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Preface

This book deals with several aspects of stochastic process theory: Markov
chains, renewal theory, Brownian motion, Brownian motion as a Gaussian pro-
cess, Brownian motion as a Markov process, Brownian motion as a martingale,
stochastic calculus, Ito’s formula, regularity properties, Feller-Dynkin semi-
groups and (strong) Markov processes. Brownian motion can also be seen as
limit of normalized random walks. Another feature of the book is a thorough
discussion of the Doob-Meyer decomposition theorem. It also contains some
features of stochastic differential equations and the Girsanov transformation.
The first chapter (Chapter 1) contains a (gentle) introduction to the theory
of stochastic processes. It is more or less required to understand the main
part of the book, which consists of discrete (time) probability models (Chap-
ter 2), of continuous time models, in casu Brownian motion, Chapter 3, and
of certain aspects of stochastic differential equations and Girsanov’s transfor-
mation (Chapter 4). In the final chapter (Chapter 5) a number of other, but
related, issues are treated. Several of these topics are explicitly used in the
main text (Fourier transforms of distributions, or characteristic functions of
random vectors, Lévy’s continuity theorem, Kolmogorov’s extension theorem,
uniform integrability); some of them are treated, like the important Doob-Meyer
decomposition theorem, but are not explicitly used. Of course Ito’s formula
implies that a C2-function composed with a local semi-martingale is again a
semi-martingale. The Doob-Meyer decomposition theorem yields that a sub-
martingale of class (DL) is a semi-martingale. Section 1 of Chapter 5 contains
several aspects of Fourier transforms of probability distributions (characteristic
functions). Among other results Bochner’s theorem is treated here. Section
2 contains convergence properties of positive measures. Section 3 gives some
results in ergodic theory, and gives the connection with the strong law of large
numbers (SLLN). Section 4 gives a proof of Kolmogorov’s extension theorem
(for a consistent family of probability measures on Polish spaces). In Section
5 the reader finds a short treatment of uniform integrable families of functions
in an L'-space. For example Scheffé’s theorem is treated. Section 6 in Chapter
5 contains a precise description of the regularity properties (like almost sure
right-continuity, almost sure existence of left limits) of stochastic processes like
submartingales, Lévy processes, and others; it also contains a proof of Doob’s
maximal inequality for submartingales. Section 7 of the same chapter contains
a description of Markov process theory starting from just one probability space
instead of a whole family. The proof of the Doob-Meyer decomposition theo-
rem is based on a result by Komlos: see Section 8. Throughout the book the
reader will be exposed to martingales, and related processes. In the present
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version several corrections were made, and at some places new text is included.
The final chapter, entitled “Advanced stochastic processes: a summary of the
lectures” summarizes, to some extent, the contents of the previous chapters.

Readership. From the description of the contents it is clear that the text
is designed for students at the graduate or master level. The author believes
that also Ph.D. students, and even researchers, might benefit from these notes.
The reader is introduced in the following topics: Markov processes, Brownian
motion and other Gaussian processes, martingale techniques, stochastic differ-
ential equations, Markov chains and renewal theory, ergodic theory and limit
theorems.
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CHAPTER 1

Stochastic processes: prerequisites

In this chapter we discuss a number of relevant notions related to the theory
of stochastic processes. Topics include conditional expectation, distribution of
Brownian motion, elements of Markov processes, and martingales. For com-
pleteness we insert the definitions of a o-field or o-algebra, and concepts related
to measures.

1.1. DEFINITION. A o-algebra, or o-field, on a set €2 is a subset A of the power
set P (Q) with the following properties:

(i) Qe A;
(ii)) A € A implies A¢:= Q\A € A,

o0
(iii) if (A,),>, is a sequence in A, then U A, belongs to A.
n=1
Let A be a o-field on 2. Unless otherwise specified, a measure is an application
p: A — [0, 00] with the following properties:

p () =0

if (An), is a mutually disjoint sequence in A, then

(U] - £ S - Span.

N—ow j=1

If 14 is measure on A for which p (€2) = 1, then p is called a probability measure;
if 1 (2) <1, then p is called a sub-probability measure. If g : A — [0,1] is a
probability space, then the triple (€2, A, i) is called a probability space, and the
elements of A are called events.

Let M be a collection of subsets of P (2), where 2 is some set like in Definition
1.1. The smallest o-field containing M is called the o-field generated by M, and
it is often denoted by o (M). Let (€2, A, 1) be a sub-probability space, i.e. pu is
a sub-probability on the o-field A. Then, we enlarge €2 with one point A, and
enlarge A to

AL =0 (Au{A}) ={AeP(Q%): AnQeA}.
Then p2 : A® — [0,1], defined by
pE(A) = p(An Q) + (1-p(Q)1a (L), AeA®, (1.1)

turns the space (QA,AA, MA) into a probability space. Here Q% = Q u {A}.
This kind of construction also occurs in the context of Markov processes with
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finite lifetime: see the equality (3.75) in (an outline of) the proof of Theorem
3.37. For the important relationship between Dynkin systems, or A-systems,
and o-algebras, see Theorem 2.42.

1. Conditional expectation

1.2. DEFINITION. Let (2, A,[P) be a probability space, and let A and B be

P(AnB
events in A such that P[B] > 0. The quantity P (A | B) = %
called the conditional probability of the event A with respect to the event B.
We put P (A | B) = 0if P(B) = 0.

is then

Consider a finite partition {By,...,B,} of Q with B; € A for all j = 1,...,n,
and let B be the subfield of A generated by the partition {Bj,..., B,}, and

write
n

P[A|B] =) P(A]B))1s,.
j=1
Then P [A ‘ B] is a B-measurable stochastic variable on €2, and

JIP[A|3]d]P>:f 14dP for all B € B.
B B

www.job.oticon.dk O‘l'ICOI'\
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Conversely, if f is a B-measurable stochastic variable on ) with the property
that for all B € B the equality §, fdP = {,1,4dP holds, then f = P[A | B]
P-almost surely. This is true, because {, ( f—P [A ‘ B]) dP = 0 for all B € B.
If B is a sub-field (more precisely a sub-o-field, or sub-o-algebra) generated by
a finite partition of €, then for every A € A there exists one and only one class
of variables in L' (Q, B,P), which we denote by P [A | B], with the following
property

f[P[A‘B]dIP’zJ 14dP  for all B € B.
B B

The variable 377 P (A ‘ B;) 1p, is an element from the class P [A | B|.

If we fix B € A with P (B) > 0, then the measure A — P (A | B) is a probability
measure on (2, A). If P(B) = 0, then the measure A — P (A | B) is the zero-
measure.
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Let X be a P-integrable real or complex valued stochastic variable on €2. Then
X is also P ( | B)—integrable, and

JXdIP’ (| B) = %, provided P (B) > 0.

This quantity is the average of the stochastic variable over the event B. As
before, it is easy to show that if B is a subfield of A generated by a finite
partition {Bj,...,B,} of €, then there exists, for every P-integrable real or
complex valued stochastic variable X on {2 one and only one class of functions
in L' (2, B,P), which we denote by E[X | B] with the property that

J E[X\B]d]P’zf XdP forall BeB.
B B

The variable > 77, § XdP (- ‘ Bj) 1, is an element from the class E [ X ‘ B|.

The next theorem generalizes the previous properties to an arbitrary subfield
(or more precisely sub-o-field) B of A.

1.3. THEOREM (Theorem and definition). Let (2, A,P) be a probability space
and let B be a subfield of A. Then for every stochastic variable X € L' (2, A, P)
there exists one and only one class in L' (0, B, P), which is denoted by E [X ‘ B]
and which is called the conditional expectation of X with respect to B, with the
property that

JE[X\B]dIP:f X dP  for all Be B.
B B

If X = 14, with A € A, then we write IP’[A | B] instead of E [1,4 ’ B]; if B
is generated by just one stochastic variable Y, then we write E [X | Y] and
P[A | Y] instead of respectively E[X | o (Y)] and P[A | o (V)].

PROOF OF THEOREM 1.3. Suppose that X is real-valued; if X = Re X +
tIm X is complex-valued, then we apply the following arguments to Re X and
Im X. Upon writing the real-valued stochastic variable X as X = X* — X,
where X are non-negative stochastic variables in L' (2, A, P), without loss of
generality we may and do assume that X > 0. Define the measure p : A —

[0,0) by pu(A) = f XdP, Ae A. Then p is finite measure which is absolutely

continuous with res?)ect to the measure P. We restrict p to the measurable space
(Q2, B); its absolute continuity with respect to P confined to (€2, B) is preserved.
From the Radon-Nikodym theorem it follows that there exists a unique class
Y € L' (Q, B, P) such that, for all B € B, the following equality is valid:

u(B) = f YdP, and hencej XdP = J YdP.
B B B

This proves Theoreml.3. U

If B is generated by a countable or finite partition {B; : j € N}, then it is fairly
easy to give an explicit formula for the conditional expectation of a stochastic
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X e L' (9, A,P) with respect to B:

B[ 8] - 520 - SR | ],

P (Bj jeN

Next let B be an arbitrary subfield of A, let X belong to L' (€, A,P), and let
B be an atom in B. The latter means that P (B) > 0, and if A € B is such
that A < B, then either P(A) = 0 or P(B\A) = 0. If Y represents E [X | B],
then Y1pg = blp, P-almost surely, for some constant b. This follows from the
B-measurability of the variable Y together with the fact that B is an atom for
(€, B,P). So we get §, XdP = §,E[X | B]dP = {Y15dP = bP (B), and hence

§p XdP

. Consequently, on the atom B we have:

P (B)
XdP
E [X ‘ B] = Sg B) = b, P-almost surely.
In particular, for X = 14, we have on the atom B the equality
P(AnB
P [A ! ’B] = EP(*GB))’ P-almost surely.

If B is not an atom, then the conditional expectation on B need not be constant.

In the following theorem we collect some properties of conditional expectation.
For the notion of uniform integrability see Section 5.

1.4. THEOREM. Let (2, A,P) be a probability space, and let B be a subfield of
A. Then the following assertions hold.

(1) If all events in B have probability 0 or 1 (in particular if B is the
trivial field {5, Q}), then for all stochastic variables X € L' (2, A, P)
the equality E [X | B] = E (X) is true P-almost surely.

(2) If X is a stochastic variable in L' (Q, A, P) such that B and o(X)
are independent, then the equality E [X ! B] = E (X) is true P-almost
surely.

(3) If a and b are real or complex constants, and if the stochastic variables
X andY belong to L' (Q, A, P), then the equality

E [aX +bY ‘ B] = alE [X ‘ B] + VE [Y ‘ B] 18 true P-almost surely.

(4) If X and Y are real stochastic variables in L* (Q, A, P) such that X <
Y, then the inequality E [X ‘ fB] < E [Y ‘ B] holds P-almost surely.
Hence the mapping X — E [X | fB] is a mapping from L' (A, P)
onto L' (Q, B, P).

(5) (a) If (X, : n € N) is a non-decreasing sequence of stochastic variables

in L' (Q,A,P), then

sup E [Xn ‘ B] =K [sup X, ! B], P-almost surely.
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(b) If (X, : n € N) is any sequence of stochastic variables in
LY (Q, A, P) which converges P-almost surely to a stochastic vari-
able X, and if there exists a stochastic variable Y € L' (Q, A, P)
such that | X,| <Y for allm € N, then

lim E [Xn | B] =E|lim X, ‘ B], P-almost surely, and in L' (2, B, P).

n—ao0 |:7’L*>OO

The condition “4X,| <Y for alln € N with Y € L' (Q,A,P)”
may be replaced with “the sequence (X,), .y is uniformly integrable in
the space L' (2, A,P)” and still keep the second conclusion in (5b).
In order to have P-almost sure convergence the uniform integrability
condition should be replaced with the condition

M>1()I}£J€R ilelgE [IXn|, [Xa| > M | B] =0, P-almost surely. (1.2)

(6) If c(x) is a convexr continuous function from R to R, and if X belongs

to L' (Q, A, P), then
c(E[X|B]) <E[c(X)|B], P-almost surely.

(7) Letp =1, and let X be a stochastic variable in LP (2, A,P). Then the
stochastic variable E [X | 3] belongs to LP (Q, B, P), and

[E[X | B]|, <|X],-

I,
So the linear mapping X — E [X ‘ B] is a projection from LP (Q, A, P)
onto LP (2, B, P).

(8) (Tower property) Let B’ be another subfield of A such that B < B' < A.
If X belongs to L' (2, A, P), then the equality
E[E[X |B']||B]=E[X |B]| holds P-almost surely.
(9) If X belongs to L* (0, B,P), then E [X | B] = X, P-almost surely.
(10) If X belongs to L' (Q, A, P), and if Z belongs to L (Q, B, P), then
E [ZX | B] =ZE [X | B] ,  P-almost surely.

(11) If X belongs to L? (Q, A, P), then E[Y (X —E[X ‘ B|)] = 0 for all
Y € L? (92, B,P). Hence, the mapping X — E [X \ B] is an orthogonal
projection from L? (2, A,P) onto L? (9, B, P).

Observe that for B the trivial o-field, i.e. B = {F, 1}, the condition in (1.2) is
the same as saying that the sequence (X)), is uniformly integrable in the sense
that

inf  supE[|X,|, |X,| > M]=0. (1.3)

M>0, MeR neN

ProoF. We successively prove the items in Theorem 1.4.

(1) For every B € B we have to verify the equality:

L; XdP = L E (X) dP.

Download free eBooks at bookboon.com



ADVANCED STOCHASTIC PROCESSES: PART | STOCHASTIC PROCESSES: PREREQUISITES

If P(B) = 0, then both members are 0; if P (B) = 1, then both mem-
bers are equal to E (X). This proves that the constant E (X) can be
identified with the class E [X | B|.

(2) For every B € B we again have to verify the equality: {, XdP =
{5 E (X)dP. Employing the independence of X and B € B this can be
seen as follows:

f X dP =J X1pdP = E[X1p] = E[X]|E[15] =J E[X]dP.  (1.4)

B Q B

(3) This assertion is clear.

(4) This assertion is clear.

Schiumbergenr
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(5) (a) Forall Be B and neN wehave {,E[X, | B]dP = {, X, dP. By
(4) we see that the sequence of conditional expectations

E [Xn ‘ B] , n € N, increases P-almost surely.

The assertion in (5a) then follows from the monotone convergence
theorem.

(b) Put X = supy, Xk, X* = inf;>, Xj. Then we have —Y <
X< X, < XF <Y, P-almost surely. Moreover, the sequences
(Y — X}), ey and (Y + X*) _ are increasing sequences consisting
of non-negative stochastic variables with ¥ — limsup,,_,, X,, and
Y +liminf,_, X,, as their respective suprema. Since the sequence
(X1),en converges P-almost surely to X, it follows by (5a) together
with (4) that

E[X*|B]1E[X*|B] and E[X}|B]lE[X™|B].
From the pointwise inequalities X* < X,, < X it then follows
that 7}1_1)1010 E [Xn|B] =E [X ‘ 3], P-almost surely. Next let the
uniformly integrable sequence (X,,), in L' (2, A,P) be pointwise
convergent to X. Then 7}HIC}O]E [| X, — X|] = 0. What we need is

that
lim E[|X, — X| | B] = 0. (1.5)

n—0o0

Under the extra hypothesis (1.2) this can be achieved as follows:
limsupE [|X,, — X| | B]
n—00

<limsupE [|X, — X/, |X, — X| < M | B]

n—0o
+limsupE [|X,, — X, |X, — X| > M| | B]
n—00
(apply what already has been proved in (5b), with |X,, — X]| in-
stead of X,,, to the first term)
<limsupE [|X, — X, |X,, — X| > M| | B]. (1.6)

n—0o0

In (1.6) we let M tend to oo, and employ (1.2) to conclude (1.5).
This completes the proof of item (5).
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(6) Write ¢(z) as a countable supremum of affine functions
C(‘T) = sup Ln(x)v (17)

neN

where L, (2) = a,z + b, < c(2), for all those z for which ¢(z) < o0,
i.e. for appropriate constants a, and b,. Every stochastic variable

L, (X) is integrable; by linearity (see (3)) we have L, (E[X | B]) =
E[L, (X) | B]. Hence
L, (E[X | B]) <E[c(X)]|B].
Consequently,
c (E [X

B]) =sup L, (E[X | B]) <E[c(X)|B].

The fact that convex function can be written in the form (1.7) can be
found in most books on convex analysis; see e.g. Chapter 3 in [34].

) It suffices to apply item (6) to the function ¢(z) = |z, p > 1.

) This assertion is clear.

) This assertion is also obvious.

) This assertion is evident if Z is a finite linear combination of indicator
functions of events taken from B. The general case follows via a limiting
procedure.

(11) This assertion is clear if Y is a finite linear combination of indicator

functions of events taken from B. The general case follows via a limiting
procedure.

The proof of Theorem 1.4 is now complete. U
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2. Lemma of Borel-Cantelli

1.5. DEFINITION. The limes superior or upper-limit of a sequence (A,), .y in
a universe () is the set A of those elements w € ) with the property that w
belongs to infinitely many A,’s. In a formula:

A= li?ﬁsolélp A, = ﬂ U Ay

neN k=n
The indicator-function 14 of the limes-superior of the sequence (4,), oy is equal
to the limsup of the sequence of its indicator-functions: 14 = limsup 14, .
n—ao0
The limes inferior or lower-limit of a sequence (A,,), . in a universe € is the set
A of those elements w € €) with the property that, up to finitely many Ay’s, the
element (sample) w belongs to all A,,’s. In a formula:

A = liminf A, = U ﬂ Ay
noe neN k=n

The indicator-function 1,4 of the limes-inferior of the sequence (A,,), . is equal

to the liminf of the sequence of its indicator-functions: 14 = liminf 1, .
n—aoo
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1.6. LEMMA. Let (o), oy be a sequence of real numbers such that 0 < o, < 1.
Then lim,,_, >, ax < 00 if and only if lim, o, [ [;_, (1 — ay) > 0.

PRrOOF. For 0 < a < 1 the following elementary inequalities hold:

a
———<log(l —a) < —a.
7 og (1l —a) e

Hence we see

i —— log<n(1—ak)> <—iak.

k=1

The assertion in Lemma 1.6 easily follows from these inequalities. U

1.7. LEMMA (Lemma of Borel-Cantelli). Let (A,), .y be a sequence of events,
and put A = limsup,, ., Ap = (Veny Uisn A

(1) If X7 P(A,) < o, then P(A) = 0.

(ii) If the events A,, n € N, are mutually P-independent, then the converse
statement is true as well: P(A) < 1 implies Y, | P(Ax) < «©, and
hence Y, P (Ay) = o if and only if P (A) = 1.

PRroOF. (i) For P(A) we have the following estimate:

0

P(A) < inf 31 P(Ay). (1.8)

Since Y7 | P(A,) < o0, we see that the right-hand side of (1.8) is 0.
(ii) The statement in assertion (ii) is trivial if for infinitely many numbers k the
equality P (Ax) = 1 holds. So we may assume that for all £ € N the probability

P (Ay) is strictly less than 1. Apply Lemma 1.6 with oy, = P (Aj) to obtain that
Sl P(Ay) < o if and only if

(the events (Ak)neN are independent)

— lim P (ﬁ (Q\Ak)> — lim P (Q\ O Ak) —1-P(A). (1.9)

k=1 k=1

This proves assertion (ii) of Lemma 1.7. O

3. Stochastic processes and projective systems of measures

1.8. DEFINITION. Consider a probability space (€2, A,P) and an index set I.
Suppose that for every t € I a measurable space (Ey, €;) and an A-&;-measurable
mapping X (f) : Q@ — E; are given. Such a family {X(¢): ¢t € I} is called a
stochastic process.
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1.9. REMARK. The space () is often called the sample path space, the space
E, is often called the state space of the state variable X (t). The o-field A
is often replaced with (some completion of) the o-field generated by the state
variables X (t), t € I. This o-field is written as F. Let (.5, 8) be some measurable
space. An F-8§ measurable mapping Y : 2 — S is called an S-valued stochastic
variable. Very often the state spaces are the same, i.e. (E;, &;) = (E, &), for all
state variables X (t), t € I.

In applications the index set I is often interpreted as the time set. So I can
be a finite index set, e.g. I = {0,1,...,n}, or an infinite discrete time set, like
I =N={0,1,...} or I =Z. The set I can also be a continuous time set: I =R
or [ = R* = [0,00). In the present text, most of the time we will consider
I =[0,00). Let I be N, Z, R, or [0,00). In the so-called time-homogeneous or
stationary case we also consider mappings v, : 2 — Q, s € I, s > 0, such that
X(t)os = X(t+s), P-almost surely. It follows that these translation mappings
Py : Q > Q, s e I, are F-F;_s-measurable, for all t > s. If Y is a stochastic
variable, then Y o1 is measurable with respect to the o-field o {X () : t > s}.
The concept of time-homogeneity of the process (X (t) : t € I) can be explained
as follows. Let Y : Q — R be a stochastic variable; e.g. Y = []7_, f; (X (t;)),
where f; : ' — R, 1 < j < n, are bounded measurable functions. Define the
transition probability P (s, B) as follows: P (s,B) =P (X(s)e B),s€ I, Be&.
The measure B — E[Y o ¢, X(s) € B] is absolutely continuous with respect to
the measure B — P (s, B), B € €. It follows that there exists a function F'(s, x),
called the Radon-Nikodym derivative of the measure B — E[Y o ¥y, X(s) € B]
with respect B +— P (s, B), such that E[Y o d,, X (s) € B] = { F (s,z) P (s, dx).
The function F (s, x) is usually written as

E[Y 0¥y, X(s) € dx]
P[X(s) € dx]

F<S,I>:E[YOI93‘X<S)ECZI] =

1.10. DEFINITION. The process (X (t): t € I) is called time-homogeneous or
stationary in time, provided that for all bounded stochastic variables Y : 2 — R
the function

E[Y o9, ‘ X(s) e dz] isindependent of s € I, s > 0.

In practice we only have to verify the property in Definition 1.10 for Y of the
form Y = [[j_, f; (X (t;)), where f; : By — R, 1 < j < n, are bounded
measurable functions. Then Y oy = [[/_, f; (X (¢; + s)). This statement is a
consequence of the monotone class theorem.

3.1. Finite dimensional distributions. Asabove let (€2, A, P) be a prob-
ability space and let {X(t): t € I} be a stochastic process where each state
variable X (t) has state space (E, &;). For every non-empty subset J of I we
write E7 = [],.; By and &7 = ®,c;€; denotes the product-field. We also write
XJ = ey Xi. So that, if J = {t1,...,t,}, then X; = (X (t1),...,X (¢t,)). The
mapping X ; is the product mapping from € to £/. The mapping X; : Q — E”
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is A-&7-measurable. We can use it to define the image measure P:
P, (B) = X,P(B) =P[X;'B] =Plwe Q: X,(w)e B] =P[X, € B],

where B € &7, Between the different probability spaces (EJ &I P J) there exist
relatively simple relationships. Let J and H be non-empty subsets of I such that
J < H, and consider the £7-&7-measurable projection mapping p : E# — E/,
which "forgets” the ”coordinates” in H\J. If H = I, then we write p; = p}.
For every pair J and H with J ¢ H < I we have X; = p!/ o X}, and hence we
get Py (B) = piPy (B) = Py [p!f € B], where B belongs to &7. In particular
if H = I, then P;(B) = p,P(B) = P[py € B], where B belongs to £;. If
J ={t1,...,t,} is a finite set, then we have
Py[By x - x B,] =P[X;"(By x -+ x By)]
= ]P)[X(tl) EBl,...,X(tn) EBn],

with B; € &, for 1 < j <n.

1.11. REMARK. If the process {X(t): t € I} is interpreted as the movement
of a particle, which at time ¢ happens to be in the state spaces E;, and if
J = {t1,...,t,} is a finite subset of I, then the probability measure P; has the
following interpretation:

For every collection of sets By € &, ..., B, € &, the number
P;[By x -+ x B,]

is the probability that at time ¢; the particle is in By, at time {5 it is
in By, ..., and at time £, it is in B,,.
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1.12. DEFINITION. Let H be the collection of all finite subsets of I. Then the
family {(E‘], el P ]) cJe fJ-C} is called the family of finite-dimensional distri-
butions of the process {X (¢) : t € I}; the one-dimensional distributions

{(Et, (C:t,]P){t}) 1 te [}

are often called the marginals of the process.

The family of finite-dimensional distributions is a projective or consistent family
in the sense as explained in the following definition.

1.13. DEFINITION. A family of probability spaces {(E’,&’,P;): Je H} is
called a projective, a consistent system, or a cylindrical measure provided that

P;(B) = pj (Py) (B) = Py [p} € B]
for all finite subsets J < H, J, H € H, and for all sets B € 7.

1.14. THEOREM (Theorem of Kolmogorov). Let {(E’, &7, P;): Je H} be a
projective system of probability spaces. Suppose that every space E; is a o-
compact metrizable Hausdorff space. Then there exists a unique probability space
(EI,SI,IP’I) with the property that for all finite subsets J € H the equality
P, (B) = P; [p; € B] holds for all B e &’.

Theorem 5.81 is the same as Theorem 1.14, but formulated for Polish and
Souslin spaces; its proof can be found in Chapter 5. Theorem 1.14 is the same
as Theorem 3.1. The reason that the conclusion in Theorem 1.14 holds for o-
compact metrizable topological Hausdorff spaces is the fact that a finite Borel
measure ;4 on a metrizable o-compact space E is regular in the sense that

pu(B) = sup pw(K)= —inf  w(U), B any Borel subset E. (1.10)

KcB, K compact USK,U open

1.15. LEMMA. Let E be a o-compact metrizable Hausdorff space. Then the
equality in (1.10) holds for all Borel subsets B of E.

PROOF. The equalities in (1.10) can be deduced by proving that the collec-
tion D define by

D= {BEBE: sup u(K) =UinfB,u(U)}

KcB

= {B € Bg: sup u(F) = inf /L(U)} (1.11)
FcB UsB
contains the open subsets of F, is closed under taking complements, and is
closed under taking mutually disjoint countable unions. The second equality
holds because every closed subset of E is a countable union of compact subsets.
In (1.11) the sets K are taken from the compact subsets, the sets U from the
open subsets, and the sets I’ from the closed subsets of E. It is clear that D is
closed under taking complements. Let (z,y) — d(z,y) be a metric on E which
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is compatible with its topology. Let F' be a closed subset of E, and define U,
by

) 1
Unz{er. ;2£d(w,y)<ﬁ}.

Then the subset U, is open, U, 11 D U,, and F = (U,. It follows that p (F) =
inf,, p (Uy,), and consequently, F' belongs to D. In other words the collection D
contains the closed, and so the open subsets of E. Next let (B,,),, be a sequence
of subsets in D. Fix ¢ > 0, and choose closed subsets F,, < B,, and open
subsets U,, © B, such that

(B A\F,) <271 and  p(U,\B,) <e27". (1.12)
From (1.12) it follows that
)

(9 (0)) =+ (0

<Y n(U\By) <e ) 27" =c. (1.13)

n=1

HC8

From (1.13 it follows that

1 (EOJ Bn) = inf{,u(U) U > LOOJ B,, U open} ) (1.14)

n=1

The same argumentation shows that

M<<Q3”>\<,Q )) 2“ B,\F,) 522”1_—. (1.15)

From (1.15) it follows that
Ne
Bn>\<U Fn>> <e (1.16)
n=1

([

for N large enough. From (1.16 it follows that

i (G Bn> = sup {,LL(F) : Fc [OJ B,, F closed} . (1.17)

n=1 n=1

s

Il
—

From (1.14) and (1.17) it follows that | J—_, B, belongs to D. As already men-
tioned, since every closed subset is the countable union of compact subsets the
supremum over closed subsets in (1.17) may replaced with a supremum over
compact subsets. Altogether, this completes the proof of Lemma 1.15. [l

It is a nice observation that a locally compact Hausdorff space is metrizable and
o-compact if and only if it is a Polish space. This is part of Theorem 5.3 (page
29) in Kechris [91]. This theorem reads as follows.

1.16. THEOREM. Let E be a locally compact Hausdorff space. The following
assertions are equivalent:
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(1) The space E is second countable, i.e. E has a countable basis for its
topology.

(2) The space E is metrizable and o-compact.

(3) The space E has a metrizable one-point compactification (or Alexan-
droff compactification).

(4) The space E is Polish, i.e. E is complete metrizable and separable.

(5) The space E is homeomorphic to an open subset of a compact metrizable
space.

A second-countable locally-compact Hausdorff space is Polish: let (U;), be a
countable basis of open subsets with compact closures (K;),, and let V; be an
open subset with compact closure and containing K;. From Urysohn’s Lemma,
let 0 < f; < 1 be continuous functions identically 0 off V;, identically 1 on K,
and put

3 N filz ! ! T, YE
AR s ar Sl yar 2] B
(1.18)

The triangle inequality for the usual absolute value shows that this is a metric.
This metric gives the same topology, and it is straightforward to verify its
completeness. For this argument see Garrett [75].
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4. A definition of Brownian motion
In this section we give a (preliminary) definition of Brownian motion.

4.1. Gaussian measures on R?. For every t > 0 we define the Gaussian
kernel on R? as the function

1 =y
t - - .
pd( 7$>y) (27Tt)d/2 €xp ( 2

Then we have {pq (¢, 2,2) dz = 1, and

st sx+ty
,———, 2 | .
+t s+t

Hence the function p, (¢, z, y) satisfies the equation of Chapman-Kolmogorov:

pd(s,x,z)pd(t,z,y) pd(s + t T y)pd (

de<87 x, Z)pd<t7 z, y)dz = Pd (S + tu z, y) .

This property will enable us to consider d-dimensional Brownian motion as a
Markov process. Next we calculate the finite-dimensional distributions of the
Brownian motion.

4.2. Finite dimensional distributions of Brownian motion. Let 0 <
t; < -+ <t, < o be a sequence of time instances in (0, 0), and fix 7y € R%.
Define the probability measure P, ,, ;. on the Borel field of R? x - x R? (n
times) by (o = 0)

Pooitrotn [B1 X -+ X Bp] = f J dxz,, . ..dx; de ti—1,Tj-1,%5),
Bl n

(1.19)
where By, ..., B, are Borel subsets of R?. Then, with B, = R%, we have

$Otlu---tk Ltksth+15e- X o X By XR XBk-H X XB]

f J J f f dx, ...drg 1 degdeg_q ... dry
By Bj_1 JRd Bk+1 B,

de ti_1, 25 1>5Ug)

n

Pa (te — th—1, Tr—1, Tk) Pa (trs1 — i, Thos Tit1) H p(tj —tj-1,m5-1,75)
j=k+2

(Chapman-Kolmogorov)

k—1
:J f J J dl‘n...d$k+1d$k,1...d$1 npd@j—t]’,l,.ﬁj,l,.ﬁj)
By Bi_1 JBgi1 n j=1

Pa (ter1 = th—1, Tp—1, Ths1) H p(t; — i1, w1, ;)
j=h+2
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tn [B1 X -+ X By X Bgpp X -+ x By]. (1.20)

= Pwo;t1,~~~ytk—1ytk+1 -----

It follows that the family

RYx - xRUBIQ - @B Py op, |[50<ti <+ <ty <oo,neN

Y Y
n times n times

is a projective or consistent system. Such families are also called cylindrical
measures. The extension theorem of Kolmogorov implies that in the present
situation a cylindrical measure can be considered as a genuine measure on the
product field of Q2 := (]Rd)[o’oo). This is the measure corresponding to Brownian
motion starting at xy. More precisely, the theorem of Kolmogorov says that
there exists a probability space (2, F,P,,) and state variables X (¢) : Q — R%
t = 0, such that

]Pmo [X (tl) € Bh cee 7X (tn> € Bn] = ]P)mo;h ..... tn [Bl X X Bn] )
where the subsets B;, 1 < j < n, belong to B¢ It is assumed that

P, [X(0) = 2] = 1.

5. Martingales and related processes

Let (€2, F,P) be a probability space, and let {F; : ¢ € I} be a family of subfields
of &, indexed by a totally ordered index set (I,<). Suppose that the family
{F; : t €I} is increasing in the sense that s < ¢ implies F; € F;. Such a family
of o-fields is called a filtration. A stochastic process { X (t) : t € I}, where X (t),
t € I, are mappings from 2 to E;, is called adapted, or more precisely, adapted
to the filtration {F; : t € I} if every X (t) is F;-€;-measurable. For the o-field
F: we often take (some completion of) the o-field generated by X(s), s < ¢
F=0{X(s): s <t}

1.17. DEFINITION. An adapted process {X(t): t € I} with state space (R, B)
is called a super-martingale if every variable X (t) is P-integrable, and if s < ¢,
s, t € I, implies E [X (t) ‘ 3’8] < X(s), P-almost surely. An adapted process
{X(t) : t e I} with state space (R, B) is called a sub-martingale if every variable
X (t) is P-integrable, and if s < ¢, s, t € I, implies E [ X (¢) ‘ F| = X(s), P-
almost surely. If an adapted process is at the same time a super- and a sub-
martingale, then it is called a martingale.

The martingale in the following example is called a closed martingale.

1.18. EXAMPLE. Let X, belong to L' (Q,F,P), and let {F;: t € [0,00)} be a
filtration in F. Put X (t) = E[Xy | 5], ¢ = 0. Then the process {X(t): t > 0}
is a martingale with respect to the filtration {F; : ¢ € [0,0)}.

The following theorem shows that uniformly integrable martingales are closed
martingales.
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1.19. THEOREM (Doob’s theorem). Any uniformly integrable martingale
{(X(t):t =0} in L'(Q,T,P)

converges P-almost surely and in mean (i.e. in L' (Q,F,P)) to a stochastic
variable Xy, such that for every t > 0 the equality X(t) = E[X, ’ F,] holds
P-almost surely.

Let F be a subset of L' (Q,F,P). Then F is uniformly integrable if for every
e > 0 there exists a function g € L' (Q2, F,P) such that S{|f|>|g|} | f|dP < ¢ for all

f € F. Since P is a finite positive measure we may assume that g is a (large)
positive constant.

1.20. THEOREM. Sub-martingales constitute a convexr cone:

(i) A positive linear combination of sub-martingales is again a sub-martin-
gale; the space of sub-martingales forms a convex cone.
(ii) A convez function of a sub-martingale is a sub-martingale.

Not all martingales are closed, as is shown in the following example.

1.21. EXAMPLE. Fix t > 0, and z, y € R%. Let
{(Q,F,P,), (X(t),t=0),: t=0),(R"B")}

be Brownian motion starting at = € R? and put, as above,

1 z —y|?
pa(t,z,y) = ——=exp | — .

The process s — pg(t — s, X(s),y) is P,-martingale on the half-open interval
[0, 7).
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5.1. Stopping times. A stochastic variable T : Q — [0, 0] is called a
stopping time with respect to the filtration {JF, : ¢t > 0}, if for every ¢t > 0 the
event {1' <t} belongs to J;. If T' is a stopping time, the process t — 1jp<y is
adapted to {F; : t = 0}. The meaning of a stopping is the following one. The
moment 7' is the time that some phenomena happens. If at a given time t the
information contained in F; suffices to conclude whether or not this phenomena
occurred before time ¢, then T is a stopping time. Let

{(Q,F,P,),(X(t),t=0),(0:t=0),(R",B")}

be Brownian motion starting at x € R%, let p : R? — (0, 0) be a strictly positive
continuous function, and O an open subset of R?. The first exit time from O,
or the first hitting time of the complement of O, defined by

T =inf{t>0: X(t) e R\O}

is a (very) relevant stopping time. The time T is a so-called terminal stopping
time: on the event {T" > s} it satisfies s + T' 0 ¥s = T'. Other relevant stopping
times are: .
nginf{t>0: Jp(X(s))ds>§}, §=0.
0
Such stopping times are used for (stochastic) time change:

Te+ ol =Teyy, & 1n=0.

Note that the mapping £ — 7¢ is the inverse of the mapping t — Sép (X (s))ds.
Also note the equality: {7z <t} = {Sép(X(s)) > 5}, Sgop(X(s))ds > ¢ > 0.
The mapping { — ¢ is strictly increasing from the interval [0, {;"p (X (s)) ds)
onto [0,00). Arbitrary stopping times T are often approximated by “discrete”
stopping times: T = lim,,_,, T,,, where T,, = 27" [2"T'|. Notice that T' < T, 11 <
T, <T+ 27", and that {T,, = k2™"} = {(k—1)27" <T < k27"}, ke N.

1.22. THEOREM. Let (2, F,P) be a probability space, and let {F, : t = 0} be a
filtration in F. The following assertions hold true:

(1) constant times are stopping times: for everyt = 0 fized the time T =t
1S a stopping time;

(2) if S and T are stopping times, then so are min (S,T) and max (S, T);

(3) If T is a stopping time, then the collection Fr defined by

Fr={AeF: An{T <t|eF, foralt=0}
15 a subfield of F;
(4) If S and T are stopping times, then S+T o0 is a stopping time as well,

provided the paths of the process are P-almost surely right-continuous
and the same is true for the filtration {F, : t = 0}.

The filtration {F; : t = 0} is right-continuous if F; = (,o, Fs, t = 0. The (sam-
ple) paths t — X(t) are said to be P-almost surely right-continuous, provided
for allt = 0 we have X (t) = lim,; X (s), P-almost surely.
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The following theorem shows that in many cases fixed times can be replaced
with stopping times. In particular this is true if we study (right-continuous)
sub-martingales, super-martingales or martingales.

1.23. THEOREM (Doob’s optional sampling theorem). Let (X(t): t = 0) be a
uniformly integrable process in L' (Q,F,P) which is a sub-martingale with re-
spect to the filtration (F;: t=0). Let S and T be stopping times such that
S<T. Then E[X(T) | Fs| = X(S), P-almost surely.

Similar statements hold for super-martingales and martingales.

Notice that X(7T') stands for the stochastic variable w — X (T(w)) (w) =
X (T(w),w).

We conclude this introduction with a statement of the decomposition theorem
of Doob-Meyer. A process {X(t) : t = 0} is of class (DL) if for every ¢t > 0 the
family

{X(T) 0<7<t, 7 is an (Fy)yc,
is uniformly integrable. An F;-martingale {M(¢) : t = 0} is of class (DL), an
increasing adapted process {A(t): t =0} in L'(Q,F,P) is of class (DL) and
hence the sum {M(t) + A(t): t = 0} is of class (DL). If {X(¢): ¢t >0} is a
submartingale and if y is a real number, then the process {max (X (¢), u) : ¢t = 0}
is a sub-martingale of class (DL). Processes of class (DL) are important in the
Doob-Meyer decomposition theorem. Let (2, F,[P) be a probability space, let
{F; : t = 0} be a right-continuous filtration in F and let {X (¢) : ¢ = 0} be right
continuous sub-martingale of class (DL) which possesses almost sure left limits.
We mention the following version of the Doob-Meyer decomposition theorem.
See Remark 3.54 as well.

1.24. THEOREM. Let {X(t):t = 0} be a sub-martingale of class (DL) which
has P almost surely left limits, and which is right-continuous. Then there ex-

ists a unique predictable right continuous increasing process {A(t) : t = 0} with
A(0) = 0 such that the process { X (t) — A(t) : t = 0} is an Fy-martingale.

-stopping time}

A process (w,t) — X(t)(w) = X (t,w) is predictable if it is measurable with
respect to the o-field generated by {A x (a,b] : A € F,, a < b}. For more details
on cadlag sub-martingales, see Theorem 3.77. The following proposition says
that a non-negative right-continuous sub-martingale is of class (DL).

1.25. PROPOSITION. Let (2, F,P) be a probability space, let (F;),-, be a filtration
of o-fields contained in F. Suppose that t — X(t) is a right-continuous sub-
martingale relative to the filtration (Fy),5, attaining its values in [0,0). Then

the family {X(t) : t = 0} is of class (DL).

In fact it suffices to assume that there exists a real number m such that X (t) >
—m P-almost surely. This follows from Proposition 1.25 by considering X (t)+m
instead of X (t).

If t — M(t) is a continuous martingale in L?(Q, F,P), then t — |[M(t)|* is a
non-negative sub-martingale, and so it splits as the sum of a martingale ¢t —
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IM(t)]* — (M, M) (t) and an increasing process ¢ — (M, M) (t), the quadratic
variation process of M (t).

PROOF OF PROPOSITION 1.25. Fix t > 0, and let 7 : Q — [0,¢] be a
stopping time. Let for m € N the stopping time 7,,, : © — [0, 0] be defined by
T = inf {s > 0: X(s) > m} if X(s) > m for some s < o0, otherwise 7, = o0.
Then the event {X(7) > m} is contained in the event {7, < 7}. Hence,

E[X(1): X(1)>m]<E[X(t): X(1)>m]<E[X(t): 7, <T]

<E[X(t): mn <1]. (1.21)
Since, P-almost surely, 7, T o0 for m — oo, it follows that

Wlln_}éc sup{E [X(7) : X(7) > m]: 7€ [0,t], 7 stopping time} = 0.

Consequently, the sub-martingale ¢t — X (¢) is of class (DL). The proof of Propo-
sition 1.25 is complete now. O

It is perhaps useful to insert the following proposition.

1.26. PROPOSITION. Processes of the form M (t)+ A(t), with M(t) a martingale
and with A(t) an increasing process in L' (2, F,P) are of class (DL).
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PROOF OF PROPOSITION 1.26. Let {X(t) = M(t) + A(t) : t = 0} be the
decomposition of the sub-martingale {X (¢) : ¢t > 0} in a martingale {M(¢) : ¢ >
0} and an increasing process {A(t) : ¢t > 0} with A(0) =0 and 0 < 7 < t be
any F;-stopping time. Here t is some fixed time. For N € N we have

E(X(7)]:[X(7)[ = N) <E(IM(7)| : | X(7)| = N) + E(A(7) : [X(7)| = N)
<E(M@)]:|X(1)| = N)+E(A(T): |X(1)] = N)
<E(|M(t)] + A(t) : | X(7)] = N)
<E (|M(t)| + A(t) : sup |X(s)| = N) .
0<s<t
Since, by the Doob’s maximality theorem 1.28,
N N
NIP’{ sup | X (s)| = N} < NIP’{ sup |M(s)| = 2} +NIP’{ sup A(s) = 2}

0<s<t 0<s<t 0<s<t

< 2E(IM(1)] + A(1)),
it follows that
Al{im sup {E (| X (7)] : |X(7)| = N) : 0 <7 <t, 7 stopping time} = 0.
—00

This proves Proposition 1.26. U

First we formulate and prove Doob’s maximal inequality for time-discrete sub-
martingales. In Theorem 1.27 the sequence i — X, is defined on a filtered
probability space (€2, J;.IP),, and in Theorem 1.28 the process t — X (t) is
defined on a filtered probability space (2, F;.P)

t=0"

1.27. THEOREM (Doob’s maximal inequality). Let (X;)..y be a sub-martingale
w.r.t. a filtration (F;),.y. Let S, = maxi<i<n X; be the running mazimum of
X;. Then for any ¢ > 0,

1 1

B[S, > 0] < JE[X;15,20] < E[X]], (1.22)
where X,F = X,, v 0. In particular, if X; is a martingale and M, = max | X3,
then o

1 1
P[M,>{] < JE [ Xl L2 ] < 7B Xl (1.23)

PROOF. Let 7, = inf{i > 1: X; > ¢}. Then P[S, >/(] = X" Pl =1].
For each 1 <7 < n,

1
Pl =i =E [1ix,201{n-y] < E [ X 1] - (1.24)

Note that {ry =i} € F;, and X" is a sub-martingale because X; itself is a
sub-martingale while ¢(x) = z* = 2 v 0 = max(z,0) is an increasing convex
function. Therefore

B[ X 1y | Fi] = Lrmg B[ X | Fi] = Lipmiy (B[ X0 | F]) " = 1o X/
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and hence E[X +1{nf ,}] < E [X 1 - ,}] Substituting this inequality into
(1.24) and then summing over 1 < i < n then yields (1.22). The inequality in
(1.23) follows by applying (1.22 to the sub-martingale | X;|. O

Next we formulate and prove Doob’s maximal inequality for continuous time
sub-martingales.

1.28. THEOREM (Doob’s maximal inequality). Let (X (t)),>, be a sub-martingale
w.r.t. a filtration (F;),5,. Let S(t) = supgcy; X (5) be the running mazimum
of X(t). Suppose that the process t — X (t) is P-almost surely continuous from
the right (and possesses left limits P-almost surely). Then for any ¢ > 0,

[S(t) ] EE [X(t)+1{s(t)>g}] < %E [XJr(t)] , (1.25)

where X*(t) = X(t) v 0 = max(X(¢),0). In particular, if t — X(t) is a
martingale and M(t) = S<%E | X (t)], then

PIME) > 0] < FB[IX(0)| Lusa] < FEIX@). (126)

PROOF. Let, for every N € N, 7y be the (F;),.,-stopping time defined
by 7 = inf{t > 0: X(¢)* = N}. In addition define the double sequence of
processes X, y(t) by

Xn’N<t> =X (271@ [2nt] VAN TN) .

Theorem 1.28 follows from Theorem 1.27 by applying it the processes t —
Xnn(t),ne N, N e N. As a consequence of Theorem 1.27 we see that Theorem
1.28 is true for the double sequence ¢t — X,, x(t), because, essentially speaking,
these processes are discrete-time processes with the property that the processes
(n,t) — X, n(t)" attain P-almost surely their values in the interval [0, N].
Then we let n — o to obtain Theorem 1.28 for the processes t — X (t A Ty),
N e N. Finally we let N — o to obtain the full result in Theorem 1.28. U

5.2. Additive processes. In this final section we introduce the notion
of additive and multiplicative processes. Let E be a second countable locally
compact Hausdorff space. In the non-time-homogeneous case we consider real-
valued processes which depend on two time parameters: (t1,ty) — Z (t1,t2),
0 <ty <ty <T. It is assumed that for all 0 < t; < t5 < T, the variable
Z (t1,ty) only depends, or is measurable with respect to, o {X (s) : t; < s < to}.
Such a process is called additive if

Z(tl,tg) =Z(t1,t)+Z(t,t2), t1 <t < 1o
The process Z is called multiplicative if
Z(tit) =Z(t,t) Z(tt), t <t<ts

Let p:[0,T] x E — R be a continuous function, and let {X(¢): 0 <t < T} be
an F-valued process which has left hmlts in E’ and which is right-continuous
(i.e. it is cadlag). Put Z (t1,ts) St ))ds. Then the process (t1,ts) —
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Z (t1,t2), 0 < t; <ty < T is additive, and the process (t1,t2) — exp (Z (t1,12)),
0 <ty <ty <T,is multiplicative.

Next we consider the particular case that we deal with time-homogeneous pro-
cesses like Brownian motion:

{(Q,F,P,),(X(t),t =0), (0 : t=0),(R",B")},

which represents Brownian motion starting at = € R% An adapted process
t — Z(t) is called additive if Z (s +1t) = Z(s) + Z (t) o Vs, P,-almost surely,
for all s, ¢t = 0. It is called multiplicative provided Z (s +t) = Z (s) - Z (t) o ¥y,
P,-almost surely, for all s, t > 0. Examples of additive processes are integrals
of the form Z(t) = ?p (X(s))ds, where x — p(z) is a continuous (or Borel)
function on R?, or stochastic integrals (It6, Stratonovich integrals) of the form
Z(t) = §p(X(s))dX(s). Such integrals have to be interpreted in some L>-
sense. More details will be given in Section 6. If ¢ — Z(t) is an additive
process, then its exponent ¢ — exp (Z(t)) is a multiplicative process. If T is a
terminal stopping time, then the process ¢t — 1y7~ is a multiplicative process.

I
]
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Let (X,), oy be a sequence of non-negative i.i.d. random variables each of which
has density f; > 0. Suppose that f, is the density of the distribution of
Z?:l X;. Note “i.i.d.” means “independent, identically distributed”. Then

P [an X, < t] = f fa(s)ds, and hence
j=1 0
J fn+1 dS - [i X ] [i n+1 t]

_ f Fa(0) ot — p)dp

It follows that

Lt fn(s)ds — Lt fas1(p)dp = Lt fu(s)ds — Lt Lp Ful8) Frlp — s)ds dp

[ futsyas - f (o) f (o s)dpds

JO

:d[)tfn (1—Jf1 —sdp)ds

— [ o) f filp — s)dpds

H~

H{ o

= | 1) f OO fi(p)dpds. (1.27)

)\nsn—l
(n—1)!

If f1(s) = Ae™*, then f,(s) = e~ . This follows by induction.

5.3. Continuous time discrete processes. Here we suppose that the
process

{(QF,P), (X(t): t=0), (0 t=0),(S8)}

is governed by a time-homogeneous or stationary transition probabilities:

piult) = P[X(1) = 7| X(0) =i] = B[X(t+ )= j | X(s) =i]. i,je5,

(1.28)
for all s = 0. Here, S is a discrete state space, e.g. S =27, 5 =272", S =N, or
S = {0, N}. The measurable space (£2,F) is called the sample or sample path
space. Its elements w € () are called realizations. The mappings X (¢) : Q@ — S
are called the state variables; the application t — X (t)(w) is called a sample
path or realization. The translation operators ¥;, ¢ > 0, are mappings from
Q to Q with the property that: X(s) o4, = X(s + t), P-almost surely. For
the time being these operators will not be used; they are very convenient to
express the Markov property in the time-homogeneous case. We assume that
the Chapman-Kolmogorov conditions are satisfied:

pii(s+1) Zp]k S)pri(t), i, j€ S, s, t=0. (1.29)
keS
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In fact the Markov property is a consequence of the Chapman-Kolmogorov
identity (1.29). From the Chapman-Kolmogorov (1.29) the following important
identity follows:

P(s+t)=P(s)P(t), s,t=0. (1.30)
The identity in (1.30) is called the semigroup property; the identity has to be
interpreted as matrix multiplication. Suppose that the functions t — p;;(t), 7,
1 € S, are right differentiable at ¢ = 0. The latter means that the following

limits exist: A
. —1;4(0
G :hmpj, (A) = p;i(0)
VNI A
We assume that p;;(0) = J;,, where ¢;; is the Dirac delta function: J;, = 0 if
Jj # 1, and 9;;, = 1. Put Q = (qj,i)z.jes. Then the matrix @ is a Kolmogorov
matrix in the sense that ¢;; > 0 for j # ¢ and ZjeS ¢;; = 0. It follows that
Gii = — Zjesyj# ¢;i < 0. The reason that the off-diagonal entries g;;, j # ¢, are
non-negative is due to the fact that for j # ¢ we have
i) — p;,i(0 . pyalt) = 9;4(0 . Pyt

pji(t) pj’()zhmpj’() J,():hmpy,()>0_

=

, i, J€ES.

= lim
Qi t10 t t10 t tlo t

In addition, we have

/.0 t [ 7
Z G = lim by, ( ) p] _ hmZ p] p] )

jeSs jes 10 8o
ies Piilt) — 2iicq i 0 1—-1
tl0 t tlo ¢

provided we may interchange the summation and the limit. Finally we have the
following general fact. Let ¢ — P(t) be the matrix function ¢ — (p;,(t))

i,j€S"

Then P(t) satisfies the Kolmogorov backward and forward differential equation:
dP(t

0 — Qpw) = P1Q. 120 (1.32

The first equality in (1.32) is called the Kolmogorov forward equation, and the
second one the Kolmogorov backward equation. The solution of this matrix-
valued differential equation is given by P(t) = e@P(0). But since P(0) =
(9,i(0)).4es = (9j,1); jes is the identity matrix, it follows that P(¢) = e'@. The
equalities in (1.32) hold true, because by the semigroup property (1.30) we have:

P+A®)-P®) _ P(A[M) = PO) P (A1) = P(0)
)

Alt “ T Aam . TW=POT A

Then we let A(t) tend to 0 in (1.33) to obtain (1.32).

. (1.33)

5.4. Poisson process. We begin with a formal definition.
1.29. DEFINITION. A Poisson process
{(Qvﬁrap) ) (X<t>7t = O) ) (ﬁbt = 0) ) (N7N)}

(see (1.46) below) is a continuous time process X (t), ¢ = 0, with values in
N ={0,1,...} which possesses the following properties:
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(a) For At > 0 sufficiently small the transition probabilities satisfy:
pir1,i(At) =P[X (t + At) =i+ 1| X(t) = 1] = AAt + 0 (At);
pii(At) =P[X (t+ At) =i | X(t) =i] =1 — AAL + 0 (At);
pii(At) =P[X (t+ At) = j | X(t) = i] = o(At);
pi(At) =0, j <.

(1.34)
(b) The probability transitions (s,4;t,j) — P[X (t) = j | X(s) = 1], ¢t > s,
only depend on ¢t — s and j — 1.

(c) The process {X(¢) : t = 0} has the Markov property.

Item (b) says that the Poisson process is homogeneous in time and in space: (b)

is implicitly used in (a). Note that a Poisson process is not continuous, because
when it moves it makes a jump. Put

pi(t) = pio(t) = pj4ij(t) =P[X(t) =j+1| X(0)=4], 4, jeN.  (1.35)

ovv--vv-cvv-cov-coAlcateI-LUcent 0
www.alcatel-lucent.com/careers
o, ¥ -

=
o

One genera’tion’s transformation is the next's status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there

needs to be “The Shift".

