

## **School of Computing Science and Engineering**

Bachelor of Technology in Computer Science and Engineering Semester End Examination - Jul 2024

**Duration: 180 Minutes Max Marks: 100** 

## Sem V - E2UC506T - Quantum Computing

## General Instructions

Answer to the specific question asked

Draw neat, labelled diagrams wherever necessary

Approved data hand books are allowed subject to verification by the Invigilator

| 1)  | What is a qubit?                                                                                                                                                                                  | K1(2)  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 2)  | Show Quantum Approximate Optimization Algorithm (QAOA) is a quantum algorithm designed for solving combinatorial optimization problems.                                                           | K2(4)  |
| 3)  | a two-qubit system in the state  00⟩. Apply a controlled-NOT gate (CNOT gate) with the control qubit being the first qubit and the target qubit being the second qubit. Find the resulting state. | K2(6)  |
| 4)  | Prove that the application for CNOT gate two times result in the same state. Start with the initial qubit  01>.                                                                                   | K3(9)  |
| 5)  | Find out the importance of quantum cryptography in modern technology.                                                                                                                             | K3(9)  |
| 6)  | Discuss the challenges and opportunities arise in the development and implementation of quantum classifiers?                                                                                      | K5(10) |
| 7)  | How quantum codes are constructed for error calculation?                                                                                                                                          | K4(12) |
| 8)  | Construct a quantum circuit to find out a balanced and a constant function in a optimized way.                                                                                                    | K5(15) |
| 9)  | Provide examples of real-world applications where the Quantum Approximate Optimization Algorithm (QAOA) can be employed                                                                           | K5(15) |
| 10) | Design an algorithm two find function is a constant function or a balanced funtion.                                                                                                               | K6(18) |