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CHAPTER 4

Stochastic differential equations

Some pertinent topics in the present chapter consist of a discussion on mar-
tingale theory, and a few relevant results on stochastic differential equations in
spaces of finite dimension. In particular unique weak solutions to stochastic dif-
ferential equations give rise to strong Markov processes whose one-dimensional
distributions are governed by the corresponding second order parabolic type
differential equation. Essentially speaking this chapter is part of Chapter 1 in
[184]. (The author is thankful to WSPC for the permission to include this text
also in the present book.) In this chapter we discuss weak and strong solutions
to stochastic differential equations. We also discuss a version of the Girsanov
transformation.

1. Solutions to stochastic differential equations

Basically, the material in this section is taken from Ikeda and Watanabe [81].
In Subsection 1.1 we begin with a discussion on strong solutions to stochastic
differential equations, after that, in Subsection 1.2 we present a martingale
characterization of Brownian motion. We also pay some attention to (local)
exponential martingales: see Subsection 1.3. In Subsection 1.4 the notion of
weak solutions is explained. However, first we give a definition of Brownian
motion which starts at a random position.

4.1. DEFINITION. Let (€2, F,P) be a probability space with filtration (J3),.,.
A d-dimensional Brownian motion is a almost everywhere continuous adapted
process {B(t) = (Bi(t),...,Bq(t)) : t = 0} such that for 0 < t; <ty < -+ <
t, < oo and for C' any Borel subset of (Rd)n the following equality holds:

P[(B(t;) — B(0),...,B(t,) — B(0)) € C]

= f = fpo,d (tn — tn—1,Tn_1,Tn) - - Do.d (ta — t1, 21, 22) Po.a (t1,0, 1)

c
This process is called a d-dimensional Brownian motion with initial distribution
pif for 0 < t; <ty < -+ < t, < oo and every Borel subset of (]Rd)nJrl the

following equality holds:
),...,B(ty)) € C]

P[(B(0), B (t,
= J = Jpo,d (tn — tn-1,Tp_1,Ty) -+ Po.a(ta — t1,21,22) po.a (t1, o, 1)
c
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du (xg) dxy ... dz,. (4.2)

For the definition of po 4 (¢,z,y) see formula (4.26). By definition a filtration
(F¢),s0 is an increasing family of o-fields, i.e. 0 < t; <ty < o0 implies F;, < F,.
The process of Brownian motion {B(t): t > 0} is said to be adapted to the
filtration (J;),5, if for every ¢ > 0 the variable B(t) is J;-measurable. It is
assumed that the P-negligible sets belong to J.

1.1. Strong solutions to stochastic differential equations. In this sec-
tion we discuss strong or pathwise solutions to stochastic differential equations.
We also show that if the stochastic differential equation in (4.110) possesses
unique pathwise solutions, then it has unique weak solutions. We begin with a
formal definition.

4.2. DEFINITION. The equation in (4.110) is said to have unique pathwise so-
lutions, if for any Brownian motion {(B(t) : ¢t = 0),(2,F,P)} and any pair of
Re-valued adapted processes {X(t) : ¢t = 0} and {X'(¢) : ¢t > 0} for which

t t
X(t)==x +J o (s,X(s))dB(s) +f b(s,X(s)) ds and (4.3)
0 0
t t
X'(t)=x+ f o(s,X'(s))dB(s) + f b(s,X'(s)) ds (4.4)
0 0
it follows that X(t) = X'(t) P-almost surely for all ¢ > 0. If for any given

Brownian motion (B(t))
w € €2 the equality

the process (X(t)),s, is such that for P-almost all

t=0

t t

o (s, X(s,w))dB(s,w) + L b(s, X(s,w)) ds

X(t,w) zx—i—J

0

is true, then ¢t — X (t) is called a strong solution.

Strong solutions are also called pathwise solutions. In order to facilitate the
proof of Theorem 4.4 we insert the following lemma.

4.3. LEMMA. Let v be a positive real number. Then the following inequality
holds:

n

l\.’)l}—‘

Oov

Since /7 + /7 + 4 < 24/7 + 2, the inequality in (4.5) implies:

< (vieviren (3 (vievaira)-3). @y

VA + 2exp (% (v + 1)) < o0, (4.6)

We will use the finiteness of the sum rather than the precise estimate.
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PRrROOF OF LEMMA 4.3. Let § > 0 be a positive number. Then we have by
the Cauchy-Schwarz inequality

n/2 oo n/2 (5+,y)n/2 2
(£5) - (me i )

- (5+fy (5+'y .
v, 4.
Z_] (04 ~)" Z_] ) © (47)

The choice § = = ( v+ vy + 4)> yields the equalities

o= (VT ot S5 (i)

and so the result in (4.5) follows and completes the proof of Lemma 4.3. 0

A version of the following result can be found in many books on stochastic
differential equations: see e.g. [81, 139, 148|.

www.job.oticon.dk O‘l'ICOI'\
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4.4. THEOREM. Let 0 (s,z) and b; (s,z), 1 < j, k < d be continuous functions
defined on [0,00) x R? such that for all t > 0 there erists a constant K (t) with
the property that

d d
2 loin(si2) = o (s, )" + Dby (s,2) = by (s,9)[* < K (1) |z =y (4.8)
Jisk=1 j=1
forall0 < s <t, and allz, y € R%. Fizx € R, and let (Q, F,P) be a probability
space with a filtration (F4),s,. Moreover, let {B(t) : t = 0} be a Brownian mo-
tion on the filtered probability space (0, F;,P). Then there exists an R%-valued
process {X (t) : t = 0} such that, for all0 < T < o0, supy_,<r E [\X(t)|2] < o,
and such that

X(t)=:c+f

0

t t

o (s,X(s)) dB(s) +L b(s,X(s))ds, t=0. (4.9)

This process is pathwise unique in the sense of Definition 4.2.

The techniques in the proof below are very similar to a method to prove the
following version of Gronwall’s inequality: see e.g. [68]. Let f, g, h: [0,T] > R
be continuous functions such that f(t) < g(t) + Sé h(s)f(s)ds, 0 <t <T. If
h = 0, then by induction with respect to k it follows that

ft) <g(t) + i fot (SS f(Lj(P_) Ci;) g(s)ds + Lt Mh(s)ﬂs) ds,

j=1
and hence

ft) <g(t) + fg(S) exp (f h(p) dp) ds.

0 s
Let C ([0,T],L*(Q,F,P;R?)) be the space of all continuous L? (2, F,P; RY)-
valued functions supplied with the norm:
IX] = sup (E[IX(®)P]), XecC(0,T],L* (25, PB;RY) .
0<t<T
Define the operator " : C ([0, 7], L* (Q,F,P;R?)) — C ([0, 77, L? (2, F,P; R?))
by the formula

TX(t)=a:+f

0

t t

o (s,X(s)) dB(s) + L b(s, X(s)) ds.

Then the argumentation in the proof below shows that 7" is a mapping from
C ([0,T], L* (2,5, P;R)) to C ([0,T7], L* (Q,F,P;R?)) indeed, and that T has
a unique fixed point X which is a pathwise solution to the equation in (4.9).

PrROOF. Existence. Fix 0 < T < oo. Put Xy(s) = z, 0 < s < t, and, for
n=10<t<T,

Xpi1(t) =z + J

0

t t

b (s, Xn(s)) ds + L o (s, Xn(s)) dB(s). (4.10)
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By (4.10) we see, forn > 1and 0 <t < T,

KXo (t) = Xa(t) = JO (b (s, Xn(s)) = b (s, Xn-1(s))) ds

+ | (o(s,Xn(s)) — o (s, Xn_1(5))) dB(s). (4.11)

S—

0

N
V)
N
~

By assumption there exists functions s — K;(s) and s — K;;(s), 0
such that for

b (s,y) — b; (s, z)

|0ij (8,y) — 0ij (s, 7)
and such that So i(s)2+ K, ;(s)?)ds < oo for 0 <1 <4,j <d. Let the
function K(s) = 0 be such that K(s)? = Z;l LKG(s)? + Zle maxi<j<q Kij(s)?.

Then SOT K(s)*ds < 0. Moreover, for n > 1 and 0 < t < T we infer, by using
(4.11). (4.12) and (4.13), by the definition of K(s), and by standard properties
of stochastic integrals relative to Brownian motion, the following inequality:

Ki(s)|ly—=|, 0<s<T, z,yeR? and (4.12)

| <
| < Kij(s)ly—z[, 0<s<T, z,yeR, (4.13)

E [ Xne1(t) = Xa(t)]*] <2 f K(5)E [|Xa(s) = Xua(s)[*] ds. (4.14)

In order to obtain (4.14) we also used an inequality of the form (|a| + |b])?
2 (|a|2 + |b|2), a, b € R% The proofs of (4.15) and (4.18) require equalities of
the form

(1070

J
f fﬂK(SZ’)QdSl...dj ‘| 7]€N7J>]—
§<81< <8<t i=1 J:

By employing induction the inequality in (4.14) yields, for 1 < j < n and for
0 <t < T, the inequality:

E [|Xns1(t) = X (1)’]

-1
o), |
0 _
Since Xo(s) = z the equality in (4.10) for n = 0 yields
X100~ o) = | 00) dor+ | o .2 Bl
0 0

and hence, for 0 < s < T,
(p,x dp

B, (s) = Xu(o)] < 2 (

Let A(s,x) = 0 be such that

Jp, dp

Y [ 1o o.a dp> (4.16)

2,7=1

A(s,r)* = sup

0<7<s

. | 1o o an (4.17)

i,7=1
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Then (4.17) together with (4.15) with j = n yields

-1

§ K(p)d 2
E [ X, () — X, ()] < 2" f () K (sVE [|X1(s) — Xo(s)?] ds

e
< 2”+1J; <S l((n — ;Z)P) K(s)?A(s,x)*ds
(rvra)

K(s)*ds

< 2"“A(t,x)2L T

_ 2n+1A(t,g;)2J J]‘[ ®dsy .. .dsy,
1

O<si<--<sp<t

— 9"t A(¢, 7) <S° 2d8> . (4.18)
n!
From Lemma (4.3) and inequality (4.6) with v =2 So )2 ds we infer:
e¢]
Z (B [[Xnr1(t) = Xa(6)]) "< A(t, x) \/J K(s)2ds + 1 el K()?dsts
) (4.19)

From (4.19) it easily follows that there exists an adapted R%valued process
(X (t))peser in L* (Q, Fr,P; R?) such that

lim E [|X,(t) — X =o. (4.20)

From (4.19) it also follows that this convergence also holds P-almost surely.
The latter can be seen as follows. Fix n > 0. Then the probability of the event
{limsup,,_, ., |X,(t) — X(t)| > n} can be estimated as follows:

P [hflsololp [ Xo(t) — X ()] > ?7] < 717121{]1? U {[Xn(t) = X(8)| > ?7}]
< iféﬁyp U X () = X, ()] > ?7}]
< inf P {Z [ X1 (t) — Xn(8)] > 77}]

1
< inf — Z E[|Xne1(t) — X, (8)|] = 0. (4.21)
The final equality is a consequence of Lemma 4.3 together with (4.19) and the

inequality E [|X,.1(t) — X, (8)]] < (E[|Xnr(t) — Xo(0)P])"". Since n > 0 is
arbitrary in (4.21) we infer that lim, ., X, () = X (¢) (P-almost surely). This
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P-almost sure convergence (as n — o0) also implies that we may take pointwise
limits in (4.10) to obtain:

X(t)=x+ J b(s,X(s)) ds+ J o(s,X(s)) dB(s). (4.22)
0 0
The equality in (4.22) shows the existence of pathwise or strong solutions to the

equation in (4.9).

t t

Uniqueness. Let (X1(t))y<,<p and (X2(t))y<,<r be two solutions to the stochas-
tic differential equation in (4.9). By using a stopping time argument we may
assume that supgc,<p [Xa(s) — Xi(s)| is P-almost surely bounded. Then

¢

X(t) — X (t) = f (b (s, Xa(s)) — b (s, X,(s))) ds

0

+ J (0 (s,Xa(s)) — 0 (s, X1(s))) dB(s). (4.23)

0
As in the proof of (4.15) with j = n and (4.18) it then follows that

[ (Garan)”

E[1X(f) — X (0F] < 2" | =,

N
)

K(s)’E [| Xa(s) — X1<S)|2] ds

LK (p)dp)
< 2" sup E[[X,(s) —Xl(s)ﬂ (S ’ p) .

O<s<t TL'

Since the right-hand side of (4.24) tends to 0 as n — oo we see that Xs(t) = X;(¢)
P-almost surely. So uniqueness follows.

(4.24)

The proof of Theorem 4.4 is complete now. [l
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1.2. A martingale characterization of Brownian motion. The fol-
lowing result we owe to Lévy.

4.5. THEOREM. Let (2, F,P) be a probability space with filtration (or reference
system) (F1) = Suppose F is the o-algebra generated by Ue=oF; augmented with
the P-zero sets, and suppose F; is continuous from the right: F, = ng=F for all
t = 0. Let {M(t) = (My(t),...,My(t)) : t =0} be an Re-valued local P-almost
surely continuous martingale with the property that the quadratic covariation
processes t — (M;, M;) (t) satisfy

Then {M(t) : t = 0} is d-dimensional Brownian motion with initial distribution

t
given by u(B) = P[M(0) € B], B € Bga, the Borel field of RY.
It follows that the finite-dimensional distributions of the process t — M(t) are
given by:
P[M (t1) € By, ..., M (t,) € B,]

= J (f . J Po,d (tn — tn1, Tn_1,Ty) - Po.a (t2 — t1, T1, T2) po.a (t1, 2, 21)
Bl n

dx, - - -dxl) du(x).

Here po 4 (t,z,y) is the classical Gaussian kernel:

pod(t,z,y) = (\/2717rt)dexp (_]x ;ty’ ) : (4.26)

4.6. REMARK. There is even a nicer result which says the following. Let X be
a continuous R%valued process with stationary independent increments. Then,
there exist unique b € R? and ¥ € R* such that X (t)—X (0) is a (b, X)-Brownian
motion. This means that X (¢) is a Gaussian (or multivariate normal) vector
such that E[X (t)] = bt and

E [(X;,(t) = bjt) (X5 (t) = bjpt)] = £33, jo-

For the one-dimensional case the reader is referred to Breiman [35]. For the
higher dimensional case, see, e.g., Lowther [116].

PROOF OF THEOREM 4.5. Let & € R? be arbitrary. First we show that it
suffices to establish the equality:
E [e EMO-MO) | §] = ¢2ll =) 5 520, (4.27)

For suppose that (4.27) is true for all £ € RY. Observe that (4.27) implies
E [ HEMO=M)] = ¢=316P(=9) Then, by standard approximation arguments,
it follows that the variable M (t) — M (s) is P-independent of F,. In other words
the process t — M(t) possesses independent increments. Since the Fourier
transform of the function y — pgq (t — s,0,y) is given by

J TN po g (t — 5,0,y) dy = e~
R4
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it also follows that the distribution of M(t) — M (s) is given by

P[M(t)— M(s) e B] = JB Poa (t—s,0,y)dy. (4.28)
Moreover, for 0 < t; < --- < t,, we also have
IP[M(O) € BO, M (t;) — M(0) € By,...,M (t,) — M (t,—1) € B,]
)€ Bo|P[M (t1) — M(0) € By]---P[M (t,) — M (t,—1) € By]

J J J Po.d (t1,0,y1) - Do (tn — tn_1,0,yn) di (yo) dyy - - - dys,.
Bo JB; n

Here By, ..., B, are Borel subsets of R?. Hence, if B is a Borel subset of
R? x --- x R? then it follows that
[N ——

n+1times

M (ty) = M(0), ..., M (tn) = M (tn-1)) € B]

J Jpocz t1,0, yl pOd( _tn—laoayn)d:u(yO)dyl"'dyn' (4-29)

Next we compute the joint distribution of (M(0), M (¢1),..., M (t,)) by em-
ploying (4.29). Define the linear map £: R? x --- x R? — R? x .- x R? by

C(xg, w1, .., ) = (T, X1 — T, Tg — T, .o, Ty — Tp1) -
Let B be a Borel subset of R? x --- x R%. By (4.29) we get
P[(M(0),..., M (t,)) € B]
= [5( (0),..., M (tn)) € £(B)]
M(0 )>M( 1) = M(0), ..., M (t,) — M (t,—1)) € £(B)]
J (t1,0,91) - po.a (tn — tn-1,0,9n) diu (yo) dy1 - - - dyn,
o(B)

(change of variables: (yo,y1, ..., Yn) = (20, T1,...,2y))
= J . fpo,d (t1, %o, 21) -+ Po,a (tn = tn-1, Tn—1, Tn) dpt (o) dwy - - - dy. (4.30)

In order to complete the proof of Theorem 4.5 from equality (4.30) it follows
that it is sufficient to establish the equality in (4.27). Therefore, fix £ € R? and
t > s> 0. An application of It6’s lemma to the function z — =% yields

p—HEMD) _ o—ileM(s)

d
i3 [ LS ge [ O, i) 0
j=1 s 2
(formula (4.25))
d t 1 t
= —i Z fjf e HEMEN M (1) — 5 |§|2J e HEMTD qr. (4.31)
]:1 S S
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Hence, from (4.31) it follows that
o—HEMB-M(s) _ (4.32)

d + t
. 1 :
_ _Z-Z 3 J e~ HEMM-ME) AT () — 5 €2 J o~ HEM(T)=M(s)) g7
j=1 s °

Since the processes
tHf HEMO-MO) VL (r), t > 5, 1<) <d,

are local martingales, we infer by (possibly) using a stopping time argument
that

E [e#&MO=MED | 5] _1—|§|f [e " @ME=MEN | 5] dr.  (4.33)

Next, let v(t), t > s, be given by
t

u(t)sz[—l@M( N F,)dr

s

Then v(s) = 0, and (4.33) implies

1
V(1) + 3 £ o(t) = 1. (4.34)
From (4.34) we infer

d ]. 1 1
it (100 = (G a0+ ) X B ()

The equality in (4.35) implies:

e%(t—S)\ﬂ?U(t) —u(s) = 2 <€%(t—s)\§\2 — 1) ’

€l*
and thus we see )
V() + §v(s>e—%<t—s>lﬂ2 — 29l (4.36)
Since v(s) = 0 (4.36) results in
E [ EMO-ME) | 5] = of (1) = e 29", (4.37)
The equality in (4.37) is the same as the one in (4.27). By the above arguments
this completes the proof of Theorem 4.5. O

As a corollary to Theorem 4.5 we get the following result due to Lévy.

4.7. COROLLARY. Let {M(t) : t = 0} be a continuous local martingale in R such
that the process t — M (t)* —t is a local martingale as well. Then the process
{M(t) : t =0} is a Brownian motion with initial distribution given by u(B) =
P[M(0) € B], B € Bg.

PROOF. Since M (t)? —t is a local martingale, it follows that the quadratic

variation process t — (M, M) (t) satisfies (M, M) (t) = t, t = 0. So the result
in Corollary 4.7 follows from Theorem 4.5. U
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ADVANCED STOCHASTIC PROCESSES: PART II STOCHASTIC DIFFERENTIAL EQUATIONS

The following result contains a d-dimensional version of Corollary 4.7.

4.8. THEOREM. Let {M(t) = (M;(t),..., My (t)) : t = 0} be a continuous local
martingale with covariation process given by
t
<Mj,Mk> (t) = J (I)j’k<8)d8, 1< j, k< d. (438)
0
Let the d' x d-matriz process {x(t): t = 0} be such that x(t)®(t)x(t)* = I,
where I is the d x d identity matriz. Put B(t) = S(t) X(s)dM(s). This integral
should be interpreted in Ité sense. Then the process t — B(t) is d-dimensional
Brownian motion. Put U(t) = ®(t)x(t)*, and suppose that V(t)x(t) = I, the

d' x d identity matriz. Then M(t) — M(0) = S(t) U(s)dB(s).

4.9. REMARK. Since

X () (@()x (@) x(t) — 1) = (x(O)@(@)x ()" = I) x(t) = 0
we see that the second equality in W(¢)x(t) = ®(t)x(t)*x(t) = I is only possible
if we assume d = d’. Of course here we take the dimensions of the null and
range space of the matrix x(¢) into account.
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PrRoOF oF THEOREM 4.8. Fix 1 < 4, 7 < d. We shall calculate the qua-
dratic covariation process

(B.. B,) ( <Zj $))u AMi(s) Zf dm<»<>
_ Z Z J (5)),, ®(s)ids

=Lu@mwnm>mw—wm (4.39)

From Theorem 4.5 and (4.39) we see that the process t — B(t) is a Brownian
motion. This proves the first part of Theorem 4.8. Next we calculate

f U(s)dB(s) = f U(s)x(s)dM(s) = Jo dM(s) = M(t) — M(0),  (4.40)

0 0
which completes the proof of Theorem 4.8.

O

1.3. Exponential local martingales. Let ¢t — N(t), 0 < t < T, be
continuous (local) martingale with variation process t — (N, N) (t), 0 < t
T. In this subsectlon we discuss local martingales of the form ¢ — e‘Z(t)
1+ §e ) dN(s), t = 0, where Z(t) = N(t) + & (N, N) (t). Such processes
are called exponential local martingales. The following proposition serves as a
preparation for Proposition 4.12. It also has some interest of its own.

A o

4.10. PROPOSITION. Let (2, F,P) be a probability space endowed with a filtra-
tion (Fy)geper, and let M = (M(t))ocper and N = (N(t))gper be two local
continuous martingales with M(0) = N(0) = 0. Put Z(t) = N(t)+35 (N, N) (t),
and assume that E [e_Z(t)] =1 for all0 <t <T. Then the following assertions
are true.

(a) The processt — e %W 0 <t <T, is a martingale;
(b) The process t — e~ %W (M(t) + (N, M) (t)) is a local martingale;

(¢) The process t — M (t) + (N, M) (t) is a local martingale relative to the
filtration (Stt)oé t<T supplzed with the measure Qy : Fp — [0, 1] defined
bg@]\/( ) Ele ]7A€5L~T'

The measure Qy can be called a risk neutral measure. Observe that, by asser-
tion (a), Qn(A4) = E [e7?®14] whenever A belongs to F; with 0 <¢ < T. Let
T, be the stopping time defined by

1
Tn:inf{s>0: ]N(SAT)\+2<N,N)(3/\T)>TL},

and set Z,(t) = Z (t A 7,). Then the processes t > e %"® 0 <t <T,neN,
are martingales. It follows that E [e_Z"(t)] =1, forall 0 <t <7, and for all
n € N. By Fatou’s lemma we infer that

E[e?0] = E [hm e_Z"(t)] < liminfE[e 70 < 1, (4.41)

n—0o0 n—0o0
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In fact we have a stronger result. It says that an exponential local martingale
is a super-martingale.

4.11. THEOREM. Let the process t — e 2 0 <t < T, be a continuous local

martingale. In general, this process is a super-martingale relative to the filtration
(F)grerer with Fp = o (N(s) : 0 < s <t). Consequently, if E[e7?W] =1 for
all0 <t < T, then the process t — e 20 0 <t < T, is a martingale.

PrOOF. This result can be seen as follows. Let 0 < t; < 9, and choose the
sequence of stopping times (7,), .y as above. Then, for A € F;, .-,., we have

E [e*Z(tQ)lA] =K [lim e*Z(t“T")lA]

n—ao0

<lminfE[e 221, ] = E [e-7(17m)1,4] (4.42)

n—0o0
In (4.42) we employed Doob’s optional sampling Theorem 1.23 for martingales.
From (4.42) it follows that:

B[ 2| 5,,.,,] < -0 (1.43
Since the event {7, > t;} belongs to Fy, .r,,, from (4.43) we infer
E [67Z(t2)1{7m>t1} | T, ] =E [eiz(t2)1{7m>t1} | Feinr]
<e At sy = e P . (4.44)

The first equality in (4.44) is a consequence of the fact that, if an event A
belongs to F;,, then A N {r,, > t1} belongs to Fy, nr,,. With A € F;, of the form
A={(N(s1),...,N(s,)) € B}, where 0 < sy < --- < s, <t and B is a Borel
subset of R”, the identities
Liry>tiyla = Lguoey 1 (N (s1) 5., N (sn))
= 1ot B (N (51 A Ti) 5o, N (80 A i)
are self-explanatory. Fix 1 < j < n. Right-continuity implies that the equality
N(sj ATp) = klim N ((27%[2" (sj A Tm)|) A s;) holds, and hence the variable
—00

N (8 A Tim) is T, r,,-measurable. Consequently, the event A N {7, >t} be-
longs to Fy Ar,. Theorem 2.42 about m-A systems then implies that for all
A € Fy, the event {r,, > t1} n A belongs to the o-field F, .., . In the left-hand
side and the far right-hand side of (4.44) we let m — o to obtain

E [e—Z(tQ) | grtl] < e—Z(tl), P-almost Surely. (4‘45)

By definition, the inequality in (4.45) shows that the process t — e4® is a
super-martingale. If 0 < t; < ¢, < T, and if E[e‘z(t2)] = E[e‘z(tl)], then
(4.45) implies that

E [e_Z(tQ) EAE e?M)  P_almost surely. (4.46)
This completes the proof of Theorem 4.11. O
PROOF OF 4.10. (a) An application of Itd’s formula and employing the

equality (Z, Z) (t) = (N, N) (t) yields:
o~ Z(0)
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[ emmawme +5 [ 20 awn )
— ¢ 2(0) _J e~ %@ AN (p). (4.47)

From the equalities in (4.47) it follows that the process t — ¢ ?® 0 <t < T,isa
local martingale. In view of the assumption that [e‘z (t)] =lforall0<t<T
it follows that the process in (a) is a genuine martingale: see Theorem 4.11.

(b) Again we apply Itd’s lemma, now to the function (z,y) — e *y. Then we
obtain:

(M) + (V. M) (1)
j (N M) () dZ(p) + [ € (@M () + N, (p)
s f 0 (M(p) + (N, M) () d(Z.2) (o)

f d(Z, M + (N, M) (p). (4.48)

By applying the equalities (7, Z) = (N, N) and (Z, M + (N, M)) = (N, M) to
the equality in (4.48) we obtain

—2Z(t)

—~

(&

M(t) + (N, M) (t))

~2@) (M(p) + (N, M) (p)) dN(p)

I
|
S—
o

0

e 2P (M(p) + (N, M) (p)) d(N,N) (p)

S

t

20 (dM(p) + d (N, M) (p))

t

_|_
— o=
o

0
t

e 20 (M(p) + (N, M) (p)) d (N, N) (p) — L e~ #Pd (N, M) (p)

S5S—

N| —

0
t

- | T Ol + (VD) () ANG) + [ PO a(p). (@9

0 0

Being the sum of two stochastic integrals with respect to (local) martingales
the equality in (4.49) implies that the process in (b) is a local martingale.

(c) By using a stopping time argument we may and do assume that the process

t — M(t) + (N, M) (t) is bounded and so it belongs to L' (Q,Fr, Qy). Let
0<t; <ty <T, and put

Y (t1) = Eqy [M (t2) + (N, M) (t2) | F, ] -
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Then the stochastic variable Y (¢1) is F;,-measurable and, for all bounded F;,-
measurable variables G' we have

E[e ?™ (M (t2) + (N, M) (t2)) G] = E [e ?DY (;) G]. (4.50)
Since the process t — ¢4 0 <t < T, is a P martingale, the equality in (4.50)
implies:

E[e 2" (M () + (N, M) (t2)) G] = E[e ™Y (1) G]. (4.51)
From assertion (b) together with our stopping time argument we see that the
process t — e %O (M (t) + (N, M) (t)) is a P-martingale. From (4.51) we then
infer:

E[e 2" (M (t) + (N, M) (t)) G] = E[e ?®Y (1) G] (4.52)
for all bounded J;,-measurable variables GG. So finally we get, P-almost surely,
e 7MWY (1) = 71 (M (t1) + (N, M) (1)),

and hence,
Y (t1) = M (t1) + (N, M) (t1), P-almost surely.
This shows assertion (c¢) and completes the proof of Proposition 4.10. [
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A combination of Proposition 4.10 and Lévy’s characterization of Brownian
motion in R yields the following result.

4.12. PROPOSITION. Let the R¥*-valued process s + c(s) be an adapted pro-
cess which is predictable relative to Brownian motion (B(t)) Put N(t) =

§,c(s)dB(s), and

t=0°

t

1
Z(6) = N + 3 (VN (1) = |
0
Suppose that for all t > 0 the equality E [e‘z(t)] = 1 holds. Then the process
(W(t)) =0, defined by W (t) = B(t) + Sf) c(s) ds is Brownian motion relative to
the measure A — Qn(A), A€ Fr, as defined in Proposition 4.10.

¢(s) dB(s) + %L e(s)[2 ds, ¢ 0.

PROOF. An application of Proposition 4.10 with M (t) = B;(t) shows that
the process

t

0
W;(t) = B;(t) + L ¢j(s)ds = By(t) + <L c(s) dB(S),Bj> (t)

= B;(t) + (N, B;) (1)

is a local Qy-martingale. Moreover, (W;,, W;,) (t) = §;, ;,t. From Theorem 4.5
we see that the process t — W(t) is a Qn-Brownian motion. This completes
the proof of Proposition 4.12. O

It will be very convenient to introduce Hermite polynomials (hx(x)), .y, and to
establish some of their properties. In the context of stochastic calculus they
also play a central role. The Hermite polynomial hy(x) is defined by

k
_ (_1\k %a:z i —%x2
hi(z) = (—1)Fe (dx) (e ) . (4.53)
For ke N, x € R, a > 0, we write

Hy(z,a) = a*hy <%) .

Then we have Hy(x,a) = 1, Hy(z,a) = x, Hy(z,a) = 2> —a, H3(z,a) = 2° —ax.
The Hermite polynomials satisfy the following recurrence relation:

hk+2($) — iL‘thrl(Q?) + (k + 1)hk<l‘) = 0, k = 0, (454)
and therefore
Hypio(x,a) — Hyyr(z,a) + (k + 1)aHg(x,a) =0, k= 0. (4.55)

The equality in (4.54) can be proved by induction and the definition of hj in
(4.53). From the definition of hyyq(z) it follows that hj,,(z) = zhgii(x) —
hi+o(x), and so, by (4.54) we see

hii(z) = (B + 1)hy(x), k= 0. (4.56)
From (4.54) and (4.56) we infer
hira(x) — xhyer (2) + i (2) =0, k=0,
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and hence
hii1(x) — zhg(z) + hy(z) =0, k = 0. (4.57)

By differentiating the equality in (4.57) and again using (4.56) we obtain the
following differential equation:

hi(x) — xhy(z) + khi(z) =0, k = 0. (4.58)
In the following proposition we collect some of their properties.

4.13. PROPOSITION. For 7, x € R and a > 0 the following identities are true:

Tx—l'r a - Tk
eTTTETI Z HHk(x,a), (4.59)
k=0
1.2 = Tk = Tk
e = Z —Hi(z, 1) = Z - (@), (4.60)
k=0 k=0 "
0 1 02 0
%Hkﬂ(x,a) = (k+1)Hi(z,a), and iﬁHk(x a) + %Hk(aj a) = 0.

(4.61)

PROOF. Let the sequence (%k(x)> be such that, for all z and 7 € C, the

keN
equality
TJ:——T S T
gk— (4.62)
holds. Then
> A e (AN iy
’W*(E) ()] L= (5) ()],
_ 1 k a ; *l(fo)2 _ 1 k d g 1,2
= (=) (a) ()], =0 (@) ()
= hi(z). (4.63)

The equality in (4.63) implies the identity in (4.60). By a correct scaling (7+/a
replaces 7, and % replaces ) the equality in (4.59) follows from (4.60) and
a

the definition of Hg(x,a). The equalities in (4.61) follow from (4.56) and from
(4.58) respectively. Altogether this completes the proof of Proposition 4.13. [

In the following proposition the process t — M(t), t € [0,T], is a martingale
on the probability space (2, F,P). Its quadratic variation process is denoted by
t— (M, M) (t), te[0,T].

4.14. PROPOSITION. The followmg identities hold:

Hien (M(2), (M JHk MM>(>)
(k+1

dM(s)

O<s1<--<8p41<t
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In addition, the following equalities hold as well:
MO 52 (MM)(1)

1
147 f eTME=37 (MM g1 (s)

0
/—1
=1+ZT’€J JldM(sl)...dM(sk)
k=1 0<sy<--<sp<t
+ 7t J feTM@l)-%T“M’MWSﬂ dM (s1)...dM (s;) (4.65)
O<si<--<syp<t
/-1 Tk
k=0 "
+ 7 JeTM(SI)_§T2<M’M>(SI) dM (s1)...dM (sg)
O<si<--<sp<t

Ead

o Hie (M (0), (M, M) (1)

7t J J (eTM<Sl>-%T2<M»M><Sl> - 1) dM (s)...dM (s;). (4.66)
O<si<--<sp<t

|
bl
i~
o

_l’_

Please notice that in the equalities in (4.64) through (4.66) the order of inte-
gration has to be respected: first we integrate with respect dM (s;), then with
respect to dM (s;) and so on.
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PROOF OF PROPOSITION 4.14. These equalities follow from Ito’s formula
and the equalities in Proposition 4.13. It6’s lemma is applied to the functions
(z,a) — Hyy1(x,a), and (z,a) — e™ 27% with z = M(s), and a = (M, M) (s).
In particular the equalities in (4.61) are relevant. This completes the proof of
Proposition 4.14. O

In the following proposition we collect some equalities in case we consider an
. . 1 .

exponential martingale t — eM®=2 MMM in case the process t — (M, M) (t)

is deterministic.

4.15. PROPOSITION. Let t — M(t), 0 <t < T, be a martingale on (Q,F,P)
with the property that the variation process t — (M, M) (t), 0 < t < T, is
deterministic. The the following identities are true:

E [L<sl<...<sk <JdM (s1)...dM (sg,) - Lm@% <JolM (p1)...dM (%)]

_E lHkl (M(t), (M, M) (1)) Hy, (M(t), (M, M) (t))]
ky! ko!

_ (M) ()" Seins and (4.67)

. |

f J6M<sl>;<M,M><s1> dM (s1)...dM (s¢)
O0<s1<--<sg<t

:L6<M,M><s><<M’ M) (t)(g__ug MY g iar, ) (s)

e MM 2 (t )J. (4.68)

PROOF. Let the predictable processes s — Fi(s) and s — FQ ) be such that
the quantities E [g§ \Fy(s)[2 d (M, M) (s)] and E [50 | Fy(s)

are

finite. Then we have

) ()]
e| [ Feave) [ me o) -5 [ Rene (s }
4

1 t1 t1

69)
for 0 < t; < ty < T. By repeatedly employing the equality in (4. 69) and
using the fact that the process s — (M, M) (s) is deterministic we infer, for
1<k1<k2,and0<t<T,With€=k2—k’1,

8 [J;]<81<---<sk <tJdM (s1) . AM (s, - L<p1<_"<pk <tfdM (p1)...dM (Pi@)]

) UO J dM (sy)...dM (sg) d (M, M) (sp41)...d (M, M) (Skz)]

Download free eBooks at bookboon.com



:E[ [ e s ) )] <o

(4.70)
If in (4.70) ky = ko, and so £ = 0, then we obtain

2
f fdM(sl)...dM(skl)
0<s1<---<sk1<t

The equalities in (4.70) and (4.71) show the equalities in (4.67). The proof of
the equalities requires an induction argument. For ¢ = 1 we have

| 2]

E

- . (4.71)

t
f M) =LA ga (s)

0
rt
= [ [~ 0000 .01, 1) )
Jo
t
_ N E [€2M(s)7%(2M,2M)(s)] o(MM)(s) 4 (M, M) (s)
Jo
rt
= | eMME) q(pr, MY (s) = MM g (4.72)
Jo

The equalities in (4.72) imply those in (4.68) for £ = 1. The second equality
follows by partial integration and induction with respect to £. The first equality
in (4.68) can be obtained by an argument which is very similar to the proof of
the equality in (4.67) with k; = ko = £. The details are left to the reader.

This completes the proof of Proposition 4.15. U

4.16. COROLLARY. Let the hypotheses and notation be as in Proposition 4.14.
Then

lim TZJ JeTM(Sl)éTQ(M’MXSI) dM (s1)...dM (s;) =0,  (4.73)
{—w 0<sy<--<sp<t

P-almost surely. If the limit in (4.73) is in fact an L'-limit, then the pro-
cess t — eTMO=3TH(MM)D) g g martingale. In particular, it then follows that

E [eTM(t)_%TZ<M’M>(”] = 1; compare with the inequality in (4.41) and with The-
orem 4.11.

If the process t — (M, M) (t) is real-valued and deterministic, then the limit in
(4.73) is an L*-limit, and so also an L'-limit.

ProOF. Equality (4.73) in Corollary 4.16 follows from the equality in (4.59)
in Proposition 4.13 with x = M(t) and a = (M, M) (t) together with the equal-
ities in (4.65) and (4.61). The assertion about the L'-convergence also follows
from these arguments. The only topic that requires some is the one about
the situation where the process t — (M, M) (t) is deterministic. In this case
the terms in the sum in (4.65) are orthogonal in L?(Q,Fr,P), and this sum

TM(t)— 5T (M,M)(t)

converges in L%-sense to e These assertions follow from the
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identities (4.67) and (4.68) in Proposition 4.15. This completes the proof of
Corollary 4.16. O

The previous results, i.e. Proposition 4.14 and Corollary 4.16 are applicable if
the martingale M(¢) is of the form M(t) = SS h(s) - dW(s), where t — W(t)
is standard Brownian motion. Then (M, M) (t) = Sé \h(s)[* ds. If s — h(s) is
deterministic, then in (4.73) we have L?*-convergence. These martingales play a
role in the martingale representation theorem: see Theorem 4.21.
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1.4. Weak solutions to stochastic differential equations. In the fol-
lowing theorem the symbols 0;;, 1 < i <d, 1 <j <n,and b;, 1 < j < d,
stand for real-valued locally bounded Borel measurable functions defined on
[0,00) x R%. The matrix (a; (s, az)) _, is defined by

n
ajk S, ) 2 (s, Ojk S,T) = (O_(Sa‘r)o-*(sa‘r))i,j'

For s > 0, the operator L(s) is defined on C? (R?) with values in the space of
locally bounded Borel measurable functions:

[\D\P—‘

Z i (s,2) DiD; f () + ij(s,a:)Djf(x), feC?*(RY.

(4.74)
In Theorem 4.17 and its proof we use the following notation Ey(s,z) is the
orthogonal projection from R™ onto the zero-space of the matrix o(s, x) viewed
as an operator from R™ to R? and Ex(s,z) is the orthogonal projection from
E’, onto the range-space of the matrix o(s, z). Formally these operators can be
written as

En(s,z) =T —o(s,x)* (o(s,x)o(s,x)*) " o(s, z)
=1-— lgiflrjla (s,2)* (o(s,x)o(s,z)* +el) " o(s,x), and

Er(s,z) = o (s,x)* (o(s,x)o(s,2)*) " o(s,z)
= lsif{)la (s,2)* (o(s,z)o(s,2)* + el) " o(s, x).

The following theorem shows the close relationship between weak solutions and
solutions to the martingale problem. A filtration {J}},., satisfies the standard
conditions if F, contains the P-null sets.

4.17. THEOREM. Let (2, F,P) be a probability space with a right-continuous fil-
tration ()5, satisfying the standard conditions and determined by a Brownian

motion {W(t) = (Wi(t),...,Wy,(t)) : t =0} on (2, F,P). Suppose that
{(X(t) = (X1(t),...,X4(t)): t =0}

1s a d-dimensional continuous adapted process. Then the following assertions
are equivalent:

(i) For every f € C*(R?) the process

t

t— f(X(1) - f(X(0) - f L(s)f (X (s)) ds (4.75)

0

18 a local martingale.
(ii)  The processes

t
tes Mi(t) = X, (1) —f by (5, X(s)) ds, >0, 1<j<d, (4.76)
0
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are local martingales with covariation processes
t

t— <Ml, M]> (t) = J Qj j (S,X(S)) dS, t = 0, 1< 7:, j <d. (477)
0

(iii)  There exists a Brownian motion {B(t) : t = 0} starting at 0 such that

X(t) = X(0) + fb(s,X(s)) ds + fa (s, X(s)) dB(s), t=0. (4.78)

0

t
Notice that the covariation of the processes ¢t — J o(s,X(s)) dW(s) and of
0
t
t— J En (s, X(s)) dW(s) vanish. The same is true for the processes t —
0

t t
f Er(s,X(s)) dW(s) and t — f En (s,X(s)) dW(s). Observe that the co-
0

0
t

variation of the processes t — M (t) and t — f En (s, X(s)) dW (s) vanish if the

0
Brownian motion ¢ — W(t) is independent of the process ¢ — M (t). This can
be accomplished by enlarging the probability space (2, F,P) with an indepen-
dent copy (Q%,F",P"). On the probability space (22 x Q" FQ FWV P x PV)
the new variables X (¢) and W(t) are given by
X(#) (w,) = X(#)(w) and W(t) (w,w') = W(t) (), (w,o)eQx QW

respectively.

Examples of (Feller) semigroups can be manufactured by taking a continuous
function ¢ : [0,00) x E — E with the property that ¢ (s +t,x) = ¢ (¢, (s, 2)),
for all s, ¢ > 0 and x € E. Then the mappings f — P(t)f, with P(t)f(x) =

f (¢ (t,z)) defines a semigroup. It is a Feller semigroup if lim, .o ¢ (t,2) = A.
An explicit example of such a function, which does not provide a Feller-Dynkin

semigroup on Cy (R) is given by ¢(t,z) = S (example due to V.
1+ Sta?

Kolokoltsov [96], and [95]). Put u(t,x) = P(t)f(z) = f(p(t,z)). Then

0 0

—u(t, x) = —933—u(t, x). In fact this (counter-)example shows that solutions

to the martingale problem do not necessarily give rise to Feller-Dynkin semi-
groups. These are semigroups which preserve not only the continuity, but also
the fact that functions which tend to zero at /A are mapped to functions with
the same property. However, for Feller semigroups we only require that con-
tinuous functions with values in [0, 1] are mapped to continuous functions with
the same properties. Therefore, it is not needed to include a hypothesis like
(4.79) which reads as follows: for every (7,s,t,z) € [0,T]®> x E, 7 < s < t, the
following equality holds:

P,.[X(t)€ E] =P,,[X(t) € E, X(s) € E]. (4.79)

Nadirashvili [128] constructs an elliptic operator in a bounded open domain
U < R? with a regular boundary such that the martingale problem is not
uniquely solvable. More precisely the result reads as follows. Consider an elliptic
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_ 2
operator L = E O e
jh=1  OTi0Tk

, where a;j = a; are measurable functions on R?

such that
d

e < Y agibe <clé?, EeR?,
k=1
for some ellipticity constant ¢ > 1. There exists a diffusion (X (t),P,) corre-
sponding to the operator L which can be deﬁned as a solution to the martin-
gale problem P[X(0) =z] = 1, f(X(¢)) — So ) ds is a P,-
martingale for all f € C? (Rd). Nadirashvih is 1nterested in non—umqueness in
the above martingale problem and in non-uniqueness of solutions to the Dirich-
let problem Lu = 0 in €, the unit ball in R¢, u = ¢ on 052, where 2 < RY
is a bounded domain with smooth boundary and g € C?(d€2). In particular,
so-called good solutions u to the Dirichlet problem are investigated. A good
solution is a function w which is the limit of a subsequence of solutions wu,,,

d 2
n € N, to the equation L"u, = Z a;‘kﬂ =01in 2, u, = g on 0f), where
i1 ’ é‘mjé‘mk

the operators L™ are elliptic with smooth coefficients a7, and a common el-
lipticity constant ¢ such that af), — a; almost everywhere in 2 as n — oo.
The main result is the followmg theorem: There exists an elliptic operator L
of the above form defined in the unit ball B; < R? d > 3, and there is a
function g € C* (0B;) such that the formulated Dirichlet problem has at least
two good solutions. An immediate consequence is non-uniqueness of solutions
to the corresponding martingale problem.

The following corollary easily follows from Theorem 4.17. It establishes a close
relationship between unique weak solutions to stochastic differential equations
and unique solutions to the martingale problem. For the precise notion of
“unique weak solutions” see Definition 4.19 below. This result should also be
compared with Proposition 3.43, where the connection with (strong) Markov
processes is explained.

4.18. COROLLARY. Let the notation and hypotheses be as in Theorem 4.17. Put
Q = C([0,0),R?), and X(t)(w) = w(t), t =0, we Q. Fizx e R Then the

following assertions are equivalent:

(i) There exists a unique probability measure P on F such that the process
t

£ X)) — £ (X(0)) - f L(s)f (X(s)) ds

0

is a P-martingale for all C*-functions f with compact support, and such
that P[X(0) = z] = 1.

(ii) The stochastic integral equation

X@=x+f

0

t t

o(s,X(s)) dB(s) + J b(s, X(s))ds (4.80)

0
has unique weak solutions.

Download free eBooks at bookboon.com



4.19. DEFINITION. The equation in (4.80) is said to have unique weak solutions
on the interval [0, T1], also called unique distributional solutions, provided that
the finite-dimensional distributions of the process X (t), <t < T, which satisfy
(4.80) do not depend on the particular Brownian motion B(¢) which occurs in
(4.80). This is the case if and only if for any pair of Brownian motions

(B(t): T=>t>0),(QFP)} and {(B'(t): T>t>0), (2,5 P))

and any pair of adapted processes {X(t): T >t >0} and {X'(t): T'>t > 0}
for which

t

o (s,X(s)) dB(s) +L b(s,X(s)) ds and

t

X(t)=x+f

0
t
X'(t)y==z —i—f o(s,X'(s)) dB'(s) +J b(s,X'(s)) ds

0 0

the finite-dimensional distributions of the process {X(t): T >t > } relative
to P coincide with the finite-dimensional distributions of {X'(¢): T >t = 0}
relative to [P

t
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PROOF OF THEOREM 4.17. (i) = (ii) With f; (z1,...,24) = zj, 1 < j <
d, assertion (i) implies that the process

t t
M;(t) = X;(t) — L bj (s, X(s)) ds = f; (X(t)) — L L(s)f; (X(s)) ds  (4.81)
is a local martingale. We will show that the processes
t
{Mz(t)M](t) —J ;5 (S,X(S)) ds: t=> 0}, 1< i, j < d,
0

are local martingales as well. To this end fix 1 < ¢, 7 < d, and define the
function f;; : R — R by f;; (z1,...,74) = z;z;. From (i) it follows that the
process

{&@XAO—L<%an@»+hmaX@»Xx@+mcmw@Lm@»w}
is a local martingale. For brevity we write

aij(s) = aij (s, X(s)), Bj(s) =b; (s, X(s)), Bils) = bi(s, X(s)),

S

f@ yar, My(s) = Xifo) = | )

M j(s) = Xi(s)X;(s) — J (Bi(r)X;(T) + B(T) Xi(7) + (7)) dr. (4.82)

Then the processes M; and M ; are local martingales. Moreover, we have
(Mi (t) + Jt Bi(s) ds) (Mj(t) + J: B;(s) ds> = Xi(t)X;(t)
ij><>+@w () + aig(r) dr + My (1)
=fwxMXh%WMW+@ﬁNWﬂ—MU»ﬂwhDM
f@m (1) + B(rIML(T)) dr + My (1)
= fo Bi(T) (X,;(1) — M;(7)) dr +J B (1) (X;(1) — M;(7)) dr

" mxﬂm+fwx><>+@w (7)) dr + My (1)

0

JBZ(T JTBJ ds dTJFJ B;(T J Bi(s)dsdr

+L%A>m+fwx><>+@m (7)) dr + My (1)

— J J Bi(T)B;(s) dr ds + J J Bi(7)B;(s) dr ds

O<s<t<t O<r<s<t

+ [autmdr+ [ BEIME) + 5 dr+ g0
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_ Lt By(7) dr Lt Bi(s) ds + Lt @i ;(s) ds + M ;(t)

" f (B:(5)M; (5) + ;(5) Mi(s)) ds. (4.83)

Consequently, from (4.83) we see

M;(t)M;(t) — J a; (s)ds

= M;;(t) — L (Bi(s) (M;(t) = Mj(s)) + () (Mi(t) — Mi(s))) ds.  (4.84)

It is readily verified that the processes
L Bi(s) (M;(t) — M;(s)) ds = Jo JOT Bi(s)dsdM;(r) and
| B ) = dnts)y ds = || gt asntio

are local martingales. It follows that the process
t
{Mi(t)Mj(t) —J qis(s) ds - t>0}
0
is a local martingale. So that the covariation process (M;, M;) is given by

(M;, Mj) (1) = §; i g(s) ds.

(ii) = (iii) This implication follows from an application of Theorem 4.8 with
O, (1) = ai; (8, X(8) and x(t) = o (t, X(£))* (o (t, X(8)) o (£, X(£))*) "', and
where B(t) = S(t) x(s) dM(s), provided that null-space of the matrix o (¢, X (¢))
is {0}. Observe that then (Bj,, B;,) (t) = td;, j,, because

X)X = o (8, X (6)" (o (&, X (#) o (£, X(£)*) " o (£, X (1)) = 1.

In addition, the process ¢ — B(t) is a Brownian motion and for ¢ > 0 we have

X(t) - X(0) —Ltb(s,X(s)) ds—Lta(s,X(s)) dB(s)

— X(1) — X(0) - J: b(s, X(s)) ds — Lt o (5, X (5)) x(s) dM(s)

— X(1) - X(0) J:b(s,X(s)) ds - Lt dM(s)

— X(t) - X(0) - j: b(s, X(s)) ds — M(t) + M(0) = 0, (4.85)

where in the very final step of (4.85) we invoked the equalities in (4.76).

If the matrix process o (t, X (t)) o* (t, X (t)) is not invertible, then we proceed as
follows. We have a martingale M (s), 0 < s < t, on (£, F;, P) with the properties
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of assertion (ii). We introduce the matrix processes 1. (s), £ > 0, Eg(s), and
En(s) as follows

Uo(s) = 0% (5,X(s)) (0 (5, X(5)) 0" (5, X (s)) + eI) "
Eg(s) = 1{}%1 o* (s, X(5)) (0 (s, X (s)) 0% (s, X(s)) +el) " o (s, X(s)), and

EN<S) =1— ER<S).
The matrix Er(s) can be considered as an orthogonal projection on the range
of the matrix o* (s, X(s)) o (s, X(s)), and En(s) as an orthogonal projection on
its null space. More precisely,
Er(s)o™ (s, X(s)) = 0" (s,X(s)), and o(s,X(s)) En(s) =0.

The matrix process Vi (7) is to be determined, but it satisfies Vy(7)V3(7) =
En(T) = Ex(T)VN(T)VE(T)E% (7). In terms of these processes we define the
following process:

B(s _hmJ % ) dM(7) + J$Wwﬂdwqﬂ

=LWWMWW+EWWMW@- (4.86)

Here, we applied the martingale representation theorem to get the matrix pro-
cess Vr(7): see Theorem 4.22. It will turn out that

Vr(T)VE(7) = Er(T) = Er(7)VR(T)VE(T) ER(T).

Next we Will prove that the process s +— B(s) is a Brownian motion, and that
M(s) — So ) dB(1). Put

s) = L 0. (7) dM<T)+f Vi () dW (7). (4.87)

Then the restriction of the matrix process V5 (7) to the range of the orthogonal
projection E%(7) is extended to a linear mapping V*(7) to the whole space R™
in such a way that V*(7)Eg(7)r = Vji(7)z, x € R”, and such that V3 (7) :=
V*(1)EnN(7) is an orthogonal transformation from the range of Ey(7) onto the
range of =V} (1) Er(7)Vg(7) which is the null-space of Er(7)Vg(7). If we define
V() = Egr(7)Vr(T) on the range of V3 (7)Eg(T) and as the adjoint Vi (7) of
V(1) on the range of I — V3 (7)Eg(7)Vg(7). Then we see that V(1)V*(1) =
I. Such an orthogonal map can be obtained via a Gramm-Schmidt procedure
applied the finite sequences (I — Vi(T)Er(T)Vr(T)) ex, and En(7)er, 1 < k < n,
where the vectors e, 1 < k < n, form an ortho-normal basis for R™. In addition
we get

Er(T)VR(MVH(T)EN(T) = Eg(T)V(T)V*(T)EN(T) = ER(T)EN(T) = 0.
(4.88)

Moreover, we have

<Bej17 BEjz) ( )

Z ZJ ¢5J1k1 ¢€J1k1< )Uklé(T X(r ))nge(T X(1)) dr

k1,ko=1/¢=1
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(employ the equality M (s) So ) dB(7))
= [ (3o X0 0" (7. X 7)) 8 <T>)h L | R VE),,, dr

+ Z Z J ¢€]l kl VNJ2 k?( )Ukl (T X( )) d<B€7Wk> (T>

—_
??‘

+anlk2 Z:J Ve o (Vi ju s (T) k1,0 (7, X (7)) d (B, W) (7). (4.89)

k=1ki=1
Notice that for € | 0 the first term in (4.89) converges to the covariation of the

([ #etr dBm)jl (] vt dwm)ﬁ
( L " En(r)Va() dW(T)) . and

([ #atr dBm)jQ ([ vetryawn) jl

J2
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On the one-hand this covariation is equal to §; (Er(7)) irj» 7, but on the other
hand, by (4.86), it is also equal to §; (Va(T) V(7)) irj» A7 As a consequence we
infer (Er(7));, ;, = (Va(T)Vz(7)), and hence Eg(7) = (Vr(T)VE(7));, j,- So the
procedure which we explained above can be carried out to obtain the matrix
process 7 — V(1) which satisfies, e.g., V(7)V*(7) = I. From (4.89) we infer by
continuity and the definition of Er(7) that

<BJ1> B > ( ) - hHl <B€,j1> Be,j2> (5>

(ERER ) + [ (BN )0

<Jo T>>' =<L(‘) V() dW(T)) | >(5>
<L 7')) E (Lc) Va(7) dW(T)) | >(S)

S

~ [ B, + [ BB, i

0

)

+<<f Va(r) dW(r >) (f vadW(T)) ><s>
“)

+<<j En(r >vR<>dW<r>) (j vadW(T)) ><s>

(the covariations of the processes S(t) Vr(T) dW (1) and So Vi (7) dW (7) vanish:
see (4.88))

_ L (En(r)EL(7) + Ex(7)E5(7) s dr = 5 s, (4.90)

In the final step of (4.90) we used the fact that the processes Er(7) and En(T)
are orthogonal projections such that Ex(7) + En(7) = I. From Lévy’s theorem
4.5 it follows that the process s — B(s), 0 < s < t, is a Brownian motion.

