely for all t ě 0, and

so tMptq : t ě 0u is closed.

Again we consider the Markov process of Brownian motion as explained in
Section 2. Let Y : Ω Ñ C be a stochastic variable. Then, on the interval r0, ts
the process s ÞÑ EW psq rY ˝ ϑt´ss, 0 ď s ď t, is a Px-martingale for all t ą 0
and for all x P Rd. This is so because by the Markov property we have, for
0 ď s ă t,

Ex

“
Y ˝ ϑt

ˇ̌
Fs

‰
“ Ex

“
pY ˝ ϑt´sq ˝ ϑs

ˇ̌
Fs

‰
“ EW psq rY ˝ ϑt´ss . (6.28)

Fix x, y P Rd and t ą 0. Then the process s ÞÑ pd pt ´ s,W psq, yq is martingale
on the half-open interval r0, tq. It is not a closed martingale in the interval. Let
us prove this. To this end fix 0 ď s1 ă s2 ă t and employ the Markov property
to infer:

Ex

“
pd pt ´ s2,W ps2q , yq

ˇ̌
Fs1

‰

“ Ex

“
pd pt ´ s2,W ps2 ´ s1q , yq ˝ ϑs1

ˇ̌
Fs1

‰

(Markov property)

“ EW ps1q rpd pt ´ s2,W ps2 ´ s1q , yqs
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(write w “ W ps1q)
“ Ew rpd pt ´ s2,W ps2 ´ s1q , yqs

“
ż

Rd

pd ps2 ´ s1, w, zq pd pt ´ s2, z, yq dz

(Chapman-Kolmogorov)

“ pd pt ´ s1, w, yq “ pd pt ´ s1,W ps1q , yq . (6.29)

The equality of the first and final expression in (6.29) shows the martingale
property of the process s ÞÑ pd pt ´ s,W psq, yq, 0 ď s ă t. We also observe that
lim
sÒt

pd pt ´ s,W psq, yq “ 0 Px-almost surely on the event tW ptq ‰ yu, and so this

limit vanishes Px-almost surely. Using the equality Ex rpd pt ´ s,W psq, yqs “
pdpt, x, yq shows by virtue of Scheffé’s theorem that the martingale

tpd pt ´ s,W psq, yq : 0 ď s ă tu
is not uniformly integrable, and hence it cannot be closed.
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Another martingale which is related to Brownian motion as a Markov process
and to stochastic calculus can be described as follows. Let f : Rd Ñ C be a
bounded C2-function with bounded first and second order derivatives. Then
the process

t ÞÑ Mfptq :“ f pW ptqq ´ f pW p0qq ´ 1

2

ż t

0

∆f pW psqq ds

is a martingale. Let us prove this. First of all, for 0 ď t1 ă t2 we have

Mf pt2q ´ Mf pt1q “ Mf pt2 ´ t1q ˝ ϑt1 . (6.30)

The equality in (6.30) says that the mapping t ÞÑ Mf ptq is an additive process
which is usually written as

Mf pt1 ` t2q “ Mf pt1q ` Mf pt2q ˝ ϑt1 , for 0 ď t1, t2.

Secondly, we observe the following equality:

B
Btpd pt, x, yq “ 1

2
∆xpd pt, x, yq “ 1

2
∆ypd pt, x, yq , (6.31)

where ∆x denotes the Laplace operator:

∆xfpxq “ ∆fpxq “
dÿ

j“1

B2fpxq
pBxjq2

.

Here the function f is differentiable up to order 2. For w P Rd and t ą 0 we
have

Ew rMf ptqs

“
ż

Rd

pd pt, w, yqfpyq dy ´ fpwq ´ 1

2

ż t

0

ż

Rd

pd ps, w, yq∆fpyq dy ds

(integration by parts)

“
ż

Rd

pd pt, w, yqfpyq dy ´ fpwq ´ 1

2

ż t

0

ż

Rd

∆ypd ps, w, yq fpyq dy ds

(apply (6.31))

“
ż

Rd

pd pt, w, yqfpyq dy ´ fpwq ´
ż t

0

ż

Rd

B
Bspd ps, w, yqfpyq dy ds

(apply Fubini’s theorem)

“
ż

Rd

pd pt, w, yqfpyq dy ´ fpwq ´ lim
εÓ0

ż

Rd

ż t

ε

B
Bspd ps, w, yq ds fpyq dy

“
ż

Rd

pd pt, w, yqfpyq dy ´ fpwq

´ lim
εÓ0

"ż

Rd

pd pt, w, yq fpyq dy ´
ż

Rd

pd pε, w, yqfpyq dy
*

“ lim
εÓ0

ż

Rd

pd p1, 0, yqf
`
w `

?
εy

˘
dy ´ fpwq
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“ fpwq ´ fpwq “ 0. (6.32)

By the Markov property of Brownian motion we infer, for 0 ď t1 ă t2,

Ex

“
Mf pt2q

ˇ̌
Ft1

‰
´ Mf pt1q

“ Ex

“
Mf pt2q ´ Mf pt1q

ˇ̌
Ft1

‰

(employ the equality in (6.30))

“ Ex

“
Mf pt2 ´ t1q ˝ ϑt1

ˇ̌
Ft1

‰

(Markov property of Brownian motion)

“ EW pt1q rMf pt2 ´ t1qs

(apply (6.32) with w “ W pt1q and t “ t2 ´ t1)

“ EW pt1q rMf p0qs “ 0. (6.33)

The final three equalities hold Px-almost surely. The equalities in (6.33) show
the martingale property of the process t ÞÑ Mf ptq. A very similar argument
yields the following result. Let

tpΩ,F,PxqxPE , pXptq, t ě 0q , pϑt, t ě 0q , pE,Equ (6.34)

be a Markov process, and let t ÞÑ Aptq be an additive process in L1 pΩ,Ft,Pxq
for all x P E and all t ě 0 such that Ew rAptqs “ Ew rAp0qs for all w P E and
for all t ě 0. Then the process t ÞÑ Aptq is a Px-martingale for all x P E. In
fact this result is closely related to the so-called martingale problem. Again we
consider the Markov process in (6.34). Observe that A pt1q `Ap0q ˝ϑt1 “ A pt1q
Pw-almost surely for all t1 ě 0. Whence, for all w P E, Ap0q ˝ϑt1 “ 0 Pw-almost
surely for all t1 ě 0. A formal proof of the martingale property reads as follows.
Let x P E and 0 ď t1 ă t2. Then we have

Ex

“
A pt2q

ˇ̌
Ft1

‰
“ Ex

“
A pt1q ` A pt2 ´ t1q ˝ ϑt1

ˇ̌
Ft1

‰

(the variable A pt1q is Ft1-measurable)

“ A pt1q ` Ex

“
A pt2 ´ t1q ˝ ϑt1

ˇ̌
Ft1

‰

(Markov property)

“ A pt1q ` EXpt1q rA pt2 ´ t1qs
“ A pt1q ` EXpt1q rA p0qs

(again we use the Markov property)

“ A pt1q ` Ex

“
A p0q ˝ ϑt1

ˇ̌
Ft1

‰

“ Ex

“
A pt1q ` A p0q ˝ ϑt1

ˇ̌
Ft1

‰

“ Ex

“
A pt1q

ˇ̌
Ft1

‰
“ A pt1q . (6.35)

The equalities in (6.35) show the Px-martingale property of the process t ÞÑ Aptq.
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An adapted real- or complex-valued process t ÞÑ Mptq is called multiplicative if
M pt1 ` t2q “ M pt2q ˝ ϑt1M pt1q Px-almost surely for all 0 ď t1, t2 ă 8 and for
all x P E. Then M pt1q “ Mp0q ˝ ϑt1M pt1q Px-almost surely for all 0 ď t1 ă 8
and for all x P E. If such a process belongs to L1 pΩ,F,Pxq for all x P Rd (or
attains only values in r0,8q) and is such that Ew rMptqs “ Ew rMp0qs for all
w P E and all t ě 0, then the process t ÞÑ Mptq is a Px-martingale for all x P E.
The proof can be patterned after the above proof of the martingale property of
the additive process t ÞÑ Aptq; instead of a plus sign one writes a multiplication
sign in (6.35). In case we apply the latter to Brownian motion we see, e.g., that

for every c P Rd the process t ÞÑ Mptq :“ e´〈c,W ptq´W p0q〉´ 1

2
|c|2t is a Px-martingale

for all x P Rd. Here we employ the following equalities

Ex rMptqs “ Ex

”
e´〈c,W ptq´W p0q〉´ 1

2
|c|2t

ı
“

ż

Rd

pd pt, x, yq e´〈c,y´x〉´ 1

2
|c|2t dy

“ 1 “ Ex rMp0qs .
All this is closely related to the concept of exponential martingales, the notion
of risk-neutral measure, and the Girsanov transformation of measures. For more
details the reader is referred to Subsection 8.1 of Chapter 3 and to Section 3 in
Chapter 4 of the main text.
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5. Conditional expectation

Properties of stochastic processes are very often described in terms of conditional
expectations on sub-σ-fields: martingale property, sub- and super-martingale
property, Markov property. Let pΩ,A,Pq be a probability space, and let B be a
sub-σ-field of A. Let Y : Ω Ñ R be a bounded stochastic variable. This means
that the variable Y is A-BR-measurable. Put Z “ E

