

ADMISSION NUMBER

School of Agriculture

Bachelor of Science Honours in Agriculture Semester End Examination - Aug 2024

Duration : 180 Minutes Max Marks : 100

Sem I - C1UC121T/AGRI1008 - Elementary Mathematics

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	If $A = \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}, B = \begin{bmatrix} -1 & 2 \\ 7 & -5 \end{bmatrix}$ and $C = \begin{bmatrix} 0 & -5 \\ -11 & 0 \end{bmatrix}$, find $A + B + C$.	K1(3)
2)	Find the limit of the function <i>f</i> given by $f(x) = 2x + 3$ at $x = 1$.	K2(4)
3)	Show that the equation of the normal to the circle $x^2 + y^2 = 5$ at the point (1, 2) is $y = 2x$.	K2(6)
4)	A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.	K3(6)
5)	Find the derivative of $\frac{\sin(x)}{1+x}$ by quotient of derivative.	K3(6)
6)	Solve the derivative of exby the first principle	K3(9)
7)	Find the angle bisectors between $5x + 3y + 6 = 0$ and $2x + 7y + 9 = 0$.	K3(9)
8)	Find the tangent of circle $(x-3)^2 + (y-3)^2 = 9$ at (0,3) and(3,0).	K4(8)
9)	Find out the definite integration of $cos(2x + 4)$ for [0, 4].	K4(12)
10)	Find the equations of tangent and normal to the circle $x^2 + y^2 = 25$ at point $p(-3,4)$.	K5(10)
11)	Prove that the differentiation of $(i)e^{\sin(x^n)}$ is $nx^{(n-1)}e^{(\sin(x^n))\cos(x^n)}$	K5(15)
	(<i>ii</i>) $cos(e^{sin(x)})$ js $-cos(x)sin(e^{sin(x)})e^{sin(x)}$.	
	OR Prove that the definite integrals are existing finitely: $1.\int_{1}^{2} 4x^{3} - 5x^{2} + 1 dx$ $2.\int_{4}^{5} e^{x} dx$ $3.\int_{0}^{1} xe^{x^{2}} dx$	K5(15)

¹²⁾ Design two matrix of order 3 whose differences is identity matrix of ^{K6(12)} order 3.

OR

Design two matrix of order 3 whose sum is identity matrix of order K6(12)

3.