

iii) infinite solution.



## **School of University Polytechnic**

Diploma in Computer Science and Engineering Summer Term Examination – July - August 2024

Duration : 180 Minutes Max Marks : 100

## Sem III - N1DF301T - MATD2001 - Applied Mathematics-III

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

| 1)  | Find $A^2 - I$ , where $A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$ .                                                                      | K1 (2)  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 2)  | Illustrate the general solution of a differential equation.                                                                                       | K2 (4)  |
| 3)  | Show that $L(t^3e^{-3t}) = \frac{6}{(s+3)^4}$ .                                                                                                   | K2 (6)  |
| 4)  | Solve the equation ${}^{2X+3Y} = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix}$ and ${}^{3X+2Y} = \begin{bmatrix} 2 & -2 \\ 1 & 5 \end{bmatrix}$ . | K3 (9)  |
| 5)  | Solve the differential equation $\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$ .                                                                          | K3 (9)  |
| 6)  | Prove that $\int_{0}^{\infty} \frac{\sin t}{t} dt = 0$ , using Laplace transform.                                                                 | K5 (10) |
| 7)  | Discover the Laplace transform of $\frac{\cos(at)-\cos(bt)}{t}$ .                                                                                 | K4 (12) |
| 8)  | Determine the Eigen values of matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}.$                                 | K5 (15) |
| 9)  | Evaluate the solution of the differential equation<br>Solve: $\frac{d^2y}{dx^2} - \frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = e^{-x}sinx$            | K5 (15) |
| 10) | Test for what value of $\lambda \& \mu$ the system of equation                                                                                    | K6 (18) |

x + y + z = 6, x + 2y + 3z = 10,  $x + 2y + \lambda z = \mu$  have i) No solution ii) Unique solution