In order to finish the proof of the 1mphcat10n (ii) == (iii) we still have to prove
the equality M(s) = {oo( ) dB(7) and to construct the matrix
process Vn(7) in such a Way that the covarlatlon of the processes M(t) and

So Vn(7) dW (7) vanishes. For brevity we write o(7) = o (7, X(7)). Then by
definition and standard calculations with martingales we obtain:

M(s) — M(0) — J o (1) dB.(T)

0

= M(s
0

)~ M(0) - f o ()P (r) dM(7) - | (7 V() W (7)
:L (I—U(T)U*(T>

(o(T)o* () +eI)™") dM(7)
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_ ef (o(r)o™(7) + e) " dM(7). (4.91)
0

From (4.91) together with the fact that covariation process of the local martin-
gale M(s) is given by { o(7)o*(7) dr, it follows that the covariation matrix of
the local martingale

M(s) — J o (7) dB.(7)

0

is given by
&? fo (o(r)a*(7) + eI) " o(r)o* (1) (o(r)a*(7) + 1) dr. (4.92)
In addition, we have in spectral sense:
0< 2 (0(r)o* () + D) o(r)o*(7) (o(r)o* (1) +el) < 21, (4.93)

and thus in L?-sense we have

M(s) — M(0) — f o(r) dB(r) = [*-lim (M(s) — M(0) - f J(T)BE(T)) 0.

0 el0

N~
-
Ne)
>~

SN~—

The equality in (4.94) completes the proof of the implication (ii) — (iii

(iii) = (i) Let f : RY — R be a twice continuously differentiable function. By
[t6’s lemma we get

= | Vf(X(s))o(s,X(s)) dB(s). (4.95)

0
The final expression in (4.95) is a local martingale. Hence (iii) implies (i).

This completes the proof of Theorem 4.8. U

4.20. REMARK. The implication (ii) = (i) in Theorem 4.17 can also be proved
directly by using It6 calculus. Suppose that the local martingales ¢ — M;(?),
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1 < j < d, are defined as in assertion (ii) with covariation processes as in (4.77).
Let f be a C?-function defined on R?. Then we have:
¢

X)) = f(X(0)) - f L(s)f (X(s)) ds

0

:Jva(X(s)) dX(s) JDDf X(s)) d (X, X;) (s)

j V(X f Vf (X(5)) b(s, X(s)) ds

.l 2 j DD, (X(5) d (Mi M) (5) ~ | L(5)S (X(5)) ds

0

f V(X f Vf (X(s) b(s, X(s)) ds

= J DD f (X(s)) as; (5, X (5)) ds—J L(s)f (X(s)) ds

131

f Y (X(s)) dM(s). (4.96)

Assertion (i) is a consequence of equality (4.96).
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2. A martingale representation theorem

In this section we formulate and prove the martingale theorem based on an
n-dimensional Brownian motion. Proofs are, essentially speaking, taken from
[138]. Let (W(s))y<,—y be standard Brownian motion in R”, and let JF; be
the o-field generated by (W (s))o<,<, augmented with the P-null sets. For h €

L* ([0, T]; R") we write Xj(t) := eloh(s)-dW(s)=3 flh()]* ds.

4.21. THEOREM. Let Uy be the subspace of L? (0, Fr,P) spanned by the expo-
nentials Xy (T) := efo he)»aW (=3 fg 17 ds py LEpe ([0, T;R™). Then Wy s
dense in the space L* (1, S“T,IP’).

In Theorem 4.21 the space Lg, . ([0, T]; R") consists of those R"-valued func-
tions h € L ([0, T]; R™) which can be written in the form

N N N
2 (el (5) <2 Aj> =Y 104)(), 0<s<T, NeN, (4.97)
k=1 =k j=1

where, for any N e N, 0 =t; <t; < --- <ty =T is an arbitrary partition of
the interval [0,T], and where ()\ ) <j<n are arbitrary vectors in R". Observe

that, for such functions h, So )-dW(s) = Zjvzl Aj - W (t;). Also notice that,
by Itd’s lemma, X,(T) = 1 + So Xn(s)h(s) - dW(s), h € L*([0,T];R™). In
the proof of Theorem 4.21 the following notation is employed. The symbol

Cy (R™N) stands for the vector space of those C*-functions ¢ defined on all
real n x N matrices A\ with the property that all functions of the form

A (L+ [ MRe) " Di#te(N), meN, 1<j<N, 1<k<n, ajz €N,

are bounded. Here D }f stands for the derivative of order «; relative to the
variable A; . The symbol |A|gg stands for the Hilbert-Schmidt norm of the
matrix A; that is

H)‘HHS - Z Z |>‘J k’ Js k)1<]<N,1<k<n

j=1k=1

Functions of the form A — exp (-1 H)\Hils) belong to the space Cif (R™N).
Observe that Cg° (R™*Y) constitutes a dense subspace of Cy (R™V), i.e. the
space of complex-valued continuous functions which tend to 0 at oo equipped
with the supremum norm.

PrROOF OF THEOREM 4.21. This statement is true if there exists no g €
L?(Q, 37, P), which is perpendicular to all X(T) € Uy. We start by assum-
ing that there is a g € L?(Q,F7,P) such that ¢ is orthogonal to all vari-
ables X(T) € Wy. This orthogonality means that E[X,(T)g] = 0, for all
heL¥ ([0, T];R"). Or, what is the same,

simple

([0,T]:R").  (4.98)

simple

J elo h(s)-dW (s)=3 §g h 2“lsg dP =0, forallhe LY
Q
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The equalities in (4.98) are equivalent to

=20 hle)? f el h(e)-dW () (w) gdP =0, forall he Ly, . ([0,7];R"),
which amounts to
J elo MO WE) g qp — 0, for all he LE, . ([0, T]; R™), (4.99)
Q

By taking h as in (4.97), we see that for all A = (Ay,..., Ay) € (R")Y = RN
and for all (ty,...,ty) € [0,T]" with 0 =ty <t, < --- <ty = T, the following
equality holds: §, eZim1 AW (t) g gP = (). Next, put G\ = §, eZim1 X W) g g,
The function A — G()\) is real analytic on R”XN , and thus has an analytic

extension to the complex space C"*N: G(z) := |, PR RC) gdP for all z €
CN. Here zj - W;(t) = Yp_; zjuWil(t ), zj = (z14,---,2nk) € C". Since
G(\) = 0 for A € R™Y it follows that G(z) = 0 for z € (C”XN. However, for
¢ e CF (R™Y), and with

~ _iTN o
go(yl,...,yN)zf f e Xj=1Y ip(x1,...,oN) dey ... dxy,
Rn Rn

N times

Ran

where (y1,...,yn) € , we see that

E[@(W(tl),---,W(tN))g]=L¢(W(t1),---,W(tN))gdP

(inverse Fourier transform)

1 iyN o A
_ L (7(%)“” . et 2i=1 W) vi 5(y) dy) gdP

(Fubini’s theorem)

1 iyN Yoy ~
- W JRHXN fﬂ ¢ ZJ:l W(t]) y]g dP(p(y) dy

= (2@% JRM G(iy)gp(y) dy = 0. (4.100)

From the monotone class theorem, and the fact the space Cf° (R is dense

in Cy (R”XN ) for the uniform topology, it follows that the equality in (4.100),
i.e. the equality

an)

Ele (W (t1),....W(ty))g] =0 (4.101)
can only be true for all ¢ € Cf° (R™*V), and for all (t;,...,ty) € (0,00)",
0 <ty <--- <ty =T, forall N € N, provided that E[Fg] =0 for all
bounded Fp-measurable random variables F Consequently, E [X},(T")g] = 0 for
Q2

all h e LE, 1 ([0, T];R") if and only if the random variable g € L* (Q, Fr,P) is

identically 0. This completes the proof of Theorem 4.21. O

The following theorem is known as the Ito representation theorem.
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4.22. THEOREM. If the random wvariable X (T) belongs to L? (2, Fp,P), then
there exists a unique predictable R™-valued process t — F(t), 0 <t < T, for
which SOTE [|F(s)|2] ds < oo and which is such that

T

X(T) =E[X(T)] + L F(s)-dW (s). (4.102)

In other words the space

T T
C+ {J F(s)-dW(s): s+— F\(s) predictable and f
0 0

coincides with L? (Q, F7, P).

E[|F(s)]] ds < oo}

PROOF OF THEOREM 4.22. Let X(7') be as in Theorem 4.22. Then there
exists double sequences ((04]- k)N_’“l) in C and ((hj k)N_’“l) of elements in
"= keN "I keN

L pe ([0, T]; R™) such that, with F(t) = N_’“ v x Xn, , (t)h;(t) and with
N
- 3, = 3 gl
Ni, T Ni
=Yl + J Z a1 X, (E)hy e (t) - W (t)
j=1
=E[X,(T)] + f Fi(t) - dW(t), (4.103)
0
we have
0= lim E[|X(T) = Xp(T)[*] = lim B [|X(T) = Xu(T)["]
T
= klgim {|E [X(T) — Xp(D)]]” + J E [|Fe(t) — Fk(t)|2] dt} . (4.104)
H£—0 0

In the third equality in (4.103) we employed It6’s lemma. From (4.104) we infer
that E [X(7T")] = limg_, E [X(T)] and that there exists a predictable process
t — F(t) such that

T
lim | E [|F(t) — Fu(t)]*] = 0. (4.105)
—00 0
From (4.105) we obtain
T T
-l [ o) dw(r) = J F(t) - dW (). (4.106)
—% Jo 0

A combination of (4.103), (4.104) and (4.106) yields the equality in (4.102). In
addition, we have SOT E[|F (s)]2] ds < o, and so the existence part in Theo-
rem 4.22 has been established now. The uniqueness part follows from the Ito
isometry

2

|-

E UT Fy(s) — Fi(s)]? ds] _E

0

f (Fy(s) — Fis)) - iV (s)

0
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ADVANCED STOCHASTIC PROCESSES: PART II STOCHASTIC DIFFERENTIAL EQUATIONS

if X(T)—-E[X(T)] = §3 Fi(s) - dW(s) = §; Fa(s) - dW(s). Altogether this
completes the proof of Theorem 4.22. O

Next we formulate and prove the martingale representation theorem.

4.23. THEOREM. Let (M(t)),,eq belong to M*(Q,Fr,P). Then there exists
a unique predictable R™-valued process t — ((t) = ((1(t),...,Cu(1)), C(t) €
L? (9, F;,P;R™), such that

M(t) = M(0) + L C(s) - dW(s) = M(0) + ZL G(s)dWi(s).  (4.107)

Of course, if in Theorem 4.23 the process t — M(t), 0 < ¢t < T, is a martingale
vector in R?, then we obtain a predictable matrix Z(t) € R"*? such that M(t) =
M(0) + § Z(s)*dW(s). (This is what one needs in the context of Backward
Stochastic Differential Equations or BSDEs for short.)

o™
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PROOF OF THEOREM 4.23. Let (M(t)),<,<r be as in Theorem 4.23. The-
orem 4.22 yields the existence of a unique predictable R™-valued process t —
C(ﬂ = (Cl(t)> R gn(t))7 C(ﬂ € L2 (Q> Stb ]P); Rn)’ such that

M(T) = E[M(T)]Jrfo ((s)-dW (s) = E[M(T)]JrZJO Gj(s) dW;(s). (4.108)

Since the processes t — M(t) and t — Sé G(s)dW;(s), 1 <j<n, 0<t<T,
are martingales, from (4.108) we infer

M) = E[M(D)| 5] - B[] + [ ot aw(s) |5

_E[M(T)] + L C(s) - dW(s) = E[M(0)] + L Cls)-dW(s)  (4.109)

From (4.109) we get M(0) = E[M(0)], and so the representation in (4.107)
follows from (4.109). The proof of Theorem 4.23 is complete now. 0

3. Girsanov transformation

In this section we want to discuss the Cameron-Martin-Girsanov transformation
or just Girsanov transformation. Let (2, F,P) be a probability space with a
filtration (F;),.,. In addition, let the process {B(t) : t = 0} be a d-dimensional
Brownian motion. Let b;, ¢;, 0; ; be Borel measurable locally bounded functions
on R?. Suppose that the stochastic differential equation

t

X(t):$+J

(. X(3))dB() +f0 b(s, X(s)) ds (4.110)

has unique weak solutions. For a precise definition of the notion of “unique
weak solutions” see Definition 4.19. For more information on transformations
of measures on Wiener space see e.g. Ustiinel and Zakai [177]. In particular
these observations mean that if in equation (4.111) below (for the process Y (t))
the process B'(t) is a Brownian motion relative to a probability measure P’
then the P'-distribution of the process Y (¢) coincides with the P-distribution of
the process X (t) which satisfies (4.110). Next we will elaborate on this item.
Suppose that the process ¢t — Y'(t) satisfies the equation (in column vectors):

t t

o(s,Y(s)) dB(s) + J (b(s,Y(s))+0(s,Y(s))c(s,Y(s))) ds

0

Y(t)=x+f0

=+ J o(s,Y(s))dB'(s) + J b(s,Y(s))ds, (4.111)

0 0

where B'(t) = B(t) + S(t) ¢ (s,Y(s)) ds. The following proposition says that rela-
tive to a martingale transformation P’ of the measure P (Girsanov or Cameron-
Martin transformation) the process t — B’(t) is a P-Brownian motion. More
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precisely, we introduce the local martingale M’(t) and the corresponding mar-
tingale measure P’ by

t 1 t
M'(t) = exp (—J c(s,Y(s))dB(s) — §J e (s,Y (s))]? ds) and (4.112)
0 0
P'[A] = E[M'(t)14], AeF,. (4.113)
We also need the process Z'(t) defined by

t 1 ¢
Z'(t) = —J c(s,Y(s))dB(s) — §J ¢ (s,Y(s))]? ds. (4.114)
0 0

In addition, we have a need for a vector function c;(t,y) satistying c(t,y) =
c1(t,y)o(t,y). Here c(t,y) and ¢ (t,y) are considered as row vectors. This is
equivalent to saying that the column vector c(t¢,y)* belongs to the range of
o (s,y)*. More precisely, put

P(s,y) = o (s,9)" (0 (5,9) (0 (5,9)") "o (5,9). (4.115)

Observe that P(s,y) is well defined: it is the orthogonal projection from R? on
the range of o (s,y)*. Then the row vector c(s,y) can be written in the form

c(s,y)=c(s,y)P(s,y) =c1(s,y)0(s,y), (4.116)

where ¢i(s,y) = c(s,y)o (s,9)* (o (s, ) (o (s,9))") ', Also notice that the
range of o(s,y)* coincides with R? provided the zero-space of o(s,y) is triv-
ial. We assume that such a vector function ¢ (¢,y) exists.

4.24. PROPOSITION. Suppose that the process Y (t) satisfies the equation in
(4.111). Let the processes M'(t) and Z'(t) be defined by (4.112) and (4.114)

respectively. Then the following assertions are true:

(1) The process t — M'(t) is a local P-martingale. It is a martingale
provided E[M'(t)] =1 for all t = 0.

(2) Fizt > 0. The variable M'(t) only depends on the process s — Y (s),
0<s<t.

(3) Suppose that the process t — M'(t) is a P-martingale, and not just a
local P-martingale. Then P’ can be considered as a probability measure
on the o-field generated by Ui~oF;.

(4) Suppose that the processt — M'(t) is a P-martingale. Then the process
t — B'(t) is a Brownian motion relative to .

PRrOOF. (1) From Ito calculus we get
¢
M) = M(0) = = [ M55, (5)) dBLo)
0
and hence assertion 1 follows, because stochastic integrals with respect to Brow-
nian motion are local martingales. Next we choose a sequence of stopping times

T, which increase to oo P-almost surely, and which are such that the processes
t — M'(t A 7,) are genuine martingales. Then we see E[M'(t A 7,,)] = 1 for
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all n e N and ¢t > 0. Fix ty > ;. Since the processes t — M’ (t A 7,), n € N,
are P-martingales, we see that

E [M' (ta A Th) ‘ fftl] = M'(t; A 7,) P-almost surely. (4.117)
In (4.117) we let n — oo, and apply Scheffé’s theorem to conclude that
E[M (t2) | F1,] = M’ (t;) P-almost surely. (4.118)

The equality in (4.118) shows that the process t — M’'(t) is a P-martingale
provided that E[M’'(t)] = 1 for all £ > 0. This completes the proof of assertion

(1).

(2) This assertion follows from the following calculation:

Z%t)—-——J‘c(s,YXsD dB(s)—-1~f]c(s/Y(s»fzds (4.119)

0

t
=—Jc(s,Y( ) dB'(s J]ch
0

(the equality c(s,y) = c1(s,y)o(s,y) holds)

:_fq@Y@M@X(cwl fksY

0

——[[atyena([ oy dB'm) #3 [ ety
:_fq@Y@y(wg—fuT ) fksY

From (4.119), (4.112), and (4.114) it is plain that M’(¢) only depends on the
path {Y(s) : 0 < s < t}.
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(3) This assertion is a consequence of Kolmogorov’s extension theorem. The
measure is P’ is well defined on u;-¢F;. Here we use the martingale property.
By Kolmogorov’s extension theorem, it extends to the o-field generated by this
union.

(4) The equality B'(t) = B(t) + Sé c(s,Y(s)) ds entails the following equality
for the quadratic covariation of the processes B; and B;:

(B, B}) (t) = (Bi, B)) (t) = td; . (4.120)
From It6 calculus we also infer

M'(t) Bi(t)

= J M'(s)Bi(s) dZ'(s J M'(s) dBl(s)

+ §L M'(s)B'(s)d{Z', Z") (s) + L M'(s)d(Z', B;) (s)

- f M(5)Bl(s)e (5, Y (s)) dB(s) — = f M(5)Bl(s) | (s, Y (5))| ds
JM/ |c(sY()|ds+JM’ ) dBi(s)
JM’ i (5, Y (s) ds—JM’ Joi (5, Y (s)) ds

- J M'(s)B(s)c (s, Y (s)) dB(s J M'(s) dBi(s). (4.121)
Upon invoking Theorem 4.5 and employing (4.120) and (4.121) assertion (4)
follows.

This concludes the proof of Proposition 4.24. O

4.25. REMARK. Proposition 4.24 is still valid even if the null-space of o (s, y) is
non-trivial, and so the range of o (s, y)* is not the whole space R?, provided we
replace the (local) martingale ¢ — M’(t) with the local martingale:

t — exp <— Jt c(s,Y(s)) P(s,Y(s)) dB(s) — % Lt|c (5,Y(s)) P(s,Y(s)) ds) :

0
(4.122)
where P(s,y) is as in (4.115).

Let the process X (t) solve the equation in (4.110), and put

M) =exp ([ e XGnaBe) ~ 5 [ e x()P ). 1z

0

and assume that the process M (t) is not merely a local martingale, but a genuine
P-martingale.

4.26. THEOREM. Fiz T > 0, and let the functions
b(87y)7 J(Say)a C(Say)a and Cl(say)a 0<s< Ta
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be locally bounded Borel measurable vector or matriz functions such that c(s,y) =
ci(s,y)o(s,y), 0 < s < T, ye R Suppose that the equation in (4.110) pos-
sesses unique weak solutions on the interval [0, T].

Uniqueness. If weak solutions to the stochastic differential equation in (4.111)
exist, then they are unique in the sense as explained next. In fact, let the couple
(Y(s), B(s)), 0 < s <'t, be a solution to the equation in (4.111) with the property
that the local martingale M'(t) given by

t 1 t

M'(t) = exp <—J c(s,Y(s))dB(s) — QJ e (s, Y (s))] ds) . (4.124)
0 0

satisfies B [M'(t)] = 1. Then the finite-dimensional distributions of the process

Y(s), 0 < s <t, are given by the Girsanov or Cameron-Martin transform:

E[f(Y (), Y (6)] = E[MOf (X (1), .., X (t)],  (4125)
t>t, > >t =0, where f : RY x --- x RY - R is an arbitrary bounded

Borel measurable function.

Existence. Conversely, let the process s — (X (s), B(s)) be a solution to the
equation in (4.110). Suppose that the local martingale s — M(s), defined by

M) = e ([ ctrxnann - [lemxmif ). o<
(4.126)
is a martingale, i.e. E[M(t)] = 1. Then there exists a couple (?(3),§(5)),
0 < s <t, where s — é(s), 0 < s < t, is a Brownian motion on a probability
space (Q,g'“, Iﬁ’) such that

V(s) :x+fa<7,ff<¢) dé(f)+f

0

N—

and such that
t

& lexp (— Ltc (5.7()) dB(s) - ;L ¢(5.7() ’2d5>] 1 (4128)

4.27. REMARK. The formula in (4.125) is known as the Girsanov transform
or Cameron-Martin transform of the measure P. It is a martingale measure.
Suppose that the process t — M’(t), as defined in (4.112) is a P-martingale.
Then the proof of Theorem 4.26 shows that the process t — M(t), as defined
in (4.123) is a P-martingale. By assertion (1) in Proposition 4.24 the process
t — M'(t) is a P-martingale if and only E [M'(¢t)] = 1 for all T'>t > 0, and a
similar statement holds for the process t — M (t). If the process t — M'(t) is a
martingale, then taking G = 1 in (4.142) shows that E[M(¢)] = 1, and hence
by 1 in Proposition 4.24 the process t — M (t) is a P-martingale. Conversely, if
the process t — M(t) is a P-martingale, then we reverse the implications in the
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ADVANCED STOCHASTIC PROCESSES: PART II STOCHASTIC DIFFERENTIAL EQUATIONS

proof of Theorem 4.26 and take F' = 1 in (4.146) to conclude that E [M'(t)] = 1
for all > 0. But then the process t — M'(t) is a P-martingale.

4.28. REMARK. Let P(s,y) be asin (4.115). Put cp (s,y) = c¢(s,y) P (s,y). Like
Proposition 4.24 Theorem 4.26 remains valid even if the null-space of o(s,y) is
non-trivial, provided we replace the (local) martingale ¢ — M’(t) with the local
martingale in (4.122) and we replace the local martingale t — M(t) with

e ([ o (5. X(60) dB06) ~ 3 [ Jep (5 X)) ). )

0
In addition the equality in (4.128) should be replaced by

E [exp <— f cp (s,?(s)) dB(s) — %f: (s V(s ) . (4.130)

Observe that cp(s,y) is automatically of the form cp(s,y) = c1(s,y)o (s,y): see
the equality in (4.116) and see Remark 4.25 as well.

Notice that the process t — M(t) is a P-martingale provided Novikov’s con-
1 t
dition is satisfied, i.e. if E [exp <§f e (s, X (s))]” ds)] < o. For a precise
0
formulation see Corollary 4.29 below. Define

E(M)(t) = eMO=a MM, (4.131)

ovv--vv-cvv-cov-coAlcateI-LUcent 0

2

. “.t"“

“_‘l = : “\vﬂ e
\ @4 ‘:ﬁ Y

One generatlon S transformatlon is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

Download free eBooks at bookboon.com
296

Click on the ad to read more



http://s.bookboon.com/AlcatelLucent

1
4.29. COROLLARY. IfsupE lexp (2 (M, M) (t))] < o, then

t=0

B [oxp (a1(e0) - 5 r,00) ()| - 1,

and consequently the process t — E(M)(t) is a P-martingale relative to the
filtration (3Fy),5,, where Ty = o (M(s) : 0 < s < t), the o-field generated by the
variables M(s), 0 < s < t.

Novikov’s result is a consequence of results in [100]; see Chapter 1 of [184].
Observe that M (o0) = limy_,,, M (t) exists P-almost surely.

4.30. REMARK. Let s — c¢(s) be a process which is adapted to Brownian
motion in RY, and let p > 0 be such that Novikov’s condition is satisfied:

E [exp <%p2 §¢ le(s))? ds)] < o0. From assertion 4 in Proposition 4.24 and The-

orem 4.26 we see that the following identity holds for all bounded Borel mea-
surable functions F* defined on (R%)":

E[F (Y, (t1),...,Y,(ta)]
(1.132)

~—

~&[exp (o [ et91a8) — 37 [ o) ds) (B0 B0

0

where 0 < t; < -+ < t, <t, and Y,(1) = B(7) + p{ c(s)ds, 0 < 7 < t. In
particular, if n = 1 we get

E lF (B(t) —|—th o(s) ds)]

~[ow (o C()dB(s) — 5 ) o) O RCI0 CHES

0

Assume that the gradient DF' of the function F exists and is bounded. The
equality in (4.133) can be differentiated with respect to p to obtain:

E KDF <B(t) + th o(s) ds) ,Lt o(s) ds>]

_E lexp (p JO () dB(s) - %ﬁ f: o(s)? ds)

. (Jtc(s) dB(s) —th|c(s)|2ds> F(B(t))]. (4.134)

0

The bracket in the left-hand side of (4.134) indicates the inner-product in R¢.
In (4.134) we put p = 0 and we obtain the first order version of the famous
integration by parts formula:

E [<DF (B(1)) . f o(s) ds>] _E Ut ¢(s) dB(s) F (B(t))] L 13)

0 0
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We mention that the Cameron-Martin-Girsanov transformation is a cornerstone
for the integration by parts formula, which is a central issue in Malliavin cal-
culus. For details on this subject see e.g. Nualart [135, 133], Malliavin [119],
Sanz-Solé [154], Kusuoka and Stroock [103, 104, 105], Stroock [164], and
Norris [129].

For a proof of Theorem 4.26 we will need the Skorohod-Dudley-Wichura repre-
sentation theorem: see Theorem 11.7.2 of Dudley [55]. It will be applied with
S = C ([0,t],R?) and can be formulated as follows.

4.31. THEOREM. Let (S,d) be a complete separable metric space (i.e. a Polish
space), and let Py, k € N, and P be probability measures on the Borel field Bs of
S such that the weak limit w—limy_,o, P, = P, i.e. limy_o § FdP, = { FdP for
all bounded continuous functions of F' € Cy(S). Then there exist a probability

space (Q, f;r, ﬁ”) and S-valued stochastic variables }N/k, keN, and }7, defined on
Q with the following properties:

(1) Py[B] = }P’[YkeB] keN, and P[B ]:ﬁ[?eB] Be Bs.
(2) The sequence Vi, ke N, converges to Y P-almost surely.

4.32. REMARK. An analysis of the existence part of the proof of Theorem 4.26
shows that the invertibility of the matrix o (s,y) is not needed. Let N(s),

0 < s < t, be a local martingale on a filtered probability space (ﬁ,i,ﬁ’),
where the o-field F, is generated by (17(7') :0<7< s). Suppose that the

covariation process of N(s) is given by

<le, Nj2> (s) = Ls (0 (T,?(T)) a* (T,?(T)))jl’jz dr, 1<7j1, jo <d.

Here Y is a local martingale on (N Q0,7 IF) Then by assertion (iii) in Theorem
)

4.17 there exists a Brownian motion B (s), 0 < s < t, on this space such that

S

[[a(r7) i¥e) = [ o (n70) o (n¥(0) abir)

_ Fc (r.¥(m) dB(r). (4.136)

0

PROOF OF THEOREM 4.26. Uniqueness. Let the process Y (s), 0 < s < t,
be a solution to equation (4.111). So that

Y(s)=:v+f

0

S S

o(r,Y(7)) dB(7) ~|—f0 b(r,Y(1)+o(r,Y(7)c(r,Y(7))) dr

=+ Js o(r,Y(7))dB' (1) + J b(r,Y(7)) dr. (4.137)

0 0

Let F ((Y(s))y<s<;) be a bounded stochastic variable which depends on the
path Y(s), 0 < s < t. As observed in 4 of Proposition 4.24 the process B'(t)
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is a P’-Brownian motion, provided E [M’(¢)] = 1. Uniqueness of weak solutions
to equation (4.110) implies that the P’-distribution of the process s — Y(s),
0 < s < t, coincides with the P-distribution of the process s — X (s), 0 < s < t.
In other words we have

E' [F ((Y(S))o<s<t)]
~ e (= [ (s, Y(9) N (6) = [ Jels VDR ds) F (0 (6)oerc)|
=E [F ((X(5)>o<s<t)] ) (4.138)
where

_ L o (. Y(r)) dB(r) (4.139)

With

G ((Y(3>>0<s<t)

= (= [y @) av o) - [l R ) F 076
we have

F((Y(5))o<oet)

= ([ (s V() AN () [ le(s. V() ds ) 6 ((V(9)yc0c)
So, since

AN (s) = dX(s) — o (s,X(s)) c(s,X(s)) ds — b(s, X (s)) ds
=0 (s,X(s)) (dB(s) —c(s,X(s)) ds) (4.140)
it follows that
F ((X(S))O<s<t)

— o  [[en (X6 AN 6) 4 5 [l XD ds) 6 (K6

N~—

= [[ et X060 a6) = [ el XD i) 6 (X6Dyc)-

From (4.138) and (4.141) we infer:
E [G ((Y(S))ossst)] (4.142)

~ e ([[ 6. (9) ds = 5 [ el X)) 6 (X 6Noerc) |

By inserting G =1 in (4.142) we see that

B few ([ ctoxnas—} [ et xnpas)] -1
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in case there is a unique solution to the equation in (4.127). This proves the
uniqueness part of Theorem 4.26.

Existence. Therefore we will approximate the solution Y by a sequence Y,
k € N, which are solutions to equations of the form:

Yi(s) =z + r‘80(7', Yi(7)) dB(T)

# [ OEm) + o (m V) e (7 ) dr

0
rs s

=z+4 | o(r,Ye(7))dB(T) + J b (7, Y(r))dr. (4.143)

JO 0

Here
S

Bl(s) = Bu(s) + j o (v, Yi(r)) dr,

0
and the coefficients ¢ (s,y) = c1x(s,y)o (s,y) are chosen in such a way that
they are bounded and that c(s,y) = limy_, cx(s, y) for all s € [0,¢] and y € R,
By Novikov’s theorem the corresponding local martingales M, given by

MiGo) = ex (= [ e (r () aB) = 5 [ len(r Vi) Far ), ke

0 0

are then automatically genuine martingales: see Corollary 4.29. From the
uniqueness of weak solutions to equations in X (¢) of the form (4.110) (and
thus to equations in Yy (s) of the form (4.143) we infer

E [F ((Yk<s))0<s<t)] =E [F (<X(3))0<s<t)] : (4.144)

In equality (4.144) the process Yi(s), 0 < s < ¢, solves the equation in (4.143).
The equality in (4.144) can be rewritten as

E [My(t)F ((Ya())geser) ] = E[F ((X(5))gcser)] - (4.145)
By (4.119) the equality in (4.145) can be rewritten as

E[exp (= [ e (s.¥09) aB(s) — L [ Jex (s ()P ds F ((Yi(s))peser)
oo (-] )

0

=E [exp ( Jt c1k (s, Yi(s)) d (Yk(s) — f b(r,Ye(T)) dr)

o5 [}l D ) P (050D |
E[F ((X(5))ocser) ] - (4.146)

1(5))o<s<) be a (bounded) stochastic variable which depends on the
path Y (s), 0 < s <t. From the equality in (4.146) we infer
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3 [ ekt XD 85) 6 (XD
_E leXp (f e (5, X(s)) o (s, X (5)) dB(s) — %ﬂ ok (5, X (5))] ds)

x G ((X(S))ogs@)]
e (o ] (4.147)

0<s

Here the martingales Mk( ) are given by

Mi(s) — exp (J e (7, X (7)) dB(r) — % L o (T,Xm)?df) heN,

0

This fact together with the pointwise convergence of My(s) to M(s), as k — o0,
and invoking the hypothesis that E [M(¢)] = 1, shows that the right-hand side
of (4.147) converges to E [M(¢)G ((X(s))gcs<;)]- In other words the distribu-
tion P¥* of Y, converges weakly to the measure P*X defined by PMX(A) =
E[M(t), X € A], where A is a Borel subset of the space C ([0,¢],R?). By the
Skorohod-Dudley-Wichura representation theorem (Theorem 4.31) there exist

a probability space (Q, F , ]I~D> and C ([O, t], Rd)—valued stochastic variables ?k,
ke N, and SN/, defined on €) with the following properties:
(1) P[B] = P [Y/k e B], keN, and PMX [B] = P [? e B], for all
B e BC([O,t],Rd)'

(2) The sequence <§~/k> converges to Y P-almost surely.
keN
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By taking the limit in (4.147) for k¥ — oo and using the theorem of Skorohod-
Dudley-Wichura we obtain

. [G (@/(S))ossgt)} =E[M(t)G ((X(5))geser)] (4.148)

where GG is a bounded continuous function on C ([O, t], Rd). Then we consider
the process N(s), 0 < s < t, defined by

S

N(s)=Y(s) — JOSU <T,§~/(T)) c <T,§~/(7')> dr —JO b <7’,3~/(T)> dr. (4.149)

If Y (s) were Y (s), then by (4.137) N(s) would be NY (s), given by the formula
n (4.139). Hence the process s — NY(s), s € [0,t], is a stochastic integral
relative to Brownian motion on the space (2, F;,P). We want to do the same
for the process s — ]v(s), 0 < s < t, on the probability space <(~2,§’, I~P’> Let
PM(® be the probability measure on (2, F;) defined by PM®) [A] = E [M(t), A,
A € 3‘} Then like in item (4) of Proposition 4.24 we see that the process s —

—§oo( ) dr is a PM®)_Brownian motion. In addition, from (4.148)

and (4.149) we 1nfer that the P-distribution of the process N (s), 0 <s<t,is
given by the PM®_distribution of the process

S

s —X(s)— JSU(T,X(T))C(T,X (1)) dr —f b(r,X (7)) dr

0 0

- | o rxm) @B - e () d)

0

_ f o (1. X (7)) dBMO (1), (4.150)

0

where BM®)(s) is a PY®-Brownian motion: see Proposition 4.24 item (4). It
also follows that the process in (4.150) has covariation process given by the
square matrix process

SHLSU(T,X(T»U* (1, X(7)) dr, 0<s<t

Consequently, the process s — N(s), 0 < s <t,isalocal f’—martingale with
covariation process given by

5 f Y <T,17(T)> dr, 0<s<t. (4.151)

In order to prove (4.151) we must show that the process

5 le(s)]vh(s) — Z LS Tjr ke (7’, ?(7‘)) Ty e (7‘, ?(7‘)) dr

is a local ﬁ’—martingale. The latter can be achieved by appealing to the fact the
P-distribution of the process s — Y (s), 0 < s < t, coincides with the PM{®)-
distribution of the process s — X(s), 0 < s < t. Then we choose a Brownian

motion B (s), possibly on an extension of the probability space <§~2, F , IF’), which
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we call again <§~2, 7, ]TD) such that N (s =0 <7' Y(r )) dB(7). For details see

the proof of the implication (ii) = (111) of Theorem 4.17. With such a Brownian
motion we obtain:

?(s)szo( Y(r )) dB(7)

0
S

B
+f ( ) ( Y(r >d7+f0b<¢y( ))dr. (4.152)
Since

I“E [exp (— Ltc (5.7()) dB(s) - % f: (5.7() fds)] 1 (4153)

it follows that the process s — B )+ So (T, ?(T)) dr is a Brownian motion
relative to the measure

AHIE[eXp (—Ltc<s,§~/(s)> dB(s) - %f c<s,§~/(s)>‘2ds> | A}, AeF.

The equalities in (4.152) and (4.153) complete the proof of Theorem 4.26. [

’*<12

3.1. Equations with unique strong solutions possess unique weak
solutions. The following theorem shows that stochastic differential equations
with unique pathwise solutions also have unique weak solutions. Its proofs puts
the Lévy’s characterization of Brownian motion at work: see Theorem 4.5.

4.33. THEOREM. Let the vector and matriz functions b(s,z) and o(s,z) be as
in Theorem 4.26. Fiz x € RY. Suppose that the stochastic (integral) equation

X(t)zx—kf

0

t t

o (s,X(s))dB(s) +f b(s,X(s)) ds (4.154)

0

possesses unique pathwise solutions. Then this equation has unique weak solu-
tions.

In the proof we employ a certain coupling argument. In fact weak solutions to
the equations in (4.3) and (4.4) are recast as two pathwise solutions of the same
form as (4.154) on the same probability space.

PROOF. Let {(B(t): t =0),(Q2,F,P)} and {(B'(t): t =0),(Q,F,P')} be
two independent Brownian motions. Without loss of generality it is assumed
that, for 0 <t < o0,

3}20({3(3) <s<t}| J{AeF*: P[4 _0})
ff;:g({B'(s) <s<tf| J{A e P4 = o})

Moreover, F = o (Ugo 3}), and a a similar assumption is made for F’. Let
{X(t) : t = 0} be an adapted process which satisfies (4.3), and let {X'(¢) : ¢t = 0}
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be an adapted process which satisfies (4.4) with B’(¢) instead of B(t): see Def-
inition 4.19. Suppose that 0 < t; <ty < --- < t, < o, and let Cy,...,C, be
Borel subsets of R?. We have to prove the equality:

PX' (t1)eCy,..., X (tn) €C,] =P[X (t1) € Cy,..., X (t,) € C,]. (4.155)
Let (Q9,3°,Py) be a probability space with a Brownian motion {By(t) : ¢ = 0}
such that F° = o ({Bo(t) : t = 0} |J{Ao € FO: Py[Ao] = 0}). Define the R%-
valued processes Y (t), Y'(t), and By(t) on Q2 x ' x € as follows:

Y(t) (w,w wy) = X () (w), (w,w' wp) € Q x Q x Qp;
Y'(t) (w,w',wp) = X'(t) (W), (w,w' wp) € Q x Q x Qp; (4.156)
Bo(t) (w,w',wy) = Bo(t) (wo),  (w,w,wp) € Qx QY x Q.
In fact we use the notation €2y instead of €2 to distinguish the third component
of the space €2 x ' x g from the first. The role of the first two components
are very similar; the third component is related to the driving Brownian motion
{Bo(t) : t =0}. The processes Y (t) and Y'(t) are going to be the pathwise
solutions on the same probability space (Q x Q' xQy, FRIF ®3’0,@x): see
(4.166) and (4.167) below. On € the probability measure Py is determined by
prescribing its finite-dimensional distributions via the equality:
Po [(Bo (t1),...,Bo(ty)) € D] =P[(B(t1),...,B(t,)) € D]
=P [(B (t1),...,B (t,)) € D]. (4.157)
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In (4.157) we have 0 < t; < --- < t, < o0, and D is a Borel subset of (Rd)n.

Let C' be another Borel subset of (Rd)n. On Q x Qg and Q' x € the probability
measures Q, and Q/, are determined by, respectively, the equalities:

Q[(X (t),...,X () €C, (Bo(t) ..., Bo () € D]
—P[(X(t),....,X (t) €C, (B(t),...,B(t,)) e D], and

Q. [(X' (t1),.... X" (t.)) € C, (By (1) ..., By (tn)) € D]
—P[(X'(t),.... X' (t,) € C, (B'(t1),..., B (t.)) € D]. (4.158)

Notice that Pg[Ag] = 0 implies Q, [Q x Ag] = Q, [ x Ag] = 0. Consequently,
by the Radon-Nikodym’s theorem there are (measurable) functions

Qr: FxQy—10,1], and Q. : F' x Qy — [0,1]

such that, respectively,

Q. [A x Ag] = Qz (A, wy) dPy (wp), Ae€F, Age F°, and
Ao

le [A/ X Ao] = le (A, u)o) dPO (WO) , A e 9:,, A() € St() (4159)
Ao

Here Q. (2, wo) = Q. (', wy) = 1 for Py-almost all wy € Q. Moreover, the
functions

wo — Qr (Aywy), and wy— Q) (A, wp) (4.160)
are measurable relative to the Py-completion of F°. In addition, the set functions
A Qu(Awy), Ae F,and A — Q' (A wy), A’ € F are Py-almost surely
probability measures. Here we use the fact that, except for negligible sets, the
o-fields F and F’ are countably determined. Finally, we define the measure

Q,: FRF ®F°—[0,1] via the equality
@az [A X A/ X Ao] = fo (A,CU()) Q; (A/, u}o) 1A0 (u}o) d]P)() (WO)

= EO [u)() — Qx (A,a)()) Q; (A/, wo) ]‘AO (wo)] . (4161)
Here A, A’, and A belong to F, F’, and F° respectively. First we prove that the

~

process {Eo(t) ct > O} is a Brownian motion with respect to the measure Q,.

The corresponding expectation is written as Iﬁx From the proof of Theorem
4.5 (i.e., Lévy’s characterization of Brownian motion) it follows that it suffices
to show that the following equality holds:

Ex [exp (_i <§7 EO(t) - §0(5)>> ’ gjs ® ‘{_f; ® ‘rfg]
1
= exp <—§]§|2 (t—s)) L t>s5>0, £eRY (4.162)
By definition F5 = o (B(p) : 0 < p < s). Similar definitions are employed for
F' and for the o-field 2. In order to prove (4.162) we pick A € F, A’ € F,
and Ag € FY. Then by (4.161) we get

E, [exp (—z’ <g, Bo(t) — §0(5)>> 1AxA,XAO]
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= JA o exp (—i <£, Eo(t) - E0(3>>> d@:}c
= Eq [wo — exp (=1 (&, Bo(t) (wo) — Bo(s) (wo)))
X Qy (Av wO) Q; (Alv wO) 14, <w0)] : (4163)

The process (wo,t) — Bo(t) (wp) is a Brownian motion relative to Py, and the
events A, A’, and Ay belong to F,, F., and FV respectively, and hence the
variable By(t) — By(s) is Py-independent of the variable

Wp — Qw (A7 (.Uo) Qifc (A/7 (A)(]) ]-Ao ((.Uo) .
Therefore (4.163) implies
E, [eXp (-i <§, By(t) — §0(5)>> 1AxA'on]

=A@AAmmummM%wwyﬁm@ﬂa&m—&@»wo

~ 1
=Q,[Ax A" x Ag] exp (—5 € (¢ — s)) : (4.164)
The equality in (4.162) is a consequence of (4.164). Since, by definition (see
(4.157))
Po[(Bo(t1), ..., By (ta)) € C) = P[(B(1),.... B(t.) e C]  (4.165)

for 0 < t; < -+ < t, < w, C Borel subset of (]Rd)n, and since the process
{B(t): t >0} is a Brownian motion relative to P, the same is true for the
process {By(t) : t = 0} relative to Py. Next we compute the quantity:

ey

[[xw == [ otsxn s - [ v xena

0

t

E, HY(t)—x—fa(s,Y(s)) d§0(5>—f b(s,Y(s))ds

0 0

dP =0. (4.166)
Similarly we have
= |
t

- [l o [ oty ano - [ v

0

t

Y'(t) —x—J o (s,Y'(s)) dBo(s) —J b(s,Y'(s))ds

0 0

dP’ = 0. (4.167)

From (4.166) and (4.167) we infer that the following equalities hold Q,-almost
surely:

t t

o (s,Y(s))dBo(s) + L b(s,Y(s)) ds and (4.168)

o (5,Y"(s)) dBo(s) + fo b(s,Y"(s)) ds. (4.169)

Y(t):x+J

0

Y'(t) =x+r

0

Moreover, the process {E(](t) t > O} is a Brownian motion relative to @x

From the pathwise uniqueness and the equalities (4.168) and (4.169) we see
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that, @x—alnlost surely,

Y(#)=Y'(t), t=0. (4.170)
Let 0 <0<ty < - <t, <o, and let C' be a Borel subset of (Rd)n. From
(4.170) it follows that

~

Qe [(V (1), Y (1) € Cl = Qu[(Y (1), .Y (1)) € O] (4171)

Using (4.171) and the definition of the measure Q, shows that the following
identities are self-explanatory:

@m[(y<t1)a7y<tn))60] :Qm[<X<t1)a"'7X(tn))EC7 QO]
—P[(X(t),....,.X ()€ C, Q =P[(X (t1),....X (t.) €C].  (4.172)

The definition of the measure Q, is given in (4.161). Similarly we conclude
Q. (Y (t1),....Y (t,) e Cl =P [(X'(t1),..., X" (t,)) € C]. (4.173)
From (4.172), (4.173), and (4.171) we obtain
P[(X (t1),...,X (tn) e Cl =P[(X' (t1),..., X (tn)) € C]. (4.174)

The equality in (4.174) implies that the finite-dimensional distributions of the
solution in equation in (4.3) are the same as those of the solution of equation
(4.4). So that stochastic differential equations with unique pathwise solutions
also possess unique weak (or distributional) solutions.

This concludes the proof of Theorem 4.33. U

4.34. EXAMPLE (Tanaka’s example). Let the process ¢t — B(t), t = 0, be one-
dimensional Browmian motion on the probability space (2, F,P), and let the
continuous process t — X () be such that X (¢ So sgn (X (s)) dB(s). Here
sgn(y) = Y for y # 0, and sgn(y) = 0, when y = 0. It can be proved that such

|y

a process exists. If ¢ — X () solves this equation, then the process ¢t — —X ()
is a solution as well. So we see that the equation dX(t) = sgn (X(t)) dB(t),
X (0) = 0, does not have pathwise unique solutions. On the other hand the
process t — X(t) is (local) martingale, and, since B(t) = So sgn (X (s)) dX(s),
we get

f\sgn (X, X) (s) = (X, X) (1)

Hence, (X, X) (t) = t. Lévy’s martingale characterization of Brownian motion
(see Corollary 4.7 and Theorem 4.5) then implies that the process ¢ — X(t)
is a Brownian motion on (Q,F,P). So that the distribution of X (¢) is that
of Brownian motion. Consequently, the equation dX (t) = sgn (X(t)) dB(t) has
unique weak solutions. For more details on Tanaka’s example and its connection
with local time see, e.g., Oksendal [138].

Conclusion. In this chapter we treated several aspects of the theory of stochas-
tic differential equations: strong and weak solutions, Lévy’s characterization
of Brownian motion, exponential martingales, Hermite polynomials with appli-
cations to exponential martingales, a version of the martingale representation
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theorem, and the Girsanov or the Cameron-Martin-Girsanov transformation.
Stochastic differential equations for processes with jumps, that is for Lévy pro-
cesses, are treated in, e.g., Applebaum [6].
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CHAPTER 5

Some related results

In this section we will discuss, among other things, Fourier transforms of dis-
tributions of random variables, positive-definite functions, Bochner’s theorem,
Lévy’s continuity theorem, weak convergence of measures, ergodic theorems,
projective limits of distributions, Markov processes with one initial probability
measure, Doob-Meyer decomposition theorem based on Komlos’ theorem.

1. Fourier transforms
Since we will also need signed measures, we will discuss them first.

1.1. Signed measures. Let M = M (R”,C) be the vector space of all
complex Borel measures on R”, and let M™ be the convex cone of all positive
finite Borel measures op R”. Then we have M = M, —M, +i (M, — M, ). Thus,
every complex Borel measure pon R” can be written as pn = pg —pa+1i (3 — pa),
where 11, ps2, 3 and py are finite positive Borel measures. In fact the measures
j, 1 < j <4, can be chosen in the following manner:

p1(B) = sup {Re u(C): C < B, C Borel };
p2(B) = sup {—Re p(C) : C < B, C Borel };
ps(B) = sup {Ilm p(C): C < B, C Borel };
pa(B) = sup {—Im p(C): C < B, C Borel }.

For this choice of the measures pq, 9, p3 and py, the measures gy and po and
also the measures 3 and py are mutually singular in the sense that for certain
Borel subsets B; and Bj the following equalities hold:

m(B) =Re p(B n Bi), p2(B)=Rep(Bn Bj);
us(B) =Re u(Bn Bs), pa(B)=Repu(Bn Bj).

This decomposition is known under the name Hahn decomposition. In addition,
we introduce the variation of a complex measure p. This measure is denoted as
|pe|. Tt is the bounded positive measure defined by

|| (A) = sup {Z\M(A])\ tAD A and A;n Ay = I for k = j} . (5.1
J

Here A is a Borel subset of R” and the same is true for the elements of the
partition A;, j € N. The norm |[|u|| of the complex Borel measure p is then
defined by the equality: ||| = || (R”). Supplied with this norm M is turned
into a Banach space. By the Riesz representation theorem the space M can
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be taken as the topological dual of the space Cy(R¥), being the Banach space
consisting of those complex continuous functions f : R¥ — C with the prop-
erty that lim, ,., f(z) = 0. Then Cy(R¥) is a closed subspace of the space
Cp(R”), the space of all bounded continuous functions on R”, which is a Ba-
nach space relative to the supremum-norm |-|| ,, given by || f|_, = sup,eg» | f(2)],

f S Cb(RV)

5.1. DEFINITION. A complex Radon measure on a locally compact space F is
a complex Borel measure with the property that for every ¢ > 0 and every
Borel subset B there exists a compact subset K < B with the property that
[u (B\K)| <€

5.2. THEOREM (Riesz). Let E be a locally compact Hausdorff space, which is o-
compact, and let A : Co(E) — C be a continuous linear functional. Then there
exists a unique complexr Radon measure p on the Borel field of E such that

) = $fdu, f e Co(E). In addition, ||A| = |p| = |u| (E). If A is positive
in the sense that f = 0 implies A(f) = 0, then the corresponding measure p is
positive as well and |Al| = p(E).

PRrROOF. For a proof the reader is referred to the literature. In fact the fol-
lowing construction can be used. Let the measures 1, 1 < j < 4 be determined

by
(0) = sup{Re A(f): 0< f <1
p2(0) = sup{—Re A(f) : 0< f < 1o, f€Co(B)};
(0) =sup{Im A(f): 0< f < 1o, feCo(E)};
ps(O) =sup{—Im A(f): 0< f<1p, feCy(E)},
where O is any open subset of E. Then it can be shown that, for each 1 < j < 4,

the set function p; extends to a genuine positive Borel measure on £. This
extension is again called ;. Moreover,

:ffdul—ffdug-f-i(ffd,u3_ffd/i4)u /e Co(E).

For details the reader is referred to, e.g., [174]. This completes the proof of
Theorem 5.2. ]

0, feCy(E)};

5.3. DEFINITION. Let 4 be a complex Borel measure on R”. Then the equality

Alz) = j exp (=i (z,9)) du(y), =< R,

defines the Fourier transform of the measure .

5.4. PROPOSITION. Let i be a complex measure on R with the property that its
Fourier transform is identically zero. Then the measure i = 0.

PROOF. Let v be an arbitrary other complex Borel measure on R” with the
property that |U(z)| < 1, 2 € R”. Then the following equality holds:

| atwiavte) = [ )duty)
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Hence,
-
it = sup {| [ f)auto|: e @y 151, <1}
r
~sup | [ 2auto)| : o)l < 1. R}
(‘
= sup{ J a(z)dv(z)| - P(y)| < 1,y e R”} =0.
This completes the proof of Proposition 5.4. O
5.5. DEFINITION. Let ¢ : R” — C be a complex valued function. This function
is called positive-definite if for every n-tuple of complex numbers Ay, ..., \, to-
gether with every choice of n vectors €, ... ¢M in R¥, the following inequality
holds: .
23 Aie (69— €W) =0,
k=1
and this for all n € N.
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5.6. PROPOSITION. Let p be a complex Borel measure on RY with Fourier trans-
form pi. Then the following assertions are true:

(a) the following inequality holds: |fi(x)| < |u].

(b) If p is positive, then the equalities n(R”) = [(0) = |p|| are valid.
(c) If p 1s positive, then the function [i is positive-definite.

(d) The function i is uniformly continuous.

PROOF. The proof is left as an exercise to the reader. [l

5.7. DEFINITION. Define for p and v measures in M, the convolution-product
i * v via the equalities:

e (B) = j f Lp(x + y)dp(a)dv(y)

=u®v(S'B)=p@v{(z,y)eR":z+ye B}.

Here B is a Borel subset of R” and S is the (sum) mapping S : (z,y) — = + y.
Let z € R”. Define thee Dirac-measure 9, by d,(B) = 1g(z), B Borel subset
of R”. Instead of dy it is more customarily to write 6. Let € M. Then f is
defined by fi(B) = p(—B), where B is a Borel subset of R”. Let f: R” — C be

a complex function, which is defined on all of R”. The function f is given by
F(z) = f(~2), s e R".