“
Y

ˇ̌
B

‰
. By definition

this means that Z is B-measurable (qualitative property) and that E rZ1Bs “
E rY 1Bs for all B P B. By comparing the measures P1 “ PæB : B ÞÑ P rBs and
P2 : B ÞÑ E rY 1Bs with B P B we see that P2 is absolutely continuous with
respect to P1. This means that P1 rBs “ 0 implies P2 rBs “ 0 with B P B. It is a
consequence of the theorem of Radon-Nikodym that a conditional expectation
exists. An important example comes in the context of the Markov property.
Suppose we want to prove the equality in (6.7). Then we consider the subspace
H of L8 pΩ,Ft,Pxq defined by

H “
�
G P L8 pΩ,Ft,Pxq : Ex

“
EW ptq rY sG

‰
“ Ex rY ˝ ϑtGs

(
. (6.36)

Then H is a vector space over R. Moreover, if a sequence pGnqnPN Ă H is such
that 0 ď G1 ď G2 ď ¨ ¨ ¨ ď Gn ď G “ supnPNGn where G is bounded, then G

belongs to H. If H contains all variables G of the form G “ śn

j“1 gj pW ptjqq,
with 0 ď t1 ă t2 ă ¨ ¨ ¨ ă tn ă t, then by the monotone class theorem the
subspace H coincides with L8 pΩ,Ft,Pxq, whence Ex

“
Y ˝ ϑt

ˇ̌
Ft

‰
“ EW ptq rY s,

Px-almost surely. Another application of the monotone class theorem shows that
it suffices to take Y of the form Y “ śm

k“1 fk pW pskqq where 0 ă s1 ă ¨ ¨ ¨ ă sm.
So we have to prove the equality as described in (6.19). Put hj “ gj, 1 ď j ď n,
hj “ fj´n, n`1 ď j ď n`m; τj “ tj , 1 ď j ď n, τj “ t`sj´n, n`1 ď j ď n`m.
Then the left-hand side of (6.19) is equal to

Ex

“
EW ptq rY sG

‰

“
ż

Rd

. . .

ż

Rdloooomoooon
n times

ż

Rd

nź

j“1

gj pxjq
nź

j“1

pd ptj ´ tj´1, xj´1, xjq pd pt ´ tn, xn, y0q

dx1 ¨ ¨ ¨ dxn

ż

Rd

. . .

ż

Rdloooomoooon
m times

mź

k“1

fk pykq
mź

k“1

pd psk ´ sk´1, yk´1, ykq dy0 dy1 ¨ ¨ ¨ dym

(Chapman-Kolmogorov: integral with respect to dy0 can be explicity calculated:
it is equal to pd pt ` s1 ´ tn, xn, y1q)

“
ż

Rd

. . .

ż

Rdloooomoooon
n`m times

n`mź

j“1

hj pxjq
n`mź

j“1

pd pτj ´ τj´1, xj´1, xjq dx1 ¨ ¨ ¨ dxn`m

“ Ex

«
n`mź

j“1

hj pW pτjqq
ff
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“ Ex

«
mź

k“1

fk pW psk ` tqq
nź

j“1

gj pW ptjqq
ff

“ Ex rY ˝ ϑtGs (6.37)

where G “ śn

j“1 gj pW ptjqq and Y “ śm

k“1 fk pW pskqq. The variables yj were

renamed: yj “ xn`j , 1 ď j ď m. From the equality in (6.37) the Markov
property of Brownian motion follows after some approximation arguments: see
Theorem 3.29 Chapter 3 of the main text. More details on conditional expec-
tations can be found in Theorem 1.4 in Chapter 1 of the main text.

5.1. Exponential martingales. We consider Brownian motion or
Wiener process as a Markov process:

�
pΩ,F,Pxq , pW ptq, t ě 0q , pϑt, t ě 0q ,

`
Rd,BRd

˘(
. (6.38)

Here Ω “ C
`
r0,8q,Rd

˘
equipped with its σ-field F generated by the variables

t ÞÑ W ptq, where W ptqpωq “ ωptq, ω P Ω. In fact we will mainly use the
martingale properties of Brownian motion and the corresponding Itô calculus.
Let x ÞÑ cpxq, x P Rd, be an Rd-valued function with the property that there
exists a (continuous) process t ÞÑ Xptq which satisfies the following stochastic
integral equation:

Xptq “ W ptq `
ż t

0

c pXpsqq ds. (6.39)

Define the process t ÞÑ Zptq by

Zptq “
ż t

0

c pXpsqq dW psq ` 1

2

ż t

0

|c pXpsqq|2 ds, (6.40)

and suppose that Ex

“
e´Zptq‰ “ 1 for x P Rd and t ě 0. Fix T ą 0, and let

Y : Ω Ñ C be any bounded FT “ σ pW psq, 0 ď s ď T q measurable stochastic
variable, and put

EZ
x rY s “ Ex

“
e´ZpT qY

‰
. (6.41)

The corresponding probability measure is denoted by PZ
x .

6.1. Theorem. With the above notation the following assertions hold true:

(1) The process t ÞÑ e´Zptq, t ě 0, is a Px-martingale;

(2) The process t ÞÑ e´Zptq
´
W ptq `

şt
0
c pXpsqq ds

¯
, t ě 0, is a local Px-

martingale;
(3) The process t ÞÑ W ptq `

şt
0
c pXpsqq ds, t ě 0, is a local PZ

x -martingale;

(4) The process t ÞÑ W ptq `
şt
0
c pXpsqq ds, t ě 0, is a Browian motion

relative to the probability measure PZ
x ;

(5) The distribution of the process t ÞÑ Xptq is given by the measure
��

pXpsqq0ďsďT

(
P A

(
ÞÑ P

rZ
x rAs “ Ex

”
e´ rZpT q,

�
pW psqq0ďsďT

(
P A

ı
,

A P FT , where

rZptq “ ´
ż t

0

cpW psqq ¨ dW psq ` 1

2

ż t

0

|cpW psqq|2 ds.
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6.2. Remark. Let the bounded stochastic variable Y be measurable with re-
spect to Ft “ σ pW psq, 0 ď s ď tq, 0 ď t ď T . Then (1) implies: Ex

“
e´ZpT qY

‰
“

Ex

“
e´ZptqY

‰
.

Proof. (1) Itô’s formula, applied to the function y ÞÑ e´y implies:

e´Zptq ´ e´Zp0q “ ´
ż t

0

e´Zpsq dZpsq ` 1

2

ż t

0

e´Zpsq d 〈Z,Z〉 psq

“ ´
ż t

0

e´Zpsq dW psq ´ 1

2

ż t

0

|c pXpsqq|2 ds

“ ´
ż t

0

e´Zpsq dW psq. (6.42)

Since Ex

“
e´Zptq‰ “ 1 for all 0 ď t ď T , the equality in (6.42) shows that the

assertion in (1) is true. For more explanation see Proposition 6.4 below.

(2) Another application of Itô’s formula, now applied to the function px, yq ÞÑ
e´xy yields the following equalities:

e´ZptqXptq ´ e´Zp0qXp0q

“ ´
ż t

0

e´ZpsqXpsq dZpsq `
ż t

0

e´Zpsq dXpsq

` 1

2

ż t

0

e´ZpsqXpsq d 〈Z,Z〉 psq ´
ż t

0

e´Zpsq d 〈Z,X〉 psq

(employ the equalities

〈Z,Z〉 ptq “
şt
0

|c pXpsqq|2 ds and 〈Z,X〉 ptq “
şt
0
c pXpsqq ds)

“ ´
ż t

0

e´ZpsqXpsqc pXpsqq dW psq `
ż t

0

e´Zpsq dW psq. (6.43)

From (6.43) it follows that the process t ÞÑ e´ZptqXptq is a local martingale.

(3) By a stopping argument we may assume that the process t ÞÑ e´ZptqXptq is
a genuine Px-martingale. Let 0 ď t1 ă t2 ď T . In order to show the equality

EZ
x

“
X pt2q

ˇ̌
Ft1

‰
“ X pt1q (6.44)

it suffices to prove the equality

EZ
x rX pt2q 1As “ EZ

x rX pt1q1As (6.45)

for all events A P Ft1 . Fix A P Ft1 . The equality in (6.45) can be achieved as
follows:

EZ
x rX pt2q 1As “ Ex

“
e´ZpT qX pt2q1A

‰

(the process t ÞÑ e´Zptq is a Px-martingale)

“ Ex

“
e´Zpt2qX pt2q 1A

‰
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(the process t ÞÑ e´ZptqXptq is a Px-martingale, the event A is Ft1-measurable)

“ Ex

“
e´Zpt1qX pt1q 1A

‰

(again use the fact that the process t ÞÑ e´Zptq is a Px-martingale)

“ Ex

“
e´ZpT qX pt1q1A

‰
. (6.46)

The equalities in (6.46) entail (6.45). Hence, (6.44) follows and therefore item
(3) is proved.

(4) In order to prove the assertion in (4) we will employ Lévy’s characterization
of Brownian motion: see Theorem 6.5 below with the measure PZ

x instead of P.
From assertion (3) it follows that the process t ÞÑ Xptq is a local PZ

x -martingale.
It is also clear that 〈Xj1, Xj2〉 ptq “ δj1,j2t, 1 ď j1, j2 ď d. From Theorem 6.5 it
then follows that the process t ÞÑ Xptq is a Brownian motion relative to PZ

x on
pΩ,Fq, where F is the σ-field generated by the process t ÞÑ W ptq, t ě 0.

