Name							Printed Pages:01				
Stu	dent Admn	. No.:		~	_						
			Sum			asic Sciences tion – July - August 2024					
						[Semester: VI [Batch:]					
Course Title: Operation Research								Max Marks: 100			
Cou	Course Code: E2UC511T								Time: 3 Hrs.		
Inst	ructions:										
		2.	Assume mis	sing data s	uitably, if a	any.					
							K Level	COs	Marks		
		S	ECTION-A	A (15 Mar	ks)	5 Marks ea	ich				
1.	Discuss si	mplex meth	KL1	CO1	5						
2.	Write dua x1,x2>=0	l of followin	KL2	CO2	5						
3.	What is th	e difference	olution	KL1	CO1	5					
		S	10 Marks ea	ach							
4.	and brace bracelet a maximum	lets that he nd half an h of 16 hours	can handle our to make a day. Furt	per day is a necklac her the pro	he total number of necklaces It takes one hour to make a umed that he can work for a acelet is Rs. 300 and the profit linear programming problem.	KL2	CO3	10			
	West Corr	itial feasible er rule.			10						
	Source		Destination B	С	Supply	Supply					
	1	A 2	в 7	4	5	-					
5.	2	3	3	1	8	-	KL3	CO3			
	3	5	4	7	7	-					
	4	1	6	2	14	4					
	Demand	7	9	18		-					
]					
6.	Solve the	J A 7	ssignment р БС 5 В 6 7 7 9	D 4 4			KL3	CO3	10		
7.		following LF)00x1+7000	KL4	CO2	10						

	s/t 3x1+x2≤	66;										
	x1+x2≤45;											
	x1≤20; x1&x	2≥0										
			SECT	ION-	C (45	Mark	(5)	15 Marks	each	ach		
	Solve the following Problem using VAM.											
8.	Source		Destination				Supply					
	-	Α		В		С						
	1	2		2		3	10		KL4	CO3		
	2	4		1		2	15		KL4			
	3	1		3		1	40					
	Demand	20	-	15	:	30						
	Find an initia	l basic 1	feasibl	e solu	tion c	of the f	following p	bblem using Vogel	KL5			
	Find an initial basic feasible solution of the following problem using Vogel Approximation method.											
9				D ₃		Supply				CO3		
).		o,	5 3	6	D ₄ 2 1	Supply 19 37				CO3		
9.		O_1 O_2	5 3	6	2	19				CO3		