Name			Printed Pages:01		
Student Admn. No.:					
School of Basic and Applied Sciences					
Summer Term Examination – July - August 2024					
[Programme: B.Sc. (Physics, Chem. Math, PCM)] [Semester: II) [Batch: 1]					
Course Title: Thermal Physics and Semiconductor Device			Max Marks: 100		
Course Code: C1UD201B / B010201T			Time: 3 Hrs.		
Instructions: 1. All questions are compulsory.					
2. Assume missing data suitably, if any.					
		K	COa	Morka	
		Level	COS	WIAIKS	
SECTION-A (15 Marks) 5 Marks each					
1.	Distinguish between isothermal and adiabatic processes with suitable example.	CO1	K1	5	
2.	State one well known statement of the second law of thermodynamics.	CO2	K2	5	
	Calculate the maximum possible efficiency of a heat engine working				
	between zero degrees Celsius and hundred degrees Celsius.				
3.	State zeroth law of thermodynamics and explain its significance. On the basis	CO1	K2	5	
	of this law introduce the concept of temperature.	_			
SECTION-B (40 Marks) 10 Marks each					
4.	Draw the load line on the output characteristics of a common – emitter				
	amplifier. What is its significance? Show how the transistor acts as an	CO5	K3	10	
	amplifier.				
5.	Define entropy of a system and explain how its change gives the criterion for the direction of a physical or chemical change.	CO4	K4	10	
6.	Explain the duality of Norton's and Thevenin's equivalent circuits.	CO3	K4	10	
7.	Write down Kelvin's and Clausius statements of the second law of	CO2	К3	10	
	thermodynamics. Show they are equivalent to each other.				
SECTION-C (45 Marks) 15 Marks each					
8.	Derive an expression for Maxwell's distribution law of velocities for gas molecules.	CO3	K4	15	
9.	Derive an expression for Planck's law of radiation.	CO4	K4	15	
10	Explain the conditions of overdamping, critical damping and underdamping	CO5	K5	15	
	in a LCR series circuit.			-	