Download free eBooks at bookboon.com

Click on the ad to read more
28


http://s.bookboon.com/AlcatelLucent

1.30. PROPOSITION. Let the process
{(QLF,P), (X(1),1=0), (0t = 0), (N,N)}

possess properties (a) and (b) in Definition 1.29. Then the following equality
holds for allt = 0 and ¢ € N:

pi(t) = ——e™. (1.36)

1.31. REMARK. It is noticed that the equalities in (1.42), (1.40), and (1.44) only
depend on properties (a) and (b) in Definition 1.29. So that from (a), and (b)
we obtain

and hence
al®) = pr-il) = P[X(0) =7 | X(O0) =] = e ™, Gzi (039

If 0 < j <, then p;,(t) = 0.
PROOF. By definition we see that p;(0) = P [X(0) = j | X(0) = 0] = do,,
and so pp(0) = 1 and p;(0) = 0 for j # 0. Let us first prove that the functions

t — p;(t), i = 1, satisfy the differential equation in (1.45) below. First suppose
that ¢ > 2, and we consider:

pi (t+ At) —pi(t) =P[X (t + At) = i] — pi(t)

—ZP (t+ At) =i, X(t) = k] — pi(t)

=ZPD@+AQ=MX@:HPM@=H—M@
=P[X(t+A) =1 |X(t) =i]pi(t) + P[X (E+At) =i | X(t) =i—1]pia(t)

n 2P[X(t+At) =i | X(t) = k] pu(t) — pi(t)
= (1= MAt + 0 (At)) pi(t) + (AAE + 0 (At)) pia(t) + Zpk pi(t)

= —AAtpi(t) + AAtp;1(t) + ZZ: pi(t)o (Al). (1.39)

From (1.39) we obtain

d

%pi(t) = —Api(t) + Api—1(t). (1.40)

Next we consider 7 = 0:

po (t + At) — po(t) = P[X (t + At) = 0] — po(?)
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=P[X (t+At) =0| X(t) = 0] P[X(t) = 0] — po(t)
=P[X (t+At) =0| X(t) = 0] po(t) — po(t) = (—AAL + 0 (At)) po(t). (1.41)
From (1.41) we get the equation
d

apo(ﬂ = —Apo(t). (1.42)

For ¢ = 1 we have:
pu(t+ AL —pi(t) = PIX (1 + Al) = 1] = pa(t)
=P[X(t+ A8 =1]X(t) =1]P[X(t) = 1] - pu(t)
+P[X (t+At) =1] X(t) = 0] P[X(t) = 0]
=P[X(t+At) =1|X(t) =1]p:(t) — pi(t)
+P[X (t+At) =1] X(t) = 0] po(t)
= (=AAt + 0o (A1) p1(t) + (AAL + 0 (AL)) po(t). (1.43)
From (1.43) we obtain:
d

Z01(8) = =21 (1) + Apo(0). (1.44)

By definition we see that p;(0) = P[X(0) = j | X(0) = 0] = o5, and so py(0) =
1 and p;(0) = 0 for j # 0. From (1.42) we get po(t) = e *. From (1.40) and
(1.44) we obtain

d .
o (eMpi(t)) = AeMpia(t), =1 (1.45)
At)!
By induction it follows that p;(t) = ( ,') e ™. This completes the proof of
7!
Proposition 1.30. 0

In the Proposition 1.33 below we show that a process
{(,F,P), (X(1),t 2 0), (£ = 0),(N,N)} (1.46)

which satisfies (a) and (b) of Definition 1.29 is a time-homogeneous Markov
process if and only if its increments are P-independent. First we prove a lemma,
which is of independent interest.

1.32. LEMMA. Let the functions p;(t) be defined as in (1.35). Then the equality
pi(t) =P[X(s+1t)— X(s) = 1] (1.47)
holds for all v € N and all s, t = 0.

PROOF. Using the space and time invariance properties of the process X ()
shows:

I
NgE

P[X(s+1t)— X(s) =1] PIX (s+1t)— X(s) =i, X(s) = k]

b
Il

0

I
e

P[X(s+t)=i+k, X(s)=k|

b
Il

0
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= Y P[X (s+1) =i+ k]| X(s) = k| P[X(s) = k]

(space and time invariance properties of p;(t))

0
= Zpi(t)P[X(S) = k] = pi(t). (1.48)
k=0
The conclusion in Lemma 1.32 follows from (1.48). O

The following proposition says that a time and space-homogeneous process sat-

isfying the equalities in (1.34) of Definition 1.29 is a Poisson process if and only
if its increments are P-independent.

1.33. PROPOSITION. The process {X (t) : t = 0} possessing properties (a) and
(b) of Definition 1.29 possesses the Markov property if and only if its increments
are P-independent. Moreover, the equalities

PIX() — X(s) = —i] = P[X() = j| X() =]
=pji(t —s) = e A9 (1.49)

hold for allt = s >0 and for all 7 =1, i, j € N.
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PROOF OF PROPOSITION 1.33. First assume that the process in (1.46) has
the Markov property. Let t,,1 >t, > --- >t >ty =0, and let 4, 1 < k <
n + 1, be nonnegative integers. Then by induction we have

PX (t;) — X (tr1) =i, 1 < £ <+ 1]

:i}p[x( t)) = X (te—1) =ip, 1 <l <n+1, X (t,) = k]

A PLX (t) — X (te—y) =g, 1 <
2 P[X (t,) - X(te 1) =g, 1

1 <0< n]
x P[X (t) = X (ti—1) =dg, X (tn) =k, 1 <L <n, |

(Markov property)

P X (tns1) — X (tn) = ips1 | X (tn) = k]

I
M8

i
o

]P)[X (tg) *X(tg_l) = ig, 1< l <n, X(tn) = k’]

||
NIEI

P[X (tpi1) = ins1 + k| X (t,) = K]

i
X <

]P)[X (tg) *X(tg_l) = ig, 1< l <n, X(tn) = k’]

(homogeneity in space and time of the function ¢ — p;, ., (t))

M8

Piner (tngr — 1) P[X (t) — X (tio1) = ip, 1 <L < m, X (t,) = k]

i
o

(apply equality (1.47) in Lemma 1.29)

I
Rl

P[X (thi1) — X (tn) = tne1]

x>
Il

OIP’[X(tg)—X(teﬁ —ip, 1< l<n, X(t,) = k]
=P[X (tni1) = X (tn) = inta] P[X () = X (tr1) =ip, L <L <n]. (1.50)

By induction and employing (1.50) it follows that

P[X(te)—X(tefl)Ziev1<5<H]ZHP X (te-1) = ic]

= Hpu, tg 1 (151)
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We still have to prove the converse statement, i.e. to prove that if the increments
of the process X (t) are P-independent, then the process X (t) has the Markov
property. Therefore we take states 0 = g, i1,...,1%,, ini1, and times 0 = t5 <
ty <--- <t, <tpy1, and we consider the conditional probability:

P[X (tns1) = ing1 | X (to) =0, ..., X (tn) = in]
P[X (tpe1) = ins1, X (to) = dg, ..., X (tn) = in]
P[X (to) = ig,- .., X (tn) = in]

P[X (to) = io, X (t) — X (to_1) = i¢ — o1, 1 < ¢
T P[X (to) =0, X (t) — X (fru1) = g —ip1, 1 <

(increments are P-independent)

=P [X (tns1) = tns1 | X (tn) = in] - (1.52)
The final equality in (1.52) follows by invoking another application of the fact
that increments are P-independent. More precisely, since X (t,4+1) — X (£,) and
X (t,) — X (0) are P-independent we have
_ PIX (1) = X (tn) = s — in, X () — X(0) = iy]
PIX () — X(0) = in]
— P[X (b)) — X (tn) = ins1 — in] . (1.53)
The equalities in (1.49) follow from equality (1.47) in Lemma 1.32, from (1.53),
from the definition of the function p;(t) (see equality (1.37)), and from the

explicit value of p;(t) (see (1.36) in Proposition 1.30). This completes the proof
of Proposition 1.33. ]

Let (Q, F,P) be a probability space and let the process ¢ — N(t) and the proba-
bility measures P;, j € N in {(Q F,B)) s (N(8) - £20), (9,5 > 0), (N,N)}
have the following properties:
(a) It has independent increments: N(t + h) — N(t) is independent of
FV=0(N(s)—N(0):0<s<t).

(b) Constant intensity: the chance of arrival in any interval of length A is
the same:

P[N (t+ h) — N(t) = 1] = A+ o(h).
(¢) Rarity of jumps > 2
P[N(t+h)—N() 2] = o(h).
(d) the measures P;, j > 1, are defined by: P;[A] = P[A]| N(0) = j];
moreover, it is assumed that Po[N(0) = 0] = 1.

The following theorem and its proof are taken from Stirzaker [163] Theorem
(13) page 74.
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1.34. THEOREM. Suppose that the process N(t) and the probability measures
satisfy (a), (b), (c) and (d). Then the process N(t) is a Poisson process and

P;[N(t) = k] = %ewﬁ, k> 3j. (1.54)

PROOF. In view of Proposition 1.33 it suffices to prove the identity in (1.54).
To this end we put

Fa(t) =Py [N(t) = n] = P[N(t) = n | N(0) = 0] = P[N(t) — N(0) = n].

Then we have, for n > 2 fixed,

n

falt+h) =Po[N (t+h) =n] = Y B[N (t+h) = N(t) = k, N(t) = n— k]

(the variables N(t 4+ h) — N(t) and N(t) are Py-independent)

:i N(t+h)—N{t)=k] x By[N(t) = n — k]

=Po[ (t+h) = N(t) = 0] x Po [N(t) = n]
+Po[N(t+h) = N({t) = 1] xPo[N(t) = n —1]

i N(t+h)—N@t) =k x By[N(t) = n — k]
(11@0 [N (t + h) — N(t) > 1]) x Py [N(t) = n]
+Po [N (t+h) — N(t) > 1] x Po[N(t) = n — 1]

— Py [N (t+h)— N(t) > 2] x P [N(t) =n — 1]

+ZIP’0 (t+h)—N(t) = k] x P [N(t) = n — k]

= (1 =Ah+o(h)) x fu(t)+ (A + o(h)) fuoi(t) + o(h) Zn: fo—k(t)

= (1 = Ah) fu(t) + MNafo_1(t) + o(h). (1.55)
Observe that a similar argument yields
fi(t+ h) = (1= Ah) fi(t) + Ahfo(t) + o(h), (1.56)
and also
fo(t+h) = (1—=XAh) fo(t) + o(h). (1.57)

From (1.55), (1.56) and (1.57) we obtain by rearranging, dividing by h and
allowing h | 0:

frlz(t) = _/\fn(t) + )‘fn—l(t)’ n = 17
fo(t) = =Af(2).
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These equations can be solved by induction relative to n. A alternative way is
to consider the generating function

G(s,t) :=Eo [eN ] = X" s"Po [N(t) = n] = > s"fu(t).
n=0 n=0
Then 8G§z,t) = Ms — 1)G(s,t), and so G(s,t) = MY, Tt follows that

At)"
Py [N(t) =n] = fu(t) = e’”—). Consequently, for £ > j we obtain
n

P; [N(t) = k] =P[N(t) =k | N(0) = j] =P[N(t) = N(0) = k — j | N(0) = j]
, A(k—j (At)* B
=P[N(t) = N(0) =k —j] =e )W = (RHS of (1.54).

This completes the proof of Theorem 1.34. U
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CHAPTER 2

Renewal theory and Markov chains

Our main topic in this chapter is a discussion on renewal theory, classifica-
tion properties of irreducible Markov chains, and a discussion on invariant or
stationary measures. Its contents is mainly taken from Stirzaker [163].

1. Renewal theory

Let (X,),.y be a sequence of independent identically distributed random vari-
ables with the property that P[X, > 0] > 0. Put S, = >"_, X,, Sp = 0, and
define the renewal process N(t) by N(t) = max{n: S, <t}, t = 0. The mean
m(t) = E[N(t)] is called the renewal function. We have N(¢) = n if and only
if 5, <t, and hence

P[N(t) =n]=P[S, <t] —P[Sys1 <t], and (2.1)
E[N®)] =Y. P[N({t)>r] = > P[S, <t]. (2.2)

For more details see e.g. [4] (for birth-death processes) and [163] (for renewal
theory).

2.1. THEOREM. IfE[X,] > 0, then N(t) has finite moments for all t < oo.
PROOF. Since E[X,] > 0 there exists ¢ > 0 such that P[X, >¢] > «.

Put M(t) = max{n: e x5 <t}. Since €3 Lix, 5 < 2y X, it
follows that N(t) < M(t), and hence, with m = |[te™!],

E[N®)]<E[M®)] =Y P[M{t)=n]= Y P [g D lixzg < t]

n=1

0¢]
:Z 2 P[X;>¢c,jel X;<e, jé¢A]

- Z 2 P[X; = é?]#A 1-P[X;, > 8])n—#A

n=1 k=0
<Y PX; = ¢]f n) 1-P[X; =e])" "
IR DN B!
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k=0 n=0 n
1 t
= _————— | |- 1). 2.3
o= (2] ) 2
In the final equality in (2.3) we used the equalit Z etk PARS b
q y q Y- n (1 - Z>k+1
for |z| < 1. The inequality in (2.3) shows Theorem 2. 1 O

It follows that E[N(¢)] is finite whenever E[X,] is strictly positive. This fact
will be used in Theorem 2.2.

2.2. THEOREM. The following equality is valid:
E [SN(t)+1] =E [Xl] E [N<t) + 1] :

The equality in Theorem 2.2 is called Wald’s equation.

PROOF. The time N(¢) + 1 is a stopping time with respect to the filtration
Fo=0(X,:0<r<n)=0(S,—rE[Xy]: 0<r<n).
Notice that the process n — S, —nE[X;] is a martingale, and hence
E [Siv@+an — (N(#) + 1) A n)E[X4]]
— E[Sxnm0 — (V) + 1) AOE[X,]] = 0. 2.4)
Since E [N(t)] is finite, from (2.4) we get by letting n tend to oo:
0= lim E[Snw+1yan — (N(t) + 1) An)E[X4]]

n—0o0
= E[Swvw+n — (N(®) + 1) E[X1]]. (2.5)
Consequently, the conclusion in Theorem 2.2 follows. N

2.3. THEOREM. Let (X, ),y be a sequence of independent, identically distributed
random variables such that P[X, = 0] = 0. Put Sy =0 and S, = >,_, X,. Let
the process N(t) be defined as in (2.2). Let F(t) be the distribution function of
the variable X,.. Put m(t) = E[N(t)]. Then m(t) satisfies the renewal equation:

0

m(t) = F(t) + fo m(t — s)dF(s) = ) (u3)" [0, 1], (2.6)

k=1

where pp(a,b] = F(b) — F(a), and p * pa(a, b] = So So (@] (8 + 1) dpa(s)dpa(t),
0<a<b (ie convolution product of the measures ji and ). Moreover,

(1 — fo e‘Ade(s)) X A fo e Mm(t) dt = f:o e MdF(s).

If (X,), are independent exponentially distributed random variables, and thus
the process (N(t) : t = 0) is Poisson of parameter A\ > 0, then m(t) = At.
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PROOF. On the event {X; >t} we have N(t) = 0, and hence by using
conditional expectation we see

m(t) =E[N(t)] = E[N(t)1ix, <y ]
=E[E[NO1px<y | o (X)]]
=E[1x<E[N() = N (X1) | 0 (X0)]] + E [1p <oE [N (X1) [ o (X0)]]
(on the event {X; <t} we have N (X;) =1)
= B[l B [N() = N (X9) [0 ()] +E[Lix<nB[1 ] o (X1)]]
(the distribution of N(t)—N(s), t > s, is the same as the distribution of N (t—s))
=E[1x<gE [N (t— X1) | o (X1)]] +E[1x,<pE[1] 0 (X1)]]
E[N (= X) 1] + B [1p<]
J m (t — 2) dF(z) + F(t). (2.7)

This completes the proof of Theorem 2.3. U
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2.4. LEMMA. Suppose P|X, < o] =1. Then

tlim N(t) = oo, P-almost surely. (2.8)
—00
N(t)+1
PROOF. Put Z = lim N(¢) = sup N(t). Observe that Z Xy = t, and
t—0 t=0 el
Z+1
hence by letting t — oo, the event {Z < oo} is contained in U {X, = w0}, and
r=1
thus
Z+1 oo)
P[Z < x] =P {szoo},Z<oo]<]P’[U{XT=oo}]
r=1 r=1
0
<) P[X, = 0] =0. (2.9)
r=1
The result in Lemma 2.4 follows from (2.9). O
: : . N(t)+1
Since lim; o N () = oo P-almost surely, we have thm W = 1 P-almost
—00

surely. The following proposition follows from the strong “law” of large numbers
(SSLN). See Theorem 2.54 in this chapter or Theorem 5.60 in Section 3 of
Chapter 5.

2.5. PROPOSITION. Let (X,), . be a sequence of non-negative independent, iden-
tically distributed random variables in L' (Q, F,P) such that P[X, < o] = 1.
Then

. SN(t)+1 . SN(t)
tli% N+l lim N E[X:i], P-almost surely. (2.10)

2.6. THEOREM (First renewal theorem). Let the hypotheses be as in Proposition

2.5. Then
N(t 1
tlgglo t( ) = B[] P-almost surely. (2.11)

PROOF. By definition we have Sy <t < Sn()+1, therefore
SN(t) - t - N(t) +1 SN(t)+1

~

(2.12)

~

NO) SN@ S NG No+1

The result in (2.11) now follows from (2.12) in conjunction with (2.8) and (2.10).
This proves Theorem 2.6. O

The proof of the following theorem is somewhat more intricate.

2.7. THEOREM (Elementary renewal theorem). Let the hypotheses be as in
Proposition 2.5. As above, put m(t) = E[N(t)]. Then
m(t) 1

I - . 2.13
St E[X] (2.13)
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2.8. REMARK. From Theorem 2.6 and 2.7 it follows that the family
N
{# = 0}

is uniformly integrable. Here we use Scheffé’s Theorem 5.82. See, e.g., Bauer
[15, Corollary 2.12.5, p. 105].

PrOOF OF THEOREM 2.7. This equality has to be considered as two in-
equalities. First we have ¢ < Sy()+1, and hence by Theorem 2.6 we see
t <E[Snw+1] =E[X](E[N()] +1) = E[Xq] (m(t) +1). (2.14)
The inequality in (2.14) is equivalent to
m(t) - 1 1

> - —. 2.15
t T E[X] ¢ (2.15)
From (2.15) we see
..m(t) 1 1y 1

For the second inequality we proceed as follows. Fix a strictly positive real
number a, and put N,(t) = max{n e N: X" min (a, X,) < t}. Then N(t) <
N,(t). Moreover, by Theorem 2.2 we have
t=E[Sn,0] = E [Sn.+1 — min (a, Xy, @)+1) ]
= E [min (a, X1)] E[Ny(t) + 1] — E [min (a, Xn, @)+1) |
> E [min (a, X1)]E[N(t) + 1] —a = (m(t) + 1) E [min (a, X1)] — a. (2.17)
Hence, from (2.17) we obtain:

m(t) _ 1 a — E [min (a, X1)]

< 2.18
¢t S Efmin(a,X)] | ¢E [min (g, X,)] (2.18)
From (2.18) we deduce:
. m(t) 1
1 < for all 1 . 2.1
ntriigp ” E froin (@, 5, )]" or all large a > 0 (2.19)
By letting a — o0 in (2.19) we see
lim sup m(t) ! (2.20)

< .
t—o0 t E [Xl]

A combination of the inequalities (2.16) and (2.20) yields the result in Theorem
2.7. U

Next we extend these renewal theorems a little bit, by introducing a renewal-
reward process (R,), .y, Where “costs” are considered as negative rewards. We
are also interested in the cumulative reward up to time ¢: C(t) (the reward is
collected at the end of any interval); C;(t) (the reward is collected at the start of
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any interval); Cp(t) (the reward accrues during any given time interval). More
precisely we have:
N(t)
C(t) = Z R;, terminal reward at the end of time interval, (2.21)

<
Il
_

Ci(t) = Z R;, initial reward at the beginning of time interval, (2.22)

N(t
Cp(t) = Z R; + Pn@+1, partial rewards during time interval. (2.23)
j=1
For the corresponding reward functions we write
c(t) =E[C(H)], «(t) =E[Ci(t)] and ¢(t) = E[Cp(1)]. (2.24)
() CGilt) Cp(t)

We are interested in the rates of reward: ——, , and

It is as-

sumed that the renewal process N(t) is defined by inter-arrival times X,., r € N.
As above these inter-arrival times are non-negative, independent and identi-
cally distributed on a probability space (2, F,P). It is also assumed that the
renewal-reward process R,, n € N, consists of independent and identically dis-
tributed random variables in the space L' (2, F,P). The following theorem will
be proved.

2.9. THEOREM (Renewal-reward theorem). Suppose that 0 < E[X;] < oo,
E[|R:1|]] < o0, and that the sequence (n"'P,), .y is uniformly bounded in n € N
and w, and has the property that lim,_,,n 'P, = 0, P-almost surely. Let the
notation be as in (2.21), (2.22), (2.23), and (2.24). Then the following time
E[R]
E[Xi]

average limits exist P-almost surely and they are identified as
Cp(t) _ E[R]

tli% @ = }E& CZT@) = }i‘& . =@ X P-almost surely. (2.25)

The following equalities hold as well:
; E
lim <Y ) _ ) _ ELR (2.26)

t—>I£10 T - tli»I{olo t t—0o0 t E [X].] ’

E[R]
E[X]
accruing in a cycle” divided by “expected duration of a cycle”.

Observe that the quotient can be interpreted as the “expected reward

Other conditions on the sequence (P, : n € N) can be given while retaining the
conclusion in Theorem 2.9. For example the following conditions could be im-
posed. The sequence (P, : n € N) is P-independent and identically distributed,
or there are finite deterministic constants ¢; and ¢, such that |P,| < cin+cs |R,|

P, P,
and lim — = 0. In these cases the sequence [ — : n € N | is uniformly inte-
n—o n n

grable and lim — = 0 P-almost surely.
n—o N
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PrOOF. By employing Theorem 2.2 and the strong law of large numbers we
have

C(t) _ i St B N () _ E[R]

lim —= = = . 2.2
st t—o  N(t) t E[X4] (2.27)
. . . Ci(t)
In exactly the same manner, with N(¢) + 1 replacing N(t), we see thm =
—00
E P,
[14] . By hypothesis we know that lim — = 0 P-almost surely. Since
E[X;] n—w n
tlim N(t) = oo P-almost surely
—00
P
we see that lim — WL — 0. This together with (2.27) shows that
t—-oo N(t) + 1
lim Cr(t) = E[Rl].
t—oo ¢ E [Xl]
These arguments take care of the P-almost sure convergence.
& Develop the tools we need for Life Science
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Next we consider the convergence of the time averaged expected values. For
convergence of time average of the reward function ¢;(t) = E[C;(t)] we use
Wald’s equation (see Theorem 2.2) and the elementary renewal Theorem 2.7.
More precisely we have:

e(t) =E[Ci(H)] = E [ > Rj] — B[R] (E[N(®)] +1). (2.28)

Then we divide by ¢, take the limit in (2.28) as t tends to c0. An appeal to

, E
Theorem 2.6 then shows the existence of the limit lim ailt) = L1t,] which

R,
is the second part of (2.26) in Theorem 2.9. First observe that lim — =0

n—aoo
P-almost surely. This can be seen by an appeal to the Borel-Cantelli lemma. In

fact we have
0 Q0
Eo[Im - $p[ ]« [B[ o] 2]
— — 0 € €
(2.29)
R,
From (2.29) together with the Borel-Cantelli lemma it follows that lim — =0

n—oo N

R, . . .
P-almost surely. Consequently, the sequence { ' nE N} is P-uniformly in-
n
tegrable. Then we have

[Bye] _ N +1 3500 R,
t Tt Nt +1 "’
and hence by Wald’s equality
[ Ry N(#) + 130 Rl | () + 1
VT K E = = E[|R|]. 2.31
t t N(t) +1 ¢ [ 7l] (2:31)

(2.30)

By the strong law of large numbers and by the elementary renewal theorem 2.7
we see that the families of random variables

SR N + 15 R,
t t N(t)+1 "’

t>0, (2.32)

R+t

is uniformly integrable. Consequently the family { St > 0} is uniformly

integrable, and hence it converges pointwise and in L' (2, F,P) to 0. Since

T R B

(2.33)
E[R,
[Xai]
(2.26) in Theorem 2.9. In order to prove the third part we need the uniform
Pn(t)+1

\_I

The right-hand side of (2.33) converges to This proves the first part of

&=

integrability of the family { = 1}. This fact is not entirely trivial.
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Let the finite constant C' be such that |P,;1| < C(n + 1) for all n € N and P-
almost surely; by hypothesis such a constant exists. From Remark 2.8 it follows

N(t)+1
that the family {()% = 1} is uniformly integrable. Since

[Pywset| _ [Pvoa| N@&) +1 _ ()+1
t  N@)+1 < (2:34)

it follows that the family { MO+

t 1 oo, then N(t) 1 o0, and hm in L' (Q,F,P) as well as P-

t
1} is uniformly integrable as well. If
" E

[X 1]
almost surely: see Lemma 2.4, theorems 2.6, 2.7, and Remark 2.8. From (2.34)

. . E[|Pyvw+]] .

it follows that thm - = 0, which concludes the proof of Theorem
—00

2.9. O

1.1. Renewal theory and Markov chains. Next we consider this re-
newal theory in the context of strong Markov chains. Let (2, F,P) be a proba-
bility space and let X,,, m € N, be a Markov chain on (2, ¥, P) with state space

. . L (r)
(S,8). Fix two states j and k € S. Define the sequence of stopping times 7},
r € N, as follows:

T —min {0 > 10 X, -k}, 10 —0, (2:35)

If X, =k forn > T,gr), then we put T]§7~+1) = o0. The sequence of differences
T — TV r =1, are P;-independent and identically distributed.

2.10. THEOREM. Let f : [0,0] x S — R be a bounded measurable function.
Then

T =10+ T 00,00 on {1 < o}, and (2.36)
E, [ f (T,ﬁ’”*” XTMS)) (1) <0} | Tm]

=B, [ (T Xpoo ) 1y | o (T X0 )|

= [£ (T, Xpn ) 1oy | 0 (20) ]

(@) [W/ = f (Tk(r) (@) + T () s Xop o) (w/))] Lig o) (@)
— i By [w' - f (Tk(” (@) + T (@) X (w'))] Lz ) (@) (2:37)

f r+s
f

= W — EX "
Tk (w)

Consequently, conditioned on the event {Tk(r) < oo} the stochastic variable

r+s T
e~
and the o-field "J'“Tm are P;-independent.
k
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Suppose that P, [Tk(r) < oo] =1 and P; [Tk(l) < oo] > 0. Then
P; [T,ﬁ”l) < oo] =P, [Tk(l) < oo] :
and the variables Tk(TH) - Tk(r), r € N, have the same distribution with respect

to the probability measure A — P, [A | ka” < oo].

Here P;(A) =P [A ’ Xy = j], Aed, je S. Theorem 2.10 is a consequence of
the strong Markov property.

PROOF. First we prove (2.36). On the event {Tk(r) < oo} we have

T,C(TH) = min {n > Tk(r) - X, = k} = min {n > Tk(r) : Xn_T,g” o 19T15T) = k}
:<r>'{_(r>>. :}
T, +min{n -1, >1: Xn_T,gﬂ oﬁTér) k
=T+ min {m > 11 X 00,00 =k}
k

= 1" + T 0 00, (2.38)

UNIVERSITY OF COPENHAGEN

Copenhagen
Master of Excellence |

Copenhagen Master of Excellence are a U J .4 nh W
two-year master degrees taught in English FY
at one of Europe’s leading universities

Come to Copenhagen - and aspire!

Apply now at _ Y’ 3 1 ' science '
www.come.ku.dk e [T ¥ Lail “‘

Download free eBooks at bookboon.com
45

Click on the ad to read more



http://www.come.ku.dk

The equality in (2.38) shows (2.36) in case s = 1. We use (2.38) with s respec-
tively r + s instead of r to obtain (2.36) by induction on s. More precisely we
have

e

T T,

7" 4
=T, ) o U e + T o 19T(r)+T]£s)oﬂ o
Ty

(induction hypothesis)

=T 4+ T 00 e = T, (2.40)

where in (2.39) we employed (2.38) with s instead of  and in (2.40) we used
r+ s instead of r. The equality in (2.40) shows (2.36) for s + 1 assuming that it
is true for s. Since by (2.38) the equality in (2.36) is true for s = 1, induction
shows the equality in (2.36).

Next we will prove the equality in (2.37). From equality (2.36) we get
E; [f (T;C(HS) XT<r+s>> (10 <o0) | T(r)}
= E; [f (Tkg K OﬁT(T)’ T(T)+T(S)oq9 ) > {1\ <w} ‘ T(”]
=E; [f (T]{ET) + TIES) o 19Tlgr), XTIES) o 19T(r)> {T('r)<(x)} ’ T('r):|

the variable T\ is T m-measurable in combination with the strong Markov
k T
k

property)

—we By [f (T,S“) (w) + T, XTI@)] g0 ) (@), (2.41)

The equalities in (2.41) show that the first, penultimate and ultimate quantity
in (2.37) are equal. Another appeal to the strong Markov property shows that

the first and second quantity in (2.37) coincide. Since on the event {Tk(r)

< oo}

the equality X = k holds, the second and third quantity in (2.37) are equal
k

as well. This proves that all quantities in (2.37) in Theorem 2.10 are the same.

We still have to prove that on the event {T ) - oo} the stochastic variable

T, ,§T+S) — T and the o-field F. () are P;-independent. This can be achieved

as follows Let the event A be ff (T>—measurable and let g : [0,00] — R be a
k
bounded measurable function. Then we have

]Ej [g (TIET-&-S) — Tk(r)) 14 l{TliT)<w}i| = ]Ej [g (T]{ES) o 19T,§T)) 14 l{Tli’l‘)<w}i| (242)

5[5, [o (117 0) 90| 14150
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(strong Markov property: (2.37))

_ (s) _ (s)

B [EW o (1) ] 1 1{T:‘><oo}] =& [B o (7)1t gp0 |

B[ (1) | B |ta 10| (2.43)
(another appeal to the strong Markov property: (2.37))

E; _lA 1{T,§r)<oo}]
Py |17 < oo
B, [B; |9 (T 0 0y0) Lgor oy | Ty | B 14 | T < 0]
(use (2.36))
=E; |E; |g (70 — 1)1 | T || By [1a | T < 0
v k k {T£T><oo} 7" j|tA k

— B |g (707 - 1)1 {Tér)@o}] B |14 | T < o). (2.44)

=B [ |9 (1) 0 0L oy [ 0]

From (2.44) the PP;-independence of 7, k(TJrS) - Tk(r) and the o-field F_ ) condi-
k

tioned on the event {Tk(r) < oo} follows. Since the expressions in (2.42) and

(2.43) are equal it follows that the P, [ | T,El) < oo]—distribution of the variable

Tk(rﬂ) — T,ET) does not depend on r, provided that

P, [{Tkl < ao}\{TkE” < oo}] ~0. (2.45)

By the strong Markov property it follows that

r

Py |1 < 0| = By |1 < 0| B T < 0] (2.46)

Since, by assumption, Py [Tk(l) < oo] = 1, (2.46) implies that the probabilities

P; [Tk(r) < oo] do not depend on r € N, and hence (2.45) follows. This proves
Theorem 2.10. U

2.11. DEFINITION. Let j € S. If P; [Tj(l) < oo] = 1, then j is called recurrent
(or persistent). If P, [Tj(l) < oo} < 1, then j is called a transient state. A
recurrent state for which [E; [Tj(l)] = o0 is called a null state. A recurrent state

for which E; [Tj(l)] < oo is called a non-null or positive state.

From (2.46) it follows that P; [Tj(r) < oo] =P [Tj(l) < oo] , and hence if a
state j is recurrent it is expected to be visited infinitely many times. Let
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N = 3 1ix,-k} be the number of visits to the state k, and put v} =
E; [N¥] = E[N*| X, = j]. Then

0 ¢] o0
A= =3 P[X, =k | Xo=j]. (2.47)
n=1 n=1
We also have {N* > r + 1} = {Tk(”l) < oo} and hence by (2.46) we get
Py [T+ < o] = By [V* = 7+ 1] = By [N* > 0] P [N* > 0]

=P, [Tk(l) < oo] Py [Tk(l) < oo]r. (2.48)
From (2.47) and (2.48) it follows that

0 0 0
vy = leﬁ? = ;P[Xn=k\Xo=J’] ZPj[Nk>0]lek[Nk>0]r-

(2.49)
Suppose that the state j communicates with k, i.e. suppose that pﬁz) > (0 for
some integer n > 1. From (2.49) it follows that the state k is recurrent if and

only if >}, pﬁ) = o0. The state k is transient if and only if >, pg.z) < 0.

2.12. THEOREM. Suppose that the states j and k intercommunicate. Then either
both states are recurrent or both states are transient.

(]
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PROOF OF THEOREM 2.12. Since the states j and k intercommunicate the

) > 0and p,(g;.) > (. For any positive

exist positive integers m and n such that py,:
integer r we then have

m+r+n m T

5 2 >p,i,3p,if (2:50)
By summing over 7 in (2.50) we see that Y- | pﬂ < wifand only if Y, 7, pkk
0. From this fact together with (2.49) the statement in Theorem 2.12 follows.

[l

2.13. DEFINITION. A Markov chain with state space S is called irreducible of all
states communicate, i.e. for every j, k € S there exists n € N such that pﬁ) > 0.
If X is irreducible and all states and one, and so all states, are recurrent, then

X is called recurrent.

2.14. THEOREM. Let X be a recurrent and irreducible Markov chain. Put

T )
o =B | D Ly | Xo =k | = Ei | D Lixegy | - (251)
u=1 =

Then 0 < vf < o, 7, ke S, and v]’? = YicsUFpij. In other words the vec-

tor (v;C 1€ S) is an invariant measure for X. Such measures are also called
stationary measures.

PRrOOF. First we prove that 0 < vé? < 0. Therefore we notice that

7
k 0
M| =D P [Tk(n > Tjﬁrm]
u=1 =0
S 70 5 O

1
- 2P| > 1)

where we used the equality:

N e R A e R ke T(I)DT . (2.53)

=<

(|7 = 1) . (2.52)

J J

Suppose j = k; for j = k we have v¥ = 1. The equality in (2.53) follows from
the strong Markov property as follows. For r = 0 the equality is clear. For
r = 1 we have

P, [Tk(l) > Tj(ru)] _Pp, [Tk(n > 7—1j(r+1)7 Tk(n > Tj(r) n 1]
~ P, [T D1 0t > T+ T 0d 0, T > 10 + 1]
— E, [Pk [T Vo =T o0d ngT)] T T 4 1]

(strong Markov property)

~E, lIPXT(T) 7 =10 | T =T+ 1]
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— B [P, |10 > 1], 10 > 1 1]
=B |1 = 70| By [T = 1 1]

(induction with respect to )

J J

= (& |1 = 7|) BT = 1) (2.54)

Since Py, [Tk(l) > Tj(l)] > 0 it follows by (2.52) that vf > 0. By the same equality

and using the fact that P; [Tk(l) > Tj(l)] < 1 we see vj’? < 0.

Next we prove the equality: vf = D ieg Ui Fpij. Therefore we write

e

k
Z 1{Xn—j} Z P, [ = j, ( ) = 77/]

=1

I
P%:

Py, [Xn = ja Xpo1 = i) T]c(l) = n:|

s
m
[95)
3
Il
_

[
NgE

Ek[ _]|9:’n 1] anZ,Tk(l)Zn}
i€S

N

3
Il

—_

(Markov property)

ee}
- Z Z Ek []P)anl [Xl = .]]7 Xn—l = i, Tk(l) = n]

€S n=1
= YR [X = ] Zpk[ _i,T,§1>—1>n]
€S
[ 71
= ZR‘ (X1 = j]Eg Z lix,—y
€S | n=0
5
= 2P (X1 = ] | D Lixmiy | - (2.55)
€S n=1

In the last equality of (2.55) we used the equality

1
V-1

T
Ey, Z Lix,—y | = Eg Zl{xn=z’} ,
n=0 n=1

which is evident for ¢ = k and both are equal to 1 for ¢ = k. As a consequence
from (2.55) we see that v = >}, v/pi;. O

2.15. COROLLARY. Let the row vector vF := (véC D JE S) be as in equality (2.51)
of Theorem 2.14. Then v¥ is minimal invariant measure in the sense that if
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x = (xj : j € S) is another invariant measure such that x;, = 1. Then x; > vj’?,
J€eSs.

PRrROOF. We write:

Tj = Pkj + Z ZsPsj
seS, s=k

_ . . _
=P | X1 =], Tk( ) = 1|+ 2 Z Ts3Psos1Ps1j

8165, 51=k SQES

_ ' .
= ]P)k Xl =1 TIE ) = 1 + Z Pks1Dsqj + 2 Z LsyPsos1Ps1j

81€S Sl— sleS Sl—k S2€S So= k

2P| X = T = 1] 4 [ X = T > 2]

+o By, [Xn =5, 1 > n] . (2.56)

Upon letting n tend to o0 in (2.56) we see that z; > vj’?. This proves Corollary
2.15. O
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2.16. THEOREM. Let X be a irreducible Markov chain with transition matriz

P = (pij)(i,j)eSxS'
The following assertions hold:

(a) If any state is non-null recurrent, then all states are.
(b) The chain is non-null recurrent if and only if there exists a stationary
distribution w or invariant measure. If this is the case, then

1 .
i and vf = ik} (see (2.51)). (2.57)
B |71 "

Tk

As a consequence of (2.57) stationary distributions are unique.

PROOF. (a) The proof of assertion will follow from the proof of assertion

(b).

(b) Let k be a state which is non-null recurrent. By Theorem 2.12 it follows
that the chain is recurrent. By Theorem 2.14 the vector (vf :j€es ) as defined
in (2.51) is an invariant vector. Since k is non-null recurrent it follows that

k

v 1
0 < Eg [Tél)] < o0, and that the vector [ 2 :5¢e€ 8|, with 7, = — =,

Tk E [T(l)]

El+E

is a stationary vector. It follows that if the irreducible chain X contains at
least one non-null recurrent state, then there exists a stationary distribution.
Next suppose that there exists a stationary distribution 7 := (7; : j € ). Then
T =Y, jes ﬂjpg.z) for all n € N. Since the chain is irreducible, and the vector is
a probability vector, at least one m;, = 0. By irreducibility there exists n € N

such that pgglz, = 0, and hence 7, = 0, k € S. Consider for any given k € S the

vector x = [ 22 j€S ). Then z, = 1 and by Corollary 2.15 x; > vf” for all
Tk

j € S. It follows that

E, [T,§”] =M< 3N - L (2.58)

JES JES Tk Tk

Therefore k is non-null recurrent for all £k € S. It follows that if there exists

one non-null recurrent vector k € S, then all states in S are non-null recurrent.

Altogether this proves assertion (a), and also a large part of (b). From (2.58)

the first equality in (2.57) follows. Finally we will show the second equality

in (2.57). The vector x — v* is invariant and, by Corollary 2.15 T vf” > 0.
>y

Hence we obtain, for all positive integers n,

T n Uy n
0=1-v}= Z ( - vf) pgk) = <7T1]<; - vf) pg.k). (2.59)

€S Tk
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In (2.59) we choose n in such a way that pg.z) > 0. By irreducibility this is
possible. It follows that (see (2.51))

-
vf =E Z Lix,—jy | Xo=k| =E4 Z Lix,= | = W_Z = —ft 7 (260)
u=1

(
u=1 Ej I:T'J(l)]
The second equality in (2.57) is the same as (2.60). This concludes the proof of
Theorem 2.16. g
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Let k£ be a non-null recurrent state, and suppose that the state is j intercom-
municates with k. Then both states are non-null or positive recurrent. Next we
define the renewal process Ni(n), n € N, as follows:

Ni(n) = max {r ; Tk(r) < n} . (2.61)

Notice the inequalities:

and hence Tk(m) = n if m = Ng(n). We are interested in the following type of
limits:

lim — Zpkj —T}EEO“ZIP’ Xg—j‘Xo—k’]

n—o N,

= lim E Z Lix,=j | Xo =k (2.62)

n—o0
Z 1

Put m = Ng(n). Then Tk(m) = n, and consequently we see

1 & )1 -

_E Ty, =

n {(Xe=j} = m ~ 1
=1 u=ly_p{n=b

(u)
Tk

1x,=j)- (2.63)

Notice that for j = k we have

T(u)

— Z Z Lix=jy = 1,

u=ly_p{=H 4y

and consequently,

- 2 Lxn = —
=1

Hence, we observe that (see Theorem 2.6)

N 1 1
lim — Z 1ix,—ry = lim k() = = —, Pp-almost surely.
n—ow N, n—w N [ 2 ‘ Xo = k] Hi
(2.64)
We also see that
(w)
Ly I ST (2.65)
T {Xe=j} = m {Xe=j} :
=1 u=lp_p(u=b 4
From the strong law of large numbers we get:
7™ e
lim — Z Y Lxey =B | D x| Xo=k| =0 (2.66)
m—>00mu 1( T“ 1>+1 el
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From (2.63), (2.64), and (2.65) we obtain:

1 N; 1 <
= lim ﬂ = lim — Z 1{Xz=]'}
/=1

E|TV [ X=j| "= n o oen

(u)
m Tku k

= lim — ]-{X =j} = J . (267)
m 2 ;n g [Tk(l) | Xo = k]

u=1
=T, +1

The equality in (2.67) together with Theorem 2.9 shows the following theorem.

2.17. THEOREM. Let the sequence of stopping times (T,ST)) be defined as in
reN

(2.35), and let vf be defined as in (2.66). Suppose that the states j and k
intercommunicate and that one of them is non-null recurrent, then the other is
also non-null recurrent. Moreover,

1 & 1 vk
lim — ]-{X =j} = = d ; and (268)
no ;1 R [T]@ | Xo = j] E [Tk(l) | X = k]
lim lip,gf? = lim lip[xz = j | Xo = k]
n—ao N, —l J n—aoo N -1
1 o¥
_ _ j (2.69)

BT | Xo=j] E[1] X = k|

1 n
Hence, with m; = T}glgoﬁ Zpl(fj), p; =E [Tj(l) ‘ Xy = j], and v} as in equality
=1

1 o)
(2.66) we have 7; = — = L.
Hk

J

1.1.1. Random walks. In this example the state space is Z, and the process
X,, n € N, has a transition probability matrix with the following entries: p;_;; =
q, pi+1i =0, 0<p=1—-¢g <1, and p;; =0, 7 # i+ 1. Such a random walk
can be realized by putting X,, = >'_, Sk, where Sy is the initial state (which
may be random), the variables Sy, k € N, k > 1, are P-independent of each
other and are also P-independent of S;. Moreover, each variable Sy, k > 1, is
a Bernoulli variable taking the value +1 with probability p and the value —1
with probability q. This Markov chain is irreducible: every state communicates
with every other one. The set of states is closed. The corresponding infinite
transition matrix looks as follows:

g 0 p O
0 ¢ 0 p
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n mn 2
The state 0 has period two p(2 - = 0, and p(2 ) = ( n)pnq”. In order to
n

check transiency (or recurrence) we need to calculate

() _ N0 (20
2n
D = p"q". (2.70)

By Stirling’s formula we have n! ~ v/2mnn"e™",

n!
lim —— = 1.

n—w \/2rnnte="

2n\  (2n)!  Vdmn (2n)*" e~ 2" 4 (2.71)
n - (n‘)Q Amrn2ntle—2n - /T :

the sum in (2.70) is finite if and only if the sum

> < . (2.72)
n=1 \/ﬁ
Ifp=1-q # %, then 4pg < 1, and hence the sum in (2.72) is finite, and
so the unrestricted asymmetric random walk in Z is transient. However, if
p=q= 2, then 4pg = 1 and the sum in (2.72) diverges, and so the symmetric
unrestricted random walk in Z is recurrent. One may also do similar calculations
for symmetric random walks in Z2, Z?, and Z%, d > 4. It turns out that in Z? the

which means that

Since

1
2n-th symmetric transition probability p(()%n) satisfies (for n — o0) p(()%n) —,
™m
and hence the sum >, poon) = o0. It follows that the symmetric random walk

in Z? is recurrent. The corresponding return probability p(()%n) for the symmetric
random walk in Z? possesses the following asymptotic behavior:

em 13\ 1
Po-~3\7) wr

Hence the sum >, Poo ") < o0, and so the state 0 is transient. The 2n-th return
probabilities of the symmetric random walk in Z¢ satisfies

(2n) Cd

o0 "~ d/27 n — o,

2 o .
for some constant ¢; and hence the sum " Op(()on) < o in dimensions d > 3.

So in dimensions d > 3 the symmetric random walk is transient, and in the
dimension d = 1, 2, the symmetric random walk is recurrent.

We come back to the one-dimensional situation, and we reconsider the return
times to a state k € Z: Tk( ) = inf {n>1: X, =k}. Notice that Si, k € N, are

the step sizes which are £1. Also observe that Xj = ijo S;. We consider the

. : (1)
moment generating function G, x(s) = IEJ- [sTkl ], 0 < s < 1. Observe that on

the event {T,ﬁ ) = oo} the quantity s’ " has to be interpreted as 0. In addition,
we have P; [T,gl) > T,gi)l] =P; [T,S)l < OO] for k > 3, k, j € Z. Then it follows
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that Tk(l) = Tkgl_)l + Tk(l) o 19T(1> )
k—1
strong Markov property we get

Gjk(s) =E;

_ M (D)
T<1)} T2+ 709, )
Sk = j S k—1

,T,Sl_)l <

T]il)l T}gl)oﬁT]il)l 1)
:E] S *]Ej S - ‘9T£1_)1 ,T_1<OO

(Markov property)

) & 1
—E, |s5OEy [sTk ],T,Ql <o
e

(1) (1) (1) (1)
STk—lEk,1 [ST’C :H = ]Ej [STk—l] Ei_1 [STk ] .

From (2.73) we see by induction with respect to k that

k—1
Gin(s) = | [Guasi(s) = Goals)* .
t=j

Pj-almost surely, k > j, k, j € Z. Then by the

(2.73)

(2.74)
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In the final step of (2.74) we used the fact that the P,-distribution of E(j-)l is

the same as the Py-distribution of Tl(l). This follows from the fact that the
variables S,,, m € N, m > 1, are independent identically (Bernoulli) distributed

random variables. Notice that T; 1(1) =1+ Tl(o) o 1y, Py-almost surely. Here
Tl(o) =inf{n >0: X,, = 1}. Again we use the Markov property to obtain:

Goa(s) = Bo || = By [ 5111701 |
= sl _]Eo _STl(l)Oﬂl ‘ 91]} = sk []EXI [sTl(O)”

_ sE [Ex, _sTfO’] LX) = 1]] + s, [Exl [sTfO)] X, = —1]

— sE, [E, _sTfO)] X = 1] + s, []E_l [sTfO’] X = —1]
(notice that T; 1(0) = 0 P;-almost surely, and Tl(o) = Tl(l) P_;-almost surely)

= sp + sqE_, [STI(U] = sp +5qG_1.1(s)
= sp + 5qGoa(s) = sp + sqGo 1 (s)*. (2.75)

In the final step of (2.75) we employed (2.74) with j = —1 and k£ = 1. From
(2.75) we infer

1— (1 - dpgs®)"”
G = . 2.76
0:(5) . (276)
By a similar token (i.e. by interchanging p and ¢) we also get
1— (1 —4pgs?)"?
G = . 2.77
10(s) s ( )

Next we rewrite Go(s):
Gools) = Bo [s70" | = By [s1410701 | = kg [y [5707 | g, ]
- fon [
(on the event {X; = +1} the equality TO(O) = To(l) holds Py, -almost surely)
— sE, [Exl [STS”] X = 1] + 5T, [Exl [STS”] X = —1]
SE, [E1 [STS”] X = 1] + 5T, [E_1 [STS”] X = —1]

(1) (1)
splEq [sTOl ] + sqE_ [STOI ]

((space) translation invariance)

= Sp]El I:STSU] =+ Squ [STl(l)] = SpGl’(](S) + SQG(]J(S)
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(employ the equalities in (2.76) and (2.77))

1—(1—d4pgs®)'® 11— (1—4pgs®)"”?
+ sq

2ps 2qs

=1- (1 —4pq32)1/2.

Then we infer

Po[T" < 0] = Tim Gugls) =1 - (1 - dpg)"”

s11,s<1
=1-[1-2p[=1-qg—pl.

As a consequence we see that the non-symmetric random walk, i.e. the one with

q # p, is transient, and that the symmetric random walk (i.e. p = ¢q = %) is

recurrent. However, since

7 _ o _
Eo [TO ] N srlllrsn<1G o(s) 37111,5m<1 (1- 32)3/2 o0,

it follows that the symmetric random walk is not positive recurrent. In the
following lemma we prove some of the relevant equalities concerning stopping
times and one-dimensional random walks.

2.18. LEMMA. Employing the above notation and hypotheses yields the following
equalities:

(i) The equality T]( b1+ T oy holds P-almost surely for all states k,
je .
ii) Fork > 3, k, j € Z the equalztyT =7V +T )0y o, holds IP;-almost
k—1 T,

surely.

PROOF. First let us prove assertion (i). Let j and k be states in Z. Then
Py-almost surely we have

1+T oy =1+inf{n>0: X,, 00, = j}

=inf{n+1:n>0, X, =j}=inf{n>1X, =7} =T;", (2.78)
The equality in (2.78) shows assertion (i). Next we prove the somewhat more
difficult equality in (ii). As remarked above we have

P; [T,gl) > T,El_)l] =P [T,El_)l < oo] .

Indeed, in order to visit the state k > j the process X, starting from j has
to visit the state k — 1, and hence P; [T,Ei)l < Tk(l)] =P, [T,Ql < oo]. Without
loss of generality we may and shall assume that in the following arguments
we consider the process X, on the event {T,El_)l < oo}. (Otherwise we would

automatically have Tk( )1 + T o 19T(1> = Tk(l)-) Next on the event {Tk(l,)l < OO}
we write:

T,
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: (1) :
—inf {T 40 =1, X, o0 =k
—inf {n > 7" X, =k} =T, (2.79)
Assertion (ii) follows from (2.79). Altogether this proves Lemma 2.18. O
Perhaps it is useful to prove in an explicit manner that the one-dimensional

random walk is a Markov chain. This is the content of the next lemma.

2.19. LEMMA. Let {S,: ne N, n > 1} be independent identically distributed
random variables taking their values in Z. Put Xy = Sy be the initial value
of the process X,, n € N, where X,, =" _, Sp,. Put

Ej [f (X07X17' B 7Xn)] = E[f (XO +j7X1 +j7 c '7Xn +]>] (280)

for all bounded functions f : Z"*' — R, j € Z, n € N. Then the equality in
(2.80) expresses the fact that the process

{(Qa g,Pj>jeZ ’ (XTHn € N) ) (ﬁnvn € N) 7Z}

1s a space homogeneous process, with the property that the distribution of the

process (Xn41 — Xn), oy does not depend on the initial value j. It is also a

time-homogeneous Markov chain.

*I studied
English for 16 4
years but...
...I finally
learned to
speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

3

Click to hear me talking

before and after my

unique course download

Download free eBooks at bookboon.com
60

Click on the ad to read more



http://s.bookboon.com/EOT

PrOOF OF LEMMA 2.19. The first equality say that the finite dimensional
distributions of the process (X,,), .y are homogeneous in space. If

f(xo,21,...,2n) = g (X1 — X0, T2 — X1, .., Ty — Tp1)

then from (2.80) we see that

Ej[f(X07X17"'7 )]:E[f(X0+.]7X1+j77XTL+.]>]
:]E[g( X07X2_X17"'7Xn_Xn—1)]
= Ej [g( X(),XQ —Xl,...,Xn _Xn—l)] . (281)

The equality in (2.81) shows that the distribution of the process
(Xn+1 - Xn)

neN

does not depend on the initial value j. Next we prove the Markov property. Let
f be any bounded function on Z. To this end we consider:

Ej [f (Xn+1) | Gu) = E[f (Xns1 +5) | Gn]
:E[f(Xn+1 _Xn+Xn+j) ’ 9n]

(the variable X,,.1 — X,, and the o-field G,, are P-independent)
=we Bl = f(Xpn (W) = X, (W) + X (W) + )]

(the P-distribution of X,,;1 (w’) — X,, (w’) neither depends on n nor on the initial
value Xj (w))

=w Elw — f (X (W) — X (W) + X, (W) + )]
(choose Xy (w') = 7)

—w— B — f (X1 (W) =+ Xn (W) + )]
=w— E[w - f(X) (W) + X, (w))]
—w o By, [ = (X1 ()] = Ex, [f (X1)]. (2.82)

The equality in (2.82) proves Lemma 2.19. O

2.20. REMARK. It would have been sufficient to take f of the form f = 1,
ke Z.

2.21. REMARK. Lemma 2.19 proves more than just the Markov property for a
random walk. It only uses the fact that the increments .S,, are identically P-
distributed and independent, and that the process (X,,), .y possesses the same
IP;-distribution as the P-distribution of the process (X, + j),cn: J € Z. The
proof only simplifies a little bit if one uses the random walk properties in an
explicit manner.
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1.1.2. Some remarks. From a historic point of view the references [8, 61,
193] are quite relevant. The references [15, 57| are relatively speaking good
accessible. The reference [196] gives a detailed treatment of martingale theory.
Citations, like [68, 178, 180, 183] establish a precise relationship between
Feller operators, Markov processes, and solutions to the martingale problem.
The references [63, 64] establish a relationship between hedging strategies (in
mathematical finance) and (backward) stochastic differential equations.