5.8. DEFINITION. A complex Banach algebra (A4, |-|) is a complex Banach space,
endowed with a product which is compatible with the norm. The latter means
that the product (a,b) — ab, a, b in A, which is a bilinear operation, is contin-
uous in both variables simultaneously. In fact it is assumed that |ab| < ||| [|b|
for all @ and b in A.

Examples of Banach algebras are the vector spaces Cy(R”) and Cy,(R"), equipped
with the supremum-norm and the pointwise multiplication. Let £(X) be the
vector space of all continuous linear operators on the Banach space X, supplied
with the operator norm and the composition as product. Then £(X) is a non-
commutative Banach algebra. The following theorem says that M, supplied
with the convolution product, constitutes a (complex) commutative Banach
algebra with identity ¢. Recall that M stands for the space of all complex Borel
measures on R”.

5.9. THEOREM. The normed vector space (M, ||-||) supplied with the convolution
product = is a commutative complex Banach algebra with identity 0. If u and v
belong to M, then the following equalities hold:

Lt U=(+D, ai=afi, gev=[p, ji-=/p

Here a is a complex number.
PROOF. The proof is left as an exercise for the reader. O

The Banach space L'(R”) can be considered as a closed subspace of M(RY).
This can be done via the following inclusion-mapping: f — uys, f € L*(RY).
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Here juy is the complex measure B — {, f(x)dz, B € B = B(R"), where B is
the Borel field of R”. Let pf = pip1 — fiy2 + @ (pf3 — fir4) be the Hahn-Jordan
decomposition of the measure py. Then the following equalities hold:

sl (B) = [ 1f@)de; psa(B J“xnax (Re f(x),0)ds

pro(B) = Lmax(—Re f(2),0)dx; pps(B J max (Im f(z),0) dx;
pra(B) = Lmax(—lm f(2),0)dx.

5.10. THEOREM. Let Cyo(R¥) be the space of all complex continuous functions
with compact support. Then Cyo(RY) is a dense subspace of L' (R”) for the topol-
ogy of convergence in mean. This means that Coo(RY) is dense in L'(RY) relative
to the topology generated by the L*-norm: ||f|, = §|f(z)|dz, f e L*({RY).

PROOF. Let € > 0 and let f > 0 belong to L*(R¥). It suffices that there
exists a function g € Coo(R¥) such that {|f(z) — g(z)|dx < e. Since

n2"
f=sup2 2" f| = sup27" Y Lissjony
neN neN j=1

we only need to show that, for every pair of positive integers j and n, with
1 < j < n2", there exists a function u;,, € Cpo(R”) such that

€
f‘l{fzjzn}(l‘) — ()] de < - (5.2)
n
Because assume that the functions u;,, 1 < j < n2", satisfy (5.2). Then we

write f, = 27"|min(n, f)2"| and choose n € N so large that
1
0< [ (70) = fuw)do < 5e.

Then we have
n2™

ff@—?”;wA@

n2m
f’f — Jul@)]dr +27 nZJ‘l{Pﬂ (@) = ujn(z)| do

n2"16
< et 2™ = €. 5.3
26+ 2 12n =€ (5.3)

Let A be the v-dimensional Lebesgue measure. The inequality in (5.2) can be
proved by employing the following identities:

A(B) =inf {\(U) : U 2 B,U open } =sup{A(K): K < B, K compact }
(5.4)
together with Tietsche’s theorem, which, among other things, says that with a
given open subset U and given compact subset K, with K < U, there exists a
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function u € Cyo(R”) with the property that 1x < u < 1y. The equalities in
(5.4) follow via an argument about Dynkin systems.

This completes the proof of Theorem 5.10. O
5.11. PROPOSITION. Let f belong to L'(R"). Then
lim J flx+y) — f(2)|dz = 0. (5.5)
y—)

PROOF. By theorem 5.10 it suffices to prove (5.5) for f € Cy(R"). Such
a function f is uniformly continuous. Let K be the support of the function
f e Co(RY). Fix € > 0 and choose § > 0 in such a way that

AK +B(9) sup  |[f(z+y)— flz)] <e
zeK,yeB(J)

Here the symbol B(d) stands for B(0) = dB(1) = {z € R” : |z| < §}. Then we

have

j|f<x by) - f(@)de < e

for |y| < d. So the proof of Proposition 5.11 is complete now. O

~

5.12. THEOREM (Riemann-Lebesgue). Let f € L'(R”). Then lim f(z) = 0.

Tr—00

Of course here we write f(z) = Sexp (—i (z,y)) f(y)dy.

UNIVERSITY OF COPENHAGEN

Copenhagen
Master of Excellence o

Copenhagen Master of Excellence are
two-year master degrees taught in English
at one of Europe’s leading universities

Come to Copenhagen - and aspire!

Apply now at
www.come.ku.dk

Download free eBooks at bookboon.com
314

:' B A 5
1 !
H LR o o §

science

Click on the ad to read more



http://www.come.ku.dk

ProOF OoF THEOREM 5.12. By translation invariance of the Lebesgue mea-
sure we get the equality:

fo) =5 [ewitem) (s =1 (= 75) )t G

|z

From (5.6) the inequality:

~ 1 x

] < 3 [ it =1 (v+ 75| (5.7
A combination of (5.7) and Proposition 5.11 yields the desired result, and com-
pletes the proof of Theorem 5.12. O

5.13. THEOREM (Stone-Weierstrass). Let E be a locally compact Hausdorff space
and let A be a subalgebra of Co(E), which separates points of E and which is
closed under complex conjugation. That is, if f belongs to A, then f also belongs

to A. Then A is dense in Cy(FE).

PROOF. Let E® be the one-point compactification (Alexandroff compacti-
fication) and A; = A@®C1 = {f + Al : fe A;\e C}. Here 1 is the constant
function with value 1 and functions f € A vanish in A. The theorem of Stone-
Weierstrass, applied to the compact Hausdorff space E® results in the desired
result, and completes the proof of Theorem 5.13. 0

5.14. THEOREM. The set {f feCuy (R”)} is a subalgebra of Co(R”) that is

closed under taking complex conjugates. This algebra is dense in Co(R”) with
the supremum-norm.

PrOOF. The fact that the set A := {f fe Ll(R”)} is a subalgebra of

Co(R”) follows from the standard properties of the Fourier transform in combi-
nation with Theorem 5.12. Since ]? — f it also follows that this algebra is closed
under complex conjugation. In order to apply the Theorem of Stone-Weierstrass
we still have to show that A separates the points of R”. To this end take xq and
Yo # xg € R”. Then there exists a bounded open neighborhood V' in R” such
that exp (—i (zo,y)) —exp (—i (yo,y)) = 0 for y € V. Next consider the function
[y (exp(i{zo,y)) —exp (i (yo,y))) v(y), where v is a function in Cpyy (R")
with v > 1. Then we see

f(wo) = Flyo) = flexp (—i (2o, y)) — exp (—i {yo, ) v(y)dy > 0. (5.8)

From (5.8) it immediately follows that A separates the points of R”. The asser-
tion in Theorem 5.14 now follows from Theorem 5.13. U

In the following theorem we collect some properties of positive-definite functions.

5.15. THEOREM. Let ¢ : R¥ — C be a positive-definite function. Then ¢ pos-
sesses the following properties:

(a) 90(—$) = M’ reRY;

Download free eBooks at bookboon.com



* < 20(0) ((0) —

Re p(x y))f z,yeRY;
)0(0) — p(x)p(y)* < (

(0)* = lo(@)”) (£(0)* = l(@)I)-
ProOF. Fix x and y in R” and consider the matrices

p(0)  elr)  ply)

0 —T
(90( ) #l )> en | @) _¢0) @lr—-y)

p(y) elz—y)  ¢0)
(a) and (b) Since the first one of these two matrices is positive-hermitian it
follows that:

p(—x) = ¢(x) en  [p(r)] < ¢(0).

(c) Since the second matrix is positive-hermitian, we obtain by the choice of the
constants aq, as and as:

o =1 ap M@ el
() — ()
the following inequality for all A € R:
0(0) (1+2X%) + 2X [pp(x) — @(y)| — 2\"Re p(z — y) > 0. (5.9)

The inequality in (c) is a consequence of (5.9).

(d) The determinant of a positive hermitian matrix is non-negative. So that, if
the 3 x 3 matrix

1 A u
Al¢ (5.10)
pogl

is positive-hermitian, then we get the inequality
N - 2 2 2
L+ AR+ Aug = A" + |ul” + €17,

which is equivalent with

~ 2

€= Fuf < (1= ) (1 [P (5.11)
The inequality in (d) then follows from (5.11) by associating the second matrix
with the matrix in (5.10) and by employing (5.11).

The proof of Theorem 5.15 is complete now. U

5.16. PROPOSITION. Let g be a function in L*(RY). Then the following equalities
hold:

1" = 13l

spectral radius of (g) = T}l_I}IQlQ lg
In the theory of Banach algebras the Beurling-Gelfand formula gives a relation-
ship between the spectral radius and the norm of an element. More precisely,
let (A, |]) be a Banach algebra with unit e. A Banach algebra is a Banach
space with a multiplication (z,y) — 2y which satisfies the usual axioms of
distributivity and scalar multiplication. The norm satisfies |zy| < |z| - [ly],
xz,y € A, |e|] = 1. By definition, the spectrum o(z) of an element x € A is
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given by o(z) = {Ae C: e —x ¢ G(A)}. Here G(A) is the group of invertible
elements of A: z € G(A) if and only if there exists a (unique) element y € A
such that zy = yr = e. Then o(x) is a non-empty compact subset of C con-
tained in the disc of radius ||z]: o(x) = {A e C: |\ < |z|}. In fact we have the
Beurling-Gelfand formula for the spectral radius:

n”l/n n”l/n

sup |A| = limsup |z , T €A (5.12)

Aeo(x) n—00

Let A = L' (R¥)®C4, where ¢ is the Dirac measure at zero, with a multiplication
given by the convolution product:

(f+ad)=(g+80)=f+g+ag+af, f gel'(R), a, BeC,
and with the norm given by |f + ad|| = ||f].. + |a|, f € L* (R”), a € C. Here
frg(x) = §fy)g(x —y)dy. Then A is a commutative Banach algebra with

unit 6. The spectral radius p(f) of f € L' (R¥) is given by the supremum norm
of its Fourier transform:

= inf |z
neN

~

/(@)

p(f) = Timsup | £ |1" = inf | "} = sup

n—0o0 TeRY

9

where f(z) = (e f(y)dy. The interested reader can find more information
in Bonsall and Duncan [28], in Yosida [197], and in several other places like
Lax [106].

PROOF OF PROPOSITION 5.16. For a proof we refer the reader to a book on
functional analysis with Banach algebras as a topic. Good references are Rudin
[153], Theorem 11.9 together with Example (e), and Folland [71], Theorem 1.30
combined with Theorem 4.2. U
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The following theorem is a very important representation theorem. It will be
used in Theorem 5.25 and in the continuity theorem of Lévy: Theorem 5.42.

5.17. THEOREM (Bochner). Let ¢ : RY — C be a function. The following
assertions are equivalent:

(i) The function ¢ is continuous and positive-definite;
(ii) There exists a positive Borel measure pn op R such that ¢ = [i.

The Borel measure p in (i) is unique.

PROOF. (i) = (ii). Define the linear functional A : M — C by means of
the equality: A(v) = {o(x)dv(z), v € M. Define the involution v +— 7 via the
equality: 7(A) = v(—A). Because, by hypothesis, the function ¢ is positive-
definite we see that the functional A is positive in the sense that A(v =7) = 0
for all v € M: see inequality (5.26) in Proposition 5.23 further on. By Cauchy-
Schwartz inequality we then obtain

AW = A= 8)] < (A ()" (A (6+3))
< (A (v =) p(0)V2

1/2

(by inductionwith respect to n)

< <A <(V . 5)*271) ) 1/2n+1 ('0(0)2;#11 23

n+1 1/2n+1
< ol

(v = 9)*% P(0) X427, (5.13)

By letting n tend to co in (5.13) we deduce

1/2n+1

#(0)
— 4/spectral radius of v = Dp(0). (5.14)

|A(v)| < liminf |( H v D)

n—o0

By applying (5.13) and (5.14) to a measure v of the form v(B) = {, f(z)dz,
where f belongs to L'(R”) we obtain

Jetos

In (5.15) we wrote f( ) = f(—x) and f = g(z = {f(y)g(z — y)dy, for f and g
belonging to L'(R”). Next we realize that L' (R") equlpped with the L'-norm
and the convolution product =, is a Banach-algebra and that the spectral radius
of an L'-function f is given by the supremum-norm the Fourier transform of f:
see Proposition 5.16. From (5.15) we infer

Uwuvqu<

< \/spectral radius of f = fcp( ). (5.15)

7] o

< HfHOOQO(O). (5.16)
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Next define A : {f fe Ll(RV)} — C via the equality Ao(f) = = {o(x)f(z)dz,
f e LY(RY). From (5.16) it follows that the functional A has a unique exten-
sion as a continuous linear functional, which we call again Ay, on the uniform
closure of the subalgebra { f:fe€ Ll(RV)}. By the Stone Weierstrass theorem

(Theorem 5.14) this closure coincides with Cy(R”). The Riesz representation
theorem apphes to the effect that there exists a bounded Borel measure p such

that Ao(f) = § f(z ), f e LY(RY). From this it follows that

| @tz = 8a(F) = | Frdnto) = [ ) 1) de

Consequently, ¢ = fi. The function ¢ being positive-definite it follows that the
measure f is positive. This proves the implication (i) = (ii).

(ii) = (i). Let p be a finite positive Borel measure. Then its Fourier trans-
form fi is a uniformly continuous positive-definite function. The proof of these
assertions is left to the reader.

The proof of Theorem 5.17 is complete now. U
An alternative proof runs as follows: the idea is taken from Theorem 5.10 in
Lérinczi et al [115]. We need the following lemmas.

5.18. LEMMA. Let ¢ : R — C be a (uniformly) continuous positive-definite

function, and fiz t > 0. Then the function & — e_%t|5|290(§) is also (uniformly)
continuous and positive-definite.

PROOF. Let &, 1 < j <n, belong to R”, and let \;, 1 < j < n, be complex
numbers. Then

2 Ade 21676 o (g5 — &)

k=1
- 7[ 3 AR (6 — &) W gy = 0. (5.7)
(v2rt Y jk=1
g,
The claim in Lemma 5.18 follows from (5.17). O]

5.19. LEMMA. Let ¢ : RY — C be a function which belongs to L* (R"), and let
Vi be a bounded open neighborhood of the origin in RY. Put V,, = nV;, n € N.
Let m(V,) = §1v,(§)d¢ = n"m (V1) be the Lebesque measure of V,,. Then,
umformly inxreRY,

te=m-ayy (6
f 6 (€) de — T ot OV (E ) dedn (5.18)

n—o m (Vn)
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Proor. By employing standard properties, like translation invariance and
the homothety property of the Lebesgue measure, we deduce the following equal-
ities:

: U§=m)-w dé d
[ esepiey e - b 0 ) Ao

m (Vi)
. §y. Sy, €670 (€) de dn
_ i€-x n IVn—
- [ g ag - eem
S Se g € dEdn Sy Sen iy €T
_ oo _ A . (5.19)

From (5.19) we infer

i€ Svn Svn &) T (€ —m) ddn Svl SR”\(nvl—nn) [ (§)] d€ dn
J ceovtras- (Vi) ) (V)

(5.20)
Hence, by using the Lebesgue’s dominated convergence theorem the equality in
(5.18) is readily established. Moreover, this limit is uniform in z € R”. This
completes the proof of Lemma 5.19. O

5.20. LEMMA. Let v : R — C be a continuous positive-definite function which
belongs to L* (R¥). Then, for all x € R” the inequality (g, € (&) d€ = 0 holds.

(]
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PRrROOF OF LEMMA 5.20. Since the function v is positive-definite and con-

tinuous the right-hand side of (5.18) is non-negative. So the assertion in Lemma
5.20 follows from Lemma 5.19. U

5.21. LEMMA. Let ¢ : R” — C be a continuous positive-definite function which
belongs to L' (R¥), and let ,u be a bounded complex-valued Borel measure on R
with Fourier transform i(x SRV @Y du(y). The the following equality holds:

Q) ~ o || @i ar (21

If p: RY — C is an arbitrary continuous positive-definite function, and if p is
a bounded complex-valued Borel measure on RY, then

| e@ame —tmoss | | et o a2

tw 27r

and

[ vt dute)| < w0 sup faco. (5.2

zeRY

PrROOF. From Fubini’s theorem we get

o [ [ eseute deita) o
- ﬁf J ) de ¢ dn(y) de

- [ (g L vt de) eevanangy
- | I e = | vt duty) (5:24)

where F denotes the Fourier transform with inverse $~1'. The equalities in
(5.24) imply the equality in (5.21). In order to prove he equality in (5.22) we first
observe that by Lemma 5.18 the functions of the form & — ¢;(§) := e_%t|f|2gp(£),
t > 0, are positive-definite and continuous, because ¢ is so. Applying the
equality in (5.21) to the function ¢; shows

fR, 2(€) du(&) = lim e*%t'ﬁ'io(g) dp(€)

tl0

lmos || e M@ e de. (529

th 27r

The equality in (5.22) follows from (5.25). Finally, the inequality in (5.23)
follows from (5.22) and Lemma 5.20. So the proof of Lemma 5.21 is complete
now. U

SECOND PROOF OF THEOREM 5.17. Let M = M (R¥) be the collection of
bounded complex Borel measures on RI™, and consider the functional

Aoiim | p(@du©), nen
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Then A, can be extended to the uniform closure of the collection {j: € M}
such that |[A,(f)| < »(0) | f], for all f in this closure. This closure contains
all constant functions and all continuous functions on R” which tend to 0 at oo.

By the Riesz representation theorem there exists a positive measure p, on the
Borel field of R” such that

| e@ran© = | awdnta) = | | e du© o)

|| et due - | e duce)

for all € M. It follows that ¢(§) = [i,(§). This completes the proof of the
theorem of Bochner: Theorem 5.17. U

5.22. LEMMA. Let ¢ : R” — C be a continuous function, and let p be a complex
Borel measure on R” with compact support. So |u| (R"\K) = 0 for some compact
subset K of RY. Then

mf{UJ x —y)du(z)dp(y Z ajapp (r; — o)
7,k=1

where the infimum s taken over all a; € C, z; € Ky, 1 < j <n, neN, and

where K is the smallest compact set K with the property that |p| (R"\K) = 0.

PRrROOF. Fix € > 0, and choose a partition (U; : 1 < j < n) of K, with the

property that
€

] (Ko)*
z, 2’ € U; and y, y' € Uy, and write a; = p(U;). Then for z; € U;, 1 < j < n,
we have

lp(z—y) —p (@ —y)| <

Uf z —y)du(z)du(y ZCLjakSO i — Tk)

7,k=1

_ Z f J (plx —y) — ¢ (a5 — 1)) dulz)daly)

‘A Jo, ], 1ot =0 = o @ =l dlal @yl )

<t 2 ), J v e o -

This proves Lemma 5.22. [l

5.23. PROPOSITION. (a) Let ¢ : R” — C be a continuous function. The follow-
ing assertions are equivalent.

(i) The function @ is positive-definite;
(ii) For every function f € Cpo(R") the inequality §o(x)f * f(x)dz = 0
holds;
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(iii) Every Borel measure p with compact support satisfies the inequality:
| o) @)= 0 (5.26)

(b) If ¢ is positive-definite and if p is a bounded complex Borel measure on R,
then inequality (5.26) in (iii) also holds.

PROOF. (a) (iii) = (ii). Choose p of the form pu(B) = §, f(z)dz, with
f € COO (Ry) fixed.

(i) = (i). Let u be of the form y = > | a;0,;. Approximate the de Dirac
measures d,, by measures of the form B — {_ { f; v(z)dz in the sense that

n

lim [ e(o)d (o » 75) (@) = [ela)d (oo D) (@) = ) oo (o = ).

N—oo .
7,k=1

Here the measure py is defined by pun(B) = 277, a; §; fjn(v)dz, B € B(RY).

(i) = (iii). Let p be a Borel measure of compact support. Then there ex-
ists a sequence of measures (uy : N € N),where every uy is of the form puy =
Z;V:l a; N0z,  and where

f p(@)d (i * ) () = lim [ p(@)d (u » %) (2)

N—o
N

Al D) GNTeNe (T — Tn) = 0.
J.k=1

That such a sequence of measures exists (uy : NV € N) follows from Lemma 5.22.

(b) Let (K, : m € N) be an increasing sequence of compact subsets of R” such
that RV = | J_, K,,, and such that K,, < interior (K,,.1) for all m € N. Since,
in addition,

| @ m @ = i, [ e@d (1,0 (Gom)) @

m—00
assertion (b) follows from the results in (a).

This completes the proof of Proposition 5.23. OJ

5.24. DEFINITION. The weak topology (or Bernoulli topology) on M is the lo-
cally convex topology o (M, Cy(R")). Let g € M. So that every o (M, Cp(R"))-
neighborhood of yy contains a neighborhood of the form

n

ﬂ{ueM: Ufjd(u—uo)

<o (5.27)

j=1
Here, the functions fi,..., f, are bounded and continuous, and the numbers
€1,. .., €, are strictly positive. A net (u, : € A) M converges to the measure

p for the topology o (M, Cy(RY)) if lim, § fdpe = § fdu for all f e Cy(RY).

Download free eBooks at bookboon.com



ADVANCED STOCHASTIC PROCESSES: PART II SOME RELATED RESULTS

We write u = weak- lim,, p1,. The space M can also be supplied with the vague
topology. This is the locally convex topology o (M, Coo(R¥)). For the vague
topology the functions fi,..., f, in (5.27) are required to belong to Cpo(R")
and the net (p1, : a € A) converges to g € M provided lim, § fdpu, = § fdu for
all f e Coo(R"). We write u = vague-lim,, fiq.

Let M+t :={ueM: p >0} and let
CP :=CP(R") = {p € Cp(R") : ¢ positive-definite} .

The following theorem expresses the fact that the set M™, endowed with the
weak topology and C'P, endowed with the compact-open topology T, are home-
omorphic. The compact-open topology is also called the topology of uniform
convergence on compact subsets of R”. So that a net (¢, : @ € A) converges to
o, if lim, sup,cx |pa(z) — @(z)| = 0 for every compact subset K of R”.
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5.25. THEOREM. The Fourier transform pu — fi, u € M™, is a homeomorphism
from

(M*, 0 (M*,Cy(RY))) onto (CP,T).

PROOF. Let (fio : @ € A) be a net in M* that weakly converges to u e M™*
relative to the weak topology. We will prove that the net (fi, : @ € A) converges
uniformly on compact subsets to fi. Fix ¢ > 0. Then choose § > 0 in such a
way that ¢ (3 + u(R”)) < € and choose a function f € Cyo(R") such that

0<f<1 and J(l—f)du<5.
Since weak- lim i, = p there exists ag € A such that
po(RY) = fld,ua < fld,u—k 1=pR")+1 en f(l — [)dpe <96
for all @ > «. Define the zero-neighborhood V' by

V={zxeR":|l—-exp(—i(zr,y))|] <d: forall y e supp(f)}.

Then for those a € A and those z; and x5 € R” which satisfy a > o and
x1 — x5 € V the following inequalities hold:

o (1) = fla(2)] < flexp (=i (21,9)) — exp (=i (22, 9))| dpia(y)

1= e (i o = )] (1= )il
<5 j ) dpialy) + 2 f(l W) dpa(y)

<O(pR)+1)+26 <e (5.28)
By (5.28) it follows that |fi(z1) — fi(x2)| < € for x; and xo € R” for which
x1 —x9 € V. Next choose a compact subset K in R”. Then there exist y1,...,yn

in R” such that K < U?Zl (y; + V) and thee exist o; € A, 1 < j < n, such that

fa(y;) — Ay <e for aza; j=1,...,n.

Then choose o' € A in such a way that o/ > a; for j=1,...,n. Forz ey, +V
and o > o/ we get

~

Hia(2) — f(2)] < [fa(®) — Haly;)] + [Haly;) — H(y;)| + [0(y;) — B(2)| <€
and hence

sup [1a(z) — pi()| < 3e.
zeK

This proves that the Fourier transform is continuous for the indicated topologies.
Conversely, suppose that the net (fi, : @ € A) converges uniformly on compact
subsets to fi. Then we will show the following two equalities:

(a) lim 1o (R¥) = p(R");
(b) lim § o(z)dpa(z) = §p(z)dp(x) for all functions p € Cyo(R").
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From Theorem 5.26 below it then follows that weak-lim p, = p. The equality
in (a) follows from:

lim 1, (RY) = lim i (0) = i(0) = 2 (R”)

Let € > 0 be arbitrary and let ¢ € Cyo(R”). Choose a function f € Cyo(R") with
the property that
€

oAl <miet

Then we infer

'jwwummw—fwwmmm
<[] (¢t~ F) ] | [ Feona #|[ (F = (@) duto

<Hw_ﬂwwa@m+u@v»+fm4w—ﬁ@ﬂuwnm

€ (fa (R”) + 1 (RY))
2p(RY) + 1 *mejugg(f | (@) — Iflf )| dz. (5.29)

The inequality

lim sup

< €.

fw@ﬂﬂw—uﬂw

follows from (5.29). As a consequence we see that (b) is proved now. Together
with Theorem 5.26 which follows next this completes the proof of Theorem
5.25. ]

5.26. THEOREM. A net (p1, : a € A) in Mt converges weakly to € M* if and
only if the net (puq : a € A) converges vaguely to u and if

li(gn to (RY) = (RY). (5.30)

ProoF. The weak topology is stronger than the vague topology and from
weak convergence the equality in (5.30) also follows. Hence, the indicated con-
ditions are necessary. Conversely, let a net (p, : o € A) converge vaguely M™*
to u and assume that (5.30) is satisfied. We will prove that p is the weak limit
of the net (u, : a € A). Therefore pick f € Cp(R”) and e > 0 arbitrary but
fixed. Choose a compact subset K such that u (R*\K) < e. In addition, choose
a function h € Cyp(R”) in such a way that 1x < h < 1. By these hypotheses
the following (in-)equalities hold:

lim J(l — h)dp, = J(l —h)dp < p(RN\K) < e
and also

limJ Fhdp, = J Fhdy.
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Hence, there exists an o € A such that (for o = )

f(1—h)dua<e en Ufhd(,ua—,u)‘<e.

But then for a > oy we get

dema—u)‘
f Fh (1 )] " Uf(l —h)du‘ " ] | 7= mdu

e(1+2fl,),
which shows that lim { fdu, = § fdu.
This completes the proof of Theorem 5.26. U

5.27. COROLLARY. The following assertions are true:

(a) The set CP is a convex cone, which is closed for the topology of uniform
convergence on compact subsets.

(b) With ¢ the functions @ and Re ¢ also belong to C'P.

(c) If p1 and @y belong to C'P, then the same is true for the product p1ps.

(d) For every y € RY the function x — exp (—i(zx,y)) belongs to CP.
Convex combinations of such functions belong to C'P.

PrROOF. The proof is left as an exercise for the reader. 0
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5.28. DEFINITION. A function ¢ : R¥ — C is called negative-definite if for all
n € N and for all complex numbers a, ..., a, and for all vectors =M, ... 2™
in R” the inequality
> agan (¢ (D) + 6 (@) = g (a9 —2)) > 0 (5.31)
k=1
holds. The symbol C'N denotes the collection of all continuous negative-definite
functions on R”. If 1) belongs to C'N, then the same is true for ¢» andRe 7). The
collection C'N is a convex cone. If ¢ belongs to C'N, then ¥(0) > 0 and
Y(x) = ¢(—x) for all x € R”. A function ¢ is negative-definite if and only if 1
has the following properties:

(1) ©(0) = 0; B

(2) For every x € R” the equality ¥ (z) = ¢ (—z) holds;

(3) For every n € N and for every n-tuple of complex numbers ay, . . ., a,, for
which 377 a; = 0, and for all vectors M . 2™ in RY the following
inequality holds:

> aga (a9 —2®) <o.

Jrk=1

If the function v is negative-definite, then so is the function ¥ — ¥ (0). If ¢ is
positive-definite, then the function ¢(0) — ¢ is negative-definite.

The following theorem establishes an important connection between negative-
and positive-definite functions.

5.29. THEOREM (Schoenberg). A function v belongs to CN if and only the
following two conditions are satisfied:

(i) ©(0) = 0;
(ii) For every t > 0 the function exp (—ty) is continuous and positive-
definite.

Let ¢ be a negative-definite function. Then, by Bochner’s theorem together
with the theorem of Schoenberg, there exists for every t > 0 a sub-probability
measure y; on the Borel field of R” such that ji; = exp (—t1)). We return to this
aspect when we discuss the notion convolution semigroup of measures.

PRrROOF. First suppose that ¢ belongs to CN. Let (... 2™ belong to R”.
Write a;p, = ¢ (z9))+¢ (2®™)—¢ (29 — 2®). Then the matrix with entries a;
is positive hermitian. But then the matrix with entries exp (a; ) is also positive
hermitian. Let ay, ..., a, belong to C and write a; = exp (_¢ (.Clﬁ(j))) a;. Then
we see

n

Z exp (—w (x(j) — x(k))) a;ay = Z e><p(aj7,y€)a;-a_§€ > 0. (5.32)
o=

1 G k=1

J
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From (5.32) it follows that the function exp (—1) is then positive-definite. The
same procedure can be repeated for the function ti). Conversely, if (i) and
(ii) are satisfied, then, for every ¢t > 0, the function ¢, := 1 — exp (—t¢)) =
1 —exp (=t (0)) + exp (—t10(0)) — exp (—t1)) is negative-definite. But then the

function 1 is negative-definite as well, because 1) = ltigl % Since
1 — exp (—t¥(x))

£ )
§o dsexp (—sy(z))
for t > 0 but small enough, we see that the function v is continuous at x.

P(x) =

So the proof of Theorem 5.29 is now complete. 0

5.30. DEFINITION. A family of Borel measures (u; : t > 0) with the following
properties:

(a) u (RY) < 1 for t > 0;
(b) ps * py = pisi¢ for all s and ¢ = 0;
() limyo § fdpe = § fduo = f(0) = 8o(f) for all f € Coo (R¥);

is called a (vaguely continuous) convolution semigroup of measures on R”.

The following theorem says that a vaguely continuous convolution semigroups
is in fact everywhere weakly continuous.

5.31. THEOREM. There exists a one-to-one correspondence between vaguely con-
tinuous semigroups of measures and negative-definite functions.

(a) If (g =t =0) is a vaguely continuous convolution semigroup of mea-
sures, then there exists a unique continuous negative-definite function
Y such that i, = exp (—t), for all t = 0.

(b) Conversely, if 1 is a negative-definite function, then there exists a
vaguely continuous convolution semigroup of measures (p; : t = 0) such
that iy = exp (—t) for allt = 0. Of course, this semigroup is unique.

PROOF. (a) Define, for ¢ > 0, the function v via the equality

Y = 1; fiv. (5.33)

J fisds
0

Since isfiy = Jis1¢ we see that 1 does not depend on the choice of t. Put

g(t) = S(t) fisds. Then we see that g(0) = 0 and g(t)y + ¢/(t) = 1, and hence
1 —exp(—ty

g(t) = Loew )

Theorem of Schoenberg (Theorem 5.29) implies then that the function v is
negative-definite. The functions fis, s = 0, are continuous. So the same is true

for .

From the latter it follows that i, = exp (—ty). The

(b) Since 1) is a negative-definite function, the functions exp (—t1) are positive-
definite by the theorem of Schoenberg. The theorem of Bochner (Theorem
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5.17) yields the existence of sub-probability measures (p; : ¢t = 0) such that ji; =
exp (—tt). Since

lim 7€) = lim exp (~5(€)) = 1 = fio(€)

Theorem 5.43 in the next section implies that limy o § fdu: = f(0) for functions
f e Cyp (R).

The proof of Theorem 5.31 is now complete. U
5.32. REMARK. In the proof of Theorem 5.31 part (a) there is a problem if
the integral Sé 1sds vanishes somewhere. However, notice that ltil%l 1]; [isds =

fo pointwise. It follows that, certainly, for ¢ = ¢(£) > 0 small enough, the
expression Sé fs(&)ds = 0. This fact can be used to circumvent this problem.

5.33. REMARK. In the proof of Theorem 5.31 part (b) Theorem 5.43 of the
next section was employed. This can be averted as well. Therefore con-

sider f, with f € L'(RY). Then hmtwgf(x)d,ut(x) = limyo § f(z)fe(z)dx =
§ f(z)dx = f(0) = { fduo. By the theorem of Stone-Weierstrass from this we
obtain limy o § f(z)du(x) = f(0) = § f(x)dpo(z).
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5.34. PROPOSITION. Let (p; : t = 0) be a vaguely continuous semigroup of Borel
measures on RY. Suppose that all these measures are probability measures. Then
the following assertions hold:

(a) weak-1im;_¢, ¢=0 it = fty for all to = 0;
(b) limy—y sup,eps |§ f(@ — y)dpe(y) — § f(@ — y)dpe, (y)| = 0 for all ty €
[0,0) and for all functzons fe CO(R”)

PRrROOF. (a) First we look at

e (R”) — gy (RY) = exp (—14(0)) — exp (—to10(0)) .
It follows that
lim p; (R”) — p1g, (R”) = 0.

t—to

For the same reason we see that
Jim 71(€) = Jim exp (—~t0(€)) = exp (~tor)(€)) = Firo (€)-
By using theorem 5.43 in the next section we see that

weak- lim = .
t—to, t>0#t Hto

Of course, in this proof the function v denotes the negative-definite function
from Theorem 5.31.

(b) Let g € Cy (R¥) be of the form g with f e L'(R"). Then we see

Ufl"— )dpe(y f Y)diey( )’

W — Hy(=2)) exp (=i (z, 2)) f(2)dz
s f lexp (—ti)(—2)) — exp (~toth (=2))| [ (2)| d=

< f|exp (|t — tol (=) — 1] |£(2)| d=. (5.34)

The assertion in (b) now follows from (5.34) together with the theorem of Stone-
Weierstrass, and completes the proof of Proposition 5.34. O

5.35. PROPOSITION. Let (p; : t = 0) be a vaguely continuous semigroup of prob-
ability measures on the Borel field of RY. Define for every n-tuple t, ..., t, with
0 <t <- - <ty, the probability measure Py, ., on the Borel field of (R”)" via
de formula

.....

= Mty ®:ut2—t1 Q- ®,Utn—tn—1 ((3?1, s ,l’n) € (Ru)n : Vn (xla s >xn) € B)
_ Jdﬂtl (1) ... Jdutn_tn_l(a:n)lg (Vi (21, 20), (5.35)
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where B is a Borel subset of (RY)" and where V;, : (RV)" — (R¥)" is the linear
mapping given by: V, 1 (x1,x9,...,2,) — (1,21 + X2, ..., 21 + -+ + x,). Then
the family

{((Ry)n ) B (Ry)n ) ]P)m

forms a projective system of probability measures.

o) (t1,. .. ty) €0,00)", neN}

.....

PROOF. Let B e B(R")" and let B’ € B ((R*)"*") be defined by

B ={(z1,...,%041) € (R s (21, 2 Zk42s - -+ Zng1) € B}.

Let t] < - - <tp <s <ty <--+ <ty bean (n+ 1)-tuple of increasing times.
We have to prove the following equality:

Pt17~~~7tk757tk+1 ~~~~~ tn
Since the vector

Vi1 (Y192, Ynr1) = (Y910 + Y2, 01+ F Ynga)
belongs to B’ if and only if the vector

(Y91 + Y2, 0+ Yyt Yk, YY)
belongs to B, we get what follows:

Ptl,...,tk,87tk+1 ..... tn (B,)
= ,U/tl ® e ® Mtkftkfl ® ,l’LS*tk ® Mtk+1fs ® T

& ity —t, 1 {(?/17 . 7yn+1) : Vn+1 (yh . ayn+1) € B/}
_ f dyiey(41) . . f dpie 1o, (i) fdns_tk ) fdutk+l_s<z> fdu (2ess) .

J dﬂtn—tnfl(zn)]-B’ (Vn-i-l (yh e Yk Yy 2y B2y e Zn))
= Jdﬂt1 (yl) ce J‘dlutktkl(yk) fdMStk (y> fdutk+13<z) fdutk+2tk+1(zk+2) s
f d”tn—tnfl(zn)]-B (Vn (yh Y Y T2 kg2, Zn))

(apply Fubini’s theorem, integrate relative to pi,_¢, ®pis, ,, —s and use the equality
§9(y + 2)dpa(y)dp(2) = § g (2k41) dptuso(2141))

= J d:u’tl (yl) s J dlutk*tk—l (yk‘) J dlutkﬂ*tk (szrl) J dﬂtkm*tkﬂ (zk+2)
[ )

1B (Vn (?/1, e Yk Zkt1, - - 7Zn))

= Jdl’btl(yl) e fdﬂtn—tnl(yn)lB (Y1, + o+ yn)
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ADVANCED STOCHASTIC PROCESSES: PART II SOME RELATED RESULTS

This proves the required equality in case 1 < k < n — 2. The other cases, which
are t,_ o < s<tp_1,th,_1 <s<t, t, <sandt; > s, are left as an exercise for
the reader.

So the proof of Proposition 5.35 is complete now. U

5.36. PROPOSITION. Let (1 : t = 0) be a vaguely continuous semigroup of prob-
ability measures on the Borel field of RY. Define, for every n-tuple t1, ... ,t, the

probability measure Py, 4 , where t; < --- < t,, as in Proposition 5.35. Then
[0,00

there exists a unique probability measure P on the product field of (R")
that

) such

P(<X<t1)7 s ’X<tn)) € B) = Pt17~~~,tn (B) )
for all Borel subsets B of (R”)". Likewise there exists, for every x € R”, a
unique probability measure P, on the product field of (]R”)[O’OO) such that

P, ((X(t1),...,X(ty) € B) =P ((x + X(t1),..., 2+ X(t,)) € B)
= Jdutl(:ﬂl)@---@dwntn_l(xn)lB (T4 z1,..,x+x1 4+ ...+ T,),

for all Borel subsets B of (R*)".

Here the state variable X (¢) : (R)!*® — R is defined by X (t)(w) = w(?),

where w belongs to the product (R?)[**).

PrOOF. Apply Kolmogorov’s extension theorem to get the result in 5.36.
0
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5.37. THEOREM. Let (p; :t = 0) be a vaguely continuous semigroup of prob-
ability measures on the Borel field of RY. Define for every n-tuple ty,...,t,
the probability measure Py, 4., where t; < --- < t,, as in Proposition 5.35
and let P,, v € R, be the unique probability measure on the product field of
Q= (R”)[O’OO) such that

P, ((X(t1),...,X(t,)) € B)
= Jdutl(xl) . fd,utn_tnl(xn)lB (x+z,...,c+z14+...+z,). (5.36)

Let Fs be the o-field on Q generated by X (u), 0 <
variable X (t) — X (s) is independent of Fs and X (t) —
P, -distribution as X (t — s) — x, which is py_s.

For t > s the
ossesses the same

SRS
—
(V)
S—
R ®»

PROOF. Fix t > s, let f: (R”)" — R be a Borel measurable function, and
suppose that 0 < s1 < - < s, = s. Let g : R — R be another bounded Borel
measurable function. Then the following equalities hold true:

E(f(X(s1),--.,X(s0)) g (X(t) — X(s)))
_ JdM31(I1),,,Jdusn_sn1(a:n)fd,ut_s(x)f(x1,...,xl b o) g(@)

=E(f (X(s1),---, X(50)) E (g (X(t) = X(5)))-
Now let H be the vector space of F;-measurable bounded random variables Y
with the property that E (Y g(X(t) — X(s))) = E(Y)E (¢(X(t) — X(s))). Then
H satisfies the hypotheses of Lemma 5.100. Whence, H contains all bounded F-
measurable random variables. Since, in addition, the function g is an arbitrary
bounded continuous function, it follows that the state variable X (t) — X (s) is
independent of F5. This completes the proof of Theorem 5.37. (|

5.38. THEOREM. Let (2, F,P) be a probability space and let (X (t): ¢ = 0) be a
family of state variables with state space R”. Assume that these state variables
are measurable relative to the o-fields F and B(RY). Suppose that

EmE[f(X(t))] = f(0) for all f € Coo (RY),

and also that for every t > s the variable X (t) — X (s) is independent of the o-
field o (X (u) : 0 <u < s) and that X (t) — X (s) possesses the same distribution
as X (t — s). Then the mapping B — p,(B) := P (X (t) € B) defines a vaguely
continuous semigroup of probability measures on RY.

PrRoOOF OF THEOREM 5.38. It is clear that every measure p; is a proba-
bility measure is on the Borel o-field of R”. Since { fdu, = E(f(X(¢))), for
f € Co (RY), the equality lim,oE(f(X(¢))) = f(0), entails that the family
(e = t = t) is vaguely continuous at 0. The convolution property still has to be
proved. It suffices to prove that [i5(£)f(§) = fist¢(§) for all s and ¢t > 0, and
for all £ € R”. To this end consider

f exp (—i (€, 2) dpa(2) fexp (—i (€.9) dyuly)
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=E (exp (=i (§, X(5)))) E (exp (=i (§, X (¢))))
(the variable X () has the same distribution as X (s + t) — X (s))
= E (exp (—i (& X (5)))) E (exp (=i (&, X (s + 1) — X(5))))
(X(s +t) — X(s) does not depend on X(s))
(exp (=i (&, X (s) + X (s +1) — X(s))))
p

(exp (=i (&, X(s +1)))) = [ies:(E)-

Since 0 = X(0) — X(0) it follows that pg has the distribution dy. This proves
Theorem 5.38. O

E
E

5.39. DEFINITION. Let (2, F,P) be a probability space and let the mapping
X : (t,w) — X(t,w) = X(t)(w) satisfy the hypotheses mentioned in Theorem
5.38. (So that for ¢ > s the state variable X (t) — X (s) does not depend on the
o-field o (X (u): 0 <u < s) and X(t) — X(s) possesses the same distribution
as X(t — s); moreover, the equality lim,;oE (f(X(s))) = f(0) holds for all
f € Cy(R¥)). Then the process X is called a Lévy-process, that begins at
X(0) =0.

Important Lévy-processes are the Poisson process with jumps 1 and the Brow-
nian motion. The one-dimensional distributions of a Poisson process X (with
jumps 1 and of intensity A) are given by

Ok
P(X(t) =k) = (k;'> exp (—At), keN.
For details on Poisson processes see Subsection 5.4 in Chapter 1. The Brownian
motion B (with drift 0, intensity I and which starts in 0) possesses as one-
dimensional distributions:

P(B(t) e B) = \/ﬁ JB exp <—%) dy.

For more details on Brownian motion see the Section 4 in Chapter 1 and Sec-
tion 3 in Chapter 2. In addition, see Chapter 3. A Lévy-process with initial
distribution p is a family of F-B-measurable mappings X (¢) : 2 — R” such that
X (0) has the distribution p, and such that the process t — X(t) — X(0) is a
Lévy-process that starts at 0. If the initial distribution p = d,, then it said that
the process X starts at x. If X = (X (¢):t > 0) is a Lévy-process that starts
at 0, then (z + X(t) : t = 0) is a Lévy-process, which starts at . The Poisson
process X, (with jumps 1 and intensity A) which starts at j € N possesses as
marginal or one-dimensional distributions:

(A
k!

Thus the distributions of the processes (X;(t):t>0) and (5 + X(¢):t > 0),
where X is the Poisson-process which starts at 0, are the same. The Brownian

P(X,(t) = k) =

exp (=At) 10wy (k —j), keN.
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motion B, (with drift 0, intensity I and which starts at x) possesses the following
one-dimensional distributions:

P (B,(t) € B) = \/Wf ( _y’ )dy.

5.40. DEFINITION. Let E be a locally compact Hausdorff space and let

{P(t):t >0}
be a family of linear operators of Cy(E) to the space L*(E, ). Here € is the

Borel field of E. This family is called a Feller semigroup, or Feller-Dynkin
semigroup provided it possesses the following properties:

(i) semigroup-property: P(s+t) = P(s)P(t) and P(0) = I;

ii) positivity preserving: f =0, f € Co(FE), implies (t)f > 0,
(iii) contractive: 0 < f <1, f € Co(F), implies 0 < P(t)f
(iv) continuity: lim o [P(t)f] (z) = f(x) for all f e Cy(E) and for allz € E;
(v) invariance: P(t)Co(E) < Cy(F) for all t = 0.

In the presence of (i), (v) and (iii) assertion (iv) is equivalent with

(iv') lim¢ gy =0 | P(t) f — P(to) f|l, = 0 for all f e Cy(E).
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5.41. THEOREM. Let (Q,F,P) be a probability space, and (X (t):t>=0) be a
famaly of state variables with state space R”. Suppose that these state variables
are measurable relative to the o-fields F and B(RY). In addition, suppose that
limg o E (f(X(2))) = f(0) for all f € Coo(R”) and also that for everyt > s the
variable X (t) — X (s) does not depend on the o-field o (X (u) : 0 <u < s), an d
this for all t > s = 0. Moreover, by hypothesis, the variable X (t) — X (s) has
the same distribution as X (t — s). Define the operator P(t) from L* (R") to
itself by [P(t)f] (z) = E(f (x + X (t))), f € L* (RY). The restriction of P(t) to
Co (RY) leaves the space Cy (RY) invariant, and the family {P(t) |CO(RV): t> O}

is a Feller semigroup (also called a Feller-Dynkin semigroup).

PROOF OF THEOREM 5.41. It is clear that every operator P(t) is contrac-
tive and positivity preserving. It is also clear that limy o [P(f)f] (x) = f(x) for
all z € R” and for all f € Cy (R”). We still have to prove the invariance property.
Let f = g, where g belongs to L' (R”). Then we obtain

[P(t)f] () = E(f (x + X (1)) = E (@ (x + X (1))
_ j exp (=i (€,2)) E (exp (—i (€, X () g(€)de.  (5.37)

By the lemma of Riemann-Lebesgue (Theorem 5.12), the equalities in (5.37)
imply the equality

lim [P(t)f] (z) = 0.

T—00

The continuity of the function P(t)f is clear as well. As a consequence, P(t)
maps the space {g: g € L' (R”)} to Cy (R”). The theorem of Stone-Weierstrass
implies that the space {g:ge L' (R")} is dense in Cj(R¥) for the uniform
topology. Because of the contractive character of the operator P(t) it then
follows that P(t) leaves the space Cj (R”) invariant. In order to finish we prove
the semigroup-property. Again we take the Fourier transform g of a function
g€ L' (R") and we consider

[P(s +t)g] (z)
=E(glz + X(s +1)))

e "OTE (exp (—i (€, X (s + 1)) g(€)déE

—~

[
—_— =

e " STE (exp (=i (€, X (s + ) — X(s))) exp (—i (€, X (5)))) g(€)d€
(the variable X (s +t) — X (s) is independent of X (s))

e EDE (exp (—i (€, X (s + £) — X(5)))) E (exp (—i (€ X(5)))) g(€)de

—

(the variable X (s +t) — X (s) has the same distribution as X(t))

e TR (exp (—i (€, X (1)) E (exp (—i (£, X (s)))) g(€)dE
(wW—E(W —g(r+ X(s)(w)+ X(t) (w)))). (5.38)

o f—
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The semigroup-property then follows from (5.38) together with the Theorem of
Stone-Weierstrass which, among other things, implies that the space

{G:9e L' (R}
is dense in Cy (R¥) for the uniform topology.
This completes the proof of Theorem 5.41. 0

2. Convergence of positive measures

We begin with the continuity theorem of Lévy.

5.42. THEOREM (Lévy). Let (i, : n € N) be a sequence of bounded positive Borel
measures on RY. Assume that there exists a function ¢ : RV — C, which is
continuous at 0, such that

lim fin(2) = (2)

n—0o0

for all x € R”. Then there exists a bounded positive Borel measure such that

weak- lim g, = p.
n—00

PRrROOF. The function ¢ is a point-wise limit of positive-definite functions
and so it is itself positive-definite as well. Since the function ¢ is continuous
at 0, inequality (c) in Theorem 5.15 implies the continuity of ¢. By Bochner’s
theorem (Theorem 5.17) there exists a positive bounded Borel measure u such
that

lim fin(z) = p(x) = fi(x) (5.39)

n—0o0

for all z € R”. Next, let f be an arbitrary function in Cy (R”). Then we see

lim sup ] [ Faw~ | fdu’ — lim sup ] | 70 @) - pta) o

n—0o0 n—0o0

<timsup [ 7o)/ [Au(a) -~ Ale)ldo. (540
n—0o0

In view of (5.39) we see that the integrand in (5.40) converges pointwise to 0.

Write ¢ = sup,,oy (1(0) + 72(0)). Then c is finite and |f(2)| |, (x) — f(z)| is

dominated by the L!'-function ¢|f(z)|. By the dominated convergence theorem

(Lebesgue) it follows from (5.40) that

lim sup U fd,un - de,u’ = 0. (5.41)

n—0o0

~

Since the subspace { f:feCyp (R”)} is uniformly dense in Cj (R") (see The-

orem 5.14), from (5.41) it follows that lim, . § pdu, = {@dp for all functions
¢ € Cyo (R”). Theorem 5.26 then implies weak- lim,,_, o 1, = pr. This proves the
continuity theorem of Lévy: Theorem 5.42. 0
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In the following theorem we compare several equivalent forms of weak conver-
gence. If a = (a,...,a,) and b = (by,...,b,) belong to R” and if a; < b;,
1 < j < v, then we write a < b and also (a,b] = (a1,b1] x -+ x (a,, b,].

5.43. THEOREM. Let (po : « € A) be a directed system (a net) in Mt consisting
of sub-probability measures (so that i, (RY) < 1, a € A) and let p € M* be
a sub-probability measure as well. Let (fx: ke N) be a sequence in Cy(R")
with a linear span which is dense in Cy (R¥). The following assertions are then
equivalent:

(1) The net (pq : o € A) converges weakly to p;

(2) For every bounded Borel measurable function f : RY — C which is
continuous in ji-almost all points the equality lim,, § fdu, = § fdu holds;

(3) The net (juo = a € A) converges vaguely to p and im p, (R”) = p (RY);

(4) For every closed subset F' of R the inequality lim sup,, pq(F) < pu(F)
holds and

lim o (RY) = 11 (R”) ;

(5) For every open subset G of R” the inequality liminf, u.(G) = u(G)
holds and

lim o (RY) = 11 (R”) ;

(6) For every Borel subset B of R”, for which p (B\é) = 0, the equality

lim, o (B) = p(B) holds;

(7) For every pair of points (a,b) € R” x R” such that a; < b;, 1 <
j < v, where a = (a1,...,a,), b = (b,...,b,), with the property
that p{x e R” : x; =a;} = p{reR": 2, =b;} =0, 5 =1,...,v, the
equality limg, pio (a,b] = p(a,b] holds and lim, puo (R¥) = p (RY).

(8) For every k € N the equalities lim, § frdpe = § frdp and lim, p1, (R”) =
w (RY) hold;

(9) For every x € R” the equality lim, i, (x) = fi(x) holds.

(10) For every a € R” for which p{x e R" : x; = a;} =0, j =1,...,v, the
equality

lién,ua [(—o0,a1] x -+ x (—0,a,]] = p[(—00,a1] X -+ x (—0,a,]]

holds and lim,, p1, (R”) = p (RY).

PRrROOF. The equivalence of the assertions (1) and (9) is a consequence of
Theorem 5.25. The equivalence of (1) and (3) is a consequence of Theorem 5.26.
The implication (1) = (8) is trivial. The implication (8) = (3) can be proved
as follows. From (8) it follows that lim, {wdu, = §pdu for all ¢ in the linear
span of (fy : k€ N) u {1}. So that for f € Cy (R”) + C1 and ¢ in the span of
(fx: ke N)u {1} we see that
Jf d (pta — u)’

lim sup
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< lim sup U(f — @) d(ta — u)' + limsup de(ua - u)'

«

< |f = ol limasup (fa (R”) + 11 (RY))
=2|f — ¢, p(R). (5.42)

Assertion (3) follows because the linear span of (fi : k € N) u {1} is uniformly
dense in Cj (R¥)+C1. From the previous arguments it follows that the assertions
(1), (3), (8) and (9) are equivalent.

(2) = (1). This implication is trivial.

(1) = (4). Let F be a closed subset of R”. Choose a sequence of functions
(uj : j € N) in Cp(R”) in such a way that 1p < uj11 < wu; <1, j €N, and such
that 1p(z) = lim;_,o u;j(x) for all x € R”. Then the equality

lim sup po(F') < inf lim supfujdua = inffujdu = u(F)
«a JeN jeN

07

holds. This proves assertion (4) starting from (1).

(4) < (5). These implications are easy to verify.
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(5) = (6). Let B be a Borel subset of R” such that u <B\B> = 0. Then, from
(5), what is equivalent to (4), it follows that

lim sup iq(B) < limsup o (B) < p (B) = p (E?)
< liminf j1, (é) < liminf u, (B). (5.43)

Hence, lim,, po(B) = u(B).