(5) Let Y “ Y
`
pXpsqq0ďsďT

˘
be a bounded stochastic variable which depends

on the path s ÞÑ Xpsq, 0 ď s ď T . Then by the observation in (4) we infer

Ex rY s “ Ex

“
Y

`
pXpsqq0ďsďT

˘‰

“ Ex

“
e´ZpT qeZpT qY

`
pXpsqq0ďsďT

˘‰

“ Ex

”
e´ZpT qe

şT
0
cpXpsqq dXpsq´ 1

2

şT
0

|cpXpsqq|2 dsY
`
pXpsqq0ďsďT

˘ı

(the process t ÞÑ Xptq is a Brownian motion relative to the measure PZ
x )

“ Ex

”
e

şT
0
cpW psqq dW psq´ 1

2

şT
0

|cpW psqq|2 dsY
`
pW psqq0ďsďT

˘ı

“ Ex

”
e´ rZpT qY

`
pW psqq0ďsďT

˘ı

“ E
rZ
x

“
Y

`
pW psqq0ďsďT

˘‰
. (6.47)

The equality in (6.47) shows assertion (5).

Altogether this completes the proof of Theorem 6.1. �

6.3. Remark. The equality in (6.47) is a version of Girsanov’s theorem. If in
(6.47) we take Y “ f pXptqq, then we see

Ex rf pXptqqs “ Ex

”
e´ rZpT qf pW ptqq

ı
. (6.48)

The equality in (6.48) is in agreement with the example below.

The following proposition was used in the proof of assertion (1) of Theorem 6.1

with Mptq “
şt
0
c pXpsqq dW psq.

6.4. Proposition. Let pΩ,F,Pq be a probability space with filtration pFtqtě0.
Let the process t ÞÑ Mptq be continuous local martingale. Put ZMptq “ Mptq `
1
2
〈M,M〉 ptq. Suppose that for t ě 0 the equality E

“
e´ZM ptq‰ “ 1 holds. Then

the processt ÞÑ e´ZM ptq is a martingale.
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In what follows we write t1 ^ t2 “ min pt1, t2q whenever t1 and t2 are real
numbers.

Proof of Proposition 6.4. Fix T ą 0, and choose an increasing se-
quence of stopping times pTnqnPN such that Tn Ò 8 and such that, for every
n P N, the processes t ÞÑ Mnptq :“ M pt ^ Tnq and

t ÞÑ 〈Mn,Mn〉 ptq “ 〈M,M〉 pt ^ Tnq
are uniformly bounded on a fixed interval r0, T s. Put

Znptq “ M pt ^ Tnq ` 1

2
〈M,M〉 pt ^ Tnq .

An application of Itô’s formula yields:

e´Znptq ´ e´Znp0q “ ´
ż t

0

e´Znpsq dMnpsq, (6.49)

and hence, for each n P N, the process t ÞÑ e´Znptq is a martingale on the interval
r0, T s. It follows that

E
“
e´Znptq‰ “ Ex

“
e´Znp0q‰ “ 1 “ E

“
e´Zptq‰ , t P r0, T s. (6.50)

For t P r0, T s the sequence of non-negative stochastic variables
`
e´Znptq˘

nPN Ă L1 pΩ,F,Pq

converges pointwise to e´Zptq. By Scheffé’s theorem and by the equalities in
(6.50) it follows that this convergence also takes place in the space L1 pΩ,F,Pq.
Consequently, the process t ÞÑ e´Zptq is a genuine martingale.

This completes the proof of Proposition 6.4. �

The following theorem is the same as Theorem 4.5 in the regular text.

6.5. Theorem. Let pΩ,F,Pq be a probability space with filtration (or reference
system) pFtqtě0. Suppose F is the σ-algebra generated by Ytě0Ft augmented with
the P-zero sets, and suppose Ft is continuous from the right: Ft “ XsątFs for
all t ě 0. Let

tMptq “ pM1ptq, . . . ,Mdptqq : t ě 0u
be an Rd-valued local P-almost surely continuous martingale with the property
that the quadratic covariation processes t ÞÑ 〈Mi,Mj〉 ptq satisfy

〈Mi,Mj〉 ptq “ δi,jt, 1 ď i, j ď d. (6.51)

Then tMptq : t ě 0u is d-dimensional Brownian motion with initial distribution
given by µpBq “ P rMp0q P Bs, B P BRd, the Borel field of Rd.

The following result is Example 6 in Chapter 3. The idea of proof goes back
to the method of Cameron-Martin [37]. Related material can be found in [39]
and in [38]. More recent material can be consulted in [86] and [87].
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Example. Let U be an open subset of Rd, let f belong to C0pUq and let
c : U Ñ Rd be an appropriate vector field on U and let u : r0,8q ˆ U Ñ R be
a solution to the following problem:

$
&
%

Bu
Bt “ 1

2
∆u ` c.∇u in r0,8q ˆ U ;

u is continuous on r0,8q ˆ U and up0, xq “ fpxq.

Moreover we want that limxÑb,xPU upt, xq “ 0 if b belongs to BU . Then

upt, xq “ Ex

”
e´ rZptqfpW ptqq : τ ą t

ı
,

where rZptq “
şt
0
cpW prqq ¨ dW prq ´ 1

2

şt
0

|cpW prqq|2 dr. For a proof we fix
t ą 0 and we consider the process tMpsq : 0 ď s ď tu defined by Mpsq “
u pt ´ s,W psqq e´ rZpsq1tτąsu. An application of Itô’s formula to the function
fps, x, yq “ upt ´ s, xq expp´yq will yield the following result

Mpsq ´ Mp0q “ ´
ż s

0

Bu
Bt pt ´ r,W prqqe´ rZprq1tτąrudr

`
ż s

0

∇upt ´ r,W prqqe´ rZprq1tτąru ¨ dW prq

´
ż s

0

upt ´ r,W prqqe´ rZprq d rZprq

` 1

2

ż s

0

∆upt ´ r,W prqqe´ rZprq1tτąru1tτąru dr

´
dÿ

j“1

ż s

0

Djupt ´ r,W prqqe´ rZprq1tτąrud
〈

Wj , rZ
〉

prq

` 1

2

ż s

0

upt ´ r,W prqqe rZprq1tτąru d
〈

rZ, rZ
〉

prq

“
ż s

0

"
´Bu

Bt pt ´ r,W prqq ` 1

2
∆upt ´ r,W prqq

` cpW prqq.∇upt ´ r,W prqq
*
e´ rZprq1tτąrudr

`
ż s

0

t∇upt ´ r,W prqq ` upt ´ r,W prqqcpW prqqu

e´ rZprq1tτąru ¨ dW prq

´ 1

2

ż s

0

upt ´ r,W prqqe´ rZprq |cpW prqq|2 1tτąru dr

` 1

2

ż s

0

upt ´ r,W prqqe´ rZprq |cpW prqq|2 1tτąrudr

“
ż s

0

t∇upt ´ r,W prqq ` upt ´ r,W prqqcpW prqqu

e´ rZprq1tτąru ¨ dW prq.
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It will follow that upt, xq “ Ex

”
e´ rZptqfpW ptqq : τ ą t

ı
. Also notice that the

previous equalities we could have written
şminpτ,sq
0

. . . dr instead of
şs
0
. . .1tτąru dr.

In the following theorem we present a result on the Markov process generated
by the operator

Lfpxq “ cpxq ¨ ∇fpxq ` 1

2
∆fpxq.

We suppose that its domain

DpLq :“
�
f P C2

`
Rd

˘
, f, Lf P C0pEq, ∇f uniformly bounded

(

is dense in C0

`
Rd

˘
.
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6.6. Theorem. Suppose that for every x P Rd there exists a Brownian motion
with state space Rd �

pW ptqqtě0 ,P
(
, W p0q “ 0,

together with an adapted Rd-valued process pXxptqqtě0 such that

Xxptq “ x ` W ptq `
ż t

0

c pXxpsqq dW psq (6.52)

Define, for x P Rd, the process t ÞÑ Zpx, tq by

Zpx, tq “
ż t

0

c pXxpsqq dW psq ` 1

2

ż t

0

|c pXxpsqq|2 ds. (6.53)

and assume that E
“
e´Zpx,tq‰ “ 1 for all t ě 0. In addition, put

rZpx, tq “ ´
ż t

0

c px ` W psqq dW psq ` 1

2

ż t

0

|c px ` W psqq|2 ds. (6.54)

Then the operator L is closable and its closure generates a strong Markov process�
pΩ,F,Pxq , pXptq, t ě 0q , pϑt, t ě 0q ,

`
Rd,BRd

˘(
(6.55)

with the property that, for all bounded Borel measurable functions f : Rd Ñ C,
the equality

Ex rf pXptqqs “ E

”
e´ rZpx,tqf px ` W ptqq

ı
(6.56)

holds. In particular it follows that the stochastic differential equation in (6.53)
has unique weak solutions.

6.7. Remark. It can be proved that a process like in (6.52) exists whenever
the coefficient x ÞÑ cpxq is bounded and continuous. In this case the process
t ÞÑ e´Zptq is a genuine martingale.

Proof. Fix T ą 0 and x P Rd. From assertion (5) in Theorem 6.1 it follows
that the process t ÞÑ Zpx, tq, t P r0, T s, has a distribution determined by

E
“
Y

`
pXxpsqq0ďsďT

˘‰
“ E

”
e´ rZpx,T qY

`
px ` W psqq0ďsďT

˘ı
. (6.57)

Here Y : C
`
r0, T s,Rd

˘
Ñ C is a bounded measurable function. Let Ω “

C
`
r0,8q,Rd

˘
, and define Xptq : Ω Ñ Rd by Xptqpωq “ ωptq. Define the

probability measures Px, x P Rd, by the formula in (6.57), i.e.