2. Some additional comments on Markov processes

In this section we will discuss some topics related to Markov chains and Markov
processes. We consider a quadruple

(Q,F,P),(Xp,neN), (0, neN),(S,8)}. (2.83)

In (2.83) the triple (Q2,F,P) stands for a probability space, € is called the
“sample space”, F is a o-field on €2, and P is a probability measure on F. The
o-field F is called the o-field of events. The symbol (S,8) stands for the state
space of our process (X, : n € N). In the present situation the state space S is
discrete and countable with the discrete o-field 8.

Let (2,F,P) be a probability space and let X; : Q@ — S5, j e N=1{0,1,2,...},
be state variables. It is assumed that the o-field J is generated by the state
variables X, j € N. Let J; : Q@ — Q, k € N, be time shift operators, which are
also called time translation operators: X, oV, = X,k, 7, k € N. For a bounded

o (X, : j € N)-measurable stochastic variable F': Q@ — R and x € S we write
E[F, Xy = z]
E,[FI=E|F | Xy=2|= —5——

[FI=ELF | Xo =) = =5 =

We also write

P[X; =y, Xy = ]
P[Xo = x|

Here = has the interpretation of state at time 0, and y is the state at time

1. Let G,, n € N, be the internal memory up to the moment n. Hence G, =
o(X;:0<j<n).

Ty = =P, [Xi=y]=P[X1 =y | Xo=z].

2.22. THEOREM. Suppose that (X, : n € N) is a stochastic process with values
in a discrete countable state space S with the discrete o-field 8. The state
variables X,, n € N, are defined on a probability space (2, F,P). Write, as
above, T, , = P [X1 =y } Xy = x], x,y € S. Then the following assertions are
equivalent:

(1) For all finite sequences of states (Sg, ..., Snt1) in S the following iden-
tity holds:

P (Xn+1 = Sn+1 } XO = 80, -- >Xn = Sn) = Tsn,sn_H; (284)

(2) For all bounded functions f : S — R and for all times n € N the
following equality holds:

E|[f(Xnt1) | Gu] = Ex, [f (X1)] P-almost surely; (2.85)
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(3) For all bounded functions fo, ..., fr op S and for all times n € N the
following equality holds P-almost surely:

E [fo(Xa) i(Xnr1) - fo(Xnsr) [ Ga] = Ex, [fo(Xo) f1(X1) ... fu(X)]5 (2:86)
(4) For all bounded measurable functions F : (Q,F) — R (stochastic vari-
ables) and for all n € N the following identity holds:
E[Fod,|S.] =Ex, [F] P-almost surely, (2.87)
(5) For all bounded functions f : S — R and for all (S,,),,.-Stopping times
7 :Q — [0,0] the following equality holds:
E [f(XTH) ‘ 97] =Ex, [f(X1)] P-almost surely on the event {1 < w0};
(2.88)
(6) For all bounded measurable functions F : (,F) — R (random vari-
ables) and for all stopping times T the following identity holds:

E[Fod,|G,| =Ex, [F] P-almost surely on the event {1 < oo}. (2.89)

Before we prove Theorem 2.22 we make some remarks and give some explana-
tion.

2.23. REMARK. Let Q = S¥ equipped with the product o-field, and let X :
0 — S be defined by X;(w) = w; where w = (wp, ..., wj,...) belongs to Q. If
Uy @ — Qis defined by Uy, (wo, ..., wj,...) = (Wky - - ., Wjsk, - - ), then it follows
that Xj @) Q9k = Xj+k-
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2.24. REMARK. Instead of one probability space (2, F,P) we often consider a
family of probability spaces (Q,F,P,) The probabilities P,, = € S, are
determined by

zeS*

E[F, X, = x]

P [XO = .CE:I 7
Here F': Q) — R is F-Br-measurable, and hence by definition it is a random or
stochastic variable. Since P, [A] = E, [14], A€ F, and P, [Q] = E, [1] = 1, the
measure P, is a probability measure on F.

E,[F]=E[F|X,=z]= zeS. (2.90)

2.25. REMARK. Let F': () — R be a bounded stochastic variable. The variable
Ex, [F'] is a stochastic variable which is measurable with respect to the o-field
o (X,), i.e. the o-field generated by X,,. In fact we have

E [F> XO = Xn(w)]
P [XO = Xn(w)]
=E [w' — I (w') X 1{X0:Xn(w)} (w')] . (291)

If we fix w € €2, then in (2.91) everything is determined, and there should be no
ambiguity any more.

Ex, @ [F] =E[F | Xo = X,(w)] =

2.26. REMARK. Fix n € N. The o-field G,, is generated by events of the form
{(Xo, X1,...,Xp) = (S0,81,---,5n)} -

Here (sg, $1, ..., 8,) varies over S"*1. Tt follows that

G, = 0{{(X0,X1, ooy Xp) = (80,81, -5 Tn)} : (S0, S1,---58n) € S”H}
= {{(Xo, X1,...,X,) € B} : Be 8§}
=0 (Xo, X1,...,X,). (2.92)
The o-field in (2.92) is the smallest o-field rendering all state variables X,

0 < j < n, measurable. It is noticed that G, c &.

2.27. REMARK. Next we discuss conditional expectations. Again let F': 2 - R
be a bounded stochastic variable. If we write Z7 = E [F ‘ 9n], then we mean
the following:

(1) The stochastic variable Z is G,-Bg-measurable. This a qualitative as-
pect of the notion of conditional expectation.

(2) The stochastic variable Z possesses the property that E [F, A]=E [Z, A]
for all events A € G,,. This is the quantitative aspect of the notion of
conditional expectation.

Notice that the property in (2) is equivalent to the following one: the stochastic
variable Z satisfies the equality E [F | A] =E [Z ! A] for all events A€ G,,.

2.28. REMARK. Let G be a sub-o-field of F. The mapping F' — E [F ‘ 9] is an
orthogonal projection from L? (Q, F,P) onto L? (9, G,P). Let F € L?(Q,F,P),
and put Z = E [F ‘ 9]. In fact we have to verify the following conditions:

(1) Ze L?(Q,5,P);
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(2) If G e L*(Q,9,P), then the following inequality is satisfied:
E[|F - ZP] <E[|F - GP].

This claim is left as an exercise for the reader. For more details on conditional
expectations see Section 1 in Chapter 1.

2.29. REMARK. Next we will give an explicit formula for the conditional ex-
pectation in the setting of a enumerable discrete state space S. Let G, =
0 (Xo, X1,...,X,) where X; : Q@ — 5, 0 < j < n, are state variables with a
discrete countable state space S. In addition, let F' : 2 — R be a bounded
stochastic variable. Then we have

E[F|S.]= >, E[F| Xo=io,- ., X0 =in] Lixgmio}  Lxuin}- (2.93)

10y esin €S

Writing the conditional expectation in (2.93) in an explicit manner as a function
of w yields

E[F | Gn] (@)
= > E[F] Xo=rio,. .. Xo = in] Lxpmioy (@) - Lx,mip (). (2.94)
10y sin €S

From (2.93) and also (2.94) it is clear that the conditional expectation
E [F | Sn] is G,,-measurable.
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2.30. REMARK. Put § =9, =0 (Xg,..., Xp,...) =0 (7) where X : Q — SN
is the variable defined by X (w) = (Xo(w), ..., Xp(w),...), w € Q. Then

= {{Y € B} : B is measurable with respect to the product o-field on SN } .

2.31. REMARK. Let 7 : Q@ — N u {oo} be a random variable. This random
variable is called a stopping time relative the filtration (G,,), .y, or, more briefly,
7 is called a (§y), y-Stopping time, provided that for every k£ € N an event of
the form {7 < k} is Gy-measurable. The latter property is equivalent to the
following one. For every k € N the event {7 = k} is Gy-measurable. Note that
{r=k} ={r<k\{r<k—-1}, ke N k> 1 and {7 <k} = Uj_, {7 = j}.
From these equalities it follows that 7 is a (Sy), .y-Stopping time if and only if
for every k € N the event {7 = k} is Gp-measurable.

2.32. REMARK. Let B be a subset of S. Important examples of stopping times

are
o =inf{k>0: X, e B} on uU},{X,e B} and o elsewhere;
rp=inf{k>1: X, e B} on uUy,{X,e B} and w elsewhere.  (2.96)

Similarly we also write 73 = inf {k > s: X} € B} on the event U, {X} € B},

and 7§ = o0 elsewhere. The time 7% is called the first income time, and 75 is

called the first hitting time, or the first income time after 0.

We also notice that 75, = min{k > 1: X; € B} on U, {X}, € B} and 7} = w0
on N, {X, € S\B}. In addition: 1+ 7409, = J%.

2.33. REMARK. Again let 7 : Q@ — N u {0} be a (G,), -stopping time. The
o-field G, containing the information from the past of 7 is defined by

9 —ﬁkeN{AE? Aﬁ{T k}eSk}
=0 (Xj\r: jEN) (2.97)

where X, (w) = Xjarw)(w), we

2.34. REMARK. Let F' be a stochastic variable. What is meant by F' o1, and
F o1, on the event {r < o0}? Here k € N, and 7 is a (9,),-stopping time.
For F' = [T}, f; (X;) we write:

Oﬁk_nf] oﬁk_l_[fj j+k:

and on the event {7 < o0}

Fod, —Hf] ) 00, _Hfj e (2.98)
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2.35. PROPOSITION. Let (ng y)>( esxs be a sequence of square matrices with
z,y)eS X

positive entries, possibly with infinite countably many entries (when S is count-
able, not finite). Put

n+1

0, =1 T, =T8 T, = > [T 1s: so=2, snp1=y. (2.99)

S1,...,8nES j=1

The equalities in (2.99) are to be considered as matriz multiplications. Fix
1 <n <--- <ng <n, and let the measure space (Sk,®k 18, /Lm, 7nk7n+1,y)
(x,y) € S x S, neN be determined by the equalities:

n
09
J:S'k H fj (Sj> d/’bnls,(.)..,nk,n—&-l,anrl (817 SRR Sk)
j=1

k+1

= > LIzmre s, fieL”(5.8), (2.100)

(517 78k)esk -7 1

where (8o, Spy1) = (z,y) € S x S, ng =0, and ng1 = n+ 1. Then for every
1 <jo<n,and fj € L (E,€), 1 < j < n, this family satisfies the following
equality:

J 1_[ S] du(l),s.(.),n,nJrl,sn_,_l (Sla ER) Sn) (2101)

n
— 0,50 A A 2
— J | | 5 (85) dpy 2 (8155 8401, Sjot1y -+ Sn) Ts sy
n—
=1,j

where T}, = ZzeS ng,lZ)Tw for all (x,y) € S x S (matriz multiplication). Let
1<n < <ng <n, and put

/’Lgﬁ...,nk,n-‘rl BO X B Z 130 :unl, Sng,n+ly (B) ) BO € 87 Be ®k8
yeS

(2.102)
Suppose that the matrices (Tég})( : , n € N, are stochastic. Then the
z,y)ES XS

measures in (2.102) do not depend on n+ 1. Moreover, the following assertions
are equivalent:

(a) The family of measure spaces
{(S’k+1,®k+18 [ pims1) P 1Snp <o <mp<n,ne N} (2.103)

is a consistent family of probability measure spaces.

(b) The family of measure spaces defined in (2.100) is consistent.

(c) For everyne N and (z,y) € S x S the equality T\ = 17, holds.

Suppose that the family in (2.103) is a consistent family of probability spaces.
Then the corresponding process

(LT P,), s, (X neN), (0n,neN), (S 8)}. (2.104)
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is a Markov chain if and only if for (x,y) € S x S and n, m € N the following
matrix multiplication equality holds:

T = N TT = N T T (2.105)
2€S z€S

This means that

P, [Xo € Bo, ..., Xn € By] = 1p,(2)1}" s (B x -+ x By),
for Bj € 8, 0 < j < n, and that the family in (2.104) possesses the Markov
property if and only (2.105) holds.

In addition, we have Tg%) =P, [X,=vy], z, y € S; i.e. the quantities Ta%)
represent the n time step transition probabilities from the state x to the state y.

2.36. THEOREM. Let the notation be as in Theorem 2.22. The following asser-
tions are equivalent:

(1) For every s € S, for every bounded function f : S — R, and for all
n € N the following equality holds Ps-almost surely:

Es [f (Xns1) | Gn] = Ex, [f (X1)]. (2.106)

(2) For every bounded function f : S — R, and for all n € N the following
equality holds P-almost surely:

E[f(Xu1) | Gu] = Ex, [f (X1)]. (2.107)

2.37. REMARK. From the proof it follows that in Theorem 2.36 we may replace
the stochastic variable f (X;) by any bounded stochastic variable Y : Q — R.
At the same f (X, 1) = f(X1) o9, has to be replaced by Y o 9,,.

2.38. REMARK. Theorem 2.36 together with Remark 2.37 shows that through-
out in Theorem 2.22 we may replace the probability P with P, for any s € S.
Consequently, we could have defined a time-homogeneous Markov chain as a
quadruple

{(T,Py) g, (Xn:neN), (U, keN), (5, 38)}

satisfying the equivalent conditions in Theorem 2.22 with P,, for all s € E,
instead of IP.

PROOF OF THEOREM 2.36. (1) = (2) Let s€ S, f : S — R a bounded
function, and n € N. From (2.106) we infer

Es [f (Xnt1),A] = Es [Ex, [f (X1)],A] forall AeG,. (2.108)
From (2.108) we infer
E[f(Xni1), A4, Xo=s]
=E[Ex, [f (Xui1)], 4, Xo=35] forall AeG,, and se S. (2.109)
By summing over s € S in (2.109) we obtain
E[f(Xyt1),A] =E[Ex, [f (Xn41)],A] forall Aeg,. (2.110)
From (2.110) the equality in (2.107) easily follows.
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(2) = (1) Let f: S — R and n € N be such that (2.107) holds. Then, since all
events of the form {X, = s}, s € S, belong to G,, (2.107) implies that (2.109)
holds for f and hence by dividing by P[X, = s], for s € S, we obtain (2.108).
Hence (2.106) follows.

All this completes the proof of Theorem 2.36. 0J

The following theorem is similar to the formulation of Theorem 2.36 but now
with stopping times and having remark 2.37 taken into account:

2.39. THEOREM. Let the notation be as in Theorem 2.22, and let T : @ — [0, 0]
be a (Gy),,n-Stopping time. The following assertions are equivalent:

(1) For every s € S, and for every bounded stochastic variable Y : Q — R
the following equality holds Ps-almost surely on the event {T < o0}:

E,[Y o9, |S,] =Ex, [Y]. (2.111)

(2) For every bounded stochastic variable Y : 0 — R the following equality
holds P-almost surely on the event {T < 00}:

E[Yod.|G,]=Ex, [Y]. (2.112)

2.40. REMARK. Let 7: Q — Nu{w} be a (G,,),,.-stopping time, and let A € G,.
Let m € Nu {o0}. Put 7, = mlg\a 4+ 714. Then 7, is a (G,),y-stopping time.
If P[A] < 1 and m = oo, then 7, = 0 on the event Q\ A which is non-negligible.
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2.41. DEFINITION. Let 2 be a set and let 8 be a collection of subsets of 2. Then
8 is called a Dynkin system, if it has the following properties:

(a) Qe §;
(b) if A and B belong to 8 and if A © B, then A\B belongs to §;

(c) if (A, : n € N) is an increasing sequence of elements of 8, then the union
U, A, belongs to 8.

In the literature Dynkin systems are also called A-systems: see e.g. [3]. A
m-system is a collection of subsets which is closed under finite intersections. A
Dynkin system which is also a m-system is a o-field. The following result on
Dynkin systems, known as the m-A theorem, gives a stronger result. Theorems
2.42 and 2.43 correspond to theorems 3.25 and 3.26 respectively.

2.42. THEOREM. Let M be a collection of subsets of ), which is stable under
finite intersections, so that M is a w-system on §2. The Dynkin system generated
by M coincides with the o-field generated by M.

PROOF. Let D (M) be the smallest Dynkin-system containing M, i.e. D (M)
is the Dynkin-system generated by M. For all A€ D (M), we define:

T(A):={BeD(M): AnBeDM)}.

then we have

(1) if A belongs to M, M < I'(A),

(2) for all Ae M, T'(A) is a Dynkin system on (.
(3) if A belongs to M, then D (M) < I'(A),

(4) if B belongs to D (M), then M < I'( B),

5)

(5) for all B € D (M) the inclusion, D (M) < I'(B) holds.

It follows that D (M) is also a m-system. It is esay to see that a Dynkin system
which is at the same time a 7-system is in fact a o-field (or o-algebra). This
completes the proof of Theorem 2.42. O

2.43. THEOREM. Let ) be a set and let M be a collection of subsets of 2, which
is stable (or closed) under finite intersections. Let H be a vector space of real
valued functions on ) satisfying:

(i) The constant function 1 belongs to H and 14 belongs to H for all
AeM;

(ii) if (fn : n € N) is an increasing sequence of non-negative functions in H
such that f = sup,,cy fn is finite (bounded), then f belongs to H.

Then H contains all real valued functions (bounded) functions on 2, that are
o(M) measurable.

PROOF. Put D = {A<Q:14€ H}. Then by (i) 2 belongs to D and
D oM. If Aand B are in D and if B 2 A, then B\A belongs to D. If
(A, :m e N) is an increasing sequence in D, then 1,4, = sup,, 14, belongs to
D by (ii). Hence D is a Dynkin system, that contains M. Since M is closed
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under finite intersection, it follows by Theorem 2.42 that D 2 o(M). If f > 0is
n2™
measurable with respect to (M), then f = stlbp 27" ijl L{f>jo-n}. Since the

subsets {f = j27"}, j, n € N, belong to (M), we see that f is a member of H.
Here we employed the fact that o(M) < D. If f is o (M)-measurable, then we
write f as a difference of two non-negative o (M)-measurable functions. U

The previous theorems (Theorem 2.42 and Theorem 2.43) are used in the fol-
lowing form. Let 2 be a set and let (5;,8;),.; be a family of measurable spaces,
indexed by an arbitrary set I. For each ¢ € I, let M; denote a collection of
subsets of 5;, closed under finite intersection, which generates the o-field §;,
and let f; : Q — S5; be a map from €2 to S;. In this context the following two
propositions follow. These propositions correspond to Propositions 3.27 and
3.28 respectively.

2.44. PROPOSITION. Let M be the collection of all sets of the form (.., fi ' (As),
AieM;,ieJ, J< I, J finite. Then M is a collection of subsets of 2 which is
stable under finite intersection and c(M) = o (f; 1 i€ I).

2.45. PROPOSITION. Let I be a vector space of real-valued functions on ) such
that:

(i) the constant function 1 belongs to H;
(ii) if (hy, : n € N) is an increasing sequence of non-negative functions in H
such that h = sup,, h,, is finite (bounded), then h belongs to H;
(ili) H contains all products of the form [ [, ;14,0 fi, J <1, J finite, and
Ai € Mi; 1€ J.

Under these assumptions H contains all real-valued functions (bounded) func-
tions which are measurable with respect to o(f; : i € I).

The theorems 2.42 and 2.43, and the propositions 2.44 and 2.45 are called the
monotone class theorem.

In the propositions 2.44 and 2.45 we may take S; = .S, M; the collection of finite
subsets of 5;, and f; = X;,ie [ =N.

3. More on Brownian motion

Further on in this book on stochastic processes we will discuss Brownian motion
in more detail. In fact we will consider Brownian motion as a (Gaussian process,
as a Markov process, and as a martingale (which includes a discussion on It6
calculus). In addition Brownian motion can be viewed as weak limit of a scaled
symmetric random walk. For this result we need a Functional Central Limit
Theorem (FCLT') which is a generalization of the classical central limit theorem.

2.46. THEOREM (Multivariate Classical Central Limit Theorem). Let (€2, F,P)
be a probability space, and let {Z, : n € N} be a sequence of P-independent and
P-identically distributed random variables with values in R? in L' (Q, F, P; Rd).
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Let p = E[Z], and let D be the dispersion matriz of Zy (i.e. the variance-
covariance of the random vector Z, ). Then there exists a centered Gaussian (or
multivariate normal) random vector X with dispersion matriz D such that the
sequence
i+ -+ 2y —np

Vn

converges weakly (or in distribution) to a centered random vector X with dis-
persion matriz D as n — oo. The latter means that lim E[f (Z,)] = E[f (Z)]
n—0o0

for all bounded continuous functions f : RY — R.

X, =

Notice that by a non-trivial density argument we only need to prove the equality
) i+ -+ Zy —np
lim E =E[f(X
lim lf < 7 ) ] Lf (X)]

for all functions f of the form f(z) = e™*% x e RY ¢ e RY.

Next let us give a (formal) definition of Brownian motion.

2.47. DEFINITION. A one-dimensional Brownian motion with drift x4 and diffu-
sion coefficient o2 is a stochastic process {X(¢) : ¢ = 0} with continuous sam-
ple paths having independent Gaussian increments with mean and variance of
an increment X (t + s) — X(¢) given by sy = E[X(t + s) — X ()] and so? =
E[(X(t+s)— X(t))2], s,t = 0. If Xy =z, then this Brownian is said to start
at x. A Brownian motion with drift © = 0, and 0% = 1 is called a standard
Brownian motion.
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One of the problems is whether or not such a process exists. One way of resolv-
ing this problem is to put the Functional Central Limit Theorem at work. Let
us prepare for this approach. Let {Z; : j € N} be a sequence of centered inde-
pendent identically distributed real valued random variables in L! (Q, F, P) with
variance 02 = E[Z?]. For example these variables could be Bernoulli variables
taking the values +0 and —o with the same probability % Put Sy = Zy = 0,
S, =21+ -+ Z,,neN, n>1. Define for each scale parameter n > 1 the
stochastic process X ™ (t) by

nt
S _ ket Z
N N
Here |nt| is the integer part of nt, i.e. the largest integer k for which k£ < nt <
k + 1. The it is relatively easy to see that

E[X™M(#)] =0, and Var (X™(t)) =E[X™(®)?] = to®. (2.114)

Then the classical CLT (Central Limit Theorem) implies that there exists a
process {X (t) : t = 0} with the property that for every m € N, for every choice

XM (t) t=0. (2.113)

(t1,...,tm) of m positive real numbers, and every bounded continuous function
f: R™ — C the following limit equality holds:
lim E[f (X™(1))] = E[f (X(1)]. (2.115)

The equality in (2.115) says the finite-dimensional distributions of the sequence
of processes {X"(t): ¢ > 0} _, converges weakly to the finite-dimensional
distributions of the process {X(¢): ¢ > 0}. This limit should then be one-
dimensional Brownian motion with drift zero and variance o?. A posteriori
we know that Brownian motion should be P-almost surely continuous. How-
ever the processes {X™(t): t > 0} _ have jumps. It would be nice if we were
able to replace these processes which have jumps by processes without jumps.
Therefore we employ linear interpolation. This can be done as follows. We
introduce the following interpolating sequence of continuous processes:

~ S Lin
(n)(t) - \l/ﬁtj + (nt = nt]) l\tﬁj:l’
m m+1)

Let m and n be positive integers. Then on the half open interval [,
n

t>0. (2.116)

n

the variable X" (¢) is constant in time ¢ at level ~, while X" () changes lincarly
n
from
m . Sm Sm Zm . + 1
—attlmetzmto L 1 attlmetzm :

n no Vo Vo yn n

It can be proved that the sequence of stochastic processes { X ™ (t): t= 0}

(2.117)

neN
converges weakly to Brownian motion with drift ¢ and variance o2. This is

the contents of the following FCLT (Functional Central Limit Theorem). The
following result also goes under the name “Donsker’s invariance principle”: see,
e.g., [20] or [56].
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2.48. THEOREM (Functional Central Limit Theorem). Let {)N((”)(t) : te |0, T]},

neN, and {X(t): t€[0,T]} be stochastic processes possessing sample paths
which are P-almost surely continuous with the property that the finite-dimen-

sional distributions of the sequence {)N((”) (t): t €0, T]} converge weakly to
neN

those of {X(t): te[0,T]}. Then the sequence {)N((")(t) cte [O,T]} y o
ne

verges weakly to {X (t) : t € [0,T]} if and only if for every ¢ > 0 the following
equality holds:

lim sup P sup
610 peN 0<s,t<T, |s—t|<d

X™(s) — )N((")(s)‘ > 5] = 0. (2.118)
This result is based on Prohorov’s tightness theorem and the Arzela-Ascoli
characterization of compact subsets of C[0,T].

2.49. THEOREM (Prohorov theorem). Let (P, : n € N) be a sequence of proba-
bility measures on a separable complete metrizable topological space S with Borel
o-field 8. Then the following assertions are equivalent:

(i) For every € > 0 there exists a compact subset K. of S such that
P,[K.]>1—¢ for allneN.

(ii) Every subsequence of (P, : n € N) has a subsequence which converges
weakly to a probability measure on (S, 8).

A sequence (P,), satisfying (i) (or (ii)) in Theorem 2.49 is called a Prohorov
set. Theorem 2.48 can be proved by applying Theorem 2.49 with P, equal to

the P-distribution of the process {)N( M) 0<t < T}.

2.50. THEOREM (Arzela-Ascoli). Endow C[0,T] with the topology of uniform
convergence. A subset A of C[0,T] has compact closure if and only if it has the
following properties:

(i) sup |w(0)] < oo;
we
(ii) The subset A is equi-continuous in the sense that

lim sup sup |w(s) — w(t)| = 0.

010 0<s,t<T, |s—t|<5 weA

From (i) and (ii) it follows that sup sup |w(s)| < o0, and hence A is uniformly
weA se[0,T]

bounded. The result which is relevant here reads as follows. It is the same as

Theorem T.8.4 in Bhattacharaya and Waymire [20].

2.51. THEOREM. Let (P,), be a sequence of probability measures on C[0,T].
Then (P,),, is tight if and only if the following two conditions hold.

(i) For each n > 0 there is a number B such that
P, lweC[0,T]: |w(0)]>B]l<n, n=1,2,...
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(ii) For eache >0, n> 0, there is a 0 < J < 1 such that

P, [weC[O,T]: sup |w(s)—w(t)|>8] <n, n=12 ...

0<s,t<T, |s—t|<d

PRrOOF. If the sequence (P,), is tight, then given n > 0 there is a compact
subset K of C ([0,T]) such that P,(K) > 1 — n for all n. By the Arzela-Ascoli
theorem (Theorem 2.50), if B > sup,,.j |w(0)], then

P,lweC[0,T]: |w(0)| =Bl < P, [K]<1—(1—-n)=n.
Also given € > 0 select § > 0 such that sup sup lw(s) —w(t)] < e. Then

weK 0<s,t<T, |s—t|<é

P, [w e C[0,T]: sup lw(s) — w(t)| = 5] < P,[K° <n foralln>1.

0<s,t<T, [s—t|<6
The converse goes as follows. Given n > 0, first select B using (i) such that
P lweC([0,T]): |w(0)] < B] =1~ 1in, for n > 1. Select &, > 0 using (ii)
such that

1
P, [w e C([0,T]): sup lw(s) —w(t)] < —] >1-2"0*Yy forn > 1.
0<s,t<T, |s—t|<d r
Now take K to be the uniform closure of
A 1
(N {weC(0,7]) : [w(0)] < B, sup |w(s) —w(t) < = 3.
=1 0<s,t<T, |s—t|<68 r
Then P,(K) > 1—nforn > 1, and K is compact by the Arzela-Ascoli theorem.
This completes the proof Theorem 2.51. U
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For convenience of the reader we formulate some limit theorems which are rel-
evant in the main text of this book. The formulations are taken from Stirzaker
[163]. For proofs the reader is also referred to Stirzaker. For convenience
we also insert proofs which are based on Birkhoff’s ergodic theorem. Define
Sp = Y1"0 Xy, where the variables {X;}, .y © L' (Q, F,P) are independent and
1dentlcally distributed (i.i.d.). Then we have the following three classic results.

2.52. THEOREM (Central limit theorem, standard version). If E[Xy] = u and
0 < var (Xy) = 0? < 0, then

n—ao0

lim P [L(qn—inu < x} =®(z), zeR,

1.2

where ®(x) is the standard normal distribution, i.e. ®(x e 2" dx.

=L

PROOF. Let f: R — C be a bounded C*-function with a bounded second
derivative. Then by Taylor’s formula (or by integration by parts) we have
1

Fl5) = F0) 4 O0) + 557" + (1= )2 " ()~ F/(0)) ds. (2:119)

0

X
Put Y, =
u k 0—\/—

F (Vi) = F(O0) + Y f'(0) + Y2 0"(0) + j (1= ) Y2 (f" (sYu) — J/(0)) ds.
’ (2.120)

Inserting y = Y,, x, into (2.119) yields

Then we take expectations in (2.120) to obtain:
1

1
E[f (Yar)] = f(0) + 5~ "(0) +J (1= s)E[Y2 {f" (sYax) = F"(0)}] ds.
0
(2.121)
Put )
en(t) = nJ (1=s)E[Y?, (1 —e™"1)] ds, teR,
0
and choose f(y) = e ™. Observe that, uniformly in ¢ on compact subsets of
R, lim,, o €, (t) = 0. Then, since the variables Y, x, 1 < k < n, are i.i.d., from
(2.121) we get

2 e, (t
+ <)

E[e k] =1— 2.122
[eme] =1 2 4 L2 2.122)
From (2.122) we infer
o . n 2 e, ()"
E[ —”EmYn,k] — (Efe ) = (1- 4 2500 2.123
: (B[e]) s 2.123)

Let Y : Q — R be a standard normally distributed random variable. From the
properties of the sequence {¢,(t)}, and (2.123) we see that, for every 0 < R < o0,

lim sup {E [e*itZ}Ezl Yok _ e—z’ty]}

n—o0 \t|<R
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= lim sup {E [e—itZzzlYn’k] B e_%tQ}

n—o0 ‘t|<R

5 2 e, (t)\"
= lim sup {E [e_nz’ﬁlyn”“] - (1 — s ( )) } = 0. (2.124)

n—0o0 ‘t|<R 2n n

The conclusion in Theorem 2.52 then follows from (2.124) together with Lévy’s
continuity theorem: see Theorem 5.42, and Theorem 5.43 assertions (9) and
(10). O

2.53. THEOREM (Weak law of large numbers). If E[X,] = pu < oo, then for all
>0,

limIP[

n—0o0

&—,u'>5]=0.
n

For a proof of the following theorem see (the proof of) Theorem 5.60. It is
proved as a consequence of the (pointwise) ergodic theorem of Birkhoff: see
Theorems 5.59 and 5.66, and Corollary 5.67.

2.54. THEOREM (Strong law of large numbers). The equality

lim & = i, holds P-almost surely (2.125)

n—o0 N

for some finite constant p, if and only if E[|Xk|] < o0, and then p = E[X;].
Moreover, the limit in (2.125) also exists in L'-sense.

We will show that Theorem 2.53 is a consequence of Theorem 2.54.

PROOF OF THEOREM 2.53. Let ¢ > 0 be arbitrary, and let {X}, and p
be as in Theorem 2.53. Then
= 5] < 1IEZ [
€

P { } . (2.126)

By the L'-version of Theorem 2.54 it follows that the right-had side of (2.126)
converges to 0. This shows that Theorem 2.53 is a consequence of Theorem
2.54. OJ

S

M
n

Sp—np

n

The central limit theorem is the principal reason for the appearance of the nor-
mal (or “bell-shaped”) distribution in so many statistical and scientific contexts.
The first version of this theorem was proved by Abraham de Moivre before 1733.
The laws of large numbers supply a solid foundation for our faith in the useful-
ness and good behavior of averages. In particular, as we have remarked above,
they support one of our most appealing interpretations of probability as long-
term relative frequency. The first version of the weak law was proved by James
Bernoulli around 1700; and the first form of the strong law by Emile Borel in
1909. We include proofs of these results in the form as stated. As noted above
a proof of Theorem 2.54 will be based on Birkhoft’s ergodic theorem.

2.55. REMARK. The following papers and books give information about the
central limit theorem in the context of Stein’s method which stems from Stein
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[161]: see Barbour and Hall [14], Barbour and Chen [13], Chen, Goldstein
and Shao [41], Nourdin and Peccati [131], Berckmoes et al [18, 19]. This is
a very interesting and elegant method to prove convergence and give estimates
for partial sums of so-called standard triangular arrays (STA). In addition, it

yields sharp estimates.
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4. Gaussian vectors.

The following theorem gives a definition of a Gaussian (or a multivariate nor-
mally distributed) vector purely in terms of its characteristic function (Fourier
transform of its distribution.

2.56. THEOREM. Let (2, F,P) be a probability space, and let X = (Xy,...,X,)
be an R"™-valued Gaussian vector in the sense that there exists a vector p :=
(k1,5 pn) € R™ and a symmetric square matriz o := (0;x)5,_, such that the
characteristic function of the vector X is given by

E [e_i<5’X>] — o UEm) =5 Xk Gk for all & = (&1,...,&,) € R™. (2.127)

Then for every 1 < j < n the variable X; belongs to L* (Q, F,P), u; = E[X]],
and

ik = cov (X, X) = E[(X; — E[X;]) (Xi — E[X4])] . (2.128)

PROOF. Put Y = X — i, and fix ¢ > 0. Then the equality in (2.127) is
equivalent to

E[eY)] = 72 Zina1 %k for all € = (&),...,&,) € R™, (2.129)

From Cauchy’s theorem and the equality e 2" dn = 1 we obtain

vl

Ley|? _ ;J B J H{v/EnY) o= 3inl?
e 2 - e e 2" d — e d
(vV2me)" Jan T V) e "

From (2.129) and (2.130) we infer:

. 1 1 . 1 2
E[e—l<§vy>€—§5|y|2] _ _ E[e—z<5+ﬁn,w] e~ 311 gy
(vam)" Je

(employ (2.129) with £ + 1/en instead of &)

(2.130)

1 J —Llsm  (&+/Eny S L2
= — e 2 Ly k=1\8] 577])(5k+\/g77k)03,k6 2\77| dn
(2.131)

Next we take 1 < /4, ¢/, < n, and we differentiate the right-hand side and
left-hand side of (2.131) with respect to &, and the result with respect &,. In
addition we write a negative sign in front of this. Then we obtain:

1_v2
]E[ —i(€, Y))/Z }/é - | | ]
_ #J e Skt (V) €V Em ) = Sl

(V)

. 2
00100 + Oto 0, U',E + 00,
oustons (Sigien 2epo) Ja e

7j=1
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Inserting & = 0 into (2.132) yields:
L f e~ 3¢ X5 ket TR0k o~ 5 1

(vVor)" )

n 2
Oty,0y T Oy, Oj0y T 00y 5
e e (Z nj2> dn. (2.133)

Jj=1

E [}/él }/226—%5\)/\2] =

First assume that ¢; = ¢, = ¢. Then the left-hand side of (2.133) increases to
1
E[Y/?], and the right-hand side increases to - f e~ 2lnl’ dnoee = opgif e
V2" e
decreases to zero. Consequently, Y, € L? (Q,F,P) and E [Y7?] = 044, 1 < £ < .

It follows that Y, belongs to L' (2, F,P), and that we also have that Y,,Y;, €
L' (©,F,P). By applying the same procedure as above we also obtain that

E [}/51}/52] = W = 00y 4 (2134)
In (2.134) we employed the symmetry of the matrix (o¢, ¢,)y, ,,_,- Again we fix

1 < ¢ < n, and we differentiate the equality in (2.131) with respect to & to
obtain

ZE[ UMy, zelv P ]
1

= dn o~ 3 Lin=1(&+En;) (fk n \Enk) e
(27" b

2 5] + \[na Zat —; Jé’j' (2.135)

In (2.135) we set f 0, and we let ¢ | 0 to obtain E[Y;] = 0, and hence X, €
L' (Q,3,P) and E [X,] = p. This completes the proof of Theorem 2.56. O

5. Radon-Nikodym Theorem

We begin by formulating a convenient version of Radon-Nikodym’s theorem.
For a proof the reader is referred to Bauer [15] or Stroock [167].

2.57. THEOREM (Radon-Nikodym theorem). Let (2, F, u) be a o-finite measure
space, and let v be a finite measure on F. Suppose that v is absolute continuous
relative to p, i.e. pu(B) = 0 implies v(B) = 0. Then there exists a function
f e LY (Q,F, ) such that v(B) = §, fdu for all B € F. In particular the

function f is F-measurable.

The following corollary follows from Theorem 2.57 by taking ¥ = B, p the
measure P confined to B, and v(B) = E[X, B], B € B.

2.58. COROLLARY. Let (2, A,P) be a probability space, and let B be a subfield
(i.e. a sub-o-field) of A. Let X be a stochastic variable in L' (2, A,P). Then
there exists a B-measurable variable Z on ) with the following properties:

(1) (qualitative property) the variable Z is B-measurable;
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(2) (quantitative property) for every B € B the equality E[Z, B]=E X, B]
holds.

The variable Z is called the conditional expectation of X, and is denoted by
Z =K [X ‘ B]. The existence is guaranteed by the Radon-Nikodym theorem.

6. Some martingales

Let E be a locally compact Hausdorff space which is second countable, and let
{(Q,5,P,), (X(t),t=0), (0t = 0),(E, &)} (2.136)

be a time-homogeneous strong Markov process with right-continuous paths,
which also have left limits in the state space F on their life time. Put S(¢)f(z) =
E. [f (X(t))], f € Co(F), and assume that S(t)f € Cy(E) whenever f € Cy(E).
Here a real or complex valued function f belongs to Cy(FE) provided that it is
continuous and that for every ¢ > 0 the subset {x € F : |f(z)| = €} is compact
in K. Let the operator L be the generator of this process. This means that
its domain D(L) consists of those functions f € Cy(F) for which the limit
Lf= l}%% exists in Cy(F) equipped with the supremum norm, i.e.
| fll, = sup,eg | f(2)], f € Co(E). The Markov property of the process in (2.136)
together with the right continuity of paths implies that the family {S(¢) : ¢ > 0}
is a Feller, or, more properly, a Feller-Dynkin semigroup.

(1) The semigroup property can be expressed as follows:
Sty +t2) =S (t1) S (t2), ti,t2 =0, S(0)=1.
(2) Moreover, the right-continuity of paths implies
lim S(8) f(2) = Im E, [f (X(#)] = E: [f (X(0))] = f(2), f e Co(E).
(3) In addition, if 0 < f <1, then 0 < S(t)f < 1.

A semigroup with the properties (1), (2) and (3) is a called a Feller, or Feller-
Dynkin semigroup. In fact, it can be proved that a Feller-Dynkin semigroup
{S(t) : t = 0} satisfies
lim [[S(s)f — S()fl, = 0. £20, feCo(E).

Let {S(t) : t = 0} be a Feller-Dynkin semigroup. Then it can be shown that
there a exists a Markov process, as in (2.136) with right-continuous paths such
that S(t)f(z) = E,. [f(X(2)], f € Co(E), t = 0. For details, see Blumenthal
and Getoor [25]. Similar results are true for states spaces which are Polish; see,
e.g., [184].

Let t — M(t), t = 0, be an adapted right-continuous multiplicative process,
ie. M(0) =1and M(s)M(t) oy = M(s+1t), s, t =0. Put Sy(t)f(z) =
E. [M(t)f (X(t))], f e Co(E), t = 0. Assume that the operators Sy (t) leave
the space Cy(F) invariant, so that Sy (¢)f belongs to Co(E) whenever f €
Co(E). Then the family {Sy/(¢) : ¢ = 0} has the semigroup property Sy (s+t) =
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Sar(s)Sum(t), s, t =0, and limy o Sy (t) f(z) = f(x), t =0, f e Co(E). If, in ad-
dition, for every f e Cy(F) there exists a § > 0 such that supgc,<s [|Sam (t) fll, <
o0, then

lim [Su(8)] = 1., = 0, f € Co(E) (2.187)

Moreover, there a exists a closed densely defined linear operator L,; such that
Su)f —

Ly f = Co(E)- lggl M (2.138)

for f € D (Lyy), the domain of Ly,. If M(t) = 1, then Ly, = L.

2.59. PROPOSITION. The following processes are P,.-martingales:

t— M(t)f (X () — M(0)f(X(0)) — JO M(s) Ly f (X(s)ds),

t>0, feD(Ly), (2.139)
s> M(s)Ex) [M(t—s)f (X(t—s))], 0<s<t, feCy(E), (2.140)
s M(s)Exe) [M(t—s—u)p(u, X(t—s—u),y)], 0<s<t—u (2.141)

In (2.141) it is assumed that there exists a “reference” measure m on the Borel
field € together with a density function p(t,x,y), (t,z,y) € (0,0) x E x E such
that E, [f (X ()] = Sp(t,z,y) f(y) dm(y) for all f € Co(E) and for all x € E
and all t > 0. From the semigroup property it follows that p(s + t,x,y) =
Sp(s, 2, 2)p(t, z, y)dm(z) for m-almost all y € E. Assuming that m(O) > 0 for
all non-empty open subsets O of E, and that the function (t,x,y) — p(t,z,y)
is continuous on (0,00) x E x E, it follows that the equality p(s + t,x,y) =
S (s, z, 2)p(t, z, y)dm(z) holds for s, t > 0 and for all z, y € E.
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The following corollary is the same as Proposition 2.59 with M = 1.
2.60. COROLLARY. The following processes are P,-martingales:

t— f(X(t)— f(X(0))— L Lf(X(s))ds, t=0, feD(L), (2.142)
s— Exu [f(X(t—35))], 0<s<t, feCy(F), (2.143)
s—p(t—sX(s),y), 0<s<t. (2.144)

Like in Proposition 2.59 in (2.144) it is assumed that there exists a “refer-
ence” measure, which is a strictly positive Borel measure m, such that for
a (unique) continuous density function p(t,x,y) the identity B, [f (X (¢))] =
§p(t,z,y) f(y) dm(y) holds for all f € Co(E) and for all z € E and all t > 0.

2.61. LEMMA. Let the continuous density p(t,x,y) be as in Proposition 2.59,
and let z € E. Then the following equality holds for all 0 < s <t and for all
ye E:

E.[p(t—s X(s),y)] = p(t, 2, y). (2.145)

ProoOF oF LEMMA 2.61. Let the notation be as in Lemma 2.61. Then by
the identity of Chapman-Kolmogorov we have

E.[p(t—s,X(s),y)] = fp (s, z,w) p(t — s, w, y)dm(w) = p(t,z,y). (2.146)

The equality in (2.146) is the same as the one in (2.145), which completes the
proof of Lemma 2.61. O

PrROOF OF PROPOSITION 2.59. First let f belong to the domain of Lj;,
and let ¢35 > t; = 0. Then we have

B [ M (1) £ (X (1)) = MOF (X)) = [ M6 L (X(5) s | 5,
- (1) £ (X () + MO (XO) + [ M) L (X(5) ds
_E, [M () (M (s — t2) (X (t2 — 1)) — M(0)f (X(0))

- M) LS (X(5)) ds> o, | ‘fn]

0

(Markov property)
= M (1) Bxa | M (6 = ) £ (X (6= 1)) = M0 (X(0)

_ J M) L f (X(5)) ds]

0
(definition of the operator Sy/(t); put z = X (¢1), and ¢t = to — t;)

~ M (n) (sM () 2) ~ B MOS0 - [ Sulo) L) ds)

0
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= M (t1) (Sm (t) f(2) = E. [M(0)f (X(0)) ( ) +5u(0)f(2)) = 0.
(2.147)
The equalities in (2.147) show the equality in (2.139).

Let f e Co(E) and ¢ > 0. In order to show that the process
s = M(s)Ex(s) [M(t — s)f (X(t = 5))]
is a P,-martingale we proceed as follows:
M(s)Ex o) [M(t —5)f (X(t —s))]
(Markov property)
= M(s)E, [M(t —s) o0, f (X(t — ) 005 | F]
B, [M(s)M(t — 5) 0 0.1 (X(1) | ] = B, [M()F (X(1)) | 5] (2148)

It is clear that the process in (2.148) is a martingale. This proves that the
process in (2.140) is a martingale. A similar argument shows the equality:

M (s)Ex s [M(t =5 —u)p (u, X(t = s —u),y)]
=E, [M(t—uw)p(u,X(t—u),y)|Fs], 0<s<t—u. (2.149)
Again it is clear that the process in (2.149) as a function of s is a P,-martingale.

Altogether this proves Proposition 2.59. U

PROOF OF COROLLARY 2.60. The fact that the processes in (2.142) and
(2.143) are P,-martingales is an immediate consequence of (2.139) and (2.140)
respectively by inserting M(p) = 1 for all 0 < p < t. If M(p) = 1 for all
0 < p <t, then by Lemma 2.61 we get

M(s)Ex ) [M(t — s —u)p (u, X(t — 5 —u),y)]

= Ex [p(u, X(t =5 —u),y)] =p(t -5 X(s),y). (2.150)

On the other hand by the Markov property we also have:
Exe [p(u, X(t—s—u),y)] =E, [ (u, X(t —u),y |37] (2.151)
As a consequence of (2.150) and (2.151) we see that the process in (2.144) is a
martingale. This completes the proof of Corollary 2.60. 0]

2.62. REMARK. In general the process s — p (t — s, X(s),y), 0 < s <, is not a

closed martingale. In many concrete examples we have Thm p(t—sX ( ),y) =
t,s<t

0, P,-almost surely, on the one hand, and E, [p (t — s, X(s),y)] = p(t,z,y) >
0 on the other. For an example of this situation take d-dimensional Brow-
nian motion. By Scheffé’s theorem it follows that the P,-martingale s —
p(t—s,X(s),y), 0 <s <t, can not be a closed martingale. If it were, then
there would exist an Fi-measurable variable F(t) = limg s p (t — ( ), Y)
with the property that p (¢ — s, X(s),y) = E, [F(t) | F,]. Since F(t ) 0, P,-
almost surely, this is a contradiction.
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In the following corollary we consider a special multiplicative process: M (s) =
1¢r~s, where T' is a terminal stopping time, i.e. T' = s+ T o ¥,, P,-almost
surely, on the event {T" > s} for all s > 0 and for all z € E.

2.63. COROLLARY. The following processes are P,-martingales:
tAT

frs Loy £ (X() = Loy f(X(0)) fo Lacf (X(s)ds),

t>0, feD(Ly), (2.152)
S — 1{T>S}EX(S) [f (X(t — S)), T>t— S] , 0<s< t, f € CO(E), (2153)
S ]—{T>s} (p(t_s7X(S)ay)_EX(s) [p(t_S_TaX(T)7y)a T<t—$])7

0<s<t. (2.154)

In (2.141) it is assumed that there exists a “reference” measure m on the Borel
field € together with an density function p(t,z,y), (t,x,y) € (0,0) x E'x E such
that E, [f (X()] = Sp(t,z,y) f(y) dm(y) for all f € Co(E) and for all z € E
and all t > 0.
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It is noticed that the definition of Ly, f(z) is only defined pointwise, and that
for certain points x € E the limit

E,[M(@t)f(X(t)]| —E;|[M X
o) i B DO (X(0)] ~ B, [M(0)f (X (0))]
t10 t
does not even exist. A good example is obtained by taking for 7' the exit
time from an open subset U: T = 7y = inf {s > 0: X(s) € E\U}. If the limit

P, [T <
IE%M =0 for all z € U, then Ly f(z) = Lf(x) for x € U.

PROOF OF COROLLARY 2.63. It is only (2.154) which needs some explana-
tion; the others are direct consequences of Proposition 2.59. To this end we fix
0 <u < t. Then by (2.141) the process:

s Lo gBxo) [p(u, X(t — s —u),y), T >t~ s —ul
is a martingale on the closed interval [0,¢ — u]. Next we rewrite
Exe) [p(u, X(t —s—u),y), T >t—s—ul

=Ex [p(u, X(t —s5—u),y)] —Exe[pu, X(t—-s—u)y), T <t—s—u
(2.155)

(the process p — p(t—s—p,X(p),y) is P,-martingale with z = X(s); put
u = t — s in the first term, and v = t — s — T in the second term of the
right-hand side of (2.155))

=Ex(s) [p(t —5,X(0),9)] —Ex@ [pt—s—T,X(T),y), T <t—s—ul.
(2.156)

By letting v | 0 in (2.156) and using (2.141) of Proposition 2.59 we obtain that
the process in (2.154) is a P,-martingale. This completes the proof of Corollary
2.63. ([l

Next let
{(,7.P,), (B(t),t = 0), (9t > 0), (R, Bga) }

be the Markov process of Brownian motion. Another application of martingale
theory is the following example. Let U be an open subset of R? with smooth
enough boundary oU (C* will do), and let f : U — R be a bounded continuous
function on the boundary U of U. Let u : U — R be a continuous function
such that u(z) = f(x) for x € OU and such that Au(xz) = 0 for z € U. Let 7y
be the first exit time from U: 7y = inf {s > 0: B(s) e R\U}. Then

u(z) =E,[f(B(1y)): v < o]+ ltlim E,[u(B(t)): 7y = x]. (2.157)

—00
Notice that the first expression in (2.157) makes sense, because it can be proved
that Brownian motion is P,-almost surely continuous for x € R?. The proof

uses the following facts: stopped martingales are again martingales, and the
processes

tes f(B(®) — f (B(0)) — » j CAF(B(s)) ds. feCy(RY), AfeCy(RY.

2 Jo
(2.158)
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are martingales. The fact that a process of the form (2.158) is a martingale
follows from (2.142) in Corollary 2.60. It can also be proved using the equality

0 1
apo,d (tv xz, y) = §Ayp0,d (t, z, y) (2159)
where
1 _la—y[?
poa(t,z,y) = e o
(27t)”

A proof of (2.158) runs as follows. Pick t5 > t; = 0 en a function f € C (Rd),
such that Af also belongs to Cj, (Rd). Then we have:

B |50~ £ BO) - 5 [ A 5| 5
B+ FBO)+ | AFBG) ds
5| (1@ - rEO) - [ Ar@E) as)ov |5

0

(Markov property of Brownian motion)

~ Ep) [f (Bt -5 (BO) -3 [

(put z = B(t1), and t = t5 — 1)

= E. [ (B(#)] ~ E-[f (BO)] - f E.[Af (B(s))] ds

_E. [f (B(t))] - E. [f (BO))] —lﬂded (5,2,9) Af () dy ds

=E,[f(Bt)]-E.[f ] —lim — JJ pa (s, 2,9) Af (y
alO R4
(integration by parts)
=E,[f(B(t)]-E —hmf J Aypa (s, 2,y) f (y) dyds
€10 Rd
(use the equality in (2.159))
=E.[f(B())] - — lalﬁ)lj JRd %pd s,2,y) f(y) dyds
(interchange integration and differentiation)
~ . [ (B~ B 1 BON iy [ £ [ palo20) F o) s
el0 (35 Rd

(fundamental rule of calculus)

=E.[f(B(t)] - E.[f(B(0))]
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~tin ([ itz o= [ maezn £ an)

el0
=E. [/ (BO)] - E:[f (BO)] - E: [f (B(#)] + im E. [f (B(e))]
= lmE. [f (B(e))] - E: [f (B(0))] = 0. (2.160)
From Doob’s optional sampling theorem it follows that processes of the form
(e f (B 0) = £ (BO) 5 [ AFBE) ds. FeC®Y). (2161

feCy(RY, Af € Cy (R?), are P,-martingales for z € U. We can apply this
property to our harmonic function w. It follows that the process

t—u(B(my At))—u (B(O))—1 JTUA Au (B(s)) ds =u (B (17 A t))—u(B(0))

2 Jo
(2.162)
is a martingale. Consequently, from (2.162) we get
u(z) = u(B(0)) = By [u(B (10 A t))]
=E,[u(B(ty At)), v <t]+E,[u(B(ty At)), v > 1]
=E,|[u(B (1)), v <t]+E;[u(B(t)), v > t] (2.163)
In (2.163) we let ¢ — o0 to obtain the equality in (2.157).
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2.64. PROPOSITION. Let t — M;(t) and t — Ms(t) be two continuous martin-
gales in L* (Q, F,P) with covariation process t — (M, My) (t), so that in partic-
ular the process t — My (t)My(t) — (My, My) (t) is a martingale in L' (Q, F, P).
Then the process

t = (My(t) = Mi(s)) (Ma(t) — Ma(s)) — (My, Ma) (t) + (My, M) (s), ¢ =>s,
(2.164)
1s a martingale.

In fact by Ito calculus we have the following integration by parts formula:
(Mi(t) — My(s)) (Ma(t) — Ma(s))

_ f (My(p) — My(s)) dMy(p) +J (Ma(p) — Ma(s)) dMi(p)

S

+ (My, Ma) (t) — (My, My) (s), t=s. (2.165)

PROOF OF PROPOSITION 2.64. Fix t5 > t; > s. Then we calculate:

E [(M (t2) — M (s)) (M (t2) = My (s) | F,) ]
—E [(M;, M2>( o) — (M, Ms) (s) | F,]
— (M (t1) — My (s)) (Ma (t1) — M2 (s)) + (Ma, Ma) (t1) — (My, Ma) (s)
= E[(M, (t2) — M (s)) (Ma (t2) — My (s)) | F1, ]
— E [(M, M2> (t2) — (M, Ma) (t1) | T4, ]
— (My (t1) = M (s)) (Ma (t1) — M (S))
= E[(M (t2) — M (t1) + M (t1) — M (s))
(M (t2) — Ma (1) + M2 (t1) — M2 (s))
— (My, Ma) (t2) + (M, M2>( MEA
— (M (t1) — M (s)) (Ma (1) — M2 (s))
= E[(M (t2) = My (t1)) (M; (t2) — Ms (t1)) | 7,
— E [(My, Ma) (t2) + (M1, My) (t1) | Fu,]
+E[ M, (t1) — M, (s)) (My (t5) M2 (t1)) | F ]
E| (t1)) (My (1) — My (s)) | F, |
E| (s))
)

ul

( M,
(M (t2) — My .
(My (t) — My (s)) (Ma (1) — My (s)) | F1, ]
( 1(t1) = My (s)) (Ma (t1) — Mo (s ))
= B [ M (t2) My (t2) — (My, M) (t2) + (My, M) (t1) — My (t1) Ma (t1) | F,]
—E[M (s) (My (ta) — My (t1)) | Tty ]
E [(M; (ta) — My (t1)) My (s )\fﬂl]
E[(My (t1) = M, (s)) (My (tr) — My (s)) | T, ]
(M1 (t1) — My (s)) (Ms (t1) — My (s)) = 0. (2.166)

S
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In the final step of (2.166) we employed the martingale property of the following
processes:

t— Ml(t)Mg(t) — <M1,M2> (t), t— Ml(t), and t— MQ(t)
This completes the proof of Proposition 2.64. U
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CHAPTER 3

An introduction to stochastic processes: Brownian
motion, Gaussian processes and martingales

In this chapter of the book we will study several aspects of Brownian motion:
Brownian motion as a Gaussian process, Brownian motion as a Markov process,
Brownian motion as a martingale. It also includes a discussion on stochastic
integrals and It6’s formula.