(6) = (1). Let 0 < f <1 be a continuous function. Because

ffdu=£u{f>5}df=£u{f>5}df

we see that Sé u{f =&}dé = 0. Thus for almost all € the equality p{f =&} =0
follows. For a certain sequence (ay: ¢ € N) in A, we then obtain by (6) the
following (in-)equalities

1 1
deu=f {f>§}du=f pif =&rdg

0 0
1 1

:J 1i;nua{f>§}d§=f lim piq {f > &} d€
0 0

< iﬂilimua{f> k‘2_"}+in < iﬂi lim;uaz{f> k2_n}+in
2n A a 2 i 2

(Fatou’s lemma)

1 & 1
< i — E 1 —mdll, + —
1mf2n Z {f=k2-n}0lq, on

{—0
: 1 - 1
< lim deuae + == hmmfffdua + —. (5.44)
{—0 2n «a 2m
From (5.44) it then follows that, always for 0 < f < 1,
deu < lim infjfd,ua, (5.45)
and also
J(l — f)dp < liminf J(l — f)dpq. (5.46)

Since, in addition, lim, ue (RY) = p(R”) we see by (5.45) and (5.46) that
lim, fdpe = § fdp for every function f € Cy (R”) for which 0 < f < 1. Since
the linear span of such functions coincides with Cj, (R) assertion (1) follows
from (6). (5) = (2). Let f be a real-valued bounded function which p-almost
everywhere continuous. Without loss of generality we assume that 0 < f <1
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(otherwise replace f with af + b, with a and b appropriately chosen constants).
Then define the functions f and f“ respectively by

f(x) = inf supf( ) en fY(x)= sup inf f(y). (5.47)
UeU(z) y Uel(z) YU
It follows that §(f™ — fY)dp = 0 and also f° < f < f”. Hence, for an
appropriately chosen sequence (ay : £ € N),

.
deu=ff°du<2i 21n u{fu>/f2 "}

T A »
2_n+272h?_{g1fﬂaz{fu>k2 }

N

N

+ hmlnf— Z Lo, {f° > k27"}

-1
1
< on + lim infffud,ua < on + lim infffd,ua. (5.48)
From (5.48) it follows that
ffdﬂ hmmfffdua.

For the same reason the inequality §(1 — f)du < liminf, {(1 — f)du, holds.
Because, in addition, lim, i, (RY) = p(R”) we see that | fdu = lim, § fdu,.
This proves (2) starting from (5).

1
2n
1

(6) = (7). This assertion is trivial.

(7) = (8). In this part of the proof we write (a,b] for the interval (aj,b;] x

- % (a,,b,], if @ and b are points in R” for which a; < b; for 1 < j < v. From
(7) it follows that lim, pta (a,b] = p(a,b] for all points a and b in R” with the
property that u{y e RV : z; = a;} = p{ye R”: 2z; =b;} =0forall 1 <j<v
Next pick for f a function in Cpyy (R”) with values in R. Let g be an arbitrary
function of the form g = 37, f(2;)1(4, s;), where a; and b; are points in R with
the following properties: u{y € RY : yx = a;x} = p{y € RV : yp = b x} = 0, for
l1<k<v,andaj; <bj,forj=1,...,n,and 1 <k < v. In addition, suppose
that x; belongs to the “interval” (aj, bj]. The we get

lim sup J fdpe < limsup J(f — g)dpe + lim sup J gdjie

<1f =gl n®) + fgdu 207 — gl u(R )+de,u~

Since f is uniformly continuous we are able to choose, for a given ¢ > 0, a
function g of the form as above in such a way that |f — g[,, < e. This proves
the inequality limsup, § fdua < § fdu. The same argument can be applied to
the function —f. It follows that lim, § fdue = § fdu for functions f € Cy (R¥)
that are real valued. But then (8) follows.
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(10) = (7) Let a < b be as in (7). Then pu, (a,b] can be written in the form

pala bl = Y (~1)* %, [H <—oo,cA,j]] , (5.49)

j=1

where ¢y j = aj, j€ A, cpy; = bj, j€{1,...,v}\A. The implication (10) = (7)
then easily follows from (5.49). The equality in (5.49) can be found in Durrett
[60] Theorem 1.1.6 page 7.

(7) = (10) Let a be as in assertion (10). Put F = [],_, (=0, ax]. Then the
subset F is closed, and since assertion (7) is equivalent to (4) we know that
lim sup,, o (F)) < u(F). Since assertion (7) is equivalent to (5) we know that

liminf, pe (F) = liminf, p, <;7’> > (fo?) Since (ﬁ’) = p(F) assertion
(10) follows.

The proof of these implications completes the proof Theorem 5.43. O

EXPERIENCE THE PO\
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5.44. REMARK. The implication (10) = (1) in Theorem 5.43 can also be proved
by employing the equality

| t@ dnate) = 07 | DDt e [H <—oo,xj]] dr (550

_ (1)VJVLT...J:Dl...Djl,f(x)dx,,...dxldua(y),

where the function f is v times continuously differentiable, and where D; de-
notes differentiation with respect to the j-th coordinate, 1 < j < v. The
equality in (5.50) can be proved by successive integration. The second equality
is a consequence of Fubini’s theorem.

5.45. DEFINITION. A topological space E is called a Polish space if E possesses
the following properties:

(i) E is separable;
(ii) E is metrizable;
(ili) There exists a metric d on E that determines the topology and relative
to which E is complete.

Since F is metrizable property (i) is equivalent with the existence of a countable
basis for the topology.

5.46. LEMMA. Let E be a Polish space.

(a) A closed subset F' of E is, with the induced metric, again Polish.
(b) An open subset G of E is again Polish.

PROOF. (a) The proof of assertion (a) is not difficult. If (U;: j e N) is a
countable basis for the topology of E, then (U; n F': j € N) is a countable basis
for the topology on F. Moreover, F' is closed and hence it is complete with
respect to the induced metric.

(b). Let d be a metric on F, which turns E into a complete metric topological
space. Then the open subset G is Polish for the metric dg defined by

dg(z,y) = d(z,y) + d(;GC) - d(ych) : (5.51)

where  and y belong to G, where G = E\G and where d (z, G¢) = irg d(z, z).
2eG*°

The separability of G is also clear. The proof of Lemma 5.46 is now complete.
O

5.47. THEOREM. A subset A of a Polish space E is again a Polish space if and
only if A is the countable intersection of open subsets of E.

PROOF. Let A = ﬂjeN G, where every G; is an open subset of E. Let d be
a metric on £, which makes E into a Polish space. Define then the metrics d;
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on G;, j€N, as in (5.51) and define the metric d4 on A via

i 1 (x y

= 271+ d 1+d(x,y)
Then, endowed with the relative topology, A is a Polish space with respect to
the d4. Conversely, let d < 1 be a metric on A which is compatible with the
topology that A inherits from £, and which turns A into a complete metric
space. Let A be the closure of A. Then there exists a decreasing sequence

of open subsets (G,,), .y such that A = () G,; i.e. closed subsets of E are
Gs-subsets. For n € N, n # 0, we define the open subset A, of A as follows:

A, ={z e A: there exists an open neighborhood U(z) in E of x

1
for which d(y, z) < — for all z, y e U(x) n A} . (5.52)
n

Then the following assertions about the sets A,, will be proved:

(1) For all n € N we have A < A,,.
(2) The sets A, n € N, are open in A.
(3) The inclusion (), A, < A holds, and so by (1) A =), A,.

Since, by (2), the subsets A,,, n € N, are open in A there exist open subsets O,,
neN, of E such that 4,, = O, n A, n e N. It follows that

A:ﬂAn:ﬂanmzzﬂc)nmﬂ(;m:ﬂanman,

and hence, A is a countable intersection of open subsets of E. Next we prove
the assertions (1), (2) and (3).

(1) Pick = € A, and consider the ball

1
B = A:d — .
1/(2n) () {w € (w,z) < Qn}
There exists an open neighborhood U(z) of x in E such that Bjan,(z) =
AnU(x). Ify, z belong to A n U(z) we have d(z,y) < d(z,z) + d(z,y) < 1/n.
It follows that x € A,,. This is true for all n € N.

(2) That the subset A, is open in A can be seen as follows. Pick x € A. There
exists an open neighborhood U(z) in E of z such that d(z,y) < 1/n for all
z,y € AnU(x). The set U(x) n A is an open neighborhood of x in A. Tt
suffices to show that U(x) n A = A,. To this end choose 2’ € U(x) n A. Then
U(z) is an open neighborhood in E of 2’ as well, and since ' belongs to A it
follows from the definition of A,, that 2’ is a member of A,,.

(3) Let & belong to A, for all n € N. Then x belongs to A. We will prove that
x € A. Let D <1 be a metric on E which is compatible with its topology, and
which turns E into complete metric space. For the moment fix n € N. Since
x € A, there exists an open ball B,, in F relative to the metric D centered at x
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and with radius < 1/n such that
1
d(z,y) < — whenever vy, z€ An B,. (5.53)
n

Since x € A there exists x, € A n B,. In this way we obtain a sequence of balls
{B,, : n € N} relative to the metric D centered at x, which we take decreasing,
and which are such that the D-radius of B, is strictly less than 1/n. In addition,
we obtain a sequence of points {x, : n € N} in A such that z, € B, for all n € N.
Since the balls B,, are decreasing we have z,, € B,, for m > n. From this fact and
(5.53) it follows that d (z,,,x,) < 1/n for m > n. Consequently, it follows that
the sequence {z, : n € N} is a d-Cauchy sequence in A. Since A is d-complete
there exists a point 2’ € A such d(z,,2') < 1/n, n € N. Since D and d are
topologically compatible on A it also follows that lim, . D (z,,2") = 0. We
also have lim,, o D (z,,x) = 0, and consequently = = 2’ € A.

This completes the proof of Theorem 5.47. 0J
For a proof of the following theorem the reader is referred to the literature. We

will give an outline of a proof. A JGs-set in a topological space is a countable
intersection of open subsets.

5.48. THEOREM. A Polish space E is homeomorphic with a Gs-subset of the
Hilbert-cube [0, 1], endowed with the product topology.

v
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PROOF OF THEOREM 5.48. Let d : E x E — [0,1] be a metric op E
which is compatible with its topology, and which turns F into a Polish space,
and let (x,: €€ N) be a countable dense subset of E. Define the mapping
U: E— |0, 1]N by ¥(x) = (d (x, 2¢),y)- Then, as can be checked, the mapping
U is a homeomorphism from E onto a subset of [0,1]Y. So far we have not
yet used the fact that E, equipped with the metric d is complete; we did use
the fact that F is a metrizable separable space. Since E is complete with
respect to d and ¥ is a homeomorphism, it follows that the image of E under
U, that is A = W (E), is complete subspace of the Hilbert cube [0, 1]N. Let
D : [0,1]N x [0,1]N — [0, 1] be the metric defined by

D (&) pen - (Me)gen) = Z 27 1& — el , (€)pen » (M) gen € 10, 1.
=1

Then D is a metric on [0, 1]N which turns this space into a Polish space. It
follows that A is a subset of [0, 1] which is homeomorphic to a Polish space,
and so it itself is Polish. Since it is a Polish subspace of the Polish space [0, 1]¥,
A is a countable intersection of open subsets of [0, 1]": see Theorem 5.47. This
completes the proof of Theorem 5.48. 0

The space N of positive integers with the usual metric inherited from the real
numbers R is Polish. Then the countable product NN with metric

a({mi () = 2 G T

i=1

(5.54)

is Polish. The proofs of Propositions 5.49 and 5.50 are taken from Garrett [75].

5.49. PROPOSITION. Totally order NN lexicographically. Then every closed sub-
set C of NN has a least element.

The lexicographic ordering of NV can be recursively defined. An element a =
(ay,as,...) precedes an element b = (by, by, ...) if a1 < by; however, if a; = by,
then ay < by; however, if a; = b; and ay = by, then a3 < b3, and so on.

PROOF. Let ny be the least element in N such that there is z = (nq,...)
belonging to C. Let ny be the least element in N such that there is x =
(n1,ns9,...) belonging to C, and so on. Choosing the n; inductively, let xy =
(n1,n2,n +3,...). This xq satisfies g < z in the lexicographic ordering for
every x € C, and xq belongs to the closure of C' in the metric topology introduced
in (5.54). This completes the proof of Proposition 5.49. O

5.50. PROPOSITION. Let E be a Polish space. Then there exists a continuous
surjective mapping Iy : NN — E. Moreover, there exists a measurable function

Go: E — NN such that Fy o Go(y) =y for all y € E.

ProOF. The mapping Fy can be constructed as follows. For a given € > 0
there is a countable covering of E by closed sets of diameter less than €. From
this one may contrive a map F from finite sequences {ny,...,n;} in N to closed
sets F'(nqy,...,ng) in E such that
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(1) F (D) = E; .
(2) F(ny,....ng) = Uy F (na, ..o g £);
(3) The diameter of F' (ny,...,ny) is less than 27,

Then for x = {n;} € NY the sequence Ej = F (ni,...,n;) is a nested sequence
of closed subsets of F with diameters less than 27% respectively. Thus, the
subset (1), Ej consists of a single point Fy(y) of E. On the other hand, every
x € E lies inside some (), Ej. Continuity is easy to verify. The mapping Gy
can be constructed as follows. The space NV, endowed with the lexicographical
ordering is totally ordered, and by Proposition 5.49 every closed subset contains
a least element for this order. For y € E the subset Fj;'(y) is closed in N¥, and
therefore it contains a least element Gy(y). This assignment is a measurable
choice (because it can be performed in countably many steps). Then FyoGy(y) =
y for y € E. The proof of Proposition 5.50 is complete now. 0J

The proof of the following theorem is based on the fact that a Polish space is
homeomorphic with a Gs-subset of the Hilbert cube, which, being a countable
product of closed intervals, is a compact metrizable space.

5.51. THEOREM. Let u be a finite positive measure on the Borel field of a Polish
space. Then p is reqular in the sense that

pu(B) = inf {u(O) : O open, B < O} = sup {u(K): K compact, K < B}.
(5.55)

PROOF. Let ¥ and A be as in the proof of Theorem 5.48. Then ¥ : £ — A
is a homeomorphism. Let p > 0 be a finite measure on the Borel field of E.
Define the measure v on the Borel field of [0, 1]N by

v(B) = [V (B A)| =p[¥eBnA], BBorel subset of [0,1]". (5.56)

Then, since the Hilbert cube is compact and complete metrizable, and A is a
Gs-subset of the Hilbert cube, we see that the measure v is regular on the Borel
field of [0,1]". It also follows that the restriction of v to the Borel field of A
is regular. However, under the homeomorphism ¥ : E — A the Borel subsets
of F are in a one-to-one correspondence with those of A. It easily follows that

the measure p is regular in the sense of (5.55), which completes the proof of
Theorem 5.51. U

5.52. THEOREM. The following assertions hold for Banach spaces.

(a) Let E be a separable Banach space. Then its dual unit ball B', endowed
with the weak*-topology, is a Polish space.

(b) (Helly) The set ML, is compact-metrizable, and thus Polish for the
vague topology.

Let E' be the topological dual space of E. The weak*-topology is denoted by
o:=0(EE).

PROOF. (a) Let (z, : n € N) be a sequence in the unit ball B of E of which
the linear span is dense in E. Define the mapping ® : (B’,0) — [0, 1] via the
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map «’ — (< 2,2 >). ;. The mapping ® is continuous and, by the Theorem of
Banach-Alaoglu, the dual unit ball B’ is compact relative the topology o (F', E).
It follows that ®(B’) is a compact subset of [0, 1]Y. This image is Polish, and
because the inverse of ® is continuous, B’ itself is Polish as well.

a0
n=

Let r be a positive real number. Let the set MZ, be defined by
ML, = {peM": p(R") <7},
and let M be given by
M ={peM:puR) =r}.
(b) Since M¥, is a vaguely closed subset of M = Cj (R¥)", by the Theorem of
Banach-Alaoglu it follows that MZ, is compact for the vague topology. The

fact that the set MZ, is Polish will be proved in Theorem 5.54. This completes
the proof of Theorem 5.52. O

5.53. DEFINITION. A subset A of M is a Prohorov subset, if it satisfies the
following two conditions:

a) sup RY) is finite;
peA %
(b) For every e > 0 there exists a compact subset K of R” such that

sup |u| (RM\K) < e.
peA

5.54. THEOREM. The following assertions are true:

(a) The spaces MZ, and MY are Polish with respect to the vague topology.
(b) The spaces MZ, and M{ are Polish with respect to the weak topology.
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PROOF OF THEOREM 5.54. The countable collection
o0 n n
U {Zajéxj co € Qo > O,Zaj = 1}
n=1 {j=1 j=1

is dense in M for the vague as well as for the weak topology. The countable

collection
0 n n
U {Zajéxj ca;€Q,a0>0,0 < Zaj < 1}
n=1 {j=1 j=1

is dense in MZ, for de vague as well as the weak topology. This can be seen
as follows. Let f be a bounded continuous function defined op R”. Fix € > 0,
and choose a partition of R” in Borel subsets (A4; : j € N) in such a way that

lf(z)— fy)| < ﬁ for all z, y € A;, and this for all j € N. In addition,
l»l/ v
choose N € N so large that

( ﬁ] ) |1l

Put a; = p(A;) and choose x; € A;. Then we have

de “/f( Eee

aj

<|%], v - s duto
‘| 3 f fio

j=N+1

i)+ 2[fle { ”)—ZM(AJ')} < 3¢

Appealing another time to the continuity of the function f, and using the fact
that the rational numbers are dense in R we obtain the separability of the
sets M, and MZ, relative tot the vague as well as the weak topology. We
indicate metrics which turn these spaces into Polish spaces. Therefore we choose
a sequence of functions (fy : k€ N) in {f € Coo (R”) : 0 < f < 1} whose linear
span is uniformly dense in Cj (R”). We also choose a sequence (u,: ¢ € N) in
Coo (R”) such that 1 > usyq = up = 0 and such that 1 = limy_,, uy(z) for all
r e R”.

Naj eyl AE) H
+ > a;f( ){ S

j=1 j=1%j

(a) Define the distance d, on J\/[Zl via the formula

f i | 1.

where p and v are members of MZ,. Supplied with this metric the space MZ,
is Polish for the vague topology. The spaces MZ,, 0 < r < 1, are also closed for

dy (11, (5.57)

2]
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the vague topology. Since

a0
MP = [ ML\ M2 (5.58)

<1-1/n
n=1

we see that M7 is a Polish space: see the Theorems 5.47 and 5.52.

(b) Let fo = 1 and let the sequences (fy : k € N) and (u, : £ € N) be as above.
We define the metric d,, by the equality

o 1
Jugdu — Ju@di/ + Z % Ufjdp — ijdz/
j=1

where p and v belong to ME,. Supplied with this metric the space MZE, is Polish
for the weak topology. If we are also able to prove that the space ME, is complete
relative to the metric d,,, then it follows that the spaces MZ,, r = 0, are Polish.
These spaces are also weakly closed. By the equality in (5.58) in Theorem 5.47
then implies that M{ is a Polish space as well. Now let (u,, : m € N) be a d,,-
Cauchy sequence in MZ,. We will prove that this sequence is a Prohorov set in
MZ,. Choose € > 0 arbitrary. Then there exists M, € N such that for m and
m’ = M, the inequality

dw(p,v) = sup : (5.59)

LeN

sup fuzdum — Juzd,um/ < ¢ (5.60)
LeN 4
holds. So it follows that
|t (RY) — s (RY)] < i, m, m' = M.. (5.61)
From (5.60) and (5.61) it follows that
sup f(l — up) djty, — J(l — Ug) Aty | < E, (5.62)
LeN 2
for m and m’ = M,. Then from (5.62) it follows that
€
J(l — Up) dfly, < J(l — wp) dpps, + 5 (5.63)

From (5.63) it then follows that for ¢ > ¢, and m > M, the following inequality
holds:
_l’_

J(l — Ug) dpim, <

€
— = —. 5.64
‘ (5.64)
From (5.64) it then follows that for all ¢ > L. and for all m € N the inequality

1 m

J(l — up) dpty, < €. (5.65)

holds. Then choose the compact subset K. equal the support of the function
ur,. It follows that g, (R"\K.) < € for all m € N. Let p be the vague limit of
the sequence (g, : m € N). This limit exists, because MZ, is compact for the

Download free eBooks at bookboon.com



metric d,. Then pick a function u € Cyp (R”) in such a way that 1 > u > 1. .
By the equality

| b [ g = [ (8 = sy dp + | Fudn = [ fud = [ (= s

we infer the inequality

fﬁmm—ffmﬁ
<7l ([ 0= dun s [0 = wae) + ”fudum | fudu‘

< 11y (o (RAK) + 1 (RAK)) + } [ sun~ [ fudu}

< [ flle (um (R”\K)Huwm (R\K, ) Ufudum qudu’

< 26151, || fudn — | fudu]. (5.66)

Since pu = vague- limy,, y,, from (5.66) it also follows that p is the weak limit of
the sequence (p,, : m € N).

The proof Theorem 5.54 is now complete. 0

Part of the proof of Theorem 5.54 comes back in the proof of Theorem 5.55.

5.55. THEOREM. A subset S of MZ
S is a Prohorov subset.

2, 1s relatively weakly compact if and only if
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PROOF OF THEOREM 5.55. First, suppose that S is a Prohorov subset of
MZ,.. Let (i, : m € N) be a sequence in S. We will prove that there exists a sub-
sequence that converges weakly. We may assume that, possibly by passing to a
subsequence, that this sequence converges vaguely. By employing the Prohorov
property we will show that, in fact, this sequence converges weakly. Let ¢ > 0
be arbitrary. Then there exists a compact subset K such that p,, (K¢) < € and
also that p (K¢) < e. Then choose u € Cyy (R”) in such a way that 1 > u > 1.
Then we have (see the final part of the proof of Theorem 5.54):

deum ffdu
<wm(fu—ww%+fu—uw) Uﬂ@m fmww

< U7l o BR) 0 (RAR)) | [ i, [ ud

<WM@MWWwamWW)‘ﬁMM ﬁw4
<%fhj7wW—fmw.

Since pu = vague- lim,, i, from (5.67) it also follows that p is the weak limit of
the sequence (j,, : m € N).

(5.67)

Conversely, suppose that the set S is weakly compact. We will prove that S
possesses the Prohorov property. Assume the contrary. Then there exists an
n > 0 and there exists an increasing sequence of compact subsets (K, : m € N)
with the following properties:

(a) Ky < Ky and R” = | J7_| K,
(b) For every m € N there exists a measure j,, € S such that p,, (K%)= n.

Then choose a sequence of functions (u,, € Cyy (R”)) such that 1g, < U1 <
lk,, .- From (b) it follows then that, for m > ¢,

n< [0 L) dun < [0 Le)din < [ = w)dn. (508

Since the subset S is relatively weakly compact, there exists a subsequence
(fm, = k € N) which converges weakly to a measure p. From (5.68) we then
see that n < §(1 —ug)dp for all £ € N. From this we obtain a contradiction,
because the sequence (1 — u, : £ € N) decreases to 0.

This completes the proof of Theorem 5.55. 0

5.56. COROLLARY. Let (i, : m € N) be a sequence of measures in M™* and let
i also belong to M*. Choose a sequence offunctzons (fx : keN) in

{f € C()O (RV) 0 < < 1}

with a linear span that is uniformly dense in C’o (R¥) and choose another se-
quence (ug : £ € N) in Coo (R”) such that 1 = w1 = ug = 0 and such that
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1 = limy_, ug(z) for all z € R”. Define the metric d,, by the equality

1
ngdVg — JW duvy| + Z % Ufjdl/z — ijdm
j=1

where vy and vy belong to M™. Then the following assertions are equivalent:

dy(v1,v9) = sup
leN

)

(i) The sequence (i, : m € N) converges weakly to p;
(ii) limy, o du (fim, 1) = 0.

PROOF. The proof is left as an exercise for the reader. O

3. A taste of ergodic theory

In this section we will formulate and prove the pointwise ergodic theorem of
Birkhoff. We also indicate its relation with the strong law of large numbers.
We will also show that the strong law of large numbers (SLLN) implies the
weak law of large numbers (WLLN). However, we begin with von Neumann’a
ergodic theorem in a Hilbert space. In what follows the symbol H stands for
a (complex) Hilbert space with inner-product (-,-) and norm |-||. An operator
U : H — H is called unitary if it satisfies U*U = UU* = [. An operator
P : H — H is called an orthogonal projection if P* = P = P?. Let L be closed
subspace of H. Then H can be written as

H=L®L'=PH+(I-P)H,

where P : H — H is an orthogonal projection with range L. The following
theorem is the same as Theorem 7.1 in Romik [151].
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5.57. THEOREM. Let H be a Hilbert space, and let U be a unitary operator on
H. Let P be the orthogonal projection operator onto the subspace N (U —I)
(the subspace of H consisting of U-invariant vectors). For any vector v € H the
equality

n—1

1
lim — Z Uky = Po.
n—ao N =0

1 n—1
holds. (Equivalently, the sequence of operators {— Z Ur:ne N} converges
n
k=0

to P in the strong operator topology.)
PROOF. Define the subspace V.« HbyV = N(U-I) ={ve H : Uv = v} =
N (U* —=1I). Then
V=(RU-I)"={veH: (U-Du,v)=0 forallue H},  (5.69)
where R(U — I) is the range of the operator U — I, i.e.
RU—-I)={Uu—u:ueH}.

Let L be any linear subspace of H. From Hilbert space techniques it is known
that (LL)L coincides with the closure of the linear subspace L. From these
observations it follows that the subspace N (U —I)+ R (U — I) is dense in H,
and that the subspaces N (U — I) and R (U — I) are orthogonal. Moreover, we

have
1 n—1 i 1 n—1 i
=Y Uk < =Y |U*] < o], veH. (5.70)
n n
k=0 k=0
Define the subspace L < H by
1 n—1
LI{UEHZ lim—ZUkv—Pv}, (5.71)
n—o0 N pr

where P is the orthogonal projection onto the space V- = N(U —1I). From (5.70)
it follows that L is a closed subspace of H. If v € V, i.e. if Uv = v, then v
belongs to L. If v = (U — I) u belongs to the range of U — I, then

1 n—1 1 n—1 1
EZU%:EZU]“(U—])U:E(U"—I)U, (5.72)
k=0 k=0

and so by (5.70) and (5.71) it follows that

1 n—1

> UM =0= Py, (5.73)
k=0

lim
n—ao N

whenever v belongs to R(U — I). Again appealing to (5.70) shows that (5.73)
also holds for v belonging to the closure of R(U — I). Altogether it shows that
the subspace L coincides with H. This completes the proof of Theorem 5.57. [
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Let (2, F,P; T') be a measure preserving system. We associate with the measure
preserving mapping 7' : 2 —  an operator Uy on the Hilbert space L? (Q2, F, P)
defined by Up(f) = foT, f € L? (2, F,P). The fact that T is measure preserving
implies that UrUr = I:

(Urf,Urg) = E|UrfUrg] =E[foTgoT| =E[(fg) o T] =E[fg] = <Jz,9> )
5.74
From (5.74) it follows that U3Ur = I. In order that Ur is a unitary operator
it should also be surjective. Since the range of Ur is closed, this is the case
provided that the set of functions fo T, f € L*(Q,F,P), constitutes a dense
subspace of L?(Q,F P). The latter is true if the mapping T has the property
that there exists a measurable mapping T: Q — Q such that T'o T(w) = w for
P-almost all w. Then the operator U defined by Uf = fo T, f e L?(Q,F,P)
is the adjoint of Up. This can be seen as follows. Now we do not only have
UxUp = I, but we also have UpUf =UfoT = foT oT = f, f € L*(, F,P).
Hence, we see
U = (U:U) U = U (UTﬁ) — UL
Note also that the subspace N(U — I) consists exactly of the invariant (square-
integrable) random variables, or equivalently those random variables which are
measurable with respect to the o-algebra J of invariant events. Recalling the
discussion of conditional expectations in Theorem 1.4, item (11), in Chapter 1,
we also see that the orthogonal projection operator P is exactly the conditional

expectation operator & [ ‘ f]] with respect to the g-algebra of invariant events
J. Thus, Theorem 5.57 applied to this setting gives the following result.

5.58. THEOREM (The L? ergodic theorem). Let (Q,F,P;T) be a measure pre-
serving system. For any random variable X € L? (0, F,P) the equality

. 1 n—1 i
Jﬂﬁ;XoT =E[X |7] (5.75)
holds in L? (0, F,P). In particular, if the system is ergodic then
1 n—1
2 oo L k_
L—Jl_{rgonI;)XoT E[X]. (5.76)

Since the operator S : L?(Q,F,P) — L?(Q,F,P), defined by Sf = foT,
f e L*(Q,F,P), is not necessarily unitary, Theorem 5.58 requires a proof. It
only satisfies S*S = I. The proof is based on the proof of Theorem 5.66 below.

PROOF. Theorem 5.58 is a consequence of Theorem 5.59 which includes the
L'-version of Theorem 5.58. More precisely, we have to prove that
2

n—1
lim E %ZXoT’“—E[X\J] = 0. (5.77)
k=0

n—0

Let X € L*(Q,F,P) be bounded. Then we can use Theorem 5.59 together
Lebesgue’s theorem of dominated convergence that the equality in (5.77) holds
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for X. A general function X € L? (Q,F,P) can be approximated by bounded
functions in L?-sense. Since §|f o T|> dpu = §|f|? dy, and so the convergence in
(5.77) also holds for all L2-functions. The precise argument follows as in (5.122)
below with Sf = foT, f e L?(Q,F,P), and relative to the L*norm instead
of the L'-norm. So let f belong to L* (Q, F,P), and let M > 0 be an arbitrary
real number. Then we have:

1n—1Sk
w5

L2

( Zsk ) (f1gs1<ary)

+ ( Z S* - ) (fLysi=any)
L2 2
) 1/2 o
J < ZS - ) (fLgsieany)| dP ) +2 (J Ik dJP’) :
{lfI=M}
(5.78)
As in the proof of Theorem 5.66 in (5.78) we first let n — oo, and then M — o
to obtain the L2-convergence in Theorem 5.58. O
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The pointwise ergodic theorem of Birkhoff requires some more work. In what
follows (€2, F, p) is positive measure space, and 7' : € — € is a measure preserv-
ing mapping, i.e. u{T € A} = u{T1A} = u{A} for all Ae F with u{A} < 0.
An equivalent formulation reads as follows. For all f € L' (2, F, 1) the equality
§foTdu = fduholds. In other words the quadruple (Q,F,P; T) is a measure
preserving system, or dynamical system. The operator P, in (5.80) is a projec-
tion mapping from L' (Q, F, i) onto a space consisting of T-invariant functions.
Hence a function of the form g = P, f satisfies g o T' = g p-almost everywhere,
and so g is measurable with respect to the invariant o-field J. In addition, if h
is a bounded, T-invariant function in L' (Q, F, 1), then we have

| upy = [ Patsn) dn = [ s (5.79)

In other words the function P, f is the p-conditional expectation of the function
f on the o-field of invariant subsets. A measure preserving system (Q,F, u; T)
is called ergodic if a T-invariant function is constant p-almost every, and so the
o-field J is trivial, i.e. J consists, up to sets of y-measure zero, of the void set
and of €.

5.59. THEOREM (The pointwise ergodic theorem in L'). Let (0, F,u;T) be a
measure preserving system. For any function f € L' (Q,F, u) the equality

1 n—1
lim = > foT* = P,f (5.80)
k=0

n—o M,

holds p-almost everywhere. In particular, if the system is ergodic then the equal-
1ty

n—1

Jil{}o% D foTh = de,u. (5.81)

holds p-almost everywhere. If v is a probability measure, then the limits in

5.80) and (5.81) also hold in L*-sense, an = .
d Iso hold in L' dP,f=E,|f|7J

PRrROOF. The proof of Theorem 5.59 follows from Theorem 5.66 and its Corol-
lary 5.67 with 41 (Q) =1, and Sf = fo T, fe L' (Q,F, p). O

Let (0,30, P) be a probability space, and let X; : Qy - R, j = 0,1, ..., be
a sequence of independent and identically distributed variables (i.i.d.). Let us
show that the SLLN is a consequence: see Theorem 2.54. Put S, = Z;é Xk

5.60. THEOREM (Strong law of large numbers). The equality

lim = = a, holds P-almost surely
n—w N

for some finite constant «, if and only if E[| Xg|] < o0, and then a = E[X;].

Proor. Let Q = RY, endowed with the product o-field F = ®7oB; where
B; is the Borel field on R. Define the probability measure ;1 on JF by

WA =E[14(Xo, X1,.. )] =P[(X0, X1,...) € A], AeF.
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Put Sf (wg,x1,...) = f(xy,m0,...), f € LY (U TF,u), (xg,21,...) € Q. Then
§Sfdu =1\ fdu, feL*(QF,pn). The assertion in Theorem 5.60 follows from
Theorem 5.66 and its Corollary 5.67 by applying them to the function fy: 2 —
R defined by fo (xo, z1,...) = xo, (2o, 21,...) € Q. Then

n—1 n—1 n—1

D1(S"fo) (X0, X1, Xa, o) = Y fo (Xiy Xigrs- ) = D0 Xiy k=01,
k=0 k=0 k=0
and hence Theorem 5.60 is a consequence of Theorem 5.66 and its Corollary 5.67.
Theorem 5.60 also follows from Theorem 5.59 by applying it to the mapping
T: Q— Qgiven by T (zg, x1,...) = (21,22, ...), (xo,T1,...) € L O

We will formulate some of the results in terms of positivity preserving operators
St LY(Q,T,u) = L' (Q, T, p).

5.61. LEMMA. Let S: L' (Q,F,p) — L' (2, F, i) be a linear map, and let f > 0
belong to L' (Q, F, ). Then the following assertions are equivalent:

(i) min (Sf,1) = S (min (f,1));
(ii) max (Sf —1,0) = S (max (f — 1,0));
(ili) min (Sf,1) < S (min (f, 1)), and max (Sf —1,0) = S (max (f — 1,0)).

Suppose that for every f =0, f € L' (Q,F, u) the operator S satisfies one, and
hence all of the conditions (i), (ii) and (iii). In addition, assume that

J|Sf| dp < deu, for all fe L' (Q,F,u), f=0. (5.82)

Then S is positivity preserving in the sense that f =0, f € L' (0, F, u), implies
Sf = 0, and contractive in the sense that §|Sf| dp < (|f] du for all f €
L' (0, F,1). Then the equivalent conditions (i), (v), (vi). and (vii) given by

(iv) The equality S (fg) = (Sf) (Sg) holds for all f € L* (Q,F, i), and for
all ge L' (Q,F, u) (N L® (Q, F, u),
(v) S (min(f,g)) = min (Sf, Sg) is true for all f, ge L' (0, F, ),
(vi) The equality S (max (f —1,0)) = max (Sf — 1,0) holds for every f €
L' (Q,F, ).
(vii) The Slgs=1y = ligs=1} holds for every fe L* (Q,F, p).

are also true. Moreover, (vi) implies that if the assertions (i), (ii) and (iii)
are true for all positive functions f in L' (Q,F, ), then they are true for all
functions f in L* (Q,F,u). If the measure u is finite, then all assertions (i),
(1), (i) (for all f = 0, f € LY (Q,F,un),) and (w), (v), (vi) and (vii) are
equivalent. Finally, the operator S : L' (Q,F, ) — L' (Q,F, ) is continuous,
more precisely,

[1sstau=[sistan< [ir1an rerr@sm.  Gs
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5.62. REMARK. Assertion (iv) also holds for all f, g € L' (0, F, ) () L* (2, F, ).
The equality in (v) can be replaced with

S (max (f,g)) = max (Sf,Sg) forall f, ge L' (T, u). (5.84)
The latter is true because min(f, g) + max(f,g) = f + g.

PROOF OF LEMMA 5.61. The equivalence of the assertions (i), (ii) and (iii)
follows from the following identities:

min (Sf,1) + S (max (f —1,0)) = Sf = min (Sf,1) + max (Sf —1,0).

Now assume that for all f > 0, the operator S satisfies (i), (ii) or (iii), and
assume that S is contractive in the sense of (5.82). Let f > 0 belong to
LY (9,3, 1), and put f, = max(f —n~',0). Then the sequence (f — f,), de-
creases to 0, and hence, by (5.82), lim,_ §|Sf — Sf.| du = 0. Then there
exists a subsequence (f,, ), such that the sequence (Sf,,), converges to Sf u-
almost everywhere. Hence Sf > 0 u-almost everywhere. In fact it follows that
the sequence (Sf,), increases to Sf p-almost everywhere. Let f € L' (Q, F, u),
and write f = f. — f_ where f, = max(f,0), and f_ = max(—f,0). Then
\fl=f+—f_,and |Sf| < Sf, + Sf_. From (5.82) it the follows that

|15t aus (55, + 58y du= [0+ 1) du= [Sir1dn< [ 11] du
(5.85)
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The inequalities in (5.85) prove the contraction property of the operator S. Next
we prove the assertions (iv), (v) and (vi) starting from (i), (ii) or (iii) for all f €
L' (0,5, 1), f = 0. Let the function f > 0 belong to L' (0, F, ) () L* (2, F, ).
Then we write

n2n

Q0
f?= QJ max (f — «,0) da = supZ_”HZmax (f —j2_”,0) ,
0 n j=1
ad so
S(f?) = 2] Smax (f — «,0) da
0
n2™
= sup2 " Z S (max (f — j27",0))
(apply assertion (ii))
n27l
= sup2 " Z max (Sf — g2 0)
B j
= QJ max (Sf — a,0) da = (Sf)*. (5.86)
0

The equality in (5.86) shows that the assertion in (iv) is true provided that
f =g = 0. For general f = g we split f in its positive and negative part.
For general f and g belonging to L' (Q,F,u)(L? (Q,F, ) we write 2fg =
(f + g)° — f2— g% Altogether this shows assertion (iv). (iv) = (v) Let f belong
to L' (0, F, ) L? (2, F, ). Then we write

|f|=3fo "

T )y 2+ f?

and so by assertion (iv) we get

2 [* 2

(for explanation see below: equality (5.89))

2 (™ S
_WL s

((iv) implies S (f2) = (Sf)?)

2 [~ ?
:-J I sy (5.87)
mJo 2+ (Sf)
The equality in (5.87) shows that (5.84) is true for ¢ = —f. For general

f,9e LY (Q,F, 1) L* (Q, F, p) we write 2max (f,g) = |f — g|+ f +g. Conse-
quently, assertion (v) follows for f, g € L' (Q,F, u) (L* (Q, F, p). If f and g are
arbitrary functions in L' (Q, &, p1), then we approximate them by f,, := f1{f<n
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and by g, := glyg<ny respectively. This shows that assertion (v) is a conse-
quence of (iv), except that the proof of the second equality in (5.87) is not
provided yet. In order to prove this equality it suffices to prove that, for a > 0
and g =0, g L' (Q,F, u) the equality

S{ J }: 59 (5.88)

a+g a+Sg

holds. By assertion (iv) we have

fatghorsn-s{) sfiss )

2
=S{ 9 }+S{ J }zSg. (5.89)
a+g a+g

The equality in (5.89) shows the validity of (5.88). Therefore the second equality
in (5.87) is proved now.

(ii) plus (v) = (vi) We apply (5.84), which is equivalent to (v), with f €
L' (Q,F, u) arbitrary and g = 0 to obtain

S (max (f —1,0)) = S (max (max (f,0) — 1,0))
(employ assertion (ii))
= max (Smax (f,0) — 1,0)
(apply assertion (v))
= max (max (Sf, S0) — 1,0)
= max (max (Sf,0) — 1,0) = max (Sf — 1,0).
Hence, assertion (vi) follows from (ii) and (v).
(vi) = (v) Let fe L' (Q,F, ). By assertion (vi) we have
Smax (f,0) = 1€iﬂ)15max(f —¢,0) = lgfgmax(Sf —¢,0) =max (Sf,0).

(5.90)
Whence, Smax (f,0) = max (Sf,0). Since |f| = 2max (f,0) — f we easily infer
S|f| = |Sf], and assertion (v) follows: see the proof of the implication (iv) =
(v).

(i) plus (v) = (iv) Let f belong to L' (0, F, u) () L* (Q, F, ). Then we write

fQZZLOOmaX(|f|—a,O) do,

and so by assertion (ii) and (v) we get
0
S(f?) = 2f max (S |f| — a,0) da
0
_ zf max (|Sf] — @, 0) da
0

= [Sf[P = (Sf)*,
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and hence (iv) follows. (vi) = (vii) Let f belong to L* (Q, F, ). Then 1.y is
p-integrable as well. Then we have

Slips1y = lincl)OS(min (mmax (f —1,0)))
= lincl)o (min (mmax (Sf —1,0))) = Ligr=13- (5.91)
The equality of the ultimate terms in (5.91) proves the implication (vi) = (vii).

vii) = (vi) Let f belong to L' (€, F, 11). Then the functions 1gs-q1, a > 0, are
{f>a}
p-integrable as well. We have

Q0 Q0
S (max (f —1,0)) = SJ 150y da = f Slif 15q) da
0 0

0
= J L{sf—1>a} do = max (Sf —1,0). (5.92)
0
The equality of the ultimate terms in (5.92) proves the implication (vii) = (vi).

If the measure p is finite, then the constant functions belong to L' (Q, F, u).
Since S1 = 1, it is easy to see that assertion (iv) implies assertion (i), and hence
by what is proved above, we see that for a finite measure p all assertion (i)
through (vi) are equivalent. The equality and inequality in (5.83) follow from
assertion (v) and the inequality in (5.82). This completes the proof of Lemma
5.61. U
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5.63. PROPOSITION. Let g and h be functions in L* (0, F, ). Define, for —oo <
a <b< o0, the subset Cigb’h} by

M ={g<a<b<h}. (5.93)

Then the following equality holds:
Slgtam = lisasn. (5.94)

PROOF. Since C{bh ag} {g <a<b< h} we may assume that b > 0. If
a < 0, then lyycqepeny = l{—g>—ajlin=p). From assertions (iv) and (vii) of

Lemma 5.61 it follows that
Sligca<v<ny = l{—sg>—a}l{sn>t) = 1{Sg<a<b<sh};
and consequently (5.94) follows for a < 0 < b. If a = 0, then we replace a with
a—c¢candlet € | 0. If @ > 0, then we consider, for 0 < ¢ < a,
Lig<a—e<b<h} = Linsty — Liga—ec}lin>t}- (5.95)

Another application of the assertions (iv) and (vii) of Lemma 5.61 then yields
by employing (5.95) the equality:

Sligca—e<v<ny = Lisnsby — Lisgsa—c} L{sn=b} = l{sg<a—c<b<Sh}- (5.96)
In (5.96) we let € | 0 to obtain the equality in (5.93) for 0 < a < b. This
completes the proof of Proposition 5.63. O

We also need the following proposition. It will be used with g, = h,, of the form
1 n—1
= — Z S*f where fe L' (Q,F, u).
n

5.64. PROPOSITION. Let {g,}, and {h,}, be sequences in L' (Q, F, u) with the
property that for every ¢ > 0 the subsets {sup,, |g,| > ¢} and {sup,, |h,| > ¢} have

finite pi-measure. Define, for —o0 < a < b < o0, the subset Céin}nv{hn}n by

Céf’;}”’{h"}” = {lim inf g, < a < b < limsup hn} . (5.97)

n—o n—0o0
Then the following equality holds:

S1 tgnin ity = 1 (Sgn}.(Shnip - 5.98
Cafb n n Can’ n ( )

ProoF. We write the function ]_C(gn}n,{hn}n as follows:
a,b

(5.99)

1 Claphn i = sup inf sup inf  min max

N; N{ Ny Nj Ni<ni<Nj Na<na<N, {g"1<a<b<h”2}’

where the suprema and infima are monotone limit operations in L' (Q, F, u).
An appeal to assertion (v) in Lemma 5.61, to (5.83), and to (5.84) the equality
in (5.99) implies

Slc{gn}n (hn}, = supinfsupinf min max S1 (5.100)

Ny Ni N N} Ny<ni<N| Nasmp<hj (9 <a<b<hns }
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The equality in (5.96) in combination with (5.100) then shows

S1_ten}n.thn}, = supinfsupinf min max 1
cl i O R P Ny Ny S EN] NoZmosy  {59m <a<b<Shny}
= 1Ciign}n,{5hn}n- (5.101)
The equality in (5.101) completes the proof of Proposition 5.64. O

5.65. THEOREM (Maximal ergodic theorem). Let S : L' (2, F, u) — L' (Q, F, p)
be a linear map, which is positivity preserving and contractive. So that f €
LY(Q,F, 1) and f = 0 implies Sf = 0 and |Sf|, < |f|,- Define for f €
LY (Q,F, ) the to S corresponding maximal function f by

= sup — Z S*f. (5.102)

neN T

Then the following assertions are valid:

(a) If f belongs to L' (2, F, i), then J fdu=0

(70}

(b) If, in addition, min (Sf,1) = S (min(f,1)), for all f € L' (Q,F, n),
f =0, then for any a > 0 and any f € L' (Q,F,pn), the following
inequalities hold:

p{SF>at <pif>a}, and ap{f>al <|fl;. (5.103)

Observe that the second inequality in (5.103) resembles the Doob’s maximal
inequality for sub-martingales: see Theorem 5.110 or Proposition 3.107.

PROOF. (a) Let f € L'(Q,F,u), and define, for n a positive integer, the
function h,, by

k
— J
b, oJhax  max (0,;)3 f) . (5.104)

Then we have h,.1 = h, = 0, and for w € Q) such that h,,;(w) > 0, we have
hn(w)+ f(w) =p41 (w). The latter inequality is a consequence of the inequality

f+5hn=f+S<O<I]1€1<za;>l<_ max( ZS] >>

J
> f+ ohax S (max <O,§)S f>>

k
j+1
> max <max (f +80,f+ ). f>>

Jj=0
k+1 k
— J — J
[ dnax <max (f,;)S f)) Juax (;}S f> . (5.105)
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From (5.105) it readily follows that
f + Shn = hn+1 on {hn—i-l > O} . (5106)

Notice that in the arguments leading to h,.1 = h,, and also to (5.105), we
employed the fact that g > 0, g € L' (2, F, u), implies Sg = 0. From (5.106) we
infer

{hn+1>0}

{hns1>0}

_ f o dpt — J Shy dp
{hn+1>0} {hn+1>0}

> fhnﬂdu—JShndu > Jhnﬂdu—Jhndu

_ f (oot — o) dpt > 0. (5.107)
From (5.107) we obtain

J fdp= J fdp = lim fdp=0. (5.108)
{F>0} UZ_ o {hn+1>0}

n—0 {hn+1>0}

The inequality in (5.108) entails assertion (a).
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(b) Let f > 0 belong to L' (€, %, ), and fix a > 0. We first prove that
p{Sf >a} <pu{f > a}, i.e. the first inequality in (5.103). Let m be a positive
integer. By the extra hypothesis in (b), together with assertion (ii) in Lemma
5.61, we have

min (mmax (Sf —a,0),1) = S (min (mmax (f —a,0),1)). (5.109)

From (5.109) we deduce
Jmin (mmax (Sf —a,0),1) du = JS (min (mmax (f —a,0),1)) du
< Jmin (mmax (f —a,0),1) du. (5.110)
In (5.110) we let m tend to oo to obtain:
p{Sf>a}= nlbiir(l)ojmin(mmax(Sf—a,O),l) du

< lim fmin (mmax (f —a,0),1) du = pu{f >a}. (5.111)

m—00

This proves the first inequality in (5.103). In order to show the second inequality
in (5.103) we proceed as follows. Let f be a member of L' (Q, F, i), and define,

always for a > 0 fixed, the subset D by D = {f> a}. Here fNis as in (5.106).
In addition, define for n a positive integer, the subset D,, by

n

D, = J{8"f>a}nD.

k=0

Then we have

n

pADRy < > p{SHf>al < Y p{f>a} = (n+ Du{f > a} <

k=0

n-+1
a

I£1

0]
and so p {D,} is finite. We also have D > D,,,; > D,,, and D = U D,,. Hence,

n=1
because for f e L' (Q,F, u) we have
f—a<[—alp, <(f—alp,),
it follows that
au{Dn}=J~ aand,u=JN aand,uéf - alp, du
{f>a} {ffa>0} {(ffaan)>0}
| s pdes | pa
{(f=alp,)>0} {(f=alp,)>0}
(apply assertion (a) to the first terem in (5.112))
< 0+J L fdu<|fl, (5.113)
{(f=alp,)>0
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In (5.113) we let n tend to oo and infer au {f> a} < | f],- This is the second
inequality in (5.103), and completes the proof of Theorem 5.65. O

5.66. THEOREM (Theorem of Birkhoff). Let S : L' (Q,F, u) — L' (Q,F, 1) be
a linear operator such that for every f =0, f e L' (Q,F,u), the following two
conditions are satisfied:

(i) S (min(f,1)) = min(Sf,1);
(i) [|Sfly = SISfl du < § fdu=|fl;-

(It follows that all properties mentioned in Lemma 5.61 are available as well
as the Propositions 5.63 and 5.64, and Theorem 5.65.) Then for every f €
LY (Q,F, ) the pointwise limit

‘ 1n—1 i
T}grolonkz_%s f=:P.f (5.114)

exists p-almost everywhere. In addition, P,f belongs to L' (Q,F, u), and the
operator P, is a projection operator, i.e. Pi = P,, with the following properties:

(a) S1P.fl dp < §|f] dp, and
(b) SP.f = P,Sf = P,f, where f belongs to L' (Q, F, ).

If the measure p is a probability measure, then the limit in (5.114) is also an L'-
limit, and P,f = E, [f ‘ IJ], feLl'(Q,%,n), where E, [f ‘ f]] denotes the con-
ditional expectation on the o-field of invariant events: 3 = {A € F: Sly = 14}.

Before we prove this theorem we insert a corollary.

5.67. COROLLARY. Let the notation and hypotheses be as in Theorem 5.66.
Suppose that the operator S is ergodic in the sense that S1 =1, and Sf = f,
fe LY (Q,F,u), implies f = constant p-almost everywhere. If i () = oo, then
P,f =0, fe LY (T, p). If n(Q) =1, then P,f = fdu, fe L' (QTF,pu).

PROOF. Let f e L' (Q,F,u). Then SP,f = P,f, and so by ergodicity P,f
is a constant p-almost everywhere. If 1 (€2) = oo, then this constant must be
zero, because P, f belongs to L' (Q,F, p). If 1 (Q2) = 1, then, by the L'-version
of Theorem 5.66, we have

1 n—1
fpufd#: limZJSkfdu:deu, (5.115)
n—oo N, st
and the inequality in (5.115) completes the proof of Corollary 5.67. O

PROOF OF THEOREM 5.66. Define for f € L' (Q,F, ), and —0 < a < b <
oo the subset C’ib by

1n—1 1 n—1
Cib: {hmianSkf<a<b<hmsupZSkf}. (5.116)
k=0

n—aoo
n n—oo N pr
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Then C’L{b belongs to I, and by Theorem 5.65 it follows that u [C’ib] < . By
Proposition 5.64 we see that

Sler, =losy =1es - (5.117)

As in equality (5.102) in Theorem 5.65 we write § for the maximal function
corresponding to g € L* (Q, F, y1). Then, with ¢ = ¢/

b WeE see

n—1

(0= T71e) =sup - ¥ 5 {(a—)1e} =sup - 3 {a— 5"} 1e
" k=0 " k=0

' 1 n—1
- <@ —inf > S’“f) 1o, (5.118)

k=0

and so from (5.118) and the definition of C' = CL{,b we see that
Cc {((a ") > 0} . (5.119)

The inclusion in (5.119) together with Theorem 5.65 yields

J(a — f)ledp = L (a—f)ledp = J{((af)lc)>0} (a— f)ledp = 0. (5.120)

As a consequence (5.120) implies §, fdu < ap (C). A similar reasoning shows
that C' < {((fi\b)/lc) > O}, and therefore, like in (5.120),

—b dp = —-b dpu =0,
| 7-v1ca J&ﬁmdwﬁf Jlodp >0

and hence by (C) < §, fdp. Since (5.120) entails §, f dp < ap (C), we obtain
b (C) < ap (C). Since b > a and p (C) we get u <C’£b> = 0. The subset Cj
defined by

n—0o0

1 n—1 1 n—1
Coy = {liminf Z Sk f < limsup — Z Skf}
n—o n n
k=0 k=0
can be written in the form

Coy = U c’,,

—o0<a<b<oo, a,beQ

where the symbol Q denotes the set of rational numbers. So, by what is proved
above the set C can be covered by a countable collection of subsets of the form
Cj;b, —00 < a < b < 0, all of which have p-measure 0. Whence, p (Cp) = 0. So
the pointwise limit in (5.114) exists u-almost everywhere.

(a) Next we prove assertion (a), and therefore P, f belongs to L' (2, F, u). By
Fatou’s lemma we have

1n71 1n71
f’Puf‘ dp = f lim — Z SFfl du < fliminf Z ‘Skf} du
n—oon = n—w n =
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hggfﬁZJ\skﬂ du < l1m1nf—2f|f| dp = f|f| dy.
(5.121)

The inequality in (5.121) shows property (a).

The fact that P} = P, follows from (b). First let f > 0 belong to L' (2, , ).
Then

n—1 n—1

1
P,f =1i f—E Ff— f f§: k
o f 1m1n SYf Sup]\}’ENNgrlzlgN’nk:OS fs
and hence
n—1

' . 1 nl 1
SPMthI}Zl_l)IlfﬁZSk =sup inf min —ZSka

N N'>N N<n<N'n
k=0

= liminf — Z Sk1f - P,Sf = P.f,
n—o N
which implies property (b) for non-negative functions in L* (Q, F, ). A general
function can be written as a difference of non-negative functions in L' (Q, F, p).
This proves property (b).