Ex

“
Y

`
pXpsqq0ďsďT

˘‰
“ E

”
e´ rZpx,T qY

`
px ` W psqq0ďsďT

˘ı
. (6.58)

In addition we write ϑtωpsq “ ω ps ` tq. We will show that the process
�

pΩ,F,Pxq , pXptq, t ě 0q , pϑt, t ě 0q ,
`
Rd,BRd

˘(
(6.59)

constitutes a Markov process. Since, by definition, the paths are continuous it is
then a strong Markov process. Let f be an arbitrary bounded Borel measurable
function on Rd. In order to prove that the process in (6.59) is a Markov process
we need to prove the equality

Ex rF pX pt1q , . . . , X ptnqq f pXpt ` sqqs
“ Ex

“
F pX pt1q , . . . , X ptnqqEXptq rf pXpsqqs

‰
, (6.60)
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where F :
`
Rd

˘n Ñ C is any bounded measurable function on
`
Rd

˘n
with

0 ď t1 ă ¨ ¨ ¨ ă tn ď t for arbitrary n P Rd and arbitrary t and s positive real
numbers. With such data we have

Ex

“
F pX pt1q , . . . , X ptnqqEXptq rf pXpsqqs

‰

“ E

”
e´ rZpx,tqF px ` W pt1q , . . . , x ` W ptnqqEx`W ptq rf pXpsqqs

ı

“ E

”
e´ rZpx,tqF px ` W pt1q , . . . , x ` W ptnqq

E

”
e´ rZpx`W ptq,sqf px ` W ptq ` W psqq

ˇ̌
W ptq

ıı
. (6.61)

Using the Markov property of Brownian motion we may rewrite

E

”
e´ rZpx`W ptq,sqf px ` W ptq ` W psqq

ˇ̌
W ptq

ı

as follows:

E

”
e´ rZpx`W ptq,sqf px ` W ptq ` W psqq

ˇ̌
W ptq

ı

“ E

”
e

şs
0
cpx`W ptq`W pρqq dW pρq´ 1

2

şs
0

|cpx`W ptq`W pρqq|2 dρ

f px ` W ptq ` W psqq
ˇ̌
W ptq

ı

(for given W ptq the distribution of ρ ÞÑ W pρq is the same as that of ρ ÞÑ
W pt ` ρq ´ W ptq)

“ E

”
e

şs
0
cpx`W pt`ρqq dW pt`ρq´ 1

2

şs
0

|cpx`W pt`ρqq|2 dρf px ` W pt ` sqq
ˇ̌
W ptq

ı

“ E

”
e

şt`s

t
cpx`W pρqq dW pρq´ 1

2

şt`s

t
|cpx`W pρqq|2 dρf px ` W pt ` sqq

ˇ̌
W ptq

ı

(Brownian motion is a Markov process)

“ E

”
e

şt`s
t

cpx`W pρqq dW pρq´ 1

2

şt`s
t

|cpx`W pρqq|2 dρf px ` W pt ` sqq
ˇ̌
FW
t

ı
(6.62)

where FW
t “ σ pW pρq, 0 ď ρ ď tq. Inserting the equality in (6.62) into (6.61)

yields

Ex

“
F pX pt1q , . . . , X ptnqqEXptq rf pXpsqqs

‰

“ E

”
e

şt
0
cpXpρqq dW pρq´ 1

2

şt
0

|cpXpρqq|2 dρF px ` W pt1q , . . . , x ` W ptnqq

E

”
e

şt`s
t

cpx`W pρqq dW pρq´ 1

2

şt`s
t

|cpx`W pρqq|2 dρf px ` W pt ` sqq
ˇ̌
FW
t

ıı

“ E

”
E

”
e

şt`s
0

cpXpρqq dW pρq´ 1

2

şt`s
0

|cpXpρqq|2 dρ

F px ` W pt1q , . . . , x ` W ptnqq f px ` W pt ` sqq
ˇ̌
FW
t

ıı

(elementary property of conditional expectation)

“ E

”
e´ rZpx,t`sqF px ` W pt1q , . . . , x ` W ptnqq f px ` W pt ` sqq

ı

“ Ex rF px ` W pt1q , . . . , x ` W ptnqq f pX ps ` tqqs . (6.63)
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The equality in (6.60) is a consequence of (6.63), which in turn implies the
Markov property of the process in (6.55). Let f P DpLq be such that the vector
valued function x ÞÑ ∇fpxq is bounded. Then by Itô calculus we have

f pXxptqq ´ f pXxp0qq

“
ż t

0

∇f pXxpsqq dXxpsq ` 1

2

ż t

0

∆f pXpsqq ds

“
ż t

0

Lf pXxpsqq ds `
ż t

0

∇f pXxpsqq dW psq. (6.64)

Taking expectations in (6.64), dividing by t ą 0, and taking the limit for t Ó 0
shows that the (closure of the) operator L generates the Markov process in
(6.55).

This completes the proof of Theorem 6.6. �

Assume that the Rd-valued function c : r0, T s ˆ Rd and the Rd ˆ Rd-valued
function σ “ pσi,jq1ďiďd,1ďjďn

: r0, T s ˆ Rd Ñ Rd ˆ Rn are continuous and have
at most linear growth. The latter means that there exist finite constants C1

and C2 such that

|cpt, xq| ` |σ pt, xq| ď C1 ` C2 |x| , 0 ď t ď T, x P Rd. (6.65)

Put a pt, xq “ σ pt, xq σ pt, xq˚ and assume that

dÿ

i,j“1

ai,jpt, xqyiyj ą 0, for all x P Rd and y “ py1, . . . , ydq ‰ 0. (6.66)

What follows is mainly taken from Klebaner [92] Section 10 in Chapter 6. Some
of these results are in fact based on work by Revuz and Yor [149] and Stroock
and Varadhan [171]. Let the process t ÞÑ Xptq be a diffusion in d dimensions,
described by the multi-dimensional SDE

dXptq “ c pt, Xptqq dt ` σ pt, Xptqq dBptq, (6.67)

where σ is an nˆd matrix valued function, t ÞÑ Bptq is n-dimensional Brownian
motion, t ÞÑ Xptq and pt, xq ÞÑ cpt, xq are d-dimensional vector valued functions.
In coordinate form this reads

dXiptq “ ci pt, Xptqq dt `
dÿ

j“1

σi,j pt, Xptqq dBjptq, i “ 1, . . . , d, (6.68)

and it means that for all t ą 0 and i “ 1, . . . , d

Xiptq “ Xip0q `
ż t

0

ci ps,Xpsqq ds `
nÿ

j“1

ż t

0

σi,j ps,Xpsqq dBjpsq. (6.69)

The coefficients of the SDE are: the vector cpt, xq and the matrix σpt, xq. An
existence and uniqueness result for strong solutions, under the assumption of
locally Lipschitz coefficients, holds in the following form. The norm of the vector
cpt, xq is its (Euclidean) length, |cpt, xq| “

ařn
i“1 cipt, xq2. The norm of the

matrix σpt, xq is defined by |σpt, xq|2 “ trace pσpt, xqσ˚pt, xqq “ trace papt, xqq,
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with σ˚ being the transposed of σ. The trace of the matrix apt, xq is defined by

trace papt, xqq “ řd
i“1 aiipt, xq. The matrix apt, xq “ σpt, xqσ˚pt, xq is called the

diffusion matrix.

6.8. Theorem. If the coefficients are locally Lipschitz in x with a constant
independent of t, that is, for every N , there is a constant K depending only on
T and N such that for all |x|, |y| ď N and all 0 ď t ď T

|cpt, xq ´ cpt, yq| ` |σpx, tq ´ σpy, tq| ď K|x ´ y|, (6.70)

then for any given Xp0q the strong solution to SDE (6.67) is unique. If in
addition to condition (6.70) the linear growth condition holds

|cpt, xq| ` |σpt, xq| ď KT p1 ` |x|q,
Xp0q is independent of the Brownian motion Bptq, and E

“
|Xp0q|2

‰
ă 8, then

the strong solution exists and is unique on r0, T s, moreover

E

„
sup

0ďtďT

|Xptq|2


ď C
`
1 ` E

“
|Xp0q|2

‰˘
, (6.71)

where the constant C depends only on KT and T .
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Note that unlike in the one-dimensional case, the Lipschitz condition on σ can
not be weakened in general to a Hölder condition, i.e. there is no Yamada-
Watanabe-type result for multi-dimensional SDEs. The quadratic covariation is
easy to work out from (6.68), by taking into account that independent Brownian
motions have zero quadratic covariation.

�Xi, Xj� ptq “
ż t

0

dXipsq dXjpsq “
ż t

0

ai,j ps,Xpsqq ds. (6.72)

It can be shown that if t ÞÑ Xptq is a solution to (6.67) then

E
“
Xipt ` △q ´ xi

ˇ̌
Xptq “ x

‰
“ cipt, xq△ ` op△q,

E
“
pXipt ` △q ´ xiq pXjpt ` △q ´ xjq

ˇ̌
Xptq “ x

‰

“ ai,jpt, xq△ ` op△q,
as △ Ñ 0. Thus cpt, xq is the coefficient in the infinitesimal mean of the dis-
placement from point x at time t, and apt, xq is approximately the coefficient in
the infinitesimal covariance of the displacement. Weak solutions can be defined
as solutions to the martingale problem. Let the operator Lt, acting on twice
continuously differentiable functions from Rd to R, be given by

Lt “
dÿ

i“1

cipt, xq B
Bxi

` 1

2

dÿ

i,j“1

ai,jpt, xq B2

BxiBxj

. (6.73)

Note that Lt depends on σ only through a. Then Xptq is a weak solution started
at x at time s with respect Ps,x and a filtration based on the process t ÞÑ Xptq,
provided the process

t ÞÑ fpXptqq ´
ż t

s

pLρfq pXpρqq dρ (6.74)

is a martingale for any twice continuously differentiable function f vanishing
outside a compact set in Rd. This process is called a diffusion with generator Lt.
In the case of time-independent coefficients, the process is a time-homogeneous
diffusion with generator L.