1. Gaussian processes

We begin with an important extension theorem of Kolmogorov, which enables
us to construct stochastic processes like Gaussian processes, Lévy processes,
Poisson processes and others. It is also useful for the construction of Markov
processes. In Theorem 3.1 the symbol Q;, J < I, stands for the product space
Q=11 jes §2; endowed with the product o-field ;. By saying that the system
{(Q,F,,P;): J< I, J finite} is a projective system (or a consistent system,
or a cylindrical measure) we mean that

Py, [ph e Al =Poy [ (07) " (4)] = P [A]

where A € F,, and where J; < J; € I, J; finite. The mapping pig, Jy € Jp, 18

-1

defined by p7: (Wj)jes, = (Wj),es,- In practice this means that in order to prove

that the system {(Q;,F;,P;): J < I, J finite} is a projective system indeed,
we have to show an equality of the form (jy ¢ J):

IP)JU{jO} [B X Qjo] =P, [B] , BeFy.

The following proposition says that under certain conditions a cylindrical mea-
sure in fact is a genuine measure.

3.1. THEOREM (Extension theorem of Kolmogorov). Let
{(Q,F,,P;): J <1, J finite}

be a projective system of probability spaces (or distributions). Suppose that each
Q; is a metrizable and o-compact Hausdorff space endowed with its Borel field
Ai. Then there exists a unique probability measure Py on (Q, Ay), such that

Pr[ps € A] = Pr (p;'(A)) = P, (A) (3.1)
for every J < I, J finite, and for every Ae Aj.

For an extensive discussion on Kolmogorov’s extension theorem see, e.g., the
Probability Theory lecture notes of B. Driver [54]. These lecture notes include
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a discussion on standard Borel spaces and on Polish spaces. The Kolmogorov’s
extension theorem is also valid if the spaces 2; are Polish spaces, or Souslin
spaces which are continuous images of Polish spaces. For more details see Ap-
pendix 17.6 in [54]. The reader may also consult [27] or [175]. In Theorem
7.4.3 of [27] the author shows that finite positive measures on Souslin spaces
are regular and concentrated on o-compact subsets. Bogachev’s book contains
lots of information on Souslin spaces. In fact much material which is presented
in this book, can also be found in the lecture notes by Bruce Driver. A proof of
Kolmogorov’s extension theorem is supplied in Section 4 of Chapter 5: see (the
proof of) Theorem 5.81.

Next we recall Bochner’s theorem.

3.2. THEOREM. (Bochner) Let ¢ : R" — C be a continuous complex function,
that is positive definite in the sense that for all r € N

D e (8 =€) =0, (3.2)

k=1

for all \i,..., )\, € C and for all £',...,6" € R™. Then there exists a unique
non-negative Borel measure p on R™ such that its Fourier transform

| exp(i €. a))auo)
is equal to p(&) for £ € R™. In particular p(R™) = ¢(0).

3.3. EXAMPLE. Let, for every ¢ € I, IP;, v € I, be a probability measures on (2;
and define P; on Q;, J < I, J finite, by P;(A) = P;, ®---QP;, (A), where A be-
longs to A, and where J = (j1,...,j,). Then the family {P, : J < I, J finite}
is a consistent system or cylindrical measure.

3.4. EXAMPLE. Let 0 : I x I — R be a symmetric (i.e. o(i,7) = o(j,1) for all ,
j in I) function such that for every finite subset J = (ji, ..., jn) of I the matrix
(0(i,7)); jes is positive-definite in the sense that

> oli, )& =0, (3.3)
ijed
for all &;,,...,&;, € R. In the non-degenerate case we shall assume that the
inequality in (3.3) is strict whenever the vector (§;,,...,&;,) is non-zero. De-

fine the process (i,w) — X;(w) by X;(w) = w;, where w € Q; = R! is given
by w = (w;)ier- Let u = (u;) € R? be a map from I to R. There exists a
unique probability measure P on the o-field on Q; generated by (X;),.; with the
following property:

¢ (on (1)) - o) (L S ores) .

This measure possesses the following additional properties:

E(X;)=pj, jel, and cov(X;, X;) =0(i,j), i,jel. (3.5)
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Notice that 2 &uéocov (X, X;,) = 0 whenever &,...,&, belong to R. For

u,v=1
a proof of this result we shall employ both Bochner’s theorem as well as Kol-
mogorov’s extension theorem. Therefore let J = (jy,...,7,) be a finite subset

of I,let A\, 1 < k <, be complex numbers and let £, 1 < k < r, be vectors in
R" = R7. Put N}, = A\pexp (z D §fu,u§u) and let U be an orthogonal matrix
with the property that the matrix (UoU~"(u,v)), ,_, has the diagonal form

20 ... 0 ¢

0 s2 ... 0 g1
(UoU H(u,v)) = | . 2 . |- We also write (nf,...,n%) = U | :

. . . . ¢

0 0 0 s2 Jn
We may and do suppose that the eigenvalues sy, ..., Ss,,, m < n, are non-zero

and the others (if any) are 0. Then we get
T _ 1 n
Z )\k)\f €xp <_§ 2 (juv.]v) (5 Ju gku) (géu - gi))
k=1 u,v=1
TACHCEITY

T . 1 n
= Z AR\ exp —5 Z (UcU™) (u,v) (Uﬁ — 1) (775 _"75)>
k=1 u,v=1
- Y AN (224 (nﬁ—nfi)2>
k=1 u=1
-3 e —%Zsi - 7)
k=1 u=1

= A X f Jdml
k;1 )" Hu 1 5u
m L& a2
exXp ( 2 > exXp <—§ 2 —2>
1
= J Jdl‘l
( 271' u 18U
2 A, €Xp ZZ ntaw, || exp [ — ! i i > 0. (3.6)
k=1 u=1 b 2 SQZL

From Bochner’s Theorem 3.2 it follows that there exists a probability measure
I1; on R’ such that, for all £ € R™,

J exp (—z 2 §uxu> dIl;

u=1
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= eXp (_Z zn: 5uﬂu) exp (_% an J(ju,jv)ﬁufv) . (37)

u=1 u,v=1

Define the probability measure Py on Q; = [[,.;2; =1
PJ((Xj17"'7X )EB) = HJ<B)a

Jn
where B is a Borel subset of R7. The collection (Q;,Ay,P;) is a projective
system, because let J' := {jy} U J be a subset of I, which is of size 1+ size J =
1 +n and let B be a Borel subset of R7. The Fourier transform of the measure
B — 11 [R x B] is given by the function:

<€j17 e ,fjn) —> LJ exp (—zZSJ:L‘]) HJ/ [R X dl’]

jed

_ JR J JR exp <_¢ 3 gjxj> Iy [dy x da]

jedJ’

exp (—i Z 53’#3’) exp <—% Z U(i’j)fz’@)

jeJ’ i,j€J’

= exp <—iZ§jﬂj> exp <—% Z U(@j)&fj)

jedJ i,j€J

R = R’ by

jed

I

= f e_iZjEJijj H](dl’)
R

In the previous formula we used the equality &;, = 0 several times: J' = Ju{jo}.
It follows that 11, [B] = II;» [R x B]. An application of the extension theorem
of Kolmogorov yields the desired result in Example 3.4.
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Suppose that the matrix (O’J('U/,'U))Z/U:]_ = (a(ju,jv))zjvz1 be non-degenerate
(i.e. suppose that its determinant is non-zero), let (as(u,v)), ,_, be its inverse,

and let /o be its unique (positive) square root. Then, with p; = (g1, ..., fn),

1 12
W J}Rn I (s ++/oyy)e 214l dy (3.8)

(
(det ary)1/?

8 [ e (—par - ) o) do

The equality of the first and last term in (3.8) can be proved by showing
that the Fourier transforms of both measures are the same. The substitution
x = py + 4/0y yields the equality of the second and third term. In the follow-
ing propositions (Propositions 3.5 and 3.6) we mention some elementary facts
on Gaussian vectors. Gaussian vectors are multivariate normally distributed
random vectors.

P((Xj,...,X;,) € B) =

3.5. PROPOSITION. Let (2, F,P) be a probability space and let X' : Q — R™,
i =1, 2, be random vectors with the property that the random vector X (w) :=
(X! (w), X?(w)) is Gaussian in the sense that (n = n; + ny)

E (exp (—Z i kak)> = exp (—Z i fkuk — % i U(k,f)f[&f) s (39)

k=1 k=1

where the matriz o(k, )} ,_, is positive definite and where (1, . .., py) s a vec-
tor in R™. The vectors X' and X? are P-independent if and only if they are
uncorrelated in the sense that

E(X/X7)=E(X])E(X?) (3.10)
forall 1 <i<ny and for all 1 < j < nsy.

PROOF. The necessity is clear. For the sufficiency we proceed as follows.
Put

(Xla X2) = (Xh s 7Xn17 Xn1+17 s 7Xn1+n2) .
Since the vectors X! and X? are uncorrelated (see (3.10)), it follows that

Yook O)G& = ) ok O+ DY) olk )& (3.11)
k=1 k=1 k0=n1+1

From (3.9) it follows that

=K <eXp <—Z i kak)> E (exp (—Z niw kak>) (312)

and hence that the random vectors X' and X? are independent. O

3.6. PROPOSITION. Let (Q, F,P) be a probability space.
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(a) Let Q : R™ — R™ be a linear map. If X : Q — R™ is a Gaussian
vector, then so is QQX.

(b) A random vector X : Q — R"™ is Gaussian if and only if for every
¢ € R" the random variable w — (£, X (w)) is Gaussian.

PROOF. (a) A random vector X is Gaussian if and only if the Fourier trans-
form of the measure B — P (X € B) is of the form

o oxp (<6~ 5 (06.9).

By a standard result on image measures the Fourier transform of the measure
B — P(QX € B), where X : Q — R™ is Gaussian and where B is a Borel subset
of R™, is given by

§ = Efexp (=i (€, QX))] = E[exp (- (Q*¢, X))]

) L e

~ e (1@ 6w e (5 00600 ). (5,13
This proves (a). It also proves that the dispersion matrix of QX is given by
QoQ*.

(b) For the necessity we apply (a) with the linear map Qz := (£, x), = € R",
where £ € R" is fixed. For the sufficiency we again fix £ € R™. Since Y := (¢, X)
is a Gaussian variable we have

E (exp (=i (€, X))) = E (exp (=iY"))

_ exp (—iE(Y)) exp (—%E (v — IE(Y))2>
~ e (i (-5 06.0). (3.14)

where u = E(X) and where

o(k,0) = cov (Xg, X¢) = E(Xy — E(Xy)) (X, — E(X))).
This completes the proof of (b). O
3.7. THEOREM. Let o : I x I — R be a positive-definite function and let p: [ —
R be a map. There exists a probability space (0, F,P) together with a Gaussian

process (t,w) — Xy(w) = X(t,w), te I, we Q, such that E(X;) = p; and such
that cov(Xs, X;) = o(s,t) forall s, t € I.

PRrROOF. The proof is essentially given in Example 3.4. 0

We conclude this section with the introduction of Brownian motion and Brow-
nian bridge as Gaussian processes. First we show that the function o : [0, 00) x
[0,0) — R, defined by o(u,v) = min(u,v), u, v € [0,0), and, for ¢ > 0 fixed,
the function o; : [0,t] x [0,t] — R, defined by o;(u,v) = t min(u,v) — uv, u,
v € [0,t], are positive definite.
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3.8. PROPOSITION. The functions o(u,v) = min(u,v), u, v € [0,00), o¢(u,v) =
tmin(u,v) — wv, u, v € [0,t], and og(u,v) = §exp(— lu—v|), u, v eR, are
positive definite. In addition, the function og(u,v) defined by
1
oo(u,v) = 5 exp(—(u +v)) (exp (2min(u,v)) — 1), u, v =0,

s positive definite.

PROOF. Let 0 = 55 < 51 < 89 < 83 < --- < S, <tandlet \,..., )\, be
complex numbers. The following identities are valid:

J=1lki=j ko=j
n n  min(k1,k2) B 5 i
= Z Z Z )\lﬂ)\kg{t_J 4 _t—]_4 }(t—skl)(t—s,@)
ki=1hko=1 j=1 Sj Sj-1
O v Y Smin(ky,k
- Z Z )\kl)\’”# (t - Sk1) (t - Skz)
k‘1:l k‘2:l t o Smin(klukZ)
- Z Z )\klxkzsmin(lﬁ,kz) (t—smax(k;hk:g)) = Z )\klxbot (Skyy Sky)  (3.15)
k1=1ko=1 k1,ko=1

and hence the function o, is positive definite. Since
2

Z ARt min(s;, sp) = Z NARoi(s;, s8) +

k=1 7,k=1

Y

n
DS
j=1

it follows that the function o is positive definite as well.

In order to prove that the function oy is positive definite we first notice that
the Fourier transform of the function ¢ — exp (— |t|) is given by

f ettt = QJ cos (Et) e~ tdt

—00 0
= 2Re f . =g _ oo L _ (3.16)
0 1—i¢&  1+&% '
Hence upon taking the inverse Fourier transform we obtain:
1 1 (™ exp(i&(t —s))
Teltesl — = EEALN T ge 3.17
2°¢ o Lo e & (3.17)
Let A\i,..., A, be complex numbers and let sq,...,s, be real numbers. From
(3.16) and (3.17) it follows that
= 1 1 (™ 1 = ’
AeAe— — sk — = — — A ' dg. 3.18
3 whgep o sl) = 5| gy D e )| 6 (31)
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An easier way to establish the positive-definiteness of og(u,v) is the following.
For A1, ..., A\, in C and for real numbers s1, ..., s, we write

Z MeAeexp (— [s, — s¢])
kyf=1

)\ng min (exp(—(sk — Sg)),eXp(_(Se - Sk)>>

exp(—sg) A\x exp(—s¢) A\, min (exp(23k) , exp(2s@))

2

Z eXp Sk )\k Oexp(ZSk)](f) df = 0.

-l

A similar argument can be used to prove that the function oy(u,v) is positive
definite. 0
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We now give existence theorems for the Wiener process (or Brownian motion),
for Brownian bridge and for the oscillator process.

3.9. THEOREM. The following assertions are true.

(a) There exists a probability space (2, F,P) together with a real-valued
Gaussian process {b(s) : s = 0}, called Wiener process or Brownian mo-
tion, such that E(b(s)) = 0 and such that E (b(s1)b(s2)) = min(sy, s2)
for all sy, so = 0.

(b) Fizt > 0. There exists a probability space (2, F,P) together with a real-
valued Gaussian process {Xi(s) :t = s = 0}, called Brownian bridge,
such that E(X:(s)) = 0 and such that

5152

E (X¢(s1)X¢(s2)) = min(sy, s3) — o

for all s1, s € [0,t].
(¢) There exists a probability space (2, F,P) together with a real-valued

Gaussian process {q(s) : s € R}, called oscillator process, which is cen-
tered, i.e. E(q(s)) = 0 and which is such that

E (4(s1)a(s52)) = 5 exp (~ s — ]

for all sy, so € R.

(d) There exists a probability space (2, F,P) together with a real-valued
Gaussian process {X(s): s = 0}, called Ornstein-Uhlenbeck process,
such that E(X (s)) = 0 and such that

E (X (s1)X (s2)) = - exp(—(s1 + s2)) (exp(2min(sy, s2)) — 1) (3.19)

(exp (—|s1 — sa]) — exp(—(sl + 32))) for all sy, sy = 0.

DO = DN =

2. Brownian motion and related processes

In what follows x and y are real numbers and so is p. Let {b(s) : s = 0} be
Brownian motion (starting in 0) on a probability space (2, F,P) (i.e. E[b(s)] =
0 and E[b(s1)b(s2)] = min (s, s2)). Then the process {z + b(s) + us : s = 0}
is a Brownian motion with drift u starting at x. Let {Xi(s):0<s <t} be
a Brownian bridge on a probability space (Q,F,P). Then the process s —

s s
<1 - ;) T+ oyt Xi(s) 0 < s < tis called pinned Brownian motion, namely

pinned at z at time 0 and pinned at y at time ¢. Let {b;(s):s>0}, 1 <
j < d, be d independent Brownian motions on the probability space (92, F,P).
The process {(b1($),...,ba(s)) : s = 0} is called d-dimensional Brownian motion.
The characteristic function for d-dimensional Brownian motion starting at x €
R? is given by:

E, [e—izyzl<X<sj~>,sﬂ'>] — o i S (E ) o5 Do (€7 68) min(s;se)

e s 2 SICEn] bl (3.20)
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where zg = x and where 0 = s < s; < -+ < s,,. A similar definition can be
given for d-dimensional Brownian bridge and for the d-dimensional oscillator
process. Notice that a d-dimensional process {b(s) = (b1(s),...,b4(s)) : s = 0}
is a d-dimensional Brownian motion, starting at 0, on the probability space
(€, F,P) if and only if E (bj(s1), bi(s2)) = 9;,min(sq,s2). Let us prove the
above equalities.

3.10. THEOREM. Let 0 = s5p < 81 < -+ < 8, < 0. Fix the vectors x and
&,...,& in R Put sg =0 and 29 = x. The following equalities are valid:

n

M:

Sz—Sz 1

Z (&;,&,) min (s;,sg), and (3.21)
7,k

=1 j=0 =1

f dxy .. f dx,, exp ( iy (&, > (3.22)
R R e

ﬁ exp | — |2 — i

= 27 (s] s]-_l))d 2(sj — sj-1)

= exp (—i <Z§],x>) exp (— Z (€5, &) min SJ,Sk)) . (3.23)
j=1 k=1

For a and b € R? we write (a + bi)®> = |a|® + 2i (a,b) — |b|*>. The expression
in (3.22) turns Brownian motion into a Markov process, and (3.23) makes it a
Gaussian process.

[\Dl*—‘

PROOF. In order to see the first equality we write

n

= Z (s¢ — S¢-1) Z (€1sE2)

=1 Ji,j2=¢

n  min(j1,j2) n
> (50— 50-1) (61, &) = D, (SminGina) — 50) (v &)
J1.g2=1 =1 J,j2=1
Z Smin(j1,j2) <£j17§j2> - T Z min (Sjw sz) <£j17§j2> : (3‘24)
J2=

1 Ji1,J2=1

ﬁ '1_ 4_1))61 exp (—’%_—%_HQ)> (3.25)
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(substitute ; = x + y; + - - + y;)

()

I
@
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o}
VRS
J
D=
o
8
~
= ?
IS8
oW
=
= ?
QU
<
3
0]
i
o}
/N
~
I-

=1
n 2
H 1 exp [ — |y
j=1 ( 27 (s — éj,l))d 2(s5 — 8j-1)
(substitute y, = (s¢ — se_1)"* 20)
=exp | —i Z (&, x) f dz J dz,
O Rd R
exp | =2 ) (s¢— sp-1) iy 20) ———— exp
=1 j:é j=1 (\/ 27T)
n 1 n n 2
= €Xp (&, ) | exp —52 St — S-1) ij
j=1 /=1 j=L

 —— dzpexp | —= | z¢ + i/Se — Si— &; ,
H (\/ﬁ)d R l 2 ? ? 0 1‘;; J
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From Cauchy’s theorem, it then follows that

fRd dxy ... fRd dx,, exp ( Zn: (&, x; ) (3.26)
= 1 ay —mnaf
H o ))d P ( 2(s; — Sj—l)) (3:27)

(3.28)

ﬁ ; deddeeXp<—;!z/z|2> (3.29)

2
n 1 n n
= exp (—z Z (&5, x)) exp | —5 Z (s¢— Sp-1) Zﬁj (3.30)
7=1 /=1 =L
(first equality)
= exp (—12 (&, x ) exp < Z (€;, &) min s],sk)) .
j=1 Jk:I
This completes the proof of Theorem 3.10. U

In the following proposition we collect a number of interesting properties of the
(finite dimensional) joint distributions of some of the Gaussian processes we
introduced so far.

3.11. PROPOSITION. Let {b(s) : s = 0} be d-dimensional Brownian motion and

let
{Xi(s):0<s <t}
be d-dimensional Brownian bridge. In addition let x and y be vectors in RY and

let Q : RY — R? be an orthogonal linear map. Also fix a strictly positive number
a.

(a) The joint distributions of the processes

{b(s): s> 0} and {sb (%) . o}
coincide.

(b) The joint distributions of the processes

{blas) : s =0} and {\ab(s):s=>=0}

coincide.
(¢) The joint distributions of the processes

{q(s): s€R} and {e—% (i) :seR}

coincide.
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(d) The joint distributions of the processes

et —1
{X(t):t=0} and {e%( 5 ) :tZO}
coincide. The process {X (t) : t = 0} also possesses the same joint dis-
tribution as {SS exp (—(t —s))db(s) : t = 0}.

(e) The joint distributions of the following processes also coincide:

(1_§>$+§y+xt(s), 0<s<t, (3.31)

t
(1_§>$+§y+(1_5>b( s > 0<s<t. (3.32)

t t t t—s

S S S
<1—¥>x—|—gy+b(s)—¥b(t), 0<s<t. (3.33)

(f) The process {Qb(s) : s = 0} is d-dimensional Brownian motion and so
its joint distribution coincides with that of {b(s) : s = 0}.

Notice that instead of the “distribution” of a random variable or a stochastic
process, the name “law” is in vogue.

3.12. REMARK. Put 6%(t) = x + b(t). Then {b*(¢) : t = 0} is Brownian motion
that starts in x. Put X*(t) = exp(—t)z+X(t). Then the process {X*(t) : t = 0}
is the Ornstein-Uhlenbeck process of initial velocity x.

3.13. REMARK. The stochastic integral Sé exp(—(t — s))db(s) can be defined as

the L2-limit of Y}7_ | e=%-1) (b(s;) — b(s;-1)), whenever max (s; — sj—1) tends
N

to zero. Here 0 = 59 < s1 < --- < s, =t is a subdivision of the interval [0, ¢].

3.14. REMARK. Let f : R? — C be a bounded Borel measurable function. Then
E[f(X*(t))] is given by

BLf ()] = [ (e 4 vI-ey) 7‘3’(‘1%5'2) ay.

Moreover the Ornstein-Uhlenbeck process is a strong Markov process.

3.15. REMARK. Let {b"(t) : t = 0} be Brownian motion that starts at = (and
has drift zero). Fix s > 0. The processes

{b°(s+1t) —b"(s) : t =0} and {b°(t) —x:t =0}

possess the same (joint) distribution. In order to see this one may calculate the
Fourier transforms, or characteristic functions, of their distributions.
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3.16. REMARK. Suppose that the Markov process
{(Qv ?7 Px) ) (X(t)vt = 0) ) (ﬁtut = 0) ) (Rnu B)} (334)

e —yP

is Brownian motion in R", and put po,(¢,z,y) = 5 ,

——5 exXp
(27t)"?

t >0, x, y € R". Define the measure 1} by

1t (A) = By [Lapon(t — s, X (5), )], (3.35)
where the event A belongs to Fs = 0 (X (u) : u < ), for s < £. Since the process
s — pon(t —s,X(s),y) is a P,-martingale on the half-open interval 0 < s < ¢,
it follows that the quantity ug’i(A) is well-defined: its value does not depend
on s, as long as A belongs to F, and s < t. From the monotone class theorem
it follows that 1} can be considered as a positive measure on the o-field Fy_
given by F,_ = o (X(s): 0<s <t). Then the measure g% defined in (3.35)
is called the conditional Brownian bridge measure. It can be normalized upon
dividing it by the density po4(t, z,y).

o™
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PROOF OF PROPOSITION 3.11. Since all the indicated processes are d-dim-
ensional Gaussian (the definition of a d-dimensional Gaussian process should be
obvious: in fact in the discussion of 3.4 and in Theorem 3.7. The expected value
 should be map from I to R? and the entries of the diffusion matrix o should
be d x d-matrices), it suffices to show that the corresponding expectations and
covariance matrices are the same for the indicated processes. In most cases this
is a simple exercise. For example let us prove (f). Let ¢(k,{) be the entries of
the matrix ). Then

E ((Qb(s1)), (Qb(s2)), ) = 2qm)qu,n)E(bm(sl)bn(sz))

m=1 n=1

d d d
Z Z mnmln 81,32 Z q .]a k m) mln(slaSQ)
— n=1 m=1

(QQ)( k) min(sy, s2) = 0, min(sy, sa). (3.36)

This proves that {Qb(s) : s = 0} is again d-dimensional Brownian motion. This
completes the brief outline of the proof of Proposition 3.11. 0

In the proof of the existence of a continuous version of Brownian motion, we
shall employ the following maximal inequality of Lévy.

3.17. THEOREM. (Lévy) Let X1, ..., X, be random variables with values in R®.
Suppose that the joint distribution of X1, ..., X, is invariant under any change
of sign (1,...,2,) — (€121,...,€,2,), where ¢ = 1. Put Sp = Z§:1Xg‘-
Then for any A > 0

P (1rilka<x |Sy| = )\> <2P(|S,] = N). (3.37)
If d =1, then
P (121]?2}( Sy = )\> <2P(S, = \). (3.38)

ProoFr. We prove (3.37). Put

k—1

Ay = ﬂ {1551 < A {IS] = A

1
and put A = | J;_, Ay. Write Ty, = Z] L Xj=2 k1 Xj. Then S = Sn+§Tk
and so

{[Sk] = A} = {[Sn] = A} U {|Ti| = A}

Hence, from the invariance of the joint distribution of (X, ..., X,) under sign
changes we see

P(Ak) P (A, [Sk| = A)
P (Ag, [Sn] = A) + P (A, [Tk| = X) = 2P (A, |Sn] = A).
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Since the events Ay, 1 < k < n, are mutually disjoint, we infer

P (max S| = )\)

1<k<n

=P(A) = Y P(Ar) <2 ) P (A, [Sal = A) < 2P(|Sa] = ).
k=1 k=1

This proves (3.37). The proof of (3.38) is similar and will be left to the reader.
Altogether this completes the proof Theorem 3.17. 0

Let {X(t) : t = 0} be Brownian motion on the probability space (£2,F,P). We
shall prove that there exists a continuous process {b(¢) : ¢t = 0}, that is indistin-
guishable from the process {X(¢) : t = 0}. This means that P(X(t) = b(t)) = 1
for all ¢t > 0.

3.18. THEOREM. Let {X(t):t > 0} be Brownian motion on some probability
space (Q, F,IP). Then there exists a stochastic process {b(t) : t = 0} which is P-
almost surely continuous, and that is also a Brownian motion on the probability
space (0, F,P) and that is indistinguishable from the process {X(s):s = 0}.
Here we suppose that F contains the P-zero sets.

Proor. Without loss of generality we may and do assume that the Brownian
motion {X(s):s > 0} has drift 0 and diffusion matrix identity. For the proof
we shall rely on Theorem 3.17 and on the Borel-Cantelli lemma, which reads as
follows. Let (4, : n € N) be a sequence of events with Y, P(4,) < c0. Then
P (M_iU._,, As) = 0. In Theorem 3.18 we choose the sequence (4, : n € N)
as follows. Let D be the set of non-negative dyadic rational numbers and put

A, = { max sup 1 X(q) — X(k27™)| > 1} .

0<k<n2™ geDn[k2-m,(k+1)2-"] n

An application of Theorem 3.17, with X (t+5027™)— X (t+(j—1)62~™) replacing
X yields

P (lmaéc X (t+7627™) — X(1)] = a) <2P(|X(t+9)— X(t)] = a)
<j<am

< Eix@ie - xf=2 f exp (L2 it d
< — — =—F—— | exp|—3
at at (\/ﬂ)d P2
262 (2d + d?)
- === (3.39)

In (3.39) we let m tend to infinity to obtain:

P ( sup | X(t+qd) — X(t)| > a) < w. (3.40)

0<g<l,geD &
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Hence, with J, x = [k27", (k + 1)27"] (see also (3.46) below), and with ¢ = k27"
and § = 27",

P < max  sup |X(q)— X(k27")| > %)

0<k<n2n q€DA Ik

<SP ( sup | X(g) — X(k2™)| > %)

k=0 qEDN T, i
2(2d27 4 227" 2(2d +d*)n®  6d*nd
(n1) 2" 2"

Since the sequence in (3.41) is summable, we may apply Borel-Cantelli’s lemma
to conclude that P-almost surely, for all ¢ > 0, the path ¢ — X (g¢) is uniformly
continuous on D |0, ¢]. So it makes sense to define the P-almost surely continu-
ous function s — b(s) by b(s) = limg_,s ep X (s). It is not so difficult to see that
the process {b(s) : s = 0} is also a Brownian motion. In fact let &,...,&, be n
vectors in R? and suppose 0 = sy < s1 < --- < 5,,. Then we choose sequences
0=qo(m) <s1 <q(m) < $2 < qa(m) < $p1 <+ < @guo1(m) < s, < qu(m),
m € N, in D, such that gx(m) | sk, if m tends to infinity and this for 1 < k < n.
Since {X(s) : s = 0} is d-dimensional Brownian motion we have

g
Z
In (3.42) we let m tend to o to obtain

(o (15 ) o (1556

This equality shows that {b(s) : s = 0} is a Brownian motion. In order to prove
that it cannot be distinguished from the process {X(s) : s = 0}, we notice first
that

| 3] —ga0m) |. (3.42)

HM:

(sj —sj—1) | (3.43)

[\')\P—‘

E (exp (—i (£, X(t +s) — X(t)))) = exp (—% €2 s) , £eRY (3.44)
Hence, for & € RY,
E Jexp (—i (€, X (1)) — exp (=i (€, b(t)))|”
= E (2 —exp (i (&, X(t) = b(t))) — exp (=i (§, X(2) — b(1))))
= lim (2 —E (exp (=i (§, X(q) — X(#)))) — E (exp (=i (§, X (1) — X(2)))))

qlt,qeD
1
=2—-2 lim exp (—5 €17 (g — t)) =0. (3.45)

qlt,qeD

From (3.45) it readily follows that the processes {X(s) :s = 0} and {b(s) :s = 0}
cannot be distinguished. 0
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In this proof of Theorem 3.18 we have also used the fourth moment
E|X(t+s)—X(t)".
From (3.44) it follows that this moment does not depend on ¢t and hence
E[X(t+s) -~ X0 = E|X(s) - X(O)|' = E[X(s)]".
A way of computing E | X (s)|* is the following:

E|X(s) (Z 6§2> (exp (—i (&, X (s ’& 0

d 2 2
() i)
j=1 éuj
1
= (2ds* — 25 |¢ + s*[¢]* - 2ds” ¢ + d°s%) exp (—5 |f’2) le=o

1
= (2ds® — 2(d + 1)s* [¢]* + s*|¢]* + d®s?) exp (—5 '35 5> le=o
= 2ds* + d*s*. (3.46)

In the following theorem we compute the finite dimensional distributions of d-
dimensional Brownian motion starting at 0 and possessing drift pu. Therefore
we define the Gaussian kernel pg 4(t, z,y) by

1 o —yf*
t,x,y) = exp | ———— |.
Poa(t, z,y) )l p < 5

Notice the Chapman-Kolmogorov identity

st st +ty >
2

9 9 t’ ) —"_t
a2 Dmalt 1) = s + s (S 0
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3.19. THEOREM. Let {b(s) : s = 0} be d-dimensional Brownian motion with dif-
fusion matriz identity, with drift 0 and which starts in 0. Let fi,...,f, be
bounded Borel measurable functions on R? and let 0 = sy < §; < -+ < S,.
Then

E [H fi(@ + b(s;) + Msj)] (3.47)

= Jd . J , dxy ...dz, Hfj(xj) Hp()’d (Sj — Sj—1,Tj—1 — 4Sj—1,T; — [Sj),
R R j=1 j=1

where xo = T.

3.20. REMARK. Equality (3.47) determines the joint distribution of the process
{X(s):=x+b(s)+ pus:s=0}.

This will follow from the monotone class theorem. The vector y is the so-called
drift vector and the process X = {X(s) : s > 0} starts at x in R%.

3.21. REMARK. Another consequence of equality (3.47) is the fact that the

random vector b(t) —b(s), t > s fixed, is independent of the o-field generated by

the process {b(c) : 0 < o < s}. This fact also follows from (3.48) below together

with the monotone class theorem. For e R4, & eRY, 1< j<n, t>s>s, >
-+ 81 > 59 = 0 the following identity is valid and relevant:

)

= exp (—; |£| t— S Z min S]ysk’ gj’§k>>
Jik

=1

~ E (exp (=i (€, b(t) — b(s)))) (p< i@, )) (3.48)

In other words a Brownian motion (diffusion matrix identity) is a Gaussian
process {b(s): s = 0} with independent increments b(t) — b(s), t > s, with
mean £(t—s) and covariance matrix cov(by(t) — by(s), be(t) —be(s)) = Ok e(t —s).

I\D\H

PROOF. Theorem 3.10 shows that the equality in (3.47) holds for functions
fj» 1 < j <n, of the form

fi(z) = f exp (—i (€, 7)) dyss (€), (3.49)

where p; = ¢, is the Dirac measure §;. Fubini’s theorem then implies that
(3. 47) also holds for functions f;, 1 < j < n, of the form (3.49) with u;(B) =
§59;(&) dE, with g; € L' (R?), 1 < j < n. Since, by the Stone-Weierstrass the-
orem functions of the form (3.49) with p;(B) = §, g;(§) d¢ where g; € L' (R?),
are dense in the space Cp (R?), it follows that (3.47) holds for functions f; €
Co (]Rd), 1 < j < d. By approximating indicator functions of open subsets from
below by functions in Cy (RY) it follows that the equality in (3.47) holds for
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functions f; which are indicator functions of open subsets. A Dynkin argument
(or the monotone class theorem) then shows that (3.47) is also true if the func-
tions f; are indicator functions of Borel subsets B;, 1 < j < n. But then this
equality also holds for bounded Borel functions f;, 1 < j < n.

This completes the proof of Theorem 3.19. 0J

Next we want to define standard Brownian motion, with drift vector u, that
starts at = € RY.

3.22. DEFINITION. The standard Brownian motion, starting at z € R% and with
drift p is defined as the canonical Gaussian process {X(s) : s = 0} defined on
(Q,F,P,) with the property that the increments X (¢ + h) — X (¢) are mutually
independent and have P -expectation ph. Moreover it starts P -almost surely at
z, ie. P (X(0) =) =1 and cov (Xp(t + h) — Xp(t), Xo(t + h) — Xe(t + h)) =
Ox,ch. The covariance is of course also taken with respect to P,. The process is
canonical because for 2 we take Q2 = C ([0, 00), RY), for X (t) we take X (¢)(w) =
w(t), we Q. For F we take the o-field in 2, generated by the state variables
{X(s) : s = 0}. For all this we often write

{(Q,F,P,), (X(t):t=0),(0:t=0),(R",B)}.

ovv--vv-cvv-cov-coAlcateI-LUcent 0
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Here the shift or translation operators ¥;, ¢t > 0, are defined by 0J;(w)(s) =
w(s +1), we Q. We also introduce the filtration (F; : ¢ = 0) defined as the full
history: JF; is the o-field generated by the variables X (s), 0 < s < t. We also
shall need the right closure &, defined by Fp = (o, Fs.

In the following result we give some interesting martingale properties for Brow-
nian motion.

3.23. PROPOSITION. Let
{(Q,&",IPI),(X(t) t=20),0:t=0), (Rd,B)}

be standard Brownian motion that starts at x € R and that has drift p. For
t > s the variable X (t) — X(s) does not depend on the o-field Fs. The following
processes are P,-martingales with respect to the filtration F;, t = 0:

e X () —tp,  t— |X(t)—tu]* —dt.

PROOF. The fact that the increment X (¢) — X (s) does not depend on the
past Fy is explained in Remark 3.21 following Theorem 3.19. The other asser-
tions are consequences of this. Let s and t be positive real numbers. Then we
have

E, (X(s+1t) = (s +t)u | F,) — (X(s) — sp1)
=E, (X(s+1t)—X(s) | Fs) — tu
(increments are independent of the past)
=E,(X(s+t)— X(s)) —tu=tu—tu=0. (3.50)
Similarly, but more complicated, we also see
E, [|[X(s+1) = (s+t)ul> —d(s +t) — |X(s) — sul|* + ds | F]
=E, [|[X(s+1) — X(s) —tu+ X(s) — spl|* — dt — | X (s) — sp|” | 5]
=E, [|X(s+ 1) — X(s) = tu|” —dt + (X(s +1) — X(s) — tp, X(s) — sp) | 5]
(use (3.50))
=E, [|X(s+1) — X(s) — tu|* | F,] — dt
(again an application of (3.50))
=E, [|X(s+t) — X(s) — tul*] — at

d
= > cov (Xu(s + 1) — Xp(s), Xu(s + 1) — Xp(s)) —dt = dt —dt = 0. (3.51)
k=1
This proves Proposition 3.23. U

So far we have looked at Brownian motion as a Gaussian process. On the
other hand it is also a Markov process. We would like to discuss that now. In
fact mathematically speaking equality (3.47) in Theorem 3.19 is an equivalent
form of the Markov property. As already indicated in Remark 3.20 following
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Theorem 3.19 the monotone class theorem is important for the proofs of the
several versions of the Markov property.

3.24. DEFINITION. Let €2 be a set and let 8 be a collection of subsets of 2. Then
S is a Dynkin system if it has the following properties:

(a) Qe §;
(b) if A and B belong to 8§ and if A © B, then A\B belongs to §;

(c) if (A, : n e N) is an increasing sequence of elements of 8, then the union
U, A, belongs to 8.

A Dynkim system is also called a A\-system. The previous definition is in fact the
same as Definition 2.41. The following result on Dynkin systems is well-known:
see Theorem 2.42. Theorem 3.26 below is the same as Theorem 2.43.

3.25. THEOREM. Let M be a collection of subsets of €1, which is stable under

finite intersections. The Dynkin system generated by M coincides with the o-
field generated by M.

3.26. THEOREM. Let €2 be a set and let M be a collection of subsets of 2, which
is stable (or closed) under finite intersections. Let H be a vector space of real
valued functions on 2 satisfying:

(i) The constant function 1 belongs to H and 14 belongs to H for all A € M;

(11) if (f, : n € N) is an increasing sequence of non-negative functions in H such
that f = sup,,cy fn is finite (bounded), then [ belongs to H.

Then 3 contains all real valued functions (bounded) functions on ), that are
(M) measurable.

PrROOF. Put D = {A<Q:14e€H}. Then by (i) Q belongs to D and
D oM If Aand B are in D and if B © A, then B\A belongs to D. If
(A, :n e N) is an increasing sequence in D, then 1,4, = sup, 14, belongs to
D by (ii). Hence D is a Dynkin system, that contains M. Since M is closed
under finite intersection, it follows by Theorem 3.25 that D 2 o(M). If f >0
is measurable with respect to o(M), then

n2m
f = Sup —n ijl 1{f>j2—n}. (352)

Since 1(fsjo-n}, J, n € N, belong to (M), we see that f belongs to J{. Here we
employed the fact that o(M) < D. If f is o(M)-measurable, then we write f
as a difference of two non-negative o(M)-measurable functions. O

The previous theorems (Theorems 3.25 and 3.26) are used in the following form.
Let © be a set and let (E;, &;),_; be a family of measurable spaces, indexed by an
arbitrary set I. For each ¢ € I, let §; denote a collection of subsets of E;, closed
under finite intersection, which generates the o-field &;, and let f; : Q@ — E;
be a map from  to E;. In this context the following two propositions follow.
These propositions correspond to Propositions 2.44 and 2.45 respectively.
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3.27. PROPOSITION. Let M be the collection of all sets of the form (.., f ' (As),
A;e8;,1ed, Jc I, J finite. Then M is a collection of subsets of ) which is
stable under finite intersection and o(M) = o (f; 1 i€ I).

3.28. PROPOSITION. Let H be a vector space of real-valued functions on £ such
that:

(i) the constant function 1 belongs to H;
(ii) if (h, : n € N) is an increasing sequence of non-negative functions in H
such that h = sup,, h, is finite (bounded), then h belongs to H;
(ili) H contains all products of the form [ [, ;1a, 0 fi, J < 1, J finite, and
A;e8;, i€ J.

Under these assumptions 3 contains all real-valued functions (bounded) func-
tions which are measurable with respect to o(f; i€ I).

The Theorems 3.25 and 3.26 and the Propositions 3.27 and 3.28 are called the
monotone class theorem.
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In the following theorem JF is the o-field generated by {X(s) : s = 0} and F; is
the o-field generated by the past or full history, i.e. ¥, = o {X(s) 0 <s <t}
If T is an (F;;)-stopping time we write

Fre = {Ae T An{T <t}eTFy}.

t=0

An (F,,)-stopping is an F-measurable map T from {2 to [0, co] with the property
that {T" < t} belongs to 4 for all £ = 0.

Notice that stopping times may take infinite values. Often this is very interest-
ing.
3.29. THEOREM. Let {(Q,F,P,),(X(t):t=>0),(d;:t>0), (R, B)}, x € RY,

be a d-dimensional Brownian motion. Then the following conditions are verified:

(ay) For every a > 0, for every t = 0 and for every open subset U of R?,
the set {x € R* : P,(X(t) € U) > a} is open;
(ag) For every o > 0, for every t = 0 and for every compact subset K of
R?, the set {z e RY: P, (X (t) € K) > a} is compact;
(b) For every open subset U of R¢ cmd for every x € U, the equality
liir(r)l P, (X(t)eU) =1 is valid.
t
Moreover d-dimensional Brownian motion has the following properties:
(i) For allt = 0 and for all bounded random variables Y : Q@ — C the equality
E, (Y o0, | F:) = Excy(Y) (3.53)
holds P,-almost surely for all x € R?;

(i1) For all finite tuples 0 < t; <ty < ... < t, < o0 together with Borel subsets
By,..., Bn of R? the equality

th EBl,...,X( )EB)

f J f n - n 1y Tn—1, dxn)P(tn—l - tn—27$n—27 dxn—l)
Bl Bn 1 n
tg —tl,flfl,dflfg)P(tl,fL', dl’l) (354)

is valid for all v € R? (here P,(X(t) € B) = P(t,z, B));

(11i) For every (F,.)-stopping time T and for every bounded random variable
Y : Q — C the equality

E, (Yodr|Frs) =Exm (Y), (3.55)
holds P,-almost surely on {T < o} for all x € RY;

(iv) Let By be the Borel field of [0,00). For every bounded function F : [0, 00) x
Q) — C, which is measurable with respect to BQF, and for every (F, )-stopping
time T the equality

E, ({w— F(T(w),97w)} | Fry) = {" = Ex@) {w — F(T(W),w)}}
(3.56)
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holds P,-almost surely {T < oo} for all x € R?.

Since d-dimensional Brownian motion verifies (a;), (ag) and (b), the properties
in (i), (ii), (ili) and (iv) are all equivalent. Properties (i) and (ii) are always
equivalent and also (iii) and (iv). The implication (iii) = (ii) is also clear. For
the reverse implication the full strength of (a;), (az) and (b) is employed. The
fact that Brownian motion possesses property (ii) is a consequence of Theorem
3.19. In fact the right continuity of paths is very important. Since we have
proved that Brownian motion possesses continuous paths P -almost surely this
condition is verified. Property (i) is called the Markov property and property
(iii) is called the strong Markov property. Equality (3.56) is called the strong
time-dependent Markov property. We shall not prove this result. It is part of the
general theory of Markov processes and their sample path properties. It is also
closely connected to the theory of Feller semigroups. As in Theorem 3.29 let
{(QLFP,),(X(t):t=0),(0:t>0), (R, B)} be Brownian motion starting
in z. In fact the family of operators {P(t):t > 0} defined by [P(¢)f](z) =
E, (f(X(t)), fe L*(RY), t > 0, is a Feller semigroup, because it possesses the
properties mentioned in the following definition.
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In what follows E is a second countable locally compact Hausdorff space, e.g.
E =R We define a Feller semigroup as follows.

3.30. DEFINITION. A family {P(¢) : £ = 0} of operators defined on L*(F) is a
Feller semigroup, or, more precisely, a Feller-Dynkin semigroup on Cy(FE) if it
possesses the following properties:

(i) It leaves Cy(FE) invariant: P(t)Co(E) < Co(E) for t = 0;
(i) It is a semigroup: P(s+t) = P(s)o P(t) for all s, ¢t > 0, and P(0) = I;
(iii) It consists of contraction operators: |P(t)f]., < | f]., for all £ = 0 and
for all f e Cy(E);
(iv) Tt is positivity preserving: f =0, f € Co(E), implies P(t)f = 0;
(v) It is continuous for ¢t = 0: limy [P(¢) f] (z) = f(z), for all f e Cy(E)
and for all z € E.

In the presence of (iii) and (ii), property (v) is equivalent to:
(v') limyo | P(t)f — fll, = 0 for all fe Cy(E).
So that a Feller semigroup is in fact strongly continuous in the sense that, for

every f e Cy(FE),
lim [ P(s)f — P(1)f], = 0.

It is perhaps useful to observe that Cy(FE), equipped with the supremum-norm
|-|l, is @ Banach space (in fact it is a Banach algebra). A function f: £ — C
belongs to Cy(E) if it is continuous and if for every e > 0, there exists a compact
subset K of E such that |f(z)| < € for x ¢ K. We need one more definition.
Let {P(t) : t = 0} be a Feller semigroup. Define for U an open subset of E, the
transition probability P(t,x,U),t >0, x € E, by
P(t,z,U) =sup{[P(t)u] (z) : 0 <u < 1y, ue Cy(E)}.
This transition function can be extended to all Borel subsets by writing
P(t,z,K) =inf {P(t,z,U) : U open U 2 K},
for K a compact subset of E. If B is a Borel subset of F, then we write
P(t,z,B) =inf {P(t,z,U) : U = B, U open }
=sup{P(t,z,K): K € B, K compact }.
It then follows that the mapping B — P(t,z, B) is a Borel measure on &, the

Borel field of E. The Feller semigroup is said to be conservative if, for all ¢ = 0
and for all x € E, P(t,x, E) = 1.

We want to conclude this section with a convergence result for Gaussian pro-
cesses.

3.31. PROPOSITION. Let (Xs(n) IS E [), n €N, be a sequence of Gaussian pro-
cesses. Let (X :s € I) be a process with property that

E[X.X,] = lim E[XMX{], for allu and v in I and
n—o0
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E[X,] = lim E [Xé")], for alluel.

n—0o0

Also suppose that, in weak sense,

lim (X, X)) = (X, X))

n—0o0

for all finite subsets (uq,...,uy) of I. Then the process (X : s € I) is Gaussian
as well.

PROOF. Let &, ...,&,, be real numbers, and let uq,...,u,, be members of

I. Then
E (exp <—z' §kX7Yk‘)>)
1

e (-1 B -} 3 e (. ) )
k

1 k,t=1
Next let n tend to infinity to obtain (here we employ Lévy’s theorem on weak
convergence):

B (exp (_@- 5 gquk>)

= €exXp {_i i ka [Xuk] - i gk&E [(Xuk —E (Xuk)) (Xue —E (Xue))]} :

k=1 k=1

NSER F

N —

So the result in Proposition 3.31 follows. [l

For Lévy’s weak convergence theorem see Theorem 5.42.

3.32. THEOREM. Brownian motion is a Markov process. More precisely, (3.53)
18 satisfied.

PROOF. For brevity we write

1 o —y/*
p(t,x,y) = pO,d (t,l‘,y) = (27Tt)d/2 exp <_ 2

in this proof. Let F' be a bounded stochastic variable. We have to show the
following identity:

E, [F oYy | 3'“,5] = Exq) [F], P,-almost surely.
It suffices to show that
E, [Fod; x G] =E, []EX(t) [F] G] (3.57)

for all bounded stochastic variables F' and for all bounded F;-measurable func-
tions GG. By an application of the monotone class theorem twice (see Proposi-
tion 3.28) it suffices to take F of the form F' =[]/, f; (X (s;)), 0 < 51 < 85 <
-8y < 00, and G of the form G = [[7_, g, (X (), 0 <ty <ta <--- <1, <t
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Here fi,..., fm and g1, ..., gm are bounded continuous functions from R to R
or C. Once the monotone class theorem is applied to the vector space

{GeL”(0,F): E, [Exp [F] x G] =E;[Fod, x G|},
where [ is as above, and once to the vector space
{F e L (Q,F): Exu [F] =E, [F oY | Sft] , P,-almost surely} )
Then (3.57) may be rewritten as

E, [fi(X(s1+1) fin (X (8 + 1) g1 (X (t1)) -+ g (X (20))]
= E. [Exe [1 (X (51)) -+ fon (X (5m))] 91 (X (1)) -~ g0 (X ()] . (3.58)

PutTj :tj71<j<n77—n+k:8k+t71<k<m; h] :g]71<j<n7hn+k:fku
1 < k < m. By definition we have

[f1 ( (81 1) S (X (s + 1) 91 (X (1)) -+ g (X (80))]
)) ’ hn+m (X (Tner))]

J del ATy ymhy (1) - P (Tngm)

(7_17 T :El) P (Tner Tn+m—15 Tn+m—1, anrm) . (359)

Next we rewrite the right-hand side of (3.58):
B [Ex [ (X (51) fin (X (5m))] 91 (X (1) -+ gn (X (t0))]
B | OO0 00 O () [ [ iy () o o)

p (s, X(#),y1) p(sm— sml,yml,ym)]
:J...szl...dzngl(21)~--gn(zn)
p (.2, zl)"-p(tn—tn1,zn1,zn)fdzp (t =t 2, 2)
| ot ) o)

p (517 z, ?J1) e p (Sm — Sm—1,Ym—1, ym)

(Chapman-Kolmogorov: {p (t —t,,,2,,2) p (s1,2,y) dz = p(s1 +t — ty, 20, Y))

J szl dzng1 (1) - - (zn)J...del---dymf (1) - fon (Ym)

p(ti,z,z1) D (tn — tno1, Zn-1, 2n)
p (Sl +1t— tnu Zns yl) P <8m —Sm—1,Ym—-1, ym)
=B, [f1 (X (s148) - fin (X (800 4+ 8)) g1 (X (02)) - - g0 (X (82))] - (3.60)

Since the expressions in (3.59) and (3.60) are the same, this proves the Markov
property of Brownian motion. The proof of Theorem 3.32 is now complete. [J
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3. Some results on Markov processes, on Feller semigroups and on
the martingale problem

Let E be a second countable locally compact Hausdorff space, let E® be its
one-point compactification or, if E is compact, let A be an isolated point of
E® = E|JA. Define the path space Q as follows. The path space (2 is a subset

of (EA)[O’OO) with the following properties:

(i) If w belongs to €, if ¢ > 0 is such that w(t) = A and if s > ¢, then
w(s) = A;
(ii) Put ((w) =inf {s > 0: w(s) = A} for w e Q. If w belongs to €, then w
possesses left limits in £ on the interval [0, ¢] and it is right-continuous
on [0, o0);
(iii) If w belongs to €, if ¢ > 0 is such that w(t) belongs to E, then the closure
of the set {w(s) : 0 < s <t} is a compact subset of E or, equivalently,
if t > 0 is such that w(t—) = A and if s > ¢, then w(s) = A.
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3.33. DEFINITION. The random variable ¢, defined in (iii.) is called the life
time of w. A path w € € is said to be cadlag on its life time. We also define
the state variables X(t) : @ — E® by X(t)(w) = X(t,w) = w(t), t = 0,
w € ). The translation or shift operators are defined in the following way:
[Vi(w)](s) = w(s+t), s, t >0 and w e Q. The largest subset of (EA)[O’OO)
with the properties (i), (ii) and (iii) is sometimes written as D ([0, ), E®) or
as Dpa([0,90)). Let F be a o-field on Q. A function Y : © — C is called a
random variable if it is measurable with respect to F. Of course C is supplied
with its Borel field. The so-called state space E is also equipped with its Borel
field €& and E* is also equipped with its Borel field €2. The path wa is given
by wa(s) = A\, s = 0. Unless specified otherwise we write 2 = D([0,0), E®).
The space D([0,0), E?) is also called Skorohod space. In addition let F be a
o-field on Q and let {F; : ¢t = 0} be a filtration on Q. Suppose F, < F, ¢t = 0,
and suppose that every state variable X (), t = 0, is measurable with respect to
Fi. (This is the case where e.g. F; is the o-field generated by {X(s) : s < t}.)