Next we assume that p(€2) = 1. First we will show that the pointwise limit in
(5.114) is in fact also an L'-limit. For this purpose we fix f € L' (Q,F, u) and
a real number M > 0. Then we have

Z SEf— Puf

s
<J( ZS - > (F1q512a1y) du+“< ZS'“ > (fLypi=ary)

< Sk — 1¢< du + 2 du. 5.122
J( Z > Flpi<asy)| dp Lf|2M}\f’ It ( )

Since |g| < M, g€ L' (2, F, ) implies |Sg| < M and |P,g| < M, the integrand
in the first term of the right-hand side of (5.122) is dominated by the constant
L'-function 2M. So from Lebesgue’s dominated convergence theorem, (5.114)
and (5.122) it follows that

dp

dp

1 n—1
lim su — Skf—p

Since M > 0 is arbitrary and f € L' (2, F, u) the inequality in (5.123) implies

dp < zf f| d. (5.123)
{If|=M}

1 n—1
lim su — Skf—_p
wsup || 315 - Buf

which is the same as saying that the limit in (5.114) also holds in L'-sense. The
equality P, f = E, [f | J], fe LY (Q,F, ), follows from the following two facts:

dp =0
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(a) the collection {A e F: S1y =14} is a o-field, which is readily estab-
lished.
(b) Moreover, if f > 0 is such that Sf = f, and if a > 0, then Sl{s.qy =

Lisr=ap = L=ap-
This completes the proof of Theorem 5.66. OJ

4. Projective limits of probability distributions

This section is dedicated to a proof of Kolmogorov’s extension theorem. We
will also present Carathédory’s extension theorem. Let I be an arbitrary set
of indices. Denote by H (I) the class of all finite subsets of I, by H' (I) the
collection of all countable subsets of I, and by H” (I) = 2! the class of all
subsets of I. Consider a collection of measurable spaces (€2;, A;) indexed by
iel. For JeH"(I) we write Q; = [],.;9;, and for J = K < I we denote
by p/f the canonical projection of Qg onto Q. If J = {j} ¢ K we write pff
instead of pg}, and if K = I we write p; instead of P!. Hence p; denotes
the (one-dimensional-)projection of Q; on its j-th coordinate ;. Often these
coordinate functions {p, : j € I} serve as a canonical stochastic process. On
each Q;, J € H" (I), we consider the o-field A; = ®;csA;, generated by the set
of projections {p}’ g€ d }, i.e. the smallest o-field containing the sets

()7 () et e} ={{plcA}:jer Ac A},
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The collection A is called the product o-algebra on €2;. One easily sees that,
if J € H (I), then A, is generated by the set of rectangles, i.e. by

[]A = {HA]-: Ajeflj,jej}.

jedJ jedJ
If Jc K < L c I, then we clearly have
pj =Dy ok (5.124)

It is easily seen that the projection p%, where K, J € H" (I), J < K, from Qg
onto €2; is measurable for the o-fields Ax and Aj;. The latter is also written
as: pﬁf is Ax-Aj-measurable. On €2; we consider two classes of subsets:

B={{pscA=p;'(A): JeH(I),Ac A;}, and (5.125)
B ={{psje Ay =p; (A): JeH (I), Ac A,}. (5.126)

The subsets belonging to B are called cylinders or cylinder sets. 1f Z € B,
respectively Z € B’ then there exists J € H (I), respectively J € H' (), such
that

The inclusions B ¢ B’ < A; are obvious.

5.68. DEFINITION. Let B be a subset of the powerset of 2;. Then B is called a
Boolean algebra, if it is closed under finite union, and under taking complements.

5.69. LEMMA. The set B is a Boolean algebra, B’ is a o-field, and
c{B} =B =A,. (5.128)

PROOF. First we show that B is a Boolean algebra. Let Z = (p;) " (A) =
{pse A}, Je H(I), Ae Ay, be a cylinder. Then

Z¢:=Q\Z = Q\ (ps) " (A) = {ps e Q\A} = p;! (A9,

which shows that Z¢ belongs to B whenever Z € B. Furthermore, let Z; =
p}il (A), J; e H(I), A; € Ay, i = 1,...,n, be n cylinders. Then for J =
Jyu---u J, we have

Zyoee 0 Zy = p3t (A O Ut (4))
=03 (07,) " (A) v oy (0,) 7 (4
= w5 () A o ()T (A). (5.120)

Since the sets p}il (A;) belong to Ay for ¢ = 1,...,n the set Z; U ---Z, is a
cylinder.

In the same manner one proves that B’ is a o-field.

In order to get the equalities in (5.128) it remains to show that A; < o {B}.
Considering the definition of A; it is sufficient to prove that p;, ¢ € I, is mea-
surable for o {B} and A;. However, this follows from (5.125). So the proof of
Lemma 5.69 is complete now. 0
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5.70. REMARK. The fact that B’ = A is important. It shows that each B € A,
only depends on at most a countable number of indices, in the sense that B can
be written as B = A x €y ; where J is countable or finite and where A € A;.

The observation in this remark shows that the product o-field is relatively
“poor” when the index set I is uncountable. The following two examples will
clarify this.

5.71. EXAMPLE. Take I uncountable, let each €;, ¢ € I, be an arbitrary topo-
logical Hausdorff space with at least two points, and let A; be the Borel field
of ;. For every i € I we select w; € §2;. Since the singleton {(w;),_;} is a closed
subset of €2; with respect to the product topology, it belongs to the Borel o-field
of ;. But it does not belong to A; because it cannot be written as the set B
in Remark 5.70.

5.72. EXAMPLE. Take I = [0,00) and suppose that ; = €, where Q is a
topological Hausdorfl space consisting of at least two points. Hence Qo) =
QL0®) is the set of all mappings from [0, ) to Q. Let B be the subset of QL0*)
consisting of all right-continuous (or all continuous) mappings from [0, o) to €.
Assuming that B belongs to Apg ) = A®1%®) where A is the Borel o-field of (2
will lead to a contradiction. Because, if B belongs to A[y ), then by Remark
5.70 B is of the form B = A x Qo oy s where J < [0, 00) is countable, and where
A e A;. We may suppose that J contains all rational numbers. Pick f e B and
t € [0,00)\J. We define the function g : [0,00) — Q as follows: g(s) = f(s)
if s # t, and g(s) # f(t) if s = ¢t. Then g € B, but it is not right-continuous,
which can be seen as follows. In J there exists a sequence (¢,,), which decreases
to t. Then

lim g (t,) = lim f(t,) = f(t) # g(¢).

n—aoo0 n—aoo0

It follows that B ¢ Ajo,x)-

5.73. DEFINITION. Consider a family of measurable spaces (£2;,A;), i € I. Sup-
pose that for every J € H (I) P; is a probability measure on (£2;,A,) such
that

P [P € A] = Prc [ () 7 (4)] = Py 4], (5.130)

whenever J, K € H (I), J < K, and A € A;. Then the family {P;: J e H (I)},
or the family {(Q2;,A;,P;): Je H(I)}, is called a projective system of proba-
bility measures, or spaces. Such a system is also called a consistent system, or
a cylindrical measure.

The following theorem says that a cylinder measure is a genuine measure pro-
vided that the spaces (); are topological Hausdorff spaces which are Polish,
endowed with their Borel o-fields B;. From Theorem 5.51 it follows that all
probability measures p on a Polish space S are inner and outer regular in the
sense that

w(B) =sup{u(K): K c B, K compact} = inf {u(O) : O o B, O open}
(5.131)
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whenever B belongs to the Borel o-field of S. The following theorem is a slight
reformulation of Theorem 3.1. We also make the following observations. A
second-countable locally-compact Hausdorff space is Polish. See Theorem 1.16,
and see the formula in (1.18) which gives the metric. As mentioned earlier this
construction can be found in Garrett [75].

A countable disjoint union of Polish spaces (Ej, d;) is Polish, with metric

1
d,(x,y) (for z, y in the nth space in the union).

, (for z, y in distinct spaces in the union), (5.132)

d(z,y) =
Here we assume that d;(z,y) < 1, z, y € E;. From this result it follows that a
o-compact metrizable Hausdorff space £/ = UL, K, K; < Kj;1, K; compact,
is a Souslin space, i.e. a continuous image of a Polish space. This is so because
every subset K is compact metrizable, and therefore separable. Therefore the
complements K;1\K;, j € N, are Polish, and since E is the disjoint union of
such spaces F itself is Polish. It is known that probability measures on the class
of Borel subsets of Souslin spaces are regular. For details the reader is referred
to Bogachev [27]. Before we formulate and prove the Kolmogorov’s extension
theorem we will discuss the Carathéodory’s extension theorem. We need the
notion of semi-ring, ring, and (Boolean) algebra of subsets of a given set ().
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5.74. DEFINITION (Definitions). Let © be a given set. A semi-ring is a subset
8 of P(Q), the power set of 2, which has the following properties:

(i) g e
(ii) For all A, B € 8, the intersection A n B belongs to 8 (8 is closed under
pairwise intersections);
(iii) For all A, B € 8, there exist disjoint sets K; € 8, with ¢ =1, 2, ..., n,
such that A\B = (J;_, K; (relative complements can be written as
finite disjoint unions).

A ring R is a subset of the power set of {2 which has the following properties:

(i) T eR;
(ii) For all A, B € R, the union A U B belongs to R (R is closed under
pairwise unions);
(iii) For all A, B € R, the relative complement A\B belongs to R (R is
closed under relative complements).

Thus any ring on ) is also a semi-ring.

A Boolean algebra B is defined as a subset of the power set of ) with the
following properties:

(i) &€ B;
(ii) For all A€ B and B € B the union A U B belongs to B;
(iii) If A belongs to B, then its complement A¢ = Q\A belongs to B.

Sometimes, the following constraint is added in the measure theory context: 2
is the disjoint union of a countable family of sets in S.

Without proof we mention some properties. Arbitrary (possibly uncountable)
intersections of rings on €2 are still rings on €. If A is a non-empty subset of
P(), then we define the ring generated by A (noted R (A)) as the smallest
ring containing A. It is straightforward to see that the ring generated by A is
equivalent to the intersection of all rings containing A.

For a semi-ring §, the set containing all finite disjoint union of sets of § is the
ring generated by §:

R(S)z{A: AanJAi,AieS}.

This means that R (8) is simply the set containing all finite unions of sets in 8.

A content i defined on a semi-ring 8§ can be extended on the ring generated by
8. Such an extension is unique. The extended content is necessarily given by:

u(A) = S (A for A=

=1 i

A;, with the A; € 8’s mutually disjoint.
1

n
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In addition, it can be proved that p is a pre-measure if and only if the extended
content is also a pre-measure, and that any pre-measure on R (8) that extends
the pre-measure on § is necessarily of this form.

Some motivation is at place here. In measure theory, one is usually not inter-
ested in semi-rings and rings themselves, but rather in o-algebras (or o-fields)
generated by them. The idea is that it is possible to build a pre-measure on a
semi-ring 8 (for example Stieltjes measures), which can then be extended to a
pre-measure on R (8), which can finally be extended to a genuine measure on a
o-algebra through Carathéeodory’s extension theorem. As o-algebras generated
by semi-rings and rings are the same, the difference does not really matter (in
the measure theory context at least). Actually, the Carathéodory’s extension
theorem can be slightly generalized by replacing ring with semi-ring.

5.75. DEFINITION. Let 8 be a semi-ring in P (). A pre-measure on 8 is a map
i 8 — [0,00] such that

(i) p (&) = 0.
(ii) If (A,),, is a mutually disjoint sequence in 8, and if A := | J,, A, belongs
to 8, then p(A) =>, n(A,) = hm Z w(A
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We also need the concept of outer or exterior measure.

5.76. DEFINITION. An outer measure on P (2) is amap A : P (Q) — [0, 0] with
the following properties:

(i) A() = 0.
(ii) A c B implies A(A) < A(B).
(iii) If (A,),, is a sequence in P (), then A (|, An) < D, A (An).

By taking all but finitely many A,, to be the empty set one sees that an outer
measure is sub-additive: A (AU B) < A(A) + A(B), A, Be P(Q). Let A be an
outer measure on P (£2). We define ¥ to be the set of all subsets A < € such
that for any D < ) we have

A(D) = A(An D)+ A(A°n D). (5.133)

Since an outer measure \ is sub-additive we may replace the equality in (5.133)
be an inequality of the form

A(D) = A(An D)+ \(A°A D). (5.134)

In other words, Y, consists of all subsets A < 2 that split 2 in two in a good
way. Clearly, €2 € 3, and by the very form of the definition of X, we have a
subset A belongs to X, if and only if its complement A¢ belongs to ¥,. We now
present the following proposition, whose proof is a bit tedious. For details the
reader is referred to, e.g., [7] or [15]. The reader may also want to consult the
Probability Tutorials by Noel Vaillant: http://www.probability.net/. The
sets in Xy are called Carathéodory measurable relative to the outer measure .

5.77. PROPOSITION. Let A be an outer measure on €2, and let X\ be as defined
above. Then Xy is a o-algebra on €.

The Lebesgue-Stieltjes integral SZ f(z)dg(z) is defined when f : [a,b0] - R
is Borel-measurable and bounded and ¢ : [a,b] — R is of bounded variation
in [a, b] and right-continuous, or when f is Borel-measurable and non-negative
and ¢ is non-decreasing, and right-continuous. Define w((s,t]) := g(t) — g(s)
and w({a}) := 0 (Alternatively, the construction works for g left-continuous,
w([s,t)) := g(t) — g(s) and w({b}) := 0). By Carathéodory’s extension theorem
(Theorem 5.79), there is a unique Borel measure j, on [a, b] which agrees with
w on every interval I < [a,b]. The measure p, arises from the outer measure

fg(E) = inf {Zﬂg(ji) D Ec UI’} 5

where the infimum is taken over all coverings of E by countably many semi-open
intervals I;. This measure is sometimes called the Lebesgue-Stieltjes, or Stielt-
jes measure associated with g. The Lebesgue-Stieltjes integral SZ f(x)dg(x) is
defined as the Lebesgue integral of f with respect to the measure p, in the usual
way. If g is non-increasing, then define SZ flx)dg(z) == — SZ f(x)d(—g)(z). If
the function g : [a,b] — R is right-continuous, and of bounded variation on
[a,b], then g may be written in the form g = ¢g; — g2, where the functions g;
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and g, are monotone non-decreasing and right-continuous. So that pu, (s,t] =
g(t) — g(s), a < s <t < b, extends to a real-valued measure on the Borel field
of [a,b]. Of course, if g were right-continuous, complex-valued and of bounded
variation, then g can be split as follows g = Re g+ ilm g = g1 — g2 + i (93 — g4)
where the functions g;, 1 < j < 4, are right-continuous, and non-decreasing.
To the function g we can associate a complex-valued measure p, such that
Ly (s,t] = g(t) — g(s), a < s <t < b. For more details on Riemann-Stieltjes
integrals the reader is referred to [167]. The book by Tao [175] contains a
discussion on Stieltjes measures. The definition of semi-ring may seem a bit
convoluted, but the following simple example shows why it is useful.

5.78. EXAMPLE. Think about the subset of P (R) defined by the set of all half-
open intervals (a, b] for a and b reals. This is a semi-ring, but not a ring. Stieltjes
measures are defined on intervals; the countable additivity on the semi-ring is
not too difficult to prove because we only consider countable unions of intervals
which are intervals themselves. Proving it for arbitrary countably union of
intervals is proved using Carathéodory’s extension theorem.

Now we are ready to formulate the Carathéodory’s extension theorem.

5.79. THEOREM (Carathéodory’s extension theorem). Let R be a ring on S
and p: R — [0,0] be a pre-measure on a R. Then there erists a measure
/

1 : o (R) — [0,00] such that yi' is an extension of . (That is, p' |,= p). Here
o (R) is the o-algebra generated by R.

If u is o-finite then the extension u' is unique (and also o-finite).

If R is a Boolean algebra, then Theorem 5.79 is also called the Hahn-Kolmogorov
extension theorem. A complete proof can also be found in [27] Theorem 1.5.6.
We will present just an outline. Another interesting book is Tao [175]; in partic-
ular see Theorems 1.7.3 (Carathéodory’s extension theorem) and 1.7.8 together
with Exercise 1.7.7 (Hahn-Kolmogorov’s extension theorem). An (older) paper,
which treats Carathéodory’s extension theorem thoroughly, is Maharam [117].

PROOF. The proof is based on the o-field corresponding to the outer (or
exterior) measure associated to pre-measure p. This exterior measure p* is

defined by

0 0]
u*(A):inf{Z,u(Ak): AeR, Ac UA’“}’ AcQ. (5.135)
k=1 k=1

(If A can not be covered by a countable union of sets in R, then we put u* (A4) =
00.) Then it is not too difficult to prove that p* is an outer measure. Like in
Proposition 5.77 let X, be the o-field consisting of those subsets A of 2 for
which

i (D) = " (A D) + * (A° ~ D)

for all D < €. Then it follows that the o-field ¥,+ contains the ring R. Put
W (B) = p*(B), B e X, Then i is a measure on X, which extends y, and
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which unique provided that p is o-finite. For details see [27] Theorem 1.5.6.
This concludes an outline of the proof of Theorem 5.79. O

5.80. EXAMPLE. Let E be a o-compact topological Hausdorff space, and assume
that each compact subset K is metrizable, and hence separable. Define the
sequence of open subsets (Oj)j of E as follows: Oy = &, O1 = E\Ky, Oj41 =
(E\K1)n---n(E\Kj), j = 1. Then, for an appropriate metric (z,y) — d;(z,y),
z,ye K;n0;,0<d;(z,y) <1, the spaces K; n O, is complete metrizable and
separable, and so a Polish space. Moreover, by construction the spaces K; n O;,
j =0,1, ..., are mutually disjoint, and so the F can be supplied with the metric
d(z,y) defined by d(z,y) = 1, if z, y belong to different spaces K; n O;, and
d(z,y) = dj(x,y), if z and y belong to K; n O;, j =0, 1, .... Then this metric
turns £ written as a disjoint union of K; n O; into a Polish space. Its topology
is stronger than the original one, and hence F itself is continuous image of a
Polish space (via the identity map). It follows that £ is a Souslin space.

Example 5.80 should be compared with the notion of disjoint unions of Polish
spaces are again Polish: see (5.132).
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5.81. THEOREM (Kolmogorov’s extension theorem). Let
{(QJ,BJ,PJ) :Je g{(])}

be a projective system of probability spaces. Suppose that for every i € I, §; is
a Polish space (or Souslin space) endowed with its Borel o-field B;. Then there
exists a unique probability measure Pr on (Qr, Byr) such that

P; [pJEA] = P; [p;l(A)] :IP)J [A], AE'BJ, (5136)
for every J e H (I).
PROOF. If Z = {p;e A} = p;' (A), J e H(I), Ae By, is a cylinder in €,

then we define P; [Z] by
P;[Z] =P, [A]. (5.137)

This definition is unambiguous. Indeed, let
Z ={p;e A} = p;' (A) = p (B) = {px € B}, with Ae B; and B € By,

with J, K € H (I). We have to show that P;[A] = Pk [B]. Indeed, with
L=JuK, we get

_ -1
Z=py (ry)  (A) ={pjopreA}
-1 _
={pjeAt=(pj) (4= (k) (B)={pk e B}
_ -1
= {pxopre By =p;' (0k)  (B). (5.138)
From (5.130) together with (5.138) we infer

Py [A] = P (04) 7 ()] = P (k) (B)] = P[] (5.139)

The equality in (5.139) shows that P is well defined. We also have

Pr[Qr] = Pr[p; ' ()] = Py [Q] = 1.

Next we show that P; is finitely additive on B, the collection of cylinders. Let

7 = p;' (A), with J € H(I) and A € By, and Z' = p;' (B), with K € H ()
and B € Bk be two disjoint cylinders. Put L = J u K. Then we have

G=7Z07 =p' (05)" (A op' (k) (B)
=" () () (k) (B)). (5.140)
From (5.140) we infer (pﬁ)_1 (A) N (pf()_1 (B) = . Consequently, we obtain

P20 2] =P pit (05) " (A v (k) (B)]

1

-1 -1

=P; [A] + Py [B] =P; [A] + P [B] . (5141)
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The equality in (5.141) proves the finite additivity of the mapping P; on the
collection of cylinder sets B.

Finally we prove that the mapping P; is o-additive on B. For that purpose we
consider a decreasing sequence (Z,), of cylinder sets such that P; [Z,] > a >0
for all n € N. We will show that ﬂn Z, # . By contraposition it then
follows that (1), Z, = & implies lim, ., P;[Z,] = 0. For each n we have
Zn = p;" (A,) with J, € H () and A, € B,,. Of course we may suppose that
Jicdc---cJ,c---. Put J =, Jn. Then

Zo =17 (7)) (An) = (07.) 7 (A) x Q.

Since

(12 = <ﬂ (v7.)" (An)) x Qn (5.142)

we see that (), Z, # ¢ if and only if (), (pﬁn)f1 (A,) # . This means that
our problem is reduced to the problem with I = J, i.e. to a countable problem.
For every m € N there exists a compact subset L, of 2, with

a

]P) [ Jm\LJm] m

Then L := [1],, Lj, is a compact subset of Q. Furthermore, for every n € N
we have

P, [(H Lj> ] ~ P, [U (pl)” ] Z P, [Q\L;] %. (5.143)

On the other hand for every n € N we choose a compact subset K, of A, (in

B,) such that
a

P; [A\NK,| < .

For every n € N the set Y,, defined by
-1 -1
Vo= (03) (KD oen (o) (Ka) 0 K

is a closed subset Q; , and so Z/ := p}nl (Y,) is a closed cylinder in €, and
Z! < Zy. In addition, we have

Z, =5 (K n-opy (Kao) 0py, ()

the sequence (7)), is decreasing. We also have

Pr[Z.\Z,] = Py [Zn\ ( M », (K,Q)]
<).P

(5.144)

Z [Z:\p5! (Ki)] [Z\p3} ()]

k=1 k=1

Z 1 [P (A) oy (K] = D P [y (AR\Ky)]
k=1 k=1
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Zn] [A\K,] < Z (5.145)

Since, by assumption, P; [Z,] = a, (5.145) implies

P, V) = B (2] = By [Z] - By [Z0Z) >0~ 0 =20 (5.40)

Since, by (5.146) and (5.143) we have

PjnlynﬂHLj] 1-P, [ Pjn[(ﬂL>] Z 3(5147)

jEJn ]eJn

it follows that Y, ([ ]..; L; # &. Moreover, observe that

je€Jn

Z;mL:(YnxQJ\Jn)ﬂ(];[ij>:(YnﬂﬂL]) [ L. (5148

jeJn ]EJ\Jn

and consequently, Z; n L # J. Hence, the decreasing sequence (Z] n L),
consists of non-empty compact subsets of €2;. By compactness we get that
N, Z, "L # . So we infer

ezl (A =22, = ((Zn L) + 2. (5.149)

As a consequence of the previous arguments, we see that P; is a o-additive
on the Boolean algebra B which consists of cylinders in €2;. This measure P;
satisfies (5.136). By the classical Carathéodory theorem the mapping P; extends
in a unique fashion as a probability measure on the o-field o {B} = B;. Then,
technically speaking, the mapping P, defined on the Boolean algebra B, is a
pre-measure. This corresponding exterior measure P is defined by

P* (A) = inf{iu(zk) . Z,eB, Ac sz} (5.150)

k=1
Then it is not so difficult to prove that the set function defined by (5.150) is an
outer measure indeed. Define the associated o-field D by

={AcQ:P;{(D)=2P;(AnD)+P;(A°n D): forall D < Q}.
(5.151)
The fact that D is a o-field indeed follows from Proposition 5.77: see Theorem
5.79 as well. It is fairly easy to see that D contains the Boolean algebra B which
consists of the cylinder sets in ;.

This completes the proof of Theorem 5.81. U

5. Uniform integrability

The next Theorem is often used as a replacement for the dominated convergence
theorem of Lebesgue.
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ADVANCED STOCHASTIC PROCESSES: PART II SOME RELATED RESULTS

5.82. THEOREM (Theorem of Scheffé). Let (0, F, u) be an arbitrary measure
space and let (f, : n € N) be a sequence of non-negative functions in L*(Q, F, p).
In addition, let the function f belong to L' (Q,F, ). Suppose that f(x) =
lim,, o fn(x) for p-almost all x € Q. The following assertions are equivalent:

(1) limy, oo § | fn — fldp = 0;
(ii) The sequence (f, : n € N) is uniformly integrable;
(iil) tmy,—o § fodp = § fdp.

Instead of uniformly integrable the term equi-integrable is often used. A family
(fa:a€eA)in L' (Q,F, u) is uniformly integrable, if for every e > 0 there exists
a function g > 0 in L' (Q, F, u) such that §, _ .\ [fo|dp < € for all o€ A.

5.83. PROPOSITION. If p is a probability measure, then a family (f, : a € A) in
LY (Q,F, 1) is uniformly integrable, if and only if for every € > 0 there exists a
constant M. = 0 such that S{Ifalea} |fol d < € for all a € A.

o™
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PRrROOF OF PROPOSITION 5.83. The sufficiency is clear: choose for g. a con-
stant function M.. Next we show that, if the family (f, : « € A) is uniformly
integrable, then necessarily for every ¢ > 0 there exists a constant M. such that

f |fal du <e, aeA. (5.152)
{lfa|=M:}

Fix ¢ > 0. By hypothesis we know that there exists a function g. € L' (Q, F, p),

g- > 0, such that
| inldus
{Ifa|>g<}

Then we choose M, so large that

f gedp < 2. (5.154)
{QEZME} 2

Then by (5.153) and (5.154) we have

f rnwm=j‘ |nhw+f ful di
{|fa|=M:} {Mc<|fol<max(M:,ge)} {|fa|zmax(Me,gc)}

<J ggdu+f |fa|du<5+%=5. (5.155)
{ge>M-:} {Ifal=ge}

, a€eA. (5.153)

N ™

2
The inequality in (5.155 completes the proof of Proposition 5.83. O

PROOF OF THEOREM 5.82. (i) = (ii). Put g = sup,cy fn- The following
inequalities hold for m € N:

f fnduéj !fn—fldu+f fdu
{fn=mf} {fnz=mf} {fnz=mf}
< [1fa=fldus | fau
{fn=mf}
< [1fafldus | fa (5.156)
{g=mf}
Let € > 0, but arbitrary. By (i) there exists N(e) € N such that §|f, — f| du <

€¢/2 for n = N(e) + 1. The inequalities below then follow for m > M (e):
f fdu <e€/2, and f fodp <€, 1<n<N(. (5.157)
{gsz} {fn?mf}

From (5.156) and (5.157) we see S{fn;M(e)f} fndp < €. But this means that the
sequence (f,, : n € N) is uniformly integrable.

(ii) = (iii). Let ¢ > 0 be arbitrary and choose a function g, € L' (0, F, u) such
that

f fudp + f fdu <e. (5.158)
{fn=ge} {fn=ge}

From (5.158) we obtain

]fnw-fﬂm<J' |n—me5[ nw+f Jdu
{fn<ge} {fn=g¢} {fn=ge}
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<J o — fldu+e. (5.159)
{fn<ge}
By the theorem of dominated convergence, it follows from (5.159) that

| | ga] <.

Since € is arbitrary assertion (iii) follows. The same argumentation shows the
implication (ii) = (i).

lim sup
n—0oo

(iii) = (i). The equality
\fo = fl = fo= [ +2(f —min(f, f))

is obvious. From (iii) together w1th the theorem of dominated convergence it
then follows that

tin [17,— f1dn
= Jim | (= £ 2 [ i (7 min (7, £,)) die =

n—00

The proof of Theorem 5.82 is now complete. 0

5.84. COROLLARY. Let (i, : m € N) be a sequence of probability measures on
the Borel o-field of R”. Let every measure p,, have a probability density g,
relative to the Lebesgue measure \. Furthermore, let g = 0 be a probability
density. Suppose that for A\-almost all x € R” the equality lim,, . g (z) = g(x)
is true. Let the measure p have density g. Then the sequence (i, : m € N)
converges weakly to .
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PROOF OF COROLLARY 5.84. From the theorem of Scheffé (Theorem 5.82)
we see

hm J|gm —g(z)|dz = 0.

Let f be a bounded continuous function. Then
[ fan [ an] = | [ (o) - s@1900) ] < 151, [ (o) - gt
(5 160)

The assertion in Corollary 5.84 follows from (5.160). O

5.85. THEOREM. Let (X, : m € N) be a sequence of stochastic variables, which
are defined on a probability space (0, F,P).

(a) If the sequence (X, : m € N) converges in probability to a stochastic
variable X, then the sequence of probability measures (Px,, :meN)
converges weakly to the distribution Px;

(b) If the sequence (Px,, : m € N) converges vaguely to the Dirac-measure
da, then the sequence (X,, : m € N) converges in probability to a sto-
chastic variable X, which is P-almost surely equal to the constant a.

PROOF. (a) Suppose that the sequence (X,, : m € N) converges in proba-
bility to X. We pick f € Cy (R”) and we will prove that limmﬁoog fdPx, =
§ fdPx. The latter is equivalent to lim,, .o § f(X,,) dP = { f(X) dP. The func-
tion f is uniformly continuous. So, for € > 0 glven there ex1sts 5 > 0 such
that

lwg — 21| < & impliceert | f(xo) — f(x1)] < e (5.161)
Put A4,, = {|X — X,,| = 0}. For w ¢ A,, the inequality
[f (Xm(w)) = f(X(w))] < €
holds. From this it follows that

\ [ saes, — [ gams < | 1) - F (Xl P + [ 10— r e

< P (A7) + 2| fll, P{[Xm — X[ = 6}
< e+ 2| f P{Xn— X|= 6} (5.162)

A

The assertion in (a) follows from (5.162) together with assertion (3) in Theorem
5.43.

(b) Suppose that the sequence (Py, :m € N) vaguely converges to the Dirac-
measure d,. Let I(€) be the interval I(¢) = [a — €, a + €] and choose functions
f and g € Cyp (R”) such that f < 1; < g and such that f(a) = g(a) = 1. Then
the equalities follow:

f(a) =lim inffdeP’Xm < liminf Py, (1) < limsup Py, (1)

m

< lim supfngP’Xm = g(a). (5.163)

m
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From (5.163) it follows that
ImP (| X,, —a|l <€) =1,

which amounts to the same as
limP (| X,, —a| >¢€) =0.

This proves assertion (b). So the proof of Theorem 5.85 is now complete. [

6. Stochastic processes

We begin with some definitions.

5.86. DEFINITION. Let (Q,F,P) be a probability space, and let (F,€&) be a
locally compact Hausdorff space, that satisfies the second countability axiom,
with Borel o-field €. Often E will be chosen as R or as R”. A stochastic
process X with values in the state space F is a mapping X : [0,0) x Q — E.
For every w € € the mapping ¢ — X(t,w) defines a path of the process. A
path is sometimes also called a realization. If we fix n € N, then the mappings

Pyt : E®---®E — [0,1], where (t1,...,t,) varies over [0,0)", and which
—_—
are defined by
Py 4, (B) =P{(X(t1),...,X(tn))eB), Bel® --®E, (5.164)

nx

are called the n-dimensional distributions of the process X. Here X(t) is the
mapping X (t)(w) = X (t,w), w € .

Sometimes we write X, instead of X (¢). If n = 1, then the distributions in
(5.164) are also called the marginal distributions, or marginals. However, no-
tice that a process is much more than the corresponding collection of finite-
dimensional distributions. In particular the paths or realizations of a process
are very important. For example, the continuity properties of the paths are
relevant. Often we will suppose that the paths are continuous, or that they are
continuous from the right, and possess limits from the left {cadlag paths}, or
cadlag paths. So that the process X is cadlag provided that for all ¢ > 0 the
equality limg; X (s) = X(¢) holds P-almost surely (this is continuity from the
right, or continue & droite in French) and if the limit limgy, X (s) exists in E
(this means that the left limits exist in F, limité & gauche in French).

5.87. DEFINITION. A family sub-o-fields (F; : t = 0) of F is called a filtration (or,
sometimes, also called history), if t < s implies F; < F,. Thus the probability
P is defined on all o-fields F;. With F,, or also F,_ the o-field generated
by U0 J¢ is meant. If for every ¢ > 0 the equality F, = (e Fs holds,
then the filtration (F;: ¢ > 0) is called continuous from the right, or right-
continuous. Let (& :¢ = 0) be a filtration, and put Fp = (.., Fs. Then the
family (F4 : ¢ = 0) is a right-continuous filtration. This filtration is called the
right closure of the filtration (F;:¢ > 0). A subset A of Q is called a P-null
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set if there exists a subset Ag € F with the following properties: A < Ay and
P[Ap] = 0. Usually this is expressed by saying that A is a null set instead
of A is a P-null set. Often it is assumed that F, contains all null sets, and
that the filtration (& :t¢ > 0) is right-continuous. Sometimes it is said that
Fo has the usual properties. The process X is called adapted to the filtration
(F; : t = 0) if for every t = 0 the state variable X (t) is measurable with respect
to o-fields F; and €. Let H; = o (X (u): 0 <u <t) be the o-field generated
by the state variables X(u), 0 < u < t. The filtration (H;:¢ > 0) is called
the internal history of the process X. If ¢ > 0 is given, then K, is called
the (information from the) past, o (X (t)) is called the (information from the)
present, and o (X (u) : u = t) the (information from the) future. The process X
is adapted if and only if H; < JF; for every ¢ = 0.

5.88. DEFINITION. Let X and Y be two processes. The processes X and Y are
said to be non-P-distinguishable or P-indistinguishable provided there exists a
P-null subset N with the property that for every w ¢ N and for every t > 0
the equality X (¢,w) = Y (¢,w) holds. The process X is called a modification of
the process Y (or also Y is a modification of X) if for every ¢t > 0 there exists
a P-null set N; with the property that X (t,w) = Y (t,w) for w ¢ N;. Thus the
null set is t-dependent. If the processes X and Y are not distinguishable, then
X is a modification of Y. In general, the converse statement is not true.

5.89. THEOREM. Suppose that the process X as well as the process Y possesses
right-continuous paths. If X is a modification of Y, then X and Y are not
distinguishable (also called stochastically equivalent).
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PROOF OF THEOREM 5.89. Let X be a modification of the process Y. For
every t > 0 there then exists a null set N; such that X(¢t) = Y(¢) on the
complement of N;. Put N = [ J,.q N;- Then P(N) = 0 and for every ¢ € Q the

equality X (¢) = Y (¢) holds on the complement of N. By right-continuity of the
paths it then follows that

X(t) = SlléﬁrréQX(s) = Sllt{rsrel@Y(s) =Y (t)

on the complement of N and completes the proof of Theorem 5.89. O

5.90. DEFINITION. Let (F;:¢ > 0) be a filtration and let 7' : Q — [0, 0] be a
“stochastic time”. The function T is called a stopping time for the filtration
(Fr:t=0) if for every fixed time ¢ the event {T" <t} belongs to F;. Since
the event {T" < o0} = o {7 < n} belongs to F,, the complementary event
{T" = oo} is also an element of F..

5.91. THEOREM. Let (F; :t = 0) be a filtration. Let (Fyy : t = 0) be the so-called
right closure of the filtration (F; : t = 0). Then a stochastic time T : Q — [0, 0]
is a stopping time for the filtration (Fyy : t = 0) if and only if, for every t > 0,
the event {T < t} belongs to F;.

PRrROOF. “Sufficiency” Suppose that for every ¢t > 0 the event {T' < t} be-
1

longs to F;. Then the event {T <t} = ﬂ {T <1+ —} belongs to the o-field
n

neN
ﬂnEN :}’tJ’,n—l - Stt.
“Necessity” Assume that for every ¢t > 0 the event {T' < t} belongs to F,.
1
Then the event {T' <t} = U {T <1- } belongs to |,y Fi—n-1+ < T
n

neN

This completes the proof of Theorem 5.91. U

5.92. COROLLARY. Let (F;:t > 0) be a right-continuous filtration. Then the
stochastic time T is a (F; : t = 0)-stopping time if and only if for every t = 0
the event {T <t} belongs to F; and this is the case for every t > 0 if and only
if for every t > 0 the event {T < t} belongs to F;.

5.93. THEOREM. Let (F;:t = 0) be a right-continuous filtration, let X be an
adapted cadlag process, let G be an open subset and let F' be a closed subset of
E. In addition, let (G, :n € N) be a sequence of open subsets of E such that
F =), G, and such that G,, © Gn41, n € N. Finally, let (F, : neN) be an
increasing sequence of closed subsets with the property that G =, F,,. Define
the times S, S, T and T, by means of the equalities:

S=inf{s>0:X(s)e F or X(s—)e F};

S,=inf{s=>0:X(s)eF, or X(s—) € F,};

T,=inf{s>0:X(s)eG,} andT =inf{s>0:X(s)eG}. (5.165)
Then these times are stopping times and the following assertions hold: S, | T
and T, 1 S.
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PROOF. Let t > 0. Since the paths are continuous from the right se see

{T<ty= ) (xtmecy= () X(neGled.

O<r<t 0<r<t,rQ

This proves that T is a stopping time. Since

(S<t})={X()e For X(t—)e F}u (ﬂ ) (xtr)e Gn}> e,
neN r<t,reQ

it follows that S is a stopping time as well. Since G,, o G, it follows that
Thi1=1T,. Put Sy =supT,. The ultimate equalities in

So<ti=J U X)eGu

m=1n=10<s<t—m—1

-|J U {X(s)eFof X(s—) e F}
m=10<s<t—m~—1
= |J (X(s)eFof X(s—) e F} ={S <1}
0<s<t
prove the equalities {Sy <t} = {S <t} for all ¢t > 0 and hence, S = Sy. The

fact that S, | T is left to the reader as an exercise. This completes the proof
of Theorem 5.93. O

5.94. THEOREM. Let S and T be stopping times for the filtration (Fy : ¢t = 0).
Then min(S,T), max(S,T) and S+ T are also stopping times for this filtration.
If (S, : neN) is a sequence of stopping times, then sup,, S, is also a stopping
time, and if, moreover, the filtration (F, : t = 0) is right continuous, then inf,, S,
15 stopping time as well.

PROOF. The proof is left as an exercise for the reader. O

5.95. DEFINITION. Let T be a stopping time for the filtration (F; : ¢ > 0). The
o-field of events which precedes T' is defined by

Fro=[1{AeTn  An{T <t}eF}.
t=0
Indeed, the collection Fr is a o-field and if T' = t is a fixed time, then Fp = F;.
If S < T is also a stopping time, then Fg < Fp. If the filtration (F, : t = 0)
is continuous from the right, then an event A belongs to Fr if and only if A
belongs to ¥y, and if for every ¢t > 0 the event A n {T" < t} belongs to F;. If S
and T are stopping times, then F 51y = Fg N Fp. If the filtration (F; : ¢ > 0)
is right continuous and if (S, : n € N) is a sequence of stopping times which

converges downward to S, then S is a stopping time and (), .y Fs, = Fs.

5.96. DEFINITION. A process X : [0,00) x  — FE is called progressively mea-
surable for the filtration (F; : ¢ = 0) if for every ¢ > 0 the restriction of X to
[0,7] x Q is measurable for the o-fields B[0,¢] ® F; and €.

5.97. THEOREM. If X is right-continuous adapted process, then X is progres-
siwely measurable.
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PROOF. Define the sequence of processes (X™ : n € N) by means of the for-
mula:

X"u,w) = {

X (Bttw), ik <u<(B+1)27 0<k<2"—1;

0, ifu=0.
(5.166)
Let B € £. Then we have
{X" e B}
k k+1 k+1
0<k<2n—1
e B[0,1] @ 7. (5.167)

So X" is progressively measurable. Because the process X is P-almost surely
right-continuous it follows that lim,, ., X™ = X, and, consequently, X is pro-
gressively measurable. This completes the proof of Theorem 5.97. U

5.98. THEOREM. Suppose that X is progressively measurable for the filtration
(Fr:t=0). Let T be a stopping time. The the state variable X(T) : w —
X(T(w),w) measurable for the o-fields € and Fr.
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PROOF OF THEOREM 5.98. On the event {T" < t} the mapping
W X (T(w),)

is the composition of the mapping w — (T (w),w), which goes from {T < t} to
[0,¢] x 2 and which is measurable for the o-fields F; and B[0,¢] ® F;, and the
mapping (u,w) — X (u,w), which goes from [0, ¢] x {2 to E and which is measur-
able for the o-fields B[0,t] ® F; and €. In the latter argument the progressive
measurability of X was used. The composition of measurable mappings is again
measurable, and hence X (7") is measurable for de o-fields F7 and €.

This completes the proof of Theorem 5.98. 0

5.99. COROLLARY. IfT is a stopping time and if X is progressively measurable,
then the process X T defined by X* (u) = X (min(T,u)) is adapted to the stopped
filtration (?m-m(;p,u) tu = 0).

PROOF. The proof is left as an exercise for the reader. O

The next lemma is often employed instead of the monotone class theorem.

5.100. LEMMA. Let & be a o-field on ) and H a vector space consisting of
F-measurable real-valued bounded functions on ). Suppose that the following
hypotheses are fulfilled:

(1) H contains the constant functions;

(2) If f and g belong to H, then the product fg belongs to H;

(3) If f is the pointwise limit of a sequence of functions (f, : n€N) in H,
for which | f,| <1, then f belongs to H;

4) F=0(f:feH).

Then H contains all bounded F-measurable functions.

PROOF. Let D be the collection D = {A e F: 14 € H}. Then D is a Dynkin
system and by (2) D is closed for taking finite intersections. So D is a o-field.
Pick f € H and let a € R. We will prove that the set {f > a} belongs to D.
By taking an appropriate combination of f and the constant function 1 we may
assume that 0 < f < 1 and that 0 < a < 1. Let p be a polynomial. By (2) p(f)
belongs to H. Let ¢ : [0,1] — R be a continuous function. By the theorem
of Stone-Weierstrass there exists a sequence of polynomials (p, : n € N) such
that sup,io 1 l¢(z) — pu(x)| < n~'. Consequently, (f) belongs to H. Since
the function 1j, «) is a (decreasing) pointwise limit of a sequence of continuous
functions, it follows that 1j,.)(f) = l{r=a} belongs to H. So the set {f > a}
belongs to D. From which it follows that D = F. But then we infer F
{AeJ:1, € H}. From this the assertion in Lemma 5.100 immediately follows.

OJ
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5.101. DEFINITION. Let (F; : ¢t > 0) be a filtration on the probability space
(©,5,P),
and let X be an adapted process.

(i) The process X is called a martingale (relative to P and to the filtration
(F,:t = 0)) if for every ¢t = 0 the variable X (¢) belongs to L' (2, F,P)
and if for every pair 0 < s < ¢ the equality X(s) = E (X(¢) | F,) holds
P-almost surely.

(ii) The process X is called a sub-martingale (relative to P and to the
filtration (F, : ¢ > 0)) if for every ¢ > 0 the variable X (¢) belongs to
L' (Q,F,P) and if for every s < ¢ the inequality X (s) < E (X(¢) | F)
holds P-almost surely.

(iii) The process X is called a super-martingale (relative to P and to the
filtration (F; : ¢t > 0)) if for every ¢ > 0 the variable X (¢) belongs to
L' (Q,9,P) and if for every s < ¢ the inequality X (s) = E (X (¢) | F,)
holds P-almost surely.

Instead of assuming X (¢) € L' (2, F,P) in (ii) it is sometimes assumed that the
variable X ()" = max(X(t),0) belongs to L' (Q,F,P). In (iii) it is sometimes
only assumed that X (¢)~ = max (—X(¢),0) belongs to L' (Q,F,P). If T is a
(discrete) subset of [0,00) and if (X(t),J}),5, is a martingale (sub-martingale,
super-martingale), then the process (X (), ;),. is so as well. Then we can use
“discrete results” and via a limiting procedure we then obtain results in the
“continuous case”.

5.102. DEFINITION. Let f : [0,00) — R be a function, let 7" < [0,0) and let
a < b be real numbers. Define the number of upcrossings Ur(f,a,b) of f ‘T
between a and b by

UT(f? a, b)
= sup {m : there exist t; <ty < ... <toy, t; €T f(tox—1) < a, f(tax) = b}.
(5.168)

5.103. LEMMA. Let D by the set of non-negative dyadic numbers and let f : D —
R be a function, which is bounded on D n [0,n] for all n € N. Assume that,
for all n € N and for all real numbers a < b, with a and b (dyadic) rational,
the number of upcrossings Upnpon)(f,a,b) of f is finite. Then the following
assertions are true:

(a) For everyt € R the following left and right limits exist:
lim f(s) and lim f(s); (5.169)

stt,seD slt,seD
(b) Define the function g by g(t) = }time(S)' Then g is right-continuous
slt,se
and for every t > 0 the left limit limgy, g(s) exists.

PROOF. (a) We will show that the limit limg; ¢~ f(s) exists. Since the func-
tion f is bounded it suffices to prove that liminfy; o~ f(s) = limsup,, .., f(s).
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Assume that this not the case. Then there exist dyadic rational numbers a and
b such that liminfy, . f(s) < a < b < limsup,, .., f(s). This means that
there exists s > t, sop € D, with f(sg) > b. There also exists s; < sg, 51 > t,
s1 € D, such that f(s1) < a. In general we obtain t < so_1 < Soi_2, Sox_1 € D,
for which f(sex_1) < a and we obtain ¢t < So < Sog_1, Sox € D, with f(sg) > b.
For m € N we write tom = S0, tom—1 = S1y + ey ty = Som—1, t1 = Som—1- Pick
n > so. Then we have Upnjon(f,a,b) = m. Since m € N is arbitrary it follows
that Upnpon)(f,a,b) = . So we obtain a contradiction. The existence of the
left limit can be treated similarly.

(b) Put ¢g(t) = limgjs s>t sep f(s). By (a) this function is well defined. Since,
for every n € N, the function f is bounded on the set D n [0, n] the function
g possesses this property as well. Let now (¢, : n € N) be a sequence that
decreases to t and for which ¢, > ¢ for all n € N. We will prove lim,_, g(t,,) =
g(t). Then this shows that g is right-continuous at ¢t. Assume liminf, 4 g(t,) <
g(t). This will lead to a contradiction. By passing to a subsequence, which we
call again (¢, : n € N), we may suppose that liminf, ., g(t,) = lim, . g(t,)
and that there are numbers a and b € D such that for all n € N, g(t,) <
a < b < g(t). Then pick sy > tg such that f(sg) < a: this possible, because
g(to) < a. The pick sy > tg > s; > t in such a way that f(s;) > b: this is
possible, because ¢(t) > b. Then choose t,,, s; > t,, > t, with g(t,,) < a. Then
there exists s; > sy > t,,, such that f(ss) < a. This is so because g(t,,) < a.
This procedure can be continued. Like in (a) we arrive at Upnjon)(f, a,b) = o0,
for a certain nN, n > t. This is a contradiction. But then it follows that
liminf, o g(t,) = g(t). In the same fashion we see that limsup,,_, . g(t,) <
g(t). Consequently, ¢(t) = lim, o g(t,). In order to prove the existence of the
left limit of the function g at ¢, we choose a sequence (t,, : n € N), that increases
to t, and which has the property that ¢, < ¢ for all n € N. Assuming that
liminf, . g(t,) < limsup,, ., g(t,), then, as above, we arrive at the conclusion
that, for certain dyadic numbers a < b, for which liminf, ., g(t,) < a < b <
limsup,,_,, g(t,), the number of upcrossings of the function f on the interval
D n[0,n] with n > t is infinite.

This completes the proof of Lemma 5.103. 0

5.104. THEOREM (Doob’s optional time theorem for sub-martingales). Let
(X(j):jeN)

be a sub-martingale relative to the filtration (F, :neN), and let T = S be

stopping times. Suppose that E[|X(T)|] < oo and also E[|X(S)]] < «. If,
additionally, lim E[X(m):T >=m > S| =0, then X(5) is measurable for the

o-field Fs and the inequality E [X(T) | F5| = X (S) holds P-almost surely.
PROOF. Let A be an event in Fg. For every j, j > 1, and for every ¢ € N,
¢ =0, the event An{T >/(+j} n{S ={} n A then belongs to the o-field

Fitj—1. To see this, observe that the event {T' > k} = Q\ {T" < k — 1} belongs
to F;_1. Since

(X (min(7T,m)) — X (min(S,m))) 14
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it follows that
E ((X (min(7,m)) — X (min(S,m))) 14)

m m—~

Z X(l+j)—X(+j—-1)) 1{T>€+j}m{5=€}mA) .

=0 j=1
Hence, E ((X (min(7,m)) — X (min(S,m))) 14) = 0. Since, in addition,
E(X(T)— X(S) — X(min(T,m)) + X (min(S, m)))
=E(X(T)=X(S):S=m)+E(X(T)—X(m):T=m=>S9),
the claim in Theorem 5.104 follows. U
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5.105. PROPOSITION. Let (X (n):n e N) be a (sub-)martingale relative to the
discrete filtration (F, : n € N).

(a) Let H = (H(n) :neN,;n>1) be a positive bounded process with the
property that H, is measurable for the o-field F,,_1. Define the process
(Y(n):neN) by

Y(0) = X(0), Y(n)=X(0)+ Zn] H(k) (X(k)— X(k—1)), n>1.
k=1

Then the process Y is a (sub-)martingale. By putting H(n) = 1<y,
where T is a stopping time we see that process

X' = (X(min(T,n)) : n e N)

is a (sub-)martingale.
(b) Let S and T be a pair of bounded stopping times such that 0 < S < T.
Then

X(S)<E(X(T)|Fs), P-almost surely, (5.170)
and if X is a martingale, then there is an equality in (5.170).

Moreover, an adapted and integrable process X is a martingale if and only if
E(X(T)) =E(X(S)) for each pair of bounded stopping times S and T for which
S<T.

PROOF. (a) The first assertion in (a) is easy to see. To understand the sec-
ond assertion we observe that 1yr>,) = 1—1yr<,—1) is measurable for the o-field
Fn—1 and we notice that X (0)+>7_; Lirsky (X (k) — X (k — 1)) = X (min(T, n)).
This proves assertion (a) in Proposition 5.105.

(b) De inequality X (S) < E (X(T) | F5), P-almost surely was already proved in
Theorem 5.104 and can be obtained from (a) by putting H(n) = Lirsny —L{ssn).
If we use the equality E(X(S?)) = E(X(T?)) for de times S = Sl1p + M1p.
and T8 = T1p + M1pe, where B belongs to Fg and where M > T > S, then
we get
EX(T)lg+ X(M)lg:) =E(X(S)lp+ X(M)lg).

But, then it follows that E (X(7T")15) = E (X(S5)1p) for all B € Fg and hence
X(S) = E (X(T) | Fs).

The proof of Proposition 5.105 is now complete. O

5.106. THEOREM (Doob-Meyer decomposition for discrete sub-martingales).
Let (X(j):jeN) be a sub-martingale. Then there exists a unique martin-
gale M = (M(k) : k € N) together with a unique predictable increasing process
A = (A(k) : k e N), with A(0) = 0, such that X (k) = M (k) + A(k), for ke N.

5.107. REMARK. This theorem is, in an appropriate form, also true for sub-
martingales X of de form X = (X(¢):t>0) (continuous time). A process
A = (A(k) : ke N) is called predictable, if A(k) is measurable for F_;, and
this for every k e N.
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PROOF. Existence Define the process A by A(0) = 0 and

k
Z ]_1’% 1)

Define the process M by M(k) = X (k) — A(k). Then the process M is a
martingale and the process A is increasing (i.e. non-decreasing) and predictable.
Moreover, the equality X = M + A holds.

Uniqueness Let the process X be such that X = M + A where M is a martingale
and where A is predictable and increasing. In addition, suppose that A(0) = 0.
Then the equalities

k
Z ]—1‘?] 1)

=1

.

DE (M) = M~ 1) [ F5m) + D E(AG) ~ 4G~ 1) | Fj)

1 j=1

2 (AG) = AGG - 1) = A(k),

=1

.

.

hold for £ > 1. So the proof of Theorem 5.106 is complete now. 0

5.108. THEOREM. Let X = (X(k): 1<k < N) be a sub-martingale. Then the
following inequality holds:
E [max(X(N) — a,0)]

b—a '

PRroOOF. For a proof we refer the reader to Proposition 3.71 of Chapter 3.
Notice that, with X the process max(X — a,0) is also a sub-martingale. U

5.109. THEOREM. Let X = (X (t) :t = 0) be a sub-martingale for the filtration
(Fy:t=0). Fora <b the inequality
E [max (X(N) —a,0)]

E (UDr\[O,N] (Xa a, b)) < b—a

holds.

7
PRrROOF. Write D,, = o and define U, by U, = Up,~pn(X,a,b). The
sequence U, then increases to Upno,n1(X, @, b). So it follows that

E (Upoon) = lim E (U,) < = XX (N) = a.0)]

n—00 b—a

This completes the proof of Theorem 5.109. 0

The following theorem contains Doob’s maximal inequalities for submartingales.