6.9. Theorem. Assume that apt, xq is continuous and satisfies condition (6.66),

i.e.
řd

i,j ai,j pt, xq yiyj ą 0, for all x P Rd and y ‰“ 0 and cpt, xq is bounded
on bounded sets. Then there exists a unique weak solution up to the time of
explosion to the equation in (6.69). If, in addition, a quadratic growth condition
is satisfied, that is, for any T ą 0 there is a constant KT such that for all x P Rd

|cpt, xq|2 ` |apt, xq| ď KT

`
1 ` |x|2

˘
, (6.75)

then there exists a unique weak solution to the martingale problem (6.74) starting
at any point x P Rd at any time s ě 0, moreover this solution has the strong
Markov property.

Here the time of explosion τ8 is explained as follows. Let, for n “ 1, 2, . . .,
Bn “

�
x P Rd : |x| ă n

(
“ nB1 be the open ball of radius n in Rd. The stopping

time τn “ τBn
“ inf ts ą 0 : |Xpsq| ě nu is the first time the process exceeds or

equals length n. Since a diffusion process is continuous, it must reach level n
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before it reaches level n ` 1. Therefore the times τn are non-decreasing, hence
they converge to a limit τ8 “ limnÑ8 τn. Explosion occurs on the set tτ8 ă 8u,
because on this set, by continuity of t ÞÑ Xptq, X pτ8q “ limnÑ8 X pτnq. Thus

|X pτ8q| “ lim
nÑ8

|X pτnq| “ lim
nÑ8

n “ 8,

and infinity is reached in finite time on this set.

Since the weak solution is defined in terms of the generator, which itself depends
on σpt, xq only through apt, xq, the weak solution to (6.67) can be constructed
using a single d-valued Brownian motion provided the matrix apt, xq remains
the same. If a single SDE is equivalent to a number of SDEs, heuristically, it
means that there is as much randomness in a d-dimensional Brownian motion
as there is in a single Brownian motion. Replacement of a system of SDEs by
a single one is shown in detail for the Bessel process. Note that the equation
σpt, xqσ˚pt, xq “ apt, xq has many solutions for σpt, xq, the matrix square root is
non-unique. However, if apt, xq is non-negative definite for all x and t, and has
for entries twice continuously differentiable functions of x P Rd and t, then it
has a locally Lipschitz square root σpt, xq of the same dimension as apt, xq (see
for example Friedman [73] (1975 Theorem 6.1.2 in Volume 1).

The following theorem gives a nice result for unique weak solutions to stochastic
integral equation of the form

Xptq “ Xp0q `
ż t

0

c ps,Xpsqq ds `
ż t

0

σ ps,Xpsqq dW psq (6.76)

with t P r0, T s. A weak solution to this equation is an Rd-valued process t ÞÑ
Xptq, t P r0, T s, on some probability space pΩ,F,Pq with a Brownian motion
t ÞÑ W ptq, t P r0, T s. A unique weak solution means that its distribution does
not depend on the particular Brownian motion for which it satisfies (6.76).
More details are exhibited in the regular text. A more general version, where
the coefficients cpt, xq and σpt, xq have certain discontinuities, can be found in
[195] Theorem 3.1. In the following theorem we suppose that the equation in
(6.76) possesses unique weak solutions. A proof is based, among other things,
on the Burkholder-Davis-Gundy inequality: see Theorem 6.16 below.

6.10. Theorem. If E
“
|Xp0q|4

‰
ă 8, limnÑ8 △n “ 0 and c and σ have at most

linear growth, then the Euler scheme defined in (6.77) weakly converges to the
unique weak solution of the equation in (6.76) as n Ñ 8.

Here the (continuous) Euler scheme for the equation (6.76) is defined as follows:
Xnp0q “ Xp0q, and

Xnptq “ Xn pτnk q ` c pτnk , Xn pτnk qq pt ´ τnk q
` σ pτnk , Xn pτnk qq pW ptq ´ W pτnk qq , (6.77)

for τnk ă t ď τnk`1, k “ 0, 1, . . . , n, where 0 “ τn0 ď τn1 ď ¨ ¨ ¨ ď τnn “ T is a
sequence of random or deterministic partitions of r0, T s. The times τnk should
be stopping times. For example τnk “ k2´nT , 0 ď k ď 2n. We also wrote
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△n “ max
0ďkďn´1

ˇ̌
τnk`1 ´ τnk

ˇ̌
. If we define X

nptq “ Xn pτnk q, for τnk ď t ă τnk`1, then�
X

nptq : 0 ď t ď T
(
is called a discretized Euler scheme. By defining

ηnpsq “ τnk for τnk ă s ď τnk`1, 0 ď k ď n ´ 1, (6.78)

we have

Xnptq “ Xp0q `
ż t

0

c pηnpsq, Xn pηnpsqqq ds

`
ż t

0

σ pηnpsq, Xn pηnpsqqq dW psq. (6.79)

If τnk “ k2´nT , then ηnpsq “ 2´nT t2ns{T u. The convergence in Theorem 6.10

is meant in the following sense. There exists a probability space
´

rΩ, rF, rP
¯
with

a Brownian motion t ÞÑ rBptq, 0 ď t ď T , such that

lim
nÑ8

E rF pXnqs “ rE
”
F

´
rX

¯ı

for all bounded continuous functions F : C
`
r0, T s,Rd

˘
Ñ R. Here the process

t ÞÑ rXptq, 0 ď t ď T , satisfies:

rXptq “ rXp0q `
ż t

0

c
´
s, rXpsq

¯
ds `

ż t

0

σ
´
s, rXpsq

¯
d rBpsq. (6.80)

In fact for
´

rΩ, rF, rP
¯
we take the original probability space pΩ,F,Pq with the

original Brownian motion t ÞÑ Bptq, 0 ď t ď T .
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For the proof of Theorem 6.10 we need some lemmas.

6.11. Lemma. If E
“
|Xp0q|4

‰
ă 8, and the coefficients cpt, xq and σpt, xq have

at most linear growth, that is, there exist two constants C1 and C2 such that,
for all t P r0, T s and x P Rd, |cpt, xq| ` |σpt, xq| ď C1 ` C2|x|, then

sup
ně1

E
“
|pXn,˚pT qq|4

‰
ă 8 and sup

ně1

E
“
|〈Xn, Xn〉 pT q|2

‰
ă 8, (6.81)

where | ¨ | stands for the Euclidean norm in the appropriate space.

Here |pXn,˚pT qq| “ sup0ďtďT |Xnptq|.

Proof. Define the sequence of ηnpsq, n P N, as in (6.78). Then the processes
Xnptq, n P N, satisfy (6.79). By the inequality px ` y ` zq4 ď 27 px4 ` y4 ` z4q
for any real numbers x, y, z and Hölder’s inequality together with Burkholder-
Davis-Gundy’s inequality for p “ 4, there exist two positive constants a and b

such that

E
“
|Xnptq|4

‰
ď a ` b

ż t

0

E
“
|Xn pηnpsqq|4

‰
ds. (6.82)

Put fnptq “ E
“
|Xn pηnptqq|4

‰
. Then by (6.82), and since ηnptq ď t, we see

fnptq ď a ` b
şt
0
fnpsq ds. By Gronwall’s lemma (see main lecture notes), we

infer fnptq ď aebt for 0 ď t ď T . By (6.82) and Burkholder-Davis-Gundy’s
inequality the assertions in Lemma 6.11 follow. �

6.12. Lemma. If the conditions of Theorem 6.10 are satisfied, then the Euler
scheme tXn : n ě 1u is tight in C

`
r0, T s,Rd

˘
.

Proof. We will use the criterion in Theorem 8.3 on page 56 of Billings-
ley [22] to prove the tightness. First, since E

“
|Xp0q|4

‰
ă 8, the sequence

tXnp0q “ Xp0q : n ě 1u is tight. Secondly, put

c1pT q “ sup
ně1

E

„
sup

0ďsďT

|c pηnpsq, Xn pηnpsqqq|4

,

c2pT q “ sup
ně1

E

„
sup

0ďsďT

|σ pηnpsq, Xn pηnpsqqq|4

.

Since cpt, xq and σ pt, xq have at most linear growth in x, the constants c1pT q
and c2pT q are finite by Lemma 6.11. For a (fixed) random time t P r0, T s, let

Zn
t psq “ Xnps ` tq ´ Xnptq

Cn
t psq “

ż t`s

t

c pηnpρq, Xn pηnpρqqq dρ,

Mn
t psq “

ż t`s

t

σ pηnpρq, Xn pηnpρqqq dW pρq, so that

Zn
t psq “ Cn

t psq ` Mn
t psq.

