

ADMISSION NUMBER

School of Biomedical Science

B.Tech Biotechnology Semester End Examination - Jul 2024

Duration : 180 Minutes Max Marks : 100

Sem II - G2UC101B - BEE01T1005 Introduction to Digital System - 1

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Differentiate Signed Binary number and Unsigned Binary number.	K1(2)
2)	Explain Binary Full adder circuit.	K2(4)
3)	Construt 3 to 8 line decoder with necessary diagram.	K2(6)
4)	Design a Gray-to-Binary code converter.	K3(9)
5)	Discuss a combinational circuits to convert binary coded decimal	K3(9)
	number into an excess-3 code	
6)	Design a T flip-flop using JK flip-flop.	K5(10)
7)	Design a combinational circuit that converts a 4-bit binary number	K4(12)
	number to 4-bit gray code.	
8)	Minimize the following boolean function-F(A, B, C, D) =	K5(15)
	$\Sigma m(1,3,5,7,8,9,12,13) + \Sigma d(14,15)$. Write the procedure to expand	
	an SOP expression into stanadard SOP form.	
9)	Minimize the following boolean function-F(A, B, C, D) = $\Sigma m(1,$	K5(15)
	$2,3,5,7,8,9$) + $\Sigma d(12,14)$. Write the procedure to expand an POS	
	expression into stanadard POS form.	
10)	Obtain the minimal SOP expression for	K6(18)
	Σm(2,3,5,7,9,11,12,13,14,15) and implement it in NAND logic.	