Download free eBooks at bookboon.com



5.110. THEOREM. Let X = (X(0),...,X(n)) be a sub-martingale. Then the

following mazximal inequalities of Doob hold:

PGmxX A)< E(X(n)); (a)

0<j<n

P (max | X;| = )
o<y<n
and if X 1s a martingale

P (a1 22 < 5 E1XO)))- (0

0<j<n

E(5]X(n)] -2X(0)); (b)

ylw > =

PROOF. We begin with a proof of (¢). Consider the mutually disjoint events

1%=ﬂXd>M,mﬁAM={M(H>A0m%1MQM<A}
<<

1 <k <n. Then | J;_, Ax = {maxo<;j<n | X (j)| = A}. Therefore

P[max X (5) ]:Z

0<j<n
J 0

and so, using the martingale property

P(AL) = E(14,) < yE[La, [X ()] (5.171)
(martingale property)
= SE[Ly, [X(0)| | 5] < {E[LE (X ()] | 51)] = {E[La, X (m)].

By summing over k in (5.171)we get (c).
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(a) The proof of (a) follows almost the same lines, except that in the definitions
of the events Ay the absolute value signs have to be omitted.

(b) For the proof of this assertion we employ the Doob-Meyer decomposition
theorem (Theorem 5.106). Write X = M + A with M a martingale, and A
(predictable) increasing process. We let M (0) = X(0). Then, by (c), we see

p (maX X ()| = A) <P <max |M(5)| = %) +P <A(n) > g)

0<j<n 0<j<n
2 2 2
< SEM(n)] + JE(Ay) < TE(IM(n)| - M(n) + X (n)

< ZE(2|X(n)] + 24(n) + X(n)) < 2B (5]X ()| - 2X(0)).

This proves assertion (b).
The proof of Theorem 5.110 is complete now. U

5.111. LEMMA. Let (A, :n e N) be a sequence of o-fields decreasing to the o-
field Ay. So that A1 € A, neN, and Ay = ﬂneNAn. Let (f, :neN)u
{fw} be a sequence of stochastic variables with the following properties:

(1) fn is Ap-measurable, n € N, and fy, is As-measurable;

(ii) fin SE (fo | Am), for allm =n, and fo <E (f, | Ax), neN;
(i) Ty o E (o) — B (f).

Then the sequence (f, : n € N) is uniformly integrable.

PrOOF. For m =1, 2,..., 00 we have
fm <E (f1 ‘ Am) and max(f,,,0) <E (max(fm,()) ‘ Am) )

From this it follows that the sequence (max(f,,0):1 < m < ) is dominated
by an integrable function (in fact by E (max(f1,0))). So it follows that this se-
quence is uniformly integrable. The fact that the sequence (max(—f,,0) : n € N)
is also uniformly integrable, is much less trivial. To this end we consider

—ANP(fo<=NZE(fo:fo<-N=E(fo) —E(fo:fo=-N
E(E(fo|Ax)) ~E(E(fi [An) : fo>—A)
(fo) —E(fi: fu = —))
(fo) — E(max(f1,0)). (5.172)
72) it follows that

AP (f, < —A) < E (max(f1,0) + max(—fy,0)) < o0.

Then choose € > 0 and my in such a way that E (f,,,) < E(fx)+e. Forn > mg
we then see E (f,,) < E(f.) + € Hence, E(f,) = E(fn,) — €. Then choose
d > 0 such that P(A) < ¢ implies E(|fx| : A) <efor k =1,...,my. After that
choose A so large that P (fy < A) < d for all £ € N and for all A > A\g. For
1 <k <mgy we then get E (| fx] : fr < —A) <€, A= Ag. For k = mg we see

=

VoWV oV
E =

From (5.

—_
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ZE(me)—E(E(me "Ak) :fk> _>\) —€>E(fmoi fk < —)\>—€.
By (5.173) we obtain

E(fel: fu < =X =—=E(fr: fe <—X\)
<NE (fing : fx < —A)| + €< 2e

for a certain A > 0. Thus we see that the sequence (max(—f,,0) : n € N) is also
uniformly integrable. This yields the desired result in Lemma 5.111. 0

5.112. THEOREM. Let, relative to the right-continuous filtration (F, :t = 0),
the process X be a sub-martingale. Suppose that Fy contains the zero-sets, and
that the function t — E (X (t)) is right-continuous. Then there ezists a process
Y = (Y(t) : t = 0) which is cadlag is which cannot be distinguished from X. So
for every t = 0 the equality Y (t) = X(t) holds P-almost surely.

PROOF. There exists an event 2 in 2, with P(Q') = 1, such that on ' the
following claims hold:

sup |X(t)] < oo, for all n e N;
teDn[0,n]

Ubnfon](X,a,b) < oo, or all n e N and for all @ < b, a and b rational.

Since P (') = 1 we see that 0’ belongs to Fy and, hence €' belongs to F; for
all ¢ = 0. On Q' we define the process Y = (Y (¢);t = 0) as follows: Y (t) =
limg s s>t sep X (s). Then Y (¢) is measurable for all o-fields F,, with u > ¢. By the
right continuity of the filtration (F; : ¢ = 0) we then see that Y (¢) is measurable
for the o-field F;. Then take t = lim,,_, s,,, where s,, | t, and where, for every
n € N, s, belongs to D. Then Y(t) = lim, o X(s,) in probability. Then
apply Lemma 5.111 to conclude that the sequence (X (s,) : n € N) is uniformly
integrable, and hence Y (¢) = L' —lim,, . X (s,). We may apply Lemma 5.111.
for f, = X(sn), foo = Y(t), Apx = F, and A,, = F,,. Then notice that
X(t) <E(X(sn) | F¢), P-almost surely. By L'-convergence, from the latter we
see that X(t) < E (Y(¢) | F;) and thus X(t) < Y(¢) P-almost surely. Since,
in addition, E(Y(¢)) = lim, ., E(X(s,)) = E(X(¢)), the equality Y (t) = X (¢)
follows P-almost surely.

This completes the proof of Theorem 5.112. 0

5.113. THEOREM. Let X = (X(t) : t = 0) be a sub-martingale with property that
supE [X(t)*] < . The following assertions hold true.
=0

(a) The limit X (00) := limg o sep X () exists P-almost surely.

(b) If X is a cadlag process, then the limit X (00) := limg_, o exists P-almost
surely.

(¢) If, in addition, the process (X (t)* : t = 0) is uniformly integrable, then
the inequality X (t) < E (X (o0) | &) holds.
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PrROOF OF THEOREM 5.113. (a) From the maximal inequality of Doob it
follows that, for A > 0, the following inequality holds:

teDn[0,n]

AP ( sup | X(t)] > )\> < 10E (X (n)* + X(0)7). (5.174)
By letting n tend to o in (5.174) we obtain
AP (sup | X(t)| > )\) < 10supE (X(n)* + X(0)7),

teD
and hence, sup,.p | X (¢)| < oo P-almost surely. In the same manner we see

E(X(n) —a)*
]E(UDG[O,OO)<X7a>b))<Sup ( b(_)a ) .

(5.175)

From (5.175) we see that Upn[o,x)(X, a,b) < oo P-almost surely. As we proved
regularity starting from (5.175) and (5.174) (in fact from their consequences),
we now obtain that X (00) := limg_,, sep X () exists.

(b) If X is cadlag, then, like in the proof of the regularity, the limit X (o0) =
limg o0 X () exists.

(c) Since the process (X (t)* : ¢ = 0) is uniformly integrable, it also follows that
the process t — max(X (t),a) = (X(t) — a)" + a is uniformly integrable as well.
So, for A € &, and for u > ¢, the folowing (in-)equalities hold true:

J max (X (t),a) dP < lim | max(X(u),a)dP
A

_ L Tim max(X (u), a) dP = L max(X (), a) dP.
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Since

u—00

JX TdP = liInJX(u)+dIP’<oo
we see that X (00)™ belongs to L! (2, F,P). But then we get

J X(t)dP = lim maX(X(t), a)dP < lim | max(X(0),a)dP
A

a——00 a——0 A

J X (0 (5.176)
From (5.176) the inequality X (t) < E (X (o) | F;) follows. This proves item
(c). The proof of Theorem 5.113 is now complete. O

5.114. THEOREM. Let X = (X(¢t) : t = 0) be a sub-martingale with the property
that the process (X (t)* : t = 0) is uniformly integrable. In addition, suppose that
X is cadlag. If S and T is a pair of stopping times such that 0 < S <T < o0,
then the following inequality holds: X(S) <E (X(T) | Fs).

PROOF. Put S, = 27"[2"T'| and, similarly, 7,, = 27"[2"T'|. Then the stop-
ping times S,, and 7,, attain exclusively discrete values (in fact they take their
values in 27"N). It is true that S, | S (if » — o0) and the same is true for the
sequence (T, : n € N). Moreover, S, < T,, for n = m. From Doob’s theorem
about discrete optional stopping times it follows that

X(S,) <E(X(Tn) | Fs,), X(S,) <E(X(0)]|Fs,),
X(S,) <E (X ()| Fs,) -

From this it follows that the processes (X (S,)* : n e N) and (X (7,,)" : n e N)
are uniformly integrable. For all n, m in N, n > m, the following inequality

holds for A € Fg:

L max(X(S,), a) dP < L max(X(T,,), a) dP: (5.177)
(let n tend to oo in (5.177) to obtain)

L max(X(S), a) dP < L max(X (), a) dP: (5.178)
(in (5.178) let m tend to o to obtain)

L max(X(S), a) dP < L max(X(T), a) dP: (5.179)

(in (5.179) let a tend to —oo to obtain)

f X(S f X(T (5.180)

and that lim,,_,. X(S,) = X(S5) and that the same is true for the stopping time
T. By (5.180) we then see X(S) < E (X(T) | F5). This completes the proof of
Theorem 5.114. O
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5.115. COROLLARY. Let X = (X(s):0 < s <) be a cadlag martingale and let
0< S <T <t betwo stopping times. The following equalities are true:

X(S)=E(X(T)|Fs) and E(X(T)) = E (X (%)) = E(X(0)).

PRrROOF. The proof is left as an exercise for the reader. Among other things
we notice that the martingale (X (s) : 0 < s < t) is uniformly integrable. O

5.116. COROLLARY. Let X be a cadlag martingale in L' (0, F,P) which is uni-
formly integrable. Then the limit X (00) := limy_,o, X (t) exists P-almost surely,
and if S and T are stopping times such that 0 < S < T < oo, then the following
equalities hold:

X(S) = E(X(T) | Fs) and E(X(T)) = E(X(0)) = E(X(0)).

PrROOF. The proof of this corollary is left as an exercise for the reader.
Observe that for n € N fixed the martingale (X (min(n,t)) : ¢ = 0) is uniformly
integrable. U

In what follows the process X : [0,00) x Q — R” is a process with values in R,
where v may be 1.

5.117. DEFINITION. Let X be a stochastic process, which is adapted to the
filtration (&, : t = 0). The process X is said to be a Lévy process if X possesses
the following properties:

(a) For all s <t the variable X (¢) — X(s) is independent of Fy;

(b) For all s < t the variable X (¢) — X (s) has the same distribution as
X(t—s);

(c) Forallt = 0 and for every sequence (¢, : n € N) in [0, o0) that converges
to t, the limit lim, ,, X(t,) = X exists in P-law (or in P-measure).
Sometimes this is denoted by P-lim,, o, X (t,) = X (t).

5.118. THEOREM. Let X be a stochastic process, which is adapted to the filtration
(Fi :t = 0), and which takes it values in R”. The following assertions are true:

(a) Let X be a Lévy-process. Define for t = 0 the probability measure p; as
being the distribution of X (t). So u(B) = P (X (t) € B), where B is a
Borel subset of R”. Then the family {y; : t = 0} is a vaguely continuous
semagroup of probability measures.

(b) Conwversely, let {u; : t = 0} be a vaguely continuous semigroup of prob-
ability measures on R”. Then there exists a Lévy-process

X ={X(t):t =0}

with cadlag paths such that p,(B) = P (X (t) € B) for all Borel subsets
B of R".

PrROOF OF THEOREM 5.118. (a) Define for ¢ > 0 the characteristic func-
tion f; of X(t) as being the Fourier transform of the P-distribution of X (¢). So
that

f:(&) = E(exp (i (&, X (1)), £eR”.
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Since, for ¢, s € [0,0), X(s+t) = X(s+t) — X(s) + X(s), since, in addition,
X(s+t)— X(s) is independent of X (t), and because X (s+t) — X (s) possesses
the same distribution as X (¢) we infer

fore(§) = E (exp (=i (§, X (s +1))))
= E (exp (=i (§, X (s + 1) — X(s))) exp (=i (£, X(s))))
= E (exp (=i (§, X (s +1) — X(s)))) E (exp (=i (£, X(s))))
= E (exp (=i (§, X (1)) E (exp (=i (§, X (5))))
= [i(§)f:(8)- (5.181)

Since X (0) and X (0) — X(0) = 0 have the same distribution we see fy(§) = 1.
Since P-lim,, ;o X (u) = X (0) we see, for example by Theorem 5.85 in combination
with the implication (1) = (9) of Theorem 5.43, that lim, o f5s(§) = fo(&) = 1.
From (5.181) it then follows that

lim fi(8) — /(&) = 1 fs(§) (fi-s(&) — fo(&)) =

for all s > 0. Because, by applying equality (5.181) repeatedly, we see f;(§) =
(fia—n(€))*". In addition we have lim,,o f,(£) = 1. So it follows that for no value
of t € [0, 0) the function f;(§) vanishes for any £. Since, fort < s, fi(§)— f5(€) =
(fo(&) — fs=1(£)) f:(£), it also follows that limys fi(§) = f5(§), for s > 0. From
the previous considerations it follows that the function t — f,(§), t € [0, %),
is a continuous function, which satisfies the relation f, (&) = fs(€)f:(€) for
all s, t = 0 and this for all £ € R”. Furthermore, we define the family of
measures {y, : t = 0} as being the P-distributions of the Lévy process X. So
that uy(B) = P (X(t) € B), B Borel subset of R”.
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From the previous arguments it then follows that

fis1(§) = fse(§) = fo() (&) = Is(E)Fie(E) (5.182)

and that limg o 115(§) = 1. So that the family {u; : ¢ > 0} is a vaguely continuous
semigroup of probability measures on R”. By Theorem 5.31 there then exists a
continuous negative-definite function ¢ such that f,(§) = fis(&) = exp (—ty(€)).

(b) Define (Q,F,P) as in Proposition 5.36. Likewise we define the state vari-
ables X(t) : © — R” as in Proposition 5.36. Let the filtration (F;:t > 0)
be determined by F; = o (X(u): 0 <wu <t). So the filtration (F;:¢>0) is
the internal history of the process X. Then X is a Lévy-process, which pos-
sesses the properties as described in (b). The fact that for ¢ > s the variable
X(t) — X(s) is independent of Fy was proved in Theorem 5.37. We must show
that, for € > 0 fixed, limg;o P (| X (s) — X(0)| > €) = 0. Therefore, notice first
that P (X (0) = 0) = {0} = 1. Hence, with B(e) = {x € R” : |z| < €}, we have

P(1X(s) = X(0)| > €) = P(|X(s) = X(0)] > €, X(0) = 0)
=P ([X(s)] > €, X(0) = 0)
=P ([X(s)[ > ¢)
= s {R"\B(e)} = 1 — ps {B(e)}. (5.183)
Since the convolution semigroup {, : t = 0} is vaguely continuous it follows that
11%1 ps {B(e)} = 1. From (5.183) we then see that limg o P (| X (s) — X (0)] > ¢€) =

0. The only problem which is still left, is the fact that the process X is not
necessarily cadlag. In the following propositions and lemmas we will, among
other things, resolve this problem. From Theorem 5.121 it follows that the
process X is also a Lévy process for the filtration (G, : ¢t = 0), where G, = F,UN.
By Theorem 5.123 we then see that the process X possesses a cadlag version.

The proof of Theorem 5.118 is now complete. U

5.119. PROPOSITION. Suppose 0 < s1 < --- < S, and chooset = 0. Let X be a
Lévy process for the filtration (F; : t = 0), where F; = 0 {X (u) : 0 < u < t}. Let
{pe - t = 0} be the corresponding convolution semigroup and 1) the corresponding
negative-definite function. So puy(B) = P (X (t) € B) for all Borel subsets B and
(&) = exp (—t(€)) for allt = 0. For &L, ... €™ in R the following equalities
hold:

E [exp (—zi (&, X(t+ sj)>> | fﬂ]

j=1

fo{ ese) o
= exp ( <§ >> exp (—: (85— sj_1) (}é g’f)) . (5.184)

Here we write ¥,y = (),., Fs and so = 0.
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Proor. We apply induction with respect to m. We begin with the condi-
tioning on J;. For m = 1 we have

E [exp (—z’ <§1,X (t + 31)>) ‘ ”ft]
=E[exp (=i (¢, X (t+s1) — X(1))) | Fe] exp (=i (', X (1))

(X(t + 51) — X(t) does not depend on )

B [exp (=i (€1, (t 4+ 51) — X(8)))] exp (=i (€1, X (1)
(X(t+ 51) — X(t) has the same distribution as X (s1))

= E[exp (i (€1, X (s1))) ] exp (—i (€1, X (1)))

= is, (€") exp (—i (', X (1))
— exp (s (€1) exp (=i €1, X (1))

=exp (— (51— s0) ¥ (&")) exp (—i (', X (1)) . (5.185)
Notice that (5.185) is the same as the equality in (5.184) for m = 1. Suppose now
that we already know (5.184) for every t = 0, for every m-tuple s; < -+ < s,

and for every m-tuple &!,...,€™ in R”. We keep working with the original
filtration (F; : t = 0). For s,,41 > s,, and for ™ € R” we then see

E [exp <—i7§1 (&, X (t+ s]-)>> | rft]

j=1

[exp ( i X (t+s; >>
E [exp (_i <§m+17 X (t + 5m+1)>) ‘ ?t-&-sm] ‘ \rft]

(employ (5.185) for ¢ + s,,+1 instead of t)

=E [exp (—z Z (&, X (t+s, >>
o (CHE X0 s 3 (ot~ )67 ]

(induction hypothesis)

= exp (—z<mZ: §j,X(t)>> exp <—m2 (sj —sj-1) <mZ§ )) (5.186)

But (5.186) is the same as (5.184) with m replaced by m + 1. Next we look
at the situation for the filtration {F;; : ¢ = 0} which is closed from the right.
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Without loss of generality we may assume that s; > 0. In case s; = 0 we have

indeed
[exp < i X (t+ sj)>> | H’HI

= exp (—i (¢!, X(¢) [exp ( i@j,x (t + sj)>> | 3%] .

So assume that s; > 0 and choose n € N such that s; > n~!. Then we see, by
(5.184) for t + n~! instead of t,

E [exp (—zi (&, X (t+ sj)>> | 3"t+] (5.187)

(e s

(write so = n~! in what follows)

:E[p(@g (t >)
o G 39) 2]

In (5.187) we let n tend to oo. Apparently it follows that

E [exp <zi (&, X (t+s; >> | 3"t+]

e (< (S0 e (S0 06 (£6)) 1]
= exp (z <i§j,X(t)>> exp <f i (sj—sj_1) <i§k)> . (5.188)

From (5.188) it then follows that (5.184) holds for the filtration {F; : ¢t = 0}
which is closed from the right.

This completes the proof of Proposition 5.119. U

5.120. COROLLARY. Let the assumptions and hypotheses be as in Proposition
5.119. For every bounded complez-valued random variable Y, that is measurable

for the o-field o {X (u) : u = 0} the following equality holds P-almost surely de
equality:

E[Y|F]=E[Y]|Fu]. (5.189)
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PROOF. Put Y = exp (—i D (fj,X(sj))>. By Proposition 5.119 we see

that for all such random variables Y the equality in (5.189) holds, provided
that s; > ¢, for 1 < j < m. By splitting and using the standard properties
of a conditional expectation we see that the restriction s; > t is superfluous.
In other words the equality in (5.189) holds for all variables Y of the form

Y = exp (—iZTzl (fj,X(sj))> where all s; belong to [0,00) and where all &’

are members of R”. Let Y; be a bounded complex-valued random variable, which

belongs to the linear span of variables of the form exp (—i PIRCSID¢ (sﬂ))

Then consider the vector space H(Yy) defined by

H(Yo)

={Y :Q — C:Y is bounded and measurable for the o-field o {X(u) : u > 0}
and E (YYy | F) =E (YYo | Fir) }-

By employing Lemma 5.100 or, even better, the monotone class theorem we see
that H(Yy) contains all complex-valued bounded random variables, which are
measurable for the o-field o {X (u) : u > 0}. Among others we may put Yy = 1,
and the claim in Corollary 5.120 follows. U

5.121. THEOREM. Let X = {X(t) : t = 0} be a Lévy-process. Let H ={FH;: t=>0}
be the internal history of the process X. Let N be the null sets in H.,. Then
the filtration G, with Gy = o {3, U N}, is continuous from the right.
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ProOOF OF THEOREM 5.121. Let A € G;,. By Corollary 5.120 we have
14 =E (1A | 3‘}). Let B € & be such that 15 = E (1A ‘ th), P-almost surely.
Then P(AAB) = 0. Since A = BA (AAB), we see that A in fact belongs to
St g

5.122. LEMMA. Let (z, : n € N) be a sequence of vectors in R” with the property
that the sequence (exp (—i (€, x,)) : n € N) converges for almost all § € R”. Then
the sequence (x, : n € N) converges.

PROOF. Fix 1 < j < v, and let U’ be a vector valued stochastic variable
which is zero for the coordinates £ = j and with the property that qu is uni-
formly distributed on the interval [0, 1]. The following inequalities are true for
0<o<1:

2Re E (1 — exp (—i <Uj,:cn — xm>)) =E |1 — exp (—z’ <Uj,xn — xm>)‘2

= 4K <sin2 % <Uj,xn — xm>> > 45°P {sin2 % <Uj,xn — :L‘m> > 62}

> 46°P g 2min 1<ij -z >2 7T—2 > 6
= T 4 y4n m 74 =

> 46°P {|(U7, & — )| = O}
= 46% max <1 577 O).

%05 = Tl
Since this inequality holds for every 0 < § < 1, it follows that the j-th coordinate
(xn; : n e N) of the sequence (z, : n € N) converges. This holds for 1 < j <

v. Hence, the limit lim,, . x, exists. This makes the proof of Lemma 5.122
complete. O

Among other things, in Theorem 5.123 the proof of item (b) in 5.118 is com-
pleted.

5.123. THEOREM. Let (X (t),F}),>, be a Lévy-process. Suppose that the filtration
(Fy : t = 0) is right-continuous, and that Fo contains the null sets. Then there
exists a cadlag modification of X = (X(¢t) : t = 0).

The result in Theorem 5.123 can be applied in case we take the internal history,
completed with null sets, as the filtration (F)

t=0"

PrROOF OF THEOREM 5.123. We will make use of the following product
set:

E:CQ+:{(at) :ateCforallteQ+},

teQ+

endowed with the product-o-field € = ®eq, B(C). Put

D = {(at)te(@+ : Jdp: [0,00) — C cadlag with ¢(t) = oy for all t € Q+} :
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Upon writing ¢ as the pointwise limit ¢(t) = lim, 4 @, (t), where

09]

on(t) = Z @ ((k+1)27") Lpgo-n (b+1)2-m) (1),
k=0

it can be proved that D belongs to the o-field €. Consider the mapping;:
O R'xQ—>F

defined by

P&, w) =exp (—i (&, X (1)) = . (5.190)

The mapping ¢ is measurable for the o-fields F,, and €. As a consequence
A := &7 (D) belongs to the o-field B(R")®F . So for every pair (§,w) € RY x
there exists a cadlag function f : [0,00) — C with the property that the equality
f(t) = exp(—i (£, X(t))) holds for all ¢ € Q,. Now let the negative-definite
function corresponding to the process X be given by 1. Then the process
t — exp (—i (£, X (t)) + t¥(§)) is a martingale. This is so, because, for 0 < s < t,
we have the following equalities:

E (exp (=i (6, X (8)) + t(8)) | F)
= E (exp (=i (£, X (t) — X(s)) + (t — 8)¥(€)) | Fs) exp (=i (€, X (5)) + s1(€))

(X (t) — X(s) does not depend on F,)

= E (exp (=i (§, X(t) — X(5)) + (t — 5)¥(€))) exp (=i (&, X (s)) + s(€))
(X () — X (s) heeft dezelfde distribution als X (t — s))

= E (exp (=i (§, X (t = 5)) + (t = 5)1(§))) exp (=i (§, X (s)) + s9())
(definition of 1)

= exp (—i (&, X (s)) + 51(E)) . (5.191)

From martingale theory it follows that there exists a cadlag version M¢ =
(M&(t) : t = 0) of the martingale t — exp (—i (&, X (¢)) + t(£)). By this we
mean that for every (&,t) € R” x [0,00) there exists an event N, with the
following properties: P (N;¢) = 0 and for w ¢ N, the equality Mé(t)(w) =
exp (—i (€, X (t,w)) + t1p(€)) holds. Hence, for every £ € R” there exists a P-null
set N¢ such that for every ¢ € [0,00) N Q the equality

ME(t)(w) = exp (=i (€, X (t,w)) + t9(€))
holds for all w ¢ N¢. In other words for all £ € R” the equality:

P{w: ({,w)e A} =P {N¢} =1 (5.192)
holds. From (5.192) it then follows that
O—J dff dP1 e —f dIP’J 1pe d€. (5.193)
r Jo 0 v
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ADVANCED STOCHASTIC PROCESSES: PART II SOME RELATED RESULTS

The equality in (5.193) implies that for P ® A-almost all (w, &) the function
t — exp (—i (&, X (t,w))) belongs to D. By Lemma 5.122 we see that P-almost
surely the following limits exist for all £ > 0:

lim X (s) and lim X(s).

slt stt
seQ seQ

Define the process Y by Y (t) = lltimQX (s). Then the process Y is cadlag:
slt, se
see (the proof of) Lemma 5.103 (b). Furthermore, X (¢) = lltimQX(s) (in P-
slt,se

distributional sense), and thus X (t) = Y(¢) P-almost surely. The proof of
Theorem 5.123 is now complete. U

5.124. THEOREM (Dynkin-Hunt). Let (X(t),3%),5, be a cadlag Lévy process
with a right-continuous filtration (F; : ¢ = 0). Let T : Q@ — [0,0) be a stopping
time which is not identically . So that P{T < oo} > 0. On the event {T' < oo}
the process Y = {Y (t) : t = 0} is defined by Y (t) = X(t +T) — X(T).

(a) Under P the process Y has the same distribution as the process X under

P.
(b) The o-fields Fr and o {Y (s) : s = 0} are P-independent.

(]
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ra I n p O W e r electricity needs. Already today, SKF's innovative know-
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world’s wind turbines.
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PROOF OF THEOREM 5.124. (a) For n € N we write T,, = 27"[2"T|. Then
(T,, : n € N) is a sequence of stopping times with the following properties:

(i) {T0 < o0} = {T" < oo};
(i) T <Tpsy <T, <T+2", neN.

Define the sequence of processes (Y : n € N) via the formula:
Y™ (t) = X(t +T,) — X(T,) op de event {T,, < 0} ={T < w}.

Let now f : (R¥)"™ — C be a bounded continuous function, let A be an event
in Fp < Jp,, and let s < --- < s, be an increasing sequence of fixed times.
Then the following equalities hold:

E[f(Y"(s1),Y"™(s2) = Y"™(51), ..., Y™ (5m) — Y"(8m—1)) Lan{r<ec} ]

e}
= Y E[Langm—ro-mf (X (s1+k27") = X (B27") ...

=0

X (S A+ k27™) = X (81 + £27™)) ]

=

(X(sj +k27") — X(sj-1 + k27") does not depend on F, | 1x2-n)

0

= Y P[An{T, = k2"}]
I;[j” (X (s1+k27) = X (k27) .o, X (8 + 527™) = X (81 + 527™)) ]

(X (sj+k27™) — X(sj_1 + k27™) has the same distribution as X (s;) — X(s;_1))

~ N P[AA{T, = k27" E[f (X (51) = X (0),. ., X (5m) — X ($m_1))]

=P[An{T, < o}E[f(X (s1) = X (0),...., X ($p) — X (5m_1))]
P[AN{T < o}]E[f (X (51) = X (0),..., X (8m) — X (8m_1))].  (5.194)

In (5.194) we let n tend to co. Since the process X is right-continuous it follows
that lim Y"(¢) = Y (¢) P-almost surely on the event {1 < c0}. By the continuity
n—0o0

of the function f the equality
E [f <Y<51)7 Y(SQ) - Y<81>7 e 7Y(8m) - Y(Smfl)) 1Am{T<oo}]
=P[An{T <o} |E[f (X (s1) — X (0),..., X (8m) — X ($m—1))] (5.195)
follows. By taking, in (5.195), the function f of the form f = f, o V,,, where
Vi + (RY)™ — (R)™ is give by Vi, (21, ., Zm)) = (T1,..., 21+ -+ 2y,) We
see
E[fo(Y(s1),- .Y (5m)) Laniz<ooy]
“P[AA{T < HE[fy (X(s1), -, X(5))]. (5.196)
Here fp : (R¥)™ — C is an arbitrary bounded continuous function. By passing

to limits (5.196) follows for arbitrary bounded Borel measurable functions fj :
(R¥)™ — C. Via the monotone class theorem the assertion in (a) follows.

Download free eBooks at bookboon.com



ADVANCED STOCHASTIC PROCESSES: PART II SOME RELATED RESULTS

(b) By taking the function f of the form f = fyoV,,, where V,,, : (R*)™ — (R*)™
is given by V,, (z1,...,%m)) = (x1,..., 21 + -+ - xp) in (5.195), we get

E[fo(Y(s1), -, Y (5m)) Lan(r<on}]
=P[A~{T < 0} E[fo (X (s1),...,X(sm))], (5.197)

where fo : (R¥)"™ — C is an arbitrary bounded continuous function. Then
choose A = Q and divide by P{T < oo}. We get

Efo(Y(s1),- Y (sm)] = E[fo (X(51), -, X(s))] (5.198)
Inserting the result in (5.198) into (5.197) entails
E[fo(Y(s1), Y (sm)) 1a) = ELfo (V(s1), - Y(sm)] B(A). (5.199)

From (5.199) it follows that the o-field Fr is independent of the one generated
by {Y'(s) : s = 0}: for this employ the monotone class theorem.

This completes the proof of Theorem 5.124. 0
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7. Markov processes

Let (2, F,P) be a probability space and let X, Y and Z be stochastic variables
on ) with values in a topological Hausdorff space E. We assume that FE is
locally compact and that E is second countable, or, what is the same, that
E satisfies the second countability axiom. In other words E has a countable
basis for its topology. The space E is supplied with the Borel o-field € and
we suppose that the variables X, Y and Z are measurable for the o-fields F
and €. The symbol Px stands for the image measure on € of the probability P
under the mapping X. So Px(B) = P(X € B), B € €. The symbol ]P’Y‘X is a

probability kernel from 2 to E with the property that
f P (2,C)Px(dx) = P(Y € C,X € B)
B oYX

for all B and C' in €. As function of the first variable the probability ker-
nel IPYX is Px-almost surely determined. Putting it differently, the func-

tion z IP’Y‘X(x, (') is the Radon-Nikodym derivative of the measure B —

P(Y € C, X € B) with respect to the measure B — Px(B) =P (X € B). In the
following proposition we collect some useful formulas for (conditional) proba-
bility kernels.

5.125. PROPOSITION. Let (0, F,P), E, X, Y and Z be as described above. Let
g: Ex E— C be a bounded measurable function and let B and C' belong to €.
Then the following equalities hold:

| [otap,) o dppatan) - B(g(x.1)); (5.200)
f P, (7. O)Px(dz) = E(Ic(Y), X € B); (5.201)
]P’Y‘X(X, C)=E (1c(Y) | 0(X)) ; (5.202)

J]P’Z‘Y(y, C’)]P’Y‘X(a:,dy) = ]P’Z‘X(a:, C), Px-almost surely,  (5.203)
provided that E (Z | o(Y)) = E(Z | 0(X,Y)).

PROOF. The equality in (5.201) follows in fact from the definition of IP’Y’X.

By choosing the function g of the form g(z,y) = 15(x)1c(y) in (5.200) we see

that (5.200) coincides with (5.201). An arbitrary bounded measurable function

g can be approximated by linear combinations of functions of the form (z,y) —

1g(x)lc(y)i, with B and C'in €. Let g : E — E be a bounded measurable
function. Then the following equalities hold:

E (g<X>PY\X<X, c>) - f 9(@)B, | (. C)Px(dr) = E(g(X)1c(¥)). (5200

From (5.204) the equality in (5.202) follows. Let ¢ : E — C be a bounded
measurable function. Then by, among others, (5.202) the following equalities
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are true:

|x
- (B, ¥ c>g<X>) “E(E (16(2) | o(Y)) 9(X))

V) g(X)) =E(E (1c(2)g(X) | 0(X,Y)))
1c(Z2)9(X)) = g(x)IP’Z|X(x, C)Px(dx). (5.205)

From (5.205) the equality in (5.203) follows, and completes the proof of Propo-
sition 5.125. O

5.126. THEOREM. Let (2, F,P) and (E, &) be as above. Let X = {X(t) : t = 0}
be a stochastic process with values in the state space E adapted to the filtration
(Fr:t=0). So every state variable X (t) is a mapping from Q to E, measurable
for the o-fields Fy and €. In addition, suppose that the family of operators
{0 : t =0} from ) to Q satisfies the translation property X (s)ot; = X (s+t) for
all s andt = 0. Then the following assertions are equivalent (for the implication
(i11) = (i) it is assumed that F; = o {X (u) : 0 < u < t}):

(i) For every C' € € and every s and t = 0 the following equality holds:
E[le(X(s+1t) | F] =E[lc(X(s+1)) | o (X(t))] P-almost surely; (5.206)

(ii) For every bounded random variable Y : Q@ — C, that is measurable for
Fo and €, and for every t = 0 the following equality holds:

E[Yod, |F| =E[Y od; | o (X(t))]P-almost surely; (5.207)

(iii) For every m € N and for all (m + 1)-tuple of bounded Borel measurable
functions fos ooy fm o E— C the equality:

ELf fi(X(s1) - fm (X (5m))] (5.208)

JJ Jfo o) f1 (1) -+ fin (Tm)

m+1 times

Tm—1, dl’m) P Zo, dl’l)]P)X(o) (dl’o),

X(sm)|X(Sm—1) ( X(Sl)‘X(0)<

holds for every sy < -+ < s, in [0,00).
If the process X is right-continuous, then (i) and (ii) are also equivalent
with the following assertions:

(iv) For every bounded Borel measurable function f: E — C and for every
stopping time T : Q — [0,0] the following equality holds P-almost
surely on the event {T' < oo} :

E[f(X(s+T))|Fr] =E[f(X(s+T)) | o(T,X(T))];

(v) For every bounded random variable Y : Q — C, which is measurable
for F, and for every stopping time T : 2 — [0, 0] the equality

E[Yodr|Fr]| =E[Yodr|o(T,X(T))] (5.209)
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holds P-almost surely on the event {T < o0}.

If the process X is right-continuous and if as filtration the internal history is
chosen, then all assertions (i) through (v) are equivalent.

PROOF. (i) = (ii). Upon invoking the monotone class theorem it suffices to
prove (i) for functions Y : Q@ — C of the form Y = [T/, f; (X(s;)), where the
functions f;, 1 < j < m are bounded and measurable. For m =1 (i) is clearly
equivalent with (ii). Next we prove (ii) for Y = Hm+1 fi (X(s;)) starting from

(ii), but with Y = HJ L fi (X (s5)), with 1 < k < m. The equalities below then
show that (5.207) follows for Y = Hm+1 [ (X (s5)):

g rﬂ i (X(ss 1) fﬂ]

~E

=E

E (H [i (X(s; +1)) ‘ ?smﬂ) ‘ ?t]

j=1
m

[T (X554 D)V E (fnsr (X(Smer +8)) | Fapr) | Fo

Jj=1

(the equality in (5.207) for Y = fi1 (X (Sms1)))

) [H £ (X (55 + ) E [ frns1 (X (Smz1 +1) | 0 (X (s +1))] | 32]

(the equality in (5.207) for Y = [[7_, g; (X (s;)), where g; = f;, 1 <j <m—1,

and where ¢, (z) = fo(2) § frni1(y)

=E

(z, dy))

P
X(5m+1+t) ’X(sm +t)

—:

Il
—

Fi (X (85 + O)E (fmer (X (Sma1 + 1)) [ 0(X (s +1)) | U(X(t))]

| J

—:

Il
—

£ (X (55 + ) E (frr (X (Sma1 + ) | Fout) | U(X(t))]

J

E (H f; (X (55 +1)) frnsr (X (sms1 +1)) | 3"5m+t> | U(X(t))]

—:

£ (X (5 + 1) frnr1 (X (81 + 1)) | U(X(t))] : (5.210)

Il
—

|7

Then observe that (5.210) is the same as (5.207), but for Y = HmH 1 (X(s5)).
This proves the implication (i) = (ii).

(ii) = (i). This implication follows by putting ¥ = 14(X(s)).
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(ii) = (iii). The equality in (5.208) is correct for m = 0 and for m = 1. This is
a consequence of Proposition 5.125. Again we will apply induction with respect
to m. We assume that (5.208) is correct for m and for the increasing m-tuple
$1 < 89 < ---8,,. Then we see

E rﬁ f (X(sm] ~E [E (ﬁ i (X(51))| ?)]

=E|[ ] (XEDE (frir (X(smi1)) | fﬂm)]

m

-F H Fi (X)) E (frnrr (X (Smr1)) | U(X(Sm)))]

| j=0

(Proposition 5.125)

=K [H fi (X (s5)) jfm—l—l (Tmt1) PX(sm+1)|X(sm) (X (sm), da:mH)]

- j f . J Foo) -+ s B e, (s diman)
- =

m+2 times

]P)X(sl)|X(0) (o, d1) Px (o) (do) - (5.211)

From the equality in (5.208) for m the equality in (5.200) follows for m + 1
instead of m.
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(ili) = (i). Let C' € € and let s and ¢ > 0. Starting from (iii) we will prove that
the following equality holds P-almost surely:

E(lc(X(s+1)|F) =E (lc (X(s+1)) | o (X(2))). (5.212)
Choose 0 < t; < --- < t,, =t and choose bounded Borel measurable functions
fos--y fm. The following equality is a consequence of (iii):
E (fo(Xo)- X(tm)) le(X(s +1)))

” ”fo 70) -+ fon(Tm) 10(Tm 1)

m+2 times

(T, dTppy1) P (Tm—1,dTpy) . ..

X (bm)| X (tm—1)

PX(tl)’X(O) (zo, dz1) Px(0)(dxo)

:JJ...JJfO(xO)...fm(xm)

m+1 times

X(s+t)|X(tm)

(T, C) ]P’X(tm)‘x(th) (X1, dxp) . ..

Zo, d[El) PX(O) (dCC())

X(s—i—t)’X(tm)

xe]x© |
~E [fo(Xo) S (XD Pl (X (), C’)] . (5.213)

The monotone class theorem applies to the effect that (5.212) follows from
(5.213), provided that the internal history is chosen as filtration.

(iv) = (v). By the monotone class theorem it suffices to prove (ii) for functions
Y :Q— Cofthe form Y = [[7Z, f; (X(s;)), where the functions f;, 1 <j <m
are bounded and measurable. For m = 1 it is clear that (iv) is equivalent
to (v). We prove (v) for Y = HmeJ( (s)) starting from (iv), but with
Y = Hf L fi (X (s5)), for 1 < k < m. The following equalities show that the
equality (5.209) then follows for YV = HmH 1 (X(s5)):

E rﬂ i (X(s + 7)) %]

[ m+1
_E E( i <X<sj+T>>\3:m+T> kA

7j=1

- E ﬁ £ (X(s; + T)E [frns1 (X (g1 + 1)) | Fopsr] | ?T]

Jj=1

(apply equality (5.209) for Y = fr11 (X (sm+1)))

- E [H Fi (X (s + T)E[frnsr (X(Sms1 +T)) | 0 (5 + T, X (50 +T))] | ?T]
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(use equality (5.209) for Y = [T, g; (X(s;)), where g; = fj, 1 < j <m —1,
and where g, (z) = fn(z) § fra ()P, ()

5 AT X (31 +7))| (s +T.X (s +T)
-E [H i (X (55 + T)E [ frs1 (X (1 + 1)) | 0 (T, X (s +T))] |
j=1

o(T, X(T))

—E|[ [ X(sj + T)E [ fmir (X (sms1 + T)) | Fapsr| | o(T, X(T))

-E|E [H £y (X(55 4 T)) ot (X(ss + 7)) | Fanr | | o7 X (7))
~E| [ 4 (X(s, + 7)) fuenr (X(suen + 7)) | o1, X(T))| (5.214)

Then realize that (5.214) is the same as (5.209) for Y = [ ™" f; (X (s,)). This

]:
proves the implication (iv) = (v). The implication (v) = (iv) is again trivial.

(i) = (iv). By the fact E satisfies the second countability axiom, and by the
fact € is the Borel field it suffices to prove (iv) for functions f € Co(F) instead
of 1¢ (verify this precisely). So we have to show the following equality:

E[f(X(s+ 1) | Fr] ligewy =E[f (X(s+T)) | o(T, X(T))] Lr<oy, (5.215)

for f € Cy(F) and for s = 0. By employing the right-continuity of paths, it
suffices to prove (5.215) for the stopping times T, := 27"[2"T|, n € N, instead
of T'. The equality for T" then follows from those of T}, by letting n tend to oo.
For this notice that 0 < T — T,y < T — T, < 27". Choose the event A € Fr, .
Then the event A n {T,, = k27"} belongs to Fye—» and the following equalities
hold:

E[f(X(s+T,),An{T, = k27"}]
=E[E (f (X(s+T,) | Fron), A {T, = k27"}]
=F f )P (s | X(h2-) (X(k27"),dy), An{T, = k2‘"}]

~&[or [0, (XL ), ) otz ).

(5.216)

(54T (@) | X (T ()

We also have

E[f(X(s+Tn), An{T, =k27"}]
—E[E(f (X(s +k27) | Fran), An{T, = k2]
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(because of (i))
CE[E(f (X(s+ k27) | o (X (k27))) . A {Tp = k2]

-k f<y)]P)X(s+k2*")‘X(k2*") (X<k2in)’ dy) , AN {T" - szn}

~Ejwr [ TRy KT ) nn oy )
(5.217)

We see that (5.216) and (5.217) are the same. It follows that the assertion in
(iv) is proved for T,, instead of T'. By letting n tend to oo we then obtain (iv)
for T' (by employing the right-continuity of paths of the process).

So the proof of Theorem 5.126 is complete now. OJ
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We continue with some definitions.

5.127. DEFINITION. Let (2, F,P) be a probability space, and let E be a locally
compact Hausdorff space with a countable basis for its topology. In addition, let
(Fi =t =0) be a filtration on Q. Let X = {X(¢) : ¢t > 0} be a process attaining
values in F/. The state space F is equipped with the Borel filed and it is assumed
that X is an adapted process. Suppose that for every z € E the (sub-)probability

kernel P ()| x (t)(m, (), C € &, is defined. Here the (sub-)probability kernel

Py x(z,C) possesses the following defining property:
fIP’ (z, O)'P(X edx) =P{Y e C, X € B},
5 Y|

where B and C' are Borel subsets of F and where X and Y are stochastic
variables with values in E. In addition, it is assumed that there are so-called
translation operators ¢, : 2 — Q with the property that X (s)od; = X (s+t) for
all s, ¢ = 0. Moreover, by hypothesis the process X is cadlag. We say that the
process X is a Markov process if for every C' € € and every ¢t > 0 the equality

E[le(X(s+1t) | F] =E[le(X(s+1t) | o(X(2))] (5.218)

is P-almost surely true for all s > 0. The process X is called a strong Markov
process if equality (5.218) also holds for stopping times. More precisely, if for
every s > 0, for every C' € € and for every stopping time T : Q — [0, 0] the
equality

E[le(X(s+T)) | Fr] =E[1lc(X(s+ 1)) | o(T, X(T))]
holds P-almost surely on the event {T" < oo}. If the process X is cadlag is, then
a Markov process is automatically a strong Markov: see Theorem 5.126. We

say that a Markov process X is time homogeneous if for all C' € € and for all s
and t = 0 the equality

z,C) = (x,C) (5.219)

P
X(s-&—t)‘X(t)( X(s)|x(0)

is true for all x € E. In what follows we always suppose that X is a cad-
lag, time homogeneous Markov process. Furthermore we define the operators
{P(t) : t = 0} via the formula

Jf s)’X(O (z,dy). (5.220)

Here s > 0 and f belongs to Cy(E). Since we have (see equality (5.203) in
Proposmon 5.125)

JPX(sH)‘X(t)(y, O)PX(L‘)‘X(O) (x,dy) = IP’X(sH)‘X(O) (z,C), Px()-almost surely,

(5.221)
we get, for a time-homogeneous Markov process X the following equalities:
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(X is time homogeneous)

B fjf(z)PX(ert)‘X(s) & dZ)PX(s)‘X(O) (@, dy)

(employ equality (5.221))

- Jff(z)PX(s—i-t)’X(O)(m’dz) = [P(S + t)f] (:C)

The cadlag property of X implies limgo [P(s)f] () = f(z) for all f € Cy(E) and
forallz € E. If P(s)f belongs to Cy(E) for every f € Cy(FE) and for every s = 0,
then the family {P(¢) : ¢ = 0} apparently constitutes a Feller semigroup. Put
P(s,z,C) = PX(S)‘X(O)(:C’ C),s=0,ze FE, Ce&. Let the expectation values

of E,(Y), ze E,Y =[], f; (X (s5)), 51 < 52 < ... < 8p, be determined by
the formula:

E, (ﬁ fj(X(Sj))>
= f . fﬁ fi(x;) P(s1,z,dx1) ... P (Sm — Sm—1, Tm—1,dTp,) . (5.222)

Instead of (5.222) most of the time we write E,(Y) = E[Y | X(0) = z], for a
bounded stochastic variable Y. Since X is a time homogeneous Markov process
we see that the following equality also holds P -almost surely:

E, (Y ot | &) = Ex(Y), (5.223)

for all t > 0 and for all bounded random variables Y. The equality in (5.223)
is first proved for random variables Y of the form Y =[]/, f;(X(s;)), where
the functions f;, 1 < j < m, are bounded Borel functions. Equality (5.223) is
also true if P, and E, are replaced by P and E respectively.

5.128. REMARK. The expectation value E,(Y') is in fact the Radon-Nikodym
derivative of de measure B — E[Y, X(0) € B] with respect to the measure B —
P[X(0) € B]. If in this definition we take for Y the variable Y = 1¢ (X (s)),

then we obtain the probability kernel IP’X(S)‘X (O(x,C). Hence, these quanti-

ties are defined as Radon-Nikodym derivatives. So, in general, the expression

IP’X (s)‘X (0)(37, () is not defined for every x € E. However, we will assume that

these probability kernels exist for every x € E indeed, and that the correspond-
ing semigroup is a Feller. Many authors define a (time homogeneous) Markov
process X relative to a family of probability measures {P, : x € E} by means of
the following equality:

E, (Yot |F:) =Exq (Y), (5.224)

P,-almost surely for all x € E, for all £ > 0 and for all bounded random variables
Y : 2 — C. In fact we also do this. In the time homogeneous case the equality
in (5.224) also holds for stopping times 7"

E, (Y odr | Fr) = Exer) (Y), (5.225)
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P,-almost surely on the event {T" < o0}, provided that the process X is cadlag.
The equality in (5.225) can be proved in the same manner as equality (5.209) in
Theorem 5.126. Therefore pick f € Cy(E) and a stopping time T : Q — [0, o0].
Consider the stopping times T,, := 27"[2"T'|, n € N, instead of T". Then, for an
event A € I, we have

X(s+Th) Laniz, k2]
f(X(s+k27) Lan(m=ra-ny]
E, (f (X(s+k27")) ’ Fron) Laniz,—k2-n}]
E. (f ( ( s+ k2_n)) ‘ ?szn) 1Am{Tn:k2*"}]
Ex(ka-n) (f (X(5))) Laniz,—k2-n3 |
= E, [Exr,) (f (X(5))) Lan(r.=sa—n}] - (5.226)

T

E. [f(

E
E;
E

T

T

Lo B e B s B |

From (5.226) it follows that (5.225) for Y = f(X(s)) and for 7}, in the place of
T. By taking the limit in (5.226) for n — oo the equality in (5.225) follows for
Y = f(X(s)). Precisely as in the proof of the implication (iv) = (v) in Theorem
5.126 the equality in (5.225) then follows for arbitrary random variables Y :  —
C, which are bounded and measurable for the o-field F.
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8. The Doob-Meyer decomposition via Komlos theorem

Let (2, F,P) be a probability space, let {F; : t = 0} be a right continuous filtra-
tion in F and let {X(¢) : ¢t = 0} be a real-valued F;-submartingale. The Doob-
Meyer decomposition theorem states that there exists an F-martingale {M () :
t > 0} together with an increasing predictable adapted process {A(t) : t = 0},
which is right continuous P-almost surely, such that X (¢) = M(t) + A(t), t = 0,
provided that the process {X(t) : t = 0} is of class (DL). The latter means that
for every t > 0 the family {X(7) : 0 < 7 < t, 7 stopping time} is uniformly inte-
grable. Moreover this decomposition is unique in case we assume that A(0) = 0.
By Doob’s optional sampling theorem every martingale is automatically of class
(DL) (see e.g. Ikeda and Watanabe [81], p.35, Ethier and Kurtz [68], p.74). An
interesting discussion of the Doob-Meyer decomposition and (sub-)martingale
theory can be found in Kopp [98]. For a nice account of the Doob-Meyer de-
composition theorem the reader may also consult van Neerven [188].

We shall employ the following result of Komlos [97]. In fact it can be interpreted
as kind of a law of large numbers.

5.129. THEOREM (Komlos). Let {fy : k € N} be a sequence in L'(Q, F,P) such
that

sup {E (|fx]) : k € N} < 0.
Then there exists an infinite large subset Ao of N together with a function f in
LY(Q,F,P) such that for every infinite subset A of Ag

1

,}Eﬁomxmmp,ﬂ fi=1f, P-almost surely. (5.227)

Examples show that this limit need not be an L'-limit. Set = N with the
discrete o-field and with P{k} = 27% k e N. Let {fi : k € N} be the sequence
defined by fi. = 2%e;, k € N, where {e; : k € N} is the sequence of the unit
vectors. Then n™' 377 | f; — 0 pointwise, but n=' {377 | f;dP =1, n e N.

Standard results on continuity properties of submartingales yield the existence
of a realization (version) which is continuous from the right and possesses left
limits P-almost surely. Henceforth we shall assume that the F;-submartingale
{X(t) : t = 0} is continuous from the right and has left limits P-almost surely.
We shall prove that there exists a predictable increasing process {A(t) : t = 0}
together with an infinite Ay of N such that for every infinite subset A of Ay and
every t = 0 the variable A(¢) is given as the limit:

1
Alt) = lim ) A
*) s |A N [1,n]| “Hiedn[in] 5(0);

A;(t) = 20<k<23't {E <X (%) | kag_j) - X (%) } . (5.229)

Moreover the process {X(t) — A(t) : t = 0} is an Fp-martingale. The limit in
(5.228) is a point-wise almost sure limit as well as an L'-limit.

(5.228)
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Again let (Q, F,P) be a probability space, let {F; : ¢ = 0} be a right-continuous
filtration in F and let {X () : t = 0} be right continuous submartingale of class
(DL) which possesses almost sure left limits. We want to prove the following
version of the Doob-Meyer decomposition theorem.

5.130. THEOREM. There exists a unique predictable right continuous increasing
process {A(t) : t = 0} with A(0) = 0 such that the process {X(t) — A(t) : t = 0}
1s an Fy-martingale.

It is perhaps useful to insert the following proposition.

5.131. PROPOSITION. Processes of the form M (t) + A(t), with M a martingale
and with A an increasing process in L'(Q, F,P) are of class (DL).

PROOF OF PROPOSITION 5.131. Let {X(t) = M(t) + A(t) : t = 0} be the
decomposition of the submartingale {X(¢) : t = 0} in a martingale {M(t) : t >
0} and an increasing process {A(t) : ¢t = 0} with A(0) =0 and 0 < 7 < ¢ be any
Fi-stopping time. Here ¢ is some fixed time. For N € N we have

E(X(7)|: [X(7)] = N) <E(|M(7)[ : [X(7)| = N) + E(A(7) : [X(7)| = N)
<E(M@)]:|X(7)]= N)+E(A(7) : | X(7)| = N)
<E(M®)| + A(t) : | X(7)] = N)
<E (|M(t)| + A(t) : sup |X(s)| = N> ) (5.230)

0<s<t
Since N x P {supgc <, | X ()]

N} <E(|X(t)]), it follows that
Alfim sup {E (| X (7)|: | X(7)|=N):0

=
> <7 <t,7 stopping time} = 0. (5.231)

This shows Proposition 5.131 U
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Similarly we have the following result.

5.132. PROPOSITION. Let {X(t) : t = 0} be an F;-submartingale. For any real
number N the process {max(X(t), N) : t = 0} is an Fy-submartingale which is
of class (DL).

Next we come to the heart of the matter. The symbol [z], € R, denotes the
integer k with £k <z <k + 1.

