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ABSTRACT 

In recent times, a wealth of evidence has emerged, indicating a notable increase in brain 

tumor cases, solidifying its status as the 10th most prevalent type of tumor, affecting 

both children and adults. Glioma tumors, assessed pathologically, are divided into the 

formidable glioblastoma (GBM/HGG) and the less aggressive lower grade glioma 

(LGG). Glioblastoma, among various brain tumors, stands out as the most lethal and 

aggressive. Within gliomas, diverse histological subfields include peritumoral edema, 

a necrotic core, and enhancing/non-enhancing tumor cores. Radiology, specifically 

magnetic resonance imaging (MRI), plays a vital role in unraveling the phenotypic 

intricacies and intrinsic heterogeneity of gliomas. Utilizing multimodal MRI scans, 

such as T1-weighted, contrast-enhanced T1-weighted (T1GD), T2-weighted, and fluid 

attenuation inversion recovery (FLAIR) images, provides a holistic understanding of 

different glioma subfields. The need for precise predictions in overall survival, 

diagnosis, and treatment planning for glioma patients is met through automated 

algorithms embedded in a brain tumor segmentation and detection framework. These 

algorithms leverage fragmented tumor subfields and radiometric characteristics from 

multimodal MRI scans. The thesis introduces a model framework encompassing tumor 

classification, detection, and localization, integrating advanced Deep Learning 

algorithms as a foundational layer with localization techniques. The first method 

employs cutting-edge algorithms like Inception-V3, InceptionResNet-V2, MobileNet, 

NASNetMobile, ResNet-101, Xception, DenseNet, ResNet-50, and EfficientNetV7 for 

classification. This involves adding an extra layer of activation, normalization, and 

density. The power of repeated blocks is utilized in a multi-branch network topology, 

clearly defining the head (prediction), body (data processing), and stem (data intake). 

This design pattern, initiated with the first two or three convolutions processing the 

object in the stem, persists in contemporary deep networks. The second strategy applies 

the RESUNET model to segment and localize brain tumors, utilizing TCGA MRI data. 

This comprehensive approach delves into the intricate landscape of glioblastoma, 

merging advanced computational techniques with medical imaging to push the 

boundaries of survival prediction and treatment guidance. According to the BraTS 
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classification, a patient's survival outcome falls into three groups: short-term survivors, 

mid-term survivors, and long-term survivors. The thesis emphasizes effective feature 

selection from MRI images and advocates for the use of a deep learning-inspired 

replicator neural network for the task of Overall Survival prediction. 
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CHAPTER 1 

INTRODUCTION 

1.1 Preamble 

The utmost complex part in the body, the brain, is accountable for all of our thoughts 

and feelings, as well as our voluntary and involuntary actions and the regulation of 

our internal processes (Biswas-Diener, R., 2020). The nervous system, an intricate 

web of channels responsible for transmitting electrochemical signals, maintains 

the connection with each component of the body (Biswas-Diener, R., 2020). The brain 

is the greatest aspect of the nervous system that surrounds us, which may be seen by 

taking a close look at it. It assumes a paramount role in processing most of our 

sensations, perceptions, thoughts, awareness, emotions, and planning. Additionally, it 

exercises overall command over the entire nervous system, making it the core of this 

complex network. The human body comprises various types of cells, each with a 

specific function (Tiwari et al., 2020). These cells undergo a regulated process of 

growth and division, ensuring the body remains in a healthy physical state. However, 

certain cells lose their ability to control their growth and begin to proliferate in an 

abnormal manner, resulting in the formation of a mass of tissues known as a tumor 

(Tiwari et al., 2020). Brain tumors specifically refer to solid neoplasms that typically 

develop within the skull, either in the brain itself or in other locations such as 

lymphatic tissue, veins, cranial nerves, or the brain's protective membranes (Louis et 

al., 2016). Malignancies that start in further region of the human physique can 

metastasize to the intellect, causing tumours there: 

(i). Multiple factors, together with the tumor's location in the brain, its malignant 

or benign nature, and the tissue from which it originated, allow for the 

categorization of brain tumours.  

(ii). Malignant tumours are cancerous and have the potential to spread, while 

benign tumors are not cancerous.  
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Tumours that move to the brain from other organs usually start in the kidneys, lungs, 

breasts, or even skin melanomas. 

1.2 Brain Anatomy 

An understanding of the human brain's anatomy is necessary for delving into 

conversations about MR pictures and brain tumours [Fig 1]. The key elements of the 

human brain are presented in the following. 

(i). Brainstem: The brainstem, a crucial physical component situated at the base 

of the nervous system, links the cervical vertebrae to the cerebral cortex, the 

higher brain structures. The functions encompassed by the brain include 

regulating involuntary processes such as respiration, cardiac rhythm, vascular 

tension, digestion, and circadian rhythms (Brain Anatomy and How the Brain 

Works, 2021). The midbrain, situated at the very top of the brainstem, is in 

charge of transmitting information about sensation and movement from the 

brain to the spinal cord. Additionally, it encompasses nuclei responsible for 

visual and auditory processing and aids in the control of eye movement. The 

pons is located beneath the midbrain and functions as a connector, linking 

several regions of the brain. The function of the structure is to facilitate the 

transmission of information between the cerebrum and the cerebellum, as well 

as to regulate facial movements, respiration, and sleep (Brain Anatomy and 

How the Brain Works, 2021, Brain Basics: Know Your Brain, n.d.). The 

medulla oblongata, situated at the lower region of the brainstem, plays a key 

role in essential processes such as controlling respiration, heart rate, blood 

pressure, and reflex actions such as coughing and swallowing. Additionally, 

the brainstem houses various nuclei that are responsible for cranial nerve 

functions, such as controlling facial expressions, chewing, hearing, and taste 

(Brain Basics: Know Your Brain, n.d.). Overall, the brainstem acts as a vital 

connector between the brain and the body, regulating essential functions 

necessary for our survival and coordinating sensory and motor information. 
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(ii). Cerebellum: Movement, particularly equilibrium and muscular interaction, 

are regulated by the cerebellum, (Brain Anatomy and How the Brain Works, 

2021). Its structure appears distinct from the rest of the brain, as it is attached 

beneath the cerebral hemispheres. The cerebellum's outer layer, known as the 

cerebellar cortex, features closely spaced parallel grooves, which contrast with 

the broader and irregular folds of the cerebral cortex (Brain Anatomy and How 

the Brain Works, 2021). A thin, uninterrupted layer composed of tightly 

twisted tissue, like an accordion, makes up the cortex of the cerebellum, 

despite its outward appearance. There is a very regular arrangement of many 

kinds of neurons, including cells called Purkinje and granule cells, inside this 

very thin layer. This intricate neural organization enables the cerebellum to 

possess significant signal-processing capabilities. Nevertheless, a cluster of 

tiny deep nuclei embedded in the cerebellum's white matter receives the bulk 

of the cerebral cortex's output. 

(iii). Frontal Lobe: Situated at the very front of the brain's outermost layer, the 

cerebral cortex, the frontal lobe is an important area. The brain plays a vital 

part in various intricate cognitive processes, the expression of personality, and 

the control of voluntary movements (Mark D'Esposito et. al., 2019). It allows 

us to anticipate outcomes, make reasoned judgments, and engage in strategic 

thinking (Mark D'Esposito et. al., 2019). The frontal lobe is also responsible 

for personality expression and social behavior. It contributes to the formation 

of our individuality, including our emotions, motivations, and social 

interactions. Damage or dysfunction in the frontal lobe can lead to alterations 

in personality, decision-making difficulties, impulse control problems, and 

changes in social behavior. The main motor cortex, situated in the frontal 

brain, is accountable for initiating and regulating deliberate motions across the 

entire body. According to Mark D'Esposito et. al. (2019), it collaborates with 

other motor-related regions to carry out accurate and synchronised 

movements. Furthermore, the frontal lobe plays a role in both the production 

and understanding of language, specifically in the left hemisphere for the 



 
 

4 
 

majority of people. It enables us to articulate and understand spoken and 

written language. The frontal lobe communicates with additional regions of 

the intelligence through neural networks, allowing for integrated processing 

and coordination of various cognitive functions. It interacts with the parietal 

lobe for spatial cognition, the temporal lobe for language processing, and the 

limbic system for emotional regulation. 

 

Fig 1.1 Brain Anatomy with various Function (Mark D'Esposito et. al., 2019) 

(iv). Occipital Lobe: The occipital lobe, which is situated at the posterior of the 

brain, is in charge of deciphering visual data. It contains areas that aid in the 

recognition of shapes and colors, enabling us to accurately perceive and 

understand what our eyes are seeing (Rehman et. al. 2019). The occipital lobe 

plays a crucial role in quickly processing the rapid stream of visual 

information received by our eyes. The occipital lobe's role in understanding 

visual information is analogous to that of the temporal lobe's function in 

understanding auditory information (Rehman et. al. 2019). If the occipital lobe 

were impaired or injured, our ability to correctly process visual signals would 

be compromised, leading to visual confusion and difficulties in perception. 

(v). Parietal Lobe: The parietal lobe is a cerebral cortex region situated in the 

superior and posterior part of the brain. When it comes to processing and 

making sense of data from several senses, the brain is indispensable, such as 
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tactile sensations, temperature, pain, and spatial perception (Loughan et al., 

2022, Coslett & Schwartz, 2018). Perceiving and reacting to various textures, 

pressure, and vibrations are facilitated by the parietal lobe's processing and 

interpretation of tactile experiences. It also plays a role in proprioception, 

which is our sense of body position and movement. The parietal lobe helps us 

understand the location of our body parts in relation to each other and our 

surroundings (Coslett & Schwartz, 2018). Additionally, the parietal lobe is 

involved in spatial perception and awareness. It helps us navigate and orient 

ourselves in the environment, determine distances, and form mental maps. 

This region also contributes to our ability to perform mathematical 

calculations and manipulate numbers (Loughan et al., 2022). The parietal lobe 

works in close connection with other brain regions to integrate sensory 

information and facilitate higher-order cognitive processes. It interacts with 

the frontal lobe in planning and executing movements, as well as with the 

temporal lobe in language processing and spatial memory. When it comes to 

our sense of touch, our ability to navigate space, our knowledge of our own 

bodies, and our aptitude for mathematics, the parietal lobe is absolutely 

crucial. It integrates sensory inputs and contributes to our understanding of the 

world around us. 

(vi). Temporal Lobe: The temporal lobe is a cerebral cortex area situated 

bilaterally above the ears. The brain employ a vital part in numerous essential 

tasks, such as processing auditory information, comprehending language, 

forming memories, and generating emotional reactions (Patel et. al., 2020). 

One of the primary functions of the temporal lobe is the processing of auditory 

information. It receives and interprets sound signals from the ears, allowing us 

to perceive and understand speech, music, and other auditory stimuli. The 

temporal lobe is involved in the analysis of sound patterns, distinguishing 

different frequencies and pitches, and recognizing and interpreting speech 

sounds. The temporal lobe also plays a significant role in language 

comprehension. It helps us understand and assign meaning to words, 



 
 

6 
 

sentences, and spoken or written language (Patel et. al., 2020). Damage to the 

temporal lobe can result in language impairments such as difficulties in 

understanding or producing speech. Memory formation and retrieval are other 

important functions associated with the temporal lobe. The creation of long-

term impressions, especially those involving specific moments and 

occurrences (episodic memories), involves it. Retention of memories relies on 

the hippocampus, which is a system situated inside the temporal lobe (Patel et. 

al., 2020). Furthermore, the temporal lobe contributes to our emotional 

responses and the recognition of facial expressions. It helps us process and 

interpret emotional cues, allowing us to perceive and respond to different 

emotional states in ourselves and others. The temporal lobe works in 

conjunction with additional brain provinces, such as the parietal and frontal 

lobes, to integrate sensory information, facilitate language functions, and 

support memory processes. It plays a vital role in our perception of sound, 

language comprehension, memory formation, and emotional experiences. 

1.3 Current Approaches and Prevailing Methods for the Diagnosis 

and Treatment of Brain Tumors 

There have been tremendous advancements in the processing and interpretation of 

digital images in many fields, such as medical imaging, automation of processes in 

industry, and satellite imaging. Tissue categorization and analysis software has 

recently been developed for use in computers. Unfortunately, not a single one of these 

techniques provides reliable morphological data for malignant tumours in particular. 

 

1.3.1 Detection of Brain Tumor 

At this time, the identification of brain tumours using blood examinations or any other 

screening methods is not recommended by any authorities in the medical field. As a 
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consequence of this, the early analysis and dealing of brain tumours can dramatically 

progress a patient's chances of surviving their condition. 

Following a thorough evaluation of the physical symptoms exhibited by a suspected 

brain tumor patient, the diagnosis typically entails a series of steps: 

• Assessment of Neurological Function 

• Brain Scan 

• Biopsy 

(i). Assessment of Neurological Function: The neurological examination serves 

as a valuable assessment method to evaluate a patient's neurological function. 

It offers several advantages as it aids in identifying the specific location of 

neurological disorders and assists in confirming or eliminating potential 

diagnoses. Neurological diseases can manifest in diverse ways, encompassing 

cognitive/behavioural, visual, motor, and sensory symptoms. 

Examining certain symptoms allows for the early diagnosis of serious 

neurological illnesses and the recognition of conditions that can greatly impact 

a person's standard of living (Shahrokhi, 2023). 

(ii). Techniques of Brain Scan: Brain imaging provides a glimpse into the inner 

workings of the mind. Neuroimaging, also referred to as brain scanning, 

involves the utilization of different methods to imagine the construction, 

purpose, or pharmacology of the brain. This field is a relatively recent 

development within medicine, neuroscience, and psychology. Medical 

professionals specializing in performing and interpreting neuroimaging in 

clinical settings are recognized as neuroradiologists. Cognitive neuroscientists 

have access to a wide range of brain imaging tools (Xue et. al, 2010), which 

encompass various methods: 

(a). Positron Emission Tomography : Positron Emission Tomography 

(PET) is a kind of imaging used in medicine that provides metabolic 

and functional information about organs and tissues, including the 

brain. It involves the use of a radioactive tracer, known as a 
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radiopharmaceutical, which emits positrons, or positively charged 

particles. During a PET scan, the patient is injected with the 

radiopharmaceutical, which travels to the targeted tissues or organs in 

the body. As the positrons emitted by the tracer encounter electrons in 

the body, they annihilate each other and produce gamma rays. A 

network of monitors encircling the patient picks up on these gamma 

rays (Berger, 2003). By analyzing the patterns of gamma ray 

emissions, a computer generates detailed three-dimensional images 

that illustrate the circulation and attentiveness of the 

radiopharmaceutical within the body. This information allows 

healthcare professionals to assess various physiological processes, such 

as blood flow, metabolism, oxygen utilization, and receptor binding. 

Among the many diseases that PET can help diagnose, stage, and 

monitor are those that impact the brain. Its capacity to provide 

insightful views into the molecular and functional aspects of the human 

body is the foundation upon which medical research and patient 

treatment are built. 

(b). Near Infrared Spectroscopy (NIRS): One non-invasive optical 

method for monitoring and analysing brain hemodynamics and 

oxygenation in the blood changes is near-infrared spectroscopy 

(NIRS). It involves the detection of near-infrared light that can 

penetrate biological tissues to a certain depth (Pasquini, 2003). In 

NIRS, near-infrared light is emitted into the tissue and the reflected or 

transmitted light is measured. This light interacts with chromophores, 

such as oxyhemoglobin and deoxyhemoglobin, which have distinct 

absorption properties in the near-infrared range. By analysing the 

intensity of the detected light at different wavelengths, NIRS can 

provide information about the concentration changes of these 

chromophores. NIRS is particularly useful in monitoring brain activity 

and oxygenation levels in real-time. It is often used in studies related to 
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cognitive neuroscience, neuroimaging, and brain-computer interfaces 

[Ref 5]. NIRS is also employed in clinical settings to assess cerebral 

oxygenation and hemodynamics in patients with various neurological 

conditions, such as stroke, traumatic brain injury, and 

neurodevelopmental disorders. The advantage of NIRS is its 

portability, ease of use, and non-invasiveness, allowing for 

measurements to be taken even in naturalistic settings or during 

movement. However, its depth of penetration is limited compared to 

other imaging techniques like fMRI or PET.  

(c). Magnetoencephalogram (MEG): Magnetoencephalography is a non-

invasive neuroimaging method that uses the magnetic fields generated 

by the brain's electrical activity. It provides valuable information about 

the timing and location of neural activity with high temporal 

resolution. During an MEG procedure, the patient's head is placed 

inside a highly sensitive helmet-like device that contains an array of 

superconducting sensors (Pasquini, 2018). These sensors detect the 

extremely weak magnetic fields produced by the electrical currents in 

the neurons of the brain. Brain neurons generate little electric currents, 

which in turn generate magnetic fields, while they are actively firing. 

MEG measures these magnetic fields and creates a three-dimensional 

map of the brain's activity. By analysing the patterns and intensities of 

these magnetic fields, scientists and medical experts can identify 

specific brain areas linked to certain cognitive activities and processes. 

MEG has several advantages over other imaging techniques. It has 

exceptional temporal resolution, capturing the millisecond-scale 

changes in brain activity. This makes it particularly useful for studying 

fast cognitive processes, such as language processing, sensory 

perception, and motor control. MEG also has excellent spatial 

resolution, allowing for precise localization of brain activity (Pasquini, 

2018). 
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(d). Electroencephalography (EEG): The noninvasive 

electroencephalography (EEG) technique measures and records the 

brain's electrical signals without penetrating the patient. The procedure 

comprises placing many electrodes on the top of the head in order to 

detect and amplify the extremely small electrical impulses generated 

by the brain's neurons. Electroencephalogram (EEG) procedures 

include the careful placement of electrodes on the scalp in order to 

capture electrical activity emanating from different regions of the brain 

(Soufineyestani et. al, 20200. These electrodes detect the electrical 

impulses produced by the synchronized firing of neurons, which reflect 

the ongoing brain activity. The recorded electrical signals are amplified 

and displayed as a series of waveforms known as an EEG recording or 

an EEG trace. EEG is particularly useful in studying brain function, 

diagnosing and monitoring epilepsy, assessing sleep disorders, and 

evaluating altered mental states (Read & Innis, 2017). It can provide 

insights into brain rhythms, arousal levels, cognitive processes, and the 

effects of different stimuli on brain activity.  

(e). Functional Magnetic Resonance Imaging (fMRI): Neuroimaging is 

a way to determine how neurons are working by measuring changes in 

blood circulation to the brain and levels of oxygen. Functional 

magnetic resonance imaging (fMRI) takes precise images of the brain 

by using electromagnetic waves and a strong magnetic field. fMRI can 

indirectly identify brain regions that exhibit higher activity during 

specific tasks or cognitive processes by detecting alterations in blood 

oxygen levels (Scarapicchia et al., 2017). During a fMRI scan, the 

patient is usually asked to do certain things or engage in certain mental 

exercises while the scanner records their brain activity. The fMRI data 

is then analysed to identify brain regions that exhibit increased blood 

flow and oxygenation, indicating neural activity. fMRI is valuable in 

mapping brain functions related to sensory processing, motor control, 
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language, memory, and emotions. It helps researchers and healthcare 

professionals understand how different brain regions work together and 

how they are affected by various conditions and stimuli (Scarapicchia 

et al., 2017). One of the key advantages of fMRI is its high spatial 

resolution, which allows for precise localization of brain activity. It 

provides detailed maps of functional brain networks and can identify 

specific regions that are associated with certain cognitive functions or 

affected by neurological disorders. 

(iii). Biopsy: A biopsy is a medical procedure performed to obtain a sample of 

tissue or cells from the body for further examination and analysis. It is 

commonly used to diagnose various medical conditions, including cancer and 

other diseases (Younger, 2023). During a biopsy, a healthcare professional, 

such as a surgeon or a specially trained physician, takes a small sample of 

tissue from the suspected area of abnormality. The procedure can be 

performed using various techniques depending on the location of the tissue 

being sampled (Younger, 2023). 

There are different types of biopsies, including: 

• Needle biopsy: This involves using a fine needle to extract a small 

sample of tissue or cells. 

• Surgical biopsy: In some cases, a larger sample of tissue may be 

needed, and a surgical procedure is performed to remove the tissue. 

This may be done under general anaesthesia in an operating room. 

• Endoscopic biopsy: This involves inserting a flexible tube with a 

camera (endoscope) into the body to visualize the suspected area and 

obtain tissue samples using special tools. 

Although most biopsies pose no health hazards, some may be present 

depending on the tissue type and location of the biopsy. These risks can 

include bleeding, infection, bruising, and rare complications related to 

anaesthesia. 
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1.3.2 Post Biopsy Treatment of Brain Tumor 

The post-biopsy treatment of a brain tumor refers to the therapeutic interventions and 

care provided to a patient after the biopsy procedure. After the biopsy, the collected 

tissue samples are analysed by pathologists to determine the nature of the tumor and 

its specific characteristics (Younger, 2023). Based on the biopsy results, a 

comprehensive treatment plan is developed to address the brain tumor. 

The tumor's kind, grade, position, dimension, and the individual's general health are 

some of the variables that determine the precise post-biopsy therapy method. The 

primary objectives of post-biopsy care include symptom management, tumour 

expansion control, and catastrophe prevention. 

The treatment options for brain tumors may include: 

• Surgery: Occasionally, it may be advisable to undergo surgical excision of the 

tumour. The scope of the surgical procedure is contingent upon variables such 

as the dimensions, placement, and ease of access to the tumour. The surgical 

approach is intended to excise the tumour to the greatest extent feasible while 

safeguarding the adjacent healthy brain tissue. 

• Radiation therapy: A medical practice known as radiation treatment or 

radiography uses radiation with high energies to destroy cells that are 

malignant in the body. Radiotherapy is a widely used and highly successful 

treatment method for several forms of cancer, such as brain tumours (Bradley 

et al., 2010). The objective of radiation therapy is to induce DNA damage in 

cancer cells, thereby inhibiting their capacity for cellular division and 

proliferation, ultimately leading to their demise. The administration of this 

therapy can be either external or internal, contingent upon the specific 

attributes of the tumour and the treatment strategy devised by the healthcare 

team (Bradley et al., 2010). 

(a). External Beam Radiation Therapy (EBRT): External beam radiation 

therapy use a linear accelerator unit to administer radiation to the 
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tumour location externally. The radiation beams are meticulously 

moulded and aimed to precisely target the tumour while minimising 

the radiation dose to adjacent healthy tissues (Koka et al., 2022). The 

therapy is often delivered in numerous sessions, referred to as 

fractions, spanning several weeks. Every treatment is brief and 

painless, comparable to undergoing an X-ray procedure. 

(b). Internal Radiation Therapy (Brachytherapy): For certain brain 

tumors, such as gliomas, brachytherapy may be used. The emitted 

radiation from the source is directed towards the tumor cells internally, 

providing a concentrated dose of radiation to the impacted region while 

preserving adjacent healthy tissues. Brachytherapy can be permanent 

or temporary, depending on the specific treatment plan (Skowronek, 

2017). 

(c). Stereotactic Radiosurgery: Stereotactic radiosurgery is a specialised 

technique in radiation therapy that administers a concentrated and 

accurate amount of radiation to a specific area in the brain. Contrary to 

its title, it does not entail conventional surgical procedures. 

Alternatively, the tumour is targeted by several radiation beams 

originating from various angles, precisely converging on the intended 

location. This allows for a large dose of radiation to reach the cancer 

with little collateral damage to healthy brain tissue. Stereotactic 

radiosurgery is usually conducted in a solitary or a small number of 

sessions, contingent upon the treatment strategy (Harris et. al, 2023). 

(d). Side Effects: The potential for radiation-related adverse effects varies 

with each patient, treatment location, and dosage. Fatigue, alopecia 

(hair loss), skin changes, nausea, headaches, and cognitive 

impairments are common adverse effects of radiation treatment to the 

brain.  

In the treatment of brain tumours, radiation therapy is an essential component. 

The specific approach and dose of radiation treatment are determined by a 
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variety of factors, such as the malignancy's features (type, size, location, and 

grade), the patient's overall health, and their tastes in treatment.  

• Chemotherapy: One systemic method of treating malignancy is 

chemotherapy, which involves the administration of medications to specific 

cancer cells all over the body. It is a commonly employed treatment for 

various types of cancer, including brain tumors. Chemotherapy, in contrast to 

radiation or surgery, which aim their radiation beams at particular regions, 

travels through the circulatory system to kill cancer cells wherever they may 

be. The main objective of chemotherapy is to kill cancer cells or at least stop 

them from dividing. Chemotherapy drugs work by interfering with the cancer 

cells' DNA or other essential cellular processes, preventing them from 

multiplying and eventually leading to their death. Chemotherapy for brain 

tumors can be administered in different ways: 

(a). Intravenous (IV) chemotherapy: A needle or catheter is used to 

administer the medication straight into a vein. The medicine may then 

swiftly enter the circulation and reach all of the cancerous cells in the 

body. 

(b). Oral chemotherapy: Some chemotherapy drugs are available in pill 

or liquid form and can be taken orally. They are absorbed into the 

bloodstream through the digestive system and distributed throughout 

the body. 

Usually, chemotherapy is given in cycles, with certain treatment times and 

then rest intervals to give the body a chance to recuperate. How long each 

cycle is and how often they occur are both affected by the individual 

medications and the tumor's reaction to them. 

The medications used in chemotherapy might have side effects even on 

healthy cells in the body. Fatigue, dizziness, vomiting, baldness, lack of 

cravings, compromised immune functioning, elevated risk for infection, and 

alterations in the number of blood cells are among the most common adverse 
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effects. However, advances in supportive care medications and techniques 

have helped to manage and minimize these side effects. 

The tumour type, stage, position, patient's general health, and personal 

preferences are among the many variables that influence the choice to 

administer chemotherapy, along with the precise medications and dose. The 

treatment is carefully monitored by an oncology team, and adjustments may be 

made based on the response to treatment and any side effects experienced. 

The post-biopsy treatment of a brain tumor requires close monitoring by a 

multidisciplinary healthcare team, including oncologists, neurosurgeons, radiation 

oncologists, and other specialists.  

1.4 Types of Brain Tumor 

According to the World Health Organization (WHO), there are 120 different types of 

brain tumors. Brain tumors can be broadly considered into two types: 

(i). Primary Brain Tumor: Based on their behaviour, brain tumours can be 

identified as either benign or malignant. The reference is from a learning 

directed by WAN et al. in 2016. Benign tumours are characterised by the 

absence of malignant development. According to the WHO classification, 

these tumours might be categorised as Low-Grade tumours or Grade I 

tumours. Benign tumours are non-metastatic and do not invade neighbouring 

cells or tissues, yet they have the potential to reach significant dimensions. 

When tumours develop in the brain and apply pressure on essential organs or 

block routes, they can cause problems. In contrast, malignant tumours are 

comprised of aberrant cells that undergo uncontrolled division and have the 

ability to infiltrate adjacent organs. The dissemination of these cells to other 

regions of the body occurs via the nervous system. Malignant tumours 

encompass various forms, including Carcinoma, Sarcoma, Leukaemia, and 

Lymphoma, among others. 



 
 

16 
 

(ii). Secondary Brain Tumor: This kind of tumour can spread from its original 

site in the brain to other areas of the body, a process called metastasis. Names 

for secondary brain tumours usually reflect the organ or place from which the 

tumour first disseminated. The distinction between malignant and benign 

tumours is illustrated in Figure 1.2. 

 

Fig 1.2 Difference between Benign Tumor and Malignant Tumor (Gupta & 

Khanna, 2017) 

1.5 Brain Tumour Classification According to the Grade 

Brain tumours are categorised based on their grade, which indicates the level of 

aggressiveness and malignancy of the tumour. Medical practitioners are better able to 

forecast the tumor's behaviour and prognosis and choose an appropriate treatment 

strategy with the use of the grading system. Tumours are categorised into four 

categories, from Grade I to Grade IV, according to a system established by the World 

Health Organisation (WHO). Figure 1.3 depicts the classification of brain tumour 

grades. 

(i). Grade I Tumor (Benign): Grade I (Table 1.1) tumors are considered the least 

aggressive and are often referred to as benign tumors. These tumors grow 

slowly and are generally well-defined. They are not likely to metastasize 

(which is transmitted to other organs or regions of the body). Typically, grade I 

tumours are characterised by their generally normal-looking cells and clear 

boundaries. Pilocytic astrocytoma and meningioma are two types of Grade I 

brain tumours. 
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(ii). Grade II Tumor (Low Grade): Grade II (Table 1.2) tumors are still classified 

as relatively slow-growing and less aggressive compared to higher-grade 

tumors. They may have some characteristics of malignancy, such as an 

infiltrative growth pattern and abnormal-looking cells. These tumors have a 

higher chance of recurring and progressing to a higher grade over time. 

Examples of Grade II brain tumors include diffuse astrocytoma and 

oligodendroglioma. Fig 1.4 is the classification of brain tumor. 

(iii). Grade III Tumor (Anaplastic): Grade III (Table 1.3) tumors are considered 

malignant or anaplastic tumors. These tumors are characterized by rapidly 

dividing cells and more aggressive growth. They tend to invade nearby tissues 

and have a higher likelihood of recurring after treatment. Grade III tumors 

often require more aggressive treatment approaches, such as surgery, radiation 

therapy, and chemotherapy. Examples of Grade III brain tumors include 

anaplastic astrocytoma and anaplastic oligodendroglioma. 

 

Fig 1.3 World Health Organization Brain Tumor Grade (Louis et al., 2016) 
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Fig 1.4 Brain Tumor Classification 

(iv). Grade IV Tumor (Glioblastoma): Grade IV (Table 1.4) tumors are the most 

formidable and malignant form of brain neoplasms. Glioblastoma, or 

glioblastoma multiforme, is the predominant Grade IV. These tumours exhibit 

fast growth, infiltrate adjacent brain tissue, and have a pronounced propensity 

to reoccur after treatment. The management of Grade IV tumours often 
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necessitates a multimodal approach involving surgery, radiation therapy, and 

chemotherapy. 