Since, for x and y real numbers, px ` yq4 ď 8 px4 “ y4q, we have

|Zn
t psq|4 ď 8 |Cn

t psq|4 ` 8 |Mn
t psq|4 . (6.83)
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By the Cauchy-Schwarz inequality, we have

E

„
sup

0ďtďT´s

|〈Zn
t , Z

n
t 〉 psq|2



“ E

«
sup

0ďtďT´s

ˆż t`s

t

|σ pηnpρq, Xn pηnpρqqq|2 dρ

˙2
ff

ď sE

„
sup

0ďtďT´s

ż t`s

t

|σ pηnpρq, Xn pηnpρqqq|4 dρ


ď c2pT qs2. (6.84)

Since the process

s ÞÑ Mn
t psq “

ż t`s

t

σ pηnpρq, Xn pηnpρqqq dW pρq

is a continuous martingale for which

〈Mn
t ,M

n
t 〉 psq “ 〈Zn

t , Z
n
t 〉 psq

by Burkholder’s inequality and by (6.84) there exists a constant C4 such that

E

„
sup
0ďsďδ

|Mn
t psq|4


ď C4E

“
|〈Zn

t , Z
n
t 〉 pδq|2

‰
ď C4c2pT qδ2,

for δ ą 0. Next, for every ε ą 0 and η ą 0 there exists δ, which does not depend
on t and n, such that, for some random time 0 ď τ ď T ´ δ,

P

„
sup

0ďtďT´δ

sup
tďsďt`δ

|Xnpsq ´ Xnptq| ě ε



ď T

δ
sup

0ďtďT´δ

P

„
sup

tďsďt`δ

|Xnpsq ´ Xnptq| ě ε



ď T

δε4
sup

0ďtďT´δ

E

„
sup
0ďsďδ

|Zn
t psq|4



ď 8T

δε4

"
E

„
sup
0ďsďδ

|Cn
t psq|4


` E

„
sup
0ďsďδ

|Mn
t psq|4

*

ď 8T

δε4

�
δ4c1pT q ` δ2C4c2pT q

(
ď η. (6.85)

In fact, the choice δ “ min

ˆ
1,

ε4

8T pc1pT q ` C4c2pT qq

˙
will achieve the final

inequality in (6.85). From Arzela-Ascoli’s theorem it follows that the sequence
tXn, n ě 1u is relatively compact in the Banach space C

`
r0, T s,Rd

˘
which is

separable. Prohorov’s theorem then implies that the sequence tXn, n ě 1u is
tight in C

`
r0, T s,Rd

˘
: see Theorem 6.21. So the proof Lemma 6.12 is complete

now. �

6.13. Remark. Since, for some random time 0 ď τ ď T ´ δ, the equality

sup
0ďtďT´δ

sup
tďsďt`δ

|Xnpsq ´ Xnptq| “ sup
τďsďτ`δ

|Xnpsq ´ Xnpτq|

holds P-almost surely, it could be that the inequalities in (6.85) could be sharp-
ened somewhat.
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In the proof below the notion LpY q means the law or distribution of the process
Y . The proof below is designed for an equation like the in (6.76) with discon-
tinuities of a certain kind. In our case, when the coefficients are continuous, a
shorter proof can be found at the end of these notes.

Proof of Theorem 6.10. Since the Banach space C
`
r0, T s,Rd

˘
is sepa-

rable, Prohorov’s theorem in conjunction with Lemma 6.12 then implies that
the sequence tXn, n ě 1u is tight in C

`
r0, T s,Rd

˘
. Thus for any subsequence

of the sequence tXn, n ě 1u there exists a further subsequence tXnk , k ě 1u
and a process t ÞÑ Xptq, t P r0, T s, in C

`
r0, T s,Rd

˘
such that the sequence

tXnk , k ě 1u converges to the process Xptq weakly. Let Pn be the distribution
(or law) of the process Xn. Since the equation in (6.52) is supposed to have
unique weak solutions, it follows that the sequence tPn, n ě 1u itself converges
weakly to a probability measure P8. By the Skorohod’s almost sure repre-
sentation theorem (see Theorem 6.17 which is a simplified version of Theorem
1.10.4 on page 59 of van der Vaart and Wellner [187]) there exist a probability
space

`
Ω,F,P

˘
together with a sequence of processes tY n, n P Nu and a pro-

cess Y with distribution rP , defined on Ω taking values in C
`
r0, T s,Rd

˘
with

L pY nq “ L pXnq for all n ě 1, P8 “ LpY q, and limnÑ8 Y n “ Y almost surely
in C

`
r0, T s,Rd

˘
. Moreover, for each n P N, there exists a measurable map

φn : Ω Ñ Ω such that Y n pωq “ Xn pφn pωqq, ω P Ω. Furthermore, for Y n we
can choose a Brownian motion W n on Ω such that

Y nptq “ Y p0q `
ż t

0

c pηnpsq, Y n pηnpsqqq ds

`
ż t

0

σ pηnpsq, Y n pηnpsqqq dW npsq, (6.86)

which implies that

〈

Y n
i , Y

n
j

〉

ptq“
rÿ

k“1

ż t

0

σi,k pηnpsq, Y n pηnpsqqqσj,k pηnpsq, Y n pηnpsqqq ds. (6.87)

The maps φn are measurable, and Pn “ P ˝ φ´1
n , for n “ 1, 2, . . . , where Pn

is the probability measure describing the distribution of the process Xn on the
original probability space whereXn lives on. Since we build up our Euler scheme
tXn : n ě 1u on the same probability space, Pn actually does not depend on n.
If we define W npωq “ B pφn pωqq, then W n is a Brownian motion on

`
Ω,F,P

˘
.

This is because for any Borel set D,

P rW n P Ds “ P
“
ω P Ω, B pφn pωqq P D

‰
“ P

“
φ´1
n

`
B´1 pDq

˘‰

“ Pn
“
B´1 pDq

‰
“ P rB P Ds . (6.88)

Since Y n converges to Y almost surely and sup
ně1

E

„
sup

0ďsďT

|Y n|4


ă 8, by Theo-

rem 2.2 of Kurtz and Protter [102], for all 0 ď t ď T ,

L1- lim
nÑ8

〈

Y n
i , Y

n
j

〉

ptq “ 〈Yi, Yj〉 ptq. (6.89)

This completes the outline of the first part of the proof of Theorem 6.10. �
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6.14. Lemma. The sequence
�〈
Y n
i , Y

n
j

〉

ptq, n P N
(
converges not only P-almost

surely, but also in the space L1
`
Ω, F ,P

˘
.

Proof. The equality in (6.89) is a consequence of the fact that, for t P r0, T s
fixed, uniform integrability of the sequence

�〈
Y n
i , Y

n
j

〉

ptq, n P N
(
is uniform

L1-integrable. This property is based on the linear growth property of the
coefficients cpt, xq and σpt, xq which yields the finiteness of

sup
ně1

E

„
max
0ďtďT

|〈Y n, Y n〉 ptq|2


“ sup
ně1

E

„
max
0ďtďT

|〈Xn, Xn〉 ptq|2

. (6.90)

For the latter see (6.81) in Lemma 6.11. The upshot of the finiteness of the
expressions in (6.90) is that, for N ą 0 large,

E
“ˇ̌〈

Y n
i , Y

n
j

〉

ptq
ˇ̌
,

ˇ̌〈
Y n
i , Y

n
j

〉

ptq
ˇ̌

ě N
‰

“ E
“ˇ̌〈

Xn
i , X

n
j

〉

ptq
ˇ̌
,

ˇ̌〈
Xn

i , X
n
j

〉

ptq
ˇ̌

ě N
‰

ď 1

N
E

”ˇ̌〈
Xn

i , X
n
j

〉

ptq
ˇ̌2ı ď 1

N
sup
ně1

E
“
|〈Xn, Xn〉 ptq|2

‰
. (6.91)

The inequality in (6.91) shows the uniform integrability of the sequence�〈
Y n
i , Y

n
j

〉

ptq, n P N
(
.

Since, in addition, this sequence converges P-almost surely, it converges in
L1

`
Ω, F ,P

˘
. This ends the proof of Lemma 6.14. �
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We also need the following lemma.

6.15. Lemma. Put △n “ max
0ďkďn

ˇ̌
τnk`1 ´ τnk

ˇ̌
. If the conditions in Theorem 6.10

are satisfied, and lim
nÑ8

△n “ 0, then for all i, j and 0 ď t ď T ,

L2- lim
nÑ8

ż t

0

ci pηnpsq, Y n pηnpsqqq ds “
ż t

0

ci ps, Y psqq ds, and

L1- lim
nÑ8

ż t

0

σi,k pηnpsq, Y n pηnpsqqqσk,j pηnpsq, Y n pηnpsqqq ds

“
ż t

0

σi,k ps, Y psqqσk,j ps, Y psqq ds. (6.92)

Continuation of the proof of Theorem 6.10. We introduce the fol-
lowing sequence of processes

�
M

n
: n ě 1

(
which are in fact martingales relative

to the
`
Ω,F,P

˘
endowed with the filtration

´
F

n

t

¯
0ďtďT

, where F
n

t is the σ-field

generated by pW npsq : 0 ď s ď tq Y N. Here N denotes the collection of P-null
sets. In fact we introduce:

Mptq “ Y ptq ´
ż t

0

c ps, Y psqq ds,

M
nptq “ Y nptq ´

ż t

0

c pηnpsq, Y n pηnpsqqq ds

“ Y p0q `
ż t

0

σ pηnpsq, Y n pηnpsqqq dW npsq. (6.93)

Since Y ptq is the pointwise and weak limit of the sequence tY n, n ě 1u it can be
proved that the processMptq is a martingale relative to the filtration determined
by the process t ÞÑ Y ptq, 0 ď t ď T . Its quadratic covariation is given by

〈

M i,M j

〉

ptq “
nÿ

k“1

ż t

0

σi,k ps, Y psqqσj,k ps, Y psqq ds. (6.94)

From this martingale property and from (6.94) it follows that there exists a
Brownian motion t ÞÑ Bptq, 0 ď t ď T , possibly on an enlarged sample path
space such that

Mptq “ Mp0q `
ż t

0

σ ps, Y psqq dBpsq. (6.95)

The equality in (6.95) implies:

Y ptq “ Y p0q `
ż t

0

c ps, Y psqq ds `
ż t

0

σ ps, Y psqq dBpsq. (6.96)

The equality in (6.96) means that the process t ÞÑ Y ptq, 0 ď t ď T , is the
(unique) weak solution to the equation in (6.76). Here we employ the equality

in (6.80) with rXptq “ Y ptq and rBptq “ Bptq. The proof of the existence of
the Brownian motion with the property exhibited in (6.95) can be found in
Theorem 7.1’ Ikeda and Watanabe [82]. This completes the outline of the proof
of Theorem 6.10. �
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Let
`
Ω,F, pFtqtě0 ,P

˘
be a filtered probability space. We begin with some no-

tations. For a, b P R we write a ^ b “ min pa, bq For a process t ÞÑ Xptq,
t ě 0, we denote X˚ptq :“ sup0ďsďt |Xpsq|. For a continuous adapted process
t ÞÑ Xptq and a stopping time τ we let Xpτq be as usual and Xτ ptq is the
continuous adapted process defined by Xτ ptq :“ X pτ ^ tq. For a continuous
local martingale t ÞÑ Mptq, t ě 0, also written as M “ pMptqqtą0 we denote by
t ÞÑ 〈M,M〉 ptq the quadratic variation process. If M and N are both contin-
uous local martingales we let t ÞÑ 〈M,N〉 ptq, t ě 0, be the covariation process
or cross-variation.