ProOF OF THEOREM 5.130. It will be convenient to introduce the follow-
ing processes:

X,(t) = E (X (pjﬂ) | 3@) 130, jeN: (5.232)

23

4= _ {IE (X (k; 1) g ) - X (;) } . (5.233)

The processes {A;(t) :t = 0} are right continuous and have left limits. The
processes {A;(t) :t = 0} are predictable in the sense that, for j, N in N, the
functions (t,w) — A;(t,w) are measurable with respect to the o-field generated
by the collection {1(a,b] xA:0<a<b A€ EFa}: see e.g. Durrett [58], p. 49.
Moreover it is readily verified that the process

is an F;-martingale and that
lim E (A;(t) — A;(t—)) = 0. (5.235)
j—00

Equality (5.235) is true because
imE (X(s)) = E (X (1)). (5.236)

slt
Equality (5.236) can be proved in the following manner. Put
X"(t) =lUmE(X(t+h)|F) =infE(X(t+h)|F).
hl0 h>0

Then X"(t) > X(t), P-almost surely. The following argument shows that
X"(t) = X(t), P-almost surely. Define for m € N the stopping time 7, by

=inf{s > 0: |X(s)| > m}.
Then, P-almost surely, 7,, T c0. Moreover, we have
E[X"(t) — X(t) : T > t] (5.237)
:%%E[E(X(t+h) | Ft) — X (1) : 7 > ]
~ B [E (X4 1)~ X(0) 1) | 9]
zlfg{)lE[ (t+h)— X(t): 7 > t]
=lig{)1{E[X(t+h) — X(t) : 7 >t + R
+E[X({t+h)—X(t):t <1y <t+h]}
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hl0
+E[E(X(t+1) | Fryn) — X(t) : t <7 <t + hl]}
zl}grol{E[X(tth)—X(t) ST >t + h

<Im{E[X(t+h) — X(t) : 7 >t + h]
(

VE[X(t+1) = X(8) :t <7 <t+h]} =0,

by dominated convergence (twice: on {7, >t + h} we have | X (t + h) — X (¢)| <
2m, P-almost surely). Consequently

0<E(X"(t) — X(t)) = lim E(X"(t) — X(t) : 7 > ) = 0, (5.238)
m—00
and hence X”(t) = X (t), P-almost surely. We also infer

E(X(1)) = E(X"(1)) = E (I,ggE (X(t+ 1) | F) - X<t>) FE(X(1)

_E (1?11@ ((X(t+ 1) — X(1)) | fft)) FE(X(1))
~lmE(B((X(+ )~ X(2) | 5) + E(X(2)
=l E (X(¢ + ) = X()) + B(X() = imE(X(t + 1) (5.230)

This proves (5.236). In addition we write

f(t) =E(X(t) — X(0)) (5.240)
and we define the countable dense subset D of [0, ) by
D={t=0:teQ}u{t=0:f(t+)> f(t—)}. (5.241)

(Notice that the functions f is increasing.)

Let Ag be any infinite subset of N and let {A,,(t) : t € D} be a process such
that for every infinite subset A of Ag and P-almost surely,

A, (1) = Tim ———

[An[La]l Ajt), teD. 242
e |A N [1,n]| ZjeAm[l,n] J( )7 € (5 )

By Komlos’ theorem (Theorem 5.129) and a diagonal procedure such a subset
Ay exists. We shall prove that for t € D the limit in (5.241) also exists in L'-
sense. In view of a theorem of Scheffé (Corollary 2.12.5 in Bauer [15], p. 105,
it suffices to prove that

E(Ay(0) = lim o S EA). (5209
It is readily verified that
E(A;(1) = E (X (@ﬂ)) _E(X(0)), (5.244)
so that
lim AT Zjem[m] (A;(t)) = f(t+), teD.) (5.245)
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On the other hand we have, by Fatou’s lemma,
. 1
E (Ay,(t)) < liminf AT Z]EMM E(A;(t) = f(t+). (5.246)
In addition we have for A > 0

) 1
E(Ap(t)) = E (hmsup R Z]eAm - Ai( >

n—00

) 1
> E (llgl_)sololp A ZJEAm - (min (¢, 7)) )) , (5.247)

where 7 is the stopping time defined by

: 1
Ty = inf {8 >0:s5€D, ilelII\T) ijEAm[l,n] Aj(s) = )\} . (5.248)
Since .
1A~ [1,n] ZjeAm[Ln] Aj (min (£, 73) =) < A, (5.249)

we infer from (5.247) and (5.235) that, for any A > 0,
: 1 :
E (Ap (1) = llin_)solgp Ao ZjeAm[Ln] E (A; (min (t, 7)) —))
>E(X(t): 7\ >t) + E(X (min(7y, t)) : 7o <t) — E(X(0)).
(5.250)

Since 7y 1 o0, P-almost surely, as A tends to infinity, we infer from (5.250)
together with the fact that the collection {X(7) : 7 < t, 7 stopping time} is
uniformly integrable,

E (Ax (1)) = E(X(t) — X(0)) = (D). (5.251)

(In fact in (5.250) we first take the sum, then we write Q = {7\, >t} u {7\ <t}.)
The right continuity of the submartingale {X (¢) : ¢ = 0} together with (5.236)
implies the equality

f(t) = f(t+). (5.252)
Hence the equality in (5.243) now follows from (5.251), (5.252) and (5.246). So
the limit in (5.241) is also an L!-limit. Since the submartingale {X (¢) : t > 0}
is continuous from the right we also deduce

fm sup E (1 (1) — X (1)) = limsup E (X (%ﬂ )) _E(X(1)

= 15? f(s) = f(t)=0. (5.253)

Hence the L'-convergence in the equality

1
A [1,n]| 2, X

jeAn[1,n]
|A(\ |216Am1n ‘ |A(\ |Z]€Amln j
yields
X(t) = My, (t) + AAO (t), teD, (5254)

Download free eBooks at bookboon.com



where the process {4, (f) : t € D} is increasing and predictable. We shall extend
(5.254) to all t = 0 and we shall prove that the process {A,,(t) : t € D} has right
continuous extensions to all of [0, 00). In order to achieve this fix ¢y ¢ D, ty > 0,
and let s, t be arbitrary numbers in D with 0 < s <ty <t <. Then

AAO( ) hTILIilo{)lf |A m | Z]EAm 1,n] j
1
hrIinlo{)lf ’A N [1, n ’ Z]EA(\ 1,n] to
i 1
S Hmsup rr D () < A (0 (5:255)
From (5.255) it follows that
1 1
E |l —_— At li f—— At
< St PTA A L ] Djenniing (fo) ~limin AL, n]] ennii At 0))
< E(Ap (1) = Ano(s)) = E(X(t) = X(s)) = f(t) = f(5). (5.256)
So that
1 1
E [l T — A; li f———— A;
< S N A Ll 2yennisng Ailfo) ~limin AL n| Dierniin J(tO))
< fltot) — f(to—) = f(to) — f(to) =0, (5.257)

since ty does not belong to D. Hence, for every t, > 0,

. 1
AAo (to) = lim sup m ZjeAm[l,n] A]’ (to)

n—
o 1
= lim inf AT Zjem[m] A;(to), (5.258)
P-almost surely. In addition, as above we also have
E(An (1) = f(t), t=0,) (5.259)
and hence
E (Ano(t) = Ano () = f(t) — f(s). (5.260)

So that the process {Ax,(t) : t = 0} is almost surely right continuous. Again we
have decomposition (5.254) for all ¢ = 0. From (5.236) and (5.258) it follows
that, P-almost surely,

Ap, (to) = lim TA A 1,71 |Z]€Ar\1n i(to—)

and consequently the process {An,(f) : t = 0} is predictable. O
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The uniqueness of the Doob-Meyer decomposition does not depend on the (DL)-
property. So the processes {My,(t) : t = 0} and {Ax,(¢) : t = 0} do not depend
on the particular choice of Ay. Henceforth we write

X(t) = M(t) + At),  t=0, (5.261)

where {M(t) : t = 0} is an F-martingale and where {A(t) : ¢t > 0} is an increas-
ing right continuous process which is predictable. Proposition 5.131 shows that
the process {X (¢) : ¢t = 0} must possess the (DL)-property. Let Dy be the count-
able dense subset of [0, ) given by

Dy={teQ:t=0tu{t=0: f(t+)> f(t—)} (5.262)
and choose Ag € N, |[Ag| = o0, and the process {B(t) : t € Dy} in such a way
that for every infinite subset A of Ay,

B() Jg{}ow\m 1n’2jeAmln j ’

Then, as in the case of {4;(¢) : j € N} it follows that the convergence in (5.263)
is an L'-convergence as well. Again as above the convergence in (5.263) occurs
for all ¢ = 0. Consequently the process {X(¢) — B(t) : t = 0} is a martingale,
because the processes {X;(t) — A;(t) : t = 0}, j € N, are martingales. Here

X

0-z[x (21 )

t e Dy. (5.263)
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These remarks prove the following corollary.

5.133. COROLLARY. Write a submartingale {X(t) : t = 0} in the form X(t) =
M(t) + A(t), t = 0, where the process {M(t) : t = 0} is a martingale and where
{A(t) : t = 0} is a right continuous increasing predictable process with A(0) = 0.
Then there exists an infinite subset Ay of N such that for every infinite subset
A of Ag and every t = 0:

A(t):igroloU\m ]_n|2]e/\mln j

0= S (23 () 50) ()

and the convergence in (5.264) is a P-almost sure as well as an L'-convergence.
Of course the process {A(t) : t = 0} does not depend on the particular choice of
Ao for which all the limits in (5.264) exist.

(5.264)

Here

Next the uniqueness part of the Doob-Meyer decomposition will follow from
Proposition 5.134.

5.134. PROPOSITION. Let Z = {Z(t) :t = 0} be a bounded martingale and let
= {A(t) : t = 0} and {B(t) : t = 0} be adapted increasing processes such that
B — A is a martingale. Also suppose that E(A(t)) < oo, fort > 0. Then

E[Z(t+) (B(t+) — A(t+)) — Z(0) (B(0) — A(0))]
~E ( J (Z(s+) — Z(s—))d(B — A)(s)) . (5.265)

0

5.135. REMARK. The integral Sé (Z(s+) — Z(s—))d(B — A)(s) should be inter-
preted as follows:

fo (Z(s+) — Z(s—)) d(B — A)(s)

- JOO (Z(s+) = Z(5—)) Lio,q(s)dB(s) — f (Z(s+) = Z(5—)) Lo,q(s)dA(s).

0 0

PROOF OF PROPOSITION 5.134. Let n € N. Since Z is a martingale we
have:

E[Z ([2"t]27") (B ([2"t]27") — A ([2"t]27"))] = E[Z(0) (B(0) — A(0))]

-E| > Z(G+12™7)

0<j<[27t]

{(B(G+D27) =B (27) — (A(G+1)27) —A(527))}

Since B — A is a martingale, it follows that:

E|[Z ([2*]27") (B ([2*]27") — B(0) — A ([2"¢]27") + A(0))]
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—E[Z(0) (B(0) — A(0))]
_ E@WW (Z(G+1)2™) = Z(j27"))
(B (G +127) ~B(27) — (A(G+12™) — A(2)).
Put
ZH(s) = Z (12s127) = 207 Z((+ D27) Lgan oy (), and

— n -n ® c—n
Z,(s)=Z((12°s1 =) 27") = ), Z(527") Lgznenn(s).
Then we obtain

B (2 ([2't]1277) (B ([2"t]2) — A ([12°4127))) — E[Z(0) (B(0) — A(0))]
~& ([ (216) - 2006) Tapemge (I (B(s) — A) ).

0
So, upon letting n tend to infinity, Proposition 5.134 follows. (l

5.136. PROPOSITION. In addition to the hypotheses in Proposition 5.13/4, sup-
pose that the martingale B — A is predictable. Then B(t+) = A(t+) P-almost
surely. So that, if B — A is right-continuous, then B = A P-almost surely,
provided B(0) = A(0) = 0.

PROOF. First we prove that E <S(t) (Z(s+) — Z(s—))d(B — A)(s)) = 0. Here
we shall employ the predictability of the process B— A. It suffices to prove that,
for all s > 0,

E((Z(s+)— Z(s—))(B(s+) — A(s+) — B(s—) + A(s—))) = 0. (5.266)
Since the predictable field on 2% [0, o0) is generated by the collection {C % (a, b] :
C e F,, 0<a < b} it suffices to prove (5.266) for all s > 0 if B — A is of the
form

B(s) — A(s) = 1o X Lgte0)(s), C€TF,. (5.267)
So let C belong to I, and let B(s) —A(s) = 1o X L(g4e,00)(5). Then, for s = a+e
(and C € F,), we have by the martingale property of Z,

E(Z((a+e)+)—-Z((a+¢e)=)1c)
=EE(Z((a+e)+) = Z((a+e)-) | Fa) 1c)
=E((Z(a) — Z(a))1c) = 0. (5.268)
Notice that, for s = a + ¢,
E((Z(s+) = Z(s—)) (B(s+) — A(s+) — B(s) + A(s)))
=E(Z((a+e)+)-Z((a+e)-))1c).
From Proposition 5.134 it now follows that
E(Z(t+) (B(t+) — A(t+))) = E[Z(0) (B(0) — A(0))] = 0.
Next, fix t > 0 and define the martingale Z(s) by

B B(t+) — A(t+)
2(s) = E <yB(t+) —A(t+)] + 1 | ?s) '
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Then

|B(t+) — A(t+)|”
0=E(Z(t+) (B(t+) — A(t+))) = E
(2(1+) (B(t+) — A(t+))) <|B<t+) Tl
and hence B(t+) = A(t+), P-almost surely for all ¢ > 0. It also follows that
B(t—) = A(t—), P-almost surely for all ¢ > 0. If the process B — A is right
continuous almost surely, we infer B(t) = A(t), t = 0, P-almost surely. This
completes the proof of Proposition 5.136. O

As a special case the following result contains the uniqueness part of the Doob-
Meyer decomposition theorem.

5.137. PROPOSITION. Let A and B be increasing adapted processes. Suppose
that B — A is a predictable right continuous martingale. Then B(t) = A(t) +
B(0) — A(0), P-almost surely.

ProoF. This result is an immediate consequence of Proposition 5.134 and
Proposition 5.136. ]

5.138. COROLLARY. There is only one way to write a semi-martingale Y in the
formY = M + A, where M is a (local) martingale and where A is a predictable
right continuous process of finite variation locally with A(0) = 0.

5.139. REMARK. An increasing, predictable right continuous real-valued process
{A(t) : t = 0}, with E (A(t)) < oo for t = 0, is called a Meyer process.

It is perhaps worthwhile to isolate the following result in the existence part of
Doob-Meyer decomposition theorem: notation is that of the proof of Theorem

1
5.130. We also use Ax(t) = I Z A, (t), for a finite subset A of N.

neA
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5.140. THEOREM. Let {X(t) : t = 0} be a right continuous submartingale of class
(DL). For every infinite subset Ay of N there exists an infinite subset A of Ay
such that for every further infinite subset A" of A, the limit

Ap(t) = Al{1_r)noo Apyan,ny(t),  exists P-almost surely,

and does not depend on the choice of N'. Moreover, since we are dealing with
(DL )-submartingales, limy_o, E [|Ax(t) — Anapa(t)|] = 0. In addition, the
process {Ax(t) : t = 0} is predictable and right continuous.
PROOF. Write
Q ={ty:leN}={t=0:E(X(t+)) >]E(X(t—))}U(Qm [0,0)).
Define the measure p on @' by

1 1
u (1) =;yl+E<X<te>—X<0>>'

Let Ag be an infinite subset of N. Komlos’ theorem, applied to the sequence
{A,(te) : £ € N}, on the measure space {N x Q, P(N)®F, n® P} applies to
the effect that there exists an infinite subset A of Ag such that for every further
infinite subset A’ of A, Ax(t) = limy_,o Anrap,n(te) exists for £ =1,2,... and
does not depend on the particular choice of A’. In addition,

lim B ([Ax(t) = Avnp(t)]) = 0.
Next let ¢ > 0 be arbitrary with E(X(¢)) = E(X(t—)) = E(X(¢t+)) and let
A < Ay, A’ infinitely large. For ' <t <t ¢/, t" in Q)', we have

E (lim sup Ann[1,n] (t)> <E <lim sup Axra[1,n] (t//>>

N—o0 N—o0
_E <1im inf Ay npg (t”)) <E(X(") - X(0)).
N—0
Similarly we have

E (i inf Aypov () = E (Hminf Ayepn (t))

_E (lim SUp A/n[1.y] (t’)) > E (X () — X(0)).

N—w

Since E (X (t+)) = E(X(t—)), it follows that the limit
AA/(t) = ]\lll—r}cl)o AA/Q[LN] (t)
exists P-almost surely. Consequently, the limits

AA(t) = ]\lfl_Igo AA’m[l,N] (t)v t =0,

all exist P-almost surely and limy_.oo E (|Ax(t) — Ay apag(t)]) = 0. Finally we
shall prove that the process {A,(t) : t = 0} is right continuous. Fix ¢, > 0 and
let t > ty. Then

E (Ax(t) — Axlto)) = E(X(t) — X(to)) = 0.
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Since t — E(X(¢)) is right continuous we infer that limy;, E (Ar() — Ax(to)) =
0. It follows that, P-almost surely, limy;, Ax(t) = Aa(to)-

This completes the proof of Theorem 5.140. U

5.141. COROLLARY. Let X = M + A be the Doob-Meyer decomposition of a
submartingale into a martingale and an increasing right continuous predictable
process A. Then, for an appropriate sequence (ny : £ € N) in N,

Al) = Jim ;‘1;‘) (G +127) [ Fjoom) = A(127)) Lo o) (8).

This limit is an P-almost sure limit as well as a limit in L' (Q, F, P).

PROOF. A combination of the existence and uniqueness of the Doob-Meyer
decomposition yields the desired result. Notice that by Proposition 5.131 a
process of the form M+ A, where M is a martingale and where A is an increasing
adapted process in L'(Q, F,P) is of class (DL): see (5.230) and (5.231). So the
proof of Corollary 5.141 is complete now. [l

Another corollary is the following one.

5.142. COROLLARY. Let {X(t):t > 0} be a right continuous submartingale of
class (DL) with left limits. Fixty > 0 and let {7, : £ € N} be sequence of stopping
times which increases to the fixed time ty. Suppose 1y < to, P-almost surely, for
all ¢ € N. Then E (| X (to—)|) < o and lim;, E (|X () — X (toc—)|) = 0. In
addition, hmhlo]E (’X (t[) + h) - X (to)’) = 0.

The following result also follows from our discussion.

5.143. COROLLARY. Let {X(t):t = 0} be a submartingale. If the function t —
E (X(t)) is P-almost surely continuous, then the process {A(t) :t = 0} is P-
almost surely continuous as well.

5.144. REMARK. Several people have reformulated and extended Komlos’ result
as a principle of subsequences, e.g. see Chatterji [40]. Others have treated an
infinite dimensional version, e.g. see Balder [12]. In [124], Exercise 3, p. 103
the authors give an example of a submartingale which is not of class (DL). In
fact Métivier and Pellaumail give the following example. Let 2 be the interval
[0, 1] with Lebesgue measure and let 0 =t < t; < ... <t, <... < 1lbea
sequence such that lim, ., ¢, = 1. Define the process X by

a0
X(t,w) = —Zn:1 2"t iy (D) 1o y(w), we[0,1], ¢=0.

Then X is a submartingale, X is not of class (DL) and X is a martingale on
the interval [0,1). If ¢, 1 <t < t,, we write F; for the o-field generated by
{(j—1)27™, 52" : 1 < j < 2"} If t = 1, then F; is the Borel field of [0, 1].

5.145. DEFINITION. Let {Y'(¢):t > 0} be a martingale in L?(Q,F,P). Then
{[Y(t)] : t = 0} is a submartingale of class (DL). So by Theorem 5.130 there
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exists a unique martingale {M(t) : t = 0} with M (0) = |Y'(0)|* and an increasing
predictable right-continuous process {(Y) (t) : t = 0} in L'(Q, F,P) such that

Y (t)]? = M(t) + (Y) (t), P-almost surely.
The process {(Y) (t) : t = 0} is called the (quadratic) variation or variance pro-
cess of {Y(t) : t = 0}.
5.146. EXAMPLE. Let {B(t) : t = 0} be v-dimensional Brownian motion. Then
the process {t — vt : t > 0} is the corresponding quadratic variation process.

5.147. EXAMPLE. let t — Sé Fi(s)dB(s) and t — Sé F5(s)dB(s) be two local

martingales. Then the process t — Sé Fi(s)Fy(s) ds is the corresponding covari-
ation process.
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Subjects for further research and presentations

The following topics may be of interest for a presentation and/or further re-

search:

(1)

(2)

(7)

(8)

Certain pseudo-differential operators of order less than or equal to 2
can be put into correspondence with space-homogeneous or non-space-
homogeneous Markov processes. A detailed exposition can be found in
Jacob [83, 84, 85].

Viscosity solutions to partial differential equations. The standard ref-
erence for this subject is Crandall, Ishii, and Lions [47]. This topic
can also be treated in the context of Backward Stochastic Differential
Equations (BSDEs): see, e.g., Pardoux [142].

Elliptic differential operators of second order (and Markov processes);
see, e.g., Oksendael [138]. A recent interesting book on stochastic
calculus is Stroock [170].

Parabolic differential operators (of second order and Markov processes).
An interesting article in this context is Bossy and Champagnat [29].
The abstract of this paper reads: “We present the main concepts of the
theory of Markov processes: transition semigroups, Feller processes, in-
finitesimal generator, Kolmogorov’s backward and forward equations,
and Feller diffusion. We also give several classical examples includ-
ing stochastic differential equations (SDEs) and backward stochastic
differential equations (BSDEs) and describe the links between Markov
processes and parabolic partial differential equations (PDEs). In par-
ticular, we state the Feynman-Kac formula for linear PDEs and BSDEs,
and we give some examples of the correspondence between stochastic
control problems and Hamilton-Jacobi-Bellman (HJB) equations and
between optimal stopping problems and variational inequalities. Sev-
eral examples of financial applications are given to illustrate each of
these results, including European options, Asian options, and Ameri-
can put options.”

Solutions to stochastic differential equations and the corresponding sec-
ond order differential equation (of parabolic type) satisfied by the one-
dimensional distributions. For stochastic differential equations with
singularities see, e.g., [44]. For classical partial differential equations,
see, e.g., [186] and the references therein.

Backward stochastic differential equations and their viscosity solutions;
see, e.g. Pardoux [142], Van Casteren [185], Boufoussi and Van Cast-
eren [30, 31|, Boufoussi, Van Casteren and Mhardy [32]. For more
recent work on backward stochastic differential equations, the reader is
referred to Pardoux and Rascanu [143], and Zhang [198].

Heat equation on a Riemannian manifold. A relevant book in this
context is [78]. For connections with stochastic differential equations
on manifolds see, e.g., Elworthy [66, 67].

Oscillatory integrals and related path integrals. There is a lot of lit-
erature on this subject. Nice papers on this topic are Albeverio and
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Mazzucchi [1, 2]. Interesting books are, e.g., Mazzucchi [123], Johnson
and Lapidus [86], and Kleinert [93].

(9) Malliavin calculus, or stochastic calculus of variations, and applica-
tions to regularity properties of integral kernels. For details see e.g.
Nualart [135, 136]. Other references which contain results on and ap-
plications of Malliavin calculus include: Cruzeiro and Malliavin [49],
Stroock [164, 165, 166], Cruzeiro and Zambrini [50], [51]. Of course
the original work by Malliavin should not be forgotten: [119]. The
book by Bismut [23] combines Malliavin calculus with the theory of
large deviations. For a discussion on Malliavin calculus in relation to
Lévy processes see, e.g., Osswald [140]. A rather elementary approach
to Malliavin calculus can be found in Friz [74]. For application to
stochastic differential equations see, e.g., Takeuchi [173]. For appli-
cations of Malliavin calculus to operator semigroups see, e.g., Léandre
(108, 109]. For Malliavin calculus without probability theory see [107].
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(10) Books and papers with literature on financial mathematics include:
Ledn, Solé, Utzet, and Vives [112], Nualart and Schoutens [137], Malli-
avin and Thalmaier [120], Karatsas and Shreve [89], Gulisashvili [79],
El Karoui and Mazliak [65], El Karoui, Pardoux and Quenez [63], Lim
[114]. Other references include Zhang and Zhou (editors) [199] and
Tsoi, Nualart and Yin [176].

(11) Another interesting subject is “Ergodic theory” and, correspondingly,
invariant measures. We mention some references: Krengel [99], Karlin
and Taylor [90], Meyn and Tweedie [125], Eisner and Nagel [62], Van
Casteren [184], Seidler [155], Goldys [77], [151].

(12) Central limit theorems and related results are also relevant. Again
we mention some references: Bhattaraya and Waymire [20], Nourdin
and Peccati [131], Barbour and Chen [13], Berckmoes, Lowen and Van
Casteren [16, 17, 18, 19], Tao [175], Stein [161, 162], Chen, Goldstein
and Shao [41], Barbour and Hall [14].

(13) Investigate Markov processes with a Polish space as state space: see,
e.g., Sharpe [156], Swart and Winter [172], Van Casteren [184], Bovier
[33].

(14) Discuss and make a careful study of the Skorohod space as described
in Remark 3.40. Try to include applications to convergence properties
of stochastic processes.

(15) Discuss stochastic analysis in the infinite-dimensional context. A nice
and relevant survey paper is [190] written by van Neerven, Veraar and
Weis. A simplified version in Dutch is authored by van Neerven: see
[189].

(16) Make a (further) study of models in financial mathematics, like the sto-
chastic volatility model (Heston model), stochastic interest rate model
(Vasicek model) and others. Some details can be found in Klebaner
[92], in Cont and Tankov [46], Gulisashvili [79] and others. The books
[52] and [72] also contains much interesting information. A book with
numerical applications is [200].

(17) Applications of stochastic processes in cell biology or population dy-
namics: references include [36, cell biology] and [5, population dy-
namics|. A Ph.D. thesis with interesting material is Ferreira [70]. Tt
contains a discussion on the stochastic Lotka-Volterra equation which
serves as a predator-prey model.

(18) An interesting topic is a combination of functional analysis, operator
theory and stochastic processes with applications in among others data
processing. A main theorem is the Karhunen-Loeve expansion theorem.
A relevant book in this context is [141] by Papadopoulos and Giova-
nis. Furthermore there are at least two Ph.D. theses with a theoretical
background and applications of these expansions: one by Wang [191]
and another by Giambartolomei [76].

9
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CHAPTER 6

Advanced stochastic processes: a summary of the
lectures

0.1. Abstract. The aim of this work is to present some of the main top-
ics which will be explained during the lectures to come. In particular, we will
explain the following notions: Brownian motion as a Gaussian process with
values in R? Brownian motion as a Markov process, and last but not least
Brownian motion as a martingale. In order to achieve this we will need the
concept of conditional expectation on sub-o-fields. Since we also want to dis-
cuss the strong Markov property, and, more generally, stopped processes, we
will introduce stopping times. In addition, we will pay attention to stochastic
differential equations (SDEs), and to a lesser extent backward stochastic differ-
ential equations (BSDEs). Let (2, F,P) be a probability space endowed with
a filtration (J;),.,. This means that the latter collection consists of o-fields
contained in F and that F;, < F, for 0 < t; < t. During this course enti-
tled “Advanced stochastic processes” our attention will be focused on adapted
processes {X (f) : ¢t = 0} which are called semi-martingales. This means that,
for every t > 0, X(t) : Q@ — R is F;-Bg-measurable, and that X(¢) can be
written in the form X(t) = A(¢t) + M(t). Here, the process t — A(t) is a
real-valued process of bounded variation (i.e. A(t) can be written as a differ-
ence of two non-decreasing processes), and t — M (t) is a martingale, that is
E[M (t2) | 1] = M (t1), P-almost surely, for all 0 < t; < t,. Extensions to
other state spaces like R? can be made.

Introduction

During the lectures which lie at the basis of this course we will explain, in
mathematical details, which concepts and notions are involved and relevant to
understand the ideas around stochastic processes. As a leading example, and an
important process we will consider Brownian motion and related processes which
include Ornstein-Uhlenbeck process, Brownian bridge, Ito process. Several of
these processes are Gaussian processes and, in the appropriate context, semi-
martingales and/or Markov processes.

However, before we go into the more technical details, we will describe, very
briefly, possible contents of papers which can be presented as part of the exam:

(1) Martingale representation theorem. An interesting reference is [147].
(2) Stationary or invariant measure and its relation with ergodic theory.
This topic is contained in an interesting book [126].
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(3) Strong law of large numbers (SLLN), weak law of large numbers
(WLLN) and connections with renewal theory. For an account on this
see e.g. [163].

(4) Central limit theorem using Stein’s method, or, more generally, a ver-
sion of the functional central limit theorem (FCLT). In the context of
FCLT the limiting process may coincide with Brownian motion. The
reader may consult several papers among which [111], [130], [132],
[18] and [19].

(5) Black-Sholes-Merton model for option pricing: see e.g. [127].

(6) Poisson processes, Lévy processes, Markov chains and their connection
with invariant measures: see e.g. [163].

(7) Stochastic differential equations: concrete examples: see e.g. [139].

(8) Ornstein-Uhlenbeck processes and stochastic interest rates: Vasicek
model. For example, see [134].

(9) Discrete models and their limits for option pricing. For example, see

[157]
(10) Stochastic volatility models like the Heston model or implied volatility:
see e.g. [79].

(11) It6 calculus for models in financial mathematics: see e.g. [157].

(12) Singular stochastic differential equations: see e.g. [44].

(13) Backward stochastic differential equations (BSDEs) and hedging mod-
els: a combination a (forward) stochastic differential equations and BS-
DEs: see e.g. [142] and [65]. Another interesting source of information
is [48]. A recent book is [143].

(14) Stochastic Partial differential equations: see e.g. [80].

(15) Applications of stochastic processes in cell biology or population dy-
namics: references include [36, cell biology] and [5, population dynam-
ics].

(16) A combination of analysis, geometry and Markov process theory is an-
other possibility. There are relations with the spectral gap, logarithmic
inequalities, Poincaré inequalities iso-perimetric inequalities and others.
The interested reader can find details in, e.g., [9, 110, 26, 11, 10, 69].

Anyway the idea is that after this course the students should be able to under-
stand and work with the concepts which are employed in the above topics. In
the sequel we will be more precise about the kind of techniques and processes
we have in mind.

1. Brownian motion as a Gaussian process

In this section we describe Brownian motion as a Gaussian process. Let (2, F, P)
be a probability space, and let X = (Xi,..., Xy): Q@ — RY with N € N, be
a random or stochastic or random vector. This vector is called Gaussian or
(multivariate) normal provided its distribution only depends on its expectation
and its covariance. More precisely, if its characteristic function is given by

E |:6_7;Z§V:1 ngj] _ Xt Mjfr%Zﬁ,jzzmh,jthsz7 (6.1)
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where (i1, ..., py) is a (deterministic) vector in RY, and where the matrix

(O-j1,j2)1<j1,j2<1v
is a symmetric /N x N-matrix. It then follows that, for 1 < j < IV, X; belongs to
L? (Q, 9:7 P) c ! (Q, 97, P), that i = E [Xj], and that 034, ,jo = COV (le, XjQ) =
E[X;X,,] —E[X; ]E[X},], 1 < j1, j2 < N. Since the characteristic function
of a random vector determines its distribution, the equality in (6.1) entails that
the distribution of a Gaussian vector only depends on its expectation and its
covariance matrix.
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As above, let (€, F,P) be a probability space and let, for t > 0, W (t) : Q — R4
be a random vector with the following properties:

(1) The function t — W (t) is P-almost surely continuous. This means that
there exists an event ' < Q of full P-measure, i.e. P[Q] = 1, such
that the function t — W(t) (w) = X (t,w) is continuous for all w € V.

(2) For every finite choice (t1,...,t,) € [0,00)™ the vector

(Wtr),...., W (tn))
is a Gaussian (or a multi-variate normally distributed) vector in (Rd)
R? x -+~ x R? such that E[W (t;)] = 2% = (2f,...,2%) e R?, and
[ ——
n times
E [(le (tlﬂ) - xil) (VVJ2 (tk2) - k;)] = min (tkutkz) (5j1,j27

€T
J
fOI‘lSjl,jggd, andlgkl, ]{fggn

n

It was Einstein ([61]) who posed the problem whether or not the properties in
(1) and (2) are compatible. Indeed, it was proved by Wiener in 1923 that they
indeed are: see [192], and for more details see Mazliak [122]. We observe that

E (W (t,) — £,€) (W (t,) - a*,¢)]

d
=E Z (VVM (tkl)_mfll)f;‘ﬂ X (I/ij (t/@)_x?;) 5;62
j17j2:1
d
= Z E [(VVh (t/ﬂ) - 33?11) x (WjQ (tkz) - x?;)] 5]]?115]]?22
Ji,J2=1
d
- Z min (tg,, tg,) 5;?15;?2 = min (t,, t,) (€7, €, (6.2)
j=1
and so the characteristic function of the Gaussian vector
(W (1), W (1)) & (RY)"
is given by
E [6_i22=1<w(tk),€k>] — 6_i22=1<xkv€k>_% 2k kg =1 min(th vtk2)<§k1,€k2>7 (63)
for all 0 < #1,...,t, < o and all (¢,...,£") € (RY)". In most cases it is
assumed that zt = .-+ = 2" € R% 1In the latter case the process t — W(t)

which starts at x. In particular when x = 0 our Brownian motion, or Wiener
process, t — W (t) starts at 0. More details on Gaussian vectors can be found
in the main text; see, e.g., Section 4 in Chapter 2, Propositions 3.5 and 3.6 in
Chapter 3.

2. Brownian motion as a Markov process

In this section we will give a too short survey of Brownian motion viewed as a
Markov process. We will assume that the Brownian motion ¢t — W (t) can start
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at any position (initial state) z € RY. We will consider the following quadruple
{(Q,F,P,) cpa, (W(t),t=0), (9,t =0), (R, Bga) }. (6.4)

In (6.4) for every x € R? the triple (€, F,P,) denotes a probability space. The
o-field F contains the union of an increasing family of o-fields (J;),.,; i.e. 0 <
t1 < ty implies J;, < J;, < F. Moreover it is assumed that J is the smallest
o-field containing all the o-fields J;, ¢ > 0. In addition, for every ¢ > 0 the
random vector W (t) : Q — R is supposed to be F;-Bga-measurable. In other
words the process t — W (t) is adapted to the filtration (J),5,. Often it is
assumed that JF; coincides with, or is some completion of the smallest o-field
which makes all variables W(s) : © — R% 0 < s < t, F;-Bra-measurable.
In other words, we often have ¥, = o {W(s): 0 < s <t} or some completion
of o {W(s): 0 <s <t}. For example, it is often assumed that JF; satisfies the
standard assumptions (SDA). This means that all P,-null sets are contained in
Fo. Then it follows that F; contains these null sets as well, because F; contains
Fo. The o-field F; can be identified with the information which one has at time
t. If t is considered as the present time, then JF; is the information from the
past. The time translation or time shift operators ¥, : {2 — Q, s > 0, have the
property that W (t) o ¥y = W(t + s), P,-almost surely, for all s, t = 0. In other
words, if f; : R? — C are bounded Borel measurable functions on R? and if

0<ty,...,t, and t > 0 represent times, then
[15HW )00, = Hf] (t; +1)) (6.5)
j=1

and hence, with Y = [[7_, f; (W (¢;)) the random variable Y o), is measurable
with respect to the o-field F* := o (W (s): s > t). The o-field F* is called
the information from the future. Next let Y : € — C be a bounded random
variable. This means that the bounded variable Y is F-B¢-measurable. Then
Brownian motion has the Markov property, or is a Markov process, provided
the following identity holds P,-almost surely for all bounded random variables
Y with values in R or C:

E, [Y oV, } EFt] =Ewu [Y], forallt>0and for all z € R, (6.6)

It requires the monotone class theorem that the Markov property of the Brow-
nian motion as defined in (6.6) is equivalent to the following assertion. The
Markov property of Brownian motion is equivalent to the following claim. For
every real or complex valued bounded continuous function f defined on R?, and
for every s > 0 the equality

E.[Y 0¥ | Fi] = Ew)[Y], holds for all £ >0 and for all z€ R (6.7)

Here Y is of the form Y = f (W(s)). Of course, for a variable Y of the form
Y =f(W(s)), Yo, =f(W(s+t)), and hence (6.7) is equivalent to: for every
continuous function f : R? — C and for every s > 0 the equality

E, [f(W(s+1) | F:] = Ewe [f (W(s))] (6.8)

holds P,-almost surely for all £ > 0 and for all z € R%. The passage from
(6.8) to (6.6) goes via stochastic (or random) variables of the form (6.5). An
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application of the monotone class theorem then enables us to conclude (6.6).
For more details on the monotone class theorem see Theorems 2.42 and 2.43,
and the Propositions 2.44 and 2.45 in Chapter 2.

Put, for t > 0, x, y € R,

pat,z,y) ! exp == ol 1 oS
at, ,y) = ——5 :
(2mt) > 2t | (on t)d/2

Then, by definition, the marginal distributions, or one-dimensional distribu-
tions, of Brownian motion are given by

E. (£ V)] = | palta,) ) dy. ¢ 0 (69

where f is a bounded continuous function attaining values in R. From the
equality, for s, t > 0, z, y, z € R,

t t
st sy+ i )7 (6.10)

t = t
pasv2) i (0) = pals + e (7 2

we infer that collection probability densities {p4(t,x,y): t > 0} satisfies the
following version of the Chapman-Kolmogorov equation. For all s, t > 0, and
all z, y € RY, the equalities

st sy +tx
t dz = t d
J];gdpd(57x72)pd( 7Z7y) z pd(s + 7‘7:73/) J];{dpd (S +t7 S+t 7Z> z
= pa(s + 1,2, y) (6.11)
are true. Put P(t)f(z) = E,[f (W(¢)], t = 0, f € C, (R?). Then by the
Markov property we have

P(t)P(s)f(x) =

2 [P(s)f (W(1)] = Es [Ewe [f (W(s))]]

E. [f (W(s)) ot | F1]]

E. [f (W(s+1) | F]]

«[fW(s+1)] = Pt +5)f(2). (6.12)
P(t) : t = 0} has the semigroup property. In addi-

o]
[

8

[
ﬁﬁﬁﬁ

—~—

In other words the family
tion, we have

lim P(t) f () = lim E. [f (W(1))]

)

=lim | pa(t,z,y)f(y)dy
tl0 R4

=lim | pu(1,0.9)] (:c 4 ﬁy) d

tl0
- j pal1,0,9)f (@) dy = f(z), (6.13)

for all bounded continuous functions f defined on R¢. Another relevant property
is the following one. If f € () (Rd) is such that 0 < f < 1, then 0 < P(¢)f < 1,
t = 0. Let Cy (Rd) denote the space of all continuous functions f : R¢ — C
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with the property that lim f(z) = 0. Then it is fairly easy to see that P(t)f

|z| >0
belongs to Cj (Rd) whenever f does so. All this means that, by definition,
the family {P(t) : t = 0} is a Feller or, even better, a Dynkin-Feller semigroup.
Such semigroups have the property that

lm [P(s)f ~ P(0)f],, = lim_sup [P(s)f(x) ~ P()F()| =0 (6.14)

s—t,5=0 —t,820 . pd

for all t = 0 and for all f € Cj (Rd). A calculation shows the following equalities
for t > 0 and ¢ € R%:

E, [e7" W8] = f e WSy (t,2,y) dy
R4
= ¢ ine) f e WS py(t,0,y) dy
Rd

=18 f e VI py(1,0,y) dy
R4

— emHm8) el (6.15)
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Since v = E, [W(t)] and ¢ |¢]° = E, [((W(t) — x,£))?], it is clear from (6.15)
that W (t), distributed with density pq(t, z,y), is a Gaussian vector. In fact, let
0<t;<---<tpandlet f;, 1 <j<n, bebounded Borel measurable functions
defined on R?. Then, with t; = 0 and zy = = € R?, we have

E, [H f; (W <tj>>]

=1

= f .. J 1_[ fj (;U]) de (t] — tjfl, Tj—1, LC]') dl’l ce d‘fn (616)
R R 57 j=1

Fix f: RT > C,let0<t; < - <t,<tand gj: R" > C, 1 <j <n,be
bounded Borel measurable functions. From (6.16) together with the Chapman-
Kolmogorov equation (see (6.11)) we infer the following equality

E, [Ewu) W o W <tj>>]
~E, [f Ws )] Jos W <tj>>] . (617)

Applying the monotone class theorem, and, possibly, employing some other
approximation arguments, the equality in (6.17) implies

E. [f(W(s+1) | F| = Ewe [f (W(s))], P,-almost surely. (6.18)
Let fr, : R - C, 1 < k < m, be bounded Borel measurable functions. Let
0 <s; <--- <8y Repeating the previous arguments leads to

E, [EW(t) [H fu (W (Sk))] ng (W (tj))]

=E, [ﬁ Jre W (s, + 1)) ﬁgj (W (tj))] : (6.19)
k=1 j=1

Assume that the o-field F is generated by (W (t): ¢t = 0). In other words F
is the smallest o-field which makes all variables W (t) : © — R? measurable.
Let Y : @ — C be bounded random variable. This means that Y is F-Bc-
measurable. Another application of the monotone class theorem and using
(6.19) then implies, for ¢ > 0,

E,[Y 0¥ | Fi] = Ew [Y], Pe-almost surely. (6.20)

The reader should compare the results above with Subsection 4.2 in Chapter
1 and with Theorems 3.29 of Chapter 3. In this chapter can find much more
information on Brownian motion.

3. Brownian motion as a martingale

In this section we will give a brief review of the martingale properties of Brow-
nian motion: see Section 6 of Chapter 2. Let (2, F,P) be a probability space
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(sample path space), and let {W(¢) : ¢t = 0} be Brownian motion on €2 starting
at 0 € R%. We consider Brownian motion as a Gaussian process in R?. Then
W (t) — W(s) is P-independent of F,. In other words Brownian motion has in-
dependent increments, and consequently it is a martingale in L? (Q,F,P). In
addition, we have E [W}, (s)W;,(t)] = min (s,t)0;, j,, 0 < s,t, 1 < j1, jo < d.
It also follows that the process t — W, (t)W,,(t) — td}, ;, is a P-martingale.
The Lévy’s characterization theorem says that Brownian motion is the only
continuous time martingale with the latter property. For d = 1 the process
t — W(t)*> — t is a martingale. In other words the positive sub-martingale
t > [W(t)]* can be written in the form [W(¢)|* = A(t) + M(t) where A(t) = dt
is an increasing process, and where M (t) = |W (t)|* — dt is a martingale. This is
a very special case of the Doob-Meyer decomposition theorem which says among
other things that continuous sub-martingales S(t) of class DL (a certain uniform
integrability property) can be written in the form S(¢) = A(t) + M (t) where the
process A(t) is a non-decreasing adapted process, and M (t) is a martingale. In
fact throughout the lectures of this course we will frequently encounter semi-
martingales S(¢). Such processes S(t) are of the form S(t) = A(t) + M (t) where
A(t) is a process of bounded variation, and where M (t) is a martingale. An
real-valued adapted process A(t) is of bounded variation (BV) whenever it can
be written in the form A(t) = A, (t) — A_(¢) where the processes t — A, (t) are
increasing, or more precisely, non-decreasing adapted processes. The bounded
variation part is usually considered as the trend or the drift of the process, and
the martingale part is considered as the uncertainty, the risk or volatility part.
Let f : R? — C be a C*function with bounded first and second derivatives.
Then by Ito’s formula we have

FOV@) = FWO) + | VF V() aW(s)+ 5 | AF V() ds
= M(t) + A(t) (6.21)
where
At) = %L Af(W(s))ds and
M(t) = f(W(0)) + L Vf(W(s)) dW(s). (6.22)

Since the It integral S(t) Vf(W(s)) dW(s) is a martingale, the process t —
f (W (t)) is decomposed into a martingale part M(t) and a bounded variation
part A(t) which is also called the [té correction term. Other important examples
of semi-martingales are solutions to stochastic differential equations (SDEs)
t — X (t). Such processes satisfy an equation of the form

X(t) =X(0)+f

0

t t

b(s,X(s)) ds +f o (s, X(s)) dW(s) = A(t)+ M(t), (6.23)
0
where A(t) =Séb(s,X(s)) ds and M(t) = X(0) + Séa (s,X(s)) dW(s). Under
appropriate conditions on the coefficients b(s, ) and o (s, z) the process t — A(t)
is an adapted process of bounded variation, and the process ¢t — M(t) is an
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adapted process which is a martingale. Observe that solutions to stochastic
differential equations are supposed to be adapted (and continuous). Often the
equation in (6.23) is written in differential form:

dX () = b(t, X (1)) dt + o (t, X () AW (t) = dA(t) + dM(t). (6.24)

Moreover, the fact that processes of the form t — W, ()W;,(¢) — td;, j,, 1 <
J1, Jo < d are martingales forms the basis for stochastic or It6 calculus with
respect to Brownian motion. Processes closely related to Brownian motion
include

(1) Ornstein-Uhlenbeck processes have the form
¢

X(t) = e X(0) + f e DG (5) dW ().
0
Here A is a square d x d-matrix. The corresponding SDE reads as
follows:

dX(t) = —AX(t)dt + o(t) dW (t).
Such processes can be used in the context of models with stochastic
interest rates (Vasicek model).
(2) Processes of the form
S(t) = eSo(r=zlr@)) ds+f o () aw(s)

9

where s — o(s) is an adapted R%-valued process and p is a (positive)
constant, play a crucial role in the modelling of stock prices. The Black-
Sholes-Merton model is an important example. The process t — S(t)
satisfies the following SDE:

dS(t) = S(t) (udt + o(t) AW (2)).

If © =0 and o is a constant vector, then the process t — S(t) is called
a geometric Brownian motion. Such processes play a relevant role in
the construction of the risk neutral measure. These measures have a
(stochastic) density of the form S(7") with p = 0 provided T is the
time of maturity. Mathematically speaking the risk neutral measure
is the Girsanov transformation of a Brownian motion with drift: it
neutralizes the drift.

(3) Another Gaussian process which plays a role in the construction of
(deterministic) densities to describe the distribution of certain processes
is the Brownian bridge. Such a process takes the form:

s X1 (s) = (1—f)x+fy+(1—f)w( st ) or

t t t t—s

s X2(s) = (1—§)x+§y+W(s)—§W(t), (6.25)

where ¢t > 0 is fixed and z and y belong to R?, and where W (t) is a
Brownian motion in R? which starts at 0. Observe that these processes
are not adapted to Brownian motion, because at time s one needs
information from a later time to describe the processes in (6.25). In
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t
fact for the first process one needs W <t$—> , and for the second W (t)

is needed. The processes in (6.25) have realizations which connect x
(at time 0) with y (at time ¢. It is not so difficult to see that the
expectations and covariances of the processes X} (s) and X7?(s) are the
same. Since both processes are Gaussian, their distributions are the
same. For instance for d = 1 and 0 < s1, so <t we have

E[(X} (s1) =B [X} (s1)]) (X (s2) —E[X] (2)])]

- [<1 B %) W (ts_ltsl) <1 B St_Z) W (ts_iz)]
SO0 E () ()]
= (1) (1= ) win (t—sl t—t)

= min (s1, S2) — Sltﬁ (6.26)

By a similar token we get
E[(X7 (1) =B [ X7 (s1)]) (X7 (s2) —E[ X/ (52)])]
—E|[(W(s) = 2w ) (W(s2) - 2w )]

= min ($1, 82) — Sltﬂ (6.27)
Since E[W(t)) = 0, and since the processes s — X/(s) and s —
X?2(s) are Gaussian, the equalities in (6.26) and (6.27) entail that their
distributions are the same.
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It is perhaps useful to include a formal definition of a function of bounded
variation on a finite interval [0,7]. Let f : [0,7] — C be a right-continuous
function. Then f is said to be of bounded variation, BV for short, if

Sup{2|f(tj)—f(tj_1)| : 0<t0<t1<<tn<T} < 0.
j=1

Here the supremum is taken over all subdivisions 0 < t) < t; < --- < t, < T
of the interval [0, T]. If f is real-valued and of bounded variation, then f can
be written as a difference of two increasing (in fact non-decreasing) functions:
f = f+—f-. If fis continuous from the right and has limits from the left,
in other words, if f is caQOdlag, then the functions f. and f_ can be chosen
to possess the same properties. It is also mentioned that for a function f :
[0, 7] — C of bounded variation which is continuous from the right and has left
limits there exists a unique complex-valued measure py on the Borel subsets of
[O T] such that ,uf (O t) = f(t) - f(O) In other words it makes sense to write

So So t) dpg(t) So (dﬂf+ t) —dpuy_ (t>)v ge L™ ([0,T],C).

4. Some relevant martingales

Let (2, J,P) be a probability space with filtration (J3),.,. Let the stochastic
variable Y : 2 — R belong to L' (2, F,P), and put Y (t) = E [Y } fﬂ]. Then the
process t — Y (t) is a so-called closed martingale; i.e. for some Y € L (Q, F,P)
the equality Y () = E [V | &;] holds P-almost surely for all ¢ > 0. If a martingale
{M(t) : t = 0} is uniformly integrable, then its pointwise limit M = tlirg M(t)
exists in L' (Q, F,P) and M(t) = E [M | F;] P-almost surely for all ¢ > 0, and
so {M(t) : t = 0} is closed.

Again we consider the Markov process of Brownian motion as explained in
Section 2. Let Y : © — C be a stochastic variable. Then, on the interval [0, ¢]
the process s — Ey (s [Y 0], 0 < s < t, is a P,-martingale for all t > 0
and for all z € R% This is so because by the Markov property we have, for
0<s<t,

E,[Y o | Fs] =B [(Y oti—s) 00y | Fs] = Ewes) [Y 0 9y]. (6.28)

Fix , y e R and ¢ > 0. Then the process s + pg (t — s, W (s),y) is martingale
on the half-open interval [0,¢). It is not a closed martingale in the interval. Let
us prove this. To this end fix 0 < s; < sy <t and employ the Markov property
to infer:

Ez [pd (t - 52>W(32) ay) ’ ?81]
= E:c [pd(t_32aw(32 —81),y)07951 } ?51]

(Markov property)

= Ew(s,) [pa (t — 52, W (52 — 51) ,9)]
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(write w = W (s1))
=K, [pd (t — S, W (32 - Sl) 7y)]

= fdpd (82 - Sl,w,Z)pd (t—82,Z,y) dz
R

(Chapman-Kolmogorov)

=pa (t —s1,w,y) = pg (t —s1, W (s1),y). (6.29)

The equality of the first and final expression in (6.29) shows the martingale
property of the process s — py (t — s, W (s),y), 0 < s < t. We also observe that
h%lpd (t —s,W(s),y) = 0 Py-almost surely on the event {W (¢) # y}, and so this

limit vanishes P,-almost surely. Using the equality E, [ps(t — s, W(s),y)] =
pa(t, z,y) shows by virtue of Scheffé’s theorem that the martingale

{pa(t —s,W(s),y): 0< s <t}

is not uniformly integrable, and hence it cannot be closed.
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Another martingale which is related to Brownian motion as a Markov process
and to stochastic calculus can be described as follows. Let f : R? — C be a
bounded C?-function with bounded first and second order derivatives. Then
the process

t
o M) = £ W) = FOVO) 5 [ A7 (W) ds
is a martingale. Let us prove this. First of all, for 0 < t; < t5 we have
My (t2) — My (1) = My (12 — ) 0 0y (6.30)
The equality in (6.30) says that the mapping t — M¢(t) is an additive process
which is usually written as
My (t1 + to) = My (t1) + My (t2) 0Oy, for 0 <ty to.

