Name			Printed Pages:01		
Stu	ident Admn. No.:				
	School of Basic Sciences				
	Summer Term Examination – July -	August 2024			
	[Programme: M. Sc] [Semester: III] [I	Batch: 2022-24]			
Course Title: Functional Analysis Course Code: MSCM301			Max Marks: 100 Time: 3 Hrs.		
	2. Assume missing data suitably, if any.				
		K	COs	Marks	
		Level	003	WICHK	
	SECTION-A (15 Marks)	5 Marks each		-	
1.	Show that a linear transformation $T: N \rightarrow N'$ is bounded iff T is contained and N' are Normed linear spaces.	nuous, where N K2	CO2	5	
2.	If <i>X</i> is a complex inner product space and α , β , $\gamma \in C$, then find (<i>x</i> , β (.) means inner product.	$y + \gamma z$), where K3	CO3	5	
3.	If X is a complex inner product space and α , β , $\gamma \in C$, then show that $(x, \beta y - \gamma z) = \overline{\beta}(x, y) - \overline{\gamma}(x, z)$.	K2	CO2	5	
	SECTION-B (40 Marks)	10 Marks each			
4.	Discuss that if N is a normed space and M is any finite dimensional then M is closed.	subspace of N, K4	CO4	10	
	If N and N' are normed linear space and $T: N \rightarrow N'$, then prove that	the following are		10	
5.	equivalent. (a) $ T = \sup \sup \left\{ \frac{ T(x) }{ x } : x \in N, x \neq 0 \right\}$ (b) $ T = \sup \sup \left\{ T(x) : x \in N, x \le 1 \right\}$ (c) $ T = \sup \sup \left\{ T(x) : x \in N, x = 1 \right\}$	K3	CO3		
6.	Show that, If <i>x</i> and <i>y</i> are two vectors in a Hilbert space, then $ (x + y) ^2 + (x - y) ^2 = 2(x ^2 + y ^2).$	К3	CO3	10	
7.	Show that $H(e^t - \pi) = \{0 \ t < \log \log \pi \ 1 \ t > \log \log \pi$	K4	CO4	10	
	SECTION-C (45 Marks)	15 Marks each			
8.	Prove that an orthonormal set in a Hilbert space is linearly independent	lent. K3	CO3	15	
9.	State and prove open mapping theorem.	K2	CO2	15	
10	Apply the theory of norms to show that the linear spaces R^n is a norm the norm $ x = \left(\sum_{i=1}^n x_i ^2\right)^{\frac{1}{2}}$, where $x = (x_1, x_2,, x_n)$	rmed space under K3	CO3	15	