The next result is known as the Burkholder-Davis-Gundy inequalities. It was
first proved for discrete martingales and p ą 1 by Burkholder in 1966. In 1968,
Millar extended the result to continuous martingales. In 1970, Davis extended
the result for discrete martingales to p “ 1. The extension to p ą 0 was obtained
independently by Burkholder and Gundy in 1970 and Novikov in 1971. We write
〈M,M〉 p8q for the pointwise limit, as t Ñ 8, of 〈M,M〉 ptq. This pointwise
limit always exists in r0,8q Y t8u.

6.16. Theorem (BDG-inequalities). For each p ą 0 there exist positive finite
constants cp, Cp P p0,8q such that, for any continuous local martingale t ÞÑ
Mptq, t ě 0, with Mp0q “ 0,

cpE
”
p〈M,M〉 ptqqp{2

ı
ď E rpM˚ptqqps ď CpE

”
p〈M,M〉 ptqqp{2

ı
. (6.97)

Of course, in (6.97) we may let t Ñ 8 to get the result also for t “ 8. The
BDG-inequalities are also true if t ÞÑ Mptq is an Rd-valued martingale with
|Mptq| the (Euclidean) norm of Mptq. A proof can for example be found in
Kallenberg [88].

A more general result of the following theorem can be found in Van der Vaart
and Wellner [187] Theorem 1.10.4.

6.17. Theorem (Almost sure representations). Let pΩn,Fn,PnqnPNYt8u be a se-

quence of probability spaces and let Xn : Ωn Ñ C
`
r0, T s,Rd

˘
, n P NYt8u, be a

sequence of stochastic continuous processes. Suppose that limnÑ8 En rF pXnqs “
E8 rF pX8qs for all bounded continuous functions F : C

`
r0, T s,Rd

˘
Ñ R. Then

there exists a probability space
`
Ω,F,P

˘
together with a sequence of stochastic

processes Xn : Ω Ñ C
`
r0, T s,Rd

˘
, n P N Y t8u, with the following properties:

(1) limnÑ8 Xn “ X8, P-almost surely;
(2) E

“
F

`
Xn

˘‰
“ En rF pXnqs for all n P N Y t8u and for all bounded

continuous functions F : C
`
r0, T s,Rd

˘
Ñ R.
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In addition to (1) and (2), for each n P N, the process Xn can be chosen

according to the following diagram

Ωn C
`
r0, T s,Rd

˘

Ω

Xn

φn

Xn“Xn˝φn

where the maps

φn : Ω Ñ Ωn are measurable, and where Pn “ P ˝ φ´1
n .

The following result was also used in the proof of Theorem 6.10. We owe it to
Ikeda and Watanabe [82] Theorem 7.1’.

6.18. Theorem. Let pΩ,F,Pq be a probability space with a filtration pFtqtě0 and
let t ÞÑ Miptq, 1 ď i ď d, be local martingales with covariation matrix Φptq “
pΦi,jptqq

1ďi,jďd
, i.e. 〈Mi,Mj〉 ptq “

şt
0
Φi,jpsq ds, 1 ď i, j ď d. In addition, let

the predictable matrix process Ψptq “ pΨi,jptqq
1ďiďd,1ďjďn

be such that Φi,jptq “
nÿ

k“1

Ψi,kptqΨk,jptq, 1 ď i, j ď d, and such that
şT
0

|Ψi,jpsq|2 ds ă 8 for 1 ď i, 1 ď

j ď n. Then, on some extension
´

rΩ, rF, rP
¯
and

´
rFt

¯
tě0

of pΩ,F,Pq and pFtqtě0,

respectively, there exists an n-dimensional
´

rFt

¯
tě0

-Brownian motion rBptq such

that

Miptq “
nÿ

k“1

ż t

0

Ψi,kpsq d rBkpsq.
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Prohorov’s theorem. In the proof of Theorem 6.10 we applied Prohorov’s
tightness theorem in compination with the Arzela-Ascoli characterization of
compact subsets of Cr0, T s. It was applied to the sequence Xnptq (Euler scheme)
defined in (6.77).

6.19. Theorem (Prohorov theorem). Let pPn : n P Nq be a sequence of proba-
bility measures on a separable complete metrizable topological space S with Borel
σ-field S. Then the following assertions are equivalent:

(i) For every ε ą 0 there exists a compact subset Kε of S such that
Pn rKεs ě 1 ´ ε for all n P N.

(ii) Every subsequence of pPn : n P Nq has a subsequence which converges
weakly to a probability measure on pS, Sq.

A sequence pPnqn satisfying (i) (or (ii)) in Theorem 6.19 is called a Prohorov
set. In the sequel we write C r0, T s “ C

`
r0, T s,Rd

˘
.

6.20. Theorem (Arzela-Ascoli). Endow Cr0, T s with the topology of uniform
convergence. A subset A of Cr0, T s has compact closure if and only if it has the
following properties:

(i) sup
ωPA

|ωp0q| ă 8;

(ii) The subset A is equi-continuous in the sense that

lim
δÓ0

sup
0ďs,tďT, |s´t|ďδ

sup
ωPA

|ωpsq ´ ωptq| “ 0.

From (i) and (ii) it follows that sup
ωPA

sup
sPr0,T s

|ωpsq| ă 8, and hence A is uniformly

bounded. The result which is relevant here reads as follows. It is the same as
Theorem T.8.4 in Bhattacharaya and Waymire [20].

6.21. Theorem. Let pPnqn be a sequence of probability measures on Cr0, T s.
Then pPnqn is tight if and only if the following two conditions hold.

(i) For each η ą 0 there is a number B such that

Pn rω P Cr0, T s : |ωp0q| ą Bs ă η, n “ 1, 2, . . .

(ii) For each ε ą 0, η ą 0, there is a 0 ă δ ă 1 such that

Pn

«
ω P Cr0, T s : sup

0ďs,tďT, |s´t|ďδ

|ωpsq ´ ωptq| ě ε

ff
ď η, n “ 1, 2, . . .

Proof. If the sequence pPnqn is tight, then given η ą 0 there is a compact
subset K of C pr0, T sq such that PnpKq ą 1 ´ η for all n. By the Arzela-Ascoli
theorem (Theorem 6.20), if B ą supωPK |ωp0q|, then

Pn rω P Cr0, T s : |ωp0q| ě Bs ď Pn rKcs ď 1 ´ p1 ´ ηq “ η.
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Also given ε ą 0 select δ ą 0 such that sup
ωPK

sup
0ďs,tďT, |s´t|ďδ

|ωpsq ´ ωptq| ă ε. Then

Pn

«
ω P Cr0, T s : sup

0ďs,tďT, |s´t|ďδ

|ωpsq ´ ωptq| ě ε

ff
ď Pn rKcs ă η

for all n ě 1. The converse goes as follows. Given η ą 0, first select B using
(i) such that Pn rω P C pr0, T sq : |ωp0q| ď Bs ě 1 ´ 1

2
η, for n ě 1. Select δr ą 0

using (ii) such that

Pn

«
ω P C pr0, T sq : sup

0ďs,tďT, |s´t|ďδr

|ωpsq ´ ωptq| ă 1

r

ff
ě 1 ´ 2´pr`1qη

for all n ě 1. Next we take K to be the uniform closure of

8č

r“1

#
ω P C pr0, T sq : |ωp0q| ď B, sup

0ďs,tďT, |s´t|ďδr

|ωpsq ´ ωptq| ă 1

r

+
.

Then PnpKq ą 1´η for n ě 1, and K is compact by the Arzela-Ascoli theorem.
This completes the proof Theorem 6.21. �

Shorter proof of Theorem 6.10. The Banach space C
`
r0, T s,Rd

˘
be-

ing separable, Prohorov’s theorem (6.19) in conjunction with Lemma 6.12 then
implies that the sequence tXn, n ě 1u is tight in C

`
r0, T s,Rd

˘
. Thus for any

subsequence of the sequence tXn, n ě 1u there exists a further subsequence
tXnk , k ě 1u and a process t ÞÑ Xptq, t P r0, T s, in C

`
r0, T s,Rd

˘
such that

the sequence tXnk , k ě 1u converges to the process t ÞÑ Xptq, 0 ď t ď T , not
only weakly, but also P-almost surely uniformly on r0, T s. Let Pn be the dis-
tribution (or law) of the process Xn. Since the equation in (6.52) is supposed
to have unique weak solutions, it follows that the sequence tPn, n ě 1u itself
converges weakly to a probability measure on C

`
r0, T s,Rd

˘
. Let us show this.

