

ADMISSION NUMBER

School of University Polytechnic
Diploma in Civil Engineering
Summer Term Examination – July - August 2024

Duration: 180 Minutes Max Marks: 100

Sem I - N1DF101T- MATD1002- Applied Mathematics-I

General Instructions

Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Find the number of terms in the expansion of $(x^2 - 2x + 1)^5$	K1 (2)
2)	Explain sphere and its radius and center.	K2 (4)
3)	Show that $\begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ac & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix} = 0$	K2 (6)
4)	Identify $ \vec{a} \times \vec{b} $ where $\vec{a}\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + 5\hat{j} - 2\hat{k}$.	K3 (9)
5)	Solve $\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$	K3 (9)
6)	If the latus rectum of an ellipse is equal to half of the minor axis, evaluate its eccentricity.	K5 (10)
7)	Classify the conic section in details.	K4 (12)
8)	For any vector \vec{a} , Prove that $\hat{\imath} \times (\vec{a} \times \hat{\imath}) + \hat{\jmath} \times (\vec{a} \times \hat{\jmath}) + \hat{k} \times (\vec{a} \times \hat{k}) = 2\vec{a}$	K5 (15)
9)	Prove that i) $\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{2}{5} = \tan^{-1}\frac{11}{13}$ ii) $\sin^{-1}x + \sin^{-1}y = \sin^{-1}\left\{x\sqrt{1-y^2} + y\sqrt{1-x^2}\right\}$.	K5 (15)
10)	If \vec{a}, \vec{b} and \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$. Estimate the value of $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}$	K6 (18)