We also want to make a digression to operator theory. Let L be a linear operator
with domain D(L) and range R(L) contained in Cy(E). The operator L is said
to be closable if the closure of its graph is again the graph of an operator. Here
the graph of L, G(L), is defined by G(L) = {(f,Lf): fe D(L)}. Its closure
is the closure of G(L) in the cartesian product Cy(E) x Co(E). If the closure
of G(L) is the graph of an operator, then this operator is, by definition, the
closure of L. It is written as L. Sometimes L is called the smallest closure of L.

3.34. DEFINITION. Let L be a linear operator with domain and range in Cy(E).

(i) The operator L is said to be dissipative if, for all A > 0 and for all
f e D(L),
IAf =Ll = Ml (3.61)
(ii) The operator L is said to verify the maximum principle if for every f €
D(L) with sup {Re f(x) : x € E} strictly positive, there exists zg € F
with the property that

Re f(xg) =sup{Re f(z):x e E} and Re Lf(z) <0.

(iii) The martingale problem is said to be uniquely solvable, or well-posed,
for the operator L, if for every x € E there exists a unique probability
P = P, which satisfies:
(a) For every f e D(L) the process

X)) — FX(0) — f Lf(X(s))ds, >0,

is a P-martingale;
(b) P(X(0) =xz) = 1.

(iv) The operator L is said to solve the martingale problem maximally if
for L the martingale problem is uniquely solvable and if its closure L is
maximal for this property. This means that, if L is any linear operator
with domain and range in Cy(E), which extends L and for which the
martingale problem is uniquely solvable, then L coincides with L;.
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(v) The operator L is said to be the (infinitesimal) generator of a Feller

semigroup
{P(t) : t = 0},
: . Pt)—1I . :
if L = S—ltll%l ——~——. This means that a function f belongs to D(L)
Pt)f —
whenever Lf := l}lr(r)l U{f exists in Cy(F).

An operator which verifies the maximum principle is dissipative (see e.g. [179],
p. 14) and can be considered as kind of a generalized second order derivative
operator. A prototype of such an operator is the Laplace operator. An operator
for which the martingale problem is uniquely solvable is closable. This follows
from (3.125) below. Our main result says that linear operators in Cy(E) which
maximally solve the martingale problem are generators of Feller semigroups and
conversely.

3.35. DEFINITION. Next suppose that, for every x € E, a probability measure
P, on J is given. Suppose that for every bounded random variable ¥ : 2 — R
the equality E, (Y o9, | F;) = Ex)(Y) holds P-almost surely for all v € £
and for all £ > 0. Then the process

(T, P,), (X(): t=0),(0:t>0),(EE)}

is called a Markov process. If the fixed time ¢ may be replaced with a stopping
time 7', the process {(, F,P,),(X(t):t=0),(0::t=>0),(E, &)} is called a
strong Markov process. By definition Pa(A) = 14(wa) = 0w, (A). Here A
belongs to F. If the process {(Q,F,P,),(X(¢t):t=>0),(d:t>0),(F,E)}is a
Markov process, then we write

P(t,z,B) =P,(X(t)e B), t>0, Be&, zek, (3.62)

for the corresponding transition function. The operator family {P(¢) : t = 0} is
defined by [P(t)[](x) = E, (f(X (1)), f € Co(E).

An relevant book on Markov processes is Ethier and Kurtz [68]. An elementary
theory of diffusions is given in Durrett [59]. In this aspect the books of Stroock

and Varadhan [171], Stroock [169] [168], and Ikeda and Watanabe [81] are of
interest as well.

We shall mainly be interested in the case that the function P(¢)f is a mem-
ber of Cy(E) whenever f is so. In the following theorem F is the o-field
generated by {X(s):s >0} and F; is the o-field generated by the past or
full history, i.e. ¥, = 0{X(s):0<s<t}. If T is a stopping time we write
Fre =(Nso A€ T An{T <t} e Ty}

3.36. THEOREM. Let (2, F,P,), x € E, be probability spaces with the following
properties:

(a1) For every a > 0, for every t = 0 and for every open subset U of E, the
set {re E:P,(X(t)eU) > a} is open;
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(ag) For every a > 0, for everyt = 0 and for every compact subset K of E,
the set {x € £ : P.(X(t) € K) = a} is compact;
(c) For every open subset U of E and for every x € U, the equality
lgf(r]l P, (X(t)eU) =1 is valid.

The following assertions are equivalent:

(i) For allt = 0 and for all bounded random variables Y : Q@ — C the equality
E, (Yot |J) =Exqu(Y) (3.63)
holds P,-almost surely for all x € F;

(11) For all finite tuples 0 < t; <ty < ... < t, < o0 together with Borel subsets
By, ..., B, of E the equality

th EBl,...,X( )EB)

J J f t - tn 1y Tn—1, dmn) ( -1 = tn—?a Tp—2, dmn—l)
B1 Bn 1 n
tg — tl, Xy, dl’g) (tl, xXr dJTl) (364)

is valid for all x € E (here P,(X(t) € B) = P(t,z, B));

(iii) For every (Fiy)-stopping time T and for every bounded random variable
Y : Q — C the equality

Ex (Y ¢ 19T | ?T_;,_) = EX(T) (Y) s (365)
holds P,-almost surely on {T < oo} for all x € E;

(iv) Let B be the Borel field of [0,00). For every bounded function F : [0,00) x
Q — C, which is measurable with respect to BQF, and for every (F4 )-stopping
time T the equality

E, ({w = F (T(@),9r(@))} | F14) = {&' = Exgry {w = F (T(),0)})
(3.66)

holds P,-almost surely {T < oo} for all z € E.

Equality (3.66) is called the strong time-dependent Markov property. We shall
not prove this result.

3.37. THEOREM. Let {P(t):t > 0} be a Feller semigroup. There exists a col-
lection of probabilities (P,), ., on the o-field I generated by the state variables
{X(t) : t =0} defined on Q:= D ([0,%0), E®) in such a way that

E, [f (X(1)...., X(t,)] = j FX(8), . X (1) dP,

= J .. Jf(l’h Lo,y .. ,.Tn)P<tn — tn—ly Tn—1, d$n)P<tn_1 — tn_Q, Tp—2, d$n_1)
. P(tg —t1,$1,dl’2)P(t1,I’, dl’l), (367)
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where f is any bounded complex or non-negative Borel measurable function de-
fined on E® x ... x E®, that vanishes outside of E x ... x E. Let the measure
spaces (0, F,P,) . be as in (3.67). The process

{(Q,F,P,), (X(): t=0),(0:t=0),(EE)

1s a strong Markov process.

The proof the result in Theorem 3.37 is quite technical. The first part follows
from a well-known theorem of Kolmogorov on projective systems of measures:
see Theorems 1.14, 3.1, 5.81. In the second part we must show that the indicated
path space has full measure, so that no information is lost. Proofs are omitted.
They can be found in for example Blumenthal and Getoor [25], Theorem 9.4.
p. 46. For a discussion in the context of Polish spaces see, e.g., Sharpe [156] or
Van Casteren [184]. For the convenience of the reader we include an outline of
the proof of Theorem 3.37. The following lemma is needed in the proof.

3.38. LEMMA. Let (2,F:,P) be a probability space, and let t — Y (t), be a
supermartingale, which attains positive values. Fix t > 0 and let D be a dense
countable subset of [0,00). Then

P [Y(t) >0, inf Y(s)= 0] — 0. (3.68)

O<s<t,seD
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PROOF OF LEMMA 3.38. Let (s;), be an enumeration of the set D [0, 20).
Fix n, N € N, and define the stopping time S, xy by

Sp.N = min {sj : 12(J11<nNY (sj) <27 }

Then we have Y (S, n) < 27" on the event {S, y < 0}. In addition, by the
supermartingale property (for discrete stopping times) we infer

E[Y(t), min Y (s;) <2 ] E[V (), Sun < ]
)

=E[Y(t), min (S, n,t) <]

< E[Y (min (S, v, 1)), min (S, n,t) < t]
:E[ ( )7 nN<t]

<E[27", nN<t] <27 (3.69)

In (3.69) we let N — o0 to obtain:

E [Y(t), inf  V(s) <27 <27 (3.70)
O<s<t,seD 1
In (3.70) we let n — oo to get:
E [Y(t), 0<81<r%,fseDY (s) = 07 =0. (3.71)

Let a > 0 be arbitrary. From (3.71) it follows that

P [Y(t) >a, inf Y(s)= 0] < éE [Y(t), inf Y (s) = o] —0.

O<s<t,seD O<s<t,seD
(3.72)
Then in (3.72) we let « | 0 to complete the proof of Lemma 3.38. O

Let {P(t) : t = 0} be a Feller-Dynkin semigroup acting on Cy(E) where F is a
locally compact Hausdorff space. In the proof of Theorem 3.37 we will also use
the resolvent operators {R(«) : a > 0}: R(«a)f(x) = SSO e P(t)f(z)dt, a >0,
f € Co(E). An important property is the resolvent equation:

R(f) = R(a) = (o = B) R(@)R(B), «a, > 0.

The latter property is a consequence of the semigroup property.

3.39. REMARK. The space E is supposed to be a second countable (i.e. it
is a topological space with a countable base for its topology) locally compact
Hausdorff space (in particular it is a Polish space). A second-countable locally-
compact Hausdorff space is Polish. Let (U;), be a countable basis of open
subsets with compact closures, choose for each i € N, y; € U;, together with a
continuous function f; : F — [0, 1] such that f; (y;) = 1 and such that f; (y) =0
for y ¢ U;. Since a locally compact Hausdorff space is completely regular this
choice is possible. Put

g (x ! ! T,y €
= 22— Wl s — se gy o ve D
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This metric gives the same topology, and it is not too difficult to verify its
completeness. For this notice that the sequence (f;), separates the points of £,
and therefore the algebraic span (i.e. the linear span of the finite products of
the functions f;) is dense in Cy(F) for the topology of uniform convergence. A
proof of the fact that a locally compact space is completely regular can be found
in Willard [194] Theorem 19.3. The connection with Urysohn’s metrization
theorem is also explained. A related construction can be found in Garrett [75]:
see Dixmier [53] Appendix V as well.

3.40. REMARK. Next we present the notion of Skorohod space. Let D ([0, 1], R)
be the space of real-valued functions w defined on the interval [0,1] that are
right-continuous and have left-hand limits, i.e., w(t) = w (t+) = lim,}; w(s) for
all 0 <t <1, and w(t—) = limgy w(s) exists for all 0 < ¢ < 1. (In probabilistic
literature, such a function is also said to be a cadlag function, “cadlag” being an
acronym for the French “continu a droite, limites a gauche”.) The supremum
norm on D ([0, 1], R), given by
|l = sup |w(®)], we D([0,1],R),
te[0,1]

turns the space D ([0, 1], R) into a Banach space which is non-separable. This
non-separability causes well-known problems of measurability in the theory of
weak convergence of measures on the space. To overcome this inconvenience,
A.V. Skorohod introduced a metric (and topology) under which the space be-
comes a separable metric space. Although the original metric introduced by
Skorohod has a drawback in the sense that the metric space obtained is not
complete, it turned out (see Kolmogorov [94]) that it is possible to construct
an equivalent metric (i.e., giving the same topology) under which the space
D ([0, 1], R) becomes a separable and complete metric space. Such metric space
the term Polish space is often used. This metric is defined as follows, and
taken from Paulauskas in [144]. Let A denote the class of strictly increasing
continuous mappings of [0, 1] onto itself. For A € A, let

At = Ms) |

Al = su
Il p T

0<s<t<1
Then for w; and we € D ([0, 1], R) we define

d(n, ) = inf max (] Joor = w5 07].,)

log

The topology generated by this metric is called the Skorohod topology and
the complete separable metric space D ([0, 1], R) is called the Skorohod space.
This space is very important in the theory of stochastic processes. The general
theory of weak convergence of probability measures on metric spaces and, in
particular, on the space D ([0, 1],R) is well developed. This theory was started
in the fundamental papers like Chentsov [43], Kolmogorov [94], Prohorov [146],
Skorohod [159]. A well-known reference on these topics is Billingsley [22].
Generalizations of the Skorohod space are worth mentioning. Instead of real-
valued functions on [0, 1] it is possible to consider functions defined on [0, c0) and
taking values in a metric space E. The space of cadlag functions obtained in this
way is denoted by D ([0,0), E) and if F is a Polish space, then D ([0, ), E),
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with the appropriate topology, is also a Polish space, see Ethier and Kurtz [68]
and Pollard [145], where these spaces are treated systematically.

OUTLINE OF A PROOF OF THEOREM 3.37. Firstly, the Riesz representa-
tion theorem, applied to the functionals f — P(t)f(z), f € Co(E), (t,x) €
[0,0) x E, provides a family of sub-probability measures B — P (t,z, B),
Be &, (t,x) € [0,00) x E, with P (0,z,B) = J, (B) = 1g(x). From the semi-
group property, i.e. P(s+1t) = P(s)P(t), s, t = 0, it follows that the family
{P(t,x,-): (t,z) € [0,00)} obeys the Chapman-Kolmogorov identity:

P(s+t,x,B)=JP(t,y,B)P(s,a:,dy), Bel ,s=20,t>0, xe E. (3.73)

The measures B — P(t,z, B), B € &, are inner and outer regular in the sense
that, for all Borel subsets B (i.e. B € £),

P (t,z,B) =sup{P(t,z,K): K ¢ B, K compact}
=inf{P(¢t,2,0): O o B, O open}. (3.74)

In general we have 0 < P (t,z,B) < 1, (t,x,B) € [0,00) x E x €. In order
to apply Kolmogorov’s extension theorem we need that, for every x € E, the
function ¢t — P(t,z, F) is constant. Since P(0,z, E) = 1 this constant must be
1. This can be achieved by adding an absorption point A to E. So instead of
E we consider the state space E2 = E u {A}, which, topologically speaking,
can be considered as the one-point compactification of F, if E is not compact.
If E is compact, A is an isolated point of E. Let € be the Borel field of E*.

(]
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Then the new family of probability measures {N (t,x,-) : (t,x) € [0,00) x E} is
defined as follows:
N(t,z,B)=P(t,x, BN E)+ (1= P(t,z,FE))15(A), (t,x) € [0,0) x E,
N(t,N,B)=15(A), t=0, Be&”. (3.75)
Compare this construction with the one in (1.1). The family
={N (t,z,): (t,x) € [0,00) x E}

again satisfies the Chapman-Kolmogorov identity with state space E* instead of
E. Notice that N (t,z, B) = P (t,z, B) whenever (t, z, B) belongs to [0, ©0) x E'x
€. Employing the family N we define a family of probability spaces as follows.
For every xy € F, and every increasing n-tuple 0 < t; < --- < t, < o0 in [0,)"
we consider the probability space (( ) ,Q"ES P, Pt tn)3 the probability
measure P, 4, 4. is defined by

.....

Poir tn(B)=J...JN(tl—to,xo,dz):l)---N(tn—tn_l,xn_l,d:rn), (3.76)

where B € €%, By an appeal to the Chapman-Kolmogorov identity it follows
that, for xg € E fixed, the family of probability spaces:

{(B?)",®@" €%, Pogtyyopn) 1 0<ty < - <t, <0, neN} (3.77)
is a projective system of probability spaces. Put 0L = (EA) [0.20) , and equip this

space with the product o- ﬁeld Fo = Q=) In addition, write X( Nw) =

w(t), Yw(s) = w(s + 1), s, t >0, we Q> The variables X (¢), t > 0, are called
the state variables, and the mappings ¥J;, t = 0, are called the (tlme) translation
or shift operators. By Kolmogorov s extension theorem there exists, for every
x € E®, a probability measure P, on the o-field F2 such that

B, [(X (t), - ,)?(tn)) e B] — Py, [B]. (3.78)

In (3.78) B belongs to €4, and 0 < t; < --- < t, < 00 is an arbitrary increas-
ing n-tuple in [0, 00). Another appeal to the Chapman-Kolmogorov identity and
the monotone class theorem shows that the quadruple

{(8.528.), (X012 0),0t>0), (B4} (3.79)
is a Markov process relative to the internal history, i.e. relative to the filtration
Fo =0 ()m(/(s) 1 0<s< t), t > 0. Moreover, we have P, [)N((O) = x] =1, and,

by the Markov property, we also have, for x € E®, t > s > 0,
B, [i((t) — A, X(s) = A] ~ i, [ﬁx [f((t —s)ody = A | %A] X (s) = A]
(Markov property)
=, [Py, [X(t =) = A1, X(s) = 4]

~E, [IF [)Z*(t _5) = A] L X(s) = A]
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= N (t—50,{A}) - N (5,2, {A))
= N (s,2,{A}) = B, [)”((s> - A] . (3.80)

The equality in (3.80) says that once the process ¢ — X (t) enters A it stays
there. In other words A is an absorption point for the process X. Define, for t >
0, the mapping P(t) : C (E2) - C(E#) by P@t)f(z) = E, [f <)~((t)>], fe
C (EA). From the Markov property of the process X , and since the semigroup
t — P(t) is a Feller-Dynkin semigroup, it follows that the mappings ]3(25), t=0,
constitute a Feller (or Feller-Dynkin semigroup) on C (EA). Consequently, for
any feC (EA), and any tg = 0, we have

f ()”((t)) .y ()”((s)) H —0. (3.81)

Let D be the collection of non-negative dyadic rational numbers. Since the
space E# is compact-metrizable, it follows from (3.81) that, for all z € E*, the
following limits

lim sup INETm [

s,t—10,5,t20 o pa

lim X(s), and lim X(s), (3.82)

s1t, s€D slt, seD
exist in B2 P,-almost surely. Define the mapping 7 : 0% -0 by
m(w)(t) = lltirnD)N((s) (w) = X(t) (r(w)), t=0, we 0%, (3.83)
slt, se

Then we have that, for every x € E fixed, the processes t — X (t) o and t
X (t) are P -indistinguishable in the sense that there exists an event Q%' < Q%

such that P, [(NZA”] = 1 and such that for all ¢ € [0,0) the equality X (¢) =

X (t)or holds on the event Q2. This assertion is a consequence of the following
argument. For every (¢,z) € [0,00) x E® and for every f € C (E®) we see

E, [f(X(wow)—f(X’(t))] — lim K, [f ()“(’(s>)—f()?<t>)]

slt, seD
~E, [f ()?(t)) _f ()?(t))] 0. (3.84)

Since the space E® is second countable, the space C (EA) is separable, the
equalities in (3.82) and (3.84) imply that, up to an event which is P,-negligible
X(t) = X(t) om for all t = 0. See Definition 5.88 as well. In addition, we have

that, for w € €2 the realization t — m(w)(t) belongs to the Skorohod space €2, i.e.
it is continuous from the right and possesses left limits. We still need to show

that X(t) € E implies that the closure of the orbit {X(S) :0<s<t se D}

is a closed, and so, compact subset of E. For this purpose we choose a strictly
positive function f € Cy (E) which we extend to a function, again called f, such
that f (A) = 0. It is convenient to employ the resolvent operators R(a), a > 0,

here. We will prove that, for o > 0 fixed, the process t — e R («) f <)~((t)>

is Iﬁm—supermartingale relative to the filtration {f;'“f it = O}. Therefore, let ty >
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t;1 = 0. Then we write:
E [e—atzR(a)f (f( (t2)> | f?fﬁ]
Q0
_ Ez [e—atzj G_QS]E)N{(Q) [f (X(S))jl ds ‘ gjﬁl

0

(Markov property)

e [ R AT RS I AR

0

(Fubini’s theorem and tower property of condiitonal expectation)

o0
IEQ; [e—atzj e—asf <X(S+t2)> d3|§$]

0
o0
E, U i <X (s)) ds | ffﬁ]
t2
(the function f is non-negative and ty > ;)
o0
E, U i <X (s)) ds | ?ﬁ]
t1
~ m ~ ~
:Ez [eahf efasf (X(S‘f’tl)) d8|3~§:|
0

(Fubini’s theorem in combinaton with the Markov property)

N

_eoh J - B, [ f ()Z' (5))] ds = e R(a) f ()Z' (t1)> . (3.85)

0
Put Y(t) = e R(a)f ()N( (t)), and fix z € E. From (3.85) we see that the
process t — }7(25) is a f”x-supermartingale relative to the filtration (g"tA ) .
t>
From Lemma 3.38 with Y'(¢) instead of Y (¢) and P, in place of P we infer

P, [X(t) eE, inf Y(s)= o] - P, [f/(t) >0, inf Y(s)= 0] — 0.
seDN(0,t) seDN(0,t)
(3.86)

From (3.86) we see that, P,-almost surely, X () € E implies infsepn(o. Y(s) > 0.
Consequently, for every x € F, the equality

~

P, [X(t) e E] - P, [)’Z'(t) e E, closure {)’Z@) seDn (O,t)} c E] . (3.87)

holds. In other words: the closure of the orbit {)?(s) :seDn (0, t)} is con-

tained in F whenever X () belongs to E. We are almost at the end of the proof.
We still have to carry over the Markov process in (3.79) to a process of the form

(Q,F,Py), (X ().t =0), (0, t =0, (E,&)} (3.88)
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with Q = D ([O, o), EA) the Skorohod space of paths with values in £%. This
can be done as follows. Define the state variables X (t) : Q — E2 by X (¢)(w) =
w(t), we Q, and let ¥, : Q — Q be defined as above, i.e. J;(w)(s) = w(s + t),
w e Q. Let the mapping 7 : © — Q be defined as in (3.83). Then, as shown
above, for every z € E, the processes X () and X (t)or are P,-indistinguishable.
The probability measures P,, z € E, are defined by P, [A] = P, [r € A] where A
is a Borel subset of 2. Then all ingredients of (3.88) are defined. It is clear that
the quadruple in (3.88) is a Markov process. Since the paths, or realizations,
are right-continuous, it represents a strong Markov process.

This completes an outline of the proof of Theorem 3.37. 0
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As above L is a linear operator with domain D(L) and range R(L) in Cy(E).
Suppose that the domain D(L) of L is dense in Cy(E). The problem we want to
address is the following. Give necessary and sufficient conditions on the operator
L in order that for every x € E there exists a unique probability measure P, on
F with the following properties:

(i) For every f € D(L) the process f(X(t)) — f(X(0)) — Sé Lf(X(s))ds
t > 0, is a P,-martingale;
(i) P.(X(0) = x) = 1.

Here we suppose 2 = D ([0, %), E#) (Skorohod space) and ¥ is the o-field gen-
erated by the state variables X (), t = 0. Let P(2) be the set of all probability
measures on F and define the subset P'(§2) of P(£2) by

P'(Q) = U {IP’ e P(Q2) : P[X(0) = 2] = 1 and for every f € D(L) the process

reEAL

F(X(t) — f(X(0) — fo Lf(X(s))ds,t =0, is a P-martingale }
(3.89)

Let (v; : j € N) be a sequence of continuous functions defined on E with the
following properties:

(i) vo = 1;
(ii) [vs], <1 and v, belongs to D(L) for j >
(iii) The linear span of v;, j = 0, is dense in C (EA)

In addition let (fx : k € N) be a sequence in D(L) such that the linear span
of {(fx, Lfx) : k € N} is dense in the graph G(L) := {(f,Lf) : f € D(L)} of the
operator L. Moreover let (s; : j € N) be an enumeration of the set Q n [0, 20).
The subset P’(£2) may be described as follows:

-NNN N N 3.90)

n=1k=1m=1 (j1,...,jm41)eNm+1 0<s;; <..<sj5 .4
€ P(Q) : inf max

{P B 1952 J%‘ (X(0))dP — v;(x)
J( (Sjms1)) L m Lfk(X(s))ds) H:;lvjk (X(s;,)) dP
_ J (fk(X(Sjm)) _ f]’m Lfk(X(S))ds) H:;l v (X(55,)) dIP’},

It follows that P'(2) is a weakly closed subset of P(£2). In fact we shall prove
that, if for the operator L, the martingale problem is uniquely solvable, then

Download free eBooks at bookboon.com



the set P’()) is compact metrizable for the metric d (P, Ps) given by

_ —|A|
d(Py,Py) = ZAcN,\A\@ 9 (@Z

j)jeA

Jﬂz—f—%j (X (s0,)) d (Py —Py)|.

FISAN

(3.91)
The following result should be compared to the comments in 6.7.4. of [171]. It
is noticed that in Proposition 3.41 below the uniqueness of the solutions to the
martingale problem is not used.

3.41. PROPOSITION. The set P'(2) supplied with the metric d defined in (5.91)

1s a compact Hausdorff space.

PrOOF. Let (P, :n e N) be any sequence in P'(€2). Let (P,, : € N) be
a subsequence with the property that for every m € N, for every m-tuple
(41, .-, Jm) in N™ and for every m-tuple (sj,,...,s;,.) € Q™ the limit

lim JH::l Yjk (X (Sjk)) de/

{—0
exists. We shall prove that for every m € N, for every m-tuple (ji,...,jn) in
N and for every m-tuple (tj,,...,t;,,) € [0,00)™ the limit

i [T X (6 (3.92)

exists for all sequences (u; : j € N) in Cy(£). But then there exists, by Kol-
mogorov’s extension theorem, a probability measure P such that

i [T, (X ()P, = [TT w (X (393

{—0

for all m e N, for all (j1,...,jmn) € N™ and for all (¢;,,...,t;,) € [0,0)™. From
the description (3.89) of P'(2) it then readily follows that P is a member of
P’(©2). So the existence of the limit in (3.92) remains to be verified together
with the fact that D([0,00), E®) has full P-measure. Let ¢ be in Q. Since,
for every j € N, the process v;(X (s)) — v;(X(0)) — § Lv; (X (0))do, s = 0, is a
martingale for the measures PP,,,, we infer

[ [ zosxnasen, = [vxwpae,, - [ wecopae,

and hence the limit limg_,., { SS Lv;(X(s))dsdP,, exists. Next let ¢y be in [0, 00).
Again using the martingale property we see

[ o xtan e, -
_ f <Jt Lv, (X(s))ds) d(Py, — P, ) + ij(X(O))d(IP’W _P,)

0

_ f <J; Lo, (X(s))ds) d(Py, —P), (3.94)

0
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where ¢ is any number in Q n [0, 00). From (3.94) we infer

Uvj (X(to))d (P, — P.)

U( Lu; (X )ds>d<IP’ —Pp,) +Uvj(X(0))d(IPW—IPnk)
+ 21|t — to] | Lu; ], - (3.95)

If we let ¢ and £ tend to infinity, we obtain

ij <X<t0)) d (]P)W - Pnk)

lim sup
£,k—0o0

<2lt—tol |Lvyl,.  (3.96)

Consequently for every s > 0 the limit limy o {v; (X(s))dP,, exists. The

inequality
UUJ' (X(2)) dPp, — J%( (to)) dPy, | = UJ Lov; (X (s)) dsdP,,
< [t = to| [ Lv; .,

shows that the functions ¢ — lim, o §v; (X(¢)) dP,,, j € N, are continuous.
Since the linear span of (v; : 7 = 1) is dense in Cy(£), it follows that for
v e Co(F) and for every t = 0 the limit

t— lim | v (X(¢))dP,, (3.97)

{—0

exists and that this limit, as a function of ¢, is continuous. The following step
consists in proving that for every ¢, € [0, c0) the equality

lim lim sup J lv; (X(t)) —v; (X (t0))| dPp, =0 (3.98)

t=to  p 0

holds. For t > s the following (in-)equalities are valid:

(J1es cxn = 0xcs) |dm> < [y (X @) — vy (x )P ey,
J oy (X ()2 dP,, — J 0, (X (s)) 2 dP,
~ 2Re f (0, (X(1)) - 0,(X () T (X (5))dP,,
J]v] \ dP,, — J]v] ] dP,,
— 9Re J(J Lvy(X (o ))do) 5,(X())dPy,
< [ IO da = [10,(XEDE P, 426 - 9) L0l (399)

Hence (3.97) together with (3.99) implies (3.93). By (3.93), we may apply
Kolmogorov’s theorem to prove that there exists a probability measure P on
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Q.= (E%)1%%°) with the property that

JHU]k (sj,))dP = hm JHUM (8, ))dPy,, (3.100)

holds for all m € N and for all (sj,,...,s;,) € [0,00)™. It then also follows that
the equality in (3.100) is also valid for all m-tuples fi,..., f,, in C(E®) instead
of vj,,...,v;,. Thisis true because the linear span of the sequence (v; : j € N) is
dense in C(E*). In addition we conclude that the processes f(X (t))— f(X(0))—
So Lf(X(s))ds, t = 0, f € D(L) are P-martingales. We still have to show
that D([O oo),EA) has P-measure 1. From (3.98) it essentially follows that
set of w e (E2)%®) for which the left and right hand limits exist in £* has
7full” P-measure. First let f > 0 be in Cy(E). Then the process [Gf] (t) :=
E ({ e f(X(c))do | F;) is a P-supermartingale with respect to the filtration
{F: :t = 0}. It follows that the limits lims, [Gaf] (t) and limys, [Gaf] (£) both
exist P-almost surely for all t5 > 0 and for all f € Cy(FE). In particular these
limits exist P-almost surely for all f € D(L). By the martingale property it
follows that, for f € D(L),

[F(X (1) = A [Gaf] ()] =

J;oo e N (f(X(O'>> — f(X(t))) do | gjt>

(
AeME (fo e (f Lf(X(s))ds) do | a)‘

<M [ (o= 0 1Lf], do = XL,
t
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Consequently, we may conclude that, for all s, ¢t > 0,

[FX(®) = FX())] < 207V Lf o + MM [Gaf1(E) = Ae™ [Gaf] ()]
and hence that the limits lim;; f(X(¢)) and limgs f(X (¢ )) exist P-almost surely
for all f e D(L). By separability and density of D(L) it follows that the limits
limy s X (¢) and limyys X (¢) exist P-almost surely for all s > 0. Put Z(s)(w) =
limy s e X (t)(w), t = 0. Then, for P-almost all w and for all s > 0, Z(s)(w) is
well-defined, possesses left limits and is right continuous. In addition we have

E(f(Z(s)g(s) = E(F(X(s+))g(X(s))) = ImE (f(X(t))9(X(5)))

— E(f(X(s))g(X(s))) . for all f, g & Co(E)

and for all s > 0: see (3.98). But then we may conclude that X(s) = Z(s) P-
almost surely for all s > 0. Hence we may replace X with Z and consequently
(see the arguments in the proof of Theorem 9.4. of Blumenthal and Getoor
[[25], p. 49])

P (we Q' :w is right continuous and has left limits in EA) = 1.

Fix s > t. We are going to show that the set of paths w e (E*)I%%) for which
w(s) = X(s)(w) belongs to E and for which, w(t—) = lim;; X(7)(w) = A
possesses P-measure 0. It suffices to prove that, for f € Co(E), 1 = f(z) > 0
for all x € E fixed, the following integral equalities hold:

E[f(X(6)), F(X(t)) = 0] = | X5 ygo0) (X(¢-)) P = 0.
This can be achieved as follows. From the (in-)equalities
E(f(X(s)), f(X(t)) = 0)

)
— lim E (/(X(s)) (1= (/X))
hm E ( ( (X(t))l/”))

. In . 1
ggrgoE<f(X<s)) i f(X(t))7 log f(X(t))d“)
/nIE

1
= lim
n—00 0

1
f(X(t))) 1
1/n 1
=t [ B (FOIX O 0w ) do

n—00 0

(f(X(S))f(X(t))"log

1/n

+ lim E,, (f(X(s))f(X(t))”log ! ) do

n—0o0 0

1
<J
0

o 1
B (SOOI 08 105 )
B, (F(X(3)), X)) = 0),

E <f(X(S))f(X(t))"log Ty )j<t))>
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we conclude that

E (f(X(s)), f(X(2)) = 0) = lim E (f(X(s)) (1 = f(X(1))""))

n—ao0
1
< J
0

E (f(X(S))f(X(t))”log #)
“E, (f(X(S))f(X(t))”log

FX@®)

f<;<t>>>‘d"

1
Since the function z — f(z)?log —— belongs to Cy(E) for every o > 0, we
T

obtain upon letting ¢ tend to oo, that E (f(X(s)), f(X(t)) =0) = 0, where
s > t. To see this apply Scheffé’s theorem (see e.g. Bauer [[15], Corollary
1
2.12.5. p. 105]) to the sequence o — E, (f(X(s))f(X(t))"log >
‘ FX@®)

From description (3.90), it then follows that P belongs to P'(Q2): it is also clear
that the limits in (3.92) exist. O

3.42. PROPOSITION. Suppose that for every x € E the martingale problem is
uniquely solvable. Define the map F : P'(Q) — E* by F(P) = x, where P €
P'(Q) is such that P(X(0) = z) = 1. Also notice that F(Pp) = A. Then
F is a homeomorphism from P'(Q) onto E®. In fact it follows that for every
u € Co(E) and for every s = 0, the function x — E,(u(X(s)) belongs to Cy(E).

PROOF. Since the martingale problem is uniquely solvable for every x € FE
the map F' is a one-to-one map from the compact metric Hausdorff space P’(2)
onto E* (see Proposition 3.41). Let for z € E the probability P, be the unique
solution to the martingale problem:

(i) For every f € D(L) the process f(X(t)) — f(X(0)) — Sé Lf(X(s))ds,
t >0, is a P,-martingale;
(i) P.(X(0) = z) = 1.

Then, by definition F(P,) = z, x € E, and F(PA) = A. Moreover, since
for every z € E the martingale problem is uniquely solvable we see P'(2) =
{Px CxE EA}. Let (2, : £ € N) be a sequence in E* with the property that
limy,o d (P,,,P,) = 0 for some x € E*. Then limg o |vj (2,) — vj(x)| = 0, for
all j € N, where, as above, the span of the sequence (v; : j € N) is dense in
C (EA). It follows that limy_,, 2, = = in E“. Consequently the mapping F
is continuous. Since F' is a continuous bijective map from one compact metric
Hausdorff space P'(£2) onto another such space E“, its inverse is continuous as
well. Among others this implies that, for every s € Q n [0,00) and for every
j =1, the function z — {v; (X(s)) dP, belongs to Co(E). Since the linear span
of the sequence (v; : j = 1) is dense in Cy(E) it also follows that for every
v e Cy(E), the function z — {v (X (s))dP, belongs to Cy(E). Next let so = 0
be arbitrary. For every j > 1 and every s € Q n [0,0), s > sy, we have by the
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martingale property:

sup [Ey, (v;(X (s))) — Ex (v;(X(50)))] = sup J B, (Lv; (X(0))) do

el el 0

< (s —s0) |Lvjl, - (3.101)

Consequently, for every s € [0,00), the function z — E, (v; (X(s))), j = 1,
belongs to Co(E). It follows that, for every v € Cy(E) and every s = 0, the
function x — E, (v(X(s))) belongs to Cy(E). This proves Proposition 3.42. [

The proof of the following proposition may be copied from Ikeda and Watanabe

[81], Theorem 5.1. p. 205.

3.43. PROPOSITION. Suppose that for every x € E® the martingale problem:
(i) For every f € D(L) the process f(X(t)) — f(X(0)) — Sé Lf(X(s))ds,

t =0, s a P-martingale;
(i) P(X(0) =) = 1,

has a unique solution P = P,. Then the process
{(,F,P,),(X(t):t=0),(h:t=0),(F,E)}

15 a strong Markov process.
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PROOF OF PROPOSITION 3.43. Fix z € F and let T be a stopping time
and choose a realization of

AHEx[]_AOI9T|3:T], Ae .

Fix any w € Q for which

A Qy(A) == E, [La 097 | Fr] (w),

is defined for all A € F. Here, by definition, y = w(T'(w)). Notice that, sice the
space F is a topological Hausdorff space that satisfies the second countability
axiom, this construction can be performed for P,-almost all w. Let f be in D(L)
and fix to > t; = 0. Moreover ﬁx Cedy. Then 971 (C) is a member of Fy, 7.

Put Mg(t) = f(X(t)) — f(X So Lf(X(s))ds,t = 0. We have
By (Mf(t2)10) = E, (M;(t1)1c) - (3.102)

We also have

| (f(X(t2>> - o) - | ) Lf<X<s>>ds) 10dQ, (3.103)

- (st ) - sy - | “Lf (X(s+ T)ds ) 1000 | 72| (0

_E, (f (Xt + 1)) - 1(X(T) - | L) ds) (10 p) | ffT] (@)

T

to+T

~ 5B | (£ X+ ) - s - |

T

LF (X(3))ds) | Fuer .

Loy | ?T] (@)

By Doob’s optional sampling theorem, the process

t+T

FOCE+T) = JXT) — | LX) ds

T

is a P,-martingale with respect to the fields F;,r, ¢ = 0. So from (3.103) we
obtain:

[ (rextn - sexon - [ LF(X(s))ds) 104,
- (rec ) - goxen) - | Y, (X(s)ds) 1c0vr | 52| @)

- [ (rexten - soxop - [ Lexenas) 1ede, (3.104)

It follows that, for f € D(L), the process M(t) is a P,- as well as a Q-
martingale. Slnee P,[X(0) = y] = 1 and since

Qy(X(0) = y) = E; [Lix(0)=y) © V7 | Fr] (w)

E
=E, [1{X(T y} | 9’~T] (w) = 1{X(T)=y}(w) =1, (3.105)

Download free eBooks at bookboon.com



we conclude that the probabilities P, and (), are the same. Equality (3.105)
follows, because, by definition, y = X (7)(w) = w(T'(w)). Since P, = @, it then
follows that

Px(ryw (A) = Ex[Laodr | Fr](w), Aed.

Or putting it differently:

Px(T)(A) I]Ez []-AoﬁT ‘ ?T], AeF. (3106)
However, this is exactly the strong Markov property and completes the proof of
Proposition 3.43. U

The following proposition can be proved in the same manner as Theorem 5.1
Corollary in Ikeda and Watanabe [81], p. 206.

3.44. PROPOSITION. If an operator L generates a Feller semigroup, then the
martingale problem is uniquely solvable for L.

PROOF. Let {P(t) : t = 0} be the Feller semigroup generated by L and let

{(QF,P), (X(1) £ >0), (0, : > 0), (B, &)}
be the associated strong Markov process (see Theorem 3.37). If f belongs to
D(L), then the process M¢(t) := f(X(t)) — f(X So Lf(X(s))ds, t =0, is
a P,-martingale for all x € E. This can be seen as follows. le ty > t; = 0.
Then

B, [M(t) | F1,]

- oyt + 5, ( (X)) - Lf(X(s))ds) 19, ) - £0X(00)

t1

0

Myt +E, Kf (b — by + 1)) — fﬂ Lf(X(s+t1))ds> |fﬂ1]

(Markov property)

— My(t) + Exg) <f(X(tz —)- [ Lf(X(s))ds) — F(X(H). (3.107)

0
Next we compute, for y € £ and s > 0, the quantity:

E, (f<X<s>> - Lf(X(o))da) )

~[PEAW - [ P 0 - 1w

= [P(s)f1 () = ([P(s)f1(y) = [P(0)f](y)) = f(y) = 0. (3.108)

Hence from (3.107) and (3.108) it follows that the process M(t), t = 0, is
a P,-martingale. Next we shall prove the uniqueness of the solutions of the
martingale problem associated to the operator L. Let PL and P2 be solutions
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"starting” in x € E. We have to show that these probabilities coincide. Let f
belong to D(L) and let T be a stopping time. Then, via partial integration, we
infer

[ e {f(X(t £ 7)) - j LF(X(r))dr — f<X<T>>} dt + [(X(T))

A e {f(X(t 7)) — FT Lf(X(T))dT} dt

T

[S—

0
[0

I
>
—

e MA(X(t+T))dt — A JOO e M f Lf(X(7r+T))drdt

o0 o0

A

e MF(X(t+T))dt — )\J

0

i (JOO e—Mdt) Lf(X(T+T))dr

_ f e [(AT — L)) (X(t + T))dt. (3.109)

[S—

8

From Doob’s optional sampling theorem together with (3.109) we obtain:

) e MEL (A~ L)f(X(t + T)) | Fr)di — F(X(T))

(t+T

=\ (OO e ME! { (f(X(t + 7)) —

JO

Lf(X (r))dr — f<X<T>>) | sz} it

JT

[ e { (f(X(t £T)) - ( LE(X(P)dr f<X<T>>) | sz} it
- LOO e MEZ (M — L)f(X(t+T))| Fr)dt — f(X(T)). (3.110)

Next we set

[ROVF] (x) :J e MP()f] (x)dt, ze B, A>0, feCo(E). (3.111)

0

Then

(M — L)RO\)f = f, feCo(E), R\ —L)f = f, feD(L). (3.112)

Among other things we see that R(\ — L) = Cyo(E), A > 0. From (3.110) it
then follows that, for g € Cy(E),

0

fo " NEL (g(X(t 4 T)) | Fp) dt = f e M[P(t)g](X (T))dt

- J " ME2 (o(X (4 T)) | Fp)dt. (3.113)

Since Laplace transforms are unique, since g belongs to Cy(E) and since paths
are right continuous, we conclude

E, (9(X(t+ 1)) | Fr) = [P()g)(X(T)) = E; (¢(X(t+ 1)) [ Fr), (3.114)
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whenever g belongs to Cy(F), whenever ¢ > 0 and whenever T is a stopping
time. The first equality in (3.114) holds Pl-almost surely and the second P2-
almost surely. As in Theorem 3.36 it then follows that

([T, nxn) =2 (TT, H(X®)) (3.115)
forn =1,2,... and for fi,..., f, in Co(E). But then the probabilities P. and
P2 are the same. This proves Proposition 3.44. O
The theorem we want to prove reads as follows.

3.45. THEOREM. Let L be a linear operator with domain D(L) and range R(L)
in Co(E). Let Q be the path space Q = D ([O, 0), EA). The following assertions
are equivalent:

(i) The operator L is closable and its closure generates a Feller semigroup;
(ii) The operator L solves the martingale problem mazimally and its domain
D(L) is dense in Co(E);
(iii) The operator L werifies the maximum principle, its domain D(L) is
dense in Co(FE) and there exists Ao > 0 such that the range R (Aol — L)
is dense in Cy(FE).
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3.46. REMARK. The hard part in (iii) is usually the range property: there exists
Ao > 0 such that the range R (Aol — L) is dense in Cy(E). The theorem also
shows, in conjunction with the results on Feller semigroups and Markov pro-
cesses, the relations which exist between the unique solvability of the martingale
problem, the strong Markov property and densely defined operators verifying
the maximum principle together with the range property. However if L is in fact
a second order differential operator, then we want to read of the range property
from the coefficients. There do exist results in this direction. The interested
reader is referred to the literature: Stroock and Varadhan [171] and also Tkeda
and Watanabe [81].

In what follows we shall assume that the equivalence of (i) and (iii) already has
been established. A proof can be found in [179], Theorem 2.2., p.14. In the
proof of (ii) = (i) we shall use this result. We shall also show the implication

(i) = (ii).

PROOF. (ii) = (i). Let, for x € E, the probability P, be the unique solution
of the martingale problem associated to the operator L. From Proposition 3.43

it follows that the process {(Q2, F,P,),(X(t):t=>0),(0;:t>0),(E, &)} is a
strong Markov process. Define the operators {P(t) : t > } as follows
[P()f1(x) = Ea (f(X(2)), feCol(E), t (3.116)
We also define the operators {R()\) : A > 0} as follows:
RO = [ e P@@E fecuE), A=0. @
0

From Proposition 3.42 it follows that the operators P(t) leave Cy(FE) invariant
and hence we also have R(X)Cy(E) < Cy(F). From the Markov property it fol-
lows that {P(t) : t = 0} is a Feller semigroup and that the family {R(\) : A > 0}
is a resolvent family in the sense that

P(s+t)=P(s)o P(t), s, t=0, (3.118)
R(A\2) — R(M\) = (A1 — A2) R(A1) o R(Aa),  Aq, A2 >0. (3.119)

For A > 0 fixed the operator L is defined in Cy(E) as follows:
L:R\f— AR\ —f, [feColE). (3.120)

Here the domain D(L) is given by D(L) = {R(\)f : f € Co(E)}. The operator
L is well-defined. For, if f; and f, in Cy(E) are such that R(A) fi = R(\)f2, then
by the resolvent property (3.119) we see uR(p) fi = uR(p) fa, p > 0. Let u tend
o0, to obtain f; = fy. Since the oPerator R()) is continuous, the operator L is

closed. Next we shall prove that L is an extension of L. By partial integration,
it follows that, for f € D(L),

L) - o - [ Lrxmar]
iaf e {sxten - sexo) - [ pceyarfas

0
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t

_ e X (1) — FX(0)) + f MO = DF(X(s)ds.  (3.121)

0
As a consequence upon applying (3.121) once more, the processes

{e—”f(x(t)) — f(X(0)) + J e\ — L) f(X(s))ds : t = 0} . feD(L),

0
(3.122)
are P -martingales for all z € E. Here we employ the fact that the processes

{f(X(t)) RX(0) - f Lf(X(s))ds : t > o} . feD(L),

are P,-martingales. This is part of assertion (ii). From assertion (3.122) it
follows that

0-E (‘”f( () - oo + [ e‘“(M—L)f(X(S))dS), fe D).

0
(3.123)
Let t tend to infinity in (3.123) to obtain

0= —E, (F(X(0)) + f e NE, (M — L)f(X(s)ds, fe D). (3.124)

0

From (3.124) we obtain f(z) = { e YA — L)f](x)ds, f € D(L). Or
writing this differently f = R( )( )f f € D(L). Let f belong to D(L).
Then f = R(\)g, with g = (A] )f and hence f belongs to D(ZNL) Moreover
we see

Lf = L(R(\)g) = AR(\)g — g = A\f — (\f — Lf) = L. (3.125)

It follows that L is a closed linear extension of L. In addition we have R(N —

E) = Cy(F). We shall show that the operator L verifies the maximum principle.
This can be achieved as follows. Let f in Cy(E) be such that, for some z( € F,

Re (R(\)f)(zo) = sup{Re R(\)f(z):x € E} > 0. (3.126)
Then Re (R(A)f)(z9) = Re R(A) f(X(t)), t = 0, and hence

o]

Re (R(N)f)(z0) = Re Jo e MExq (f(X(s))ds, t=0. (3.127)

So that, upon employing the Markov property, we obtain for ¢ > 0:

0

Re (R(\)f)(x0) = Re f e ME,, (Exq (f(X(s)))) ds

0
= Re Eq, ([R(A) f](X(2)). (3.128)
Hence, for p > 0, we obtain

1 © _ut
e (RO (r0) = f e M Re R(N) f (o)t

> Re f "R, ([ROV A1 (X (1)) de

= Re R(u)R(A) f (o)
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(resolvent equation (3.119)

= Re

R(A) f (o) — R(p) f (o)

= A '
Consequently: [ARe R(A)f](xo) < Re [puR(u)f](xo), p > A. Let p tend to
infinity, use right continuity of paths and the continuity of f to infer

Re LR(A) f(x0) = Re {AR(N)f(z0) — f(z0)} < 0. (3.130)

This proves that L verifies the maximum principle. Employing the implication
(iii) = (i) in Theorem 3.45 yields that L is the generator of a Feller semigroup.
From Proposition 3.44 it then follows that for L the martingale problem is
umquely solvable. Since L solves the martingale problem maximally and since
L extends L, it follows that L= L, the closure of L. Consequently the operator
L is closable and its closure generates a Feller semigroup.

(3.129)

(i) = (ii) Let the closure of L, L, be the generator of a Feller semigroup.
From Proposition 3.44 it follows that for L the martingale problem is uniquely
solvable. Hence this is true for L. We still have to prove that L is maximal with
respect to this property. Let L; be any closed linear extension of L for which
the martingale problem is uniquely solvable. Define EI in the same fashion as
in the proof of the implication (ii) = (i), with L, replacing L. Then L, is a
closed linear operator, which extends L;. So that El extends L. As in the proof
of the implication (i) = (i) it also follows that L, generates a Feller semigroup.
Since, by (i), the closure of L, also generates a Feller semigroup, we conclude by
uniqueness of generators, that L = L1 Since L1 DL, =L, 2L 2L, it follows
that the closure of L coincides with L;. This proves the maximality property
of L, and so the proof of Theorem 3.45 is complete. U
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In fact a careful analysis of the proof of Theorem 3.45 shows the following result.

3.47. PROPOSITION. Let L be a densely defined operator for which the martin-
gale problem is uniquely solvable, and which is mazximal for this property. Then
there exists a unique closed linear extension Ly of L, which is the generator of
a Feller semigroup.

PRrROOF. Existence. Let {P, : x € E} be the solution for L, and assume that
for all f € Cy(F) the function x — [P(t)f] (z) belongs to Cy(F) for all t = 0.
Here P(t)f(x) is defined by

[P()f](z) = B, (f(X(®))),  [RA)f](2) = LOO e ™ [P(s)f] (x)ds,

Lo(RINS) == AR — £, f € Co(E).

Here t = 0 and A > 0 is fixed. Then, as follows from the proof of Theorem 3.45,
the operator Ly generates a Feller semigroup.

Uniqueness. Let Ly and Ls be closed linear extensions of L, which both generate
Feller semigroups. Let

{(Q,F,P)),(X(t): t=0),(0,:t=0),(E &)}
respectively
{(Q,F,P2),(X(t): t=0), (0 : t=0),(E, &)}
be the corresponding Markov processes. For every f € D(L), the process

f(X(t) — f(X(0)) — S(t) Lf(X(s))ds, t = 0, is a martingale with respect to P!
as well as with respect to P2. Uniqueness implies P = P2 and hence L; = L.

The proof of Proposition 3.47 is complete now. 0

3.48. COROLLARY. Let L be a densely defined linear operator with domain D(L)
and range R(L) in Co(E). The following assertions are equivalent:

(i) Some extension of L generates a Feller semigroup.

(ii) For some extension of L the martingale problem is uniquely solvable for
every x € F.

PROOF. (i) = (ii). Let Ly be an extension of L that generates a Feller semi-
group. Let {(Q,F,P,),(X(t):t=0),(:t=>0),(E, &)} be the corresponding
Markov process. For x € E the probability P, is the unique solution for the
martingale problem starting in x.

(ii) = (i). Let Ly be an extension of L for which the martingale problem is
uniquely solvable for every xz € E. Also suppose that Ly is maximal for this
property. Let {PP, : x € E} be the unique solution of the corresponding martin-
gale problem. Define the operators P(t), t = 0, by [P(t)f] (z) = E, (f(X(?))),
f € Co(E). From the proof of Theorem 3.45 it follows that {P(t):¢ >0} is a
Feller semigroup with generator L.

This completes the proof of Corollary 3.48. U
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3.49. EXaAMPLE. Let Ly be an unbounded generator of a Feller semigroup in
Co(E) and let puy and vy, 1 < k < n, be finite (signed) Borel measures on E.
Define the operator L as follows:

n

D(Lpg) =) {f e D(Ly) : JLofduk = deyk} :

k=1
Lipf =Lof, feD(Lgyp).

Then the martingale problem is uniquely solvable for L. In fact let

((Q,F,P,), (X (1) t=>0),(0,: t=>0),(E &)}

be the strong Markov process associated to the Feller semigroup generated by
Lgy. Then P = P, solves the martingale problem

(a) For every f e D(L; ) the process

t

FX(0) — FX(0)) - j Lo f(X(s))ds, t>0,

0

is a P-martingale;
(b) P(X(0) = 2) =1,

uniquely. This can be seen as follows. We may and do suppose that the func-
tionals f — { Lofdu, — § fdvg, f € D(Ly), 1 < k < n, are linearly independent.
If some g belongs to D (L), then D (Lzz) is not dense and if none of the
measures py, belongs to D (L), then D (Lj ) is dense in Cy(E). In either case
there exists a unique extension, in fact Ly, of L; 7 which generates a Feller semi-
group. Therefore we choose functions u, € D(Lg), 1 < k < n, in such a way
that § Lougdp, — S’U,kdl/g = 00, 1 < k, £ < n. Suppose that PL and P2 are prob-
abilities, that start in x, Wlth the property that for all f e D (L 7) the process

t— f(X() - f(X So Lof(X(s))ds is a PL- as well as a }P’i martingale.
As in (3.110) we see that for all f e D(Ly) (vy = (A — L) ug, 1 <k <n):

- ; <J Lo fdpu, — fdek) ug () (3.131)

_ JOOO ¢ MEL <()\I— Lo) ( i <JLofdpk - ffdyk) ) (X(s))) ds
_ LOO ¢ ME2 <(M Lo) i <J Lo fdus — ffduk) ) (X(s))) ds.

Write f = (A — Lo) ' g = R(\)g. From (3.131) we obtain

_ Zn: < f R(N)g — g) dpy, — f R(/\)gdyk> uy () (3.132)
= ’“El [g s)) — i <J (AR(N)g — g) dp — f R(A)gdvk) vk(X(s))] ds
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_ JOO ¢ME2 lg(X(S)) - kil (J (AR(N)g — g) dpy, — JR()\)gd,jk> vk(X(s))] s,

0

Put F(\) = (F1(\), ..., Fu()) and put U(X) = (uk,e(N)), where, for 1 < k <mn,

e
0
and where ug s, 1 < k, £ < n, is given by

U e(A) = f)\R()\)U[ dpy, — Jugd,uk — JR()\)W dvy,.