Table 1.1- Gliomas (Lowest Grade Tumors). 

S 

No 
Tumor Type 

Tumor 

Grade 
Location Symptom Treatment 

1 Pilocytic 

astrocytoma 

Grade-I Cerebellum 

and chiasmatic 

/   

hypothalamic 

region, 

cerebral 

hemispheres, 

brainstem, and 

spinal cord 

• Fatigue  

• Headache 

• Vomiting 

• Nausea 

The initial treatment phase 

is surgery to eliminate as 

much of the tumor as 

possible without damaging 

any part of the brain. If the 

surgeon cannot remove the 

entire tumor, radiation may 

required after surgery. 

Chemotherapy is given 

regularly at the time of 

radiation because 

chemotherapy therapy 

destroys rapidly growing 

cells. 

2 Subependymal 

giant cell 

astrocytoma 

Grade-I Aries in brain 

ventricle  

 Everolimus and 

Rapamycin, these mTOR 

inhibitor shown potential to 

reduce the volume of 

SEGA’s in 35% to 45%. 

3 Protoplasmic 

astrocytoma 

Grade-

II 

Temporal 

Lobe, Frontal 

Lobe 

• Seizure 

• Headaches 

• Hydrocephalus 

and focal 

neurological 

diseases 

including 

personality 

Treatment be subject to on 

the clinical presentation, 

location and size of the 

tumor. 

• Radiotherapy 

• Recurrent tumor / 

differential tumor 

may have a role in 
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S 

No 
Tumor Type 

Tumor 

Grade 
Location Symptom Treatment 

changes. chemotherapy 
 

4 Ganglioglioma Grade-I Temporal Lobe • Increased 

Pressure inside 

the brain 

• Headache 

• Nausea 

• Vomiting 

• Fatigue 

• Neurosurgery 

• Chemotherapy  

• Radiation Therapy 

Clinical trials and 

experimental treatments are 

also accessible to children 

who are not amenable to 

standard therapy with 

recurrent tumors 

 
5 Xanthomatous 

astrocytoma 

Grade-

II 

Temporal Lobe • Seizure 

• Headache 

• Dizziness 

• Rarely Patient 

are 

asymptomatic 

Radiation, radiotherapy, 

and reoperation may be 

options for recurrent tumors 

6 Subependymoma Grade-I Lateral (30–

40%) or 

Fourth (50–

60%) 

ventricle; 

Though, 

sometimes it 

can also 

transpire in the 

third ventricle 

or septum 

pellucidum.( 

Gupta & 

Sasidhar, 

• Headache 

• Confusion 

• Seizure 

• Nausea or 

vomiting 

• Weakness  

• Speech, vision, 

or memory 

problems. 

• Personality 

changes 

Surgery and Radiation 

Therapy 
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S 

No 
Tumor Type 

Tumor 

Grade 
Location Symptom Treatment 

2020) 

 

Table 1.2 -Gliomas (Higher-grade malignancies) 

S 

No 
Tumor Type 

Tumor 

Grade 
Location Symptom Treatment 

1 Anaplastic 

astrocytoma 

Grade-

III 

Location is 

cerebral 

hemispheres 

but can grow 

anywhere of 

the central 

nervous 

system  

 

• Headache 

• Drowsiness or 

Lethargy  

• Vomiting or 

Nausea  

• Behavioural 

fluctuations 

• Memory loss 

• Seizures 

• Vision glitches, 

Coordination 

and balance 

complications 

In most cases, the initial 

treatment is surgical 

excision and elimination of 

as many tumors as 

conceivable. Occasionally, 

only part of the tumor can 

be securely detached 

because malevolent cells 

can feast to the 

neighboring brain matter. 

Because surgery often 

cannot eliminate a tumor, 

chemotherapy is frequently 

used after surgery to 

endure treatment. 

 

2 Anaplastic 

oligodendroglioma 

Grade-

III 

Location is 

frontal lobe 

but can grow 

anywhere of 

the central 

nervous 

system. 

• Focal 

Weakness 

• Headache 

• Cognitive 

deficits due to 

mass effect  

• vision changes  

Maximum feasible 

solution is surgery, 

Radiation Therapy, 

Pharmacologic Treatment. 

 

 

 

3 Anaplastic mixed Grade- Cerebrum • Seizure The initial treatment phase 
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S 

No 
Tumor Type 

Tumor 

Grade 
Location Symptom Treatment 

glioma III • Headache 

• Changes in 

mood and 

personality 

is surgery to eliminate as 

much of the tumor as 

conceivable without 

damaging any part of the 

brain. If the surgeon 

cannot remove the entire 

tumor, radiation may be 

required after surgery. 

Chemotherapy is assumed 

regularly at the time of 

radiation because 

chemotherapy treatment 

destroys rapidly growing 

cells. 

 

Table 1.3 - Gliomas (Lower grade malignancies) 

S 

No 
Tumor Type 

Tumor 

Grade 
Location Symptom Treatment 

 1 Fibrillary 

astrocytoma 

Grade-II Cerebral 

Hemisphere 

• Seizure 

• Headache 

• Frequent Mood 

Changes 

• Surgery 

• Radiotherapy 

• Chemotherapy  

• Radiosurgery 
 

2 Ependymoma Grade-II Common 

location is 

fourth 

ventricle 

• Neck pain 

• Vision changes 

• Jerky eye 

movement 

• Difficulty in 

balance and 

walking 

• Nausea and 

• Surgery 

• Radiotherapy 

• Chemotherapy 

• Radiosurgery 
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S 

No 
Tumor Type 

Tumor 

Grade 
Location Symptom Treatment 

vomiting 

• Weakness in 

limbs 

3 Oligodendroglioma Grade-II Originate in 

cortex but can 

be anyplace 

in the Central 

Nervous 

System 

• Headaches. 

• Seizures 

• Language 

difficulty. 

• Weakness on 

one side of the 

body 

• Balance and 

movement 

problems. 

• Behaviour and 

personality 

changes 

• Memory 

problems. 

Maximum feasible 

solution take care by the 

surgeon to remove the 

tumor by surgery with the 

use of specialized surgical 

technique and if any tumor 

cells remaining after 

surgery, then additional 

treatment like 

Chemotherapy, Radiation 

Therapy as well as 

palliative care providing 

relief from pain. 
 

4 Mixed oligo-

astrocytoma 

Grade-II Cerebrum • Seizures 

• Headaches 

• Change in 

personality 

Dealing options consist of 

radiation and/or 

chemotherapy, surgery. 

 

5 Optic nerve glioma Grade-I Found in 

optic chiasm 

• Nausea and 

vomiting 

• Balance 

problems 

• Vision 

disturbances 

Headaches 

Two possible ways to treat 

optic nerve glioma: 

Surgery and Radiation 

Therapy 
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Table 1.4 - Gliomas (Highest-grade malignancies) 

S 

No 
Tumor Type 

Tumor 

Grade 
Location Symptom Treatment 

1 Anaplastic 

astrocytoma 

Grade 

IV 

Location is 

cerebral 

hemispheres 

but can grow 

anywhere of 

the central 

nervous 

system  

 

• Headache 

• Drowsiness or 

Lethargy  

• Vomiting or Nausea  

• Behavioural 

fluctuations 

• Memory loss 

• Seizures 

• Vision glitches, 

Coordination and 

balance 

complications 

In most cases, the 

initial treatment is 

surgical excision and 

elimination of as 

many tumors as 

conceivable. 

Occasionally, only 

part of the tumor can 

be securely detached 

because malevolent 

cells can feast to the 

neighbouring brain 

matter. For the reason 

that surgery often 

cannot eliminate a 

tumor completely, 

chemotherapy is 

frequently used after 

surgery to endure 

treatment. 

2 Anaplastic 

oligodendroglioma 

Grade 

IV 

Location is 

frontal lobe 

but can grow 

anywhere of 

the central 

nervous 

system. 

• Focal Weakness 

• Headache 

• Cognitive deficits 

due to mass effect  

• vision changes  

Maximum feasible 

solution is surgery, 

Radiation Therapy, 

Pharmacologic 

Treatment 

3 Anaplastic mixed 

glioma 

Grade 

IV 

Cerebrum • Seizure 

• Headache 

• Changes in mood 

The initial treatment 

phase is surgery to 

eliminate as much of 
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S 

No 
Tumor Type 

Tumor 

Grade 
Location Symptom Treatment 

and personality the tumor as 

conceivable without 

damaging any part of 

the brain. If the 

surgeon cannot 

remove the entire 

tumor, radiation may 

be required after 

surgery. 

Chemotherapy is 

assumed regularly at 

the time of radiation 

because chemotherapy 

treatment destroys 

rapidly growing cells. 

 

1.6 Causes for Brain Tumor 

According to the American Brain Tumor Association, the main factors associated with 

the development of brain tumors include: 

• Exposure to medical radiation 

• Cell phone usage 

• Smoking and alcohol consumption 

• Consumption of processed or cured foods 

• Employment in synthetic rubber manufacturing or petroleum refining 

• Genetic conditions 

• Use of hair dye 

• Utilization of medications such as birth control pills, sleeping pills, and 

headache remedies 
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• Exposure to air pollution 

• Proximity to power lines 

• Exposure to agricultural chemicals 

• History of previous cancers 

1.7 Symptom of Brain Tumor 

The manifestation of brain tumours might differ according on the tumor's location, 

dimensions, and rate of expansion. Common indications of a brain tumour may 

include several symptoms.: 

• Headaches: Persistent or severe headaches that may worsen over time or are 

different from usual headaches. 

• Seizures: Sudden and uncontrolled movements or convulsions. 

• Cognitive and memory problems: Difficulty concentrating, memory loss, 

confusion, and changes in thinking abilities. 

• Visual disturbances: Blurred or double vision, loss of peripheral vision, or 

difficulty with coordination. 

• Nausea and vomiting: Especially if they occur without any other apparent 

cause. 

• Changes in speech or hearing: Difficulty speaking, slurred speech, or hearing 

problems. 

• Weakness or paralysis: Weakness in the limbs, loss of coordination, or 

difficulty in performing tasks that require fine motor skills. 

• Personality changes: Mood swings, irritability, depression, or personality 

changes. 

• Balance and coordination issues: Trouble with balance, dizziness, or difficulty 

walking. 

• Fatigue: Persistent tiredness and lack of energy. 
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1.8 Motivation 

Primary brain or spinal cord tumours are defined by the scientific board at cancer.net 

as tumours that begin their malignant growth in these areas. Approximately 24,810 

people in the US will receive a diagnosis of a brain or spinal cord tumour in 2023, 

with 14,280 men and 10,530 women affected. On average, fewer than one percent of 

people will have this cancer at some point in their lives. Approximately 85% to 90% 

of initial tumours in the CNS are neurologically derived malignancies. Primary brain 

or spinal cord tumours were estimated to have been newly detected in roughly 

308,102 instances worldwide in 2020 (Brain Tumour - Statistics, 2023). 

Brain and nervous system cancers are prominent contributors to global mortality, 

comprising 10% of total deaths across genders. According to current statistics, around 

18,990 Americans (roughly 11,020 males and 7,970 females) would die from primary 

CNS tumours in the year 2023. The number of persons who died in 2020 from 

primary brain and CNS tumours was expected to be 251,329. Fig 1.5 shows the 

proportion of death due to cancer and other causes. 

 

Fig 1.5 Percentage of death due to cancer and other ailments (Du Cancer, n.d.) 
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It was forecast that there will be 233,900 new-fangled instances of cancer in Canada 

in 2022, with 85,100 fatalities from the disease. (Non-melanoma skin cancer patients 

are excluded from the total number of new cases estimated.) 

 

Fig 1.6 Cancer Survival in England five-year net survival guesstimates for adults 

(2013-2017) (Broggio, 2019) 

Adults in England (15-99) diagnosed with one of the 29 most common malignancies 

between 2013 and 2017 and followed up to 2018 have their five-year net survival 

estimates reported in Fig 1.6 of Office for National Statistics, Cancer Survival in 

England. 

1.9 Problem Statement 

My problem statement is “Survival Prediction in Glioblastoma Brain Tumor using 

Segmentation and Detection with Advance Computational Techniques”. Gliomas 

signify the most malignant form of brain tumors, and accurate predictions of overall 

survival, diagnosis, and treatment planning can greatly assist glioma patients. By 

employing automated algorithms, we aim to enhance prediction accuracy, robustness, 
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and mitigate overfitting issues. Furthermore, our goal is to identify a model that 

minimizes errors and provides valuable insights. 

The problem can be formulated in the following manner: 

• Explore innovative approaches for segmenting brain tumors. 

• Develop a framework capable of distinguishing between tumor and non-tumor 

images. 

• Conduct a comparative analysis of various techniques at each stage, from 

prototyping to final selection, to identify the most suitable approach for 

survival predictions. 

• Evaluate different measurements such as specificity, sensitivity, accuracy, and 

DSC to enhance the model's performance at each level. 

1.10 Organization of the Thesis 

The thesis is organised in a manner that allows for a methodical investigation of the 

study subject. Chapter 1 functions as the introductory section, providing a thorough 

summary of the research background and clearly outlining the goals of the study. 

Chapter 2 undertakes a comprehensive examination of the current body of literature, 

encompassing both conventional and contemporary methodologies for the 

segmentation and categorization of brain tumours. Additionally, it includes an 

assessment of the technical inquiries conducted throughout the years. Subsequently, 

Chapter 3, named "Preliminaries," explores fundamental components essential for 

effectively carrying out the research. These components include pre-processing 

procedures, dataset preparation, tasks related to predicting overall survival, post-

processing approaches, and evaluation measures. In Chapter 4, the "Model 

Framework for Detecting and Localising the Brain Tumour" is presented, establishing 

the fundamental concepts that will be built upon in the following chapters. Expanding 

on this structure, Chapter 5 concentrates on "MRI Based Brain Tumour Feature 

Extraction with Overall Survival Prediction Using Deep Learning Inspired Replicator 

Neural Network." It introduces the model and approach for extracting characteristics 
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from MRI data, with a particular emphasis on predicting overall survival. Chapter 6 

concludes with an exploration of the "Future Scope and Conclusion." This chapter 

explores potential avenues for future research, offering valuable perspectives on the 

extension of the current study. The chapter finishes by providing a concise overview 

of the main discoveries, contributions, and the overall importance of the research. 

This organisation guarantees a coherent sequence of the many components of the 

study, starting with basic principles and progressing to the utilisation of sophisticated 

models, while also considering potential future directions for investigation. 
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CHAPTER 2 

LITERATURE REVIEW 

In the contemporary landscape of research, there has been a notable upswing in 

researchers favoring automated or semi-automated approaches for the segmentation of 

brain tumors. This is because these methods guarantee reproducibility while speeding 

up image interpretation. Researchers have been interested in brain tumour 

segmentation since the late 1990s. Various techniques, including both traditional and 

Fully Convolutional Neural Network approaches, have been developed throughout the 

years to accomplish this goal. This chapter's goal is to take a look at algorithms that 

are made to separate brain tumours and their surrounding tissues. The unexpected 

size, form, and location of tumours make automated brain tumour segmentation a 

tough task. This unpredictability is magnified when reference images from prior scans 

are unavailable. Traditional pattern recognition methods that are often employed to 

identify objects in different types of photos would not work in this particular case. A 

few pieces of information, though, such how a normal human brain is structured or 

how tumours appear in particular MR sequences, can be put to use. Because brain 

photos often have a more consistent colour palette and backdrop scene, this provides 

an advantage over object detection in other types of photographs (such as those of 

people or cars). A lot of computer vision research groups have been focusing on the 

automatic brain tumour segmentation problem, which has led to a general uptick in 

interest in creating such algorithms. 

Most cutting-edge methods focus on the most common tumour types, including 

glioblastoma, because there are so many different kinds of brain tumours and how 

they look in MR images. On the other hand, a dedicated training database for 

particular tumour types is required by certain approaches. 
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This chapter provides a classification system for the many conventional methods of 

brain tumour segmentation according to the imaging data they use. Among these 

groups are: 

• Threshold-based methods: These techniques segment brain tumours by 

comparing their intensities to those of the surrounding tissues. 

• Region-based methods: They find groups of voxels that share characteristics 

and use them to segment data. 

• Contour-based methods: These seek out the boundaries between brain tumours 

and their environs in order to segment them. 

• Classification or clustering methods: They employ texture and intensity 

characteristics at the voxel level for segmentation. 

• Atlas-based methods: These use what is already known about the normal brain 

to do the segmentation. 

The boundary between these types of procedures is not always distinct, though, 

because many of the suggested solutions incorporate more than one strategy. Most 

cutting-edge methods in the last several years have relied on categorization and atlas 

guiding. 

 

Fig 2.1 Outline for the Literature Review 
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Another way to classify brain tumour segmentation methods is by the degree to which 

they rely on human intervention. You can classify them as either fully-automatic or 

semi-automatic. Some semi-automatic processes, such as choosing seed sites or 

estimating initial border demarcation, necessitate human involvement. Fully 

automated procedures, on the other hand, do not require any kind of human 

involvement. This chapter, however, will make use of the division depending on the 

picture data utilised by specific algorithms. This literature review follows the format 

shown in Figure 2.1. 

2.1 Traditional Techniques for Segmenting Brain Tumors 

2.1.1 Thresholds Based Methods 

Threshold-based methods (Fig 2.2 and Table 2.1) are a class of image processing 

techniques used in segmentation tasks, particularly for brain tumor segmentation. 

These methods rely on defining a threshold value to distinguish between different 

regions or objects in an image based on their intensity levels. In the context of brain 

tumor segmentation, threshold-based methods use intensity differences between brain 

tumors and surrounding tissues to identify the tumor region. The process involves 

selecting an appropriate threshold value that separates tumor pixels from non-tumor 

pixels in the image.  

 

 

Fig 2.2 Thresholds Based Segmentation (Wu et al., 2021) 
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Typically, threshold-based methods work well when the intensity differences between 

the tumor and the surrounding tissues are distinct. However, they may have 

limitations when dealing with images that have varying intensity distributions or 

when there is overlap in the intensity levels between the tumor and normal tissues. 

Thresholding is most effective when certain conditions are met: 

• Minimal Noise: Thresholding performs optimally in scenarios with a low level 

of noise, as noise can interfere with the clear separation of pixels into different 

groups. 

• Higher Intra-class Variance: When the intensity values of pixels within the 

same group (class) are more similar to each other than to pixels of other 

groups, thresholding yields better results. 

• Homogeneous Lighting: Uniform lighting conditions contribute to better 

performance in thresholding, ensuring consistent intensity distributions. 

Table 2.1 Thresholding Based Methods 

S No Proposed Technique Remarks 

1 

Gaussian models and 

Threshold outlier 

detection (Domingues, 

et al., 2018) 

• Secondary analysis on tumor area may be 

required after treatment of edema area. 

• Intensity features are another concept which is 

used in this technique. 

The concept of detecting technique is used to find 

the difference between normal and abnormal 

space. 

2 

Probability level set 

evolution (Deng et al., 

2019) 

A lower level of agreement compared with semi-

automatic method. 

3 
Marker Controlled 

Watershed (Chattaraj 
• To highpoint the mistrustful regions more 
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S No Proposed Technique Remarks 

et al., 2017) noticeably. 

It is a morphological process on the basis of 

locating watershed outlines from a topographic 

demonstration of the participation image. 

4 

OTSUs threshold 

(Gupta & Khanna, 

2017) 

Otsu's thresholding technique is fragmented 

through multilevel optimization of non-

homogeneous brain MR images. 

 

2.1.2 Region Based Methods 

Partitioning a picture into relevant or interesting sections according to predetermined 

criteria is the job of region-based approaches, a subset of image segmentation 

techniques. Clustering comparable pixels or voxels into consistent areas with similar 

features (such as intensity, texture, colour, etc.) is the objective of these methods. 

When it comes to segmenting brain tumours, region-based approaches look for groups 

of related pixels or voxels that stand in for the tumour and its environs. The goal of 

the method is to attain the necessary level of segmentation by repeatedly merging or 

separating regions according to predetermined criteria or rules. 

Region-based methods typically involve the following steps: 

• Initialization: The image is divided into small initial regions or super pixels using 

methods like graph-based segmentation or watershed transformation. 

• Region Growing/Merging: To create bigger regions, adjacent areas with 

comparable characteristics are combined. This process continues iteratively until 

all pixels are assigned to meaningful regions. 

• Region Splitting: In some cases, regions may be split if they contain mixed or 

heterogeneous information, allowing for more accurate segmentation. 
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• Feature Extraction: Feature extraction techniques are used to characterize the 

properties of each region. These features may include intensity histograms, texture 

features, or spatial attributes. 

• Region Properties: The regions are evaluated based on their properties and 

compared with predefined criteria, such as size, shape, or intensity, to identify 

regions that represent the tumor and its surrounding tissues. 

Region-based methods offer advantages in handling complex image structures and 

addressing intensity variations within the same object. They can effectively segment 

objects with irregular shapes and are less sensitive to noise compared to threshold-

based methods. Table 2.2 provides the summery of region-based methods. 

Table 2.2 Region Based Methods 

S No Proposed Technique Remarks 

1 

Histogram analysis 2D 

region growing 

(Kumar et al., 2020) 

2D histogram-based technology ignores 

evidence connected to boundaries and thinks 

only the background and contextual of objects. 

Non-local means constructed 2D histogram 

procedures are on condition that with improved 

post filter lucidity of images with improved 

consequences. 

2 

Texture Feature FCM 

(Vaibhavi & Rupal, 

2018) 

Upright results and also accomplished very 

precise outcomes of segmentation which 

efficiently extract the tumor region from brain 

MR images. 

3 

Seed-Based Region 

Growing 

(Vishnuvarthanan et 

al., 2017) 

Here a judgement is made amid number of 

pixels of the underdone MRI brain images and 

Seed-Based Region Growing segmented 

abnormality area. As associated to the light 

MRI, it is realized that Seed-Based Region 
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S No Proposed Technique Remarks 

Growing achieved lesser in shady MRI 

segmentation 

 

2.1.3 Edge Based Methods 

Edge-based methods are a class of image segmentation techniques used to detect and 

locate edges or boundaries within an image. These methods aim to identify the abrupt 

changes in intensity, color, texture, or other image properties that correspond to object 

boundaries or regions of interest. 

To segment brain tumours, edge-based approaches look for the boundaries that 

separate the tumour from the normal brain tissue. The first step is to locate the spots 

on the image where the intensity or other characteristics change noticeably; this will 

show you where the tumour is and where the healthy tissue is. 

 

Fig 2.3 Edge Based Segmentation Techniques 

Edge-based methods (Fig 2.3) are particularly effective in situations where objects 

have distinct and well-defined boundaries, making them suitable for segmenting 
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objects with sharp transitions in intensity or texture. They are robust to variations in 

lighting and contrast, which can be beneficial for brain tumor segmentation tasks. 

This technique uses edge recognition operators to find image edges and then converts 

the original picture to edge pictures. Edges are formed by pixels located between the 

boundaries of two regions. The edge detection process typically involves three main 

steps: filtering, enhancement, and detection of edge points (Yogamangalam et. al., 

2013, Lakshmi & Sankaranarayanan, 2010). Edges are crucial features in images, 

encompassing essential elements such as corners, lines, and curves (Kaur & Singh, 

2016). According to Layaraja and Suganthi (2014) and Muthukrishnan and Radha 

(2011), edge detection is useful because it decreases the amount of data that has to be 

processed, removes unnecessary information, and keeps crucial structural features 

inside the image. Two popular approaches to edge identification are the first-order 

derivative, which is based on gradients (using operators such as Sobel, Prewitt, and 

Robert) and the second-order differential based on Laplacian (employing methods like 

Laplacian of Gaussian and Canny edge detection) (Kaur & Singh, 2016). 

(i). Sobel Operator: One operator used in image processing to highlight edges is 

the Sobel operator, which is based on convolutional neural networks. It uses a 

convolution with two kernels—one for horizontal edge detection (Gx) and 

another for vertical edge detection (Gy)—to determine an image's gradient 

magnitude (Feature Detectors - Sobel Edge Detector, n.d.). 

 

Mathematically, the Sobel operator is applied by convolving the image matrix 

(I) with the Gx and Gy kernels: 

Horizontal Sobel Kernel (Gx): 

 [
−1 0 1
−2 0 2
−1 0 1

] [2.1] 

Vertical Sobel Kernel (Gy): 
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 [
−1 −2 −1
0 0 0
1 2 1

] [2.2] 

The convolution operation produces two new matrices, Gx and Gy, which 

represent the gradient values along the horizontal and vertical directions, 

respectively, at each pixel location. 

 

The gradient magnitude (G) of the image can then be calculated using the 

following formula: 

 𝐺 =  √𝐺𝑥2 + 𝐺 𝑦2 [2.3] 

 

The gradient direction (θ) can also be determined: 

 

 𝜃 =  𝑎𝑟𝑐𝑡𝑎𝑛(𝐺𝑦 / 𝐺𝑥) [2.4] 

 

The Sobel operator is applied by sliding the Gx and Gy kernels over the image 

matrix, computing the gradient values at each pixel. This process amplifies 

areas of rapid intensity change, effectively highlighting edges. 

 

(ii). Prewitt Operator: When it comes to image processing, one such operator that 

uses convolution to find edges is the Prewitt operator. Just like the Sobel 

operator, the Prewitt operator uses a convolving operation with two kernels—

one for horizontal edge detection and one for vertical edge detection—to 

determine the gradient magnitude. 

 

Mathematically, the Prewitt operator is applied by convolving the image 

matrix (I) with the following kernels: 

Horizontal Prewitt Kernel (Gx): 

 [
−1 0 1
−1 0 1
−1 0 1

] [2.5] 



 
 

40 
 

Vertical Prewitt Kernel (Gy): 

 [
−1 −1 −1
0 0 0
1 1 1

] [2.6] 

The convolution operation generates two matrices, Gx and Gy, representing 

the gradient values along the vertical and horizontal directions at each pixel 

location. 

The gradient magnitude (G) of the image can be computed using the 

subsequent formula: 

 𝐺 =  √𝐺𝑥2 + 𝐺 𝑦2 [2.7] 

 

The gradient direction (θ) can also be calculated: 

 𝜃 =  𝑎𝑟𝑐𝑡𝑎𝑛(𝐺𝑦 / 𝐺𝑥) [2.8] 

 

The Prewitt operator is applied by sliding the Gx and Gy kernels over the 

image matrix, calculating the gradient values at each pixel. This process 

enhances areas of rapid intensity change, highlighting edges. 

Similar to the Sobel operator, the Prewitt operator is sensitive to noise, and 

post-processing techniques like thresholding is often employed to improve the 

detected edges. 

 

(iii). Robert Operator: For the purpose of image processing, the Robert operator is 

a straightforward edge detection operator. By using two 2x2 convolution 

kernels on the picture matrix, it determines the magnitude of the gradient. 

 

Mathematically, the Robert operator is applied by convolving the image 

matrix (I) with the following kernels: 

Horizontal Robert Kernel (Gx): 

 [
1 0
0 −1

] [2.9] 
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Vertical Robert Kernel (Gy): 

 [
0 1

−1 0
] [2.10] 

The gradient magnitude (G) of the visuls can be computed using the 

subsequent formula: 

 𝐺 =  √𝐺𝑥2 + 𝐺 𝑦2 [2.11] 

The gradient direction (θ) can also be calculated: 

 𝜃 =  𝑎𝑟𝑐𝑡𝑎𝑛(𝐺𝑦 / 𝐺𝑥) [2.12] 

 

In practice, the Robert operator is applied by sliding the Gx and Gy kernels 

over the image matrix, calculating the gradient values at each pixel. This 

process enhances areas of rapid intensity change, highlighting edges. 

The Robert operator is a basic edge detection technique that is 

computationally efficient but can be sensitive to noise.  

(iv). Laplacian of Gaussian: In the intricate domain of image processing and 

computer vision, the Laplacian of Gaussian (LoG) stands as a mathematical 

virtuoso, meticulously employed for feature detection, particularly in the 

intricate dance of edge detection. This technique is an alchemical fusion, 

birthing from the convolution of the additional derivative of a Gaussian 

function with an image. Described mathematically, the Laplacian of the 

Gaussian function intricately weaves its two-dimensional tapestry in the form 

of the function f(x, y). 

 
𝐿𝑜𝐺(𝑥, 𝑦) = −

1

𝜋𝜎4
 (1 −

𝑥2 + 𝑦2

2𝜎2
) 𝑒

−
(𝑥2+𝑦2)

2𝜎2  
[2.13] 

• (x,y) represents the coordinates of the point in the image. 

• This operation's scale is controlled by the standard nonconformity of the 

Gaussian function, denoted as σ. 

 

For edge detection, the Laplacian of Gaussian is beneficial because it draws 

attention to regions of a picture where the intensity changes quickly. The 
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numerical result shows that the LoG reacts positively for edges where the 

intensity varies from dark to light, and adversely for edges where the intensity 

changes from light to dark. 

 

(v). Canny Edge Detection: Using canny edge detection, one can greatly reduce 

the amount of data that requires processing while still extracting essential 

structural information from various visual objects. Many different kinds of 

computer vision systems have made extensive use of this method. Using edge 

detection to different vision systems has common requirements, as Canny 

noticed. Therefore, a versatile edge recognition method that encounters these 

necessities may be used to many situations (G et al., 2019). The fundamental 

criteria for successful edge detection encompass: 

• Achieving accurate edge detection with minimal errors, ensuring that 

the algorithm captures as many edges as possible from the image. 

• Precise localization of detected edge points at the center of the edges. 

• Ensuring that each edge in the image is identified only once and, 

wherever feasible, avoiding false edge creation due to image noise. 

