Name.				Printed Pages:01		
Stu	dent Admn. No.:					
		School of Basic Sciences Summer Term Examination – July - August 2024 [Programme: B.Sc.] [Semester: IV) [Batch: 2021-2024]			
Course Title: Differential Equations and Mechanics				Max Marks: 100		
Course Code: C1UC401T				Time: 3 Hrs.		
Instructions:1. All questions are compulsory.2. Assume missing data suitably, if any.						
			K Level	COs	Marks	
SECTION-A (15 Marks) 5 Marks each						
1.	Define Quasi-linear with an example. Find the partial differential equation by eliminating arbitrary constants a and b from the following equation $z = ax + by + a^2 + b^2$.		K1	CO1	5	
2.	Classify the PDE: $r + s + t + px - qz = 0$.			CO2	5	
3.	Solve the given PDE: $p + 3q = z$ by using Lagrange's method.		K2	CO2	5	
SECTION-B (40 Marks) 10 Marks each						
4.	Prove that $P_n(1) = 1$ by using generating function formula.			CO2	10	
5.	Solve the non-homogeneous PDE: $(D^3 - 2D^2D')z = 2e^{2x-y}$.			CO3	10	
6.	The position of a moving particle at time 't' is given by $x = t$, $y = b \sin t$. Find its path, velocity and acceleration.		К3	CO2	10	
7.	Solve the equation by	v using Charpit method: $z = pq$	K3	CO3	10	
	SECTION-C (45 Marks) 15 Marks each					
8.	Show that $x = 0$) is an ordinary point of $(x^2 - 1)y'' + xy' - y = 0$, but $x = 1$ is a regular singular point.	К3	CO1	15	
9.	Solve the given PDE: $(y + z)p - (x + z)q = x - y$ by using Lagrange's method.			CO2	15	
10	Write the Rodrigues Formula. Also, Find the polynomials $P_0(x)$, $P_1(x)$, $P_2(x)$ and $P_3(x)$ by using this formula.			CO4	15	