Since (3.132) is valid for all g € Cy(E), it follows that F(\) = UN)F(A).
Since, in addition limy_,, U(A) = 0, we see Fi(A) = 0 for all A > 0 and
for 1 < k < n. So that {e™E! (uy(X(s))) ds = §; e™ME? [uy(X(s))] ds
for all A > 0 and for all 1 < & < n. Again an application of (3.132) yields
E! [¢(X(s))] = E2[g(X (s))] for all g € Cy(E). Since these arguments are valid
for any x € E, we conclude just as in Proposition 2.9 and its Corollary on page
206 of Tkeda and Watanabe [81]), that P. = P2 = P,, z € E, In particular
we may take £ = [0,1], Lof = 2 f”, D(Lo) = {f € C*[0,1] : f(0) = f'(1) = 0},
i (1) = Sji Ir(s)ds, vy, = 0,0 < ag < B < 1,1 <k <n. Then L, generates
the Feller semigroup of reflected Brownian motion: see Liggett [113], Example
5.8., p. 45. For the operator L; ; the martingale problem is uniquely (but not
maximally uniquely) solvable. However it does not generate a Feller semigroup.
The previous arguments do not seem to be entirely correct. It ought to be
replaced with some results in Section 10 (e.g. Theorem 3.110).

R = [ e (B — oJus(X(s))] — E2 [V = Lo)u(X(5)]) ds.
<
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Problem. We want to close this section with the following question. Suppose
that the operator L possesses a unique extension L, that generates a Feller
semigroup. Is it true that for L the martingale problem is uniquely solvable?
In general the answer is no, but if we require that L solves the martingale
problem maximally, then the answer is yes, provided as sample space we take
the Skorohod space. This result is proved in Theorem 3.45.

For the time being we will not pursue the Markov property. However, we will
continue with Brownian motion and stochastic integrals. First we give the
definition of some interesting processes.

4. Martingales, submartingales, supermartingales and
semimartingales

Let (2, F,P) be a probability space and let {F; : t = 0} be an increasing family
of o-fields in F. If necessary we suppose that the filtration {F, : ¢ > 0} is right
continuous, i.e. F = [),., Fs, or complete in the sense that, for every ¢ > 0,
the o-field F; contains all A € F, with P(A) = 0.

Let {H(t) :t = 0} be a collection of R-valued functions defined on 2. Such a
family is called a (real-valued) process.

3.50. DEFINITION. The following processes and o-fields will play a role in the
sequel.

(a) The process {H (t) : t = 0} is said to be adapted or non-anticipating if,
for every ¢t = 0, the variable H (t) is measurable with respect to F;.

(b1 The symbol A denotes the o-field (= o-algebra) of subsets of [0, c0) x €,
which is generated by the adapted processes which are right-continuous
and which possess left limits. These are the so-called cadlag processes.

(b2) The process {H (t) : t = 0} is said to be optional if the function (¢,w) —
H(t,w) is measurable with respect to A.

(c1) The symbol II denotes the o-field of subsets of [0,0) x €, which is
generated by the adapted processes which are left-continuous adapted
processes.

(c2) The process {H(t) :t >0} is said to be predictable if the function
(t,w) — H(t,w) is measurable with respect to II.

3.51. PROPOSITION. The collection {(a,b] x A: 0 < a <b, AeF,} generates the
o-field 1I.

PROOF. Let A belong to F,. The variable w — 1,4 (5)14(w) is measurable
with respect to F, and the function s — 1¢,4(5)1a(w) is left continuous. This
proves that (a,b] x A belongs to II.

Conversely let F' be adapted and left continuous. Put

Fo(s,w) = Z:;OF (k27" @) T bz (s) = F (([27s] = 1) 27", w) .
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Then, by left continuity, lim,, . F,(s,w) = F(s,w), P-almost surely. Moreover
the processes {F,(t) : t = 0} are adapted and are measurable with respect to
the o-field generated by {(a,b] x A:0<a <b,Ae F,}. All this completes the
proof of Proposition 3.51. O

3.52. REMARK. Since 1(q4(s) x 1a(w) = lim 1, 4,)(s)1a(w), where a,, | a and
n—0oo
where b, | b, it follows that I[I € A. Here we employ Proposition 3.51.

3.53. DEFINITION. Let {X(t) : t > 0} be an adapted process.

(a) The family {X(¢) : t = 0} is a martingale if E (| X (¢)|) < o0, t = 0, and
if, for every t > s > 0, E(X(t) | F5) = X (s), P-almost surely.

(b) The family {X(¢) : ¢t = 0} is a submartingale if E (| X (¢)|) < o0, t = 0,
and if, for every t > s > 0, E(X (¢) | Fs) = X(s), P-almost surely.

(c) The family {X(¢) : t = 0} is a supermartingale if E (| X (¢)|) < o0, t = 0,
and if, for every t > s > 0, E (X (t) | Fs) < X(s), P-almost surely.

(d) It is P-almost surely of finite variation (on [0, ¢]) if

sup {Z::I X () — X(t0)| : 0<to <t <...<t,< oo} < o0,

<Sup {Z; X(4) — X(t0)| : 0<to <ty <...<t,< t} < oo,)

P-almost surely.

(e) It is a local martingale if there exists an increasing sequence of stopping
times (7}, : n € N) for which lim,, ,, T}, = o0, P-almost surely, and for
which the processes

{(X(T,Ant): t=0}, n=12,...

are martingales with respect to the filtration {Fz, ¢ : t = 0}.

(f) Let T be a stopping time. The process {X(¢) : t = 0} is a local martin-
gale on [0, 7)) if there exists a sequence of stopping times (7}, : n € N)
which is increasing for which lim,, ., 7}, = T, P-almost surely, and for
which the processes {X (T, At): t >0}, n = 1,2,... are martingales
with respect to the filtration {Fp, s : t = 0}.

(g) The definition of “local submartingale”, “local supermartingale” and
“being locally P-almost surely of finite variation” are now self-explan-
atory.

(h) The process {X(t) : t = 0} is called a semi-martingale if it can be writ-
ten in the form X (¢) = M(t) + A(t), where {M(t) : ¢ = 0} is a mar-
tingale and where {A(t) : t = 0} is an adapted process which is finite
variation, P-almost surely, on [0,¢] for every ¢t > 0, and for which
E|A(t)] < oo, t = 0.

(i) The process {X(t) : t = 0} is of class (DL) if for every ¢ > 0 the family

{X(7):0<7<t7is a(F)-stopping time}
is uniformly integrable.

3.54. REMARK. Let {X(¢):t > 0} be a semi-martingale. The decomposition
X(t) = M(t) + A(t), where {M(t) : t = 0} is a martingale and where for every
t > 0 the process {A(t) : t = 0} is P-almost surely of finite variation and where
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{A(t) : t = 0} is predictable and right continuous P-almost surely is unique,
provided A(0) = 0, P-almost surely. This follows from the fact that a right-
continuous martingale which is predictable and of finite variation is necessarily
constant: this is a consequence of the uniqueness part of the Doob-Meyer de-
composition: see Theorem 1.24. A proof of the Doob-Meyer decomposition
theorem may start as follows. Put

X;(t) =E lX ([Qj.ﬂ) ’ ?t] and (3.133)

97

A0 = A0+ Y IE[X (k;l)—x(Q’j) ‘ffmj],

0<k<27t

and prove M;(t) := X;(t) — A;(t) is a martingale. Then let j — o0 to obtain:

X(t) = M(t) + A(t), where M (t) = lim;_o, M;(t) and A(t) = lim; . A;(?).

3.55. REMARK. An Fy-martingale {M(t) : t > 0} is of class (DL), an increasing

adapted process {A(t) : t = 0} in L'(Q, F,P) is of class (DL) and hence the sum
{M(t) + A(t) : t = 0}

is of class (DL). If {X(¢) : t = 0} is a submartingale and if u is a real number,

then the process {max (X (t),u) : t = 0} is a submartingale of class (DL). Pro-
cesses of class (DL) are important in the Doob-Meyer decomposition theorem.
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We continue with some examples of martingales, submartingales and the like.

3.56. EXAMPLE. Let T :  — [0, 0] be a stopping time. Since T is a stopping
time and since the process {1{T<t} it = 0} is left continuous, it is predictable.
It follows that the process {l{th} it = 0} is predictable as well.

3.57. EXAMPLE. Let I be an open interval in R and let ¢ : I — (—00, ) be an
increasing convex function. If {X(¢) : t = 0} is a submartingale with values in
I, then the process {¢(X(t)) : t = 0} is also a submartingale. For let ¢ > s > 0.
Then by the Jensen inequality and the monotonicity of ¢ it follows that

Elp(X(@) [ Fs] = @ [E(X(#) [ Fo)] = ¢ (X(s)) .

3.58. EXAMPLE. Let (B(t),Py) be one-dimensional Brownian motion starting
in 0. Then {B(t) : t = 0} is a martingale. Since the definition of martingale also
makes sense for vector valued processes, we also see that an R”-valued Brownian
motion is a martingale.

3.59. EXAMPLE. Let (B(t),[Py) be R”-valued Brownian motion starting in 0.
The process {]B(t)|2 — vt 1t >0} is a martingale.

3.60. ExAMPLE. Let {X(¢),P,} be a (strong) Markov process such that

E, [f(X(1))] = f plt, z.9) [ (w)dm(y), f >0,

where the density p(t, z,y) verifies the Chapman-Kolmogorov identity:

p(s+t,xy) = fp(s, x, 2)p(t, z,y)dm(z).

The process {p(t — s, X(s),y) : 0 < s < t} is a martingale on [0, ¢). For example
for X (t) we may take B(t), d-dimensional Brownian motion. Then

1 = y/”
p(t,x,y) = pO,d(t7x7y) = eXp | — .
(v2rt)* 2t

3.61. ExAMPLE. Let {X(¢) : t = 0} be a right-continuous martingale and let T
be a stopping time. The process {X (T" A t) : t = 0} is a martingale with respect
to {JF: : t = 0} and also with respect to the filtration {Fr,; : t = 0}.

3.62. ExaMPLE. This is a standard example of a closed martingale, i.e. a
martingale which is written as conditional expectations on o-fields taken from
a filtration. Let Y be an random variable in L! (2, F,P). The process s +—
E[Y | Fs], s = 0, is a martingale.

We want to insert an inequality on the second moment of a martingale. This is
a special case of the Burkholder-Davis-Gundy inequality.

3.63. PROPOSITION. Let {M(t) : t = 0} be a continuous martingale with M(0) =
0. Then

Download free eBooks at bookboon.com



PROOF. Define for £ > 0 the stopping time T by
Te =inf {t > 0: M*(t) = &} .

Then {M*(t) > ¢} < {Te <t} and {Tr <t} < {M*(t) > £} and hence, since
|M(t)| is a submartingale we obtain upon using Doob’s optional sampling
Q0
E (M*(t)?) = f P (M*(t)* > X) dA

0

(make the substitution \ = £2)

Q0

—2| eP(Mmrt) > &) d ngTéq)dg
0
)|

-2
= QLOOIE:,(W(T5 LTy < 1) d€
)

(Doob’s optional sampling

0

2LOOE M* (1) > €) dé
2F (M (1) M* (1))

(Cauchy-Schwarz’ inequality)
<2(E (M) (B (M (1))

Consequently E (M*(t)?) < 4E (M ()?). This completes the proof of Proposition
3.63. -

3.64. REMARK. The method of works very well if E (M*(¢)?) is finite. If this
is not the case we may use a localization technique. The reader should provide
the details. Perhaps truncating is also possible.

5. Regularity properties of stochastic processes

In Theorem 3.18 we proved that Brownian motion possesses a continuous ver-
sion. We want to amplify this result. In fact we shall prove that Brownian
motion has Holder continuous paths of any order o < 5 This means that for
every a < % and for every a > 0, a € R, there exists a random variable C(b),
depending on Brownian motion such that for all 0 < s <t < a, the inequality

[6(t) = b(s)| < C(b) [t — 5|

holds P-almost surely. This will be the content of Theorem 3.67 below. We
begin with a rather general result, due to Kolmogorov, for arbitrary stochastic
processes.
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3.65. THEOREM. Flix a finite interval [a,b]. Let {X(s) : a < s < b} be a stochas-
tic process on the probability space (2, F,P). Suppose that there exist constants
K, r and p, such that 0 <r < p < oo and such that

E(|X(t) - X(s)]P) < K|t — s|"*" (3.134)

for all a < s,t <b. Fiz 0 < a < r/p. Then there ezists a random variable
C(X), which is finite P-almost surely, such that

1X(t) — X(s)| < C(X) |t — s|* (3.135)

for all dyadic rational numbers s and t in the interval [a,b]. In particular it
follows that a process X = {X(s):a < s < b} verifying (3.134) has a Hélder
continuous version of order a, o < r/p.

Proor. It suffices to prove (3.135), because the version problem can be
taken care of as in Theorem 3.18. Without loss of generality we may and do
suppose that a = 0 and that b = 1. Otherwise we consider the process Y defined
by Y(s) = X ((ap + s(bp — ap)), 0 < s < 1, where gy and by are dyadic rational
with ayp < a and with b < by and where outside of the interval [a, b] the process
X is defined by X(t) = X(a), if ap <t < a, and X () = X (b), if b < t < by.
Put e = r — ap. Then

P(IX(t) = X(s)] = [t —s|") < [t = s| "E(IX(t) = X(s)]") < K|t — 5],

(3.136)
so that
P ('X (k; 1) 'S (2]1) > 2—"“) < K272, (3.137)
Hence
oo 2"—1
1
R (%)< ()= )
n=1 k=0 2 2
0]
K
<K' 2ramone = . 1
> T (3.138)

By the Borel-Cantelli lemma it follows that

P (D N {OS%%(_l X (k;l) 'S Gi)' < 2‘”“}) ~ 1. (3.139)

m=1n=m
Hence there exists a random integer v(X) with the following property: For
P-almost all w the inequality

<(50) ()

is valid for n > v(X). Next let n > v(X) and let ¢ be a dyadic rational in the
interval [k27", (k + 1)27"]. Write t = k27" + 3" 7;27"77, each 7; equals 0 or

1. Then
co-x(2)

max <27 (3.140)

O<k<2m-1

S/ 11
<> e (3.141)

Jj=1
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Similarly we have, with t = 27V N >n, (k+1)27" = 27V + Z;n:/l 7}2*N*j,
7; equals 0 or 1,

wo-x(2)

Next let s and ¢ be dyadic rationale numbers with 0 < ¢t — s < 27X Take
n € Nwith 277! < t—s < 27" and pick k in such a way that k27" < s < (k+
)27 1 Then (k+1)27" <t =t—s+s<2"+(k+1)27" 1= (k+3)2 L.
It follows that, since ¢ belongs to [(k + 1)27"71 (k + 2)27""!] or to the interval
[(k+2)27" 1 (k+3)277 1,

= 11 11
) Z; o) S o —qaNe S ga_qgr (0142)

j=

[X(t) = X(s)|
k+2 k+2 kE+1 kE+1
b (522) e (522) x () e (52) v
3 3
< — —(n+1)a <—" |- o 14
Qa0 1 2a_1‘t S’ (3 3)

If1>t—s> 2" we choose k and £ € N in such a way that 2*X) > ¢ >k >0
and that 227 <t < (£ + 1)277() and k27X < s < (k +1)27%%). Then

we get
o (550 s (520) ()

o (gim) -0

2 4+ v(X) 2 4+ v(X)
< g0 (2T E Ty e (3.144)
20 —1 20 —1
From (3.143) and (3.144) the result in Theorem 3.65 follows. O

In order to apply the previous result to Brownian motion, we insert a general
equality for a Gaussian variable X.

3.66. PROPOSITION. Let X : Q0 — R be a non-constant Gaussian variable. Then
its distribution is given by

1 1 |z —EX)P
P(XeB) = exp | —= dx
e (m(m_(E(X)y))”?L p( 2E<X2>—<E<X>>2> )

and its moments E (|X — E(X)["), p > —1, are given by

B (X —ECOp) - 220 2“ (Ve-ExR) . e

Download free eBooks at bookboon.com



AN INTRODUCTION TO STOCHASTIC
PROCESSES: BROWNIAN MOTION, GAUSSIAN
ADVANCED STOCHASTIC PROCESSES: PART | PROCESSES AND MARTINGALES

ProOF. Equality (3.145) follows from formula (3.8) and formula (3.146) is
proved by using (3.145). The formal arguments read (we write Y = X —E(X)):

Py _ 1 P 1y
E(Y]) = Wﬁ?ﬂ exp <—§m) dy

p 2 [* 1
= ( E(Y2)) \/%J yp exXp (_§y2) dy
0
s\ 27T (Ap + 1)
- (VE(?)) —
The latter is the same as (3.146). O

3.67. THEOREM. Let {b(s):s > 0} be d-dimensional Brownian motion. This
process 1s P-almost surely Holder continuous of order a for any a < %

Proor. It suffices to prove Theorem 3.67 for 1-dimensional Brownian mo-
1 1
tion. So suppose d = 1 and let @ < 1/2. Choose p > 1 so large that o < 2 o

From inequality (3.146) in Proposition 3.66 with X = b(¢) — b(s) we obtain
/2
E (]b(t) = b(s)") = E([b(t = 9)I") = Gy, (E (b(t — 5)[*))"
= Cylt —s|P? = Cy|t — 5", (3.147)

where 7 = p/2 — 1 > pa. An application of Theorem 3.65 yields the desired
result. 0J
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The following theorem says that Brownian motion is nowhere differentiable.

3.68. THEOREM. Fiz a > L. Then with probability one, t — b(t) is nowhere

Holder continuous of order . More precisely

IP( inf [limsup bt + 1) = b(t>] = oo) = 1.

o<t<1| 0 |h|”

PROOF. For a proof we refer the reader to the literature, e.g., Simon [158,
Theorem 5.4. p. 46]. O

In the theory of stochastic integration we will have a need for the following
lemma. The following lemma can also be proved by the strong law of large
numbers: see e.g. Smythe [160].

3.69. LEMMA. Let {b(s) : s = 0} be one-dimensional Brownian motion. Then,
P-almost surely, lim,,_, Ziial b((k+1)27"t) —b (k2_”t)\2 =t

PROOF. Put Ay, = |b((k+1)27"t) — b(k27"t)|*~27"t. Then the variables
Apn, 0 <k <2"—1, are independent and have expectation 0. So that

E (Z_ Ak,n> = Y E(Aw)t= Y E (b mf - 2—%)2

k=0 =0
=2 (B[p(2"0)[ = 2B [p (2 "t)[ 2"+ 277) —2x 27 (3.148)

Tchebychev’s inequality gives

n__1 2 2
P N < 24297,

n=1 €

0 2" —1 2 2
2t
Hence Z P ( Z Ak,n> > ¢ | < —. Thus we may apply the Borel-Cantelli

lemma to prove the claim in Lemma 3.69. 0

3.70. PROPOSITION. Brownian motion is nowhere of bounded variation.

PROOF. Just as in the previous lemma we have that, for t > s > 0,
1
: —-n _ _ —n _ 2 _ _ —
lim ];) b(s+ (k+1)27"(t—s)) —b(s+ k2"t —s))] —(t—s) =0,

P-almost surely. Since Brownian paths are almost surely continuous it follows
that (for § > 0)

2" —1

0<t—s<lim D [b(s+ (k+1)27"( —s)) = b((s+k2"( - s))[*

< liminf max [b(s+ (€+1)27"(t —s)) —b((s + 27"(t — s))]

n—o0 0<I<2”
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xS (s + (b + 1277 — 5)) — b((s + K27 (t — )|

< sup |b(09) — b(oy)| x variation of b on the interval [s,t].
$<01,02<t,|o2—01|<6

The statement in the Proposition 3.70 now follows from the continuity of paths.
OJ

Next we will see how to transfer properties of discrete time semi-martingales
to continuous time semi-martingales. Most of the results in the remainder of
this section are taken from Bhattacharya and Waymire [20]. We begin with an
upcrossing inequality for a discrete time sub-martingale. Consider a sequence
{Z, : n e N} of real-valued random variables and sigma-fields ¥, < F5 < -+ -,
such that, for every n € N, the variable Z,, is F,-measurable. An upcrossing of
an interval (a,b) by {Z,} is a passage to a value equal to or exceeding b from an
value equal to or below a at an earlier time. Define the random variables X,
n € N, by X,, = max(Z, — a,0). If the process {Z,} is a sub-martingale, then
so is the process {X,,}. The upcrossings of (0,b—a) by {X,,} are the upcrossings
of the interval (a,b) by {Z,}. We define the successive upcrossing times 7o,
ke N, of {X,} as follows:

m =inf{n >1: X, = 0};

ne =inf{n =>mn : X, =>b—a};
Noky1 = inf {n = ny : X, = 0};
Nokr2 = nf {n = o1 : X,y = b—a}.

Then every 7y is an {JF,}-stopping time. Fix N € N and put 7, = min (ng, V).
Then every 7 is also a stopping time and 7, = N for k > |N /2|, the largest
integer smaller than or equal to N/2. It follows that X,, = Xy for k > |n/2]
and we also have np = k and so k < 7, < N. Let Uy(a,b) be the number of

upcrossings of (a,b) by the process {Z,} at time N. That means
Un(a,b) =sup{k >=1:ny < N} (3.149)

with the convention that the supremum over the empty set is 0. Notice that
Un(a,b) is also the number of upcrossings of the interval (0,6 — a) by {X,} in
time N.

3.71. PRoOPOSITION (Upcrossing inequality). Let {Z,} be an {F,}-submartin-
gale. For each pair (a,b), a < b, the expected number of upcrossings of (a,b) by
Z1,..., 4N satisfies the inequality:

E (Ux(a,b)) < E (max (Zy — a,f)_—amax (Zy — a,0))

_E (max (Zy — Z1,0))
N b—a '

(3.150)
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PROOF. Since X

T2k

= Xy for k > | N/2|, we may write (setting 7 = 1):

[V/2]+1 |N/2]+1
Xy —Xi= Z (XTZk—l o XTZk—Q) + Z (XTQk - XTQk—l) : (3151)
k=1 k=1

Next let v be the largest integer & with the property that n, < N, ie. v is
the last time < N of an upcrossing or a downcrossing. It readily follows that
Un(a,b) = |v/2|. If v is even, then

X, — X

T2k T2k—1

>b—a provided 2k—1<uw;
X, — Xy =Xy— Xy =0 provided 2k—1> . (3.152)

Now suppose that v is odd. Then we have

X, — X5, =b—a provided 2k—1<uv;
Xey = Xepy = X5, — Xu 2 X, —0=X,, provided 2tk-1=vy;
Xryy = Xy = Xn— Xy =0 provided 2k—1>vw. (3.153)
From (3.152) and (3.153) it follows that
[V/2]+1 lv/2]
Z (X7'2k o XTQkfl) = 2 (X7'2k o XTQkfl)
k=1 k=1
> |v/2|(b—a) = (b—a)Un(a,b). (3.154)
Consequently
|N/2]+1
Xy=X12 Y (Xny, = Xnpy) + (b= a)Un(a,b). (3.155)
k=1

So far we did not make use of the fact that the process {X,,} is a sub-martingale.
It then follows that the process {X,, : k € N} is a {J, }-martingale and hence
k — E (X, ) is an increasing sequence of non-negative real numbers. So that
(3.155) yields

|N/2]+1
E(Xy-X1)> Y E(X, — X, )+ (b-aE@Uy(a,b)
k=1
> (b—a)E (Un(a,b)). (3.156)
The desired result in Proposition 3.71 follows from (3.156). O

3.72. THEOREM. (Sub-martingale convergence theorem) Let {Z,} be a sub-mar-
tingale with the property that sup,nE (|Z,|) < 0. Then the sequence {Z,}
converges almost surely to an integrable random variable Z.,. Moreover we have
E(|Zy|) <liminf, o E(|Z,]).

3.73. REMARK. In general we do not have E(Z,) = lim, ., E(Z,). In fact
there exist martingales {M,, : n € N} such that M, > 0, such that E(M,) = 1,
n € N, and such that M, = lim,,_,, M,, = 0, P-almost surely. To be specific,
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let {b(s) : s = 0} be v-dimensional Brownian motion starting at € R” and let
p(t, z,y) be the corresponding transition density. Fix t > 0 and y # = and put
_ Po,v (t/n7 b(t — t/n)a y)

Do,v (tv Z, y) .
The process {M,, : n € N} defined in (3.157) is P,-martingale with respect to
the sigma-fields F,, generated by b(s), 0 < s <t —t/n.

M, (3.157)

PRrOOF. Let U(a,b) be the total number of upcrossings of (a, b) by the pro-
cess {Z, : n € N}. Then Uy(a,b) 1 U(a,b) as N 1 co. Therefore, by monotone
convergence,

E(|Zu) +lal _

E((U(a,b)) = Jim E (Un(a,5)) < sup =5 (3.158)
In particular it follows that U(a,b) < oo P-almost surely. Hence
P (liminf Z, < a <b < limsup Z,) < P (U(a,b) = o) = 0. (3.159)

Since
{liminf Z, < limsup Z,,} = U {liminf Z,, < a < b < limsup Z,}
a<b,a,beQ

it follows from (3.159) that P (liminf Z,, < limsup Z,,)

= 0. By Fatou’s lemma
it follows that E (|Z|) = E (liminf, |Z,|) < liminfE (|Z,

|) < 0.
This completes the proof of Theorem 3.72. U
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3.74. COROLLARY. A non-negative martingale {Z,} converges almost surely to
a finite limit Zy,. Also E(Zy) < E(Zy).

Remark. Convergence properties for supermartingales {Z,,} are obtained from
the sub-martingale results applied to {—Z,}. Since a semi-martingale is a
difference of two sub-martingales, we also have convergence results for semi-
martingales.

3.75. DEFINITION. A continuous time process {X (t) : t € R} is called stochasti-
cally continuous at t if for every ¢ > 0
lim P (| X (t) — X (to)| > &) = 0. (3.160)

t—to

3.76. REMARK. Brownian motion possesses almost surely continuous sample
paths and is stochastically continuous for every ¢ = 0. On the other hand
a Poisson process is stochastically continuous, but its sample paths are step
functions with unit jumps. In fact, for t > s, X(¢) > X (s) P-almost surely and,
—A(t—s) (/\(t - 3>)n

n!

P(X(t) — X(S) > E) < e~ At=s) i M — 1 — e Mt=s)

again for t > s, P(X(t) — X(s) =n) =e¢

for t > s and for € > 0,

and hence, always

n

3.77. THEOREM. Let {X(t):t > 0} be a sub-martingale or a super-martingale
that s stochastically continuous at each t = 0. Then there exists a process

{)N((t) > O} with the following properties:

(i) (stochastic equivalence) {)Z'(t)} is equivalent to {X(t)} in the sense
that
P (X(t) = X(t)) =1 forevery t=0;
(i) (sample path regularity) with probability 1 the sample paths of the pro-
cess {)?(t) = 0} are bounded on compact intervals [a,b], a < b < o0,

are right-continuous and possess left-hand limits at eacht > 0 (in other
words {)?(t) = O} is cadlag).

PROOF. Fix T > 0 and let Q7 denote the set of rational numbers in [0, T].
Write Qr = | J_, Rn, where R, is a finite subset of [0,7] and where T € R; <

Ry © Ry © ---. By Doob’s maximal inequality for sub-martingales we have
E|X(T
P (maX|X(t)] > )\) < M, n=12,...
teRy, A
and hence
E|X(T
P (Sup | X(t)] > )\> < lim P (maX|X(t)] > )\> < M, n=12,...
teQr n— 00 teRy, )\
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For Doob’s maximal inequality see e.g. Proposition 3.107 or Theorem 5.110.
In particular, the paths of {X(¢) : t € Qr} are bounded with probability 1. Let
(c,d) be any interval in R and let U{"}(c, d) denote the number of upcrossings of
(c,d) by the process {X (t) : t € Qr}. Then U™} (c, d) is the limit of the number
Ul (c,d) of upcrossings of (c,d) by {X(t):te R,} as n tends to co. By the
upcrossing inequality we have

< E(X@) + |l

E (U (e, d)) < 3.161
(U e, ) < HEED) (3161)
Since U™ (c, d) increases with n it follows from (3.161) that
E (| X(T
E (U e.)) < ZXODE I (3.162)
—c

and hence that U™} (c, d) is almost surely finite. Taking unions over all intervals
(c,d), with ¢, d € Q, and ¢ < d, it follows with probability 1 that the process
{X(t) : t € Qr} has only finitely many upcrossings of any interval. In particular,
therefore, left- and right-hand limits must exist at each ¢ < T P-almost surely.

To construct a right-continuous version of {X(¢)} we define {)N( (t):t = 0} as

follows: X (t) = lim, s seq X (s) for t < T. That this process {)?(t)} is stochas-

tically equivalent to { X (¢)} follows from the stochastic continuity of the process
{X(t)}. Further details are left to the reader. This completes the proof of
Theorem 3.77. O
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Next we prove Doob’s optional sampling for continuous time sub-martingales
(that are right-continuous) and a similar result holds for martingales (where the
inequality sign in (3.163) is replaced with an equality) and for super-martingales
(where the inequality is reversed). For discrete sub-martingales the result will
be taken for granted: see Theorems 5.104 and 5.114.

3.78. THEOREM. Let {X(t) : t = 0} be a right-continuous sub-martingale of class
(DL) and let T' be a stopping time. Suppose t = s. Then

E [X (min(t, 7)) | F5] = X (min(s, T)), P-almost surely. (3.163)

PROOF. Put s, = 27"[2"s], t,, = 27"2"t] and T,, = 27"[2"T"]. If A belongs
to Fs, then A also belongs to I, for all n € N. From Doob’s optional sampling
for discrete time sub-martingales we infer, upon using the (DL)-property,

E[X (min(t,,7,)) 1a] = E[X (min(s,, T5,)) 14] . (3.164)

Upon letting n tend to oo and using the right-continuity of the process t — X (t),
t > 0, we infer

E[X (min(t,7)) 14] = E[X (min(s,T)) 14], (3.165)

where A € JF, is arbitrary. Consequently the result in (3.163) follows from
(3.165), and so the proof of Theorem is complete 3.78. 0

6. Stochastic integrals, It6’s formula

The assumptions are as in Section 4. The process {b(t) : t = 0} is assumed to
be one-dimensional Brownian motion and hence the process t — b(t)? —t is a
martingale: see Proposition 3.23. The following proposition contains the basic
ingredients of (the definition of) a stochastic integral.

3.79. PROPOSITION. Let sq,...,8, and tq,...,t, be non-negative numbers for
which sj_1 < tj 1 < 55 < tj, 2 <7 <n. Let fi,..., [, be bounded random
variables which are measurable with respect to Fs,, ..., Fs, respectively. Put

Y(s,w) =37 fi@)Ls)(s)

and write

[ ¥ 9ab(s) = 337 £ otminte. 1)) — aine )}
The following assertions hold true:
(a) The process {Sé Y(s)db(s) : t = O} is a martingale and the process
{(Xé Y(s)db(s)>2 = O} is a submartingale.

2
(b) The process {(Xé Y(s)db(s)) - Sé Y(s)%ds:t > O} is a martingale.
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(c) (Ité 1sometry) The following equality is valid:

( L tY(S)db(s))2] =E [LtY(s)st] : (3.166)

The equality in assertion (c) is called the Itd isometry. It is an extremely
important equality: the entire It calculus is justified by the use of the equality
in (3.166).

E

PRrROOF. The more or less straightforward calculations are left as an exercise
to the reader. We insert some ways to simplify the computations. Let F' and G
be predictable processes of the form F(s) = fl,w)(s) and G(s) = gl (s),
where f is measurable for the o-field &, and ¢ for &,. Put

rt

Iy(F) = J, F(s)db(s) := [ (b(t) — b(min(u, t)))

and similarly write

L(G) = [’ G(s)db(s) = g (b(t) — b(min(v,t))).

JO
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Without loss of generality we assume v > u (otherwise we interchange the
role of F' and G). We begin with a proof of (a). Upon employing linearity it
suffices to show that the process t — I,(F') is a martingale. (Also notice that

Sé TLww)(8)db(s) = I,(F) — I,(Fy), where Fi(s) = fl(,)(s).) Fixt > s> 0 and
consider

E(L(F) | F.) = I(F) = E (I(F) = I.(F) | & )

=E (f (b(t) — b(min(u, t)) — b(s) + b(mln u,s) ‘ F)

=E (E(f (b(t) — b(min(u, t)) — b(s) + b(min(u, s))) | Fuminmaxws).) | Fs)

=E (f]E ((b(t) — b(min(u,t)) — b(s) + b(min(u, s))) ‘ :Tmin(max(u,s),t)) | ffs)
(Brownian motion is a martingale)

= E (f ((b(min(max(u, s),t)) — b(min(u, t)) — b(s) + b(min(u, 5)))) | F)

= 07

proving that the process t — It(F ) is a martlngale indeed. Next we shall
prove that the process t — [;(F So 7)d7 is a martingale. Using
bilinearity in F' and G yields a proof of (b) and hence also of (c). Again we fix
t > s and consider

E (It(F)It( )= f (1)G(r)dr | :ﬂ) _ <13(F)13(G) _ L SF(T)G(T)dT>

tF
E (It(F ) — L ' F(r)G(r)dr — (IS(F)IS(G)— L SF(T)G(T)dT> \3:)
( (F)

.
E ((0(F) - L) (16) - 1(G) - [ FEGIar |5.)

Js

L(G) = I(G)) + (Ii(F) = I(F)) I(G) | F,)

G
)i (
(F) -
+E (I(F) (

-2 (1) - L) (1) - 1(6) - [ FGr| 5. )

Js

+ L(F)E (L(G) = I(G) | F.) + E (I(F) = I(F) | F,) I.(G)

(use the martingale property of I;(F) and I,(G))

=E[<L<F> L(F)) (I(G) - 1(G)) - f <>GTdT|a:]
)

=E|[fg(b(t) — b(min(max(u, s) t))) (b(t) — b(min(max(v, s),t)))
—fg (t — min(max(u, v, s),t)) | F]
);

(use v = u and put us; = min(max(u, s),t), vs; = min(max(v, s),t))
—E| /g ((o(t)  b(v.1))’
+fg (b(vsﬁt) — b(us,t)) (b(t) — b(vs,t)) fg (t — min(max(u, v, s) ‘ F )]
—E[fg ((b(t) = b(vs))* = (t = ve0)) | 53
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E[(fg (b(vss) = b(usy
:E[fg]E[(( —b(vst) t—vst>‘ffv ]‘3’]
+ B [fg (b(ver) = 0(usr)) x E[(b(t) = b(vsy)) | Fo,. ] | F]

(the processes {b(s)} and {b(s)*> — s} are martingales)

=E(fg.0|F) +E (fg (b(vsy) —blusy)).0| Fs) = 0.

The latter yields a proof of (b) (via bilinearity). Altogether this finishes the
proof of Proposition 3.79. OJ

)) (6(t) = b(vsr))) | F]
)2
)

3.80. DEFINITION. A process of the form

= an fi(W)1(s;4,1(8),

where 0 < s;_1 < t;_1 < s; <tj, 2 <j <n, and where the functions fi,..., f,
are bounded and measurable Wlth respect to Jg,, ..., F,, respectively is called
a simple predictable process.

3.81. DEFINITION. Again let b be Brownian motion with drift zero and let I15(b)
be the vector space of all predictable processes F' with the property that

= ([ 1FeRas) <=

Let @Q be the o-additive measure, defined on the predictable field II, determined
by
Q(Ax (s, t]) =E[la](t—s) =P(A)(t—3s), AeF,. (3.167)

The measure () is called the Doléans measure for Brownian motion.
Then it follows that IT5(b) = L*([0,00) x Q,1I, Q). Moreover we have
Pl = [1FPdQ. Fetip),

It also follows that, for given F' € Ily(b), there exists a sequence of simple
processes (F,, : n € N), which are predictable, such that lim,,_, HF — F||, = 0.

Hence in view of Proposition 3.79 it is obvious how to define So s)db(s), t =0,
for F' € II5(b). In fact

ftF(s)db(s) = L*- lim tFn(s)db(s),

0 n=% Jo

where the sequence (F), : n € N) verifies lim,,_,o, | F}, — F'[|, = 0 and where F,
belongs to I (b). Let II3(b) be the vector space of all predictable processes F' for
which the integrals Sé |F(s)|” ds are finite P-almost surely for all # > 0. In order
to extend the definition of stochastic integral to processes F' € 1I3(b) we proceed
as follows. Define the stopping times 7T,,, n € N, in the following fashion:

T, = inf {t >0: Jot |F(s)[* ds > n} . (3.168)
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We also write F,(s) =
process with {|F,(s)|* ds

J F,(s)db(s) f F.(s)db(s) = JF(S)I(ijmin(Tn,t)](s)db(s) (3.169)

0 0
vanishes almost everywhere on the event {7, > t}. So it makes sense to write

J F(s)db(s) = f F.(s)db(s), on {T,, >t}.

0 0

F(s)lir,~s; and we observe that F), is a predictable
< n. Moreover it follows that for n > m the expression

Since lim,,_,, T,, = o0, P-almost surely, the quantity Sé F(s)db(s) is unambigu-
ously defined. Hence the integral { F(s)db(s) is well defined for processes F
belonging to II5(b).
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3.82. COROLLARY. Let b be Brownian motion and let F' and G be processes in
II5(b). The following processes are local martingales:

{L&%Q@@%t>o}, {EG@MM$:t>O}; (3.170)
{ (LtF(S)db(S))z - Lt |F(s)ds : t > 0} ; (3.171)
{ﬁ?ﬂﬁ%@[ﬂG@me—ﬁﬁmgG@mat>o}. (3.172)

Put X(t) = Sé F(s)db(s) and Y(t) = Sé G(s)db(s). The following identity is
valid:

X@ﬂ%ﬂ—J‘

0

t t

F(s)G(s)ds = f F(s)Y (s)db(s) + L X (s)G(s)db(s). (3.173)

0

PRroOOF. The assertions (3.170), (3.171) and (3.172) follow from Proposition
3.79 together with taking appropriate limits. For the proof of (3.173) we first
take F' = G = 1. Then (3.173) reduces to showing that

¢

b(t)? — QJ b(s)db(s) —t = 0. (3.174)
0

Notice that (3.174) is equivalent to 2% b(s)db(s) = b(t)* —t, t = 0. For the

proof of (3.174) we use Lemma 3.69. to conclude:

b@f—QJ%@mu@—t

0

= lim <b(t)2 —2 2n21 b(k27"t) (b ((k+1)27"t) — b (k27"t) — t))

n—00

n—00
k=0

— lim <2n21 (b ((k +1)27)* — b (k2*"t)2>
—2 221 b(k27"t) (b ((k+1)27"t) —b(k27")) — t)
= lim <2n2_1 (b ((k+1)27") — b (k27"1))” - t> = 0.

n—aoo
k=0
For the proof of (3.173) we then take F(s) = fl¢, «0)(s) and G(s) = gl(s,.00),
where f is bounded and measurable with respect to JF,, and ¢ is measurable
with respect to F,. Formula (3.174) will then yield the desired result. Then we
pass over to linear combinations and finally to limits. This completes the proof
of Corollary 3.82. O

3.83. PROPOSITION. Stochastic integrals with integrands in 113(b) are continuous
P-almost surely.
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PROOF. It suffices to prove the result for integrands in II5(b). Since Brow-
nian motion is almost surely continuous, it follows that stochastic integrals of
simple predictable processes are continuous. Let F' be in II3(b) and choose a
sequence (F},),en of simple predictable processes with the property that

<E (ﬂ [F(s) — Fu(s)] ds)>1/2 - lm <E ( Lto Fos(s) - Fu(s)f ds>)1/2

0 to 1/2 100)
< Z (IE (J |Foio(s) = Fyoa(s)]? ds)) < Z g2 = g7l

(=1 0
1
2]) 2

From Proposition 3.63 it follows that, for k € N,
t
|| (Bl = sl ants)

(]E [ sup
0<t<to
0

k
< 2 (E [ sup
(=1

f (Fucil(s) — Fa(s)) db(s)

0

0<t<to

<IE LO (Frve(s) = Frape—1(s)) db(s) ])

0
<2Z
/=1

o0
:22
/=1

<IE _ f Fa(s) — Frern(s)? ds])é <2, (3.175)

| JO

From (3.175) the sample path continuity of stochastic integrals immediately
follows. This completes the proof of Proposition 3.83. O

3.84. REMARK. The theory in this section can be extended to (continuous)
martingales instead of Brownian motion. To be precise, let ¢t — M(t) be a
continuous martingale with quadratic variation process t — (M, M) (t). Then
the process t — M (t)*> — (M, M) (t) is a martingale, and the space II5(b) should
be replaced with II3(M), the space of all predictable processes t — F(t) with
the property that

|F3, =E U:O |F(s)|” d (M, M) (s)] < 0. (3.176)

The corresponding Doléans measure () is given by
Qui (A x (s,8]) = E[La (M, M) (t) — (M, M) (s))], AeF, s<t (3.177)
It follows that
(M) = L2 (2 x [0,50), I1, Q).
The space II3(M) consists of those predictable processes ¢t — F'(t) which have
the property that Sé |F (s)\2 d (M, M) s are finite P-almost surely for all ¢t > 0.

The definition of stochastic integral to processes F' € Il3(M) we proceed as
follows. Define the stopping times 7},, n € N, in the following fashion:

T, = inf{t >0: f: |F ()] d (M, M) (s) > n} . (3.178)
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As in the case of Brownian motion these stopping times can be used to define
stochastic integrals of the form So s)dM(s), F € II3(M). These integrals are
then local martingales.

Next we extend the equality in (3.173) to the multi-dimensional situation.

3.85. PROPOSITION. Let s — 0 (s) = (0jk(s)),; r<, b€ a matriz with predictable
entries and with the property that the expression

J E |00 (s)|? ds (3.179)
k=1

is finite for every t > 0. Put aw(s) S oi(8)ojr(s), 1 <4, j < wv. Further-
)

more let {b(s) = (bl( )soasbu(s)) s = O} be v-dimensional Brownian motion.
Put M;(t) = > _, So ojk(s dbk(s), Jj < v. Then the following identity is
valid:
Mi(6)M;(t) (3.180)
v t v t t
= Z J M;(s)oji(s)dby(s) + Z oik(s)M;(s)dby(s) + J a;;(s)ds.
k=10 k=10 0
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PROOF OF PROPOSITION 3.85. First we suppose v = 2, M;(t) = by (t) and
My(t) = bo(t). Then (3.180) reads as follows:

rt t

M(Ob(t) = | bi()dbn(s) + f bo(5) b (5). (3.181)

0
In order to prove (3.181) we write
t rt

bl (t)bg(t) — J bl(S)dbg(S) — bg(S)dbl(S)

0 JO

2" —1

= lim )7 {bl ((k+1)27"t) by ((k + 1)27"t) — by (k27"t) by (k27"t)
k=0

by (k27 (o ((k + 1)27) — by (K2771))

— by (k27"t) (b1 ((k + 1)27"t) — by (k27"t)) }

2" —1

= Tim > (b ((k+1)27"t) — by (k2771)) (b2 ((k + 1)27"t) — by (K27"1)) -
o (3.182)

The limit in (3.182) vanishes, because by independence and martingale proper-
ties of the processes b; and by, we infer

E rnf (b ((k + 1)2778) — by (K27°8)) (ba ((k + 1)27"E) — by (kz_%))] )

k=0
on

k (
k

= an_:lE [bl ((k + 1)2int) — bl (k27nt)]2]E (b2 ((k + 1)27nt) _ b2 (k2—nt))2

1

(b ((k +1)27"8) — by (k2771))% (b ((k + 1)27"t) — by (k2”t))2>

on—1
= > (2m)t =27 (3.183)

k=0
From Borel-Cantelli’s lemma it then easily follows that the limit in (3.182) van-
ishes and hence that equality (3.181) is true. The validity of (3.180) is then
checked for the special case that oji(s) = fjxl(s,,,0)(5), where fj, is measurable
with respect to ¥, . The general statement follows via bi-linearity and a lim-
iting procedure together with equality (3.173) in Corollary 5.142. The proof of
Proposition 3.85 is now complete. U

Next let M(t) = (My(t),..., M,(t)) be a v-dimensional martingale as in Propo-
sition 3.85 and let A(t) = (Ay(t),..., A,(t)) be an adapted v-dimensional pro-
cess that P-almost surely is of bounded variation on [0, t] for every ¢ > 0. This
means that

sup sup |A(s;) — A(sj_1)| is finite P-almost surely for all ¢ > 0.

neN 0<sg<s1<--sp<t
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It follows that the random set function u? : (a,b] — A(b) — A(a) extends
to an RY-valued measure on [0,¢] for every ¢ > 0. Stieltjes integrals of the
form SS F(s)dA(s) may be interpreted as Sé F(s)dA(s) = Sé F(s)du”(s). The
process A may have jumps. This is not the case for the process M. The latter
follows from Proposition 3.83. The process X := A + M is a v-dimensional
semi-martingale with the property that E (\M(t)\Q) < o, t>0. Put

Tx(t) =Y, (X(s) = X(s))
= > (M(s) — M(s-)) + Y. (A(s) — A(s—)) = Ja(t).

The definition of J4(t) does not pose to much of a problem. In fact for P-almost

all w the sum Z |A(s,w) — A(s—,w)| < o0. The process {X(t) — Jx(t) : t = 0}
s<t

is P-almost surely continuous. The following result is the fundamental theorem

in stochastic calculus.

3.86. THEOREM (Itd’s formula). Let X = (Xy,....,X,) = A+ M be a v-
dimensional local semi-martingale as described above, and let f : RY — R be a
twice continuously differentiable function. Put a;;(t) = >3 _, ou(t)ou(t), 1 <1,
j < wv. Then, P-almost surely,

FX(®))
+) (f(X(S)) — [ (X(s=)) = V[ (X(s—)) . (X(s) - X(S-)))

s<t

+LtVf(X(s ) - Z f D;D; f(X(s))ag(s)ds. (3.184)

Before we prove Theorem 3.86 we want to make some comments and we want to
give a reformulation of 1t6’s formula. Moreover, we shall not prove 1t6’s formula
in its full generality. We shall content ourselves with a proof with A = 0.

Remark. The integral S(t) Vf(X(s—)) dX(s) has the interpretation:

[ i axe

> ( f D (X(s)) Me) + [ DA (X dA()) ()
( [ a7 Cxts-y) antis) + jotDif(X(s—)) dAz-<s>)
(k pr Joulehin(s) + [ D (X6 <S>)_

Here X = M + A is the decomposition of the semi-martingale in a martingale
part M and a process A which is locally of bounded variation.

|
™M=~ Is ||M

For v-dimensional Brownian motion we have the following corollary.
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3.87. COROLLARY. Let b(t) = (by(t),...,b,(t)) be v-dimensional Brownian mo-
tion. Let f : RV — R be a twice continuously differentiable function. Then,
P-almost surely,

FO0) = F00) + [ Vi) + 5 [ Afeas (3156)

In fact it suffices to suppose that the functions D1 f,..., D, f and D3f,..., D*f
are continuous. Next we reformulate It6’s formula.

3.88. THEOREM. Let X = (Xi,...,X,) be a v-dimensional right continuous
semi-martingale as in Theorem 3.86 and let f : R” — R be a twice continuously
differentiable function. Then, P-almost surely,

fX(8) = f(X(0)) + fO Vf(X(s-))-dX(s) (3.187)

- fL(1_0)DiDjf((1—a)X(s—)+0—X(s))dad[xi,xj] (s),

1 Jo

r

a;;(s)ds + Z (Xi(s) = Xi(s—)) (X;(s) = X;(s—)). (3.188)

0 s<t
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Remark. In the proof below we employ the following notation. Let M; be
martingale of the form

ZEL%@M@

Then quadratic covariation process (M;, M;) (t) satisfies
sz M Z f O-zk Ujk’

PROOF OF THEOREMS 3.88 AND 3.86. Since, for a and b in R”

1) - f(a) = V{a).(b  a) (3.189)
+§]J (1—0)D;D;f (1 = 0)a + ob)do x (b; — a;)(b; — a;)
and since o
(X0, X1 (1) = f s + D (l6) = Xilo) (506) = X6,

it follows that

JJ“1_UDDf«1—@ (s=) + o X(s)) dod [X;, X;] ()
f f (1—0)D;D;f (1 —0)X(s—)+0X(s))doa;j(s)ds

' ZZf (1= 0)D,D, (1 = )X (s=) + 7 X () do

i,j=1s<t

x (Xi(s) = Xi(s—)) (X;(s) — Xj(s—))

EZJJ‘I—JDDfal—ﬁ (s—) + 0X(5)) doay(s)ds

3,7=1

+ ) {f(X(5) = f(X(57)) = VF(X(s7)) - (X(s) = X(s=))} . (3.190)

s<t
So the formulas in Theorem 3.88 and Theorem 3.86 are equivalent. Also notice
that, since Sé a;;(s)ds is a continuous process of finite variation (locally), we

have

L L (1—0)D;D,f (1 —0)X(s—)+0X(s))doa;j(s)ds
:fJX1_@QDJ«1_@X@4+0X@4ym%@ms

- fDDf s=)) aij(s)ds.
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Hence it suffices to prove equality (3.187) in Theorem 3.88. Assume X (0) =
M(0) and hence A(0) = 0. Upon stopping we may and do assume that in
X = M+ A, | X(t—)] < L and varA(t—) < L. This can be achieved by
replacing X (¢) with X (min(¢, 7)), where 7 is the stopping time defined by

7 =inf {s > 0 : max (|M(s)|, varA(s)) > L}.

Here varA(s) is defined by

varA(s —sup{Z]As] (sj_l):O<80<51<...<sn=s}.

7j=1
Next we define, for every n € N, the sequence of stopping times {7, : k € N}
as follows:

Tn,O = 07

1
Ty k1 = inf {s > Tk :max (s — T, | X () — X (Thr)|) > —} : (3.191)
n

Since .
max (Tn,k-‘rl nk7 |X( nk-‘rl) X(Tn,k)’) > Ea

it follows that klim T, = o, P-almost surely. Moreover, since
—00

Y

S|

max (Tn,k-‘rl n ko |X( n k‘+l_) - X(Tn,k)’) <

1 .
we have T}, 41 — T, < —. Next we write:
n

FX(#) = f(X(0))
= 2 (X (Tapa At=)) = f(X (Top A 1)
+f (X (Topr A1) = f (X (Toprr A 1))}

18

k T i At

0

“n’w_w (T A 1)) - dX(5)

+ ZJ (1= VDD f (1 = )X (Tug A L)+ 0X (Topsr A =) do
irj

X (Xz (Tn,k+1 AN t—) — X»L (ka VAN t)) (X] (Tn,k+1 VAN t—) — Xj (Tn,k VAN t))

+ [ (X (T A ) — F(X (Thge1 A t—))}. (3.192)

On the other hand we also have:

f VF (X (s—)) dX(s)

LJ (1= 0)D,D; f (1 — o)X (s—) + 0. X (s)) dod [X;, X;] (5)

i,7=1
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- Z{f VF(X(s-)) - dX(s)

+ ZOJ::::A _JO (L=0)D:D;f (1 —0)X(s—) + 0X(s)) dod[X;, X;] (s)

+ V(X (Tapri A=) (X (Topr At) = X (Topr A t—))

+ Z J (1—0)D;D;f (1 —0)X (Thpt1 At—) +0X (Thr1 At))do

4,7=1

X (Xi (Tops1 At) = Xi (T A=) (Xj (Topsr At) = X (Tpsr A t—))}

- Z{J VS (X(s0)) - dX(s)

) Z J nk+1A J;) (1_0_)D1D]f((1_0-)X<S—)+UX(S))dUd[XZ7XJ] (8)

1720 Tk At
+ [ (X (Tapsr A1) = f(X (Togsr A t—))}- (3.193)
Upon subtracting (3.193) from (3.192) we infer by employing Proposition 3.85:
Flx - [ vrx

—Z” (1—0)DiD; f (1 - 0)X (s—) + 0X(s)) dod [ X, X1 (s)

i,7=1

{ W:A X(5=)) = VI (X (Tor))) - dX (s)

'n k+1AT—

I M‘ I M8

{J (1—0)D;D;f (1 =o)X (Thp At) +0X (Th 1 At=))do
L (1= o)DiD; f (1 — 0)X(s=) + 0 X(5)) da} 4[X5, X, (s)

+ Z J (1—=0)D;D;f (1 =o)X (Thx ~t)+0X (Th k1 At—))do

i,j=1"0

X {(Xz (Tn,k+l N t—) — XZ (ka A t)) (XJ (Tn,k—i-l N t—) — Xj (ka A t))
— [X“ XJ] (Tn,k—i-l VAN t—) + [qu XJ] (ka AN t)}}
Z{ [ @) = v 05 (T axo

k=0 T kAt
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N 2 f k1A J;) (1—0) {Dszf (1=0)X(Top At)+0X (Thgsr At—))

i,jil Tn,k At

—DiD;f (1 = 0)X(s—) + 0 X(s))} dod [ X, X;] (s)

" i f(:(l a U)DiDjf <<1 - U)X(ka A t) +o0X (Tn,kﬂ A t—)) do

i,j=1

. {f M (Xi(s2) = X (Tug A 1)) dX5(s)

Ty i At

+ f P X 52) — X, (T A 1)) dXo(s) } } (3.194)

Tn,k At

We shall estimate the following quantities:
0 T k+1AE— 2
K ((Z L (Dif (X(s5=)) = Dif (X (Tpp A 1)) - dMZ-(s)> ); (3.195)
k=0 n,k At
00 T k41 A Et—
E ( Z L (Dif (X(s—)) = Dif (X (Thr ~t)))-dAi(s) ) ; (3.196)
k=0 n,k At
0 Tn k+1At— 1
E( Z J J (1=0){D:D;f (1 =o)X (Thp ~nt)+ 00X (Thps1 At—))
0

k=0 Tn,k At
) : (3.197)

E((éo fol(l —0)D;:D;f (1 =o)X (Thp At)+0X (Thps1 At—))do

—DiD;f (1 — )X (s—) + 0X(5))} dod [Xi, X;] (5)

x f S (Xi(s—) — X; (Tpp A t))de(s)> >; (3.198)

Ty At
E(

> J (1=0)DD;f (1 =) X(Tpp At) +0X (Tppsr At—))do
k=00

). (3.199)

Since the process § (D;f (X (s—)) — Dif (X (Tox A 1)) dM;(s), u > 0, is a mar-
tingale, the quantity in (3.195) verifies

E((%JWHM@#@W;D&ﬂXﬂmAw»dmwg)

« f T (Xi(5—) — X (T A 1)) dA(s)

Tn,k At

— Tn,k At

ZE(O”MM<aﬂX@»DﬁwamAw»mm@>>

Tn,k/\t
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- 2B (f”“lA_(Dif(X( =) = Dif (X (Tos 1 1)) d<Mi><s>>

nk/\t

sup 1Dif(y) — Dif(x)]* E (M) (t)). (3.200)

2,yeRv:|y—a|<1/nmax(|a].ly))<2L

VAN

Similarly we obtain an estimate for the quantity in (3.198):

((ZJ (1=0)DiD;f (1 = o)X (Top A L) + 0X (T h1 A =) do

« f M (Xi(s=) — X (Tag A 1) de(s)>

Tn,k At

_E ( 3 (fu VDD, (1= )X (Tup A £) + 0 X (Thss A £—) d0)2

( T (Xi(s=) — Xi (Tug A 1) de(s)>

nk/\t

< sw DD, f(y \E(Zf >—Xi<Tn,kAt>>2d<Mj><s>)

|y|<2L nk/\t
1 1
< sup |DiD;f(y)| x —SE((Mj) (t))- (3.201)
2 <2 n

The other estimates are even easier:

_E< )

< p D - Dl ([ laae)). @

z,yeRY:|y—z|<1/n,max(|z|,|y|) <2L
© Tn,k+1/\t7 1
f f (1= ) {DsD; f (1 — )X (Tup A L) + 0X (Togsr A =)
0

o([5
)

n,k+1 /\t_

> [ FOX(5m)) = Dif (X (1)) - A9

nk/\t

k=0 Tn,k At

—DiD;f (1 = 0)X(s—) + 0X(s))} dod [ X, X;] (s)

1
<3 sup |DiD;f(y) — DiD; f ()]
x,yeRY:[y—z|<1/n,max(|z|,|y|) <2L
t
HNESE)
0
1
< 3 sup |D D;f(y) — DiDjf(z)|
z,yeRY:|y—z|<1/n,max(|z|,|y|) <
x A/E ([X;, X1] ( \/E and (3.203)
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> J (1=0)D;D; f (1 = 0)X(Tpp A t) + 0X (Typr1 At—))do

i
) )

<o sw DD IE( [ la6). (3:204)

N yerv |y|<2L

« J T (Xi(s=) — Xo (Tup A 1)) dA(s)

Tn,k/\t

The inequality (3.203) will be established shortly. The quantities (3.200),
(3.201), (3.202), (3.203) and (3.204) tend to zero if n tends to infinity. Conse-
quently, from (3.194) it then follows that, P-almost surely,

f(X() = f(X(0)) + f V(X(s))dX(s) (3.205)
J f (1—0)D;D;f ((1 —0)X(s—) +0X(s))dod[X;, X;] (s).