Secondly, we observe the following equality:
0 1 1
apd (t7 x, y) = iAwpd (t7 x, y) = iAypd (t7 €, y) ) (631)

where A, denotes the Laplace operator:

Ay f(x) Z

Here the function f is differentiable up to order 2. For w € R? and t > 0 we
have

2

By [M;(1)]
1 t
- | pttwn) i@y sw) = [ [ patswn) arwdyds
R4 0 JRrd
(integration by parts)
ded (t,w,y) f(y) dy — f(w) — ;L fRd Aypa (s,w,y) f(y) dyds
(apply (6.31))

- [ et sy = s~ [ [ puswn) sy v

(apply Fubini’s theorem)
- [ pattw) sy st) -t [ [ £ i) ds )y
=j pa(t,w,y) f(y) dy — f(w)
R
—»nn{f paltw.9) S0y~ | pd@fwﬂofu»dy}
Rd Rd

€10

=lim | pq(1,0.9) f (w + Vey) dy — f(w)

€l0 R
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~ fw) — fw) = 0. (6.32)
By the Markov property of Brownian motion we infer, for 0 < ¢; < ts,

E, [M; (t2) | T, | — My (1)

=E, [M; (t2) = My (1) | T4 ]

(employ the equality in (6.30))
=E, [M; (ta — t1) 09y, | Fu, ]
(Markov property of Brownian motion)

= Ew ) [My (t2 — t1)]
(apply (6.32) with w = W (t1) and t =ty — ;)

= Ewn) [M(0)] = 0. (6.33)

The final three equalities hold P -almost surely. The equalities in (6.33) show
the martingale property of the process t — M/(t). A very similar argument
yields the following result. Let

{(F,Py),cp, (X(2),t=0),(,t=0),(EE)} (6.34)

be a Markov process, and let ¢ — A(t) be an additive process in L' (Q, F;, P,)
for all z € E and all ¢t > 0 such that E,, [A(t)] = E, [A(0)] for all w € E and
for all t = 0. Then the process t — A(t) is a P,-martingale for all z € E. In
fact this result is closely related to the so-called martingale problem. Again we
consider the Markov process in (6.34). Observe that A (t1) + A(0) oy, = A (t1)
P,-almost surely for all ¢; > 0. Whence, for all w € E, A(0) ov;, = 0 P,,-almost
surely for all ¢; = 0. A formal proof of the martingale property reads as follows.
Let x € F and 0 < t; < ty. Then we have

E.[A(t) | Fo] =E. [A(t1) + A(ta — t1) 09y, | Foy
(the variable A (t;) is F,-measurable)
=At)+E, [A(ta—t1) 00y, | Fuy]
(Markov property)

= A(th) + Exq [A(t2 — t1)]
= A(t1) +Exy) [A(0)]

(again we use the Markov property)

— A(t) + E, [A(0)0 0y | F]

=E, [A(t:) + A(0) 0¥y, | Fo, ]

=E, [A(t) | Fn] = A(t1). (6.35)
The equalities in (6.35) show the P,-martingale property of the process t — A(t).
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An adapted real- or complex-valued process t — M (t) is called multiplicative if
M (t; + tg) = M (t9) o ¥y, M (t1) P,-almost surely for all 0 < 1, t5 < o0 and for
all z € E. Then M (t,) = M(0) o ¥y, M (t;) P,-almost surely for all 0 < t; < o0
and for all x € E. If such a process belongs to L' (Q,F,P,) for all z € R? (or
attains only values in [0,00)) and is such that E, [M(t)] = E, [M(0)] for all
w e F and all t > 0, then the process t — M(t) is a P,-martingale for all x € E.
The proof can be patterned after the above proof of the martingale property of
the additive process t — A(t); instead of a plus sign one writes a multiplication
sign in (6.35). In case we apply the latter to Brownian motion we see, e.g., that

—(e,W (6) =W (0))— 3|t

for every ¢ € R the process t — M(t) := e is a [P,-martingale

for all z € R?. Here we employ the following equalities
B, [M(0)] = B, [ ON O [y 1, gty
R

— 1=K, [M(0)].

All this is closely related to the concept of exponential martingales, the notion
of risk-neutral measure, and the Girsanov transformation of measures. For more
details the reader is referred to Subsection 8.1 of Chapter 3 and to Section 3 in
Chapter 4 of the main text.
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5. Conditional expectation

Properties of stochastic processes are very often described in terms of conditional
expectations on sub-o-fields: martingale property, sub- and super-martingale
property, Markov property. Let (2, A, P) be a probability space, and let B be a
sub-o-field of A. Let Y : 2 — R be a bounded stochastic variable. This means
that the variable Y is A-Bg-measurable. Put 7 = E [Y ‘ TB]. By definition
this means that Z is B-measurable (qualitative property) and that E[Z1g] =
E[Y1g] for all B € B. By comparing the measures P; = Plg : B — P[B] and
Py, : B +— E[Y1g] with B € B we see that P, is absolutely continuous with
respect to P;. This means that P [B] = 0 implies Py [B] = 0 with B € B. Itisa
consequence of the theorem of Radon-Nikodym that a conditional expectation
exists. An important example comes in the context of the Markov property.

Suppose we want to prove the equality in (6.7). Then we consider the subspace
H of L* (Q,F;,P,) defined by

H={GeL*(Q,5,P,): E, [Ewq [Y]G] = E, [Y 0 9,G]}. (6.36)

Then H is a vector space over R. Moreover, if a sequence (G,,), .y < H is such
that 0 < G; < Gy < --- < G, < G = sup,,.y G, where G is bounded, then G
belongs to H. If H contains all variables G of the form G = [];_, g; (W (¢;)),
with 0 < t; <ty < --- < t, < t, then by the monotone class theorem the
subspace H coincides with L* (Q, F;,P,), whence E, [Y o, ‘ 3’}] = Ewq [Y],
P,-almost surely. Another application of the monotone class theorem shows that
it suffices to take Y of the form Y = [, fx (W (sx)) where 0 < 51 < -+ < .
So we have to prove the equality as described in (6.19). Put h; = g;, 1 < j <n,
hj = fj—na n+1 < j < n+m, Tj = tj, 1 < ] < n, Tj = t—f'Sj_n, n+1 < ] < n+m.
Then the left-hand side of (6.19) is equal to

E, [Ewq [Y]G]

f f J 1_[9] (25) [ [ pa(t; =ty 251, 25) pa (¢ — tu. 0, y0)
Rd R4 Rd i1

ntlmes

d[[‘l

J J ka Yk de (8K — Sk—1,Yk—1, Ur) dyodys - dym
Rd R4 . Pl

mtlmes

(Chapman-Kolmogorov: integral with respect to dyy can be explicity calculated:
it is equal to pg (t + s1 — tn, Tn, ¥1))

n+m n+m
= f c. f 1_[ hj (l’j) 1_[ Pd (Tj — Tj,1,$j,1,$j) d.%l s dl’ner
Rd Rd
S ——

J=1 J=1

n+m times

~E. [H h; (W <n>>]
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=E, ﬁ fr (W (s + 1)) ﬁgj (W (t;)| = E; [Y oG] (6.37)

where G = [[_, g; (W (t;)) and Y = [[;.L, fr. (W (sx)). The variables y; were
renamed: y; = Tpij, 1 < j < m. From the equality in (6.37) the Markov
property of Brownian motion follows after some approximation arguments: see
Theorem 3.29 Chapter 3 of the main text. More details on conditional expec-
tations can be found in Theorem 1.4 in Chapter 1 of the main text.

5.1. Exponential martingales. We consider Brownian motion or
Wiener process as a Markov process:

{(Q,F,B,), (W(t),t =0), (0, t=0), (R Bga)}. (6.38)

Here Q = C ([0, 0), ]Rd) equipped with its o-field F generated by the variables
t — Wi(t), where W(t)(w) = w(t), w € Q. In fact we will mainly use the
martingale properties of Brownian motion and the corresponding It6 calculus.
Let  — c(z), x € R, be an Révalued function with the property that there
exists a (continuous) process t — X (¢) which satisfies the following stochastic

integral equation:
t

X(t) =WI(t) +L c(X(s)) ds. (6.39)
Define the process t — Z(t) by

Z(t) = J c(X(s)) dW(s) + ;L e (X (s))]? ds, (6.40)

0

and suppose that E, [e_Z(t)] =1lforzeRandt > 0. Fix T > 0, and let
Y : Q — C be any bounded Fr = 0 (W (s),0 < s < T') measurable stochastic
variable, and put

EZ[Y]=E,[e?DY]. (6.41)

The corresponding probability measure is denoted by PZ.

6.1. THEOREM. With the above notation the following assertions hold true:

(1) The process t — e—Z()

,t =0, is a P.-martingale;

(2) The process t — e~%) <W(t) + SSC(X(S)) ds), t =0, is a local P,-
martingale;

(3) The process t — W (t) + Sé c(X(s)) ds, t =0, is a local PZ-martingale;

(4) The process t — W(t) + SEC(X(S)) ds, t = 0, is a Browian motion
relative to the probability measure PZ;

(5) The distribution of the process t — X (t) is given by the measure

{(X(5Doaser} € A} = PZ[A] = B [ 2D {(W($))gerer} € 4]
A€ Fp, where

Z(t) = —f (W (s)) - dW (s) + %L (W (s))[ ds.

0
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6.2. REMARK. Let the bounded stochastic variable Y be measurable with re-
spect to Fy = 0 (W(s),0 < s <t),0 <t <T. Then (1) implies: E, [e7 (Y] =
E, [e?WY].

PRrOOF. (1) Ito’s formula, applied to the function y — e~¥ implies:

t 1 [t
e_z(t) - e—Z(O) _ _J e—Z(S) dZ(S) + §J e—Z(S) d(Z, Z) (S)
0

— _f e=76) g (s) — ; Jot e (X(s))|? ds

0

_ f "7 i (s) (6.42)

Since E, [e7#®] = 1 for all 0 < ¢ < T, the equality in (6.42) shows that the
assertion in (1) is true. For more explanation see Proposition 6.4 below.

(2) Another application of It6’s formula, now applied to the function (z,y) —
e "y yields the following equalities:

e 20X (1) — e 20 x(0)
= Jt e 28X (s)dZ(s) + f e 2 dX(s)

0 0
t

v ] cPOx@az 26 - | Mz

(employ the equalities
(Z,2) (t) = §|c(X())]* ds and (Z,X) (t) = §y¢ (X(s)) ds)

0

__ L e 76 X (5)e (X (s)) W (s) + L L2 i (s). (6.43)

From (6.43) it follows that the process t — e~?() X () is a local martingale.

(3) By a stopping argument we may assume that the process t — e 4® X (¢) is
a genuine P,-martingale. Let 0 < t; < t5 < T. In order to show the equality

EZ [X (t2) | T ] = X (t1) (6.44)
it suffices to prove the equality
EZ [X (to) 14] = EZ [X (t1) 14] (6.45)

for all events A € F;,. Fix A € F;,. The equality in (6.45) can be achieved as
follows:

EZ [X (t2) 14] = E, [e ?T X (t2) 14]

Z(t)

(the process t — e~ is a P,-martingale)

—E, [e 20X () 14]
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(the process t — e ?® X (t) is a P,-martingale, the event A is F;,-measurable)
=E, [e7?"™X (t;) 14]

—Z(t)

(again use the fact that the process t — e is a P,-martingale)

=E,[e?DX (t;)14] . (6.46)
The equalities in (6.46) entail (6.45). Hence, (6.44) follows and therefore item
(3) is proved.

(4) In order to prove the assertion in (4) we will employ Lévy’s characterization
of Brownian motion: see Theorem 6.5 below with the measure PZ instead of P.
From assertion (3) it follows that the process t — X (t) is a local PZ-martingale.
It is also clear that (Xj,, X;,) (t) = 0;, j,t, 1 < j1, j2 < d. From Theorem 6.5 it
then follows that the process t — X (t) is a Brownian motion relative to PZ on
(Q,F), where F is the o-field generated by the process t — W (t), t = 0.

(5) Let Y =Y ((X(5))geser) be a bounded stochastic variable which depends
on the path s — X(s), 0 < s <T. Then by the observation in (4) we infer

E.[Y] =E, [Y ((X(S))ogng)]
=E, [e*Z(T)ez(T)Y ((X(S))osssT)]
=E, [e—Z<T>eSOT (X)X ()= JoleXENF dsy (X (s))

o

0<5<T):|
(the process t — X (t) is a Brownian motion relative to the measure P?)

=E, [eﬁoT (W () W (5)=5 { le(W ()| dsy- (W(s))

=B, [e 7OV (W(5))yerer) |

= E7 [Y (W(5))geser)] - (6.47)
The equality in (6.47) shows assertion (5).

0<5<T):|

Altogether this completes the proof of Theorem 6.1. U

6.3. REMARK. The equality in (6.47) is a version of Girsanov’s theorem. If in
(6.47) we take Y = f (X (¢)), then we see

E, [f (X(8)] = . | 20 (W(1)]. (6.48)

The equality in (6.48) is in agreement with the example below.

The following proposition was used in the proof of assertion (1) of Theorem 6.1

with M(t) = §; ¢ (X (s)) dW(s).

6.4. PROPOSITION. Let (Q2,F,P) be a probability space with filtration (Fy),.-
Let the process t — M(t) be continuous local martingale. Put Zy(t) = M(t) +
(M, M) (t). Suppose that for t = 0 the equality E[e=#®)] = 1 holds. Then

the processt — e~ ?M® s a martingale.
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In what follows we write t; A to = min (¢1,t3) whenever ¢; and ¢y are real
numbers.

PROOF OF PROPOSITION 6.4. Fix T" > 0, and choose an increasing se-
quence of stopping times (75,), .y such that 7,, 1 co and such that, for every
n € N, the processes t — M, (t) := M (t A T,,) and

t > (M, M) () = (M, M) (t A T})

are uniformly bounded on a fixed interval [0,7]. Put
1
Zu(t) = M(tAT,) + 5 (M, M) (t A T).

An application of Ito’s formula yields:
¢
e~ In(t) _ o=Zn(0) —J e %n(s) dM,(s), (6.49)
0

and hence, for each n € N, the process t — e~%7(*) is a martingale on the interval
[0, T]. It follows that

E[e W] =E,[e O] =1=E[e?P], te[0,T]. (6.50)
For t € [0, T] the sequence of non-negative stochastic variables
(e-7®) = L' (Q,F,P)
converges pointwise to e 4®. By Scheffé’s theorem and by the equalities in

(6.50) it follows that this convergence also takes place in the space L' (Q, F, P).
Consequently, the process t — e 4® is a genuine martingale.

This completes the proof of Proposition 6.4. 0

The following theorem is the same as Theorem 4.5 in the regular text.

6.5. THEOREM. Let (Q, F,P) be a probability space with filtration (or reference
system) (Ft) =g Suppose I is the o-algebra generated by Ui=oF; augmented with
the P-zero sets, and suppose F; is continuous from the right: F, = ngyFs for
allt > 0. Let

(M) = (My(t), ..., My(t)) : t =0}

be an Re-valued local P-almost surely continuous martingale with the property
that the quadratic covariation processes t — (M;, M;) (t) satisfy

Then {M(t) : t = 0} is d-dimensional Brownian motion with initial distribution

given by u(B) = P[M(0) € B], B € Bga, the Borel field of RY.

The following result is Example 6 in Chapter 3. The idea of proof goes back
to the method of Cameron-Martin [37]. Related material can be found in [39]
and in [38]. More recent material can be consulted in [86] and [87].
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Example. Let U be an open subset of R let f belong to Cy(U) and let
¢ : U — R? be an appropriate vector field on U and let v : [0,0) x U — R be
a solution to the following problem:

0
a—? = 1Au+c.Vuin [0,0) x U;
u is continuous on [0,00) x U and u(0,z) = f(z).

Moreover we want that lim, ,; zep u(t, z) = 0 if b belongs to 0U. Then

ult, ) = E, [e—Z@)f(W(t)) > t] ,

where Z(t) = §c(W(r)) - dW(r) — 1§ |e(W(r))]* dr. For a proof we fix
t > 0 and we consider the process {M(s): 0 <s <t} defined by M(s) =
u(t—s,Wi(s))e ?®1,-,. An application of Itd’s formula to the function

f(s,z,y) = u(t — s, z) exp(—y) will yield the following result

—(t—r, W(T))B_Z(T)1{7>T}d7“

(&
S
S

1 (® -
3 L Au(t =, W(r)e ? oy Liopy dr
d s ~ ~
— Z JO D]u(t T, W(T))e_z(r)1{7—>r}d <Wj? Z> (T>
j=1

1 (¢ > ~ o~
+5 f u(t—r,W(r))eZ(T)l{T>T}d<Z, Z> (r)
0

- f {—a—“(t W)+ 3 Au(t— 1, W(r)
+ c(W(r)).Vu(t —r, W(r))} e_Z(T)l{TN,}dT

[ 19 W) 5t W )
S_Z(T)1{7—>r} ’ dW(T)

f: u(t =7, W(r)e™ 2 e(W (1)) * 1 ray dr

. f Cult— 1, W) 20 | (W ()P Loy dr
= Ls {(Vu(t —r,W(r)) +ut —r,W(r))c(W(r))}

B_Z(T)1{7>T} . dW(T).
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It will follow that u(t,z) = E, [e‘Z(t) fW(t): m> t]. Also notice that the

previous equalities we could have written Sglin(T’s) ... drinstead of {) ... 1=y dr.

In the following theorem we present a result on the Markov process generated
by the operator

Li(x) = cla) - V() + S Af(x).
We suppose that its domain
D(L):={feC?(RY), f, Lf € Co(E), V[ uniformly bounded}
is dense in Cp (R?).

Click here

to learn more /8
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6.6. THEOREM. Suppose that for every v € R? there exists a Brownian motion
with state space R?

{(W(t))t>o 7]P} ) W(O) = O»
together with an adapted R*-valued process (X*(t)),s, such that
¢

XT(t) = o+ W(t) + L ¢ (X*(s)) dWW(s) (6.52)

Define, for x € R?, the process t — Z(x,t) by

Z(x,t) = J c(X*(s)) dW (s) + %L e (X%(s))]? ds. (6.53)

0
and assume that E [e_Z(”)] =1 forallt = 0. In addition, put

~ t 1 t

Z(x,t) = —J c(z+Wi(s)) dW(s)+ §J e (z + W(s))|? ds. (6.54)
0 0

Then the operator L is closable and its closure generates a strong Markov process

{(Q,F,P,),(X(t),t =0),(0,t>0), (R Bga)} (6.55)

with the property that, for all bounded Borel measurable functions f : R* — C,
the equality

E, [f (X(£)] = E e 250 F (o + W(1))] (6.56)
holds. In particular it follows that the stochastic differential equation in (6.53)
has unique weak solutions.

6.7. REMARK. It can be proved that a process like in (6.52) exists whenever
the coefficient = — ¢(x) is bounded and continuous. In this case the process
t — e~?® is a genuine martingale.

PROOF. Fix T' > 0 and x € R%. From assertion (5) in Theorem 6.1 it follows
that the process t — Z(z,t), t € [0,T], has a distribution determined by

E[Y (X*(5)oeser)] = E [ 20DV (24 W(S))geper) | (6.57)

Here Y : C ([0,7],R?) — C is a bounded measurable function. Let Q =
C ([0,%0),R?), and define X(t) : © — R? by X(¢)(w) = w(t). Define the
probability measures P,, x € R by the formula in (6.57), i.e.

B, [V ((X(5)geer)] = E [ ZEDY (@ 4 W(5))geyer) | (6.58)
In addition we write Jyw(s) = w (s + t). We will show that the process
{(Q,F,P,), (X(1),t=0), (Y.t =0), (R Bga)} (6.59)

constitutes a Markov process. Since, by definition, the paths are continuous it is
then a strong Markov process. Let f be an arbitrary bounded Borel measurable
function on R?. In order to prove that the process in (6.59) is a Markov process
we need to prove the equality

By [F (X (1), X () [ (X(E +5))]
=B, [F (X (t2),.... X (ta)) Exo [F (X (s))]] (6.60)
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where I : (Rd)n — (C is any bounded measurable function on (Rd)n with
0<t <---<t, <t for arbitrary n € R? and arbitrary ¢ and s positive real
numbers. With such data we have

E, [F (X (t1),.... X (t) Exq [f (X(s)]]
= B[ ZE0F (o 4 W (t) oo W (62) Bawi [F (X(5)]
=E [e*ZW)F (x+W(t1),...,o+ W (t,))
B [efZ(erW(t),s)f (@ + W(t) + W(s)) | W(t)]] _ (6.61)
Using the Markov property of Brownian motion we may rewrite
E [efZ(HW(t),S)f (z+ W (t)+ W(s)) ‘ W(t)]
as follows:
B[ 20O (4 W(E) + W(s)) | W(0)]
_E [egoc T+ W (£)+W (p)) dW (p)— % §5lc(z+W (£)+W (p))[* dp
f@+W@+W®HW@]

(for given W (t) the distribution of p — W{(p) is the same as that of p —
Wt +p)—W(t)

_ T [ ol clatw t+p) aw t+p)— 4 ol W(tto)Pdo £ (32 L W (¢ + 5)) | W(t)]
— [l @t W) W (p)= 5 el WO de £ (1 4 (4 4 ) )| Wt ]

(Brownian motion is a Markov process)

= E [ell W VS e W o Wt ) | 5] (6.62)

where SFF/ = o (W(p),0 < p <t). Inserting the equality in (6.62) into (6.61)
yields

E, [F (X (t1),. - X (ta) Ex [f (X(s))]]
= [eSBC(X(p))dW(p)—% ole(X () dp o (x+W(t),...,x+W(t))

[esi”cwvv(p))dvv(p) SLT@H WO do (4 4 W (t  5) )| gw”
_E [E [e 51 e(X () AW ()= 4 55 *[e(X ()] dp
Fa+W(t), ..o+ W) f(x+W(t+s)| fﬂW”
(elementary property of conditional expectation)

_E [e*Z@vHs)F @+ W (t),...,o+ W () f(z+W(t+ s))]
B [F(a+W(t),.x+ W (t)) F(X(s+1)]. (6.63)
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The equality in (6.60) is a consequence of (6.63), which in turn implies the
Markov property of the process in (6.55). Let f € D(L) be such that the vector
valued function z — V f(z) is bounded. Then by It6 calculus we have

FXE(@) = £ (X*(0))

:va(xm(s)) de(s)+%LAf(X(8)) ds

= [ oy as s [ wroee) ave) (6.64

0 0

Taking expectations in (6.64), dividing by ¢t > 0, and taking the limit for ¢ | 0
shows that the (closure of the) operator L generates the Markov process in
(6.55).

This completes the proof of Theorem 6.6. U

Assume that the Ri-valued function ¢ : [0,7] x R? and the R? x R?-valued
function 0 = (047),jcq1<jen [0 T] % R? — R? x R™ are continuous and have
at most linear growth. The latter means that there exist finite constants C
and C5 such that

le(t, )| + |o (t,z)| < CL + Colz|, 0<t<T, zeR% (6.65)

Put a(t,z) = o (t,x) o (t,2)* and assume that
d

Z a;;(t,2)ysy; >0, forallze R and y = (yi,...,y4) # 0. (6.66)

ij=1
What follows is mainly taken from Klebaner [92] Section 10 in Chapter 6. Some
of these results are in fact based on work by Revuz and Yor [149] and Stroock
and Varadhan [171]. Let the process ¢t — X (t) be a diffusion in d dimensions,
described by the multi-dimensional SDE

dX(t) = c(t, X (1)) dt + o (t, X (t)) dB(t), (6.67)

where ¢ is an n x d matrix valued function, ¢t — B(t) is n-dimensional Brownian
motion, t — X () and (¢, x) — c(t, ) are d-dimensional vector valued functions.
In coordinate form this reads

j=1
and it means that forallt >0and¢=1,...,d

t n t
X;(t) = X;(0) + J ¢i (s, X(s)) ds + Z f 0 (s, X(s)) dB;(s). (6.69)
0 j=1 0
The coefficients of the SDE are: the vector ¢(¢,z) and the matrix o(t,z). An
existence and uniqueness result for strong solutions, under the assumption of
locally Lipschitz coefficients, holds in the following form. The norm of the vector
c(t,x) is its (Euclidean) length, |c(t,z)| = 4/2; ¢i(t,z)%2. The norm of the
matrix o(t, ) is defined by |o(t,z)|* = trace (o(t,x)c*(t,z)) = trace (a(t, r)),
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with o* being the transposed of o. The trace of the matrix a(t, x) is defined by
trace (a(t,z)) = 3.0, au(t, ). The matrix a(t,z) = o(t, x)o*(t, x) is called the
diffusion matrix.

6.8. THEOREM. If the coefficients are locally Lipschitz in x with a constant
independent of t, that is, for every N, there is a constant K depending only on
T and N such that for all |z|, ly] < N and all0 <t <T

et, x) — et y)| + oz, 1) —oly, )] < K|z —yl, (6.70)

then for any given X(0) the strong solution to SDE (6.67) is unique. If in
addition to condition (6.70) the linear growth condition holds

et 2)| + [o(t, )| < Kr(1+ ),

X(0) is independent of the Brownian motion B(t), and E [|X(O)|2] < o, then
the strong solution exists and is unique on [0,T], moreover

| sw (XOF| <C 1+ E[XOF), (6.71)

where the constant C' depends only on K and T'.

How will people travel in the future, and
how will goods be transported? What re-
sources will we use, and how many will
we need? The passenger and freight traf-
fic sector is developing rapidly, and we

provide the impetus for innovation and
movement. We develop components and
systems for internal combustion engines
that operate more cleanly and more ef-
ficiently than ever before. We are also
pushing forward technologies that are
bringing hybrid vehicles and alternative
drivesinto a new dimension — for private,
corporate, and public use. The challeng-

—

B . " —— es are great. We deliver the solutions and
4 offer challenging jobs.
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Note that unlike in the one-dimensional case, the Lipschitz condition on ¢ can
not be weakened in general to a Holder condition, i.e. there is no Yamada-
Watanabe-type result for multi-dimensional SDEs. The quadratic covariation is
easy to work out from (6.68), by taking into account that independent Brownian
motions have zero quadratic covariation.

(X:, X;) () = fo dX;(s) dX(s) L 0 (s, X(s)) ds. (6.72)

It can be shown that if ¢ — X (¢) is a solution to (6.67) then

E[Xi(t+A) —a | X(t) = 2] = ¢i(t, ) + o(D),

E [(Xl-(t + A) —x;) (X;(t+ D) — ) } X(t) = x]

=a;;(t,2)D + o(D),
as A — 0. Thus c(t,z) is the coefficient in the infinitesimal mean of the dis-
placement from point x at time ¢, and a(t, z) is approximately the coefficient in
the infinitesimal covariance of the displacement. Weak solutions can be defined

as solutions to the martingale problem. Let the operator L;, acting on twice
continuously differentiable functions from R? to R, be given by

t

d o1 02
Ly = i (1, + = it o) =———. 6.73
t ;C< I)axz Qijz_lad( x)al_zaxj ( )
Note that L; depends on o only through a. Then X () is a weak solution started
at = at time s with respect P, , and a filtration based on the process t — X(t),
provided the process

t

Fes F(X(1)) - f (L) (X(p)) dp (6.74)

S
is a martingale for any twice continuously differentiable function f vanishing
outside a compact set in R?. This process is called a diffusion with generator L.
In the case of time-independent coefficients, the process is a time-homogeneous
diffusion with generator L.

6.9. THEOREM. Assume that a(t,x) is continuous and satisfies condition (6.66),
i.e. Z;‘i,j aij (t,x)yy; > 0, for all x € R and y #= 0 and c(t, ) is bounded
on bounded sets. Then there exists a unique weak solution up to the time of
explosion to the equation in (6.69). If, in addition, a quadratic growth condition
is satisfied, that is, for any T > 0 there is a constant Ky such that for all x € R?

le(t,2)[* + |a(t,2)] < Kp (1 + |2]?), (6.75)

then there exists a unique weak solution to the martingale problem (6.74) starting
at any point x € R? at any time s = 0, moreover this solution has the strong
Markov property.

Here the time of explosion 7., is explained as follows. Let, forn =1, 2, ...,
B, = {z €R*: |z] <n} = nBj be the open ball of radius n in R%. The stopping
time 7, = 7, = inf {s > 0: | X (s)| = n} is the first time the process exceeds or
equals length n. Since a diffusion process is continuous, it must reach level n
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before it reaches level n + 1. Therefore the times 7, are non-decreasing, hence
they converge to a limit 7., = lim,,_, 7,,. Explosion occurs on the set {r,, < o0},
because on this set, by continuity of t — X (t), X (7o) = lim,, o, X (7,). Thus

| X (170)| = lim | X (7,)] = lim n = oo,
n—0 n—0o0

and infinity is reached in finite time on this set.

Since the weak solution is defined in terms of the generator, which itself depends
on o(t,z) only through a(t,z), the weak solution to (6.67) can be constructed
using a single d-valued Brownian motion provided the matrix a(t,z) remains
the same. If a single SDE is equivalent to a number of SDEs, heuristically, it
means that there is as much randomness in a d-dimensional Brownian motion
as there is in a single Brownian motion. Replacement of a system of SDEs by
a single one is shown in detail for the Bessel process. Note that the equation
o(t,x)o*(t,z) = a(t, x) has many solutions for o (¢, x), the matrix square root is
non-unique. However, if a(t, z) is non-negative definite for all  and ¢, and has
for entries twice continuously differentiable functions of € R? and ¢, then it
has a locally Lipschitz square root o(t,x) of the same dimension as a(t, z) (see
for example Friedman [73] (1975 Theorem 6.1.2 in Volume 1).

The following theorem gives a nice result for unique weak solutions to stochastic
integral equation of the form

X(8) = X(0) +J

0

t t

¢ (s, X(s)) ds +f o (s, X(s) dW(s)  (6.76)
0
with ¢ € [0,T]. A weak solution to this equation is an R%valued process ¢
X(t), t € [0, T], on some probability space (Q2,F,P) with a Brownian motion
t — W(t), t € [0,T]. A unique weak solution means that its distribution does
not depend on the particular Brownian motion for which it satisfies (6.76).
More details are exhibited in the regular text. A more general version, where
the coefficients ¢(¢,x) and o(t, z) have certain discontinuities, can be found in
[195] Theorem 3.1. In the following theorem we suppose that the equation in
(6.76) possesses unique weak solutions. A proof is based, among other things,
on the Burkholder-Davis-Gundy inequality: see Theorem 6.16 below.

6.10. THEOREM. IfE []X(0)|4] < o0, limy, oo A, = 0 and ¢ and o have at most
linear growth, then the Euler scheme defined in (6.77) weakly converges to the
unique weak solution of the equation in (6.76) as n — 0.

Here the (continuous) Euler scheme for the equation (6.76) is defined as follows:
X"(0) = X(0), and
XU (t) = X" () + e (md, X" (7)) (E = 7
+o (7, X (7)) (W () = W(7y))) (6.77)

for ! <t <70, k=01,...,n, where 0 =7 < 7' <---<71} =Tisa
sequence of random or deterministic partitions of [0,7]. The times 7' should
be stopping times. For example 7' = k27"7T, 0 < k£ < 2". We also wrote
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JAVRES o Jnax 1‘Tk+1 — 77|. If we define X"(t) = X" (), for 7 <t < 7}, then
<k<sn

{Xn 0<t< T} is called a discretized Euler scheme. By defining
n"(s) =7 for 7' <s<7,, 0<k<n-—1, (6.78)

we have
t

X(t) = X(0) + f ¢ (" (), X" (1"(s))) ds

0

n f o (1" (s), X" (" (5))) dVV (3). (6.79)

0
If 7' = k27T, then n"(s) = 271" |2"s/T'|. The convergence in Theorem 6.10

is meant in the following sense. There exists a probability space (ﬁ, F , ]?’) with
a Brownian motion ¢ — B(t), 0 < t < T, such that

Jin BLF (X)) = E[F ()]

for all bounded continuous functions F : C ([0,T],R?) — R. Here the process

t— X(t), 0 <t <T, satisfies:
t t

X@t) = X(0) +f c(s,)}‘(s)) ds+f o (s,)}‘(s)) dB(s). (6.80)
0 0
In fact for (Q, F , Iﬁ’) we take the original probability space (2, F,P) with the

original Brownian motion ¢t — B(t), 0 <t < T.
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For the proof of Theorem 6.10 we need some lemmas.

6.11. LEMMA. IfE [|X(0)|4] < o0, and the coefficients c(t,x) and o(t,z) have
at most linear growth, that is, there exist two constants Cy and Cy such that,
for allt € [0,T] and x € RY, |c(t, )| + |o(t,z)] < Cy + Cylz|, then

sup E U(X”*(T))ﬂ <o and sup E [|<X”,X”) (T)|2] < 0, (6.81)
nx=1 n>=1

where | - | stands for the Fuclidean norm in the appropriate space.

Here |(X™*(T))| = supoci<r [ X" ()]

PROOF. Define the sequence of n"(s), n € N, asin (6.78). Then the processes
X"(t), n € N, satisfy (6.79). By the inequality (x +y + 2)* < 27 (2? + y* + 21)
for any real numbers z, y, z and Holder’s inequality together with Burkholder-
Davis-Gundy’s inequality for p = 4, there exist two positive constants a and b
such that

¢
E [\X”(t)ﬂ <a+ bJ E[|X" (77"(5))|4] ds. (6.82)

0
Put f,(t) = E[|X" (n”(t))|4]. Then by (6.82), and since n™(t) < t, we see
fult) < a+ bgé fn(s)ds. By Gronwall’s lemma (see main lecture notes), we

infer f,(t) < ae® for 0 < t < T. By (6.82) and Burkholder-Davis-Gundy’s
inequality the assertions in Lemma 6.11 follow. U

6.12. LEMMA. If the conditions of Theorem 6.10 are satisfied, then the Euler
scheme {X™ : n > 1} is tight in C ([0,T],R?).

Proor. We will use the criterion in Theorem 8.3 on page 56 of Billings-
ley [22] to prove the tightness. First, since E[|X(O)\4] < 0, the sequence
{X™(0) = X(0) : n > 1} is tight. Secondly, put

er(T) = supE [ sup. [c (" (s), X" <n“<s>>>r4] ,

n=1 0<s<T

o) = supE | sup o (3°(5). X" 7))

n=1 0<s<T

Since ¢(t,x) and o (t,z) have at most linear growth in z, the constants ¢;(7)
and co(T") are finite by Lemma 6.11. For a (fixed) random time ¢ € [0, 7], let

Z0(s) = X™(s + 1) — X™(1)
i) - | (), X7 (7 (0)) d,

M) = | " o (7o), X" ((0))) dW(p), so that
Zi(s) = C(s) + M (s).

Since, for = and y real numbers, (z + y)* < 8 (#* = y*), we have

1Z2(s)I" < 8ICT(s)[* + 8 [M (s)] (6.83)
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By the Cauchy-Schwarz inequality, we have

B[ sw 1202 ()|

=E [052?_5 (f+s o (" (p), X™ (" ()| dp>2]
<& s [Tl ool o] <ems o8

Since the process
t+s

s M) = [ o (o). X () dV ()

t
is a continuous martingale for which
(M, M) (s) = (21", Z1") (s)
by Burkholder’s inequality and by (6.84) there exists a constant Cy such that
E | sup (1| < CiE L1020, 20) OF] < Creal)
0<s<

for § > 0. Next, for every € > 0 and n > 0 there exists §, which does not depend
on t and n, such that, for some random time 0 < 7 < 7T — 9,

IP’[ sup  sup \X”(s)—X”(t)|>5]

0<t<T =4 t<s<t+6

<— sup P [ sup | X"(s) — X"(t)| = 5]

0 o<t<T—5 |t<s<t+s
< st sw 8| s (2091
< — su su s

det ostsgﬂs 0Ss£5 !

8T N N
< = 1E| sup [CY(s)["| + E| sup [M](s)]

€ 0<s<6 0<5<6

8T 4 9

4

In fact, the choice § = min (1 ) will achieve the final

’ &T (Cl (T) + 0402 (T))
inequality in (6.85). From Arzela-Ascoli’s theorem it follows that the sequence
{X", n > 1} is relatively compact in the Banach space C ([0,T],R?) which is
separable. Prohorov’s theorem then implies that the sequence {X™, n > 1} is
tight in C ([0, T],R?): see Theorem 6.21. So the proof Lemma 6.12 is complete
NOW. 4

6.13. REMARK. Since, for some random time 0 < 7 < T — 4, the equality
sup sup [X"(s) = X"()] = sup |X"(s) — X"(7)|

0<t<T—6 t<s<t+0 T<S<T+0

holds P-almost surely, it could be that the inequalities in (6.85) could be sharp-
ened somewhat.
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In the proof below the notion £(Y') means the law or distribution of the process
Y. The proof below is designed for an equation like the in (6.76) with discon-
tinuities of a certain kind. In our case, when the coefficients are continuous, a
shorter proof can be found at the end of these notes.

PROOF OF THEOREM 6.10. Since the Banach space C ([0, T, Rd) is sepa-
rable, Prohorov’s theorem in conjunction with Lemma 6.12 then implies that
the sequence {X", n > 1} is tight in C ([O, T, ]Rd). Thus for any subsequence
of the sequence {X™, n > 1} there exists a further subsequence {X" k > 1}
and a process t — X(t), t € [0,7], in C ([0,T],R?) such that the sequence
{X"™ k> 1} converges to the process X (t) weakly. Let P™ be the distribution
(or law) of the process X™. Since the equation in (6.52) is supposed to have
unique weak solutions, it follows that the sequence {P", n > 1} itself converges
weakly to a probability measure P*. By the Skorohod’s almost sure repre-
sentation theorem (see Theorem 6.17 which is a simplified version of Theorem
1.10.4 on page 59 of van der Vaart and Wellner [187]) there exist a probability
space (ﬁ,?, @) together with a sequence of processes {Y",n € N} and a pro-
cess Y with distribution P, defined on € taking values in C ([0,T],RY) with
L(Y") =L (X") foralln > 1, P* = L(Y), and lim,,,,, Y = Y almost surely
in C ([O,T ],]Rd). Moreover, for each n € N, there exists a measurable map
¢ : 2 — Q such that Y™ (@) = X" (¢, (@)), w € Q. Furthermore, for Y" we

can choose a Brownian motion W™ on 2 such that
t

V) = Y(0)+ | el (' (s) ds

+LUWW$YWW@deW$ (6.86)
which implies that

RARD mek Y™ (7(5)) 0 (07(5), Y™ (57°(5))) ds. (6.87)

The maps ¢, are measurable, and P* = Po ¢ ! for n = 1,2,..., where P"
is the probability measure describing the distribution of the process X™ on the
original probability space where X™ lives on. Since we build up our Euler scheme
{X™: n = 1} on the same probability space, P" actually does not depend on n.
If we define W"(w) = B (¢" (w)), then W™ is a Brownian motion on (2, F, P).
This is because for any Borel set D,

PWme D] =P[weqQ, B(¢" @) e D] =P[o; (B~ (D))]

=P"[B~'(D)] =P[Be D]. (6.88)
Since Y™ converges to Y almost surely and sup E [ sup |Y”|4] < o0, by Theo-
n>=1 0<s<T
rem 2.2 of Kurtz and Protter [102], for all 0 <t < T,

1 7 n n
L iy (V7,97 () = (V2 Y3) 1), (6:89)
This completes the outline of the first part of the proof of Theorem 6.10. U
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6.14. LEMMA. The sequence {<an, YJ”> (t),ne N} converges not only P-almost
surely, but also in the space L* (E,F,F).

PROOF. The equality in (6.89) is a consequence of the fact that, for ¢ € [0, T
fixed, uniform integrability of the sequence {(Y;",Y;")(t), n € N} is uniform
L'-integrable. This property is based on the linear growth property of the
coefficients ¢(t, z) and o (¢, x) which yields the finiteness of
sup E lmax (Y™ Y™ ()] ] =supE [max (X" X™ ()] (6.90)

n>=1 0<t<T n>1 o<t<T

For the latter see (6.81) in Lemma 6.11. The upshot of the finiteness of the
expressions in (6.90) is that, for N > 0 large,

B[y ) ()], | y7) (0)] = V]
- EU<X" X7 0], (X7, X7) (0] > N]
[\<X" X7 (t ] ] < jlviil?EUX",X% GINE (6.91)

The inequality in (6.91) shows the uniform integrability of the sequence
{(Y",Y]") (t), n e N}.

Since, in addition, this sequence converges P-almost surely, it converges in
L' (Q, F,P). This ends the proof of Lemma 6.14. O
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We also need the following lemma.

6.15. LEMMA. Put A™ = Jnax |7']?+1 — 7‘,?| If the conditions in Theorem 6.10
<ksn

are satisfied, and lim A" =0, then for all i, j and 0 <t < T,

n—00
t

L*- lim f ci (n"(s), Y™ (n"(s))) ds = J ¢i(s,Y (s)) ds, and

n—00 0 0

L'- lim J gk (n"(s), Y™ (n"(s))) on,; (n"(s), Y™ (n"(s))) ds

n—00 0

_ J; oix (5,Y (5)) o (5,Y (s)) ds. (6.92)

CONTINUATION OF THE PROOF OF THEOREM 6.10. We introduce the fol-
lowing sequence of processes {M "in> 1} which are in fact martingales relative

to the (ﬁ, 7, @) endowed with the filtration (?:L) , where ?’":L is the o-field

0<t<T B
generated by (W™(s): 0 < s <t)uN. Here N denotes the collection of P-null
sets. In fact we introduce:

M) =Y(t) - L c(s,Y(s)) ds,

(1) = Y"(t) - f ¢ (1" (3), Y™ (1"(s))) ds

=Y (0) + L o (n"(s), Y™ (1"(s))) dW"(s). (6.93)

Since Y'(¢) is the pointwise and weak limit of the sequence {Y™, n > 1} it can be
proved that the process M (t) is a martingale relative to the filtration determined
by the process t — Y (t), 0 < t < T. Its quadratic covariation is given by

(M;,M;)(t) = Z L 0k (5,Y(s)) ok (s,Y(s)) ds. (6.94)

From this martingale property and from (6.94) it follows that there exists a
Brownian motion ¢ — B(t), 0 < t < T, possibly on an enlarged sample path

space such that
t

M(t) = M(0) + L o (s,Y(s)) dB(s). (6.95)
The equality in (6.95) implies:

Y(t) =Y(0)+ L c(s,Y(s)) ds + L o(s,Y(s)) dB(s). (6.96)

The equality in (6.96) means that the process t — Y(t), 0 < t < T, is the
(unique) weak solution to the equation in (6.76). Here we employ the equality
in (6.80) with X(¢) = Y (¢) and B(t) = B(t). The proof of the existence of
the Brownian motion with the property exhibited in (6.95) can be found in
Theorem 7.1’ Tkeda and Watanabe [82]. This completes the outline of the proof
of Theorem 6.10. d

t t
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Let (Q T, (Ft)i=0 ) be a filtered probability space. We begin with some no-
tations. For a, b € R we write a A b = min (a,b) For a process t — X(t),
t =0, we denote X*(t) 1= supy<s<s | X(5)|. For a continuous adapted process
t — X(t) and a stopping time 7 we let X (7) be as usual and X7(¢) is the
continuous adapted process defined by X7(t) := X (7 A t). For a continuous
local martingale ¢t — M(t), t > 0, also written as M = (M(t)),., we denote by
t — (M, M) (t) the quadratic variation process. If M and N are both contin-
uous local martingales we let t — (M, N) (t), t = 0, be the covariation process
or cross-variation.

The next result is known as the Burkholder-Davis-Gundy inequalities. It was
first proved for discrete martingales and p > 1 by Burkholder in 1966. In 1968,
Millar extended the result to continuous martingales. In 1970, Davis extended
the result for discrete martingales to p = 1. The extension to p > 0 was obtained
independently by Burkholder and Gundy in 1970 and Novikov in 1971. We write
(M, M) (0) for the pointwise limit, as t — oo, of (M, M) (t). This pointwise
limit always exists in [0, 0) U {w0}.

6.16. THEOREM (BDG-inequalities). For each p > 0 there exist positive finite
constants c,, C, € (0,0) such that, for any continuous local martingale t —

M(t), t =0, with M(0) = 0,
GE [(M, M) )| <E[(M* ()] < GE| (M, M) ()] (6.97)

Of course, in (6.97) we may let ¢ — o0 to get the result also for ¢ = oo. The
BDG-inequalities are also true if ¢ — M(t) is an R%valued martingale with
|M(t)| the (Euclidean) norm of M (t). A proof can for example be found in
Kallenberg [88].

A more general result of the following theorem can be found in Van der Vaart
and Wellner [187] Theorem 1.10.4.

6.17. THEOREM (Almost sure representations). Let (€2, T, Pr), oy o0y bE @ s€-
quence of probability spaces and let X, : Q, — C ([0,T],R?), ne Nu{w}, be a
sequence of stochastic continuous processes. Suppose that lim,, ., E, [F (X,)] =
Eo [F (Xo0)] for all bounded continuous functions F : C ([0,T],R?) — R. Then

there exists a probability space (ﬁ,?, @) together with a sequence of stochastic
processes X, : 1 — C ([O, T], ]Rd), n € N u {0}, with the following properties:

(1) limy, o - X, X , P-almost surely;
2) E[F (X,)] = [F X,)] for all n € N U {0} and for all bounded
continuous functions F : C ([0,T],R?) — R.
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In addition to (1) and (2), for each n € N, the process X, can be chosen
0, = ¢ ([0,T],R%)

according to the following diagram %T where the maps

Q
On Q — Q,, are measurable, and where P, = P o gb;l.

The following result was also used in the proof of Theorem 6.10. We owe it to
Ikeda and Watanabe [82] Theorem 7.1’

6.18. THEOREM. Let (Q2,F,P) be a probability space with a filtration (Fy),5, and
let t — M;(t), 1 < i <d, be local martingales with covariation matriz ®(t) =
(Pij(1)1<ijeqr B6 (M, M) (t) = Sé P, i(s)ds, 1 <i,j < d. In addition, let
the predictable matriz process W(t) = (U, (1)) be such that ®; ;(t) =

1<i<d,1<j<n

Z U, ()W ;(t), 1 <1, j <d, and such that Sg 1W;;(s))* ds < o0 for 1 <i, 1 <
k=1

j < n. Then, on some extension (fNZ, f;", ITD) and (f;"t) of (1, F,P) and (F) =,

=0

respectively, there exists an n-dimensional (g'“t) -Brownian motion E(t) such
=0

that

Mt = Y L U, () dBels).

o™
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Prohorov’s theorem. In the proof of Theorem 6.10 we applied Prohorov’s
tightness theorem in compination with the Arzela-Ascoli characterization of
compact subsets of C'[0,T']. It was applied to the sequence X" (t) (Euler scheme)
defined in (6.77).

6.19. THEOREM (Prohorov theorem). Let (P, : n € N) be a sequence of proba-
bility measures on a separable complete metrizable topological space S with Borel
o-field 8. Then the following assertions are equivalent:

(i) For every € > 0 there exists a compact subset K. of S such that
P, [K.] = 1—¢ for allneN.

(ii) Every subsequence of (P, : n € N) has a subsequence which converges
weakly to a probability measure on (S, 8).

A sequence (PP,), satisfying (i) (or (ii)) in Theorem 6.19 is called a Prohorov
set. In the sequel we write C'[0,T] = C ([0,T],R?).

6.20. THEOREM (Arzela-Ascoli). Endow C|[0,T] with the topology of uniform
convergence. A subset A of C|0,T] has compact closure if and only if it has the
following properties:

(i) sup |w(0)| < o0;
we
(ii) The subset A is equi-continuous in the sense that

lim sup sup |w(s) —w(t)| = 0.
010 0<s,t<T, |s—t|<6 weA

From (i) and (ii) it follows that sup sup |w(s)| < o0, and hence A is uniformly
weA se[0,T]

bounded. The result which is relevant here reads as follows. It is the same as
Theorem T.8.4 in Bhattacharaya and Waymire [20].

6.21. THEOREM. Let (P,), be a sequence of probability measures on C[0,T].
Then (P,,), is tight if and only if the following two conditions hold.

(i) For each n > 0 there is a number B such that
P,[weC[0,T]: |w(0)]>B]<n, n=1,2 ...
(ii) For each e >0, n > 0, there is a 0 < § < 1 such that

P, |we C[0,T]: sup lw(s) —w(t)|=e| <n, n=1,2,...

0<s,t<T, |s—t|<d

ProOF. If the sequence (IP,), is tight, then given 1 > 0 there is a compact
subset K of C ([0,T]) such that P,(K) > 1 —n for all n. By the Arzela-Ascoli
theorem (Theorem 6.20), if B > sup,,j |w(0)], then

P, [weC[0,T]: |w(0)| = B] <P, [K|<1-(1-n)=n.

Download free eBooks at bookboon.com



Also given € > 0 select 6 > 0 such that sup sup lw(s) — w(t)] < e. Then

weK 0<s,t<T, |s—t|<d

Py

we C[0,T]: sup lw(s) —w(t)] 28] <P, [K] <7

0<s,t<T, [s—t|<é

for all n = 1. The converse goes as follows. Given 1 > 0, first select B using
(i) such that P, [w e C([0,T]) : |w(0)| < B] =1 — in, for n > 1. Select 6, > 0
using (ii) such that

1
P, |we C([0,T]): sup lw(s) —w(t)| < —] >1— 2"y
0<s t<T, |s—t|<5, r
for all n > 1. Next we take K to be the uniform closure of
= 1
N {wecqo,T]): WOl <B, s Ju(s) —w(t)] < }
re1 0<s,t<T, [s—t|<by r

Then P,,(K) > 1—nforn > 1, and K is compact by the Arzela-Ascoli theorem.
This completes the proof Theorem 6.21. 0

SHORTER PROOF OF THEOREM 6.10. The Banach space C ([0, 7], R?) be-
ing separable, Prohorov’s theorem (6.19) in conjunction with Lemma 6.12 then
implies that the sequence {X™, n > 1} is tight in C ([O, T],]Rd). Thus for any
subsequence of the sequence {X" n > 1} there exists a further subsequence
{X™, k> 1} and a process t — X(t), t € [0,T], in C ([0,T],R?) such that
the sequence {X™, k > 1} converges to the process t — X (t), 0 <t < T, not
only weakly, but also P-almost surely uniformly on [0,7T]. Let P™ be the dis-
tribution (or law) of the process X™. Since the equation in (6.52) is supposed
to have unique weak solutions, it follows that the sequence {P", n > 1} itself
converges weakly to a probability measure on C' ([0, 7], R?). Let us show this.
Take any subsequence {X™ k > 1} which converges, P-almost surely, uniformly
on [0,T] to a process X. Let P® be the distribution of X. Then the sequence
{X™: n e N} converges weakly to X . If this were not the case, then there would
exist ¢ > 0 and a bounded continuous function F : C ([0,T],R?) — R such
that

B [F] = EZ [F]| = [E[F (X™)] -E[F(X)]| > € (6.98)
for some subsequence {X"™, m > 1}. By passing to another subsequence we
may assume that the subsequence itself converges P-almost surely to a process
X. Hence it converges weakly, and by (6.98) we get
lim [B" [F] ~E*[F]| = [E|F (X)| ~E[F (X))| > = (6.99)

m—00

Since the coefficients of the equation in (6.76) are continuous it follows that both
processes X and X satisfy this equation (by L'-convergence). Weak uniqueness

implies that the distribution of X and X are the same, which contradicts (6.99).
This completes the proof of Theorem 6.10. 0
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state:transient, 48
stationary distribution, 26, 53
stationary measure, 37, 50, 52, 53, 202,
206
stationary process, 12
step functions with unit jumps, 162
Stieltjes measure, 377
Stirling’s formula, 57
stochastic differential equation, 185
stochastic integral, 105, 265
stochastic process, 11
stochastic variable, 12, 386
stochastically continuous process, 162
stochastically equivalent processes, 388
stopped filtration, 392
stopping time, 20, 21, 45, 60, 67, 70, 116,
264, 389, 390, 396, 419
discrete, 20
terminal, 20, 25
strong law of large numbers, 43, 78, 158,
354, 358
strong law of large numbers (SLLN), 40
strong Markov process, 105, 123, 125, 144,
421
strong Markov property, 46, 50, 117
strong solution to SDE, 256
strong solutions to SDE
unique, 256
strong time-dependent Markov property,
117, 124
strongly continuous Feller semigroup, 118
sub-martingale, 393, 396, 398
sub-probability kernel, 421
sub-probability measure, 1

submartingale, 18, 21, 229
submartingale convergence theorem, 160
submartingale of class (DL), 435
super-martingale, 393

supermartingale, 18, 21

Tanaka’s example, 307
terminal reward, 42
terminal stopping time, 20, 25, 86
theorem
[t6 representation, 288
Kolmogorov’s extension, 294
martingale representation, 290
of Arzela-Ascoli, 75, 76, 468, 472, 473
of Bochner, 94, 318, 322
of Doob-Meyer, 21
of Dynkin-Hunt, 411
of Fernique, 223
of Fubini, 201, 344
of Girsanov, 291, 294
of Helly, 348
of Komlos, 424
of Lévy, 264, 284, 305
of Prohorov, 75, 468, 472
of Radon-Nikodym, 305
of Riemann-Lebesgue, 314
of Scheffé, 41, 293, 383
of Schoenberg, 328
of Stone-Weierstrass, 315, 319
Skorohod-Dudley-Wichura
representation, 298, 301
time, 12
time change, 20
stochastic, 20
time-dependent Markov process, 202, 205
time-homogeneous process, 12, 31
time-homogeneous transition probability,
26
time-homogenous Markov process, 421
topology of uniform convergence on
compact subsets, 324
tower property of conditional expectation,
6
transient non-symmetric random walk, 60
transient state, 48, 49
transient symmetric random walk, 57
transition function, 123
transition matrix, 53
translation operator, 12, 26, 113, 122,
415, 421
translation variables, 129

uniformly distributed random variable,
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uniformly integrable family, 6, 21, 41, 383,
401

uniformly integrable martingale, 403

uniformly integrable sequence, 399

unique pathwise solutions to SDE, 256

uniqueness of the Doob-Meyer
decomposition, 431

unitary operator, 354, 356

upcrossing inequality, 159, 397

upcrossing times, 159

upcrossings, 159

vague convergence, 386

vague topology, 324, 348

vaguely continuous convolution semigroup
of measures, 329

vaguely continuous convolution semigroup
of probability measures, 403, 405

Vasicek model, 206, 212, 449

volatility, 190

von Neumann’s ergodic theorem, 354

Wald’s equation, 38

weak convergence, 339

weak law of large numbers, 78, 354

weak solutions, 276

weak solutions to SDE’s, 256, 291, 295,
303

unique, 278, 307

weak solutions to stochastic differential
equations, 278

weak topology, 323

weak*-topology, 348

weakly compact set, 352, 353

Wiener process, 101
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