Take any subsequence tXnk , k ě 1u which converges, P-almost surely, uniformly
on r0, T s to a process X. Let P8 be the distribution of X. Then the sequence
tXn : n P Nu converges weakly to X. If this were not the case, then there would
exist ε ą 0 and a bounded continuous function F : C

`
r0, T s,Rd

˘
Ñ R such

that

|Enm rF s ´ E8 rF s| “ |E rF pXnmqs ´ E rF pXqs| ě ε (6.98)

for some subsequence tXnm , m ě 1u. By passing to another subsequence we
may assume that the subsequence itself converges P-almost surely to a process
rX . Hence it converges weakly, and by (6.98) we get

lim
mÑ8

|Enm rF s ´ E8 rF s| “
ˇ̌
ˇE

”
F

´
rX

¯ı
´ E rF pXqs

ˇ̌
ˇ ě ε (6.99)

Since the coefficients of the equation in (6.76) are continuous it follows that both

processes X and rX satisfy this equation (by L1-convergence). Weak uniqueness

implies that the distribution of X and rX are the same, which contradicts (6.99).
This completes the proof of Theorem 6.10. �
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142. É. Pardoux, Backward stochastic differential equations and viscosity solutions of systems
of semilinear parabolic and elliptic PDEs of second order, Stochastic analysis and related
topics, VI (Geilo, 1996), Progr. Probab., vol. 42, Birkhäuser Boston, Boston, MA, 1998,
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154. Marta Sanz-Solé, Malliavin calculus, Fundamental Sciences, EPFL Press, Lausanne,
2005, With applications to stochastic partial differential equations. MR MR2167213
(2006h:60005)

155. Jan Seidler, Ergodic behaviour of stochastic parabolic equations, Czechoslovak Math. J.
47(122) (1997), no. 2, 277–316. MR MR1452421 (98e:60099)

156. Michael Sharpe, General theory of Markov processes, Pure and Applied Mathematics,
vol. 133, Academic Press Inc., Boston, MA, 1988. MR MR958914 (89m:60169)

Download free eBooks at bookboon.com



ADVANCED STOCHASTIC PROCESSES: PART II BIBLIOGRAPHY

489

BIBLIOGRAPHY 489

157. Steven E. Shreve, Stochastic calculus for finance. I, Springer Finance, Springer-Verlag,
New York, 2004, The binomial asset pricing model. MR MR2049045 (2004m:91003)

158. Barry Simon, Functional integration and quantum physics, Pure and Applied Mathe-
matics, vol. 86, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York,
1979. MR MR544188 (84m:81066)

159. A. V. Skorohod, Limit theorems for stochastic processes, Teor. Veroyatnost. i Primenen.
1 (1956), 289–319. MR 0084897 (18,943c)

160. R. T. Smythe, Strong laws of large numbers for r-dimensional arrays of random variables,
Ann. Probability 1 (1973), no. 1, 164–170. MR 0346881 (49 #11602)

161. Charles Stein, A bound for the error in the normal approximation to the distribution of
a sum of dependent random variables, Proceedings of the Sixth Berkeley Symposium on
Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971),
Vol. II: Probability theory (Berkeley, Calif.), Univ. California Press, 1972, pp. 583–602.
MR 0402873 (53 #6687)

162. , Approximate computation of expectations, Institute of Mathematical Statistics
Lecture Notes—Monograph Series, 7, Institute of Mathematical Statistics, Hayward,
CA, 1986. MR 882007 (88j:60055)

163. David Stirzaker, Stochastic processes and models, Oxford University Press, Oxford, 2005.
MR 2169515 (2006k:60004)

164. Daniel W. Stroock, The Malliavin calculus, a functional analytic approach, J. Funct.
Anal. 44 (1981), no. 2, 212–257. MR MR642917 (83h:60076)

165. , The Malliavin calculus and its application to second order parabolic differential
equations. I, Math. Systems Theory 14 (1981), no. 1, 25–65. MR 603973 (84d:60092a)

166. , The Malliavin calculus and its application to second order parabolic differential
equations. II, Math. Systems Theory 14 (1981), no. 2, 141–171. MR 616961 (84d:60092b)

167. , A concise introduction to the theory of integration, third ed., Birkhäuser Boston
Inc., Boston, MA, 1999. MR MR1658777 (99i:28003)

168. , Probability theory, an analytic view, Cambridge University Press, Cambridge,
2000.

169. , An introduction to Markov processes, Graduate Texts in Mathematics, vol. 230,
Springer-Verlag, Berlin, 2005. MR MR2126069 (2005k:60003)

170. , Elements of stochastic calculus and analysis, CRM Short Courses, Springer,
Cham, 2018. MR 3823207

171. Daniel W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes,
Classics in Mathematics, Springer-Verlag, Berlin, 2006, Reprint of the 1997 edition.
MR 2190038 (2006f:60005)

172. Jan Swart and Anita Winter, Markov processes: theory and examples, internet: ps-file,
March 2005.

173. Atsushi Takeuchi, Bismut-Elworthy-Li-type formulae for stochastic differential equations
with jumps, J. Theoret. Probab. 23 (2010), no. 2, 576–604. MR 2644877 (2012a:60174)

174. Terence Tao, An epsilon of room, I: real analysis, Graduate Studies in Mathematics, vol.
117, American Mathematical Society, Providence, RI, 2010, Pages from year three of a
mathematical blog. MR 2760403 (2012b:42002)

175. , An introduction to measure theory, Graduate Studies in Mathematics, vol. 126,
American Mathematical Society, Providence, RI, 2011. MR 2827917 (2012h:28003)

176. Allanus Tsoi, David Nualart, and George Yin (eds.), Stochastic analysis, stochastic sys-
tems, and applications to finance, World Scientific Publishing Co. Pte. Ltd., Hackensack,
NJ, 2011. MR 2882737 (2012h:60006)
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Lévy’s characterization of Brownian

motion, 196, 262
law of random variable, 105
Lebesgue-Stieltjes measure, 377
lemma of Borel-Cantelli, 11, 155
lexicographical ordering, 347
life time, 82, 122
local martingale, 196, 264, 276, 280, 281,

285, 292, 294
local time, 307
locally compact Hausdorff space, 16

marginal distribution, 387
marginal of process, 14

Markov chain, 37, 45, 61, 69
irreducible, 50, 56
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martingale representation theorem, 275,
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normal distribution, 199
Novikov condition, 296
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operator
dissipative, 122
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oscillator process, 101, 102
outer measure, 377, 378

partial reward, 42
partition, 4
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unique, 306, 307

pathwise solutions to SDE’s, 256
payoff process
discounted, 195
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pe-measure, 376
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380
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delta hedge, 191
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probability measure, 1
probability space, 1
process
Gaussian, 202, 205
increasing, 22
predictable, 21
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quadratic variation process, 264

Radon-Nikodym derivative, 12, 422
Radon-Nikodym theorem, 4, 81, 82, 422
random walk, 61
realization, 26, 387
recurrent Markov chain, 50
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reflected Brownian motion, 230
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renewal process, 37, 42
renewal-reward process, 41, 42
renewal-reward theorem, 42
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reward
initial, 42
partial, 42
terminal, 42

reward function, 42
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Riesz representation theorem, 309, 310,
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right closure of filtration, 113
right-continuous filtration, 387
right-continuous paths, 20
ring of subsets, 375
risk-neutral measure, 195, 211
risk-neutral probability measure, 193
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sample path space, 12, 26
sample space, 26
semi-martingale, 433
semi-ring, 378
semi-ring of subsets, 375, 376
semigroup
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264, 389, 390, 396, 419
discrete, 20
terminal, 20, 25
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of Fernique, 223
of Fubini, 201, 344
of Girsanov, 291, 294
of Helly, 348
of Komlos, 424
of Lévy, 264, 284, 305
of Prohorov, 75, 468, 472
of Radon-Nikodym, 305
of Riemann-Lebesgue, 314
of Scheffé, 41, 293, 383
of Schoenberg, 328
of Stone-Weierstrass, 315, 319
Skorohod-Dudley-Wichura
representation, 298, 301

time, 12
time change, 20
stochastic, 20

time-dependent Markov process, 202, 205
time-homogeneous process, 12, 31
time-homogeneous transition probability,

26
time-homogenous Markov process, 421
topology of uniform convergence on

compact subsets, 324
tower property of conditional expectation,

6
transient non-symmetric random walk, 60
transient state, 48, 49
transient symmetric random walk, 57
transition function, 123
transition matrix, 53
translation operator, 12, 26, 113, 122,

415, 421
translation variables, 129

uniformly distributed random variable,
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uniformly integrable family, 6, 21, 41, 383,
401

uniformly integrable martingale, 403
uniformly integrable sequence, 399
unique pathwise solutions to SDE, 256
uniqueness of the Doob-Meyer

decomposition, 431
unitary operator, 354, 356
upcrossing inequality, 159, 397
upcrossing times, 159
upcrossings, 159

vague convergence, 386
vague topology, 324, 348
vaguely continuous convolution semigroup

of measures, 329
vaguely continuous convolution semigroup

of probability measures, 403, 405
Vasicek model, 206, 212, 449
volatility, 190
von Neumann’s ergodic theorem, 354

Wald’s equation, 38
weak convergence, 339
weak law of large numbers, 78, 354
weak solutions, 276
weak solutions to SDE’s, 256, 291, 295,

303
unique, 278, 307

weak solutions to stochastic differential
equations, 278

weak topology, 323
weak˚-topology, 348
weakly compact set, 352, 353
Wiener process, 101
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