So that the formula of It6 has been established now. For completeness we prove
the inequality

B ([ lapex16) < ECGXT@WEG X0, (200

A proof of (3.206) will establish (3.203). For an appropriate sequence of subdivi-

sions 0 = s(()n) <si <. < 55\7,2 = ¢ we have with, temporarily, [ X;] = [X}, Xi],

Nn

[ 161 = >
b 0 ) )
< lim (é (16 X (57 = [ X (507 ) 12
(35 (oo () - ()

k=1
= ([X3, Xa] (8) — [X0, X1 02 ([X5, X5 (1) — [X5, X)) (3.207)

Taking expectations and using the inequality of Cauchy-Schwartz once more
yields the desired result.

[ X, X] <S§gn)> (X3, X1 (Sk 1)‘

N

This completes the proofs of Theorems 3.86 and 3.88. O

Remark. In the proof of equality (3.194) there is a gap. It is correct if the
process A = 0. In order to make the proof complete, Proposition 3.85 has to be
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t) = oy §o oin(s)dbi(s)):
f Mi(s)dA,( Z J () A, ()b (5):

t

A1) A (1) —f A()dA;(s) + f Ay(s)dAd(s).

0 0
This kind of equalities is true for continuous processes. If jumps are present
even more care has to be taken.

supplemented with equalities of the form (M;(
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We continue with some examples. We begin with the heat equation.

Example 1. (Heat equation) Let U be an open subset of R”, let f : U — R be
a function in Cy(F) and let u : [0,00) x U — R be a solution to the following
problem:

0

T;L = 1Au in [0,0) x U;

0

u is continuous on [0,00) x U and u(0,x) = f(x).

Moreover we assume that lim wu(¢,z) = 0 if b belongs to 0U. Then u(t, z) =

r—b,xeU
E, [f(b(t)) : T > t], where T is the exit time of U: 7= inf {s > 0:b(s) € R"\U}.
Of course {b(s) : s = 0} stands for v-dimensional Brownian motion. In order to
prove this claim we fix ¢ > 0 and we consider the process {M(s) : 0 < s <t}
defined by M (s) = u(t — s,0b(s))1{r~s. An application of It6’s formula yields
the following identities:
M(s) —M(0) = — J %(t —7,b(r))Lirsppdr + J Vu(t —7,b(r))Lir=yy - db(r)
0 0

1 S
+3 f Au(t —r,b(r))Lspndr
0

_ f {—%(z& e b(r) + %Au(zﬁ _ r,b(r))} Lrorydr

0

+ LS Vu(t —r,0(r))Lirsry - db(r)

= fo Vau(t —7,b(r)) L=y - db(r).
Consequently, the process {M(s) : 0 < s <t} is a martingale. It follows that
u(t, z) = Eq (u(t, b(0))) = Eo(M(0)) = E.(M(2))
=E, (w(0,b(t)1r>ry) = Eo (F(0(t)1(r>1y) -

Example 2. Let U be an open subset of R”, let f belong to Cy(U) and let
g :[0,0) x U — R be a function in Cy(F) and let u : [0,0) x U — R be a
solution to the following problem:

ou 1

gzéAu—i—g in [0,00) x U,

w is continuous on [0,00) x U and u(0,z) = f(z).

Moreover we assume that lim, ,;.epu(t,z) = 0 if b belongs to dU. Then

u(t,r) = E, (f(b(t)): 7>1t) + E, (S;nin(t’ﬂ gt —r, b(r))dr), where, as in Ex-

ample 1, 7 is the exit time of U. Also as in Example 1, {b(s) : s = 0} stands for
v-dimensional Brownian motion. A proof can be given following the same lines
as in the previous example.

Example 3. (Feynman-Kac formula) Let U be an open subset of R”, let
f belong to Co(U) and let V' : U — R be an appropriate function and let
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u: [0,00) x U — R be a solution to the following problem:

if; = ;Au—Vu in [0,00) x U;
w is continuous on [0,00) x U and u(0,z) = f(z).

Moreover we want that lim, p e u(t, ) = 0 if b belongs to dU. Then u(t,z) =

<eXp ( i v( ) Fb(1): 7 > t).
For the proof we fix ¢ > 0 and we consider the process {M(s) : 0 < s < t} defined
by M(s) = u(t —s,b(s)) exp (= §; V(b(r))dr) 1(r- and we apply Ito s formula
to obtain:
M(s) — M(0)

_ f S {_%@ b)) + Bt — 7, b{r) — V(b(r)u(t - nb(r))}

0

exp (= [ VIO dp ) 1oy

0

+ [ ute= v s (- [ V0D 1 -db)

0

- [ vttt (= [ Vo)D) 1 - ablr)

0

Here we used the fact that u is supposed to be a solution of our initial value
problem. It follows that the process {M(s) : 0 < s < t} is a martingale. Hence
we may conclude that

u(t, z) = E[M(0)] = E, [M(2)]

_E, lu((), b(t)) exp (— f V(b(p))dp) s t]

0

t
_E, [ F(b(8)) exp (— J V(b(p))dp) 7> t] .
0
Example 4. (Cameron-Martin or Girsanov transformation). Let U be an open
subset of R, let f belong to Cy(U) and let ¢ : U — R” be an appropriate vector
field on U and let w : [0,00) x U — R be a solution to the following problem:

0
8—7: = %Au + ¢.Vu in [0,0) x U;
u is continuous on [0,00) x U and u(0,z) = f(z).

Moreover we want that lim, ,p ey u(?, x) =0ifb belongs to OU. Then u(t,z) =
E, (exp (Z(t)) f(b(t)) : T > t), where Z(t So db(r) — % é|c(b(7“))|2 dr.

2

For a proof we fix t > 0 and we consider the process {M(s) : 0 < s < t} defined
by M(s) = u(t — 5,b(s)) exp (Z(s)) l{r=s}. An application of Ito’s formula to
the function f(s,x,y) = u(t — s,x) exp(y) will yield the following result

M(s) — M(0)
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— L —%(t —1,0(r)) exp (Z(r)) Lz=pydr

; L Tult — b)) exp (Z(r)) Lipory - db(r)

+L u(t —r,b(r)) exp (Z(r)) dZ(r)

1 min(s,T)
+3 f Au(t —r,b(r)) exp (Z(r)) Lirspydr

+ Zi:lf: Dju(t —r,b(r)) exp (Z(r)) Lir=nyd (b, Z) (r)

N %fo w(t — 1, b(r)) exp (Z(r)) 1yand (Z, Z) ()

_ L {_%(t b)) + g dult — 7, b(r) + e(b(r)) Vu(t . bm)}
exp (Z(r)) 1{7’>7’}dr

+ f: {Vu(t —r,b(r)) + u(t —r,0(r))c(b(r))} exp (Z(r)) Lirspy - db(r)

a % L u(t =1, b(r)) exp (Z(r)) |e(b(r))[* Lipsrydr

+ % f: u(t —r,b(r)) exp (Z(r)) |C(b(r))]2 1yorydr

= f: {Vu(t —r,b(r)) +u(t —r,b(r))c(b(r))} exp (Z(r)) 1z - db(r).

As above it will follow that u(t, z) = E, (exp (Z(t)) f(b(t)) : T > 1).

Download free eBooks at bookboon.com



Example 5. (Stochastic differential equation). Let (a(x));kzl, x € RY, be a
continuous square matrix valued function and let ¢(x) be a so-called drift vec-
tor field (see the previous example). Suppose that the process {X*(s) : s = 0}
satisfies the following (stochastic) integral equation:

X*(t) =z + L c(X*(s))ds + f o(X*(s)) - db(s).

0

t

In other words the process {X*(s) : s = 0} is a solution of the following stochas-
tic differential equation:

dX7(t) = c(XO(t))dt + J(Xx(t)) - db(#)

together with X*(0) = x. The integral So *(s))db(s) has the interpretation
t v
J o(X*(s) (ZJ k(X" (s))dbg(s ))
0 k=1 j=1

Next let u : [0,00) x R” — R be a twice continuously differentiable function.
Then, by Itd’s lemma,

u(t —s, X*(s)) —u(t, X*(0))

ou -
z—f 2 (t—r, X(r))dr

+ f Vu (t—r, X*(r)) - dX*(r)

+ = ZJDDkut—rXx )d{XZ, X} (r)

jkl

Next we compute

d(X7,X7)(r) = Z Tjm (XTM(r)) Opn (X*(r)) d (b, by) (1)

= 2% X(r)) o (X*(r)) dr = (0 (X*(r)) 0 (X*(r))") . dr,

where o(z)7 is the transposed matrix of o(z). Next we introduce the differential
operator L as follows:

1 v 14

L11@) = 5 35 (o1)ote) ) DsDes @) + D

jik=1 j=1

For our twice continuously differential function u we obtain:
u(t—s X$( ) = u(t, X*(0))

= — 8t<t_TX$< r))dr

+ gfo ¢; (X*(r)) Dyu (t — r, X*(r)) dr
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+ LS Vu(t—r, X*(r)) o (X*(r)) - db(r)

#3200 0 (), DDy (¢ 1, X)) dr

]klo

0 0

= f Vu(t —r, X*(r))o (X*(r)) - db(r) + f (L — 5%) w(t —r, X(r)) dr.

So that, if <L — %) u =0, then, for 0 < s < t,

u(t—s, X%(s)) —u(t,X*(0)) = f: Vu(t —r, X*(r)) o (X*(r))db(r),

and hence, the process M(s) := u (t — s, X*(s)) is a martingale on the interval
[0,¢]. It follows that

u(t,x) = E(M(0)) = E(M(#)) = E (u (0, X*(1))) = E(f (X*(#)))

where u(0,x) = f(z). For more details on stochastic differential equations see
Chapter 4.

Example 6. (Quantum mechanical magnetic field). Let @ be an appropriate
vector field on R” and let H(a,V) = 1 (iV + @)* +V be the (quantum mechan-
ical) Hamiltonian of a particle under the influence of the scalar potential V' in
a magnetic field B(x) with vector potential @(z): ie. B = V x @. Let f be a
function in Cy (R”) and let u : [0,00) x Ry — R be a solution to the following
problem:

0
(9_7: — —H(&@ V)uin [0,0) x RY;

u is continuous on [0,00) x R” and u(0,z) = f(x).
Moreover we want that lim u(t z) = 0. Then u(t,z) = E, [e?® f(b(t))], where
(b(s))

[
28 = — f(b( - db(s ——zjva ds—LV

with V- ad = Z %. Put M(s) = u(t — s,b(s))exp(Z(s)), 0 < s < t. An
J

ds

j=1
application of It6’s formula to the function f(s,z,y) = u(t — s, x)exp(y) will
yield the following result

M(s) = M(0) = f(s,b(s), Z(s)) = £(0,6(0), Z(0))

- | L obtor 20 do + [ V.s(o0).20)) - bio)
+f§§<ab<> Z(0)) - d2(0) + fAf<ab<>Z<>>do—

1 Z f 7yar M0 Z(0)d (2,8 ()
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+ ; OS flo,b(o), Z(0)) Z a; (b(U))Q do
- S % (t —o,b(0)) e?do + JS Vou (t —0,b(c)) L db(o)

+ fsu (t—o,b(0)) eZ() . dZ(o) + ;f: Ayu(t —o,b(o)) 2 4o
— Z J (9u. (t = 0.b(0)) W (b(0)do

=1 0 axj
. J u(t—0,b(0))e? Y a; (b(0))* do
2 0 j:1

——=iV -d(b(o))u — V(b(a))u} (t —0,b(0)) ?Ddo

+ s Vou (t —o,b(c)) e - db(o) — iJs u(t —o,b(0)) eZDa(b(0)) - db(o)

0 0

_ J {_% - % iV +a)? - v} w(t — 0,b(0)) ?@do

0

+ LS Vou (t —o,b(c)) e - db(o) — iJOS u(t —o,b(c)) eZDa(b(0)) - db(o)

= L S V.u(t —0,b(c)) e? - db(o) —i L u(t —o,b(0)) ?@d(b(c)) - db(0).

Here we used the fact that the function u satisfies the differential equation. The
claim in the beginning of the example then follows as in Example 4.

Example 7. A geometric Brownian motion (GBM) (occasionally called expo-
nential Brownian motion) is a continuous-time stochastic process in which the
logarithm of the randomly varying quantity follows a Brownian motion, also
called a Wiener process: see e.g. Ross [152] Section 10.3.2. It is applicable
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to mathematical modelling of some phenomena in financial markets. It is used
particularly in the field of option pricing because a quantity that follows a GBM
may take any positive value, and only the fractional changes of the random vari-
ate are significant. This is a reasonable approximation of stock price dynamics
except for rare events.

A stochastic process S; is said to follow a GBM if it satisfies the following
stochastic differential equation:
dS(t) = pS(t) dt + oS(t) dW (t)

where W (t) is a Wiener process or Brownian motion and p (“the percentage
drift” or “drift rate” ) and o (“the (percentage or ratio) volatility”) are constants.

For an arbitrary initial value S(0) the equation has the analytic solution

S(t) = S(0) exp ((M - ";) t+ UW(L‘)) ,

which is a log-normally distributed random variable with expected value given
by E[S(t)] = e*S(0) and variance by Var(S(t)) = e**5(0)? (e(’Qt — 1).

The correctness of the solution can be verified using Ito’s lemma. The random

S(t
variable log (Q> is normally distributed with mean (,u — 102) t and variance

5(0) 2
o%t, which reflects the fact that increments of a GBM are normal relative to the
current price, which is why the process has the name “geometric”.
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Example 8. The term Black-Scholes refers to three closely related concepts:

1. The Black-Scholes model is a mathematical model of the market for an
equity, in which the equity’s price is a stochastic process.

2. The Black-Scholes PDE is a partial differential equation which (in the
model) must be satisfied by the price of a derivative on the equity.

3. The Black-Scholes formula is the result obtained by solving the Black-
Scholes PDE for a European call option.

Fischer Black and Myron Scholes first articulated the Black-Scholes formula in
their 1973 paper, “The Pricing of Options and Corporate Liabilities.”: see [24].
The foundation for their research relied on work developed by scholars such
as Jack L. Treynor, Paul Samuelson, A. James Boness, Sheen T. Kassouf, and
Edward O. Thorp. The fundamental insight of Black-Scholes is that the option
is implicitly priced if the stock is traded.

Robert C. Merton was the first to publish a paper expanding the mathematical
understanding of the options pricing model and coined the term “Black-Scholes”
options pricing model.

Merton and Scholes received the 1997 The Sveriges Riksbank Prize in Economic
Sciences in Memory of Alfred Nobel for this and related work. Though ineligible
for the prize because of his death in 1995, Black was mentioned as a contributor
by the Swedish academy.

7. Black-Scholes model

The text in this section is taken from Wikipedia (English version). The Black-
Scholes model of the market for a particular equity makes the following explicit
assumptions:

1. Tt is possible to borrow and lend cash at a known constant risk-free
interest rate.

2. The price follows a geometric Brownian motion with constant drift and

volatility.

There are no transaction costs.

4. The stock does not pay a dividend (see below for extensions to handle
dividend payments).

5. All securities are perfectly divisible (i.e. it is possible to buy any frac-
tion of a share).

6. There are no restrictions on short selling.

7. There is no arbitrage opportunity.

@

From these ideal conditions in the market for an equity (and for an option on
the equity), the authors show that it is possible to create a hedged position,
consisting of a long position in the stock and a short position in [calls on the
same stock], whose value will not depend on the price of the stock.

Notation. We define the following quantities:
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- S, the price of the stock (please note as below).

- V(S,t), the price of a financial derivative as a function of time and
stock price.

- C(S,t) the price of a European call and P(S,t) the price of a European
put option.

- K, the strike of the option.

- r, the annualized risk-free interest rate, continuously compounded.

- 1, the drift rate of S, annualized.

- o, the volatility of the stock; this is the square root of the quadratic
variation of the stock’s log price process.

- t a time in years; we generally use now = 0, expiry = 7.

- 11, the value of a portfolio.

- R, the accumulated profit or loss following a delta-hedging trading
strategy.

- N(z) denotes the standard normal cumulative distribution function,

1 N 1.2
N(I’) = \/—Z_ﬂ-J e 2% dz.
—0
1 2
- N'(z) = e 2% denotes the standard normal probability density

\V2r

function.

Black-Scholes PDE. Simulated Geometric Brownian Motions with Parameters
from Market Data

In the model as described above, we assume that the underlying asset (typically
the stock) follows a geometric Brownian motion. That is,

dS(t) = uS(t) dt + o S(t) dW (¢),

where W (t) is a Brownian motion; the dIW term here stands in for any and all
sources of uncertainty in the price history of a stock.

The payoff of an option V(S,T) at maturity is known. To find its value at an
earlier time we need to know how V' evolves as a function of S and T'. By Ito’s
lemma for two variables we have

oV (S(t),t) oV (S(t),t) 1%V (S(t),t)
= TdS(t) + war 552—52 d{S,S)(t)
_ <M8(t)av (gét),t) N ov (git),t) N %UQS(t)Qa Véggt),t)) gt
oV (S(t),t)

oS
Now consider a trading strategy under which one holds a(t) units of a single
option with value S(¢) and b(¢) units of a bond with value 5(t) at time ¢. The

(
value V' (S(t),t) of the portfolio of the trading strategy (a(t),b(t)) is then given
by

dv (S(1),1)

+oS(t) AW (t). (3.208)

V(S(t),1) = a(t)S(t) + b(t)B(1). (3.209)
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Observe that (3.209) is equivalent to

0
In addition, a(t) = % which is called the delta hedging rule. Assum-

ing, like in the Black-Sholes model, that the strategy (a(t), b(t)) is self-financing,
which by definition implies
dV (S(t),t) = a(t) dS(t) + b(t) d5(t), (3.210)
we get
dV (t) = pa(t)S(t) dt + b(t) dB(t) + oa(t)S(t) dW(t). (3.211)

Assume that the process t — f(t), i.e., the bond price, is of bounded varia-
tion. By equating the terms with dWW(¢) in (3.208) and (3.211) we see a(t) =
%. From this and again equating the other terms in (3.208) and
(3.211) and using (3.209) we also obtain
V(S 1 4o 28V (S(0),1)
— 4 = t)y—————= | dt
< a7 g

— b(t) dB(L) = <v s@),1) - sV (aé) )) dﬁﬁg)) (3.212)

If the interest rate for the bond is constant, i.e., if d3(t) = r3(t)dt, or, what
amounts to the same, 8(t) = 8(0)e"™, then from (3.212) it also follows that
AV (S(.0) | 1 g PV (S(0).0)
ot 2 052
oV (S(t),t
=r (V (S(t),t) — S(t)i(aé ) )) :

If we trade in a single option continuously trades in the stock in order to hold

oS (t)?

(3.213)

Z 5 shares, then at time ¢, the value of these holdings will be
oV (S(t),t
() = v (5(0).1) - s 20

The composition of this portfolio, called the delta-hedge portfolio, will vary from
time-step to time-step. Let R(t) denote the accumulated profit or loss from
following this strategy. Then over the time period [¢,t + dt], the instantaneous
profit or loss is

oV (5(),1)

dR(t) = dV (S(t), 1) - —=1

ds(t).
By substituting in the equations above we get

OV (S(t),t) 1 4 .02V (S(t),1)
dR(t) = (T + 50 S T) dt.

This equation contains no dW (t) term. That is, it is entirely risk free (delta
neutral). Black, Scholes and Merton reason that under their ideal conditions,
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AN INTRODUCTION TO STOCHASTIC
PROCESSES: BROWNIAN MOTION, GAUSSIAN
ADVANCED STOCHASTIC PROCESSES: PART | PROCESSES AND MARTINGALES

the rate of return on this portfolio must be equal at all times to the rate of return
on any other risk free instrument; otherwise, there would be opportunities for
arbitrage. Now assuming the risk free rate of return is » we must have over the
time period [t,t + dt] (Black-Scholes assumption):

e di = argo) = (B0 L VDY 4

If we now substitute in for I1(¢) and divide through by dt we obtain the Black-
Scholes PDE:

2

V(SO | 1 2@V (5(0.1) OV (S0

ot 2 05? oS

Observe that the Black-Sholes assumption comes down to the assumption of
self-financing, because the resulting partial differential equation in (3.213) and
(3.214) is the same. With the assumptions of the Black-Scholes model, this
partial differential equation holds whenever V' is twice differentiable with respect
to S and once with respect to t. Above we used the method of arbitrage-free
pricing (“delta-hedging”) to derive some PDE governing option prices given the
Black-Scholes model. It is also possible to use a risk-neutrality argument. This
latter method gives the price as the expectation of the option payoff under a
particular probability measure, called the risk-neutral measure, which differs
from the real world measure.

oV (S(1), 1) = 0. (3.214)

i

e-learning
for kids

o The number 1 MOOC for Primary Education
e Free Digital Learning for Children 5-12
®15 Million Children Reached

About e-Learning for Kids Established in 2004, e-Learning for Kids is a global nonprofit foundation dedicated to fun and free learning on the
Internet for children ages 5 - 12 with courses in math, science, language arts, computers, health and environmental skills. Since 2005, more
than 15 million children in over 190 countries have benefitted from eLessons provided by EFK! An all-volunteer staff consists of education and
e-learning experts and business professionals from around the world committed to making difference. eLearning for Kids is actively seeking
funding, volunteers, sponsors and courseware developers; get involved! For more information, please visit www.e-learningforkids.org.

Download free eBooks at bookboon.com
190

Click on the ad to read more



http://s.bookboon.com/elearningforkids

Black-Scholes formula. The Black-Scholes formula is used for obtaining the price
of European put and call options. It is obtained by solving the Black-Scholes
PDE as discussed - see derivation below.

The value of a call option in terms of the Black-Scholes parameters is given by:

C(S,t) = C(S(t),t) = S(t)N(dy) — Ke "T""IN(dy) with (3.215)

d1 = and d2 = d1 — oV T—t. (3216)

The price of a put option is:
P(S,t) = P(S(t),t) = Ke """ N(=dy) — S(t)N(—d,). (3.217)
For both, as above:

N(+) is the standard normal or cumulative distribution function.

T —t is the time to maturity.

. S = S(t) is the spot price of the underlying asset at time ¢.

4. K is the strike price.

5. r is the risk free interest rate (annual rate, expressed in terms of con-
tinuous compounding).

6. o is the volatility in the log-returns of the underlying asset.

W=

Interpretation. The quantities N (d;) and N (ds) are the probabilities of the
option expiring in-the-money under the equivalent exponential martingale prob-
ability measure (numéraire = stock) and the equivalent martingale probability
measure (numéraire = risk free asset), respectively. The equivalent martingale
probability measure is also called the risk-neutral probability measure. Note
that both of these are probabilities in a measure theoretic sense, and neither of
these is the true probability of expiring in-the-money under the real probability
measure.

Derivation. We now show how to get from the general Black-Scholes PDE to
a specific valuation for an option. Consider as an example the Black-Scholes
price of a call option, for which the PDE above has boundary conditions

C(0,t) = 0 for all ¢
C(S,t) > Sas S — w
C(S,T) = max(S — K, 0).

The last condition gives the value of the option at the time that the option
matures. The solution of the PDE gives the value of the option at any earlier
time, E [max(S — K,0)]. In order to solve the PDE we transform the equation
into a diffusion equation which may be solved using standard methods. To this
end we introduce the change-of-variable transformation

2

12 S
T=T—t, u(z,7)=C <K6x7(r*§” )T,T — 7') e, and x = log? + (r— %)T.
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Note: in fact in case we consider a call option we replace V (S(t),t) with
C (S(t),t). Instead of u we may also consider

v(x,t) =V (Kef—(r—%cr?)(T—t)’t> (1)

In case we consider a European call option we take as final value for v: v(z,T) =
V(Ke*,T) = C(Ke*,T) = max (Ke® — K,0) = K max (e —1,0). Then the
Black-Scholes PDE becomes a diffusion equation

ou 1 ,0%
or =27 o
The terminal condition C(S,7T) = max(S — K,0) now becomes an initial con-
dition
u(z,0) = up(x) = Kmax (e — 1,0).
Using the standard method for solving a diffusion equation we have

(" ~(w—y)?/(20%7)
uo(y)e dy.
27T J_»

u(z,7) = -

After some calculations we obtain
w(z,7) = K™ 2N (dy) — KN (d»)

where

x + o’ x
and dy = ——.

oN/T oN\/T

Substituting for u, x, and 7, we obtain the value of a call option in terms of the
Black-Scholes parameters is given by

C(S,t) = SN(dy) — Ke "I N(dy),

dy =

where d; and ds are as in (3.216). The price of a put option may be computed
from this by the put-call parity and simplifies to

P(S,t) = Ke " T"YN(=dy) — SN (—d;).

Risk neutral measure. Suppose our economy consists of 2 assets, a stock and
a risk-free bond, and that we use the Black-Scholes model. In the model the
evolution of the stock price can be described by Geometric Brownian Motion:

dS(t) = uS(t)dt + o S(t) dW (t)

where W (t) is a standard Brownian motion with respect to the physical measure.
If we define

Wity =)+,

Girsanov’s theorem states that there exists a measure ) under which W(t) is a
standard Brownian motion, i.e., a Brownian motion without a drift term and

~

such that Eg [W(t)2] = t. For a more thorough discussion on the Girsanov’s

theorem, which is in fact (much) more general, see assertion (4) in Proposition
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4.24 in Chapter 4 Section 3. The quantity F 7 is known as the market price

of risk. Differentiating and rearranging yields:

dW (t) = dW (t) — ? dt.

Put this back in the original equation:

dS(t) = rS(t) dt + oS(t) dW ().
The probability @ is the unique risk-neutral measure for the model. The (dis-
counted) payoff process of a derivative on the stock H(t) = Eq [H(T) | F;] is a
martingale under . Since the processes S(t) := e "S(t) and H(t), 0 <t < T,
are (Q-martingales we can invoke the martingale representation theorem to find

a replicating strategy — a holding of stocks and bonds that pays off H(t) at all
times ¢ < 7. The measure @ is given by Q(A) = E [e #11,], A € Fr, where

20 - 1 (“ - T)Qt + 2w,

2 o o
In fact a more general result is true. Let s — h(s) be a predictable process such

1
that E lexp ( s)|* ds ] < o0. Put

)
0= [ norawes)+ 3 [

. --vv-cvv-cov-coAlcateI-LUcent 0

www.alcatel-lucent.com/careers

"" N N

One generatlon s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".
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Deﬁne the measure @), by Qn(A) = E[e7#D1y,], A € Fr. Put W,(t) =
W(t) + So s)ds. Then the process W), is a Brownian motion relative to the
measure (. The proof of this result uses Lévy’s characterization of Brownian
motion: see Corollary 4.7. It says that a process W, is a (Q,-Brownian motion
if and only if the following two conditions are satisfied:

(1) The quadratic variation of W), satisfies (W}, W) (t) = t.
(2) The process W}, is a local martingale relative to the measure Qp,.

(For a proof of this result see Theorem 4.5.) In our case we have (W,,, W) (t) =
(W, W) (t) = t, and so (1) is satisfied. In order to establish (2) we use It6
calculus to obtain:

t t
e OW(t) =f e~ AW (s) — f e CIW (s)h(s) AW (s).
0 0

Since the process t — e~ %n(®)

local @p,-martingale.

is a martingale we see that the process W}, is a

We like to spend more time on the Black-Sholes model and the corresponding
risk-neutral measure. Again we have a trading strategy (a(t), b(t)) of a financial
asset and a bond. Its portfolio value V (t) := V (S(t),t) is given by V(t) =
a(t)S(t) + b(t)p(t). Here S(t) is the price of the option at time ¢ and [(¢)
is the price of the bond at time ¢. It is assumed that the process t — S(t
follows a geometric Brownian motion: dS(t) = uS(t) dt+oS(t) dW (t), or S(t) =

S(0)e WO+(n=39")t | et S(t) be the discounted price of the option, i.e.,

S(t) = %5(1&). (3.218)

Put W(t) =Wi(t) + So s) ds, where

-3 59)

Then the process S(t) satisfies the equation

dS(t) = U%S(t) d GL (u - fg((j))) ds + W(t)) — o S(t) dW (t). (3.219)

‘ 1
Put Z,(t) = J q(s)dW(s) + if q(s)?ds. By Girsanov’s theorem the process
0 0

t — W(t) is a (standard) Brownian motion under the measure Q, given by
Qq(A) = E[e % ™M1,4], A € Fr. The solution S(t) of the SDE in (3.219) can

be written in the form

S(t) = §(0)er V3%, (3.220)
Assuming that the portfolio is self-financing we will show that
_ o, | B@)
V(t) =E% mh (S(T)) | F¢|, telo,T], (3.221)

Download free eBooks at bookboon.com



where V(T') is equal to the contingent claim h (S(T")) at the time of maturity
T. Of course, EQ [F ‘ S’t] denotes the conditional expectation of F' relative
Q,, given the o-field F, = o (W (s): s < t) of the variable F' € L' (Q, F7,Q,)
with respect to the probability measure Q,. Another application of It6’s lemma

together with the definition of S(¢), W(t) and V(t) = %V(t) shows the

following result
~ B(0)5'(t) p(0)
av(t) = — o)
R 0 50

(the hedging strategy (a(t),b(t)) is self-financing)

BO)B' (1) pO)
~ge VO dt+ 5o (@) dS() + b(B)dB0)

employ the equation for the option price S(t
y

= PPy g1 4 PO )ty (e + odw (1)) + b(t)5<%>5'(t> dt

p(t)? p(t)
_ 8080 BO)5 ()

)

V() dt + =2 dV (1)

S A0SO Gude + 0 (1)
= oaf(t )6((3))5(75) d{;L (M - %((j))) ds + W(t)}
— a(t)dS(t) = ga(t)S(t) AW (t). (3.222)
In fact the equality in (3.222) could also have been obtained by observing that
AV (t) = a(t)dS(t), and dS(t) = oS(t) dW (). (3.223)
From (3.222), or (3.223), we infer

V(t)=V(0)+0o L a(s)S(s) dW (s), (3.224)

and hence, the process t — YN/(t) is a martingale with respect to the measure
Q,- So from (3.224) we get

BO) sy o ] [80)

WV(t)—V() EC [ \S"t] EC lﬁ(T)V(T)\S"t], (3.225)
and hence

vio =% | Gy 5] =5 [ Jnesan o] e

In addition, we observe that

S(t)/B(T)67502(T7t)+o<f/[7(T)7f/[7(t))
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X exp f @8 - ;JQ) ds + o (W(T) —W(t) + fq(s) ds))

— S(0)elrm2o®)T+eW(T) _ g7y, (3.227)
Inserting the equality for S(7) from (3.227) into (3.226) yields

. & @—%O’QT—t-HTWT—Wt
V(t) = E2 lﬁ(T)h (S(t) ok (T—)+o(W(T) ())) | 33] . (3.228)
Since the variable S(t) is measurable with respect to F;, since the process t —
W(t) is a Q,-Brownian motion, the variable W (T) — W (t) and the o-field F, are
Q,-independent. Moreover, the process ¢t — [3(t) is supposed to be deterministic.
Hence, since the variable S(¢) is measurable with respect to F;, we deduce that

V(1) =V (5(t),1)

L[ (D) ) b
— mfw B(T)h<x B(t)e T—t)+ovT—ty | o=3v* gy Lzsw (3.229)

Hence if the pay-off, i.e. the value of the call option at expiry (time of maturity
T), is given by h (S(T')) = max {S(T) — K, 0}, then the value of the portfolio
at time ¢ < T is given by the formula in (3.229). If 5(¢t) = 5(0)e™, then this
integral can be rewritten as in (3.215) with C' (S,t) = C (S(t),t) = V (S(t),t) =
V(t). Similarly, if h (S(T)) = max{K — S(T),0}, then P (S,t) = P(S(t),t) =
V(S(t),t) = V(t) is the price of a European put option: see the somewhat
more explicit expression in (3.217). For a modern treatment of several stock
price models see, e.g., Gulisashvili [79].
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8. An Ornstein-Uhlenbeck process in higher dimensions

Part of this text is taken from [184]. Let C (t,s), t = s, t, s € R, be a family of
d x d matrices with real entries, with the following properties:

(a) C(t,t) =1I,teR, (I stands for the identity matrix).

(b) The following identity holds: C(t, s)C(s,7) = C(t,7) holds for all real
numbers ¢, s, 7 for which t > s > 7.

(c¢) The matrix valued function (¢, s, z) — C(t, s)z is continuous as a func-
tion from the set {(¢,s) e R x R?: ¢ > s} x R? to R

Define the backward propagator Yo on (]Rd) by Ye(s,t)f(x) = f(C(t, s)z),
zeR? s <t and f e C, (R?). Then Yc is a backward propagator on the space
Cy (RY), which is o (Cy, (R?), M (R?))-continuous. Here the symbol M (R%)
stands for the vector space of all signed measures on R%. The operator family
{Yo(s,t) : s <t} satisfies Yo (81, 82) Yo (82, 83) = Yo (81, 83), $1 < 89 < 83.

Let W (t) be standard m-dimensional Brownian motion on (2,3, P) and let
o(p) be a deterministic continuous function which takes its values in the space
of d x m-matrices. Put Q(p) = o(p)o(p)*. Another interesting example is the
following:

YC,Q (37 t) f(iL')
. 1/2
_ Je§|92f <C(t, s)x + <J C(t, p)Q(p)C(t, p)*dﬂ) y) dy

(27T)d/2

_E [f (C(t, o)z + f C(t, p)o(p) dW(p))] , (3.230)

where Q(p) = o(p)o(p)* is a positive-definite d x d matrix. Then the propaga-
tors Yo o and Ye g are backward propagators on Cj, (]Rd). We will prove this.
The equality of the expressions in (3.230) is a consequence of the following ar-
guments. Let the variable ¢ € R? have the standard normal distribution. Fix
t > 7. Both variables

X7 (t) = C (t, 1)z + f C(t,p)o(p)dW(p), t=r, and

T

¢ 1/2
Ot ) + < J C(t, p)Q(p)C(, p)*dp) & tsr (3.231)

are R%valued Gaussian vectors. A calculation shows that they have the same
expectation and the same covariance matrix with entries given by (3.242) below
with s = t.

Next suppose that the forward propagator C' on R? consists of contractive op-
erators, i.e. C(t,s)C(t,s)* < I (this inequality is to be taken in matrix sense).
Choose a family S (¢,s) of square d x d-matrices such that C(¢,s)C(t,s)* +
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S (t,s)S(t,s)" = I, and put

1
Vo 5.0 (0 = o

In fact the example in (3.232) is a special case of the example in (3.230) provided
Q(p) is given by the following limit:

Je%mzf (C(t,s)x + S(t,s)y) dy. (3.232)

(3.233)

If Q(p) is as in (3.233), then

S(t,s)S(t,s)" =1—-C(t,s)C(t,s)" = f C (t,p) Q(p)C (t,p)* dp.

S

The following auxiliary lemma will be useful. Condition (3.234) is satisfied if the
three pairs (C1, S1), (Cs, Ss), and (Cs, S3) satisfy: C1CF+S51S5F = CoC5+5,55 =
C3C% + S355 = 1. It also holds if Cy = C (3, 1), and

tj
S;S5 = J C (tj,p)o(p)o(p)*C (t;,p)*dp, j=1,2, and

ti—1
to

5055 = | € (t20)0(0)0(0)"C (t29)" dp.
to

3.89. LEMMA. Let Cy, S, Cs, So, and Cs, S3 be d x d-matrices with the following
properties:

Cg = CQCl, and CQSPSTC; + SQS; = SgSék (3234)
Let fe Yy (Rd), and put
1 [ 1 2
Yipf(e) = ——5 | e 2 f (Cix + Swy) dy; (3.235)
(2m)“" J
1 [ 12
Youf(z) = ——5 | e 2V f (Cow + Say) dy; (3.236)
(2m)"= J
]_ [ 1 2
Yigf(z) = s e 2V f (Caa + Ssy) dy. (3.237)
(2m)"= )

Then Y1,2Y2,3 = Y1,3-

PROOF. Let the matrices C; and S;, 1 < j < 3, be as in (3.234). Let
fe (Rd). First we assume that the matrices S; and Cy are invertible, and
we put A3 = S;'C; 1S3, and Ay = S;'C,1S,. Then, using the equalities
in (3.234) we see AsA; = I + AyA5. We choose a d x d-matrix A such that
A*A = [+ A} Ay, and we put D = (A™1)" A3 As. Then we have A5 Az = I+D*D.
Let f € C, (R?). Let the vectors (y1,y2) € RY x R? and (y, z) € R? x R? be such

that
-5 40 e

Ag A% (I + Ay A5 = Ay (I + ASA,) A%,

Since
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we obtain

det (I + A A%) =det (I + ASA,).
Hence, the absolute value of the determinant of the matrix in the right-hand
side of (3.238) can be rewritten as:

‘det (%3 _1?42_%11 1)
det (A3A%)  det (I + AzA3)
T det (A*A)  det (I + A3Ay)
From (3.238) and (3.239) it follows that the corresponding volume elements
satisfy: dy; dy, = dy dz. We also have

w1l + 1al* = lyl® + |z — Dyl (3.240)

Employing the substitution (3.238) together with the equalities dy; dys = dy dz
and (3.240) and applying Fubini’s theorem we obtain:

]. 1 2 2
Yi2Yosf(x) = JJ e 3 (Il e >f (CoCz + CaShyr + Saya) dy1dys

2

— |det Aj (det A) 1"

(3.239)

(2m)
= (2711>d JJ @7%(|y|2+|szy|2>f (033; + S3y) dy dz
= (27r1)d/2 Jve_;|y|2f (C3ZE + Sgy) dy = Y1,3f(q;> (3241)

for all f € C, (Rd). If the matrices S; and C5 are not invertible, then we replace
Cy with 1. = e7°C} and Sy satistying C .C  + 5157, = I, and lim, o 51 =
S1. We take Sy, = e7°5; instead of Sy. In addition, we choose the matrices
Cae, € > 0, in such a way that Cy .C5 + 5555, = I, and lim. g Cac = Ch.

This completes the proof of Lemma 3.89. 0J
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We formulate a proposition in which an Ornstein-Uhlenbeck process plays a
central role. Here p — o(p) is a deterministic square matrix function, and

Q(p) = a(p)a(p)*.

3.90. PROPOSITION. Put X™*(t) = C' (t,7)z + Si C(t,p)a(p)dW (p). Then the
process X7 (t) is Gaussian. Its expectation is given by E[X7*(t)] = C (¢, 1)z,
and its covariance matriz has entries (s, t = 1)

min(s,t)
P-cov (X]*(s), X[ (1)) = ( [ cenamcr dp> (3.24)
T j,k
Let {(Q, FP..), (X(t),t=0), (Rd, ‘Bd)} be the corresponding time-inhomogen-
eous Markov process. By definition, the P-distribution of the process t +—
X7%(t), t = 7, is the P, ,-distribution of the process t — X(t), t = 7. Then this
process is generated by the family operators L(t), t = 0, where

[
L®)f(z) =5 > Qir(t)D;Dyf(x) + (Vf(x), A(t)z) (3.243)
k=1
t+ h,t)—1
Here the matriz-valued function A(t) is given by A(t) = l}ibﬁ]l Clt+ h, ) .
The semigroup e**®), s >0, is given by
GSL(t)f<CC)
=E [f <eSA(t):E + J e(s_p)A(t)a(t)dW(p)>]
0
1 s 1/2
- — Je—élyIQf eSAM 4 4 (J epA(t)Q(t)e”A(t)*dp> y | dy
(2m)¥ 0
- [ ps.m0) f)y (3:244)
where, with Qaw)(s) = J epA(t)Q(t)epA(t)*dp; the integral kernel p (s, x,y;t) is
0
given by
p(s,z,y;t)
_ 1 6(—%<(QA(¢)(S))_1(y—BSA(t)f)y—eSA(t)z»
1/2 :

(27)% (det Qg (s))

If all eigenvalues of the matriz A(t) have strictly negative real part, then the
measure

1 ~Slyl? a0 (e d®° g
B +— gz | e 1p e’ MQ(t)e dp y | dy
(2m) 0

defines an invariant (or stationary) measure for the semigroup e*® s > 0.
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The equalities in (3.244) follow from a standard formula for the distribution
of a Gaussian (normally distributed) vector with a given invertible covariance
matrix: see the formulas in (3.8). A Markov process of the form

{(Q,F,P,.), (X(t),t =0), (R Bga) }

is called a (generalized) Ornstein-Uhlenbeck process. It becomes time-homo-
geneous by putting C(t,s) = e =94 where A is a square d x d-matrix. We
will elaborate on the time-homogeneous case. In this case we write, for , b € R,

S(t)f(z) :=E [ f (e—“‘x +(I—e )b+ J t e~ =944 dW(s))] . (3.245)

0
where f : R? — C is a bounded Borel measurable function. If f belongs to
Co (]Rd), then S(t)f does so as well. For brevity we write

¢
X't)y=ez+(I—e")b+ f e~ A5 d (s).

0

It also follows that for such functions lim, o S(¢)f(z) = f(z) for all z € R%
Since we also have the semigroup property S (t; + to) f = S (t1) S (t2) f for all
t1, to = 0, it follows that the semigroup ¢ — S(t) is in fact a Feller semigroup.
Theorem 3.37 implies that there exists a time-homogeneous Markov process

{(,F,Py) g » (X(8), 6 =0), (U, t = 0), (RY, Bga) }
such that for a bounded Borel function f we have
E,[f (X(1)] =E[f(X*(t)] = S(t)f(x), v e R". (3.246)
Nest we prove the semigroup property. First we observe that, for x € R? and
tly lo =2 07
to

X7 (t +to) = e PAXT (1) + (1 — e %) b+f e~ DA AW (s + 1) . (3.247)
0

Let (", F",P) be the probability space on which the process ¢t — W(t) is a
Brownian motion. Let (?XV ) 1>o Pe the internal history of the Brownian motion
{W(t): t =0}, so that F¥ = 0 (W (s) : s <t). Then by the equality in (3.247)
we have

E[f (X"t +t2)) | FV] (3.248)
to
=E lf <et2AX"" (t1) + (I - e’tQA) b+ f e~ 275 qW (s + tl)) | 3"2/]
0
We employ the fact that the state variable X* (¢;) is F}/-measurable, and that

t1+to 2
f ef(tlthgfs)AO. dW(S) — f e*(tsz)AO-d {W (S + tl) 4 (tl)}
t

1 0

is P-independent of 3"2/ and possesses the same P-distribution as the variable
82 e~ (275044 dW (s) to conclude from (3.248) the following equality:

E[f (X" (t1+1t)) | FV]
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to
=]E[f (e_tzAz-l- (I—e_tzA)b-i-f e~ Ag AW (s ))] |z=Xw(t1)

=E [f (X* (tQ))] ‘Z=Xz(t1) . (3.249)

From (3.249) it follows that the process t — X7(t) is a Markov process and
that, by the definition of the operators S(t), t = 0,
]

St +1t2) f(z) =E[f (X" (t1 + t2))
—E[E[f (X ()] |,_yo() | = EIS (t2) £ (X" (11))]

= S (t1) S (t2) f (). (3.250)
We calculate the differential dX*(t) and the covariation process (X2, X7 (t):
dX*(t) = —A(X®(t) —b) dt + 0 dW (s), and (3.251)

t
(X7 XN () = f (G_SAM*G_SA*)' ds = cov (XE (), X5(1) . (3.252)
0 J1,J2

In other words the process t — X*(t) satisfies the equation

X(t) =z + Jt

0

A(b—X"(s)) ds + f o dW (s). (3.253)
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Since its covariation is deterministic we have that the covariation coincides with
its covariance: see (3.252). Let f : RY — C be a bounded continuous function
with bounded and continuous first and second order derivatives. Next we apply
It6’s lemma, and employ (3.251) and (3.252) to obtain

FX7(0) — £ (X7(0)) = j VI (X*(s)) - {~A(X"(s) - b)} ds

Z J Dj, f (X*( ))( _SAJU*B_SA*) ds

+ fo VI(X%(s)) odW(s). (3.254)

Upon taking expectations in the right-hand and left-hand sides of (3.254), using
the fact that the stochastic integral in (3.254) ia a martingale, and letting ¢ | 0
shows:

St f(z) — f(=) E[f(X*(#) - f (X*(0))]

Laf(x):= 1}&1}1 . = l}fg ;
d
= (A=) V@) D (00", D Dpfl). (3259)
Ji,j2=1

In the following proposition we collect the main properties of the time-homo-
geneous Ornstein-Uhlenbeck process t — X*(t). It is adapted from Proposition
3.90. In addition, o = o(p) is independent of p.

3.91. PROPOSITION. Put X*(t) = e "z + (I —e )b+ § e =4 dW (p).
Then the process X*(t) is Gaussian. Its expectation is given by E[X*(t)] =
ey + (I — e*tA) b, and its covariance matrixz has entries

min(s,t)
P-cov (X7 (s), X5 (1)) = <J e~ TP AGgH et AT d,o) (3.256)
J1,J2

0

Let {(Q, F,P,),(X(t),t=0), (]Rd, Bd)} be the corresponding time-homogeneous
Markov process. By definition, the P-distribution of the process t — X*(t),
t = 7, is the P,-distribution of the process t — X (t), t = 0. Then this process
18 generated by the operator Ly, t = 0, where

d

LAf(x)Z% S (00%);,,, Dy Dinf(2) — (VF(2), Alw— ). (3.257)

Ji,g2=1
The semigroup e*“4, s > 0, is given by

e*t f ()

:Elf <€_SA(x—b)+b+JS =P A aW (p )>]
- 71 e3P f [ emsA(x — ( Se_pAaa*e—PA* )1/2
(27r)d/2f f < (z—0)+b+ L dp) y| dy
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= pr (s,2,9) f(y)dy (3.258)

where, with Q4(s) = J e PAaote P dp, the integral kernel pa (s,z,y) is given
0
by

1 (2 {(@a() ™ (y—e~*A—b)—b) .y—e~*A(e—b)-b) )
(2m)"" (det Qa(s))"

If all eigenvalues of the matriz A have strictly positive real part, then the measure

1 1 2 © * 1/2
B — e )d/2 Jezlyl 1| b+ <J e Ploote P4 dp) y | dy (3.259)
7r 0

defines an invariant measure for the semigroup 4, s = 0.

pPA (87 z, y) =

PRrOOF. The results in Proposition 3.91 follow more or less directly from
those in Proposition 3.90. The result in (3.259) follows by letting s — oo in
the second equality of (3.258) or in the definition of the probability density

ba (s,x,y). U

For more information about invariant, or stationary, measures see, e.g., [184]
(Chapter 10) and the references therein like Meyn and Tweedie [125].

In order to apply our results on the Ornstein-Uhlenbeck process to bond pricing
and determining interest rates in financial mathematics the identities and results
in the following proposition are very useful. It will be applied in the context of
the Vasicek model.

3.92. PROPOSITION. Let the notation and hypotheses be as in Proposition 3.91.

Put
Tt

T
A(t,T) = J e P dp = J e ds=A" (I - e’(T’t)A) , 0<t<T,
t

0

where the last equality is only valid if A is invertible. Let y be a vector in RY.
The following assertions hold true.

(1) The following identity is true for 0 <t <T':
T

fov Alt, T)(Xf”(t)—b)Jr(T—t)bJrf A(p,T) o dW(p). (3.260)

t

(2) The random vector St X?(s)ds is Gaussian (or, what is the same, mul-
tivariate normally distributed) with conditional expectation given by

E UfXﬂﬁ(s) s | &"t] _E fox(s) ds | X””(t)] A T) (X7(8) — b)+ (T—1)b,

(3.261)
and covariance matriz given by (1 < j1, ja < d)

cov (f Xi(s)ds | X* (), LT X7 (s)ds | Xx(t))
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) (LT A(p.T) 00" A (p.T)" dp>m . (3.262)

(3) The random variable <y St X*(s ds> is normally distributed with con-
ditional expectation given by

E [<y,£TXx(s) ds> \fﬂ] =E [<y,£TXx(s) ds> \X””(t)]
= (y, AL, T) (X*(t) = b)) + (T' = 1) {y. b) , (3.263)

and variance given by

ar(<y, LT X7 (s) ds> }X%)) = f l0* A (p, T)* y|* dp. (3.264)

(4) The conditional expectation of exp (— <y St X*(s ds>> giwen Fy 1s log-

normal, and

o (- ) ]2 (- [ 000)) )

=exp(—<y,A<t,T><X$<t>—b>>—<T 0 (y.b) + j\aAp, yfdp).
(3.265)

PRrOOF. (1) From (3.247) we see, for s > t,
X% (s) = e DX () —b) + b+ J ~6=PAG AW (p) . (3.266)
t

Then we integrate the expressions in (3.266) against s for t < s < 7', and we
interchange the integrals with respect to ds and dW (p) to obtain the equality
n (3.260). This proves assertion (1).

(2) Although the process ¢t +— S?A(p, T) dW(p) is not a martingale, it has
enough properties of a martingale that its expectation is 0, and that its quadratic
covariation matrix is given by the expression in (3.262). The reason for all this
relies on the equality:

T T ¢
| Ay aw) = [ aem) awe - [ apmy avi). @2
combined with the fact that the process t — Sg A(p,T) dW (p) is a martingale.
So we can apply the Ito isometry and its consequences to complete the proof
of assertion (2). An alternative way of understanding this reads as follows.
Processes of the form s — X7(s), s < 0, and ¢t — St X*(s)ds, 0 <t <T,
consist of Gaussian vectors with known means and variances. For 5= t we use
the representation in (3.266) for X*(s), and for St X*(s)ds we employ (3.260).

(3) The proof of this assertion follows the same line as the proof of the assertion
in (2).
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(4) If the stochastic variable Z is normally distributed with expectation p and
variance v? = E[(Z — u)2], then E [eZ] = e#t3v" | This result is applied to the
variable Z = — <y, SZ’ X7*(s) ds> to obtain the equality in (3.265).

This completes the proof of Proposition 3.92. O

3.93. LEMMA. Let the notation and hypotheses be as in the proposition 3.91 and
3.92. Suppose that the matrix A is invertible. The following equality holds for
0<t<T:

JTA (p,T)oo*A(p, T)" dp
:t (T —t)A \o0* (A*) 7 — A(t, T) A loo™ (A*) ™' — A7 oo™ (A") A (1, T)*

+ JT_t e PAA \go* (AF) e dp. (3.268)
If the z'r?vertible matriz A is such that Aoco* = oo*A*, then the following equality
18 valid for 0 <t < T':

JT A(p, T)oo*A(p, T)* dp

t

— (T —t)A oo™ (A*) ™' — A(t,T) A oo™ (A*) ™ — % (At,T))? oo™ (A%)7!