 

As a mathematical tool for finding the optimal function for a specific 

functional, the calculus of variations was used by Canny to meet these 

requirements. The ideal function, which is the sum of four exponential terms, 

is represented in Canny's detector by a Gaussian first derivative estimation. 

The Canny edge detection technique is a well-defined method that provides 

reliable edge identification, setting it apart from other approaches that have 

been created thus far. Its superiority in meeting the three edge detection 

criteria, coupled with its straightforward implementation process, has 

contributed to its widespread popularity as an edge detection procedure. 

The algorithm involves a sequence of five distinct stages: 
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(i). Employ a Gaussian filter to gently smoothen the image, aiming to 

eliminate any noise present. 

(ii). Determine the intensity gradients across the image. 

(iii). Employ thresholding based on gradient magnitude or suppress weaker 

responses to discard unintended edge detection outcomes. 

(iv). Implement a double thresholding procedure to identify prospective 

edges. 

(v). Utilize hysteresis for edge tracking: Conclude edge detection by 

suppressing weaker, unconnected edges, while emphasizing strong 

edges. 

2.1.4 Atlas – Based Methods 

Atlas-based methodologies, a cornerstone of medical image analysis, pertain to a 

category of techniques that harness pre-existing anatomical or spatial insights 

encapsulated in an "atlas" image to guide the analysis or processing of diverse images. 

These techniques unfold their brilliance when confronted with intricate or variable 

anatomical structures spanning different subjects. 

sIn the realm of medical imaging, an atlas serves as a touchstone—a reference image 

or dataset embodying a prototypical or average anatomy. The orchestration of atlas-

based methods involves the transference of information from this reference image 

onto a target image, lending a helping hand in a spectrum of tasks, including 

segmentation, registration, and feature extraction. Conceptually, these methods 

embody a form of image-centric knowledge transfer. 

A prevalent example in brain tumor segmentation employs an atlas featuring a spatial 

probabilistic distribution of three normal brain tissues. This inter-patient atlas stands 

as a stalwart ally in this endeavor, as depicted in Fig 2.4. Approaches grounded in this 

atlas adeptly discern deviations from its representation, earmarking them as potential 

tumor regions (Fonov et al., 2011). Atlas-based methods weave their influence across 

diverse medical imaging applications, notably in brain MRI analysis, where individual 
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anatomies exhibit significant variability. By leveraging a shared reference (atlas), 

these methods play a pivotal role in elevating the precision, efficacy, and uniformity 

of image analysis tasks, solidifying their status as indispensable tools in the realm of 

medical image processing and research. 

 

Fig 2.4 The GM, WM, and CSF brain tissue types in the ICBM 18.5-43.5 atlas 

are contrasted with those in the NIHPD 4.5-18.5 atlas (top three columns on the 

left). The highest-intensity voxels are very indicative of being part of that 

particular type of tissue. For the purpose of making comparisons, the contours of 

the skin and skull have been placed on each individual photograph. Research 

conducted by Fonov et al. in 2011. 

2.2 Brain Tumor Machine Learning Based Classification Methods 

These methods categorise each pixel or voxel by applying either supervised 

(classification) or unsupervised (clustering) techniques to assign labels. Classification 

methods are commonly used in several areas of medical image processing. A training 

dataset is required for the building of the model, which may subsequently be used on 

new, unfamiliar data. The training dataset consists of two crucial elements: the data's 

representation in a feature space (including attributes like as pixel intensities and local 

textures) and the accompanying labels (which include manually classifying the data). 



 
 

45 
 

Conversely, clustering approaches function independently of any requirement for 

training data or manually supplied labels. Instead, these algorithms independently 

detect fundamental structures and patterns within the data. 

2.2.1 k-Nearest Neighbour (k-NN) 

In the vast tapestry of machine learning techniques, the K-Nearest Neighbours (KNN) 

algorithm stands as a modest yet formidable artisan, proficient in the crafts of 

classification and regression. At its core lies the philosophy that kindred data points, 

like celestial siblings, share not just the same class but also a kinship in behavior. 

Embracing the ethos of instance-based learning, KNN carries the entire training 

dataset as its treasury, crafting predictions by orchestrating a symphony of similarities 

between newly encountered data points and their archived counterparts. It's a digital 

voyager navigating the cosmos of data, drawing upon the collective wisdom of its 

stored instances to illuminate the path of predictions in the ever-unfolding saga of 

information. 

Here's how the KNN algorithm works: 

Training Phase: Feature vectors and their associated class labels or goal values for 

extrapolation are stored in the learning dataset by the K-nearest neighbour’s approach. 

This is done throughout the learning stage of the algorithm. 

Prediction Phase (Classification): The KNN algorithm embarks on a quest to unveil 

the "k" nearest companions within the training dataset when confronted with a novel 

and mysterious data point. It navigates this journey utilizing a distance metric, often 

the Euclidean distance, as its guiding compass. The class label bestowed upon the 

uncharted data point is a reflection of the prevailing class among its "k" closest 

comrades. In simpler terms, the new data point is adorned with the class that holds the 

highest prevalence within its intimate circle of neighbors. 
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Prediction Phase (Regression): By averaging (or weighting) the goal values of its 

"k" nearest neighbours, a new data point's projected target value in regression tasks is 

calculated. 

Key concepts and considerations of KNN: 

• Distance Metric: In the delicate choreography of uncovering the likeness 

between two data points, KNN navigates the intricate terrain using a distance 

metric, whether it be the brisk strides of Manhattan or the measured paces of 

Euclidean distances. The endeavor to fathom the distance of the nascent data 

point from each resident within the training dataset unfurls as a symphony of 

feature vectors, where the threads of each characteristic weave the narrative 

that binds the familiar and the enigmatic. 

• Choice of k: The value of "k" is a hyperparameter that determines the number 

of neighbours considered for making predictions. A smaller "k" may lead to 

noisy predictions, while a larger "k" may introduce bias. The optimal value of 

"k" depends on the dataset and problem at hand. 

• Weighted Voting: In some cases, a weighted voting scheme can be used, 

where closer neighbours have a higher influence on the prediction. 

• Normalization: Features might have different scales, which can impact 

distance calculations. Normalizing features can help ensure that no single 

feature dominates the distance computation. 

• Computational Complexity: Predicting the class or value of a new data point 

in KNN involves calculating distances to all training instances. This can 

become computationally intensive for large datasets. 

However, it may not perform well on high-dimensional data or when the data is 

imbalanced. It's often used in combination with other methods or as part of more 

complex models. 
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2.2.2 Bayesian Approach 

When it comes to predictive analytics, Bayesian machine learning is a top-tier 

modelling approach. Algorithms for machine learning are wed to probabilistic 

reasoning. The practical uses of Bayesian machine learning, including natural 

language processing (NLP) spam filtering and credit card fraud detection, have 

contributed to its rising popularity. In order to generate conclusions and forecasts that 

take uncertainty into consideration, Bayesian Machine Learning integrates machine 

learning with Bayesian statistics. To estimate posterior probabilities and make better 

judgements, it uses Bayes' theorem to update previous beliefs or probabilities based 

on observed facts. Applying Bayesian inference to real-world scenarios provides for 

more accurate predictions, as it is based on Bayes' theorem. (Fonov et al., 2011). 

 

Fig 2.5 The Bayesian Research Cycle (Fonov et al., 2011) 
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The fundamental formula behind Bayesian Machine Learning is Bayes’ theorem (Fig 

2.5): 

 𝑃(𝐻|𝐷)  =  (𝑃(𝐷|𝐻)  ∗  𝑃(𝐻)) / 𝑃(𝐷) [2.14] 

Where: 

• P(H|D) is the posterior probability of hypothesis H given the observed data D. 

 

• If hypothesis H is true, then the probability of data D is P(D|H). 

• The prior probability of hypothesis H is denoted as P(H). 

• The probability of the observed data D is denoted as P(D). 

In Bayesian Machine Learning, this formula is used to update prior beliefs (P(H)) 

based on new evidence (P(D|H)) and calculate the posterior probabilities (P(H|D)). 

The Bayesian approach plays a significant role in MRI (Magnetic Resonance 

Imaging) image processing, offering a principled and effective way to enhance, 

segment, and analyze medical images. This approach leverages probabilistic 

modelling to integrate prior knowledge, image data, and uncertainty, ultimately 

leading to more accurate and robust results.  

Here's how the Bayesian approach is applied to MRI image processing (Fonov et al., 

2011): 

• Prior Information: In MRI image processing, prior information could include 

anatomical knowledge, tissue properties, or statistical distributions of 

intensities. This information is often incorporated into the Bayesian model as a 

prior probability distribution, representing our initial beliefs about the image 

properties. 

• Likelihood Model: The likelihood model captures the relationship between 

the observed image data and the underlying image properties. It defines the 

conditional probability of observing the given data given the image properties. 
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In MRI, this could involve modelling noise characteristics and the expected 

signal behaviour for different tissues. 

• Posterior Probability: By combining the prior distribution and the likelihood 

model using Bayes' theorem, the posterior probability distribution is 

computed. This distribution represents our updated beliefs about the image 

properties after observing the data. 

• Maximum A Posteriori (MAP) Estimation: The Bayesian approach often 

seeks the most likely set of image properties given the observed data, which is 

known as the MAP estimation. This can be considered as finding the point 

estimate that maximizes the posterior probability. 

2.2.3 Support Vector Machine 

The Support Vector Machine is a multi-talented virtuoso in the field of supervised 

learning, deftly used to categorise and predict a wide variety of problems. Its 

influence stretches across domains as diverse as the intricate realm of signal 

processing, the nuanced landscapes of medical domains, the poetic realms of natural 

language processing, and the visual symphony of speech and image recognition. 

At the core of the SVM algorithm lies the paramount goal of pinpointing an optimal 

hyperplane that adeptly partitions instances of one class from their counterparts in 

another class. This "optimal" hyperplane is characterized by the widest margin 

between the two classes, as depicted by the distinction between plus and minus in the 

diagram below. The margin corresponds to the maximal breadth of the space adjacent 

to the hyperplane that lacks interior data points. While the algorithm can indeed find 

such a hyperplane when the data is linearly separable, in practical scenarios, it 

typically maximizes a flexible margin to accommodate a limited number of 

classification errors. 

Support vectors pertain to a subset of training observations that pinpoint the position 

of the dividing hyperplane. The typical SVM approach is framed for binary 
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classification tasks, and scenarios involving multiple classes are often converted into a 

series of binary ones. 

Delving into the underlying mathematical intricacies, support vector machines (fig 

2.6) belong to a category of machine learning algorithms termed kernel methods, in 

which features can undergo transformation through a kernel function. Kernel 

functions (Table 2.3) map the data onto an alternate space, often with higher 

dimensions, under the presumption that classes become easier to distinguish following 

this alteration. This may streamline intricate non-linear decision boundaries into linear 

ones within the augmented, mapped feature space. This entire procedure obviates the 

requirement for explicit data transformation, which would prove computationally 

intensive. This concept is commonly recognized as the "kernel trick." 

 

Fig 2.6 Defining the “Margin” Between Classes (Support Vector Machine (SVM) 

Explained. (n.d.) 

Training a support vector machine involves addressing a quadratic optimization 

challenge to establish a hyperplane that fits snugly between classes while minimizing 

the soft margin. The quantity of transformed attributes aligns with the count of 

support vectors. 
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Table 2.3 Several Kernal Including in SVM 

Type of Kernal Mercer Kernal Remarks 

Gaussian or Radial 

Basis Function 

(RBF) 

𝐾(𝑥1, 𝑥2)

= exp (−
|𝑥1 − 𝑥2|2

2𝜎2
) 

Single-class learning. The 

parameter σ signifies the 

kernel width. 

Linear 𝐾(𝑥1, 𝑥2) =  𝑥1
𝑇 𝑥2 Binary-class learning. 

Polynomial 𝐾(𝑥1, 𝑥2) = (𝑥1
𝑇 𝑥2 + 1)𝜌 

The parameter ρ represents 

the polynomial order. 

Sigmoid 𝐾(𝑥1, 𝑥2) = tanh(𝛽0𝑥1
𝑇 +  𝛽1) 

This serves as a Mercer 

kernel solely for specific β0 

and β1 values. 

 

2.2.4 Random Forest 

The Random Forest (RF) algorithm (Fig 2.7) falls within the category of supervised 

classification methods. RF relies on a collection of individual decision trees that 

collectively constitute a "Forest." The underlying concept of utilizing multiple 

decision trees (an ensemble) is to achieve a strong and resilient decision by 

amalgamating the outputs of many individual Decision Trees, as opposed to relying 

on a single one. Each decision tree in RF is self-learning, a process that involves 

automatically formulating rules at each node based on a training dataset containing 

known feature inputs and labels. 

A strategy to determine the optimal partition, given a set of input features and training 

instances, is to minimize the heterogeneity (a mixture of classes) within the resulting 

subsets of data. The Gini impurity, originating from information theory's concept of 

entropy, is often employed as a measure of heterogeneity in decision tree learning. To 

identify the finest partition at each node, the Gini impurity index is computed for each 

potential data split, and the split that results in the least heterogeneity is chosen. 
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The term "Random" in Random Forest alludes to two significant layers of randomness 

within the learning process: First, RF employs a bootstrapped sample (random 

selection with replacement) of the original training dataset for the creation of each 

individual decision tree. Consequently, the training data for these trees typically differ 

from one another. While this may seem counterintuitive, it substantially decreases the 

correlation between trees and enhances the generalizability of predictions. The second 

element of randomness involves a random selection of features (e.g., spectral bands) 

considered at each tree node. As a result, the splits are determined based on varying 

features, aiding in reducing correlations between trees. 

 

Fig 2.7 Schematic Structure of the RF Algorithm (Image classification - Random 

Forest. (n.d.).) 
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Multiple trees may generate diverse class labels for the same data point. The ultimate 

classification of each pixel in an image is determined by the majority consensus 

across all trees within the Random Forest ensemble. 

2.2.5 Clustering 

Clustering is a data analysis technique in which a set of objects or data points is 

grouped together based on their similarity or proximity to each other. Clustering seeks 

to discover underlying structures, connections, or trends in a collection without 

revealing these groups beforehand. It is a form of unsupervised learning where the 

algorithm autonomously discovers the clusters or groups within the data. 

When data is clustered, it becomes clear that points within an identical cluster share 

more similarities than differences. The similarity between data points is typically 

defined using a distance or similarity metric, such as Euclidean distance or cosine 

similarity. By minimising intra-cluster distances and maximising inter-cluster 

distances, algorithms for clustering strive to optimise the organisation of points of 

data into the clusters. 

 

 

Fig 2.8 Classification of Clustering Based Image Segmentation Methods (Mittal 

et al., 2021) 

Literature encompasses several clustering techniques designed for image 

segmentation. Nevertheless, a cluster lacks a specific definition, and several clustering 
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approaches have devised their own methodologies to categorise the data. 

Consequently, clustering approaches can be roughly categorised into two main groups 

based on the generation of clusters: hierarchical and partitional (Mittal et al., 2021). 

Figure 2.8 presents a taxonomy of the clustering approaches. The subsequent section 

delineates each classification of clustering in relation to picture segmentation. 

• Hierarchical clustering: Data is grouped via a hierarchy of clustering based 

on their degree of similarity, as seen by a dendrogram, which is a structure that 

resembles a tree. Two main methods describe the procedure: divisive and 

agglomerative (Saxena et al., 2017). 

• Partitional Clustering: Partitional clustering, notably favoured for larger 

datasets due to computational efficiency (Bouguettaya et al., 2015), utilizes 

similarity as a metric. It arranges data into clusters guided by an objective 

function, aiming for higher similarity within clusters. This involves comparing 

each data point's similarity with all clusters. The objective function generally 

aims to minimize within-cluster similarity, often employing Euclidean 

distance. It assesses cluster quality, yielding the best representation. Like 

hierarchical clustering, the number of clusters is predetermined. Partitional 

methods ensure data assignment, even if a data point is distant from the cluster 

centroid, potentially causing shape distortions or erroneous outcomes, 

particularly with noise or outliers. 

• Soft Clustering Methods: Soft clustering assigns data to multiple clusters 

iteratively, with varying degrees of membership, portraying data association 

more reasonably. The degree of membership ranges from 0 to 1, based on an 

objective function, often minimizing the sum of squared Euclidean distances. 

• Hard Clustering Methods: Hard clustering methodically separates data into 

distinct clusters based on an objective function. It assigns data solely to a 

single cluster, with a degree of membership as either 0 or 1. This approach is 

straightforward, computationally efficient, suitable for spherical, well-

separated datasets, but suffers from drawbacks like suboptimal centroid 
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descriptions, sensitivity to initial parameters, and requiring prior knowledge of 

cluster count. 

2.3 Limitation of Conventional Methods 

Complexity of Tumor Patterns: Conventional methods struggle to accurately handle 

intricate tumor patterns, often leading to under-segmentation or over-segmentation 

due to limited ability to capture complex variations. 

• Manual Intervention: Many conventional techniques require manual 

intervention, such as seed point selection or initial boundary delineation. 

• Limited Adaptability: Traditional methods often lack adaptability to different 

tumor types, sizes, and locations, making them less effective in dealing with 

the diverse characteristics of brain tumors. 

• Dependency on Feature Engineering: Conventional methods heavily rely on 

hand-crafted characteristics, which may not fully detention the rich 

information present in complex medical images, leading to suboptimal 

performance. 

• Inability to Handle Noise and Variability: Brain images are inherently noisy 

and can vary significantly due to factors like imaging protocols and patient 

variability. Conventional techniques may struggle to cope with such noise and 

variability. 

• Limited Integration of Prior Knowledge: Traditional methods might not 

effectively incorporate prior knowledge about brain anatomy, tissue properties, 

or tumor behavior, which could aid in improving segmentation accuracy. 

• Scalability: Conventional techniques may face challenges in handling large-

scale datasets efficiently, impacting both processing time and computational 

resources. 

• Difficulty with Non-linear Relationships: Many brain tumor characteristics 

exhibit non-linear relationships, which conventional methods may not capture 
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well, resulting in suboptimal segmentation in regions with complex 

boundaries. 

• Lack of Robustness to Image Artifacts: Conventional algorithms might be 

sensitive to artifacts introduced during image acquisition, leading to inaccurate 

segmentation results. 

• Challenging for Multi-modal Data: Traditional methods struggle to 

effectively utilize multi-modal information from different imaging techniques, 

missing out on potentially valuable data for improved segmentation. 

• Generalization to New Data: Conventional methods might not generalize 

well to unseen data or new datasets, limiting their applicability and requiring 

re-tuning or re-training for each specific scenario. 

• Inefficiency in Handling Large-Scale Data: For datasets with a large 

number of images or high-resolution scans, conventional techniques may 

become computationally inefficient and impractical. 

Overall, while traditional methods have paved the way for brain tumor analysis, their 

limitations highlight the need for more advanced and data-driven approaches. 

2.4 Deep Neural Network 

2.4.1 DNN Evolution 

The evolution of deep neural networks has been marked by significant breakthroughs 

and innovations, fuelled by advancements in algorithms, hardware, and data 

availability. From the early days of single-layer perceptron’s to the current era of 

sophisticated architectures, deep learning continues to revolutionize various fields and 

shape. In the realm of medical image analysis, a frequent task is semantic 

segmentation, such as delineating organs or identifying lesions. The Convolutional 

Neural Network, a specialized form of Deep Neural Network architecture, rose to 

prominence around 1990 with LeNet's architectural design (Chavent et al., 2007). 

LeNet introduced a two-layer CNN architecture. Subsequently, about fifteen years 

later, the introduction of AlexNet (Kaya & Bilge, 2019) marked a significant 
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advancement, comprising five convolutional layers. The widespread availability of 

fast GPUs and improved computing resources contributed to the emergence of 

AlexNet and its subsequent impact. The Evolution of Deep Neural Networks (Kaya & 

Bilge, 2019): 

• Single-Layer Perceptrons (1950s-1960s): The initial phase of neural network 

development saw the emergence of single-layer perceptrons, inspired by the 

functioning of biological neurons. However, their limitations in handling 

complex patterns and their restriction to linear separations hindered their 

practical applications. 

• Multilayer Perceptrons (1970s-1980s): The introduction of the 

backpropagation algorithm in the 1970s marked a significant milestone. This 

breakthrough enabled the training of multilayer perceptrons (MLPs) with 

multiple interconnected layers. These networks could learn intricate features 

and patterns through the layers, paving the way for more complex tasks. 

• Limited Progress (1990s-2000s): Despite early progress, neural networks 

faced challenges like vanishing gradients and computational constraints, 

leading to reduced interest and research during this period. 

• Rise of Convolutional Neural Networks (CNNs) (2010s): The landscape 

shifted dramatically with the ascent of CNNs, particularly highlighted by the 

success of AlexNet in 2012. These networks demonstrated the potential of 

deep architectures by using convolutional layers to learn hierarchical features 

from raw data. 

• Advancements in Architectures (2010s): Research into other designs grew in 

the wake of CNNs' success. These included RNNs for data that is sequential, 

LSTM networks that were optimised for better memory retention, and 

attention techniques for better feature extraction. 

• Deep Learning Revolution (2010s): The synergy of ample datasets, powerful 

GPUs, and refined optimization techniques initiated a deep learning 

revolution. Neural networks achieved groundbreaking results in various 
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domains like speech recognition, natural language processing, image analysis, 

and autonomous systems. 

• Transfer Learning and Pre-trained Models (2010s): pre-trained models like 

BERT and GPT leveraged vast data and transformed the landscape of transfer 

learning. Fine-tuning these models for specific tasks with limited data proved 

to be a game-changer. 

• Attention Mechanisms and Transformers (2010s): Attention mechanisms, 

epitomized by the Transformer architecture, brought significant progress to 

language understanding, image captioning, and more. They enabled networks 

to focus on relevant information for improved performance. 

• Hybrid Approaches and Beyond (2020s): Recent trends include hybrid 

models combining neural networks with symbolic reasoning and knowledge 

representation. Efforts are directed towards enhancing efficiency, 

interpretability, and robustness of deep learning models. 

2.4.2 CNN for Deep Neural Network 

Within the tapestry of artificial intelligence, convolutional neural networks emerge as 

intricate systems anchored in multi-layered neural networks, showcasing prowess in 

tasks ranging from object identification and recognition to classification, image object 

detection, and segmentation. ConvNets, a colloquial term for CNNs, stand as a 

prevalent framework in the deep learning landscape, excelling in discrimination tasks. 

A notable feature is their ability to autonomously glean insights from input data, 

eliminating the necessity for manual feature extraction (Thakur et al., 2019; Song et 

al., 2017). 

2.4.2.1 CNN Fundamental 

Acquiring a deep comprehension of the diverse elements comprising CNN 

components and their practical uses is crucial for unveiling the progressions in CNN 

architecture. In essence, a CNN comprises four discernible types of layers. 
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• Convolutional 

• Pooling 

• Function of Activation 

• Fully Connected 

(i). Convolutional Layer: The pivotal convolutional layer stands as a linchpin in 

the holistic architecture of a CNN. Comprising a suite of filters, often denoted 

as kernels, this layer orchestrates the processing of input data. These kernels, 

characterized by dimensions such as width, height, and weight, act as 

discerning agents, extracting unique features from the input data. Initially, the 

kernel weights embark on their journey with random assignments, gradually 

evolving as they glean more precise insights from the training data. Each 

numerical entry corresponds to a specific kernel weight reference, a starting 

point chosen through random selection and refined through various 

initialization procedures. This dynamic evolution of weights during training 

empowers the kernel to adeptly capture significant traits. 

 

Operating within a high-dimensional, implicit feature space, the kernel 

performs computations without explicitly navigating data coordinates within 

that realm. It calculates the inner product of image representations across the 

myriad combinations of data pairs in the feature space. CNNs distinguish 

themselves from their conventional neural counterparts by their prowess in 

processing multi-channeled images, transcending the confines of vectorized 

data accepted by traditional neural networks. While RGB images boast three 

color channels, grayscale counterparts gracefully navigate with just a singular 

channel. 

 

To demonstrate the application of convolutions, we will examine a grayscale 

image measuring 4 × 4 pixels. This image will be combined with a 2 x 2 

kernel that has been initialised with random weights. This kernel does both 
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horizontal and vertical traversal throughout the full image. Simultaneously 

computing the dot product involves the synchronous multiplication of 

corresponding values from the input image and kernel, culminating in the 

summation of these products to yield a singular scalar value. This process 

continues in an iterative manner until it is no longer possible to slide any 

further (Thakur et al., 2019; Song et al., 2017). 

 

The primary image denoted as (K) and the filter represented as (L). 

The resulting matrix is derived using the formula 

 (𝐾 − 𝐿 + 1) [2.15] 

 

When applying the calculation (4-2+1), the outcome becomes 3, leading to a 

resulting matrix size of 3 x 3. 

 

Indeed, the dot product values serve as indicators of the resulting feature map. 

Figure 3 visually illustrates the fundamental computations executed during 

each step. Within this diagram, the compact square (2 x 2) signifies the kernel, 

while the larger square (4 x 4) symbolizes the input image. Consequently, a 

numerical value emerges from the multiplication of both elements (Thakur et. 

al. 2019, Song et. al., 2017). 

 

Nevertheless, in the prior instance, the kernel's stride is set at 1, while the 

input image remains unpadded. It's worth noting that you have the liberty to 

replace the stride value with an alternative if desired. Furthermore, elevating 

the stride value brings the added advantage of reducing the dimensionality of 

the resultant feature map. (Thakur et. al. 2019, Song et. al., 2017). 

 

The dimensions of the provided image's border are significantly impacted by 

padding. Conversely, the characteristics of the border side undergo substantial 

alterations during this process. Padding results in an enlargement of the input 
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image, consequently leading to an increased size of the feature map. Each 

filter within the setup can represent a distinct feature. When a filter traverses 

an image without encountering a match, it remains inactive. CNN employs 

this strategy to identify the most efficient filters for describing objects. Fig 2.9 

represents the primary calculation of convolutional layer. 

 

 

Fig 2.9 Primary Calculation of Convolutional Layer (Taye, 2023) 

 

• Weight Sharing: Convolutional Neural Networks are a subset of deep 

learning architectures that are built to handle and analyse input that is 

grid-like, like photographs. One of its basic concepts is weight sharing. 



 
 

62 
 

In CNNs, weight sharing refers to the practice of using the same set of 

learnable parameters (weights) for multiple units within a specific 

layer of the network. Weight sharing helps CNNs capture local patterns 

and features present in various parts of the input, allowing them to 

learn hierarchical representations of increasing complexity. This 

concept has been crucial in the success of CNNs in tasks as it enables 

networks to efficiently learn and recognize features while leveraging 

spatial information effectively. 

• Stride: The CNN stride is a parameter in Convolutional Neural 

Networks (CNNs) that specifies the distance at which a filter or kernel 

moves across the input data during the convolution operation. In the 

framework of Convolutional Neural Networks, the convolution process 

comprises methodically dragging a filter throughout the input 

information from an image like this, to obtain unique characteristics. 

The stride determines the amount of horizontal and vertical movement 

of the filter throughout the convolution process on the input. 

The term "stride" refers to the number of rows and columns covered 

with each sliding step. Thus far, we have consistently utilised a stride 

value of 1 for both the vertical and horizontal dimensions. 

Nevertheless, there are situations in which choosing a longer stride 

could be advantageous. A 2-dimensional cross-correlation process is 

illustrated in Figure 2.10 of the study. This process has a vertical stride 

of three and a horizontal stride of two. The shaded portions in the 

figure represent the output elements that are obtained as a result. These 

elements are computed using the input and kernel tensor components, 

taking into account the concepts of padding and stride. This 

information is sourced from the documentation titled "Padding and 

Stride — Dive into Deep Learning 1.0.3".  

0 × 0 + 0 × 1 + 1 × 2 + 2 × 3 = 8 
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0 × 0 + 6 × 1 + 0 × 2 + 0 × 3 = 6 

 

 

Fig 2.10 Cross-correlation is performed using vertical strides of 3 

and horizontal strides of 2.[ Padding and Stride — Dive into Deep 

Learning 1.0.3 documentation. (n.d.).] 

 

The convolution window obviously descends three rows to 

accommodate the additional element in the primary column. The 

convolution window also moves a pair of columns to the right 

horizontally after producing the additional portion of the first row. In 

the subsequent steps, the input component is insufficient to fill the 

convergence window, therefore no output is generated when the 

window travels two columns to the correct position over the input. This 

constraint remains in effect unless an extra column of padding is 

added: 

 

In a broader context, when the vertical stride is represented as sh and 

the horizontal stride as sw the resultant shape of the output is 

determined [Padding and Stride — Dive into Deep Learning 1.0.3 

documentation. (n.d.).]. 

 ⌊(𝑛ℎ −  𝑘ℎ +  𝑝ℎ +  𝑠ℎ) 𝑠ℎ⁄ ⌋  × ⌊(𝑛𝑤 −  𝑘𝑤 +  𝑝𝑤 +  𝑠𝑤) 𝑠𝑤⁄ ⌋ [2.16] 

• Padding: When implementing convolutional layers, a challenging 

aspect arises related to the potential loss of pixels along the image's 
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edges. Figure 2.11 shows the pixel use in relation to the size and 

location of the convolution kernel, which illustrates this problem. It 

should be noted that pixels located in the corners are not used very 

often. 

 

 

 

Fig 2.11 Utilization of pixels for convolutions with dimensions of 1 

x 1, 2 x 2, and 3 x 3, respectively. [Padding and Stride — Dive into 

Deep Learning 1.0.3 documentation. (n.d.).] 

 

Each convolution may only cause a little number of pixels to be lost 

because we frequently employ small kernels. However, this 

accumulation becomes meaningful as we employ numerous successive 

convolutional layers. An uncomplicated resolution to this problem 

entails augmenting the dimensions of the input image by incorporating 

supplementary pixels along its boundaries. Usually, these additional 

pixels are given a value of zero. Figure 2.12 demonstrates the addition 

of padding to a 3 x 3 input, which leads to an increased size of 5 x 5. 

