Name			Printed Pages:01		
Student Admn. No.:					
School of Basic Sciences					
Summer Term Examination – July - August 2024					
[Programme: B.Tech.] [Semester: I / II)[Batch: All]					
Course Title: ENGINEERING PHYSICS			Max Marks: 100		
Course Code: BPH101/PHYS1001			Time: 3 Hrs.		
Instructions: 1. All questions are compulsory.					
2. Assume missing data suitably, if any.					
		K	COs	Marks	
	SECTION-A (15 Marks) 5 Marks each	Lever			
	State de Proglie hypothesis Coloulate the de Proglie wavelength associated				
1.	with an electron accelerated through potential difference of 100 Volt.	K1	CO1	5	
2.	Explain interference of light waves .Draw the intensity distribution curve fo interference of light.	r K2	CO1	5	
3.	Compare the basic properties of diamagnetic and paramagnetic substances.	K2	CO1	5	
SECTION-B(40 Marks) 10 Marks each					
4.	State Heisenberg's uncertainty principle. Show that electrons cannot exis inside the nucleus using this principle.	t K2	CO1	10	
5.	Draw the schematic diagram of Newton rings experiment. In Newton's rings experiment the diameter of 4 th and 12 th bright rings are 0.400 cm and 0.700 cm respectively. Calculate the diameter of 20 th bright ring.	К2	CO1	10	
6.	Discuss various Einstein coefficients for the production of laser. Deduce relation between Einstein coefficients.	с К3	CO2	10	
7.	Describe modified Ampere's law. Explain the concept of Maxwel displacement current.	K3	CO2	10	
SECTION-C (45 Marks) 15 Marks each					
8.	Derive expressions for the energy eigen values and eigen functions of a particle confined in a one dimensional potential box with infinitely high boundaries, using the Schrodinger wave equation.	K4	CO3	15	
9.	Write the Maxwell's equations in differential and integral forms. Prove that the wave equation for electric field \vec{E} is given by $\nabla^2 \vec{E} = \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}$	K4	CO3	15	
10	Describe the magnetic moment of an atom. Obtain the expression for orbital angular moment and deduce the expression of Bohr magneton.	K3	CO4	15	