_ (T CE_AGT) - %A (Alt, T))2> Ao (A7) (3.269)
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Observe that an equality of the form Acc* = go*A* holds whenever A = A*
and the matrix oo* is a “function” of A. In particular this is true when d = 1
and A = a is a real number.

Proor or LEMMA 3.93. Since A is invertible we have
A(p,T)= (I - e*(T*p)A) AL

and so
T
| A m)oor a1y a0
¢ . *
= f (] — e_(T_p)A) A loo* (A"‘)_1 (I — e (T=p)4 ) dp
t

Tt
= J (I—e*) A loo* (A"~ (] - e_”A*) dp

0
— (T —t)A loo* (A" " — A, T) A oo* (A*) ' — A too™ (A" A (L, T)*

T—t
+ f e PAA oo (A) e P dp. (3.270)
0

The final equality in (3.270) proves (3.268). Next we also assume that Acc* =
ogo*A*. Then oo*e 4" = ¢=P450*, and hence

Tt
j e P A oo (A*)f1 e P dp
0
T—t
= J e 2P dp A oo (AF) e P
0
1

-5 (I —T04) A 200 (A7) e, (3.271)
A simple calculation shows
1 1
5 (I —e 20794 = A(t, T)A - 5 (Alt, T))* A%, (3.272)

and so the equalities in (3.271) show

Tt T—t
f e PAA oo (AF) e P dp = J e 2 dp A\ oo* (AF)
0 0

- (A1)~ § (A0 T 4) Ao (40) (3:273)

A combination of (3.270) and (3.273) together with the equality oo*A (t,T)* =
A(t,T)oc* then yields the equality in (3.269), completing the proof of Lemma
3.93. -

Before we discuss the Vasicek model we insert Girsanov’s theorem formulated
in a way as we will use it in Theorem 3.101. In fact we will formulate it in a
multivariate context.
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3.94. THEOREM. Let {X(t): 0 <t <t} be an It process satisfying
dX(t) =v(t)dt + u(t)dW(t). 0<t<T.
Suppose there exists a process {0(t) : 0 <t < T}, with the property that

P UOT|9(¢)|2 dt < oo} ~1,

such that the process v(t) — u(t)6(t) has this property as well. Assume further-
more that the process t — E(t), 0 <t < T, defined by

E(t) = exp (- f "0(s) AW (s) %f: 6(s)[? ds) (3.274)

0
is a P-martingale, which is guaranteed provided E[E(t)] = 1 for 0 <t < T.

Define the measure P* such that Cg; = &(T). Then

ts WH(E) i= W(E) + f@(s) ds, tel[0,T7,

is a Brownian motion w.r.t. P* and the process {X(t): 0 <t < T} has a rep-
resentation w.r.t. W*(t) given by

dX (1) = (v(t) — u(t)0(t)) dt + u(t) dW*(2).

We shortly show that {E€(t): 0 <t < T} is a diffusion process. Set Y (t) =
§:0(s)dW(s), 0 < t < T, and consider the function f(t,z) € C?([0,T],R)
defined by

f(t,z) = exp (—a: - %L 10(s)[? ds) :
Then we clearly have that £(t) = f (¢t,Y (¢)). By Itd’s formula we have
de(t) — —% 0(6)2 £(8) dt — E(D)O(E) AV (1) + %S(t) A0

= 3 IO () dt — £)6(0) AW (1) + (1) () e
= —0(t)E(t) dW (¢). (3.275)

Hence, it follows that

E(t) = £(0) —f 0(s)&(s) dW (s),

0
which in general is a local martingale for which E[E(¢)] < 1. It is a sub-
martingale, but not necessarily a martingale. If, for 0 < ¢t < T, the expecta-
tion E[E(t)] = 1, then t — E(t), 0 < t < T, is a martingale. If Novikov’s
condition, i.e., if E [exp <% SOT 0(t)[° dt)] <  is satisfied, then the process
{€(t) : 0 <t < T} is a martingale. For details on this condition, see Corollary
4.29 in Chapter 4. For more results on (local) exponential martingales see sub-
section 1.3 of Chapter 4 as well. In section 3 of the same chapter the reader may

find some more information on Girsanov’s theorem. In particular, see assertion
(4) of Proposition 4.24 and Theorem 4.26.
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8.1. The Vasicek model. In this subsection we want to employ the results
in Proposition 3.92 with d = 1 to find the bond prices in the Vasicek model.
Until now we were always working in the physical probability space (2, F,P).
In order to calculate the fair price of a financial instrument one often uses the
method of risk-neutral pricing. Through this technique the price of a financial
asset is the expectation of its discounted pay-off at the so-called risk-neutral
measure (). The risk-neutral measure is equivalent to the physical measure P.
Suppose for example that {S(t)}, ., is the price of a certain asset at time .

The price of our asset at time t discounted to time 0 is then given by S (t) :=
e~ lorwdug (t). As a main property of the risk-neutral measure, the family of

discounted prices {§ (t) is a Q-martingale. This means that for every s,
=0

0 < s <t, we have
E [§(t) | CFS] —E [e— Jormdug(py | 52] — e lrwdug(s) = §(s),  (3.276)

where expectations E are with respect to ). Because of this property, a risk-
neutral measure is also called an equivalent martingale measure. Roughly speak-
ing, the existence of such a measure is equivalent with the no-arbitrage assump-
tion. We will use this martingale property to price a zero-coupon bond. That
is a financial debt instrument that pays the holder a fixed amount named the
face value at maturity T. For simplicity we take 1 as face value. The price of a
zero-coupon bond is then given by the following theorem.
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3.95. THEOREM. Consider a zero-coupon bond which pays an amount of 1 at
maturity T'. The price at time t < T s then

P(t,T)=E [e*f re)ds | 53} . (3.277)

Proor. We use the above explained property that the discounted price
t
e~ Yo7®) 4 P(t T) is a martingale, and the trivial fact that P(T,T) = 1,

e~ S%r@dp Ty E [6—55 "©)ds p(T, T | 3@] —E [e— §g r(s)ds | 33]

— e lirds [(;Sf () ds | gt] _ (3.278)

The bond’s price can thus be written as P(t,7) = E [e‘StT r(s)ds | 3’}]. This
completes the proof of Theorem 3.95. O

Formula (3.277) is an expression of the bond’s price for an arbitrary chosen
interest rate process. We will now apply this to our Vasicek model {r(t)},,.
We will investigate three methods that all lead to the same result stated in
the following theorem. We follow the approach of Mamon in [121]. For an
alternative approach see [150] as well.

3.96. THEOREM. Consider a zero-coupon bond which pays an amount of 1 at
maturity T'. Suppose that under the risk-neutral measure the short rate follows
an Ornstein-Uhlenbeck process: dr(t) = a (b —r(t)) dt+o dW(t). The fair price
of the bond at time t < T is then given by

P(t,T) = e AGTIrOTLET) (3.279)
where
1— —a(T—t)
A(t,T) = ‘ET and
A, T) =T + 1) (a®b — 0%/2 2A(t,T)?

Equation (3.279) is an affine term structure model. In fact, the bond yield y.(7")
is defined as the constant interest rate at which the price of the bond grows to
it’s face value, i.e., P(t,T)e¥M Tt = 1. We thus find that

~ —logP(t,T) A(t,T)r(t)— D(t,T)

Tt Tt ’
which is indeed affine in r(¢). The yield curve or term structure at time t is the
graph (T, ().

8.1.1. Bond price implied by the distribution of the short rate. The first
method to calculate the bond price is quite straightforward. It calculates the
conditional expectation in formula (3.277) by determining the distribution of

E [StTr(s) ds | Sft].

ye(T)
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FIRST PROOF OF THEOREM 3.96. Because formula (3.277) shows that the
bond’s price at time ¢ is conditional on F;, we may assume that r(¢) is a pa-
rameter. Using formula (3.266) (for d = 1, and A = 1) with starting time ¢ we
find, for s > t,

r(s) =r(H)e ™ 4+ b (1—e D) 4 J e~ P g dW (p).
t

We want to determine the distribution of e~ % "®)4s conditioned by &;. Note
that because of the Markov property of the Otnstein-Uhlenbeck process (or
more generally for diffusion processes: see the equality in (3.249)), this distri-
bution will only depend on r(¢). Let’s start by determining the distribution of
S;‘F r(s) ds given F,. This distribution is normal, and essentially speaking this it
follows from Proposition 3.92 and Lemma 3.93. First of all from assertion (3)
in Proposition 3.92 we get by (3.263)

E Ufr(s) s | fﬂ} _E Ufr(s) s | r(t)] _ A, T) (1(t) — b) + (T — )b,

(3.281)
Secondly from (3.264) and (3.269) in Lemma 3.93 we get

var (LTXSC(S) s | Xf(t)) (" o2 (A (.12 dp

—

2

‘ Q

<T At T) - g (A(t, T))2> . (3.282)

The equality in (3.279) of Theorem 3.96 then follows from (3.282) and (3.265)
in (4) of Proposition 3.92. O

IS
o

8.1.2. Bond price by solving the PDE. A second method that is proposed to
calculate the bond’s price in the Vasicek model, is by solving partial differential
equations. More precisely, we will derive a PDE for the bond’s price by using
martingales.

Taking into account the Markov property of the process {r(t)},., (see equality
in (3.249)) one can introduce the following variable:

P(t,T)=E [e— 5/ r(s)ds | sz] —E [e_StT ri)ds | r(t)]

—E|e S0 | Pt Tr(1), (3.283)

Here r(s), s > t, is the function of r(¢) given by
r(s) = r(t)e ) + b (1- ea(s_t)) + f e~ =P dW (p). (3.284)

t

We now provide a second proof of Theorem 3.96.

SECOND PROOF OF THEOREM 3.96. We will apply Itd’s formula to the
function f(t,z) = e %"} P(t T, z). Then we obtain

E ek % — P (0,7,r(0)) | 5] = e B ONP (1, Tr(1) - P (0.7,7(0))
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ds &P (u7 Tv T’(U))
ou

N Lt {6—837‘(8) SEACEE T(“))] (a (b= r(w)) du + odW (u))

du

t
= J {—T(u)e §o 7(s) ds p (u’ T, T(u)) +e S r(s)
0

or(u)

t 2
+ U_f le—SST(S)dsa P(U,T,T(U))] du (3285)
2 0
ut

or(u)?
P
f(t) = —r(t)e_ SéT(S)dSP (t, T,T(t)) +e 58 r(s)ds or (taaj;ar(t))

e E2ERION (0o - o)
0% s PP (t,T,r(t))
R 0

From the equality in (3.285) it follows that the process ¢ — Sé f(u)du is a
martingale. By Lemma 3.97 below it follows that f(¢) = 0 P-almost surely.
From (3.286) it then follows that the function P(t, T, z) satisfies the following
differential equation:

OP (t,T,x) 0P (t,T, x) 0?0°P (t,T,z)
pEn + . (a(b—x)) + I 0.

(3.287)

(3.286)

—xP (t,T,x) +

From (3.283) and (3.284) it follows that

oP(t,T,xz) -1 (1—e D) P(t,T,x) = —A(t, T)P(t, T,z).  (3.289)

ox a
From (3.288) we easily infer that

P(t,T,z) = C(t,T)e A0z, (3.289)
Inserting this expression for P (¢, T, x) into (3.287) yields the first order equation

1 0C(t,T) O0A(t,T) o? 5

— — — A(t, T b— —A(t, T)" = 0.

Tt enT 5 ¢~ AGT) {alb —2)} + S AR T)

(3.290)
A(t, T
Because —1 — ‘ E%’ ) + aA(t,T) = 0, the equality in (3.290) implies:
1 oC(t,T) o? 9

—= —abA(t,T) + - A(t,T)* = 0. 3.291

Since C(T,T) = P (T,T,0) = 1 from (3.291) we infer C(t,T) = e”®T) and
hence

P(t,T) = P (t,T,r(t)) = e AGTIrO+FDED)
which completes the proof of Theorem 3.96 by employing the PDE as formulated
in (3.287). O

The equation in (3.287) is called the PDE for the bond price in the Vasicek
model.
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3.97. LEMMA. Let (Q, (F)i=0 ,IP’) be filtered probability space, and let the right-
continuous adapted process { f(t)},5, be such that for some sequence of stopping
times (T,,),,cn, Which increases to o, the integrals gé |f(s)|1p1,m, ds are finite P-
almost surely. If the process t — Sg f(s)ds is a local martingale, then f(t) =0
P-almost surely for almost all t.

PROOF. Fix 0 < T < co. By localizing at stopping times (7;,), ., 7o,
neN, 7, 1 0 (n — o) we may assume that

E UOT 10] ds] <. (3.202)

Otherwise we replace f(t) with f (¢) 1j0..1(¢), and prove that f (t) 1jo1(t) = 0
for all n € N. But then f(¢) = 0, by letting n — c0. So we assume that (3.292)
is satisfied. Then for 0 < s <t < T we have

ff(p) dp + E U:f(p) dp | 3"5] =E U:f(p) dp | 3"5] = ff(p) dp. (3.293)

From (3.293) we infer that E [Si f(p)dp | 3"5] = 0, P-almost surely, for all 0 <

s <t < T. differentiating with respect to ¢ then results in E[f(t) ‘ F] =0
P-almost surely for all 0 < s <t <T. But then, by the right-continuity of the
process {f(t)},>, it follows that

f(s) = ltllmE [f(t) | F5] =0, P-almost surely.

< T,

This completes the proof of Lemma 3.97. OJ
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8.1.3. Bond prices using forward rates. The third and last method to calcu-
late a bond’s price in the Vasicek model, is based upon the concept of forward
rates. Indeed, in the Heath-Jarrow-Morton pricing paradigm the closed-form
of the bond’s price follows directly from the short rate dynamics under the so-
called forward measure. Suppose we are at time t. We want to know the rate
of interest in the period of time between T} en Ty with t < T} < T,. This is
called the forward rate for the period between 77 and 75 and we denote it by
f(t, Ty, Ty). When the rates between time ¢ and 7} and between time ¢ and T,
are known - write R; and Ry - we must have:

LT =) o f (6T, T2) (T =T1) _ Ra(To—t)

Hence, we find for the forward rate

Ry (To —t) — Ry (Th — )
11,15 = .
f(t> 1, 2) Tg—Tl
Applying this in our framework of bond prices, R; and Ry equal the bond yields:
—log P (t,T}) R —log P (t,T5)
_ Yol \W Al y = o\t

T, —1 ’

such that the forward rate is given by

o1, 1) = R s P,
When T} and T5 come infinitesimally close to each other, we obtain a so-called
instantaneous forward rate. The instantaneous forward rate at time T > t is
. log P (t,T)—log P (t,t) 0log P (t,t')
f(ta T) = tl,l_r)%ﬂ T — ¢ o ot |t’:T )
Solving this partial differential equation for P (¢,7") on [t,T] we find immedi-
ately that

P(t,T) = ¢} Js)ds, (3.294)
Later on we will see that the link between the instantaneous forward rate and
the short rate is the so-called forward measure. In the sequel, we will need two
properties of conditional expectations under change of measure. These results
can be found in [42]. In the following theorems IP is a probability measure on a

d
o-algebra F, the probability measure () « P is such that dg = /. Furthermore
G is a sub-cg-algebra of F. The symbol E denotes expectation w.r.t. P, while
E® stands for expectation w.r.t. Q.

3.98. THEOREM. In the notation of above, it holds that

dQ |,
P =E[Z]9].

g

Proor. Take an arbitrary B € §. We need to show that
QB)=E[E[Z]S]15].
Indeed:
E[E|Z|S]15] =E[E[Z15 | S]] = E[Z15] = Q(B).
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This completes the proof of Theorem 3.98. O

3.99. THEOREM. For any F-measurable random variable X :
E[Z[S]E?[X|S] =E[2X |§].

PROOF. Let Y = E[Z | G]. Take B € G arbitrary, then:
E°[1:E[ZX | S]] =E[Y15E[ZX | §]] =E[E[Y15ZX | §]]
=E[Y15ZX] =E?[Y15X] = E°[E?[15Y X | §]]
=E°[1:E? [V X | 9]].
]

In the first step we used that 1gE [ZX | G| is G-mesurable. Hence we could
apply Theorem 3.98 which tells us that d@ ‘9: Y dP ‘9. Because the previous
reasoning holds for all B € § we must have:

B[ZX |§] =B [yX | g] = YEC[x | g

what proves the claim in Theorem 3.99. U

As well as the economic term forward rates, we introduce the concept of a
numéraire. A numéraire is a tradeable economic security in terms of which
the relative prices of other assets can be expressed. This allows us not only to
compare different financial instruments at a certain moment, it makes it also
possible to compare the prices of assets at different times. A typical example
of a numéraire is money. The random variable M (t) = efo™®)4 represents the
value at time t of an asset which was invested in the money market at time
0 with value 1. Recall that in accordance with the definition of a risk-neutral
measure (), the price of an asset relative to the money market is a martingale.
In our new notation the expressions in (3.276) become:
S(t ¢ s S(s
E lML(t)) | ”fs] — B[ hrtug(p) | F,| = e S dug(s) - M<(S)),
with 0 < s < t. We say that @) is an equivalent martingale measure for the
numéraire {M(t)},.,. Let N(t) be the price at time ¢ of another traded asset.
Suppose that Q* is an equivalent martingale measure for {N(t)},.,, i.e. for all

0<s<t:
N(t) N(s)
We can also define this measure on the basis of the Radon-Nikodym derivative

of Q* w.r.t. Q.

3.100. THEOREM. Suppose that () is an equivalent martingale measure for the
numéraire {M(t)},5,. Let Q* be an absolutely continuous measure w.r.t. Q
defined by the Radon-Nikodym derivative:

b 49 MO NG

dQ 7 M(t) N(0)
where N(t) > 0 is the price at time t of a particular asset. Then Q* is an
equivalent martingale measure for {N(t) : t = 0}.

(3.295)
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PROOF. Denote expectations w.r.t. @ by E and w.r.t. Q* by E*. Let
S(t) be the price of an asset at time ¢ > 0 and assume S(t) € L*(Q,F;, Q) N
L? (9,5, Q). Fort = s = 0 we find using Theorem 3.99

« [ S0 _ | MO)N(2) S(@) (0)N(t)
= |56 17| -= oo v 1) v | 7
M) | 5(2) N(0) M(s) _ S(s)
- ¥O® 3| %) drey v ~ Koy
The proof of Theorem 3.100 is complete now. 0

(]
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Note that the measures ) and Q* are equivalent because of the strictly posi-
tiveness of the Radon-Nikodym derivative. We already mention the following
theorem which transforms the dynamics of a process under () to a process under

Q*.

3.101. THEOREM. Let Q be an equivalent martingale measure for {M(t)},., and
let Q* be defined by equation (3.295). Assume {X(t): 0 <t <t} a diffusion
process with dynamaics under @)

dX(t)=b(t, X(t)) dt + o (t, X(t)) dW(1).
Let also M(t) and N(t) have dynamics under Q given by
dM(t) = mprdt + op dW(t), dN(t) = my dt + oy dW (t).
Then the dynamics of {X (t) : 0 <t <t} under Q* is given by

AX(t) = b(t,w) dt — o (t,w) (A‘%) - A‘j—(f;)) dt + o (t,w) dW*(t),

where

WHE = W) + f (37t~ o) @

PROOF. It is clear that we want to apply Girsanov’s Theorem 3.94. But then

we need to know how 6 (t,w) in expression (3.274) looks like. From expression
(3.275) we know that

dl'y = =0 (t,-) [ dW (). (3.296)
On the other hand:
~ M(0) N(t) M(0) dN(t)M(t) — N(t)dM(t)
= o (i)

(© @) N(0) M(t)?
- % ((my dt + on dW(t)) M(t) — N(t) (ma dt + oa dW (1)) -

(3.297)

Because {I'; : 0 <t < T} is a martingale we must have that the coefficient of dt
is 0, hence

M{(0)
N(0)M(t)?

- (% - ]\Z—A(fj)) T, dW(t).

Comparing this with (3.296) we have that

Ot w) = —2L N

dr, = (on AW ()M(t) — N(t)op dW (1))

S M(t) N(@t)
Finally applying Girsanov’s Theorem 3.94 to this we have

dX(t) = b(t,w) dt — o (t,w) (J\%> . ]\%) dt + o (t,w) dW* (1),
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with

WHE = W) + f (37t~ weg)

Altogether this completes the proof of Theorem 3.101. 0

In order to make the link between the short rate r(¢) and the instantaneous
forward rate f(¢,T), we introduce a new measure Q7. Suppose again that Q is
the risk neutral measure w.r.t. the money market and E the expectation w.r.t.

Q.

3.102. DEFINITION. Take T" > 0. The forward measure Q7 is defined on Fr by
setting

L @ _ M(O) _ —Sgr(s) s
I'p:= 0 = TT)P(T, T)P(0,T)=e¢ “p(0,T),

where

M(t) = esér(s)ds7 and P(t,T) =K [6_ S?T(s)ds ‘ Stt] ‘

By the previous theorem we conclude that Q7 is an equivalent martingale mea-
sure which has a bond with maturity 7" as numéraire.

For t < T we can easily calculate I'; as follows:

I, :=E[lr|F] = M(0) E[P(T’T) \33]

P(0,7) | M(T)
1 PUT) _gpeas £ GT)
“Po.) M@ ¢ P(0,7)

where we used in the second to last equality that @ has {M(t)},., as numéraire.
Now we have all theoretical background information to formulate the third proof
of Theorem 3.96.

THIRD PROOF OF THEOREM 3.96. Denote as before the expectation w.r.t.
Q by E and the expectation w.r.t. @7 by ET. We have by Theorem 3.99 that
for any Fr-measurable random variable X and t < T

E" [XjF]=T,"E[XIr|F] =E lX?_T | 33]
t

M()P(T,T) e i r(s)ds
ekl :E[XW

We want to express the forward rate in terms of the short rate. We got a formula
for the bonds price in function of both of them. Differentiating expression (16)
towards 1" gives

oP (t,T)

—— =E [—r(T)e‘StT r(s)ds | 33] — BT [-r(T)P (t,T) | %]

= —ET[r(T) | F] P (£, T). (3.298)
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In the second step we used the above reasoning with X = —r(T)P (¢,T). Dif-
ferentiating now formula (3.294) with respect to 1" gives
0P (t,T)
oT
Comparing (3.298) en (3.299) we get the link between short rate and forward
rate

=—P(t,T)f(tT). (3.299)

f@&,T)=E"[r(T) | F]. (3.300)
Considering the right hand side of (3.300) we will need to describe the dynamics
of 7(t) under QT . Applying It6’s formula on f(t,z) = elor(9)ds we immediately
find that dM(t) = r(t)M(t) dt. In the notation of Theorem 3.101 we thus have
oy = 0. If we then apply this theorem with X (t) = r(t), Q* = QT, o (t, X (1)) =
o,b(t,X(t)=a(b—r(t)) and oy = —cA(t,T) P (t,T) we obtain:

dr(t) = (ab—o®A(t,T) —ar(t)) dt + o dW' (1)
o? —a(T—
=a (b = (1—e T t)) - rt) dt + o dW™(t) (3.301)
where WT(t) is the QT-Brownian motion defined by
t

WT(t) = W(t) + af A(s.T) ds.

Expression (3.301) resembles an ordinary Vasicek process, except that the term
2

o

b—— (1 — e_a(T_t)) does depend upon ¢ and is thus not a constant. However,
we will use a similar reasoning as in the classical situation to solve the SDE for
r(t) on the interval [¢, T]. First, we apply Ito’s formula on g(¢, z) = e™z:

1— efa(Tft)
d (er(t)) = abe™ dt — oe™ dt + ge™ dW T (t)

2
= abect dt — (e — e_“(T_Qt)) dt + oe™ dW™(t).
a

a

Integrating from ¢ to T gives
e Tr(T) — er(t)

T o2 (T T
= abf e ds — — f (e — e T=2)) gs + af e dW ™ (s)
t a Jt t
2

=b (eaT o eat) o J_ 1 (eaT o eat) o i (eaT o efa(Tth)) + UJT s dWT(S)
a |a 2a ¢

=b (e“T - e“t) - 0—2 (e“T — 2e™ 4 e_a(T_Zt)> +o JT e dWT(s)
2a? . '

Thus we have that
2

—a(T— —a(T— o —a(T— —2a(T—
r(T) = r(t)e @ t)+b(1—e o t))—ﬁ(l—Qe T=t) 4 g2l t))

T
+ af e~ T=9) awT(s).
t
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And hence,
f(t,s) =FE? [r(s) } fﬂ]

2
= T(t)e—a(s—t) +b (1 _ e—a(s—t)> _ % (1 — 9e—als—t) | e—2a(s—t))
—a(s— 0'2 a(s— 0.2 e e
=r(t)e (s=t) 4 (b_2a?> (1_6 ( t))+Ta2(e (s=t) _ p—2a( t))‘

Integrating results in

LTES [r(s) | F¢] ds = r(t) (1 o0 4 (b— 2(;:2> <T—t— 1—6—“(T—t)>

4 % (1 _ e—a(T—t)) _ % (1 _ e—2a(T—t))
AT+ (b ) (Tt = A T) + AGT)
=r(t)AEt,T)—D(t,T). (3.302)

Reminding formula (3.294) and formula (3.300) we find again that
P(t, T) _ e—A(t,T)rt+D(t,T)'

This completes the third proof of Theorem 3.96. U
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9. A version of Fernique’s theorem
The following theorem is due to Fernique. We follow the proof of H.H. Kuo
[101).
3.103. THEOREM. Let (0, F,P) be a probability space and let X : @ — R? be a

Gaussian vector with mean zero. Put

1 P(X] <v)

_ lo 3.303
T e (ut 0)2 gP(\X\>u> (8.303)
Then o > 0 and
1
E (exp <217 |X|2)> <o for n<a. (3.304)

For the proof we shall need two lemmas. The first one contains the main idea.

3.104. LEMMA. Let (Q,F,P) and X be as in Theorem 3.105. Let s > 0 be such
that P (| X| < s) >0 and firt > s. Then

P(X|>0) _ (P(X]>(t-5)V2)
P(\X|<s)\< P(IX] <) ) ' (3:305)

PROOF. Let (Q®Q,F® F,P®P) be the tensor product space of (2, F,P)
with itself and define X;, i = 1, 2, by X;(wi,ws) = X(w;). Then the variables
X7 and X, are independent with respect P ® P and their P ® P-distribution
coincides with the P-distribution of X. We shall prove Lemma 3.104. for s = v
and ¢t = uy/2 + v. Since the vector (X1, X5) is Gaussian with respect to P @ P
and since the components of X; — X, are uncorrelated with the components
of Xj + X, (with respect to the probability P ® P), it follows that the vectors
X; — X, and X7 + X, are independent. Notice that { XdP = { X1dPQP =
§ XodP®P = 0 and that the covariance matrices of X, of (X; — X5) /+/2 and
of (X1 + X5) /+/2 all coincide. It follows that the joint distributions of (X1, X5)
and of <X1—X2 X1+ Xo

V2 T W2

Jequalities are now self-explanatory:

> are the same as well. Hence the following (in-

P (|X] gv)IP(\X\ >U\/§+v> _PQP(|X)] <v) x IP@IP(\XQ\ >U\/§+v>

=}P’®IP’(\X <wv and \X2|>u\/§+v)

=POP(|X - Xl <0v2 and  [Xi+Xo| > 2u+0v2)

<PQP (||X1| - |X2H <ov2oand X+ [X] > 2u+ 0v2)

<SPRP(| Xy >u and [Xo| > u) =P (|X] > u)’. (3.306)
Inequality (3.305) in Lemma 3.104 follows from (3.306). O
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3.105. LEMMA. Let (0, F,P) and X be as in Theorem 3.103. Let v > 0 be such
that P (| X| < v) > 0 and fir £ € N and fix u > 0. Then the following inequality
15 valid:

P(IX1>u(v2) +o (VD) 1) (V2+1) ey s
P(|X] <v) \(P(|X|<v)

)QZ . (3.307)

Proor. For ¢ = 0 this assertion is trivial and for ¢ = 1 it is the same
as inequality (3.305) in Lemma 3.104. Next suppose that (3.307) is already
established for ¢. We are going to prove (3.307) with ¢ + 1 replacing ¢. Again
we invoke inequality (3.305) to obtain

P(1x]>u(v)" 4o (VD) -1) (v2+1))
P ([X] <)
P(1x]> (0 (v2) " 4o (VD) 1) (V2o 1) o) V2)
B (IX]

<)

N

2

P(1x>u(v2) +v((v2) ~1) (v2+1))
P(IX] <)

(induction hypothesis)

2f+1

P (| X]| > u)
<(bix=y) (3:308)

The inequality in (3.308) completes the proof of Lemma 3.105. O

PRrROOF OF THEOREM 3.103. If X = 0, then there is nothing to prove. So

suppose X # 0 and choose strictly positive real numbers u and v for which
P (| X]| > u)

W<1.Put
_ 1 LRI
alwv) = G E e P X s ) M
Bu,v) = P(|X] < v) (W) 2 (u+ v

Then a(u,v) > 0 and S(u,v) = P (| X]| < v)exp (—%Oz(u,v)v2 (1+ \/5)2> < 1.
For s > u choose ¢ € N in such a way that

u(v2) " ((«5)”1 - 1> (V2+1) >
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Then )
oo lrn(eva)' 2 (V)

2 (u +v)* 2(u+v) 2 (u+v)*

and hence

P(X|> s) < <\X] > u (\/5)Z +v <(\/§)é - 1) (v2+ 1))

(inequality (3.307) in Lemma 3.105)
i< (FRER)
< f(u,v) exp (—%a(u,v)ﬁ) < exp (—%a(u,v)ﬁ) . (3.309)

If 0 < n < «, then we choose u, v > 0 in such a way that o > a(u,v) > n.
Then, for s > u, P(|X| > s) < exp (—3a(u,v)s?). Consequently, we get from
(3.300):

E <exp (%n |X|2> S X > u>
- JOCIP’ (exp (%U|X|2) > & X > u) d¢
0

(substitute & = exp (%77 2))

0

(X[ > )+ 7 |

u

1
P(|X]| > s)exp <§7)32) sds

)F
< exp (%mﬁ) P(X| > u) + nfo exp <—% (a(u,v) —n) s2> sds
)

2 a(u,v) —n
au,v) 1,
- 3.310
alu,v) —n P (277/& > ( )
From (3.310) we infer
1 9 2a(u,v) — 1 R

E —n|X < ——— = . 3.311
<e><p (2?7| | >) o)y P (3.311)
Inequality (3.311) yields the desired result in Theorem 3.103. O

10. Miscellaneous

We begin this section with the Doob’s optional stopping property for discrete
time submartingales. Let {X(n):n € N} be a submartingale relative to the
filtration {JF,, : n € N}. Here the random variables X (n) are defined on a prob-
ability space (Q, F,P). The following result was used in inequality (3.164), the
basic step for the continuous time version of the following proposition.
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3.106. PROPOSITION. Let 7 be a stopping time. The process
{X(min(n, 7)) : n e N}
is a submartingale with respect to the filtration {F, :n € N} as well as with

respect to the filtration {Srmin(nﬁ) ‘n e N}.

PROOF. Let m and n be natural numbers with m < n and let A be a
member of &F,,. Then we have

E (X (min(n,7))14) — E (X (min(m, 7)) 14)

Il

Z {E (X (min(k, 7)) 14) — E (X (min(k — 1,7)) 14)}

= Z {E (X (min(k, 7)) = X (min(k — 1,7))) Langrsiy) }
k=m+1
= >, E{E((X (min(k,7)) = X (min(k — 1,7))) Langr=ky) | Fao1}

(the event An {7 = k} belongs to F;_; for k = m+ 1, and the variable X (k—1)
is Fj_1-measurable)

n

= Y E(E(X(KF) | Fit) — X(k— 1) Lunpron)

k=m+1

(submartingale property of the process {X (k) : k € N})

n

> ) E(0x 1angrzry) = 0. (3.312)

k=m+1

The inequality in (3.312) proves that the process { X (min(k, 7)) : k € N} is a sub-
martingale for the filtration {JF}, : k € N}. Since the o-field Fynin,, is contained
in the o-field &, k € N, it also follows that the process

{X (min(k, 7)) : k € N}

is also a submartingale with respect to the filtration {Fmin(m) :keN } because
we have

E (X (min(m + 1,7)) | Fuinemn) = E (B (X(m +1) | Fun) | Faninmr)
> E (E (X (min(m + 1, 7)) ‘ Fn) ‘ Frnin(m,r))

(employ (3.312))

> E (X (min(m, 7)) | Fuingm,n) = X (min(m, 7)). (3.313)
The inequalities (3.312) and (3.313) together prove the results in Theorem 3.106.
O

Next we prove Doob’s maximal inequality for martingales.
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3.107. PROPOSITION. Let {M(n) :n € N} be a martingale. Put
M(n)* = max |M(n)].

k<n
The following inequalities are valid:
1
P[M(n)* = A < XE[|M(n)| s M(n)* = A, (3.314)
* 1 *
P[M(n)* > A < 5E [IMn)[* - M(n)* = A]. (3.315)

Let {M(t) : t = 0} be a continuous time martingale that is right continuous and
possesses left limits. Put M(t)* = supgc,; |M(s)|. Again inequalities like
(3.814) and (3.315) are true:
1
P{M()* > A} < SE{M()]: M(©)" > \}; (3.316)

P{M(t)* = \} < %E{|M(t)|2 t M@)* = A} (3.317)
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PROOF OF PROPOSITION 3.107. We begin by establishing the inequality
in (3.314). Define the events Ay, 1 < k < n, by Ay = {|M(0)| = A},

Ay ={IMG) <X\0<j<k—-1,[Mk)| =N, 1<k<n.

Then (Ji_oAr = {M(n)* =X}, Ayn Ay = &, for k = ¢, 1 <k, { <n, and
Ay is Fp-measurable for 1 < k < n. Moreover on the event A; the inequality
|M (k)| = X is valid. From the martingale property it then follows that:

SVE (14, |M(K))

=0

P(M(n)*=A) =Y P(4) <

> =
>

bl
i []=
o

E (La, [E (M(n) | F¢))

[I
>| =
?HVM:

=]

E (|E (14,2 (n) | F)|)

i

I
Sl
1=

0

I
Sl
[+

E (E (14, [M(n)] | F%))

i

0

E (14, |M(n)]) = %E(|M(n)] M)t = A). (3318)

I
Sl
[+

i
o

Notice that inequality (3.318) is the same as (3.314). The proof of (3.315)
goes along the same lines. The fact is used that the process {|M(n)|2 ‘ne N}
constitutes a submartingale. The details read as follows. The events Ag, 1 <
k < n, are defined as in the proof of (3.314). The argument in (3.318) is adapted
as below:

k=0 A? k=0
< % Z E (1AkE (|M(n)|2 ‘ ?k;)) < e Z E (1Ak |M(n)|2)
— s TE (L M) = B (M M) > 3).

(3.319)

Again we notice that (3.319) is the same as (3.315). The inequalities in (3.316)
and (3.317) are based on a time discretization of the martingale {M(t) : t = 0}.
Therefore we write N(j) := M (j27"t) and we notice that {N(j):j € N} is
a martingale for the filtration {JFjs-n; : j € N}. From (3.314) we obtain the
inequality:

P ( max |N(j)| = /\) < %E(|M(t)] cM()* = )N). (3.320)

0<j<2n

Inequality (3.317) is obtained from (3.320) upon letting tend n to co. The proof
of (3.317) follows in the same manner from (3.315). O
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We continue with a proof of the (DL)-property of martingales. More precisely
we shall prove the following proposition.

3.108. PROPOSITION. Let {M(s):s = 0} be a right continuous martingale on
the probability space (2, F,P). Fizt = 0. Then the collection of random vari-
ables

{M(1):0< 7 <t, T stopping time}

15 uniformly integrable.

PRrROOF. Fix a stopping time 0 < 7 < t and write 7, = min (27"[2"¢],?).
Then 0 < 7, < t and every 7, is a stopping time. Moreover 7, | 7 if n tends
to oo. Since the pair (M(7,), M(t)) is a martingale for the pair of o-fields
(Fr,» Ft) (Use Proposition 3.106 for martingales), the pair (|M (7,)], |M(¢)|) is
a submartingale with respect to the same pair of o-fields. As a consequence we
obtain:

E(|M(7)] : [M(7)] > A) = E (Hminf |M (7)1 are) o]

n—0o0

(Fatou’s lemma)

< liminf E (| M (7.)| 1ar(r)i=a1)

n—00

(submartingale property)

< liminfE (E (|M )] | F7.) Lar(m)i=rp)

n—0o0

= lim inf B (|M ()] Larriay)

n—a0
= liminf E (|M(t)] : |M (1,,)] = N)
n—oo
SE(M@)]:|M(@)] =N). (3.321)
This proves Proposition 3.108. ([l

Remark. In the proof of Proposition 3.108. we did use a discrete approximation
of a stopping time. However we could have avoided this and consider directly the
pair (M (1), M(t)). From Proposition 3.107 we see that this pair is a martingale
with respect to the pair of o-fields (F,,F;). This will then imply inequality
(3.321) with 7 replacing 7,,. On the other hand the discrete approximation
of stopping times as performed in the proof of Proposition 3.108 is kind of
a standard procedure for passing from discrete time valued stopping times to
continuous time valued stopping times. This is a good reason to insert this kind
of argument.

The main result of Section 3 of this chapter says that linear operators in Cy(F)
which maximally solve the martingale problem are generators of Feller semi-
groups and conversely. In the sequel we want to verify the claim in the example
of Section 3. Its statement is correct, but its proof is erroneous. Example 3.49
in Section 3 reads as follows.
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3.109. EXAMPLE. Let Ly be an unbounded generator of a Feller semigroup in
Co(E) and let py and vy, 1 < k < n, be finite (signed) Borel measures on E.
Define the operator Lj 5 as follows:

D(Las) - () {f e D(Ly) fLofduk - f fduk} ,

k=1
Laof =Lof, feD(Lgy).
Then the martingale problem is uniquely solvable for L ;. In fact let
{(,F,P,),(X(t):t=0),(th:t=0),(F,E)}
be the strong Markov process associated to the Feller semigroup generated by

Lg. Then P = P, solves the martingale problem

(a) For every f e D(Lzz) the process

is a P-martingale;

(b) P(X(0) = 2) - 1,
uniquely. In particular we may take E = [0,1], Lof = 3 /",
D(Lo) = {f e C?[0,1]: f(0) = f'(1) = 0},

pr (1) = Sfi 1(s)ds, v, = 0,0 < oy < B, < 1,1 < k < n. Then Ly generates
the Feller semigroup of reflected Brownian motion: see Liggett [113], Example
5.8, p. 45. For the operator Lz the martingale problem is uniquely (but not
maximally uniquely) solvable. However it does not generate a Feller semigroup.
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From the result in Theorem 3.45 this can be seen as follows. Define the func-
tionals A; : D(Ly) — C, 1 < j < n, as follows:

M) = | Lofds = [ fav, 1<i<n

We may and do suppose that the functionals Aj, 1 < j < n, are linearly
independent and that their linear span does not contain linear combinations of
Dirac measures. The latter implies that, for every xy € E and for every function
u € D(Lyg), the convex subsets

D (L)) n{{ge Cy(F): Re g <Re g(x9)} +u} and
D (L) n{{he Co(F): Re h = Re h(zg)} + u}

are non-void. The latter follows from a Hahn-Banach argument. Hopefully,
it will also imply that the quantities in (3.322) and (3.323) coincide. Since
D(L3) forms a core for Ly we may choose functions uy, 1 < k < n, such that
Aj(ug) = 6jx and such that every ug, 1 < k < n is in the vector of the two
spaces

{ue D(L3) : R(1)ue D(L)} and {ue D(L3): R(2)ue D(Ly)}.

As operator Ly we take L; = L;y and for T we take T'f = Z?:1 Aj(f)ug,
f e D(Ly).

The remainder of this section is devoted to the proof of the following result.
Whenever appropriate we write R(\) for the operator (A — LO)_l.

3.110. THEOREM. Let Ly be the generator of a Feller semigroup in Co(E) and
let Ly and T be linear operators with the following properties: the operator I —'T'
has domain D(Ly) and range D (Ly), Ly verifies the mazximum principle, the
vector sum of the spaces R(I —T') and R(Li(I —T)) is dense in Cyo(E), and
the operator Ly(I —T) — (I — T)Lgy can be considered as a continuous linear
operator in the domain of Lo. More precisely, it is assumed that
limsup [(L1(I —T)— (I —T)Lo) R\ < 1.
A—00

Then there exists at most one linear extension L of the operator Ly for which
LT is bounded and that generates a Feller semigroup. In particular, if the
martingale problem is solvable for Ly, then it is uniquely solvable for L.

Before we actually prove this result we like to make some comments. In order
to have existence and uniqueness for the extension L on R(T') it suffices that
for every v € R(T') and for every xy € E the following two expressions are equal:

leil%lfegl(gl) {Re Lif(xo) : Zl/gg Re (f(y) —v(y)) > Re (f(xo) —v(x0)) — e} ;
(3.322)

lim s {Re Lyf(xo) : supRe (F(y) — v(y)) < Re <f<xo>—v<xo>>+e}.
&V feD(L1) yeE
(3.323)
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This common value is then by definition Re Lov(zg). The value of Lov(zg) is
then given by [Lov] (z9) = Re [Lov] (x9) — iRe [La(iv)] (zg) for v e R(T). Let
Aj, 1 < j < n, be as in the example of section 1. For every zy € E and for
every 1 < k < n there exist functions g, and hy € D(Lg) with the following
properties: Ay(gr) = Ae(hr) = 0re, Re gr(z) < Re gr(zo) and Re hg(xg) <
hi(z) for all x € E and Re Ly (hx — gx) (x9) = 0. It then readily follows that
the two expressions in (3.322) and (3.323) are equal for functions v in the linear
span of uy,...,u,. Notice that the function Re hj attains its minimum at z
and that the function Re g, attains its maximum at zy. In order to define
[Lyug] (xo) we choose functions g and hy with Ay(gx) = Re Ag(hy) = —0p in
such a way that the function Re g, attains its maximum at zy and that the
function Re hj attains its minimum at the same point xy. Moreover we may
and do suppose that Re Ly (gx — hi) (o) = 0. The value [Loug| (z9) is then
given by [Loux] (o) = [L1 (g + ur)] (x0) = [L1 (hs + ur)] (20).

PROOF OF THEOREM 3.110. Let L be any linear operator which extends
L, and that has the property that its domain D (E) contains R(T") = T'D(Ly).

We also suppose that L verifies the maximum principle. Let Ly be the restriction
of L to R(I —T) and let Ly be the operator L confined to R(T). We shall prove
that the operator L; has a unique extension that generates a Feller semigroup.
We start with the construction of a family of kind of intertwining operators
{V(A) : A > 0 and large}. This is done as follows. The symbol R(\) is always
used to denote the operator R(\) = (A] — Lg)~'. Define the operator V by

V=L(I-T)—(I-T)L (3.324)
and define the operator V(A), A > | LoT'| 4, via the equality

VN =X — L,T)"' V. (3.325)
Then we have:

(AT = L) (I = T) + (AT — L) @ —(I=T)(M = Lo—V(\). (3.326)

An equivalent form of (3.326) is the equality

(M = L) (I =T) + (Al — L) @ = (I=T)((\ = Ly) — V(X)) (3.327)

=(I-T)N —Lo))—(I-T)VN)=I-T)I—-V(ANR\)) (M — Ly) .

Next we shall prove that the martingale problem is solvable for L;. We do this
by showing that the operator L; extends to a generator L of a Feller semigroup.
For large positive lambda we define the operators G(A) in Cy(FE) as follows. For
f of the form f = (I —T)g, with g = (I — V(A)R(X))(A — Lo)h, we write

GO f = GO —T)g = (1 Ty T@) h. (3.328)
and if the function f is of the form f = (A — Ly) (I — T)g we write
GNf=GNN —L)I-T)g=(1-T)g. (3.329)
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If (M —Ly)(I—T)g1 = (I —T)go, then, since I — T is mapping attaining
values in the domain of L;, we see that (I — T)g; — (I — T)g2 belongs to
D(L;) and hence the following identities are mutually equivalent (we write

g2 = (I = V(A RA)) (M = Lo) ha):

V(A
V(A)
vy
V(A
V(X
(I=T)(I = VNR) (A = Lo) hy = (AT = Ly) (I =T + T ) hy;
V(A V(A
(AL = Ly) (I = T)hy + (A = Lo) T=—"hy = (M = L) (1 =T + T ) ha.
(3.330)
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Since gy = (I — V(A)R(N))(A — Lg)hy it follows that

(M=) (=) (g1~ h) ~ 70,
(M = L) (1 = T)gy — (= TYha) = (M — L) 70,
v

= (I =T)g2 = (M = L1) (I = T)hy = (M = Lg) T——=h
= ([ =T)(I =V(A)RA)) (M = Lo) hy = (A = L) (I = T)hy

— (AT - LQ)TVE\)\)hg
= (M= L) (I = T)hy + (A\I — Ly) TV(AA) ha — (M — Ly) (I = T)hs
— (M = Ly) YN, (3.331)

Since the operator L verifies the maximum principle, it is dissipative, and so
the zero space of A — L is trivial. We conclude from (3.331) the identity
TV(AN)R(Ahy = (I=T)g1— (I —T)hs and so the function TV (A) R(\)he belongs
to D(Ly). Hence it follows that (3.330) is satisfied and consequently that the
operator G(\) is well-defined. Next we pick h; and hs in the domain of Ly and
we write

F=AMI=T)M —Lo—VA\) ha + M — L)) (I = T) (h1 — Mha) . (3.332)
A calculation will yield the following identities:
G\ f =T —=T)hy +TV(A\)hg;
MG f = f = Li(I = T)hy + LTV (Nhy = L (G f). (3.333)

Consequently we get <)\I — Z) GA\)f = f, for f of the form (3.332). Since
we know HV()\)R()\)Hﬁ < 1 and since, by assumption the subspace R(I —T) +
R(Ly(I = T)) is dense in Co(E), it follows that the range R(A — L) is dense
for A > 0, A large. Since the operator L satisfies the maximum principle and
since L = Li(I —T) + LoT it follows that the operator L that assigns to
G(N)f the function A\G\)f — f, fe R(I —T)+ R(L,(I —T)), is well defined
and satisfies the maximum principle. Below we shall show that the family

{G(\) : A >0, \large} is a resolvent family indeed: see (3.337). The closure
of its graph contains the graph

{((I — T)hl + Thg,Ll(I — T)hl + LQThQ) : hl, h2 € D(L())} .

Denote the operator with graph {(G(\)f, \G(A\)f — f) : f € Co(E)} again by L.
From the previous remarks it follows that the operator L verifies the maximum
principle, (Al — L)G(A\)f = f for f € Cy(E) and that it is densely defined. The
latter follows because its domain contains all vectors of the form

U-DhH+LU-T)fr=U-T)(/i+{T-T)Li(Il =T)fa+TLof2) + TV fo.
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From a general argument it then follows that the operator L is the generator of
a Feller semigroup: for more details see [179], Theorem 2.2 page 14. Next let
hy and hy belong to D(Lgy). Then we have

MG (I =T)hy + (M = L) (I = T)hs) |,
= A|GON(I = T)hy + (I = T)haf,,

(the operator L is dissipative)

< |(M=L) (G =Tk + (1 = T)hs) Hw
— (I = T)hy + (AL — Ly) (I — T)hal,, - (3.334)

Since the vector sum of the spaces R(I —T') and R(L,(I —T)) is dense it follows
from (3.334) that the operator G(\) extends as a continuous linear operator to
all of Cy(FE). Moreover it is dissipative in the sense that

MG < 1. (3.335)

Next we prove that the operator G()) is positive in the sense that f > 0,
f € Co(E), implies G(A)f = 0. So let f € Cy(E) be non-negative. There exist
sequences of functions (g,) and (h,,) in the space D(Lg), for which

f = lim (I =T)ha+ (A = L) (I = T)gn).

Put f, = (I — T)hn + (M — L) (I — T)g,. Then <)\I - Z) GO\ fn = fo (sce

(3.332) and (3.333)). Since the operator L verifies the maximum principle it
follows that

ARe G(A)f, > inf Re (M - Z) G\ faly) = inf Re f,(y) (3.336)
ye

yeE

and hence Re A\G(\)f = Re lim,, ,, AG(A)f, = 0. A similar argument will show
that the operator G(\) sends real functions to real function and hence G(\) is
positivity preserving. Next we prove that the family {G(\): A > 0, large} is
a resolvent family. So let A and p be large positive real numbers. We want to
prove the identity

GA) = G(p) = (= NG(R)GA) = 0. (3.337)
First pick the function f € D(Lg) and apply the operator in (3.337) to the
function (A — Ly) (I — T)f and employ identity G(\) ()J . E) f=f forf
belonging to D (E) to obtain
(GA) = G(p) = (p = NG()GN) (M = L) (I =T)f = 0.

The operator in (3.337) also sends functions in the space R(I —T') to 0, because
we may apply (3.333) to see that

(11 = L) (GO = G() = (= NGEGN) (I =T)f =0

for f € D(Lp). Finally we show that the resolvent family {G(\) : A > 0 large}
is strongly continuous in the sense that limy ,, AR(X\)f = f for all f € Cy(E).
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Of course it suffices to prove this equality for a subset with a dense span. Next
we consider f € D(Lg) and we estimate

(T =T)f = AGN(I =T) [l
as follows:
(I =T)f = AGMUT =T)f],
< IO = 1) (= T)f = AGNT ~ T,
= VI = L) (T =T)f = AT =T)fll, = { [T = T)fl,,. (3338)
Again this expression tends to zero. For brevity we write
F(\) = (I =V(N)RMW) ™ f.
For f e D(Ly) the following equalities are valid:
AGA) =D LI =T)f = Li(I =T)f
S NGONI = T)f — NI =T)f — Li(I - T)f
= {N{I =T)R\) + TV(N)RN)? = XI =T)(I = V(N)R\)} F(N)

—Li(I-T)f
= {(I = T)ALoR(\) + X*TV(A)R(N)> + A = T)V(A)R(N)} F(X)
—Li(I-T)f
—S{I-TLy+TV + (I -T)V}f—Li(I-T)f =0. (3.339)

From (3.338) together with (3.339) we conclude that limy o, (AG(A\)f — f) =0
for all in the span of R(I —T) and R (L,(I —T)). By assumption this span is
dense and consequently the resolvent family {G(X) : A > 0, \ large} is strongly
continuous.
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In order to conclude the proof of the existence result we choose f; and f; in the
space D(Lg) and we notice the following identities:

G =T)I = V(NRN) (M = Lo)fi + (AL = Li)(I = T) fo}
= =T)(f1 + f2) + TV(N)R\) f1,

and so the space G(A\)Cy(E) contains the linear span of the spaces R(I — T)
and R (TV(A)R(X)). From the resolvent equation it is clear that the space
G(N)Co(F) does not depend on the variable A. So we see that the space
G(a)Cy(E) contains, for a given function f € D(Ly) the family {ATV(A)R(N)f :
A = a}. Hence the function TV f = /\15{)10 ATV (A)R(N) f belongs to the closure of
the space G(a)Co(E). Since Li(I-T)f =TV f+({[I-T)(L:(I = T)f + TLof),
for f € D(Ly), we conclude that the range of L,(I —T') is contained in the clo-
sure of G(a)Cy(FE). Since the latter space also contains R(I —T) it follows from
the density of the space

R(I—T)+ R(L,(I —T))

in Cy(F) that the domain of the resolvent, i.e. G(a)Cy(E) is dense in Cy(E).
From the previous discussion it also follows that the operator which assigns to
G (M) f the function AG(X)f — f extends the operator L, restricted to R(I —1T).
It is now also clear that the subspace {G(a)f : f € Co(E)} is dense and so it is
clear that the there exists a Feller semigroup generated by the operator L with

graph {(G(a)f,aG(a)f = [): [ € Co(E)}-

For the uniqueness we proceed as follows. Let PL and P2 be two solutions for the
martingale problem. We define the family of operators {S(t) : t = 0} as follows:
S(t)f(z) =ELf(X(t) —E2f(X(¢)) from the martingale property, it then follows
that S"(¢)f = S(t)Lf for f belonging to the subspace R(I —T) + R(L(I —T)).
Moreover we have S(0)f(x) = 0 for all functions f € Cy(F). Then we write (for
fiand fo € D(Lo))

0 :O (—%) e MSHGN) (I —=T)fi + TLi(I —T)fy)dt

r

e

" eNS(0) (M= L) GOV (I = TV + TLa(I = 1) o) dt

J e MS(t) (I =T)fy +TL (I —T)fs)dt. (3.340)

Consequently S(¢t)(I =T)f1 = S(t)TL1(I —T) f, = 0 for all functions f; and f,
in the space D(Lg). We also have, upon using (3.340) the following equality:

f S — T)fdr = SO —T)f — SO f =0.  (3.341)

Since by assumption the sum of the vector spaces R(I —T) and R(Ly) is dense
in the space Cy(FE), we conclude S(t) = 0 and hence from a general result on
uniqueness of the martingale problem, we finally obtain that PL = P2 for all
x € E. For more details see Proposition 2.9 (Corollary p. 206 of Ikeda and
Watanabe [81]). This completes the proof of Theorem 3.110. O
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exponential martingale, 455
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renewal-reward theorem, 42

resolvent family, 126

return time, 57
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