

School of Biomedical Science

Bachelor of Science in Medical Biotechnology Summer Term Examination – July - August 2024

Duration: 180 Minutes

Max Marks: 100

Sem V -C2UH502B - Microbial Technology

General Instructions

Answer to the specific question asked

Draw neat, labelled diagrams wherever necessary

Approved data hand books are allowed subject to verification by the Invigilator

1)	Tell whether the microorganisms from lakes and rivers can grow at a salt concentration of above 1 percent.	K1(2)
2)	Organize list of different pH and temperature required for the	K2(4)
	growth of microbes	
3)	Summarize the main reason for providing an equalization tank in	K2(6)
	the sewage treatment plant?	
4)	Construct biodegradation of non cellulose wastes for environmental	K3(9)
	conservation	
5)	Construct storage methods used to store microbes?	K3(9)
6)	Interpret steps followed to generate electricity via using microbial cell fuel?	K5(10)
7)	Analyze steps followed in bioremediation of microbial enhanced oil recovery	K4(12)
8)	Justify different mode of antibiotic action	K5(15)
9)	Justify the main advantage of using Microbial Fuel Cells as a source of renewable energy?	K5(15)
10)	Elaborate lignocellulosic waste degradation	K6(18)