As a result, the output is represented by a matrix with dimensions of 4 

x 4. The input and kernel tensor components utilised to compute the 

output, together with the starting output element, are indicated by the 

shaded regions. 

 

0 × 0 + 0 × 1 + 0 × 2 + 0 × 3 = 0 
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Fig 2.12 Two-dimensional cross-correlation with padding (Padding 

and Stride — Dive into Deep Learning 1.0.3 documentation. (n.d.) 

 

In a general context, when we incorporate ph rows of padding 

(approximately equally distributed between the top and bottom) along 

with pw columns of padding (approximately equally distributed 

between the left and right), the resulting output shape will be: 

 

 (𝑛ℎ −  𝑘ℎ + 𝑝ℎ +  1)  ×  (𝑛𝑤 −  𝑘𝑤 +  𝑝𝑤 +  1) [2.17] 

 

Because of this, the output's height will grow by ph and its width by pw. 

 

(ii). Pooling: For Convolutional Neural Networks, pooling—also called 

subsampling processes or down sampling—is an essential procedure for 

reducing the spatial dimensions of maps of features while keeping important 

information. The process entails dividing the input feature map into distinct or 

overlapping sections and subsequently consolidating the data within each 

section into a singular value (Taye, 2023). 

 

The max pooling method is the most popular, and it works by taking the 

largest value from each region and using it as the output. The average pooling 
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is another kind; it averages the data in the area. Pooling helps achieve several 

benefits: 

 

• Dimensionality Reduction: Pooling makes the network more efficient 

and less susceptible to overfitting by lowering the number of 

parameters and calculations by reducing the spatial dimensions of the 

feature maps. 

• Translation Invariance: The network's pattern recognition 

capabilities can be improved by pooling, since it becomes less affected 

by little changes in the input data, such as translations or shifts. 

• Feature Hierarchy: Pooling progressively reduces the spatial 

dimensions, allowing the network to capture high-level abstract 

features in deeper layers. 

Pooling is usually applied independently to each channel or feature map, 

allowing CNNs to learn and detect patterns at multiple scales. It is typically 

performed after convolutional layers and activation functions, resulting in a 

smaller set of feature maps with reduced spatial dimensions. However, it's 

important to note that pooling can cause some loss of spatial information, 

which might not be desirable in certain tasks where precise spatial 

relationships matter, like segmentation. 

 

Fig 2.13 Pooling Layer (Taye, 2023) 
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As illustrated in Fig 2.13, upon applying pooling to the two-by-two blocks 

positioned in the upper-left corner, the emphasis transitions to the upper-right 

corner, resulting in a displacement of two steps. This leads to the utilization of 

a stride of 2 for pooling. Alternatively, a less common stride of 1 can be used 

to prevent down sampling. There are a number of different pooling levels that 

may be used. Among these techniques are gated pooling, global maximum 

pooling (GMP), average pooling, min pooling, and global average pooling 

(GAP). Figure 8 displays each of these methods. Pooling layers can't help 

convolutional neural networks (CNNs) determine whether a feature is present 

in an input picture, which is its main drawback; it mainly helps identify the 

feature's location [Alzubaidi et al., 2021, Du & Swamy, 2019]. Consequently, 

there are instances where the overall performance of the CNN model might 

suffer a decline. Nonetheless, such instances lead to the omission of essential 

information by the CNN model. 

 

(iii). Function of Activation: An essential part of every Convolutional Neural 

Network (CNN) is the activation function, which makes the network's 

computations non-linear. In Convolutional Neural Networks (CNNs), every 

neuron inside a layer calculates a weighted sum of its input values, which is 

subsequently processed by the activation function. Activation functions 

process the aggregated input to a neuron and determine whether the neuron 

should be activated or not. A neuron activates and sends its output to the next 

layer when its function of activation output surpasses a certain threshold. 

 

Different activation functions offer varying degrees of complexity and 

behaviour, influencing how the network learns and converges during training.  

 

• Rectified Linear Unit (ReLU): A function of activation commonly 

used by CNNs and other neural networks is the Rectified Linear Unit. 

Its ability to introduce non-linearity to the calculations of the network 
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is well-known, and it is also noted for being simple, making it a 

fundamental building block of deep learning architectures. Fig 2.14 

represent ReLU Activation Function.  

The ReLU activation function operates as follows: 

For any given input x: 

o The output is x if and only if x is non-zero. 

o The result is 0 if x is a negative integer. 

Mathematically, the ReLU function can be represented as: 

 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) [2.18] 

Here, Considering an input x, the outcome of the ReLU algorithm is 

denoted as f(x). 

 

Fig 2.14 Graphically representation of ReLU Activation Function 

• Sigmoid: Neural networks and artificial intelligence models often use 

the sigmoid function, often called the logistic function, which serves as 

a function of activation. It may compress the outcome into a range of 0 

to 1 and introduce non-linearity into calculations, which is its main 

function. Because of this quality, it may be used effectively in 

functions of activation and for binary tasks such as classification. Fig 

2.15 represents the Sigmoid Activation Function. 

 

The sigmoid function operates as follows: 

Given an input x, the sigmoid function computes the output y using the 

following formula: 
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 𝑦 =  
1

1 +  𝑒−𝑥
 [2.19] 

The input value x is used in conjunction with the base of the natural 

logarithm, denoted as e. For each given input value, the sigmoid 

function returns a value between zero and one. 

 

Fig 2.15 Graphically representation of Sigmoid Activation 

Function 

• Hyperbolic Tangent (tanh): One activation function utilised in neural 

networks and ML models is the tangent hyperbolic operate or tanh 

function. It shares similarities with the sigmoid function but has an 

output range between -1 and 1, making it suitable for a wider range of 

tasks that require both positive and negative values. Fig 2.16 represents 

of Hyperbolic Tangent Activation Function 

The tanh function operates as follows: 

 

Given an input x, the tanh function computes the output y using the 

following formula: 

 

 𝑦 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 [2.20] 

 

Here, e represents the base of the natural logarithm. 
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Fig 2.16 Graphically representation of Hyperbolic Tangent 

Activation Function 

 

(iv). Fully Connected Layer: An integral part of neural networks, including CNN 

and other deep learning architectures, is a Fully Connected Layer, often called 

a dense layer. To make definitive recommendations or classifications, the 

previously described layer is crucial for collecting complex data relationships. 

A totally Connected Layer is characterised by the fact that each neuron is related to 

every single neuron in the preceding layer, which is why it is referred to as "fully 

connected." The weight of each connection is linked to it, and the outcome of each 

neuron is evaluated by adding all the weighted inputs from the preceding layer and 

applying an activation function. 

The process within a Fully Connected Layer (Fig 2.17) involves the following steps: 

 

Fig 2.17 Fully Connected Layer 
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(i). The inputs from the previous layer are multiplied by their 

corresponding weights and then added together in a weighted sum. 

(ii). The weighted sum is then adjusted by adding a bias term. 

Important to the model's performance is the bias term's ability to 

change the activation function. 

(iii). By feeding the final tally into an activation function, we may make 

the model non-linear. Rectified Linear Unit, the sigmoid operation, 

and hyperbolic tangent are three famous functions for activation. 

(iv). A neuron's output in the Fully Connected Layer feeds into the next 

layer's input, and so on. 

At the very end of most neural network topologies you'll see Fully Connected 

Layers, where all of the collected properties are combined to make final 

predictions. As an example, in picture categorization tasks, the convolutional 

and pooling layers first extract useful characteristics from the image, which 

are subsequently flattened and used by a Fully Connected Layer to forecast the 

input image's class. 

The main limitation of a fully connected layer is the extensive set of parameters, 

which requires intensive computations during training on data samples. Hence, there's 

an effort to reduce the count of connections and nodes. 

2.4.2.2 Comparison of Common CNN Architecture 

Deep learning proves its potency through the utilization of Artificial Neural Networks 

(ANNs) featuring an extensive array of processing layers, surpassing conventional 

Neural Network methodologies (Zhang et al., 2019). Among the premier selections in 

deep learning, Convolutional Neural Networks (CNNs) stand out. This technique 

adeptly assimilates significant features from unprocessed data. Within this 

architecture, the extraction of image attributes, encompassing color and texture 

intricacies, is undertaken to discern and categorize images effectively. LeNet, one of 
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the early CNNs, has a relatively simple structure and is primarily suitable for 

handwritten digit recognition. On the other hand, AlexNet introduced deeper 

architectures with multiple convolutional layers, making it adept at handling more 

complex tasks like image classification (Du & Swamy, 2019). 

VGG16 and VGG19, while even deeper than AlexNet, stand out due to their 

uniformity in layer architecture, using only 3x3 convolutional filters. This consistent 

structure simplifies network design and optimization, but comes at the cost of 

increased computational requirements (Simonyan et. al. 2014). 

GoogLeNet (Inception) innovatively employs inception modules, featuring multiple 

filter sizes within a single layer. This architecture facilitates the capture of multi-scale 

features, but its complexity can lead to computation challenges (Szegedy et al., 2015). 

ResNet's groundbreaking residual connections enable training of extremely deep 

networks without degradation in performance. This architecture's skip connections aid 

gradient flow, preventing the vanishing gradient problem (Zagoruyko et. al., 2016). 

DenseNet introduces dense connectivity, connecting every layer to every other layer 

in a feedforward fashion. This design promotes feature reuse and enhances gradient 

flow, making it efficient for training (Huang et al., 2017). 

Table 2.4 Comparison of Common CNN Architecture 

Ref No 
Architec

ture 
Year Layer Parameter Highlights 

El‐Sawy 

et al., 

2016 

LeNet 1998 

3 

Convolutional 

Layer + 2 

Subsampling 

Layer + 2 Fully 

Connected 

Layer 

60 k 

Parameters 

Key highlights include: 

 

• Early CNN: One of the first 

successful CNNs for image 

analysis. 

• Handwritten Digits: 

Achieved high accuracy in 

handwritten digit 

recognition, setting the stage 
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Ref No 
Architec

ture 
Year Layer Parameter Highlights 

for modern image 

classification. 

• Hierarchical Features: 

Introduced the concept of 

hierarchical feature learning 

through convolutional 

layers. 

• Inspiration: Inspired 

subsequent deep learning 

advancements and remains 

historically significant in AI 

and computer vision 

Krizhevs

ky et al., 

2017 

AlexNet 2012 

5 

Convolutional 

+ 3 Fully 

Connected 

Layer 

62.3 million  

Key highlights include: 

 

• Deep CNN: One of the first 

deep CNN architectures with 

eight layers, effectively 

addressing image 

classification tasks. 

• ReLU Activation: 

Originally the use of the 

activation of the ReLU 

function, greatly improved 

training speed. 

• Dropout Regularization: 

Introduced dropout 

regularization to mitigate 

overfitting, improving 

generalization. 

• GPU Acceleration: Utilized 

GPU acceleration for faster 

training, making deep 

learning practical at scale. 
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Ref No 
Architec

ture 
Year Layer Parameter Highlights 

• Deep Learning Renaissance: 

Marked the beginning of a 

deep learning renaissance, 

leading to a surge in research 

and applications in computer 

vision and beyond. 

Shi et 

al., 2020 
ZFNet 2013 

5 

Convolutional 

+ 1 Max-

Pooling Layers 

+ 1 Fully 

Connected 

Layer + 1 

Output Layer 

60 million 

Key highlights include: 

 

• Improved ImageNet 

Performance: Demonstrating 

the promise of deep learning 

for picture categorization 

jobs, ZFNet performed well 

in the ImageNet Large Scale 

Visual Identification 

Challenge. 

• Visualization Techniques: 

Introduced visualization 

techniques to better 

understand neural network 

activations and feature 

hierarchies. 

• Architectural Evolution: 

Served as an architectural 

evolution between earlier 

CNNs like AlexNet and later 

networks like VGGNet. 

• Convolutional Visualization: 

Zeiler and Fergus 

demonstrated the importance 

of convolutional 

visualization techniques to 

interpret and improve deep 
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Ref No 
Architec

ture 
Year Layer Parameter Highlights 

neural network performance. 

Simonya

n et. al. 

2014 

VGGNet 2014 

13 or 16 

Convolutional 

Layer + 3 Fully 

Connected 

Layer 

138 million  

Key highlights include: 

 

• Deep Architecture: VGGNet 

is characterized by its deep 

architecture, featuring 16 or 

19 weight layers (16-layer 

and 19-layer versions), 

which increased model 

depth for improved feature 

learning. 

• Consistency in Convolution: 

It maintained a consistent 

3x3 convolutional filter size 

throughout the network, 

emphasizing smaller filter 

sizes as building blocks. 

• Simplicity and Elegance: 

Known for its simplicity and 

elegance in design, 

VGGNet's uniform 

architecture made it easier to 

understand and replicate. 

• Impact on Deep Learning: 

VGGNet's design principles 

influenced subsequent CNN 

architectures, serving as a 

benchmark for deep learning 

model design. 

Szegedy 

et al., 

2015 

GoogLe

Net 
2014 

22 

Convolutional 

Layer + 9 

Pooling Layer 

4 million 

Key highlights include: 

 

• Inception Module: Presented 

the Inception module, a new 
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Ref No 
Architec

ture 
Year Layer Parameter Highlights 

idea in architecture that 

enables the network to 

efficiently collect 

characteristics at many 

scales by using several filter 

sizes (1x1, 3x3, 5x5) within 

a single layer. 

• GoogLeNet's Architectural 

Depth: GoogLeNet utilized a 

deep network with 22 layers 

but fewer parameters than 

other deep networks of the 

time, making it more 

computationally efficient. 

• Reduction in 

Dimensionality: Employed 

dimensionality reduction 

techniques, such as 1x1 

convolutions, to reduce the 

computational cost of 

convolutional layers. 

• Impact on CNN Design: 

Inspired the development of 

efficient and scalable CNN 

architectures, emphasizing 

both performance and 

computational efficiency. 

• Advancements in Deep 

Learning: GoogleNet 

contributed to the broader 

adoption of deep learning 

and the exploration of model 

architectures beyond 
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Ref No 
Architec

ture 
Year Layer Parameter Highlights 

traditional designs. 

Szegedy 

et al., 

2016 

Inception 

V3 
2015 

48 Layer in 

Deep 
25 million 

Key highlights include: 

 

• GoogLeNet's Successor: 

Building upon the success of 

the original GoogLeNet 

(Inception V1), Inception V3 

improved both performance 

and computational 

efficiency. 

• Factorization: Introduced 

factorization into the 

Inception module, splitting 

5x5 convolutions into two 

3x3 convolutions, which 

enhanced learning while 

reducing parameters. 

• Batch Normalization: 

Incorporated batch 

normalization, improving 

convergence speed and 

overall network stability 

during training. 

• Fine-Grained Feature 

Extraction: Enabled fine-

grained feature extraction, 

making it suitable for tasks 

that require detailed feature 

analysis. 

• Transfer Learning: 

Facilitated transfer learning 

and fine-tuning, making it a 

popular choice for reusing 
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Ref No 
Architec

ture 
Year Layer Parameter Highlights 

pretrained models on various 

datasets. 

• Impact on Computer Vision: 

Inception V3 contributed to 

advancements in computer 

vision by pushing the 

boundaries of model 

accuracy while maintaining 

computational efficiency. 

Shafiq & 

Gu, 2022 
ResNet 2015 

50-layer CNN 

in ResNet-50 
23 million 

Notable points comprise: 

 

• Innovative Deep Architecture: 

ResNet models can include 

hundreds of layers, making it 

famous for its great depth. 

Training extremely deep 

neural networks was proven 

to be feasible. 

• Residual Blocks or Skip 

Connections: These were 

introduced to make gradient 

flow easier during training. 

As a result, deep network 

training is possible and the 

vanishing gradient problem is 

reduced 

• ResNet enhanced accuracy 

with fewer parameters 

compared to shallower 

networks, despite its depth. 

This is due to parameter 

efficiency. 

• The usage of ResNet models 
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Ref No 
Architec

ture 
Year Layer Parameter Highlights 

that have been pretrained on 

big datasets for transfer 

learning has grown in recent 

years. 

• Converging Use: ResNet-50 

and ResNet-101, two of 

ResNet's architectures, are 

now de facto options for 

many computer vision jobs. 

Iandola 

et al., 

2016 

Squeeze

Net 
2016 

18 Layer in 

deep 

50 times 

fewer 

parameter 

then AlexNet 

Key highlights include: 

 

• Fire Module: Introduces the 

"fire module," a unique 

building block that combines 

convolutional layers with 

both 1x1 and 3x3 filters to 

maximize feature extraction 

while minimizing 

computational cost. 

• Efficiency: Demonstrates 

remarkable computational 

efficiency by reducing 

model size and 

computational requirements 

without sacrificing 

performance. 

• Transfer Learning: 

SqueezeNet models 

pretrained on large datasets 

are valuable for transfer 

learning across various 

applications. 

Szegedy Inception 2017 The exact 43 million Key highlights include: 
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Ref No 
Architec

ture 
Year Layer Parameter Highlights 

et al., 

2017 

V4 number of 

layers in 

Inception-v4 

depending on 

the specific 

implementation 

and variations, 

but it typically 

consists of 

hundreds of 

layers. 

 

• Architecture Evolution: 

Inception V4 builds upon the 

success of earlier Inception 

models, refining 

architectural components for 

improved accuracy. 

• Stem Block: Introduced a 

novel stem block at the 

network's entrance to 

enhance feature extraction 

from input images. 

• Inception Blocks: Employed 

carefully designed Inception 

blocks, including various 

convolutional filter sizes and 

efficient factorization 

techniques. 

• Scalability: Achieved 

scalability by using multiple 

versions of Inception 

modules with varying 

depths, allowing users to 

choose the trade-off between 

model size and performance. 

• Reduction Blocks: Included 

reduction blocks to reduce 

spatial dimensions and 

computational cost. 

• Transfer Learning: 

Pretrained Inception V4 

models are commonly used 

for transfer learning in 
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Ref No 
Architec

ture 
Year Layer Parameter Highlights 

various image-related tasks. 

Huang 

et al., 

2017 

DenseNe

t 
2017 

DenseNet-121 

has 121 layers. 

DenseNet-169 

has 169 layers. 

DenseNet-201 

has 201 layers. 

DenseNet-264 

has 264 layers. 

DenseNet-

201 (20 

million) 

Key highlights include: 

. 

• Parameter Efficiency: 

Achieves high accuracy with 

fewer parameters compared 

to traditional deep networks, 

thanks to feature reuse and 

skip connections. 

• Gradient Flow: Addresses 

the vanishing gradient 

problem by enabling 

gradient information to flow 

directly through the network, 

making training deep 

networks easier. 

• Bottleneck Layers: Reduces 

the network's parameter 

count without sacrificing 

expressive capability by 

using bottleneck layers, 

which are 1x1 convolutions. 

• Impact on Deep Learning: 

Inspired further research into 

densely connected networks 

and influenced the design of 

subsequent CNN 

architectures. 

Howard 

et. al., 

2017 

MobileN

ets 
2017 27 CNN Layer 13 million 

Key highlights include: 

 

• Efficiency: MobileNet 

models are specifically 

designed to be 
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Ref No 
Architec

ture 
Year Layer Parameter Highlights 

computationally efficient 

and lightweight, making 

them suitable for 

deployment on resource-

constrained devices. 

• Parameter Efficiency: 

Achieves a balance between 

model size and accuracy, 

making it suitable for 

scenarios with limited 

computational resources. 

• Transfer Learning: 

Pretrained MobileNet 

models are commonly used 

for transfer learning and 

fine-tuning in mobile and 

edge device applications. 

• Model Compression: 

MobileNet's design 

principles have influenced 

research on model 

compression and efficient 

neural network architectures. 

Chollet, 

2017 
Xception 2017 

71 Layers in 

Deep 
22.8 million 

Key highlights include: 

 

• Extreme Depth and 

Efficiency: Xception 

achieves both high accuracy 

and computational efficiency 

by utilizing an extremely 

deep architecture while 

reducing computational 

complexity. 
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Ref No 
Architec

ture 
Year Layer Parameter Highlights 

• Transfer Learning: 

Pretrained Xception models 

have been widely used for 

transfer learning in various 

computer vision 

applications. 

• Compact Architecture: 

Despite its depth, Xception 

maintains a relatively 

compact architecture, which 

makes it suitable for real-

time and embedded 

applications. 

• Inception Influence: 

Xception is influenced by 

the Inception architecture, 

refining its ideas and 

pushing the boundaries of 

efficiency. 

Tan et. 

al., 2019 

Efficient

Net 
2019 342 Layer 11 million 

Key highlights include: 

• Efficiency-Accuracy Trade-

off: Offers a range of models 

(e.g., B0, B1, B2, ..., B7) 

with varying depths and 

computational requirements, 

allowing users to choose the 

model that suits their 

specific computational 

constraints and accuracy 

needs. 

• State-of-the-Art 

Performance: EfficientNet 

models consistently achieve 
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Ref No 
Architec

ture 
Year Layer Parameter Highlights 

top performance in various 

computer vision tasks, 

including image 

classification and object 

detection, on benchmark 

datasets like ImageNet. 

• Transfer Learning: 

Pretrained EfficientNet 

models have become 

popular for transfer learning, 

enabling rapid development 

of computer vision 

applications with limited 

data. 

• Architectural 

Advancements: EfficientNet 

incorporates architectural 

innovations, including a 

novel compound scaling rule 

and efficient building 

blocks, to maximize model 

efficiency. 

 

2.5 Existing Methodology for Segmentation and Classification 

To classify and segment, brain MRI metaphors, current practices follow a set of pre-

defined procedures. The phases for classifying and detecting non-tumour and tumor 

matters in brain MRI images are depicted in the fig 2.18. The following is a basic 

explanation of the possible stages and methods: 
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• Input Images: Most input pictures are magnetic resonance imaging (MRI) 

brain scans. A two- or three-dimensional input is possible, depending on the 

design and available memory. 

• Pre-processing: For normalization of images, it is one of the most significant 

processes that has been extensively described in the literature. Because of its 

ability to dramatically improve the input images, it has proven to be as vital as 

any other phase. 

• Segmentation: The input image is divided into similar segments according on 

a set of criteria, allowing only the most significant information to be recovered 

and the remainder to be discarded. When studying tumours, some researchers 

choose to isolate them from the surrounding tissue, while others prefer to use a 

hybrid approach. You have a lot of choices. 

• Classification: The primary goal is to sort the entering data into several groups 

based on their commonalities in conduct. 

Multimodality, Because of its comprehensive capabilities, in almost all of the research 

included in this article, Magnetic Resonance Imaging has been universally 

acknowledged as a routine medical imaging method for detecting brain tumours. Pre-

processing the medical images for noise reduction and enhancement is done by 

around 70% of the researchers. To expand the dataset, some authors use pre-

processing and data augmentation. They then used any of the image processing 

procedures available to separate the tumour area. The segmented extent is then 

utilised to train a learning system after segmentation. Another frequent method is to 

send pre-processed photographs directly to the learning system without segmentation. 

Segmentation is infrequently utilised in classification problems because it is not a 

necessary component of classification. The model undergoes a learning phase where it 

assimilates and trains on the distinctive features within the input image. Following 

this, the model's competency is evaluated in a testing scenario to ascertain its 

accuracy in correctly classifying items. 
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Fig 2.18 Existing Methodology for Segmentation, classification and Detection 

2.6 Datasets used in Segmentation and Classification 

Several datasets that the researchers utilised to evaluate the suggested methodologies are publicly 

available. This section discusses several important and difficult datasets (Table 2.5). The BRATS 

datasets are the most difficult MRI datasets. 

Table 2.5 - List of publicly available datasets used in different papers 

S No Database Name References 

1 BRAINWEB Vishnuvarthanan, et. al.,2017 

2 BRANIX Mittal, et. al.,2019 

3 BRATS 2012 
Raju, et. al.,2018; Fernandes, et. al.,2019; Amin, et. al.,2020; Abd El 

Kader I, et. al.,2021 

4 BRATS 2013 

Sharif, et. al.,2020; Zhao, et. al.,2018; Kalaiselvi, et. al.,2020; Amin, 

et. al.,2020; Sharif, et. al.,2020; Amin, et. al.,2019 ; Shehab LH, et. 

al.,2021 
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S No Database Name References 

5 BRATS 2014 
Sharif, et. al.,2020; Amin, et. al.,2020; Amin, et. al.,2019; Abd El 

Kader I, et. al.,2021 

6 BRATS 2015 

Siva Raja, et. al.,2020; Shehab, et. al.,2020; Chen, et. al.,2020; Thaha, 

et. al.,2019; Kamnitsas, et. al.,2017; Zhao, et. al.,2018; Amin, et. 

al.,2020; Amin, et. al.,2019; H. Mohsen, et. al.,2018; Abd El Kader I, 

et. al.,2021 

7 BRATS 2016 Zhao, et. al.,2018; Han, et. al.,2020; Amin, et. al.,2019 

8 BRATS 2017 Sharif, et. al.,2020; Huang Z, et. al.,2021 

9 BRATS 2018 

Sharif, et. al.,2020; Chen, et. al.,2020; Ben naceur, et. al.,2020; Amin, 

et. al.,2020; Huang Z, et. al.,2021; Zhang Y, et. al.,2021; Wang J, et. 

al.,2021; Wang YL, et. al.,2021; Zhou X, et. al.,2021; Zhang Y, et. 

al.,2021; Ranjbarzadeh R, et. al.,2021; Bidkar PS, et. al.,2022; 

Neelima G, et. al.,2022; Ahuja S, et. al.,2022; Chen W, et. al.,2022; 

Sasank VVS, et. al.,2022; Akbar AS, et. al.,2022; Giammarco M Di, 

et. al.,2022 

10 BRATS 2019 

Wang J, et. al.,2021; Ravikumar M, et. al.,2021; Wang Y, et. al.,2022; 

Li P, et. al.,2022; Sasank VVS, et. al.,2022; Akbar AS, et. al.,2022; 

Maji D, et. al.,2022; AboElenein NM, et. al.,2022 

11 BRATS 2020 

Karayegen G, et. al.,2021; Liew A, et. al.,2021; Ramya P, et. al.,2021; 

Bidkar PS, et. al.,2022; Sasank VVS, et. al.,2022; Sahayam S, et. 

al.,2022; Akbar AS, et. al.,2022; Gull S, et. al.,2022 

12 BRATS 2021 Akbar AS, et. al.,2022 

10 ISLES 2015 Akbar AS, et. al.,2022; Abd El Kader I, et. al.,2021 

11 HARVARD Amin, et. al.,2017; Talo, et. al.,2019; M. Kachwalla, et. al.,2017 

12 FIGSHARE 
Deepak, et. al.,2019; Kurup, et. al.,2020; Ghassemi, et. al.,2020; 

Yiming, et. al.,2019; Maharjan, et. al.,2020; Zhou, et. al.,2019 

13 RIDER Amin, et. al.,2017 

14 IBSR Ito, et. al.,2019 

15 KAGGLE 
Çinar, et. al.,2020; Toğaçar, et. al.,2020; Díaz-Pernas FJ, et. al.,2021; 

Rai HM, et. al.,2021; Badža MM, et. al.,2021; Waghmare VK, et. 
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S No Database Name References 

al.,2021; Al-Saffar ZA, et. al.,2021; Khairandish MO, et. al.,2022; 

Sunsuhi GS, et. al.,2022; Alnowami M, et. al.,2022; Kapila D, et. 

al.,2022 

16 MD-1, MD-2 Nayak, et. al.,2020 

17 REMRANDT Nair, et. al.,2020 

18 PGIMER Sachdeva, et. al.,2016 

19 TCIA Naser, et. al.,2020; Boustani, et. al.,2019; Ghosh S, et. al.,2021 

20 CPTAC Boustani, et. al.,2019 

 

2.7 Performance Measure 

In the literature review studies, it analysed that the research uses various methods and 

techniques to validate and evaluate the results as well as the performance. The 

following table 2.6 presents a list of performance parameters.   

Table 2.6 - Performance Matrices 

S 

No 

Performance 

Metric 
Formula Definition / Functionality 

1 
True Positive 

(TP) 

𝑁𝑜 𝑜𝑓 𝑟𝑒𝑠𝑢𝑙𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠 
ℎ𝑎𝑣𝑖𝑛𝑔 𝑏𝑟𝑎𝑖𝑛 𝑡𝑢𝑚𝑜𝑟

𝑡𝑜𝑡𝑎𝑙 𝑁𝑜 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠
 

The model is considered to have 

achieved a true positive when it 

successfully predicts the positive 

class, proving that it is adept at 

recognising the desired category. 

2 

True 

Negative 

(TN) 

𝑁𝑜 𝑜 𝑖𝑚𝑎𝑔𝑒𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒𝑛′𝑡 𝑡𝑢𝑚𝑜𝑟

𝑡𝑜𝑡𝑎𝑙 𝑁𝑜 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠
 

When the algorithm accurately 

forecasts the negative category, we 

say that it is a true negative. 

3 
False 

Positive (FP) 

𝑁𝑜 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒𝑛′𝑡 𝑡𝑢𝑚𝑜𝑟 
𝑎𝑛𝑑 𝑑𝑒𝑡𝑒𝑐𝑡𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑁𝑜 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠
 

When the model predicts the class of 

positives incorrectly, it is called a 
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S 

No 

Performance 

Metric 
Formula Definition / Functionality 

false positive. 

4 

False 

Negative 

(FN) 

𝑁𝑜 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 ℎ𝑎𝑣𝑒 𝑡𝑢𝑚𝑜𝑟
 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑁𝑜 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠
 

A false negative occurs when the 

model predicts the negative class 

inaccurately. 

5 
Accuracy 

(ACC) 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

The degree of accuracy should be 

considered while assessing the 

performance of categorization models. 

In a nutshell, accuracy is the 

percentage of right predictions made 

by our model. The number of correct 

answers can also be expressed as a 

percentage when using binary 

classification. 

