

School of Basic Sciences

Bachelor of Science Honours in Chemistry Semester End Examination - Jul 2024

Duration : 180 Minutes Max Marks : 100

Sem IV - C1UB403B - Electrochemistry and Magnetism

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1) 2) 3)	Define Arrhenius theory of electrolytic dissociation. Explain Faraday's laws of electrolysis. Explain Kohlrausch's Law of Independent Migration of lons and its significance in the study of electrolyte solutions.	K1(3) K2(4) K2(6)
4)	Illustrate the application of EMF measurements in determining free energy enthalpy and entropy changes for a cell reaction	K3(6)
5)	Illustrate the relationship between free energy and EME.	K3(6)
6)	Illustrate the degree of dissociation of weak electrolytes by using conductance measurement.	K3(9)
7)	Illustrate diamagnetism and paramagnetism.	K3(9)
8)	Analyze the construction and components of a typical glass	K4(8)
9)	Analyze the difference between diamagnetism and paramagnetism based on their response to external magnetic fields.	K4(12)
10)	Examine transference numbers in the context of electrolyte solutions. What do transference numbers represent, and how are they experimentally determined?	K5(10)
11)	Examine the application of EMF measurements in determining equilibrium constants, and pH values by using hydrogen, quinone-hydroquinone, glass electrodes.	K5(15)
OR		
	Examine the Nernst equation.	K5(15)

¹²⁾ Elaborate degree of dissociation of weak electrolytes, ^{K6(12)} Conductometric titrations and Hydrolysis constants of salts. Compare solubility and solubility product of sparingly soluble salts, ^{K6(12)} Conductometric titrations and Hydrolysis constants of salts.