6 
Area Under 

Curve (AUC) 
∫ 𝑇𝑃𝑅 (𝑇)𝐹𝑃𝑅 (𝑇)𝑑𝑇

−∞

∞

 

The area under a curve between two 

points is found out by doing a definite 

integral between the two points. 

7 
Sensitivity or 

Recall 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

One measure of sensitivity is the True 

Positive Rate. It is also known as 

recall. It basically shows us what 

percentage of real positive examples 

our algorithm got right. 

8 Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Specificity is the percentage of 

expected negative results that really 

occurred as negative results. 

9 Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

A computer model's accuracy in 

making a positive prediction is known 

as its precision. The ratio of true 

positives to the overall number of 

positive predictions is the definition of 
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S 

No 

Performance 

Metric 
Formula Definition / Functionality 

precision. 

10 
False 

Positive Rate 
1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

The false positive rat is a statistic used 

to assess the accuracy of a test, 

whether it's a medical screening 

procedure, a machine multilayer 

perceptron, or something else. In 

technical terms, the false positive rate 

refers to the chance of mistakenly 

rejecting the null hypothesis. 

11 

False 

Negative 

Rate 

1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

In contrast to a false positive, a false 

negative occurs when a test result 

wrongly suggests the absence of a 

condition when it is actually present. 

12 

F - Score or 

Similarity 

Index 

2 𝑇𝑃

2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

The reliability of a test can be 

expressed as an F-score or F-measure. 

The test's precision and recall are used 

to calculate it. 

13 
Dice 

Coefficient 
2

|𝐺𝑎  ∩  𝑆𝑎|

|𝐺𝑎| + |𝑆𝑎|
 

A statistical instrument known as the 

dice coefficient is used to quantify the 

degree of resemblance between two 

datasets. 

14 

Noise Ratio 

of Peak 

Signal 

𝑃𝑆𝑁𝑅 = 20 × 𝐿𝑜𝑔10 (
255

𝑅𝑀𝑆𝐸
) 

A signal's performance about the 

quantity of noise that might damage 

the representation is measured by the 

peak signal-to-noise ratio, typically 

abbreviated as PSNR. 

15 
Root Mean 

Square Error 
√

∑ ∑ (𝐼(𝑖, 𝑗) − 𝑆𝑒𝑔(𝑖, 𝑗))2𝑁
𝑗=1

𝑀
𝑖=1

𝑀 × 𝑁
 

The Root Mean Square Error (RMSE) 

represents the inflation factor of the 

variance caused by prediction errors. 
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S 

No 

Performance 

Metric 
Formula Definition / Functionality 

The residuals serve as a quantification 

of the degree to which the observed 

values deviate from the regression 

line, while the RMSE provides a 

measure of the extent to which the 

residuals are spread out. Essentially, it 

offers insights into the level of 

compactness of the data points around 

the line that represents the most 

accurate fit. Root mean square error is 

commonly employed to assess 

experimental findings in climatology, 

prediction, and regression analysis. 

16 Jaccard Index 𝐽 (𝐺, 𝐾) =  
|𝐺 ∩ 𝐾|

|𝐺 ∪ 𝐾|
 

A statistic for assessing sample set 

resemblance and diversity is the 

Jaccard indices, sometimes referred to 

as the Jaccard similarity coefficient. 

 

2.8 Related Work Based on Machine Learning and Deep Learning 

Model 

Since the emergence of Deep Learning techniques, a number of research articles have 

surfaced. Deep neural networks have facilitated feature extraction and selection by 

virtue of their capacity for self-learning. A variety of Deep Learning models, spanning 

from rudimentary to intricate, have progressed over time and exhibited exceptional 

accomplishments in the realm of medical imaging. 

 

Almost 64 research papers are analysed in this study to determine the effectiveness of 

learning in intracranial tumour segmentation and classification using medical 
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imaging. Since last year, utilisation of Deep Learning set of rules for tumour 

segmentation and classification has increased.  

 

2.8.1 Technical Investigation Carried Out in 2022 

This study (Bidkar PS, et. al.,2022) introduces a unique method for classifying brain 

tumours using a Deep Belief Network with Salp Water Optimization (SWO-based 

DBN). The input image is initially pre-processed to remove any artefacts that may be 

there. SegNet, which was trained using the suggested SWO, performs segmentation 

after pre-processing. Additionally, the features are mined using CNN) features for 

later processing. Finally, the newly developed SWO-based DBN approach 

successfully classifies the brain tumour according to the collected attributes. 

Through MRI-based categorization, this work (Dang K, et. al.,2022) seeks to 

overcome this problem and provide an appropriate prediction for glioma. Here, they 

used a pipelined deep learning framework that included these three crucial steps: To 

differentiate between high-grade tumours of the brain and low-grade tumours, MRI 

images were initially segmented using preprocessing approaches and the UNet 

framework. Subsequently, the brain tumour areas were extracted by segmentation. 

This research (Neelima G, et. al.,2022) develops a system that can automatically 

catalogue tumours using MRI. Pre-processing is referred to as the first step in 

normalising intensity. Here, min-max normalisation is used for pre-processing. With 

the help of the newly developed Political Optimizer based on selfish (SPO) algorithm, 

the segmentation is carried out utilising the Optimal DeepMRSeg technique. The 

optimization algorithm based on selfish (SOA) and political optimizer are combined 

to create the suggested SPO (PO). Following the extraction of the CNN features, 

augmentation of data is carried out. CNN is used for data augmentation such as left or 

right switching, brightness, orientation, or contrast change. 

In this study (Deepa G, et. al.,2022), delineation with ensemble classification using 

modified particle swarm optimization (MPSO) is suggested as a method for detecting 
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brain tumours. Initially, a wiener filter is used to reduce picture noise. Haralick 

features are then used in the feature extraction procedure.  

This research (Rasool Reddy K, et. al.,2022) presents a novel methodology that 

utilizes local texture features and adaptive techniques. Here, we primarily use a 

median filter to filter out noise from MRI scans of the brain. Then, in order to get 

meaningful sub-images, we use adaptive decomposition techniques as modified sort 

of pseudo variational mode decomposition (MQBVMD) and two - dimensional 

empirical mode decomposition (BEMD). After that, we classify brain MRI pictures as 

either low-grade or high-grade using a support vector machine, and we use an ELDP 

feature descriptor to extract hidden texture information from the sub-images. Finally, 

we localise the glioma's affected region by employing morphological techniques and 

adaptive K-means clustering. 

The suggested study (Ahuja S, et. al.,2022) aims to utilise T1W-CE MRI data for the 

identification, categorization, localization, and segmentation of brain tumours. The 

training data is enhanced with a 2-level discrete wavelet transform and topological 

approaches to mitigate the challenges of overfitting, such as scaling, rotation, and 

translation. In this study, we assess the efficacy of two trained beforehand DarkNet 

models—DarkNet-19 and DarkNet-53—in the context of malignancy localization and 

classification according to multiple classes. The previous DarkNet model achieved an 

accuracy of 98.81% during validation and 99.60% during training, making it the top 

performer. The T1W-CE MRI sample demonstrates that the evaluation metrics 

effectively support the positive benefits of the recommended methodology over the 

current state-of-the-art. 

In this study (Khairandish MO, et. al.,2022), the classification of brain MRI images 

using CNN's superior performance on a publicly available dataset to identify benign 

and malignant tumours will be done. Image classification is one area where deep 

learning approaches have shown to be effective in recent years. Over time, 

Convolution Neural Networks can increase their classification performance by 
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extracting features utilising a number of ways that do not include bespoke models. 

Support vector machines were utilised for detection in the suggested hybrid method, 

while threshold-based classifiers were employed for classification. 

The recommended work (Vankdothu R, et. al.,2022) differs from previous works in 

that it has the most extreme execution for evaluating tumour image segmentation. 

According to the result, when compared to other individual algorithms, the hybrid 

approach (SSO-GA) achieves the maximum accuracy of 99.24%. 

This study (Walsh J, et. al.,2022) suggests a simplified U-Net architecture. U-Net with 

minimalist architecture is proposed, which not only offers real-time categorization of 

MRI images but also does not require a considerable number of learned data. In 

addition, there is no requirement for any additional data augmentation phase. 

Lightweight U-Net outperforms conventional benchmark methods on the BITE 

dataset, with an average intersection-over-union (IoU) of 89%. Additionally, this 

study shows how the three viewpoint planes may be used well for streamlined brain 

tumour segmentation in place of the underlying three-dimensional volumetric data. 

In this study (Wang Y, et. al.,2022), the three-dimensional U-Net framework for 

segmenting brain tumours was subjected to an augmentation technique termed 

TensorMixup. The basic concepts were as follows: first, two image regions of 128 x 

128 x 128 voxels were chosen based on ground truth labelling for gliomas from the 

data of magnetic resonance imaging that presenting using the same modality. After 

that, the picture patches were mixed using a tensor whose components were all 

individually selected from the beta distribution. 

Scientists employed the dataset sourced from the Brain Tumour Segmentation 

Challenge 2019 (Li P, et al., 2022) to train 3D U-Net and 3D U-Net++ networks with 

the goal of autonomously detecting brain cancers in magnetic resonance imaging from 

the BRATS 2019 dataset. In the first step of the process, the brain tumour is 

segmented into three distinct parts: the entire tumour (WT), the tumour core (TC), and 

the improved tumour (ET). After that, the models are trained with images that are 
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taken in the axial, coronal, and sagittal planes. The next step is to combine the 

information from all three perspectives in order to arrive at the ultimate segmentation 

result. The enhanced tumour is specifically segmented using U-Net++ because to its 

more intricate structure as contrasted to other sub-regions. 

The primary objective of this research piece is to identify and categorise cancers that 

are present in the human brain.According to Sunsuhi GS et al. (2022). There are three 

fundamental processes, which are pre-processing, segmenting, and categorising. 

Phases one and two include detecting boundary boxes using a binary approach and an 

asymmetrical diffusion filter. We use the suggested Adaptive Eroded Deep 

Convolutional Neural Network for the new segmentation process. It enables us to 

distinguish between meningiomas, gliomas, and the pituitary brain region. Then, as a 

state-of-the-art classification method for brain images, Inception resnetV2 is 

recommended as the stage of segmentation. The division of the tumour cell area is the 

first step in the separation process. The degree of spatial membership is decided using 

the method AEDCNNS. 

This paper (Sunsuhi GS, et. al.,2022) proposes a novel multi-threading 3D dilated 

convolutional infrastructure (MTDC-Net) for autonomously segmenting brain 

tumours. The encoder component initially presents a multi-threading distorted 

convolution (MTDC) technique that efficiently extracting and include the low-

dimensional spatial essential characteristics.  

To assess the diagnostic accuracy of fully automated radiomics-based methods (Joo B, 

et. al.,2022) in identifying several types of brain tumours, including developing 

tumours, malignant tumours, central nervous system lymphoma, and metastatic 

tumours. The effectiveness was achieved when the LASSO was employed as an 

attribute selection approach. 

In this study (Sahayam S, et. al.,2022), multi-resolution, deep supervisory, residual, 

and dual attention blocks have been examined in addition to the basic U-Net model. 

Residual blocks attempt to successfully feature extraction in order to close the 
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expectation relations between slightly elevated features from hidden neurons and low-

level properties from the decoded. The addition of the multiple resolution blocks 

allows for the feature extraction and scale-dependent tumour analysis. To draw 

attention to tumour representations and lessen over-segmentation, the dual attention 

method has been included. To get the goal segmentation, deep supervision blocks 

have been introduced to use features from different decoder levels. 

The Multipath Residual Attention Block, which we propose in this paper (Akbar AS, 

et. al.,2022), substitutes the computing block with two arous convolution processes 

connected to the concentration of the unknown and one residual route, and adds 

attentiveness in the skip connection (MRAB). 

In this study (Sun Y, et. al.,2022), a trustworthy and effective Convolutional Neural 

Network (CNN) method for segmenting brain tumours is suggested. It is made up of a 

segmentation-CNN, a condition characterized block, and a refinements block. The 

special CNN is specifically created to conduct pixel categorization, tumour 

localization, and mono- and cross-modality feature extractions while adhering to the 

suggested ASCNN (Application Specific CNN) paradigm. High-pass filtering 

convolution layers can use as few as half as many kernels thanks to the suggested 

activation function Full-ReLU, without sacrificing processing effectiveness. The 

frequency of kernels within every layer is set adequate for its objective rather than 

continuously extending across the layers in order to increase spreadsheet or database 

in data channels and decrease unpredictability in network training. 

The design proposed by Maji D. et al. (2022) can actively guide the learning process 

of each decoder layer. By keeping tabs on its learning process, the decoder layers are 

able to generate more accurate feature maps. Instead of letting everything go through 

the Res-UNet's skip connections, attention-grabbing barriers in the generators 

concentrate on encouraging useful information. 

Chawla R. et al. (2022) suggested a technique to identify brain cancers in MRI images 

using a Convolutional neural network and the Bat algorithm. Data is a component that 
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helps to eliminate background noise. If you have an MRI of your brain, you can use 

the 2-D Gabor filter to pull out certain details. To choose features with higher 

precision, the network models are employed. The data utilised in this investigation 

were supplied by Nanfang Hospital and the Community Hospital of Tianjing Medical 

University. When compared to the current system, the proposed BCNN approach 

achieves an overall accuracy of 99.5%. 

Giammarco M Di, et. al.,2022 provide a method for brain segmentation utilizing MRI 

in this work. Approach builds upon a redesigned iteration of a convolutional neural 

system akin to the U-Net model, forming the basis for our technique. The efficiency 

of the suggested method for segmenting high grade brain cancer is shown by 

investigations on high grade bowel cancer MRI. 

This article (AboElenein NM, et. al.,2022) presented the Multi Inception Residual 

Attention U-Net (MIRAU-Net), an unique encoder-decoder framework. It adds the 

residual transformation approach with attention barriers into U-Net to significantly 

increase the segmentation's efficacy for brain tumours. 

2.8.1.1 Quantitative Analysis of 2022 Model and Algorithm 

Unlike prior years, a significant amount of effort was put on identifying and 

categorising brain tumours in MRI scans in 2022. Researchers moved their focus back 

to image improvement approaches by applying several pre-processing techniques to 

the input brain MRI datasets as well as feature extraction, classification and 

segmentation to find the localization of the tumor and prediction for that. They began 

by combining several machine and deep learning approaches to create hybrid models 

(Fig 2.19, 2.20, 2.21, 2.22). 
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Fig 2.19 Analysis of Accuracy for 2022 Model and Algorithm carried in studies 

 

Fig 2.20 Analysis of Dice Score for 2022 Model and Algorithm carried in studies 
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Fig 2.21 Analysis of Sensitivity for 2022 Model and Algorithm carried in studies 

 

 

Figu 2.22 Analysis of Specificity for 2022 Model and Algorithm carried in studies 

2.8.2 Technical investigation carried out in 2021 

To improve brain tumour the process of segmentation this work (Huang Z, et. al., 

2021) demonstrates how attention residual UNet with group cross-channel can make 

full advantage of the low-level fine characteristics of cancer locations. The disruptions 
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caused by background and light changes are first removed using iterative background 

removal and picture normalising. After that, GCAUNet is built to segment brain 

tumours. The detail recovery (DR) path, a concurrent network channel, is developed 

to recover the detailed properties of brain tumours. From multiscale low-level feature 

maps, it extracts specific sets of characteristics. The GCA procedure, a transceiver for 

coarse-to-fine cross-channel attention, is also supplied to highlight the important 

feature clusters and routes. To collect multiscale context data, GCAUNet is given a 

second multiscale input (MI) pathAccording to the experimental findings, 

GCAUNet's average dices for the whole tumour (WT), enhancing tumour (ET), and 

tumour core (TC), respectively, on BraTS 2017 and BraTS 2018, are 87.2%, 78.1%, 

and 79.6%. 

This study (Karayegen G, et. al.,2021) uses convolutional neural networks to provide 

a technique for automatically segmenting brain tumours on 3D BraTS sets of image 

data comprised of four different imaging techniques. Our work also compares 

predicted labels in 3D to ground truth labels using whole-brain 3D imaging. This 

method was effectively used, and images were shown in sagittal, coronal, and axial 

planes to obtain the precise tumour location and parameters such as height, width, and 

depth. Deep learning network-based semantic segmentation evaluation results are 

quite encouraging in terms of tumour prediction. The calculated average prediction 

ratio was 91.718. The average average BF scores  and intersection over union (IoU) 

were found to be, respectively, 92.938% and 86.946%. 

In this study, the authors establish a channel and radially wise asymmetric attention 

(CASPIAN), which they use to detect prominent areas in tumours (Liew A, et. 

al.,2021). In order to demonstrate the usefulness of the layer, it should be included 

into a well-known CNN framework in order to get better Dice scores while utilising 

fewer resources of GPU. They also research the addition of supplementary 

multiplanar and multiscale attention divisions to enhance the spatial background 

necessary in semantic segmentation. The new CASPIANET++, the resultant 
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construction, obtains Dice Scores of 87.6%,91.19%, and 81.03% for the tumour core, 

the whole tumour and the enhancing tumour, correspondingly. 

A novel multi-scale mesh aggregation network (MSMANet) for brain tumour 

segmentation is suggested in this study (Zhang Y, et. al., 2021). First, an improved 

Inception module is used to extract and integrate efficient information from different 

receptive fields, so replacing the standard encoder convolution. Step two involves 

suggesting a novel mesh aggregation method to progressively enhance the shallow 

features and significantly reduce the semantic gap. This strategy makes the most of 

the aggregation of multi-level traits at different sizes and reaps the benefits of 

qualities that complement each other. Finally, using deep supervision and attention 

mechanisms improves the capacity for network identification and convergence. On 

BraTS2018, experiments were run to assess the suggested network.  

The network (Wang J, et. al.,2021) is composed of a spatial DFP-ResUNet module, a 

residual constituent, an encrypting and deciphering structure, and a U-Net. We 

initially recommend using a spatial DFP component made up of many parallel dilated 

convolution operations to replicate the multiscale visual properties. The spatial DFP 

architecture enhances the neural network's capacity to recognize and take use of its 

multiscale sensory features. The network architecture is then furthered using the 

surviving module. To further mitigate the impact of unbalanced data on the 

segmentation of brain tumours, we advise using a multiclass Dice loss function. 

To fully utilise multi-scale features, (Wang YL, et. al.,2021) suggest a novel U-shaped 

network which is linked by cross-level (CLCU-Net) that connects the features of 

various scales. In addition, suggested a general attention component (Segmented 

Attention Module, SAM) for arbitrarily aggregating observations on the connections 

of various scale features. 

A less computationally expensive and GPU memory-intensive neural network with 

3D residual operation (ERV-Net) was suggested for splitting brain tumours in this 

study (Zhou X, et. al., 2021). The 3D ShuffleNetV2 computation-efficient network 
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was initially used as an encoder in ERV-Net to free up GPU resources and improve 

ERV efficiency. Net’s The next step is to incorporate a decoder that stores residual 

blocks (Res-decoder) in order to stop degradation. Also, a loss function of fusion is 

developed that combines cross-entropy loss with dice loss to solve the problems of 

transitory network and data imbalance. We also propose a quick and effective post-

processing method to enhance the segmentation output of the ERV-coarse Net. 

A fully automated model for multiscale brain tumour classification and segmentation 

based on Deep Convolutional Neural Networks (CNN) is provided in the study (Díaz-

Pernas FJ, et. al., 2021). In contrast to previous attempts, the input images in the 

proposed concept undergo processing at three separate spatial scales using a variety of 

processing pathways. No prior processing of input images is necessary for the 

proposed neural model to eliminate parts of the vertebral column or skull. The MRI 

images with pituitary tumours, gliomas, and meningiomas can be deciphered from 

axial, sagittal, and coronal views. 

Authors have suggested utilising the DWT-RBFNN classifier to automatically 

segment and categorise tumours from brain MR images (Rai HM, et. al.,2021). 

Segmentation and classification are the two sections of the project. Prior to 

performing segmentation and classification, MR images are first pre-processed. 

Images are scaled and denoised using the hybrid approach DWT-ICA during the pre-

processing step. These segmented pictures are utilised for the categorization of brain 

tumours after being segmented using a hybrid Ostu-canny edge approach. Following 

segmentation, 13 different types of features—including the standard deviation (SD), 

variance, median, mean, smoothness, RMS (root mean square), energy, correlation, 

entropy, skewness, homogeneity, power spectral density, and contrast, —are retrieved 

using multiresolution DWT. The feature-extracted and segmentation images of the 

brain tumour are classified into three classifications using the RBNN classification 

model: normal, benign, and malignant. Seven different assessment measures are 

utilised to measure the effectiveness of the classifier: F1-score, recall, precision, 

classification error rate, specificity, and total accuracy. The effectiveness of the 
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suggested classifier was also evaluated in comparison to classifiers using feed-

forward neural networks and back-propagation neural networks. 

This study (Chahal PK, et. al.,2021) recommends a fuzzy k-means using hybrid 

weight brain tumour segmentation approach using medical images in order to identify 

relevant clusters. To address problems with numerous pixel subscriptions and 

exponentially increasing cycle counts, it is based on a weighted fuzzy learning 

method that influences the spatial representation and the lighting penalise membership 

approach. After picture segmentation, support vector machines are used to classify 

tumour types as benign or malignant. 

The tumour area of the brain MRI image is segmented in this article (Ramya P, et. 

al.,2021) using the ensemble approach of background subtraction. In order to prepare 

the images for segmentation, the Laplacian cellular automata filtering method is 

employed. This method is one of several clustering techniques that are considered, 

including fuzzy based clustering, K-means, self-organization map, and an ensemble of 

Gaussian mixture models. This composite cluster tag is utilised to classify the 

aberrations using deep super learning and is taken into consideration as the 

segmentation output. 

This paper (Chen B, et. al., 2020) built a Support Vector Machine (SVM) employing 

an Extended Kalman Filter, an SVM-based image processing step, to automatically 

identify brain tumours. The five main parts of a machine learning algorithm are as 

follows. The first step is to standardise the graphic representation of all the objects. 

Following that, a non-local means filter is employed to remove the noise, and 

improved dynamic histogram equalisation is employed to enhance the contrast. The 

second step is to use a gray-level co-occurrence vector to gather visual features. 

Thirdly, an EKF is utilised to categorise brain cancers in the brain MRIs after the 

retrieved characteristics are supplied through an SVM to classify the MRI first. 

Fourth, cross-validation is employed to check the classifier's accuracy. Finally, a brain 
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tumour detection technique based on artificial segmentation that combines area 

growth and k-means clustering is employed. 

In this study (Badža MM, et. al.,2021), a novel convolutional neural autoencoder for 

semantic segmentation-based segmentation of brain tumours is presented. The largest 

internet photo resource is utilised to assess the compactly planned architecture. 30,64 

MRI scans on file Included in the collection are T1-weighted contrast-enhanced 

images. To put the suggested architecture to the test, we combine two separate data 

division approaches, two separate assessment methodologies, and train the model with 

both the existing and augmented datasets. Using one of these data division strategies, 

we also looked at the network's ability to generalise in terms of medical diagnosis. 

The optimal approach was the performance data division technique, which utilised the 

supplied dataset for network training. 

In order to overcome the gradient problem of DNN, presented paper (Shehab LH, et. 

al.,2021) describe in this research an autonomous method for segmenting brain 

tumours that relies on Deep Residual Learning Network (ResNet). ResNets are more 

accurate than their counterpart DNN and can speed up the training process. ResNets 

add a shortcut skip link parallel to the convolutional neural network stages to 

accomplish this improvement.  

Ghosh S, et. al.,2021, suggest an enhanced VGG16 using U-Net in this study to 

partition, images of brain MRI and determine tumor cell for region-of-interest. By 

evaluating the dataset of 3929 images of TCGA-LGG from the TCI repository, 

Author’s compared the outcomes of enhanced U-Net with a custom-designed U-Net 

construction and obtain pixel accuracies of 0.9975 and 0.994 from improved U-Net 

and basic U-Net designs, correspondingly. 

In this study (Ranjbarzadeh R, et. al.,2021), will begin by proposing a pre-processing 

technique for building a versatile and efficient brain tumour segmentation system. 

This strategy will focus on a tiny portion of the image instead of the complete thing. 

This methodology not only resolves overfitting concerns within a Cascade Deep 
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Learning model but also optimizes computational efficiency, resulting in a more 

streamlined and effective solution. For the second step, it is advised to use a quick and 

Convolutional Neural Network with effective cascade, as we are only interested in 

one specific dimension of each brain part. This C-CNN model employs two distinct 

strategies to take use of both local and global characteristics. As an added bonus, 

study improve upon state-of-the-art models' segmentation accuracy of brain tumours 

using a new Distance-Wise Attention (DWA) method. The DWA method accounts for 

the brain and tumor's central location within the prototype. 

Because CNN is able to perform the task of image classification, encompassing image 

identification, positioning, segmentation, normalization, and detection, automatic 

classification of brain tumours is predicted with their assistance in this study  

(Waghmare VK, et. al.,2021). As segmentation divides the picture into several parts 

based on certain similarity criteria, we are able to abstract various information from 

the images. 

Several methods have been investigated in this work (Al-Saffar ZA, et. al., 2021) with 

the aim of improving the outcomes and reducing the challenges of medical image 

analysis. Some of these methods include an SVD-based reduction of dimensionality 

approach, a method for dividing tumours in the brain using regional variations in 

intensity-means, a method for brain tumour classification using both Support Vector 

Machine and Multi-Layer Perceptron, and a method for feature extraction using 

Mutual Information.s.  

Using a deep wavelet autoencoder, or "DWAE model," to categorise input data slices 

as having tumours or not was recommended in this study (Abd El Kader I, et. al., 

2021). The heterogeneity of the MRI pictures and their incorporation with the image 

features were demonstrated in this paper using a high pass filter.  

For the purpose of segmenting brain tumours from MR images, researchers have 

introduced notch transformation function (Ravikumar M, et. al.,2021) to improve and 

a deep learning-based hybrid SegX-Net technique. 



 
 

106 
 

In this study (Rajasree R, et. al.,2021), a 3 x 3 kernel-sized semantic-based U-NET 

convolutional neural network is suggested. Compact kernels only give a lesser 

number of parameters in this structure and have an impact against generalisation in 

the deeper construction. For several dimensions of magnetic resonance images, a 

multiscale multimodal convolutional neural network (MSMCNN) with an LSTM-

based deep learning semantic segmentation strategy is employed (MRI). By 

scrutinising each pixel in the picture, the suggested approach seeks to recognise and 

categorise the various types of tumours.  

Researchers suggest (Zhang D, et. al.,2021) a convolutional neural network-based 2D-

UNET model (CNN).  

2.8.2.1 Quantitative Analysis of 2021 Model and Algorithm 

Fig 2.23, 2.24, and 2.25 shows that during 2021, individuals employed CNN the most, 

despite the fact that more projecting and efficient designs exist in the review of WT, 

TC and ET. This is due to CNN's great generalizability, consistency, and accuracy 

rate. 

 

Fig 2.23 Analysis of Accuracy for 2021 Model and Algorithm carried in studies 
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Fig 2.24 Analysis of Dice Score for 2021 Model and Algorithm carried in studies 

 

Fig 2.25 Analysis of Precision and Recall for 2021 Model and Algorithm carried 

in studies 

2.8.3 Technical investigations carried out in 2020 

This paper's objective is to demonstrate how to categorise malignancies in the brain 

using Bayesian fuzzy clustering-based segmentation with the assistance of a hybrid 
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deep autoencoder, as stated in (Siva Raja, et. al., 2020). The non-local mean filter was 

used in the first stage to denoise the reality of this approach. The segmentation of 

brain tumours was then done using the Bayesian-fuzzy clustering method. The authors 

used the Tsallis entropy, measures, and scattering change, a fictional statistics wavelet 

packet, to extract characteristics following segmentation. Lastly, for brain tumour 

categorization, they employed a hybrid structure of the Jaya optimisation problem 

based on a deep autoencoder and a softmax regression. This approach used the 

BRATS 2015 database, which proves the classification accuracy of 98.5 % when 

likened to other methods. 

The exhibit provided in (Naser et al., 2020) shows how an in-depth learning approach 

to MRI images can be used to potentially make one-to-one tools available for 

automatic and simultaneous tumour segmentation, grading, and detection of LGGs for 

medical purposes. The authors' primary focus in this draft is the categorization and 

division of gliomas, which are brain tumours. For tumour segmentation, they have 

combined transfer learning methods based on an already-learned Vgg16 convolution-

base with deep learning approaches founded on convolutional neural networks 

anchored on U-net. The model presented for LGG grade-II and grade-III classification 

has a 0.98 accuracy rate, 0.92 specificity, 0.87 sensitivity, and patient-specific MRI 

picture phases of 0.95, 0.97, and 0.98. 

In (Chen, et. al.,2020), the author's much attention to contribute an outline for 

automatic brain lesion segmentation. To classify the segmentation of brain lesions, 

they proposed and regulated a two-stage supervised learning approach. The authors 

have prioritised using intensity-based statistical operations, GMM-based matter 

probabilities maps, and template-based asymmetric characteristics as their preferred 

strategy to train the classifier based on random forests in the initial stage. The next 

step is to optimise the possibility maps from the basic random forest classification 

algorithm of a densely confined random field, with full tumour areas referred to as 

regions of focus. In phase two, we use enhanced probability maps, expert randomly 

generated forests, template-based asymmetrical features, and intensity-based 
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statistical characteristics to classify vowels inside the ROI. In addition to training an 

iterative flood of random forests with the completed possibilities maps, the 

compressed conditional random grounds will be used to improve them. In order to get 

the best possible segmentation result, the output probability maps are improved layer 

by layer. Multimodal global and local presence statistics are combined with detailed 

information because they are the cause of ranked learning of dense conditional 

random fields and random cascade forests. The authors employed the proposed 

method and investigated the brain tumor datasets of BRATS2015, BRATS2018, and 

ISLES2015 (ischemic stroke dataset). 

In order to obtain the features of various entropies like estimated entropy, Shannon 

entropy, and specimen entropy, as well as the Nave Bayes (NB) classifier used for the 

classification result, a method for cataloguing a brain image from the magnetic 

resonance imaging (MRI) is mentioned in (Aljunid, et. al.,2019). To extract the 

aforementioned entropy properties, DTWT principally disintegrates the aberrant and 

normal categories of MRI brain pictures.  

In (Arunkumar, et. al.,2020), In this study, the authors projected a new dissection 

method using MR images for brain matters. The proposed segmentation approach 

comprises three computer vision fiction policies, segmenting images, enhancing 

images, clarifying out non-region of attention grounded on the HOG features and 

texture. Authors developed a copiously automated model-based train classification 

and segmentation method for MRI brain lumps that use artificial neural networks to 

identify ROI. To choose the accurate object in brain MRI, filtering out non-ROI is the 

next step in the presented methodology, and for this purpose, they have used 

histogram investigation. In this paper, 200 MRI images have used to prove the 

comparison between the automated and manual segmentation processes. The analysis 

of the results then asks whether the automatic model-based train segmentation manual 

method and brain recognition ROI design fully utilize the features. The chronicled 

identification correctness is 92.14%, with 94 specificities and 89 sensitivities. 
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In Nayak, et. al.,2020, this paper states that an approach grounded on an intensive 

deep convolutional neural network (CNN) has designed to diagnose multi-level brain 

abnormalities. Five layers of parameters included giving the proposed CNN model 

potential and making it learnable: four layers of convolutional (Conv-I to Conv-IV) 

and individual fully interconnected layers. Through an order of concealed layers, this 

prototypical learns to get hierarchical topographies automatically. This model has four 

BN, RealU, and maximum-pooling layers and the five layers (pool I to pool IV). A 

custom deep network determines to work out the number of parameters and achieve 

maximum classification performance. The proposed model has evaluated on the MD-

1 and MD-2 multi-class brain MRI datasets. Authors applied the MD1, and MD2 

datasets to SAE (Hinton and Salakhutdinov, 2006), SDAE (Vincent et al., 2008), ML-

ELM (Kasun et al., 2013) and from that find the accuracy, for MD1 (90.00, 93.33, 

93.33) and MD2 (60.45, 90.00, 9,125) respectively. The duets measured on their 

proposed model and made an accuracy find, which was MD1 (100%) and MD2 

(79.50), respectively. Hence comparative analysis shows the superiority of the 

projected method.  

The Deep Conventional Neural Network (CNNs) solution (Ben naceur, et. al.,2020) is 

entirely devoted to a high and low-grade division of glioblastoma brain tumors. The 

proposed CNN prototypical is fully stimulated by the occipital-Temporal pathway, 

emphasizing selective attention whose job is to locate critical objects in the successive 

layers of a scene using different receptive field sizes. The proposed system also 

concentrates on two more issues: the relationship between image patches and class-

imbalance. For the first issue, the authors supposed two steps: Equal sampling and 

experimental analysis for weight cross-entropy loss function in terms of the 

segmentation consequences, furthermore, to overwhelmed the second problem, the 

result of overlying patches studied in contradiction of adjacent spots, where overlying 

pieces show improved segmentation consequences due to the local characteristics of 

the image patches. BRATS-2018 dataset model used for the experimental result.  
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To express the breadth of the advances in deep learning (Toğaçar, et. al.,2020), 

Hyperloom technology, recursive feature elimination, combining Alexnet and VGG-

16 networks, and support vector machines (SVM) and in keeping with recent 

advances, authors have introduced a novel Confidential Neural Network (CNN) 

model. With the assistance of the hyperloom method, the proposed model can hold 

local discriminatory features mined from layers situated at dissimilar stages of the 

deep architecture and projected prototypical exploits their normalization capabilities 

by fusing fully interconnected elements of VGG-16 networks and AlexNet. The use of 

RFE in the proposed prototype to bring out the most potent in-depth features enhances 

its discriminative capability. As a result, the projected prototypical achieved 96.77% 

accuracy without using a handcrafted feature engine. 

T. Kalaiselvi and S. T. Padmapriya recently published a paper in which they built six 

CNN models for brain tumour categorization (Kalaiselvi, et. al.,2020). The number of 

layers in each of the six CNN models differs primarily. Two CNN models use a drop 

out layer for regularisation, and two others use stopping batch and criteria 

normalisation in accumulation to the drop out layer. Without these layers, the other 

two approaches are employed. The training is carried out using the BRATS 2013 

Dataset, whereas the testing is carried out using the World Brain Atlas (WBA).  

In a different study, preliminary data processing is used to enhance the 

CNN architectural performance for brain tumour identification (Kurup, et. al.,2020). 

To enlarge the dataset, two key pre-processing techniques, patch extraction and 

rotation, are used as standard approaches of data augmentation and pragmatic to the 

dataset of 3064 medical images. The photos are then scaled to 28 x 28 to simplify the 

prototypical. Lastly, capsule-net is employee to test usefulness of augmentation as 

well as to categorize three different types of brain tumour image: pituitary, 

meningioma, and glioma tumour. Findings suggest that pre-processing has a 

significant impact on performance. 

The relevance of segmentation and pre-processing of medical MRI medical images 

beforehand feeding them into a deep learning algorithm was highlighted by the 
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authors in (Amin, et. al.,2020). Their plan is to improve the medical images before 

applying median filtering to smooth out the noise. After that, a fine-tuned stacked 

sparse autoencoder (SSAE) model is used to segment the tumour area utilising region 

growth. On the BRATS dataset for 2012, 2013, 2014, and 2015, the model was trained 

and tested. The proposed technique's accuracy and sensitivity have improved as a 

result of the findings. 

In their study, Çinar, et. al.,2020, provide an upgraded version of RESnet50 that 

demonstrates enhanced performance in classifying brain MRI medical images into 

tumour and non-tumor categories. RESnet 50's fundamental structure was augmented 

by an additional 8 layers and subsequently trained using the Kaggle MRI dataset. The 

outcomes are compared to established CNN architectures such as Googlenet, Alexnet, 

and DENSEnet, among others. The proposed method exhibits a 97% enhancement in 

accuracy when compared to the current Deep Learning models. 

Toğaçar, et. al.,2020, built and discussed a unique BrainMRNET convolutional neural 

network. The model is made up of three primary components. The Convolution Block 

Attention Module (CBAM) is the first portion, which allows the network to spatial 

information and learn channel. The residual block is used in the second stage to help 

the network learn more salient characteristics, and the hyper Column method is used 

before the completely connected layer. For higher generalizability and classification 

efficiency. The BrainMRNet model had a classification success rate of 96.05 %. 

The influence of pre-processing of data on prediction performance as well as margin 

of error was exploited by the authors of (Abdelaziz Ismael, et. al.,2020). To increase 

generalizability and lessen the challenge of gradient vanishing, the solutions mostly 

rely on data augmentation. The facts is initially reaped from the centre to minimise 

the inclusion of contextual statistics, as they impede the classification process. 

Subsequently, seven augmentation techniques were employed to expand the dataset. 

Lastly, the expanded dataset of images is inputted into the Resnet50 framework, 

which is utilised for both training and testing purposes. The precision of the outcomes 

is 98%. 
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Using dwt technology, the authors of (Amin, et. al.,2020) offer a novel technique for 

fusing four MRI modalities into a single MRI image. For each patient, the approach 

creates a single fused MRI sequence. The results suggest that the accuracy of fused 

images has improved. 

Ghassemi, et. al.,2020 proposes a unique Generative Adversarial Networks that is 

based on deep learning architecture. Their plan was to pre-train CNN as a GAN 

discriminator utilising the two sets of data. In order to generate more precise pictures 

of the brain MRI scans, data augmentation was used by GAN's generating part. When 

training a GAN for classification, the last CNN discriminator layer is substituted with 

SoftMax. The rate of correctness is 88%. 

To optimise the categorization process, the data is initially trimmed from the centre to 

reduce the inclusion of background statistics, which can hinder the process. 

Afterwards, seven augmentation approaches were used to increase the dataset in order 

to reduce overfitting. Ultimately, the enlarged collection of MRI images is fed into the 

Resnet50 framework, which is employed for both training and testing. The accuracy 

of the results is 98%. 

The work emphases on multi-level segmentation for successful classification and 

abstraction of features of neurological disorders from MRI data (Islam, et. al.,2020). 

The authors employed thresholding, watershed technique, and morphological 

operation to segment the MRI images data after pre-processing them. The pictures of 

tumours were categorised as tumorous or non-tumorous using K-SVM after features 

were extracted using CNN. Overall, the suggested method is accurate to 87.4 %. 

The authors of (Sharif, et. al.,2020) offer a classification method that relies on 

multiple feature engineering. The researchers have developed designs architecture 

with two level of network: one for separation and another for classifying. The 

inception V3 pre-trained prototypical was adjusted using the BRATS input vector. 

Dominant Rotated Local Binary Patterns and Deep features were integrated via 

fundamental array-based splicing (DRLBP). The characteristics are subsequently 

reduced using Particle Swarm Optimization. Outcomes on the dataset show a 92 

percent accuracy. The characteristics are subsequently concentrated using Particle 
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Swarm Optimization. Measurements on the BRATS sample show a 92 overall 

accuracy. 

2.8.3.1 Quantitative Analysis of 2020 Model and Algorithm 

Figure 2.26 shows that during 2020, individuals employed CNN the most, despite the 

fact that more projecting and efficient designs exist in the review. This is due to 

CNN's great generalizability, consistency, and accuracy rate. 

2.8.4 Technical investigations carried out in 2019 

In Deepak, et. al.,2019, the authors of this research paper focus on 3 class 

classification problems distinguished among pituitary, glioma, and meningioma 

tumors. The cataloguing of brain tumors is challenging research in itself, and the 

classification of its subtypes is even more difficult. These encounters accredited to the 

subsequent factors: Brain tumors parade high variability due to their intensity and 

size; tumors with different pathological types can show similar looks. Remove the 

obstruction and overcome; the author's methodology made some contribution in this 

area. The algorithm proposed by the Authors is modified to study features of tumor 

brain MRI images and uses GoogLeNet. The authors emphasized this and stated that 

the model learned transfer has a softmax classifier layer that classifies the image into 

three tumor classes and takes the image's data from it in a figshare. When excellent 

CNN facilities are on condition that to well-established pattern classifiers, better 

performance expected. In work authored by Authors, features verified on two cliques 

of classifier replicas other than softmax classifiers within deep learning. These 

classifiers are SVM and K-Nearest Neighbor (KNN). In this work, the performance 

criteria was observed in such manner. The deep transferable learnt (standalone) 

prototypical's classification accuracy is 92.30.7%, and it is even more efficient when 

using SVM on in-depth Feature extraction (97.80.2%) and KNN on in-depth CNN 

spotlights (98.00.4%). 

The purpose of this study is to examine a deep learning method that has been 

advertised for use in brain cancer picture segmentation (Mittal, et. al., 2019). The two 

most well-known and widely used approaches are GCNN and SWT, or Growing 



 
 

115 
 

Stationary Wavelet Transform. Raising the correctness of the standard scheme is the 

primary objective of this effort. The author took into account and evaluated related 

studies using Support Vector Machine (SVM) and Convolution Neural Network 

(CNN) to define the surface of this work in order to characterise the methodological 

scope of the investigation. The researcher who conducted this work used MRI scans 

to segment brain tumours. This paper accomplished to achieve multiple automatic  

 

Fig 2.26 Quantitative Analysis for 2020 Model and Algorithm carried in studies 
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procedures such as feature extraction, segmentation, and presented technique illustrate 

large datasets and complex structure. Author's proposed methodology performed the 

following steps to materialized and simulated the result of accuracy: Execute skull 

stripping technique  (initialise the media technologies if the first pixel is prominent 

pixel, then add label curblab) after pre-processing (normalise the MRI à undertake 

filtering using Weiner filter à Register to other input pictures). After locating the area 

of interest, third phase extracted features is carried out with the aid of SWT. Pop out 

an element, add à increment Curlab by 1, and then, if a neighbour is a forefront pixel, 

pop out that element.After completed this phase, GCNN is used to classify and train 

the abnormal and standard data. This paper provides a performance metric of 

comparison based on MSE, PSNR, SSIM parameter, and check the accuracy among 

the KNN, SOM, SVM, Genetic algorithm, CNN, and CNN. 

In Sharif, et. al.,2020, the main highlights of the paper are that the proposed Pixel 

Growth along with Limit based augmentation method, segmentation of tumor carried 

out through saliency-based deep learning, Active feature selection (based on PSO 

optimization), comparison of features. In this paper, the author concentrates on the 

high-grade glioma tumor and suggests a deep learning-based feature selection 

method. The primary step is contrasting enhancement and provided to SbDL for 

construction of the saliency map and applying simple thresholding to analyze in the 

form of binarized. In the phase of classification, the Inception V3 pre-trained CNN 

model administered for the mining of the in-depth feature. For better texture analysis, 

dominant rotated LBP concatenated with the resulted features. After that, the led 

vector is concentrated and optimized with the help of a particle swarm optimization 

technique. Using a softmax classifier classifies the optimized result presented 

experiment framed in two phases. In the first stage, BRATS-2017 and BRATS-2018 

datasets used to validate the SbDL approach and the dice score for the dataset of 

BRATS 2017 is 83.73% (Core tumor) for the entire and enhanced tumor is 

respectively 93.7% and 79.94%. The dice score obtained for the BRATS 2018 is 

88.34% for Core, 91.2% for the whole, and 81.84% for enhanced. In the new stage, 
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authors applied the classification approach on BRATS-2013, BRATS-2014, BRATS-

2017, BRATS-2018, and find out the average accuracy as a result is more than 92%.  

In Aljunid, et. al.,2019, The methodology employed in this research study is based on 

the utilisation of Naïve Bayes classification, clustering, and morphological scanning. 

This process involves analysing the input image using clustering and morphological 

scanning techniques to identify distinct and related clusters within the image. The 

Naïve Bayes classifier method was employed to address the issue of tumour detection. 

In this article, the authors examined the outcome based on the following parameters: 

Peak Signal-to-Noise Ratio, MSE, calculation of overlapping area, and defect 

detection. The advanced technique is utilised to verify the accuracy of the analysis in 

relation to the provided parameters. This proposed method achieved high precision, 

with a remarkable 86% accuracy in detecting cells. 

In Talo, et. al.,2019, the study of this paper focuses on presenting an approach that 

automatically classifies normal and abnormal brain MRI with the use of deep transfer 

learning.  A foundational component of the deep learning system, ResNet34 is a 

convolutional neural network. To complete the assignment, the writers relied on deep 

learning techniques. The authors anticipated a 5-fold classification method to 

authenticate the accuracy. This paper evolved three stages (Stage1, Stage 2, and Stage 

3), divided by the epochs in increasing order and finding the accuracy value for each 

stage in terms of training loss and validation loss. During 5-fold training, broach 

overlapping results of a confusion matrix for each stage and examined all stages in 

abnormal and normal classes. The sensitivity, average precision, validation accuracy, 

and F1-Score used to fix the trueness of the presented model. For stage 1 abnormal 

class ( Precision – 98.16%, Sensitivity - 99.65%, F1-Score – 98.90% ) , normal class ( 

Precision – 71,66%, Sensitivity – 56.00%, F1-Score – 61.51% ) and overall accuracy 

97.86 ±1.24, For stage 2 abnormal class ( Precision – 97.84%, Sensitivity - 100%, F1-

Score – 98.90% ) , normal class ( Precision – 80.00%, Sensitivity – 48.00%, F1-

Score-57.85% ) and overall accuracy 97.86 ±1.48, For stage 3 abnormal class ( 
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Precision-100%, Sensitivity 100%, F1-Score 100% ) , normal class ( Precision 100%, 

Sensitivity 100%, F1-Score 100% ) and overall accuracy 100%. 

In contrast to Deep Convolutional Neural Network (Chen, et. al.,2020), the author 

proposed a Deep Convolutional Symmetric Neural Network (DCSNN) that 

automatically segments the brain tissues. The proposed methodology was validated 

and analyzed in the BRATS2015 dataset and given some baselines for that. The 

projected technique attained an average DSC of 0.852. The proposed method does not 

produce the best result in the BRATS2014 dataset, but this method gives on other 

DCNN-based ways. 

This article (Thaha, et. al., 2019) suggested an Enhanced Convolutional Neural 

Networks with the loss function optimised using the BAT method to address the issue 

of manually segmenting data. Creating an optimized image segmentation is the 

primary objective in this proposed methodology for understanding and optimizing 

MRI image segmentation. For the pre-processing operations, image enhancement 

algorithms and skull stripping used and experimental results of the projected practise 

show better performance associated to existing methods.  

The authors of one of the types of research in (Alagarsamy, et. al.,2019) used the 

proficiency of compression methods to improve the execution time and accuracy of 

CNN in brain MRI categorization. Before categorization, authors introduced a unique 

stage of pre-processing. The approach first uses a Probabilistic Neural Network 

(PNN) for the process of segmentation the Region of Interest (ROI) (mostly brain 

tissue region), and then uses two layers for the Back Propagation Neural Networks to 

compress the ROI (BPNN). Last but not least, the compressed pictures are sent into 

CNN for classification. The findings were collected for three distinct kinds of 

optimizers for the determination of comparison and showed accuracy rates of more 

than 90%. 

Another research Kaur, et. al.,2019 exploits the effectiveness of the newly created 

Capsule network. Convcaps is the term given to a new Capsulenet model created by 
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the authors. They fed the network two inputs: a tumour picture and a segmented 

tumour area. In addition, a novel loss function is added to optimise the model in all 

ways. As per the assessment with other approaches, six various types of tests were 

carried out by modifying the input, and the findings reveal that the optimised method 

provides the maximum accuracy of 93 %. 

Narayanan, et. al.,2019 assesses the density of the RESNET34 architecture's efficient 

usability. For demonstrating and creation of a novel algorithm G-RESNET, the 

authors used the fundamental deep RESNET34 method. In this new method, the 

flattening layer is replaced by a max pooling layer, and implemented of a novel loss 

function. Different versions of the reduction function and the universal max pooling 

layer were tested independently to determine their impact on the precision of 

classification. Lastly, an experiment employs fusion of feature for high-level and low-

level traits. According to the findings, the newly projected G-RESnet with feature 

fusion feature fusion and enhanced loss function enhanced loss function achieves 95 

percent accuracy. 

Another study's authors (Mekhmoukh, et. al., 2019) also presented a novel approach 

to cancer detection and classification. The proposed technique leverages score side by 

side fusion of the outcome routes from pre-trained Googlenet and Alexnet. Their 

approach uses linear and log transformations to pre-process the raw MRI pictures the 

tumour is then segmented using morphological and thresholding processes, and the 

segmented region is then used with the BRATS dataset to categorise the tumour as 

high or low grade. The recommended methodologies' accuracy has improved as a 

result of the findings. The training duration and loss curve were also compared to 

state-of-the-art methods by the authors. 

A modified version of the model developed by Ari and Hanbay (Fernandes, et. 

al.,2019) is presented in Elazab, et. al.,2019. The suggested approach alters the prior 

model's pre-processing and classification stages. Because median filtering keeps the 

edges while reducing noise, the system employs it for pre-processing. Second, 
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because the function sigmoid is incompetent for classes of multiple images 

classification difficulties, the model utilises a modified SoftMax function in the 

convolution network. The last step uses the watershed algorithm and morphological 

procedures to segment the tumour. Finally, the findings were presented, 97 % rate of 

accuracy and half in processing time. 

In order to determine if brain MRI pictures show tumours or non-tumors, the 

researchers in (Wong, et. al.,2019) used an 8-layer traditional Convolutional Neural 

Network (CNN) trained on a proprietary dataset. At first, the application sorts the 

photos according to the suggested Convolutional Neural Network (CNN). The next 

step, after cancer detection in the picture, is to segment it. The first step is to use a 

global thresholding approach to convert the picture to binary representation. 

Afterwards, morphological procedures and a watershed algorithm are used to isolate 

the cancer. The final step is to determine the tumor's dimensions. The results show 

that the suggested method is 98% accurate. 

The requirement for a labelled dataset is one of CNN's limitations. The researcher 

missions in (Zhou, et. al.,2019) addressed this issue. This research revolves around a 

fundamental idea: representing 3D magnetic resonance image scans by breaking them 

down into 2-dimensional slices to be utilized as input arrays. The DENSEnet-LSTM, 

DENSEnet-DENSEnet, and DENSEnet-RNN models were developed using deep 

learning and compared. The first model uses DENSEnet to extract features, and the 

second model uses a Recurrent Neural Network (RNN) to classify data. The 

DENSEnet learning algorithm was used in the model overview, and the Long Short-

Term Memory (LSTM) technique of classification algorithm was applied. Accuracy 

rates of 87%, 92%, and 91% were found in the three methods, according to the testing 

data. 

2.8.4.1 Quantitative Analysis of 2019 Model and Algorithm 

Unlike prior years, a significant amount of effort was put on identifying and 

categorising brain tumours in MRI scans in 2019. Researchers moved their focus back 
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to image improvement approaches by applying several pre-processing techniques to 

the input brain MRI datasets. They began by combining several machine and deep 

learning approaches to create hybrid models. Fig 2.27 shows the analysis for 2019 

algorithm. 

2.8.5 Technical investigations carried out in 2018 

In Raju, et. al.,2018, the author of this paper strong imposes that segmentation of 

brain tumor is a noteworthy job in processing of medical image as well as also state 

that MRI is not adequate for diagnosing and identifying the intracranial tumor, but 

This needs detailed classification based on segmentation of brain tumor MRI images 

and segmentation technique. Authors offered research papers that summarized those 

non-tumorous tissues and tumorous tissues cubicle in the brain are exciting areas for 

segmentation and classifying brain tumors and to overwhelmed the challenges tackled 

by traditional methods. For the subdivision operation of the brain tumor, this paper 

used the baysian fuzzy clustering technique. The classification of this proposed 

method regulates brain tumors' neck and neck with the help of Bayesian fuzzy 

clustering using the basis features set on it. The BRATS database used to authenticate 

the effectiveness of the projected method and to test the efficiency of the technique 

using it. The expected HCS-based tumor classification and segmentation 

accomplishes a classification accuracy of 0.93 and improves comprehensive 

segmentation approaches. 

This paper Zhao, et. al.,2018 proposed a unified framework that obtains the result of 

segmentation in terms of appearance and spatial consistency. Authors have used 

Conditional Random Fields with Fully Convolutional Neural Networks. They have 

trained this segmentation model in the following steps: First, to teach FCNNs using 

image patches; Second, Image parts were used with FCNNs parameters to train CRF 

as a Recurrent Neural Network (CRF-RNN); and Third, fine-tuning the CRF-RNN 

and the FCNNs using image slices. The authors presented the method that performed 

the segmentation operation slice by slice. Authors used BRATS-2016, BRATS-2015, 

and BRATS-2013 datasets for evaluation of the given model. 
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Interval Type-1 Fuzzy C-Means (IT2FCM) segmentation, which is centered on BAT, 

has been created as a better-quality brain image segmentation technique in (Kaur, et. 

al.,2018). In order to reduce the computing complexity of the IT2FCM process, the 

BAT technique aids in locating the ideal cluster placement. 

 

Fig 2.27 Analysis for 2019 Model and Algorithm carried in studies 
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In [64], the authors used CNN to categorise tumour and non-tumor pictures from the 

radiopedia datasets and BRATS 2015. The plan was to train only the last coating of 

the CNN prototypical and then use the ImageNet features retrieved. Back propagation 

was calculated using the gradient decent approach. The accuracy was only discovered 

by the authors, who then compared it against DNN and SVM. Their projected method 

has a 97 % accuracy rate. 

2.8.5.1 Quantitative Analysis of 2018 Model and Algorithm 

 

 

 

Fig 2.28 Analysis of Accuracy for 2018 Model and Algorithm carried in studies 

 

2.8.6 Technical investigations carried out in 2017 and 2016 

 

In Amin, et. al.,2017, Muhammad Sharif, Javeria Amin, Mussarat Yasmin, and 

Stephen Lawrance Fernandes have proposed a methodology validated on three 

benchmarks dataset: Harvard, Rider, and Local. The author's main contribution to this 

research is that the paper proposed an automatic method that detects and classifies the 
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intracranial tumor at the level of image and lesion. By this automated methodology, it 

quickly distinguished between brain tumor and non-tumorous MRI. In this automated 

proposed methodology exist several stages: pre-processing, classification, and feature 

extraction. In the author's methodology, the first stage is to segment the candidate 

lesion and apply various methods on that segment. In the next step, for each candidate 

wound, they have involved shape, texture, and intensity-based feature sets. Finally, 

several tests completed on the designated feature extract set to select a more suitable 

classification strategy. The author's proposed methodology achieved performance in 

terms of the multiple parameters Like average 0.98 area under the curve, 97.1% 

accuracy, 91.9% sensitivity, and 98.0%. 

 

In Sachdeva, et. al.,2016, the mainstay of the experimented research paper is to 

propose a communicating CAD framework for multiclass brain tumor classification. 

To achieve the targets, authors used the first dataset of Astrocytoma, childhood tumor-

Medulloblastoma, Meningioma, and Glioblastoma Multiforme along with subordinate 

tumor-Metastatic. In subsequent dataset mostly focus on Low-Grade Meningioma, 

Astrocytoma, and Glioblastoma. To mark the tumor segment region, the author used 

the active contour model and saved it as a segment region of interest. After applying 

this methodology, 71 texture and intensity feature set has extracted. Genetic 

algorithms impose on this input set and select the optimal feature set from that. This 

paper investigates and proposes two hybrid frameworks for machine learning that are 

applied by means of the Genetic Algorithm with substantiation of artificial neural 

network and support vector machine. Testing results from the first dataset showed that 

the Genetic Algorithm optimization approach amplified the overall accuracy of SVM 

(79.3% to 91.7%) and ANN (75.6% to 94.9%). The accuracy result of individual class 

which is delivered by Genetic Algorithm–Support Vector Machine in different 

parameter like that GBM (83.3%), AS (89.8%), MEN(91.8%), MED (95.6%) and 

MET(97.1%) and carried by Genetic Algorithm–Artificial Neural Network classifier 

on the following parameter: GBM (86.6%), MED(93.3%), AS(96.6%), MET (100%) 
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and MEN(96%). Comparable individual results found from the second dataset. 

Accuracy of Support Vector Machine has improved result 80.8% to 89%, and for 

Artificial Neural Network has exceeded as of 77.5% to 94.1%. Separate class 

accuracies of Genetic Algorithm and Support Vector Machine in term of the following 

parameter like that AS (83.3%), LGL (88.8%), MEN (93%) and for Genetic 

Algorithm-Artificial Neural Network classifier has proved the accuracy result like that 

AS(92.6%), LGL(94.4%), MED(95.3%). Hence experiment results have shown that 

the Genetic Algorithm-Artificial Neural Network classifier has indicated better 

outcomes than Genetic Algorithm-Support Vector Machine. 

 

With the use of a framework developed in (Alfonse, et. al.,2016) for the 

categorization and segmentation of brain tumours from MR images. After using the 

Fast Fourier Transform (FFT) feature to extract the models, the adaptive threshold 

technique was used to segment the models. Next, the element was selected using the 

Minimal Redundancy Maximal Relevance Techniques, and then the normality and 

abnormality of the intracranial images were catalogued. The suggested method has a 

classification accuracy of 98.9%. 

 

Tolerance Rough Set Firefly based Quick Reduct (G., et. al.,2016), a novel procedure 

has projected in this paper. This hybrid-based intelligent algorithm is a feature 

selection for MRI brain image that emphasizes the advantages and characteristics of 

basic models and their limitations. Features mined from segmented MRI metaphors 

based on strength, size, and texture. This paper hybridizes the Firefly Algorithm (FA) 

and Tolerance Rough Set (TRS) to select the brain tumor's experimental features to 

generate an intellectual system that can moderate the characteristics and limitations of 

basic models.  
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2.8.6.1 Quantitative Analysis of 2017 and 2016 Model and Algorithm 

 

Figure 2.29 Analysis of Accuracy for 2017 and 2016 Model and Algorithm 

carried in studies 

2.9 Algorithmic Development from 2015-2022 

Deep learning methods are utilised for the categorization and detection of MRI 

images, as well as for the pre-processing and segmentation.  As in Fig 2.30, 2015 was 

the weakest year for deep learning progress. Deep learning elicited a tepid reception 

from the general public. They were acquainted with machine learning techniques and 

didn't want to devote any time on deep learning. From mid-2017 to mid-2019, a lot of 

effort on algorithm development was done. In the meanwhile, others experimented 

with various algorithms. The pre-processing of MRI images became the focus of 

study in 2019, which prompted the creation of new algorithms using deep learning for 

this use. Data augmentation caused the paradigm to shift from manual to automated. 

The whole focus of the year 2020 was on testing various data augmentation, feature 

extraction, and pre-processing techniques and algorithms. Algorithmic progress was 

modest, and there were no significant architectural advancements during this time. 

During the year 2022, conventional or current models were used with little revisions. 
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Fig 2.30 Algorithmic Development 
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2.10 Factors that Impair Performance 

The in-depth examination of current methodologies aided us in compiling a list of 

critical components that affect the CAD system's performance directly or indirectly. 

The performance of a given Deep Learning algorithm developed for classification is 

harmed by a number of things. These variables have an equivalent impact on other 

tasks. Fig 2.31 shows how they can be classified. 

 

Figure 2.31 Factor that impairs performance (Nazir M, et. al.,2021) 

2.11 Techniques for Improved Performance 

Based on the thorough critical analysis shown above, certain performance 

enhancement strategies are offered, and some studies have supported them as 

important components for good performance (Fig 2.32). This component was 
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developed to make it possible for academics and scientists working on this topic to 

combine all of the scattered solutions offered in all of the studies to build effective, 

durable CAD systems. 

 

Fige 2.32 Techniques for Improved Performance (Nazir M, et. al.,2021) 

2.12 Research Gap and Objective 

The prediction of brain tumors and assessing their likelihood in patients pose ongoing 

challenges for researchers. The use of MRI scans has opened up new avenues of 

research in the field of brain tumors, including tasks like classification, prediction, 

and segmentation. Researchers investigate various aspects of tumor characteristics, 

including their location, shape, deep features, and intensity. To improve regression-

based approaches, there's a growing need for more extensive exercise data. 

Furthermore, the duration of tumor persistence varies among high-grade glioma 

patients, spanning long-term, short-term, and mid-term cases. 

Several key challenges and research gaps exist in the domain of tumor recognition: 
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(i). Gliomas, the predominant forms of primary brain tumors, exhibit diverse 

levels of aggressiveness, distinct prognoses, and variable histological 

subregions. Consequently, the utilization of advanced monitoring 

algorithms becomes crucial for classifying tumor survival durations into 

long-term, short-term, and midterm categories. 

(ii). Concerning the segmentation task, current consensus seems to favor a 

cascaded or hierarchical approach. This involves initially distinguishing 

between normal and abnormal/tumorous tissue and subsequently 

proceeding with the segmentation of tumor subregions. 

(iii). The interplay between Deep Learning and traditional Machine Learning 

methods is a significant area of focus, particularly for addressing clinically 

relevant challenges like predicting clinical outcomes, such as overall 

survival. This becomes particularly challenging when dealing with smaller 

training datasets. 

(iv). To improve survival prediction for long-term, mid-term, and short-term 

survivors, it is required to optimise feature selection approaches and use 

different network designs and training procedures. 

(v). To create additional examples of brain tumour lesions, data augmentation 

methods including scaling and rotation are used. Nevertheless, problems 

with class imbalance may be introduced by these methods. 

(vi). It's worth mentioning that the majority of deep learning methods used for 

brain tumour analysis are still struggling with reinforcement 

categorization, which leaves the network unsure of the exact location of 

the patch. 

The objective is to enhance model performance in terms of prediction accuracy, 

robustness, and the mitigation of overfitting, as well as reducing error-related 

indications. Therefore, the problem can be formulated as follows: 

(i). Explore novel approaches for brain tumor segmentation. 
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(ii). Develop a framework capable of distinguishing between tumor and non-

tumor images. 

(iii). Conduct a comparative analysis of methods at each stage of the model and 

select the most suitable one for survival predictions. 

(iv). Model framework for detection and localization the brain tumor 

(v). Compute various metrics such as accuracy, sensitivity, specificity, DSC, 

etc., to bolster the model's effectiveness at each level. 

Thus, the aim of this problem statement is to introduce a computational model for 

Glioblastoma Brain tumor. This model encompasses network architecture, feature 

extraction and selection, segmentation, and detection, all geared towards predicting 

brain tumor survival. 

2.13 Conclusion 

This chapter has thoroughly examined the scope of brain tumour segmentation and 

classification, encompassing a range of conventional and contemporary approaches. 

The investigation of conventional techniques, such as threshold-based methods, 

region-based methods, edge-based methods, and atlas-based methods, offers 

understanding into the historical development of segmentation procedures. The 

discourse surrounding machine learning-based classification techniques, including k-

Nearest Neighbour, Bayesian approach, Support Vector Machine, Random Forest, and 

clustering, demonstrates the advancement of computer technologies for brain tumour 

analysis. The constraints of traditional methods emphasise the necessity for 

sophisticated methodologies, leading to the investigation of deep neural networks 

(DNN), specifically convolutional neural networks (CNN). An analysis of current 

approaches for segmentation and classification, the datasets employed, and the 

metrics used to evaluate performance offers a thorough comprehension of the cutting-

edge advancements in this domain. The comprehensive analysis of prior research 

conducted between 2015 and 2022 demonstrates the evolution of studies throughout 

the years, providing quantitative evaluations of models and algorithms for each year 
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under investigation. The process of identifying variables that hinder performance and 

implementing ways to enhance performance lays the foundation for identifying 

research gaps and objectives. This chapter establishes a strong basis for the proposed 

research by integrating information from earlier studies. It directs the reader towards 

the distinctive contributions and breakthroughs that the current study seeks to 

accomplish in the ever-changing field of brain tumour segmentation and 

classification. 
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CHAPTER 3 

PRELIMINARIES 

 

The focus of this chapter is on investigating the techniques used for MRI image pre- 

and post-processing. Further investigation into standardised datasets for comparison 

and assessment criteria is also included. 

3.1 Techniques for Pre-processing 

The goal of pre-processing methods applied to MRI images is to enhance the 

foundational data with the aim of optimizing the image for segmentation. These 

approaches encompass the removal of unwanted components from the input, 

enhancing images using noise, and aligning or resampling them with a reference 

image. This alignment enables the extraction of features from corresponding positions 

across several images.  

Pre-processing often encompasses various essential stages, such as bias field 

correction, image registration or resampling, skull stripping or, brain extraction and 

intensity normalisation. When working with publicly available datasets that might 

have undergone partial pre-processing, additional pre-processing steps are selectively 

applied as needed, based on specific requirements. 

3.1.1 Image Registration and Sampling 

Image registration involves the resampling and alignment of an image to a common 

image space, ensuring the extraction of features from corresponding locations across 

different images. There are two primary situations where image registration is 

necessary: 

1. When there is variation in the orientation of the input images. 

2. When handling many modalities of a single input picture, each with its own 

orientation.s 
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In the initial scenario, all input images undergo resampling in order to align with a 

reference anatomical template. Figure 3.1 demonstrates manually outlining tumours 

and pre-operative alignment for malignant and lower-grade tumours in the left 

hemisphere. The tumour is manually delineated inside the patient's coordinate system, 

shown by the colour blue, while the matching estimated volume of the target is shown 

in green within the anatomical reference coordinate system. The tumour segmentation 

following the linear transformation is depicted in the colour orange, whereas the 

tumour segmentation following the non-linear transformation is illustrated in the 

colour red. 

The image's upper row captures the radiographic profile of a patient grappling with 

glioblastoma, juxtaposed with the lower row portraying the imaging specifics of a 

patient contending with a lower-grade glioma. The photos illustrate a progression 

from left to right: 

(A) Patient-centric domain, 

(B) Anatomical reference framework, 

(C) Linear conversion of the patient's spatial coordinates to the anatomical reference 

space, 

(D) Non-linear transformation of the patient's spatial coordinates to align with the 

anatomical reference space. 

 

Fig 3.1 Pre-Processing: Image Registration (Visser et. al, 2020) 
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3.1.2 Skull-Striping 

Skull-stripping, a pivotal facet in neuroimaging and medical image processing, serves 

to meticulously eliminate non-brain elements from an image. This intricate method 

isolates the brain region by adeptly identifying and segregating the intricate structures 

while delicately excluding surrounding elements like the scalp, skull, and meninges. 

(Thakur et. al. 2019). 

Skull removal serves as a critical step to heighten the precision and efficiency of 

subsequent image processing tasks like brain segmentation, registration, and feature 

extraction. By meticulously isolating the brain, researchers gain the ability to delve 

into the analysis and comprehension of brain structures and functions without 

interference from extraneous non-brain tissues. This undertaking is particularly 

pivotal in studies exploring brain abnormalities, aiding in disease diagnosis and 

intricate brain mapping endeavors, where precise and reliable delineation of brain 

regions holds utmost importance (Dandil et al., 2014). Figure 3.2 visually contrasts a 

brain image with and without the removed skull, exemplifying the significance of this 

process.  

3.1.3 Correction for Bias Field 

The bias field manifests as a gradual and low-frequency strength shift crossways the 

image, introducing variations in tissue appearance at different locations. Rooted in 

imperfections during image capture and anatomical disparities related to a patient's 

morphology, posture, alignment, and magnetic permeability, the bias field arises from 

dual sources (Song et al., 2017). 

Typically expected to be multiplicative or cumulative, the cumulative form in MRI 

results from magnetic field amalgamation, while the multiplicative form is contingent 

on receiving coil sensitivity (Lefkovits et al., 2015). 
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Enter the N3 bias field correction, employing an iterative B-spline least-squares fitting 

procedure. An evolution of this method, the N4 bias field correction by Tustison et al. 

(2010), refines the process by determining residual bias fields rather than total bias 

fields. Adopting a multiresolution approximation approach, the N4 bias field 

correction enhances efficiency and reduces execution times. Visualized in Figure 3.3, 

the implementation of N4ITK bias field correction on a FLAIR image vividly 

demonstrates the resulting extracted additive bias field. 

 

Fig 3.2 Pre-processing: Skull Stripping Process (Dandil et. al., 2014) 

 

Fig 3.3 MRI scan (a) before (b) after N4ITK bias field correction. 

3.1.4 Intensity Normalization 

In the intricate realm of image analysis, intensity normalization emerges as a pivotal 

pre-processing technique, orchestrating the harmonization of intensity values within 

an image or image set onto a uniform scale. The essence of this normalization lies in 

transcending the challenges posed by intensity fluctuations, fostering not only 

comparability but also precision in analyses and insightful comparisons (Alnowami et 

al., 2022). 
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Within the domain of medical imaging, intensity normalization takes center stage, 

acting as a virtuoso conductor orchestrating the alignment of intensity distributions 

across images sourced from varied patients, scanners, or imaging protocols. This 

orchestration becomes crucial due to the inherent variability in intensity values 

attributable to diverse factors like imaging settings, acquisition parameters, or 

individual patient characteristics. The normalization process is a meticulous dance, a 

rescaling of intensity values with a commitment to preserving their intrinsic 

relationships. The several methods that make up this symphony include min-max 

scaling, z-score normalisation, histogram equalisation, and linear scaling. 

By weaving the magic of intensity normalization into the fabric of image analysis, 

researchers and practitioners not only diminish the impact of intensity variations but 

also elevate the performance of algorithms and models. The outcome is a dataset 

finely tuned for quantitative analysis and comparison, a transformative resonance 

particularly resonant in the realms of image registration, segmentation, and 

classification within the realms of medical imaging and computer vision applications 

(Pereira et al., 2016). 

3.2 Dataset 

In the vast landscape of  segmentation methodologies, a multitude of approaches have 

been presented in the literature, each vouching for its effectiveness and contribution 

across various dimensions. Initially, these techniques found application in images 

sourced from private hospitals or radiology laboratories, rendering them inaccessible 

for comparative assessments among different methods. This inherent limitation posed 

a barrier, hindering researchers from conducting comprehensive evaluations. 

To surmount this challenge, the research community responded by constructing 

publicly accessible datasets and evaluation frameworks. These initiatives aimed to 

facilitate the comparison and assessment of different segmentation methods through 

standardized metrics. An illustrious example in this domain is the Multimodal 

segmentation challenge dataset, commonly referred to as BraTS (Pereira et al., 2016; 
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Bakas et al., 2017). Serving as a cornerstone resource for addressing issues related to 

brain tumors, the BraTS dataset is widely employed for both segmentation tasks and 

prognostic predictions. 

Comprising images associated with both High-Grade Glioma and Low-Grade Glioma, 

the BraTS presents a comprehensive and diverse collection of brain tumor cases. The 

public availability and well-defined characteristics of this dataset empower 

researchers to confidently leverage it for their experiments, fostering a collaborative 

environment for advancements in segmentation research. 

• The dataset is composed of multi-parametric MRI images, encompassing 

volumes in T1c, T1, T2-FLAIR, and T2 modalities.  

• The images in the dataset are sourced from a diverse array of institutions, 

utilizing various 2D or 3D clinical protocols and scanners with magnetic 

strengths ranging from 1.5T to 3T. 

• To ensure coherence and enable effective comparisons, the dataset underwent 

meticulous pre-processing procedures, focusing on harmonization and 

standardization. These techniques are intricately designed to preserve the 

informational essence of the images while maintaining the distinct 

characteristics. 

• Each individual scan has undergone alignment with a T1 reference anatomical 

template, followed by interpolation, guaranteeing consistent and equal 

resolution in all directions. Additionally, the implementation of skull-stripping 

techniques enhances the precision and accuracy of the dataset. 

3.3 Overall Survival Prediction Task 

The BraTS 2017 competition introduced an intriguing facet by incorporating an 

additional task, specifically honing in on the prediction of Overall Survival (OS) for 

individuals grappling with High-Grade Glioma (HGG). Beyond the wealth of imaging 

data, this dataset enriches the information pool with crucial details encompassing age, 

survival days, and resection status (Subtotal Resection – STR or Gross Total 
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Resection - GTR) for HGG patients. The primary objective of this challenge 

transcends mere classification; it seeks to stratify patients into three distinctive 

categories based on their survival timelines: those who endure mid-term survivors 

(OS days between 10 to 15 months), long-term (OS days > 15 months), and short-

term survivors (OS days < 10 months). Illustrated in Figure 3.5 is an elaborate 

exploration of the OS-related data, providing an insightful panorama into the intricate 

dynamics of patient survival predictions that has been available since the BraTS 2017 

competition. 

Table 3.1 BRATS Dataset
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In addition to BRATS Dataset (Table 3.1), there are other datasets available for 

research and experiments, which are listed in the fig 3.4. 

 

Fig 3.4 Dataset available for research and experiments. 

3.4 Post-processing Technique 

Post-processing techniques refer to a set of methods and operations applied to data or 

results after the primary processing stage. These techniques aim to refine, enhance, or 

extract additional information from the processed data to improve its quality, utility, 

or interpretability. Computer-assisted methods for segmentation may produce 

inaccurate segmentations in the image owing to inappropriate feature selection. 

However, post-processing techniques can enhance the segmentation by employing the 

following methods: 
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Fig 3.5 The arrangement of features from the BRATS dataset across survival 

classes. 

2.4.1 Connected Component Analysis: Analysis of Connected Component, 

also known as Connected Component Labelling (CCL), is a fundamental 

image processing technique used to identify and label separate related 

areas or elements within a binary or segmented picture. In a binary image, 

pixels or voxels are classified as either foreground (typically represented 

by white) or background (typically represented by black). The CCA 

algorithm analyzes the binary image and groups adjacent foreground 

pixels into distinct connected components based on their spatial proximity. 

A connected component is a set of foreground pixels that are contiguous, 
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meaning they are connected through either thei r edges or corners. The 

primary goal of CCA is to label each connected component with a unique 

identifier or label so that further analysis or processing can be performed 

on individual regions separately.  

2.4.2 Conditional Random Field: In the intricate realm of machine learning 

and the nuanced landscape of computer vision tasks, a Conditional 

Random Field (CRF) serves as a refined statistical model meticulously 

crafted to elegantly capture the complexities inherent in structured data 

representations. Conditional Random Fields (CRFs) are a specific kind of 

graphical model that may effectively represent intricate relationships and 

interconnections between variables in structured data. Conditional Random 

Fields (CRFs) utilise a graphical structure to organise data, with nodes 

representing random variables and edges representing the conditional 

connections between these variables. CRFs aim to represent the 

conditional distribution of the output variables (such as labels or states) 

based on the input variables (such as features or observations). 

 

2.4.3 Morphological Operations: Morphological operations stand out as 

advanced techniques in image processing, intricately designed to scrutinize 

and reshape the contours and structure of entities within digital images. 

These operations find their roots in the principles of mathematical 

morphology, an intricately woven tapestry of mathematical set theory and 

geometry. In the realm of visual data transformation, these operations 

carve a distinctive path, offering precision and innovation. Morphological 

operations are primarily applied to binary images, where each pixel can 

have one of two values, typically representing foreground (object) or 

background. The operations involve the use of a small, predefined pattern 

called a structuring element or kernel. The structuring element moves over 

the image, and for each position, it is compared with the corresponding 

neighbourhood of pixels. 
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3.5 Evaluation Metrics 

Embedded within the fabric of predetermined evaluation for tumor segmentation and 

the foresight of overall survival lies an intricate array of subsequent metrics. 

I. Dice Similarity Coefficient (DSC): The Dice Similarity Coefficient, 

affectionately termed the Dice Index, unfolds as a nuanced quantitative 

measure navigating the terrain of binary images. It measures the degree to 

which systematically projected and true truth segmentations are in concord, 

serving as a discernible compass in the complex world of picture 

segmentation. The formula for calculating the Dice Similarity Coefficient is as 

follows: 

 

 DSC =  (2 ∗  |A ∩  B|) / (|A|  + |B|) [3.1] 

where: 

 

• The symbol |A ∩ B| denotes the cardinality, or the number of items, in 

the intersection of sets A and B, which refers to the region where the 

two sets overlap. 

• The sign |A| represents the cardinality of collection A, which is the 

total number of items in the expected segmentation. 

• The sign |B| represents the cardinality of collection B, which 

corresponds to the overall number of items in the basic truth 

segmentation. 

II. Sensitivity: Sensitivity, often hailed as the true affirmative prowess or recall 

prowess, emerges as a distinctive performance gauge in the realm of binary 

classification models. The level of accuracy with which the model identifies 

instances of positive within a dataset is finely measured by this parameter. In 

the context of binary classification, there are four possible outcomes for a 

model's predictions: 
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• True Positives: The methodology correctly classified instances as 

positive. 

• True Negatives: Signifies cases where the model properly determined 

that the data was negative. 

• False Positives: These occur when the algorithm incorrectly labels 

negative situations as positive. 

• False Negatives: Eventualities that the model incorrectly interpreted as 

negative, even though they were actually positive. 

Things that happened that the model assumed were unacceptable but out 

beneficial: 

 

 Sensitivity (Recall)  =  TP / (TP +  FN) [3.2] 

 

Sensitivity serves as the litmus test for the model's prowess in pinpointing 

positive instances amid the vast landscape of actual favorable occurrences 

within the dataset. A robust sensitivity score signifies the model's prowess in 

unearthing positive cases, while a subdued sensitivity hints at the framework's 

challenge in navigating the realm of positive instance recognition. 

III. Specificity: Among all the actual instances of negativity in a dataset, 

specificity measures how well a model using binary classification identifies 

negative situations. The determination of specificity involves the division of 

the true negative projections by the summation of actual rejections and false 

positives in the calculation process: 

 

 Specificity =  TN / (TN +  FP) [3.3] 

 

An apex of specificity underscores the model's finesse in astutely discerning 

negative cases, while a nadir in specificity unveils the model's inclination to 

misstep, mistakenly labeling negative instances within the positive realm. 
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IV. Accuracy: Accuracy, a linchpin metric in the evaluation realm, scrutinizes the 

efficiency of a classification model, whether navigating the landscapes of 

traditional learning or immersed in the complexities of deep learning tasks. 

This metric delves into the model's artistry, discerning its adeptness in 

accurately categorizing cases relative to the dataset's entirety. 

 

 Accuracy =  (TN +  TP) / (TN +  TP +  FN +  FP) [3.4] 

 

A pinnacle in accuracy unveils the model's prowess in orchestrating a 

symphony of precise forecasts, while a dip in accuracy hints at the model's 

inclination to compose a melody marked by a higher frequency of imprecise 

predictions. 

V. Precision: In the realm of binary classification models, precision emerges as a 

discerning metric, especially when the goal revolves around mitigating false 

positives (FP). This statistic unfurls as a poetic measure, quantifying the 

harmony between accurate positive predictions and every positive forecast 

crafted by the model, offering a nuanced symphony of accuracy assessment. 

 

 Precision =  TP / (FP +  TP) [3.5] 

 

VI. F1-Score: Embedded within the neural network architecture, Fully Connected 

Layers, also known as the dense layers, stand as the backbone of not only 

Convolutional Neural Networks (CNNs) but also various intricate blueprints 

in the expansive landscape of deep learning. These layers play a pivotal role, 

intricately weaving together complex data connections to birth conclusive 

classifications or informed suggestions. What sets them apart is their knack for 

harmonizing precision and recall, sculpting a singular statistic that judiciously 

appraises the classifier's prowess. Precision, a distinguished metric in this 

assessment, unfurls its tapestry by calculating the ratio of spot-on positive 
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predictions (true positives) to the entirety of positive forecasts (encompassing 

both authentic positives and deceptive positives). This metric not only 

scrutinizes the classifier's aptitude in accurately identifying negative 

occurrences as negative but also dances delicately, avoiding the misstep of 

erroneously categorizing them as positive. 

 

 F1 − score =  2 ∗  (recall × precision) / (recall + precision ) [3.6] 

 

The F1-score can be anywhere from 0 to 1, with 0 indicating inadequate 

performance and 1 suggesting excellent recall and precision. 

VII. Loss: In the expansive landscape of deep learning, loss, a multifaceted entity 

also recognized as cost or objective function, emerges as the alchemist 

measuring the intricate dance between the model's predictions and the elusive 

true target values. This enigmatic function, akin to a masterful conductor, 

orchestrates the symphony of the model's performance, delving into the 

nuances of precision woven into its forecasts during the intricate ballet of 

training. 

Throughout the training process, the model endeavours to minimise the loss by 

modifying its parameters, including weights and biases, utilising optimisation 

procedures such as gradient descent. The goal is to identify the most 

favourable combination of parameters that leads to the minimal loss, hence 

enhancing the model's performance. 

VIII. Tversky Loss: In the intricate realm of image segmentation tasks, particularly 

within the intricate tapestry of medical image analysis, the Tversky loss 

unfurls as a subtle yet potent arbiter, delicately measuring the likeness 

between the predicted partition and the tangible segments. This avant-garde 

approach, akin to a bespoke rendition of the Dice Similarity Coefficient 

(DSC), gracefully steps into the limelight with a unique prowess tailored for 

the idiosyncrasies of unbalanced datasets. These datasets, marked by a 
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pronounced asymmetry in instance numbers across classes, find refuge in the 

specialized artistry of this method. 

The Tversky loss is mathematically defined using the following formula: 

 

 Tversky Loss =  1 − (Tversky Index) [3.7] 

where: 

 Tversky Index =  (TP) / (TP +  α ∗  FP +  β ∗  FN) [3.8] 

TP: "True Positives" refers to the quantity of voxels or pixels that were 

accurately identified as positive. 

FP: "False positives" refer to the amount of pixels or voxels that were 

incorrectly identified as positive. 

FN refers to the count of incorrectly classified negative pixels or voxels, also 

known as false negatives. 

The values of the parameters α and β are used as weights to modify the ratio of 

false positives to false negatives. 

The Tversky Index is a generalized form of the Dice Similarity Coefficient 

(DSC), where the parameters α and β allow for fine-tuning the loss to 

emphasize either false positives (α > β) or false negatives (α < β). 

 

By using the Tversky loss as an optimization objective during training, the 

model can effectively handle class imbalance and provide better segmentation 

results, particularly when the dataset contains a disproportionate number of 

pixels or voxels belonging to one class compared to the other. 

 

IX. MeanIOU: When evaluating semantic segmentation models, one frequent 

measure to utilise is Mean Intersection over Union, often known as mIOU. 

When used to a segmentation problem, it calculates the mean intersection over 

union of all classes. The purpose of semantic segmentation is to label each 

area or pixel in a picture with a unique class. For every dataset class, the Mean 
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IOU determines the degree to which the anticipated and ground truth 

segmentations match. 

 IOU (Class_i)  =  (Intersection (Class_i) / Union (Class_i)) [3.9] 

where: 

Intersection (Class_i): The count of pixels accurately identified as Class_i by 

both the anticipated segmentation and the actual truth segmentation. 

Union (Class_i): The cumulative count of pixels categorised as Class_i in 

either the anticipated segmentation or the ground truth segmentation. 

The Mean IOU is then calculated as the average of the IOU scores across all 

classes: 

 

 

Mean IOU 

=  
(IOU (Class1) +  IOU (Class2) +  … +  IOU (Classn))

Number of Classes
 

 

[3.10] 

The Mean IOU serves as a comprehensive metric, offering insights into the 

model's segmentation accuracy across all classes. A heightened Mean IOU 

signifies superior performance, where a perfect segmentation alignment is 

denoted by a value of 1.0, while lower values indicate less precise 

segmentations. Widely employed in image segmentation tasks, particularly in 

domains like object detection, scene understanding, and medical image 

analysis, Mean IOU is a crucial measure for assessing the precision and 

quality of a model's predictions. 

3.6 Conclusion 

This chapter offers an in-depth exploration of the foundational steps crucial for the 

effective execution of the envisioned research. The pre-processing manoeuvres, 

encompassing facets like bias field correction, sampling, skull-stripping, image 

registration and intensity normalization, not only form the bedrock but also elevate 

the caliber and uniformity of medical imaging data. The meticulous curation and 
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priming of the dataset, as deliberated upon, stand as linchpins in guaranteeing the 

pertinence and dependability of the study. Furthermore, the delineation of the 

overarching task involving overall survival prediction serves as the focal point, 

accentuating the pragmatic application of the proposed methodologies within a 

clinical ambit. Post-processing strides, play a pivotal role in refining segmentation 

outcomes and amplifying the precision of overall survival predictions. The 

introduction of evaluation metrics crafts a robust framework for scrutinizing the 

model's prognostic capacities. The integration of post-processing phase not only 

fortifies the resilience of segmentation results but also augments the trustworthiness 

of overall survival predictions. In essence, this comprehensive exploration spanning 

pre-processing, dataset preparation, task delineation, post-processing, and evaluation 

metrics lays a sturdy groundwork for ensuing chapters, setting the stage for an 

intricate exploration of proposed methodologies and their resonance in steering the 

research towards triumph. 
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CHAPTER 4 

MODEL FRAMEWORK FOR DETECTING AND 

LOCALIZING THE BRAIN TUMOR 

 

The chapter begins with the model outline of the classification, identification, and 

localization of tumours. It suggests an advanced algorithm as a foundational layer, 

along with localization strategies. The classification approach utilises advanced deep 

learning algorithms such as Inception-V3, InceptionResNet-V2, MobileNet, 

NASNetMobile, ResNet-101, Xception, DenseNet, ResNet-50, and EfficientNetV7 as 

the base layer. In addition, a further layer of activation, normalisation, and denseness 

is added to the structure. Within the framework of a multi-branch network design, the 

robustness of recurrent segments was implemented in conjunction with a diversified 

collection of convolutional kernels. It is essential to make a distinct distinction 

between the head, which predicts, the body, which processes data, and the stem, 

which processes data intake. Deep neural networks have consistently made use of this 

design outline over the course of the years that have followed. In this architecture, the 

number of convolutions responsible for processing the item at the outset determines 

the stem. They obtain the essential object and are able to deduce fundamental 

information from it. After this, the technique incorporates a sequence of convolutional 

frames. The next step, which might include an identification and localization issue, is 

for the brain to make a link between the recognised attributes and the relevant 

classification. The RESUNET paradigm is employed in the second technique for the 

goal of partitioning and localising brain tumours by making use about MRI scans 

acquired through the TCGA. 

First and foremost, this chapter adds the following: 

• Employing a data generator that scales data from 0 to 1 and performs a 0.1 

validation to facilitate the categorization process. 
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• Presenting a system that uses Deep Learning to detect and categorise brain 

tumours automatically. 

• Evaluating the effectiveness of the proposed classification model in 

comparison to previously published deep learning models. 

• To develop and trained a model of localization with the help of REEUNET in 

order to precisely pinpoint the location of the tumour. 

Deep learning is a research field that models its methods after how the human brain 

works. The field's overarching objective is to model its operations after how people 

normally collect, process, and understand data. Both Kumar and L. (2018) and 

Srinivas et al. (2022) agree that it is crucial to data science since it speeds up and 

improves data processing and generates patterns that inform decision-making. The 

training of networks of neurons that are capable of acquiring knowledge on their own 

through the use of both labelled and unlabeled input is essential to the process of deep 

learning. Learning with supervision algorithms requires considerable feature 

extraction, which is a precondition for deep learning techniques. Deep learning 

techniques considerably reduce the requirement for considerable feature extraction. 

According to Muniasamy and Alasiry's research from 2020, this is achieved by the 

technique of data compression, the transformation of images into fundamental 

structures, and the building of network architectures that effectively eliminate 

repetition. The Convolutional Neural Network technique and architecture are well-

known in the field of supervised neural network training. Big datasets are utilised for 

learning convolutional deep neural networks. These networks possess the capability to 

independently retrieve feature representations through the execution of convolutional 

operations. This eliminates the need for human feature extraction, which was 

previously necessary. The convolutional neural network construction consists of three 

separate layers of data: input, outcome, and hidden. The hidden layers consist of 

convolutional layers, layers that use Rectified Linear Unit algorithm, layers that use 

max pooling, and layers that are completely linked. Convolutional neural networks 
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are widely employed in deep learning for tasks such as voice, text, and picture 

identification as well as classification (LeCun et al., 2015, Ker et al., 2018). 

4.1 Visualization and Dataset Analysis 

The TCGA-GBM dataset, a component of a broader initiative, aims to foster a 

scientific community dedicated to establishing connections between cancer 

characteristics and genetic factors. It accomplishes this by providing patient images 

associated with individuals from the TCGA. In this context, one of the datasets that 

has been supplied by TCGA is comprised of 3929 MRI scans and the masks that 

correlate to them. In Figures 4.1 and 4.2, the fundamental and advanced visualisations 

of this customised dataset and distribution graph for tumour and no tumour are 

displayed. These figures also show the distribution graph for the tumour. 

 

 

Fig 4.1 Imaging of the TCGA MRI Scan Visualisation 
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Fig 4.2 Distribution of Tumours (1) and the Absence of Tumours (0) 

4.2 Pre-processing  

During the first stage of processing, improving the level of contrast in MR images is 

the main goal, along with improving image quality and optimising the data. The first 

step in the process of aligning the dataset with the customised dataset is to remove 

any unnecessary data columns from the dataset completely. As a subsequent step, the 

information contained in the mask column is converted into a string format so that it 

can be utilised for categorization purposes. The data is subsequently divided into three 

sets: the one used for the training set, the set for validation, and the set being tested. 

This process is illustrated in Table 4.1 and Figure 4.2. 

A data generator is created throughout the categorization step for use in the validation, 

testing, and training phases. The data generator in question employs a 256 × 256 

target size, a batch size of 16, and a mode for classifying classes. This file must be 

created in order to fulfil the aims. 
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Fig 4.3 Split Data according to Train, Test and Validate 

4.3 Adapted Techniques for classification as a Base Model 

4.3.1 Inception V3  

Inception V3, the latest iteration of the Inception framework introduced by Fettah et 

al. in 2022, stands out due to its incorporation of additional factorization principles. 

The Inception V3 model for image recognition utilizes batch normalization for input 

activation and employs Softmax for loss computation. It is made up of fully-

connected layers, concatenation processes, convolutional layers, average and max 

pools, dropouts, and them. 

 

Fig 4.4. Inception V3 Model 
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With 42 strata and a rate of error that is lower than the earlier versions, the model of 

Inception V3 is shown in Figure 4.4. The following are the most noteworthy changes: 

(i). Factorized Convolutions: While simultaneously monitoring the effectiveness 

of the network, the complexity of the algorithm is increased as the amount of 

constituents in a network is narrowed down. 

(ii). Smaller Convolutions: Using smaller convolutions rather than larger ones 

speeds up the training process. This is because smaller convolutions are 

applied. When compared to the use of two 3x3 filters, which only require 18 

variables (3x3 + 3x3), a 5x5 convolution with 25 components is more 

complicated than the latter. This is demonstrated in figure 4.5. 

(iii). Asymmetric Convolutional Spatial Factorization: Instead of utilising a 3x3 

convolution, you have the option to use a blend of 1x3 and 3x1 convolutions. 

It is crucial to acknowledge that this method would lead to significantly 

greater computational complexity when compared to the asymmetric 

convolution, as depicted in figure 4.6. 

 

  

Fig 4.5. Smaller 

convolution 

Fig 4.6. The process of factorising spatial data into 

asymmetric convolutions 

(iv). Incorporate Auxiliary Classifiers: In order to incorporate an intermediate 

categorization into the learning process, a condensed Convolutional Neural 

Network (CNN) is utilised. Any errors that the CNN encounters are blended 

with the loss that the complete network experiences. While auxiliary 

categories were utilised to enhance the architectural complexity of GoogleNet, 
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they served as a structural element in guiding Inception V3. This is illustrated 

in figure 4.7. 

(v). Efficient Grid Size Reduction: Grid size reduction is often achieved through 

pooling methods. Additionally, a more efficient approach is presented to 

address the inefficiencies in computational complexity, as illustrated in fig 4.8. 

 

 

Figure 4.7 Auxiliary Classifier 

 

 

Figure 4.8 Grid Size Reduction 

A convolutional neural network architecture, is quite complex due to its deep and 

intricate design. It's difficult to represent the entire architecture in a single equation, as 
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it involves many layers and parameters. However, I can provide a simplified 

representation of the forward pass through a single Inception module, which is one of 

the building blocks in InceptionV3. This will give you a sense of how the operations 

are structured within an Inception module. The Inception module is a key component 

of InceptionV3 and is represented as follows in mathematical notation: 

Given an input tensor X, an Inception module performs the following operations: 

Step 1. 1x1 Convolution: 

i. Apply a 1x1 convolution with N1 filters and ReLU activation. 

ii. Denote the output as X1x1. 

Step 2. 1x1 Convolution followed by 3x3 Convolution: 

i. Apply a 1x1 convolution with N2 filter and ReLU activation to 

X. 

ii. Then, apply a 3x3 convolution with N3 filter and ReLU 

activation to the result. 

iii. Denote the output as X3x3. 

Step 3. 1x1 Convolution followed by 5x5 Convolution: 

i. Apply a 1x1 convolution with N4 filter and ReLU activation to 

X. 

ii. Then, apply a 5x5 convolution with N5 filter and ReLU 

activation to the result. 

iii. Denote the output as X5x5. 

Step 4. 3x3 Max-Pooling followed by 1x1 Convolution: 

i. Apply 3x3 max-pooling to X with a stride and padding such 

that it retains the spatial dimensions. 

ii. Then, apply a 1x1 convolution with N6 filters and ReLU 

activation to the result. 

iii. Denote the output as Xpool. 

Step 5. Concatenation: 
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i. Concatenate the outputs X1x1, X3x3, X5x5 and Xpool along the 

depth axis to produce the modules final output. 

Mathematically, the concatenation operation is represented as: 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 ([𝑋1×1, 𝑋3×3, 𝑋5×5, 𝑋𝑝𝑜𝑜𝑙], 𝑎𝑥𝑖𝑠 =  −1) 

Each Ni represents the number of filters used in the corresponding convolutional 

layers, and you would have specific values for these parameters in the InceptionV3 

architecture. 

4.3.2 InceptionResNetV2 

The complex convolutional neural network (CNN) architecture known as Inception-

ResNetV2 (figure 4.9) was developed specifically for the purpose of performing 

computer vision and image classification tasks. It represents a fusion of two 

influential CNN architectures: Inception, known for its efficient feature extraction, 

and ResNet, renowned for mitigating training issues in deep networks. Inception-

ResNetV2 combines the best of both worlds by incorporating Inception modules for 

feature extraction and ResNet's residual connections, which ease the training of very 

deep networks. Its architecture includes stem and grid components, with the stem 

handling initial image processing and the grid containing stacked Inception-ResNet 

modules.  

 

Fig 4.9 InceptionResNetV2 Overall Architecture (Inception V4 and Inception 

ResNets, 2022) 
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Combining concepts from both the Inception and ResNet architectures, Inception-

ResNetV2 is a convolutional neural network with a deep design. Computer vision 

tasks such as object recognition and picture categorization are its intended use. Below 

is a detailed overview of the architecture (fig 4.10): 

Stem Architecture: 

• Input: Inception-ResNetV2 typically takes a 299x299 pixel RGB image as 

input. 

• Convolutional Layers: In the first few layers of Inception-ResNetV2, a 

sequence of two-dimensional convolutional layers, batch normalisation, and 

ReLU activations are applied. 

• Stem Max-Pooling: Max-pooling is a technique that is utilised to minimise the 

spatial dimensions while maintaining the essential characteristics. 

 

Fig 4.10 Stem Architecture (Inception V4 and Inception ResNets, 2022) 

Inception-ResNet Blocks: 

The core building blocks of Inception-ResNetV2 are Inception-ResNet modules. Each 

module combines the power of the Inception architecture and ResNet's residual 

connections. 

• Inception-ResNet Module: 

➢ The process involves the input being guided via a sequence of parallel 

convolutional paths. 



 
 

160 
 

➢ The first path consists of 1x1 convolutions. 

➢ The second path includes 1x1 convolutions followed by 3x3 

convolutions. 

➢ The third path includes 1x1 convolutions followed by 5x5 

convolutions. 

➢ The fourth path involves 3x3 max-pooling followed by 1x1 

convolutions. 

➢ The outputs of all paths are concatenated. 

➢ A residual connection (shortcut) allows the gradient to flow directly 

through this module, improving training. 

Grid Architecture: 

Inception-ResNetV2 (fig 4.11 and fig 4.12) is organized into a grid structure that 

stacks multiple Inception-ResNet modules. 

  

Fig 4.11 The schema represents the module 

of the Inception-ResNet-v2 network known 

as Inception-ResNet-A, which consists of a 

35 x 35 grid. 

Fig 4.12 The schema represents the 

module of the Inception-ResNet-v2 

network, namely the 17 x 17 grid 

(Inception-ResNet-B). 
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Reduction Blocks: 

Throughout the architecture, there are also reduction blocks that are used to reduce the 

spatial dimensions while increasing the depth (fig 4.13 and fig 4.14). 

• Reduction Blocks: 

➢ These blocks typically involve max-pooling and convolutions to 

reduce spatial dimensions and increase the number of filters in the 

feature maps. 

 

Fig 4.13 The schema for 8×8 grid (Inception-ResNet-C) module of the Inception-

ResNet-v2 network. 

 

Figure 4.14 Reduction Block A (Inception V4 and Inception ResNets, 2022) 
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Fully Connected Layer: 

• Global Average Pooling: 

➢ Instead of the traditional fully connected layers, Inception-ResNetV2 

often uses global average pooling. 

➢ In order to reduce parameters and avoid overfitting, the Global 

Average Pooling method computes the mean of feature maps over all 

of their spatial dimensions. 

Output Layer: 

• Output Layer: 

➢ Class probabilities are generated by the learnt features in the last layer, 

which is a softmax layer. 

 

 

Fig 4.15 Reduction Block B (Inception V4 and Inception ResNets, 2022) 
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Inception-ResNetV2, like many complex neural network architectures, cannot be 

represented by a single mathematical equation due to its intricate design, multiple 

layers, and numerous parameters.  

Let's denote the input tensor as X. 

Step 1. 1x1 Convolution Path: 

i. Apply a 1x1 convolution to X with N1 filters and ReLU 

activation. 

ii. Denote the output as X1x1. 

Step 2. 1x1 Convolution followed by 3x3 Convolution Path: 

i. Apply a 1x1 convolution to X with N2 filter and ReLU 

activation to X. 

ii. Then, apply a 3x3 convolution with N3 filter and ReLU 

activation to the result. 

iii. Denote the output as X3x3. 

Step 3. 1x1 Convolution followed by 5x5 Convolution Path: 

i. Apply a 1x1 convolution to X with N4 filter and ReLU 

activation to X. 

ii. Then, apply a 5x5 convolution with N5 filter and ReLU 

activation to the result. 

iii. Denote the output as X5x5. 

Step 4. 3x3 Max-Pooling followed by 1x1 Convolution Path: 

i. Apply 3x3 max-pooling to X with appropriate stride and 

padding such that it retains the spatial dimensions. 

ii. Then, apply a 1x1 convolution to the pooled with N6 filters and 

ReLU activation to the result. 

iii. Denote the output as Xpool. 

Step 5. Concatenation: 

i. Concatenate the outputs X1x1, X3x3, X5x5 and Xpool along the 

depth axis to produce the modules final output. 



 
 

164 
 

Mathematically, the concatenation operation is represented as: 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 ([𝑋1×1, 𝑋3×3, 𝑋5×5, 𝑋𝑝𝑜𝑜𝑙], 𝑎𝑥𝑖𝑠 =  −1) 

The number of adjustments in the various layers of convolution is represented by Ni. 

This is just a simplified representation of a single module within Inception-ResNetV2. 

The complete architecture includes multiple such modules, fully connected layers, 

auxiliary classifiers, and other components. 

4.3.3 MobileNet 

For efficient and rapid image processing on low-resource devices like embedded 

systems and cellphones, MobileNet compiles many small deeply convolutional neural 

network architectures. MobileNet utilises depth-wise separable convolutions, which is 

a crucial advancement in contrast to conventional deep networks. This new 

development successfully reduces the complexity of computation and the number of 

variables without sacrificing accuracy. This architecture is highly optimized for 

mobile applications, enabling real-time object recognition, image classification, and 

more without requiring massive computational power or extensive memory. 

MobileNet is a model that applies convolutional operations similar to those in 

traditional CNNs but employs a distinctive approach. It introduces the concept of 

depth convolution and point convolution, which differs from the standard convolution 

utilized in conventional CNNs. These novel techniques enhance the efficiency of 

CNNs in image prediction, allowing them to be effective in mobile systems. Because 

these convolution methods notably decrease comparison and recognition time, they 

yield rapid and accurate responses, making them our preferred choice for image 

recognition models. 

(i). Depth-wise Convolution: Depth-wise convolutions involve the application of a 

single filter to each input channel, which distinguishes them from regular 

convolutions where filters are applied across all input channels simultaneously.  
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Fig 4.16 Standard Convolution (Pa, 2021) 

 

Based on the image (fig 4.16) shown above, we can compute the computational 

expense as follows: 

𝐷𝑘 . 𝐷𝑘 . 𝑀. 𝑁. 𝐷𝐹 . 𝐷𝐹 

Here, DF stands for the input characteristic map's individual dimensions and DK 

for the convolution kernel's diameter. The amounts of the input channels are M 

and the amount of the outcome channels are N. The outcome and input channel, 

as well as the spatial metrics of the feature map of the input and convolution 

kernel, determine the computing effort and, consequently, the cost for a standard 

convolution. 

In the scenario of depth-wise convolution, as depicted in the image below, there 

is an input feature map with dimensions DF*DF and M individual kernels, each 

having a channel size of 1. 

 

Fig 4.17 Depth-wise Convolutional (Pa, 2021) 

 

Referring to the image (fig 4.17) provided above, it's evident that we can 

calculate the overall computational expenditure as follows: 

𝐷𝑘 . 𝐷𝑘 . 𝑀. 𝐷𝐹 . 𝐷𝐹 
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(ii). Point-wise Convolution: Because the depth-wise convolution solely filters the input 

channels without merging them to create fresh features, an extra layer known as 

the pointwise convolution layer is introduced. Using a 1 × 1 convolution, the 

aforementioned layer calculates a linear combination of the outcome of the depth-

wise convolution. 

 

 

Fig 4.18 Point-wise Convolution (Pa, 2021) 

Referring to the image (fig 4.18), let's once more determine the computational 

expense: 

𝑀. 𝑁. 𝐷𝐹 . 𝐷𝐹 

Therefore, we can compute the overall computational expenditure of Depth-wise 

separable convolutions as follows: 

𝐷𝑘. 𝐷𝑘. 𝑀. 𝑁. 𝐷𝐹 . 𝐷𝐹 +  𝑀. 𝑁. 𝐷𝐹 . 𝐷𝐹 

However, these technologies [figure 4.19] demand a powerful GPU to enhance 

the speed of comparisons among vast amounts of data, a capability not currently 

available on any mobile device. 
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Fig 4.19 Convolutional Neural Network Working (Image Recognition With 

Mobilenet, 2022) 

 

 

 

Fig 4.20 MobileNet Working Approach (Image Recognition With Mobilenet, 

2022) 
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4.3.4 NASNetMobile 

NASNetMobile is an architecture for convolutional neural networks that has been 

fine-tuned for mobile devices to reduce the amount of computation required and 

increase the speed of processing. Convolutional layer blocks facilitate parallel 

processing (Reda et al., 2022). As a successor to MobileNetV2, it is considered an 

improvement that preserves accuracy while boosting the speed of model processing. 

This is accomplished by transitioning from the traditional sequential processing 

method to a technique that simultaneously processes numerous layers, employing a 

system of blocks and strides. Blocks are pre-established network layers that serve as 

the overarching structure, whereas strides are subdivisions within each block, 

consisting of one to two layers (Reda et al., 2022). The stride-based design's key 

advantage is that it uses a search algorithm to divide layers and execute skips 

throughout the network. More accurate predictions are the outcome of this optimised 

performance, which improves layer processing (Reda et al., 2022). 

With an input layer, 188 activation layers, 371 convolutional layers,  and 144 

reduction layers, the algorithm has a total of 769 buildup layers. In addition, the 

model incorporates global average pooling layers and batch normalisation techniques 

as described by Reda et al. (2022). This model stands out because to its utilisation of 

various kernel sizes, such as 3 × 3 and 5 × 5 kernels, within its blocks. This 

unorthodox methodology distinguishes it from other models and enhances the variety 

of layers, thus accelerating the search procedure. For a graphic depiction of 

NASNetMobile's architecture, please consult Figure 4.21. 

4.3.5 ResNet101 

ResNet-101 is a convolutional neural network architecture that is highly regarded for 

its extensive depth and exceptional performance in applications related to image 

classification and computer vision. A modified version of the original ResNet, it 

utilises a sophisticated technique known as residual connections, which enable the 

training of highly deep networks without encountering issues with the vanishing 
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gradient problem. ResNet-101 is constructed from a set of fundamental components, 

each with multiple convolutional layers and skip connections. These skip connections 

enable the network to learn both the identity mapping and residual features 

simultaneously, leading to faster and more stable convergence during training. With 

its 101 layers, ResNet-101 excels in capturing intricate image features, making it one 

of the go-to choices for image recognition tasks, including object detection and 

segmentation. Its success has solidified its place as a cornerstone in the field of deep 

learning, often serving as a benchmark for other architectures. 

 

Fig 4.21 Visual Overview of NASNetMobile Architecture (Reda et al., 2022) 

Fig 4.22 a) Schematics of the ResNet101 architecture, which included 33 residual 

nodes in total.  b) The residual node served as building block for the ResNet101 

architecture. 
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ResNet101 = deep residual neural network; 

Conv = convolutional; 

FC = fully connected 

The main components of the ResNet101 architecture that we are examining are fully 

connected layers, convolutional layers, and pooling layers. By adjusting the initial 

pixel values of the input picture, convolutional layers progressively extract 

information. In order to reduce the dimensionality of the recovered features, pooling 

layers like max pooling and average pooling merge data with similar significance 

(Paoletti et al., 2018). Subsequently, the fully linked layers amalgamate these features 

to generate classifications at the image level. More complex and detailed visual 

features may be learned by deeper convolutional neural networks (CNNs), according 

to recent studies. However, they often run into problems related to gradient 

divergence and vanishing gradients, which prevent information from being 

transmitted from lower to higher layers. ResNet101 gets around these issues by 

learning deep networks using connections that are shortcuts that skip a level or two 

(as shown in Figure 4.22). The relevant shortcut relationships accomplish the 

mapping of identities with no extra variables or computational overhead added. This 

simplifies the optimisation of the deep network and ensures that information is 

effectively transferred between layers during training (Medeiros et al., 2019). As a 

result, ResNet101 achieves higher accuracy with considerably deeper networks in 

image classification tasks compared to shallower networks. 

4.3.6 Xception 

Xception is an advanced neural network structure that utilises deep convolutional 

layers and incorporates Depthwise Separable Convolutions. The creation of this was 

undertaken by researchers affiliated with Google. Google has created a concept in 

convolutional neural networks called Inception modules. These modules act as an 

intermediate step, connecting normal convolution with the depthwise separable 

convolution operation. The separable convolution with depth method consists of a 
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convolution in depth and a pointwise convolution. Looking at a convolution that is 

separable by depth through this lens could make us picture an Inception component 

with several towers. Their research led them to suggest a new design for deep 

convolutional neural networks, drawing inspiration from the Inception model but 

using depthwise separable convolutions instead of the Inception modules. 

After the data has gone through the eight iterations of the middle flow, which is where 

it is processed, it is eventually sent out through the exit flow. It is of the utmost 

importance to highlight that batch normalisation is carried out after each layer of 

Convolution and SeparableConvolution. Figure 4.23 displays the sequence of 

Xception, which demonstrates the succession of phases that comprise the entire 

procedure. 

 

Fig 4.23 Flow for Xception Architecture (XCeption Model and Depthwise 

Separable Convolutions, 2019) 
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Xception is a streamlined architecture built on two primary principles: 

• Depthwise Separable Convolution are considered as substitutes for 

traditional convolutions, with the promise of significantly improved 

computational efficiency. To begin, let's examine convolutions. 

 

Fig 4.24 Convolutional Operation (XCeption Model and Depthwise 

Separable Convolutions, 2019) 

 

The input image possesses a specific number of channels, for instance, 3 in the 

case of a color image, and it also has a particular size, let's say 100 by 100 

pixels. We then apply a convolution filter with dimensions d by d, such as 3 by 

3. The convolution process is depicted as follows: 

 

Well, for 1 Kernel, that is: 

𝐾2 × 𝑑2 × 𝐶 

The value of K, which represents the resulting dimension after convolution, is 

contingent upon the applied padding. For instance, if "same" padding is used, 

it implies that A will be equal to K. 

 

Therefore, for N Kernels (depth of the convolution) : 

𝐾2 × 𝑑2 × 𝐶 × 𝑁 
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In order to address the computational expense associated with these 

operations, depthwise separable convolutions were introduced. They can be 

broken down into two key steps: 

 

➢ Depth-wise Convolutional: In the initial step, Depthwise Convolution 

replaces the conventional convolution of size d×d×C with a d×d×1 

convolution. In simpler terms, it means that the convolution operation 

is performed individually for each channel, one at a time, rather than 

across all channels simultaneously. Fig 4.25 shows convolutional 

process. 

 

Fig 4.25 Convolutional Process (XCeption Model and Depthwise 

Separable Convolutions, 2019) 

This results in an initial volume with dimensions K×K×C, as opposed 

to the previous K×K×N. To clarify, we have only performed the 

convolution operation for one kernel or filter, not for all N of them. 

This transition brings us to our next step. 

➢ Point wise Convolutional: Pointwise convolution conducts a standard 

convolution with dimensions 1×1×N across the K×K×C volume. This 

enables the formation of a volume with the K×K×N dimensions. Here 

is a visual representation of Pointwise Convolution (fig 4.26): 
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Figure 4.26 Pointwise Convolutional (XCeption Model and 

Depthwise Separable Convolutions, 2019) 

 

What sets XCeption apart is that it reverses the order of operations 

compared to the conventional approach. In XCeption, Depthwise 

Convolution is succeeded by Pointwise Convolution (fig 4.27), as 

demonstrated in this example: 

 

 

Fig 4.27 Demonstration the order of Depthwise and Pointwise Convolutional 

(XCeption Model and Depthwise Separable Convolutions, 2019) 

4.3.7 DenseNet201 

DenseNet, also known as Densely Connected Convolutional Networks, is a type of 

convolutional neural network (CNN) that utilises a highly linked structure across 
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layers. This architecture facilitates efficient sharing and propagation of features and 

gradients throughout the network. 

Two well-known versions of this architecture include DenseNet121 and 

DenseNet201, which are highly efficient for image classification tasks. Initially, these 

models were designed for image sizes of up to 224 x 224 pixels with precisely 3 

channels in the input. However, certain adaptations and implementations of the 

architecture allow for larger input sizes. It's worth noting that some other variants may 

support even larger input sizes, but it's essential to consider that expanding the input 

size can result in increased model memory requirements and computational expenses. 

Hence, the choice of the input size for DenseNets should be determined based on the 

specific requirements of the application and the available hardware resources. 

DenseNet has demonstrated notable effectiveness in tasks that involve abundant data 

resources, including: 

• Image Classification: DenseNet is frequently applied to image classification 

assignments, including tasks like image object recognition, facial 

identification, and the classification of various animal or plant species. 

• Object Detection: DenseNet is applicable to object detection assignments as 

well, which encompass the task of pinpointing the positions of objects within 

images and outlining bounding boxes around them. 

• Medical Image Analysis: DenseNet121 has found application in medical 

image analysis endeavors, including tasks like the identification of cancerous 

cells in mammograms or the detection of irregularities in brain scans. 

• Natural Language Processing: While initially designed for computer vision 

tasks, specifically image classification, the fundamental concept of DenseNet, 

which involves dense interconnections between all network layers, holds the 

potential for application in natural language processing (NLP). However, it's 

important to acknowledge that the standard DenseNet architecture may require 
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adjustments to be directly relevant to NLP tasks, potentially involving 

adaptations to handle sequential data. 

Architecture  

DenseNet has dense blocks with several convolutional layers. Each dense block uses 

the outputs from all previous blocks as input. This interconnects all network levels, 

allowing information to flow effectively. 

DenseNet is based on the fundamental premise of combining the feature maps that are 

generated by each layer in order to provide the input for the subsequent layer. To a 

large extent, the outcome of each layer serves as the contribution for all levels that 

come after it. A transition layer within DenseNet effectively handles the management 

of both spatial dimensionality and the quantity of feature mappings. Positioned 

between each dense block, this layer plays a crucial role in regulating these aspects 

within the architecture. The batch normalisation layer, the 1x1 convolutional layer, 

and the pooling layer are the components that make up the transition layer. 

 

Fig 4.28 DenseNet Working Architecture (Huang et al., 2017) 
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DenseNet201 is a larger model with a significantly greater parameter count compared 

to DenseNet121, nearly doubling the parameters, rendering it a more intricate 

architecture. Due to its increased number of layers, DenseNet201 demands a higher 

level of computational resources during both training and inference, making it 

computationally more intensive than DenseNet121. 

In a DenseNet, the output of each layer is formed by concatenating the feature maps 

from all previous layers within the same dense block. Mathematically, this can be 

expressed as: 

𝑌𝑖 = 𝐻([𝑋0, 𝑋1, 𝑋2, 𝑋3, 𝑋4, … … , 𝑋𝑖−1]) 

Where: 

• Yi is the outcome of the ith level. 

• H stands for the combined map of features composite function. 

• X0, X1, X2, …. , Xi-1 are the feature maps from the preceding layers within the 

same dense block, all concatenated together. 

This equation illustrates the concept of densely connecting feature maps from 

previous layers to produce the output of the current layer, allowing for effective 

feature reuse and facilitating the flow of information throughout the network. Here's 

an overview of the working architecture of DenseNet-201: 

• Input Layer: A network's initialization process begins with an input layer that 

receives the original picture data. 

• Initial Convolution: The input image passes through an initial convolutional 

layer to extract basic features. 

• Dense Blocks: DenseNet-201 is distinguished by its inclusion of many dense 

blocks. To extract characteristics, each compressed block employs a 

succession of layers of convolution. The primary concept in these blocks is 

merging the feature maps from all previous levels and using them as the input 

for the current layer. The intricate network of connections facilitates efficient 
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utilisation of features and smooth propagation of gradients, hence enhancing 

the network's efficacy. 

• Transition Layers: Transition layers can be seen in between successive thick 

blocks. Batch normalisation, 1x1 convolutional layers, and average pooling 

are the main components that make up these layers. Transition layers are 

utilised in order to lower the spatial dimension as well as the amount of feature 

maps, all while preserving the dense connectedness. 

• Global Average Pooling (GAP): Using a layer of global average pooling after 

processing the last dense block reduces the characteristic maps' spatial 

dimensions to 1x1. 

• Fully Connected Layer: The framework's final predicted classes are 

generated by integrating either an entirely connected layer or a softmax layer. 

An estimate of the likelihood that each category appears in the picture 

categorization is the output of this layer. 

 

Fig 4.29 DenseNet Architecture (Huang et al., 2017) 
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4.3.8 ResNet50 

ResNet-50, belonging to the ResNet (Residual Network) family, is a robust deep 

neural network structure generally employed for tasks related to image classification 

and computer vision. Its effectiveness in training deep networks with 50 layers is 

widely recognised. The architectural design commences with an initial convolutional 

layer that extracts fundamental information from the input pictures, subsequently 

followed by max-pooling to diminish the spatial dimensions. The most important 

innovation that ResNet-50 brings to the table is its residual blocks. These blocks are 

where skip connections make it possible for gradients to flow directly through the 

network. Each residual block utilizes a bottleneck architecture, which includes 1x1, 

3x3, and 1x1 convolutions, making the network computationally efficient. Multiple 

stages, each housing a sequence of residual blocks, capture features at different levels 

of abstraction. After the final stage, global average pooling reduces the feature maps 

to 1x1 dimensions, and a fully connected layer produces class predictions. ResNet-

50's exceptional depth, skip connections, and efficient design have made it a 

benchmark model for various computer vision tasks, consistently delivering state-of-

the-art performance (fig 4.30). 

 

Fig 4.30 ResNet-50 Architecture (He et al., 2016) 
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Skip connections, also mentioned to as identity connections, play a key role in 

ResNet-50. They enable the retention of information from previous layers, enhancing 

the network's capacity to acquire more effective data representations. These 

connections are established by summing the outcome of a prior level with the output 

of a subsequent level. 

In particular, they make it possible for the layers to modify a residual mapping, 

abbreviated as H(x), and for the nonlinear layers to accept a second mapping, F(x) = 

H(x) - x. This results in the original mapping being expressed as H(x) = F(x) + x, as 

illustrated in Figure 4.31. 

 

Fig 4.31 Skip Connection (He et al., 2016) 

As seen in figure 4.32 below, the subsequent components make up the 50-layer 

ResNet construction: 

• Using a stride of 2 and an extra 64 kernels, a 7x7 kernel convolution is 

employed. 

• Layer 2 of maximum pooling with a stride of 2. 

• Subsequently, there are 9 more layers, which consist of a 3x3 convolution with 

64 kernels, another convolution with 1x1 dimensions and 64 kernels, and a 

third convolution with 1x1 dimensions and 256 kernels. The three layers are 

replicated thrice. 
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• 12 additional layers proceed, with 1x1 convolutions using 128 kernels, 3x3 

convolutions using 128 kernels, and 1x1 convolutions using 512 kernels as the 

last layer. Iterating four times, this sequence is maintained. 

• Then, 18 more layers are added, including 1x1 convolutions using 256 kernels, 

3x3 convolutions using 256 kernels, and 1x1 convolutions using 1024 kernels 

each. Six times this pattern is repeated. 

• Then, there are nine more layers, with 512-kernel 1x1 convolutions, 3x3 

convolutions, and 2048-kernel 1x1 convolutions making up the layers in that 

order. This pattern is repeated three times. The network now consists of fifty 

tiers. 

• Lastly, there is a fully connected layer with 1000 nodes that use the softmax 

activation function. This is followed by an average pooling layer. 

 

 

Fig 4.32 Layered Architecture of ResNet Varient (He et al., 2016) 

4.3.9 EfficientNetB7 

EfficientNetB7 is a model specifically developed for various computer vision 

applications, with a special emphasis on picture categorization. It is a associate of the 

EfficientNet family, prominent for its exceptional efficiency in terms of both accuracy 
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and processing resources. EfficientNetB7 is the most extensive and potent iteration 

within this series. 

At its core, EfficientNetB7 leverages a compound scaling method, which optimizes 

model depth, width, and resolution. It combines deep layers, a large number of filters, 

and higher image resolutions, resulting in a network that can capture intricate features 

from images. Compared to conventional deep networks, this method uses a smaller 

number of parameters and less processing resources without sacrificing state-of-the-

art performance. 

EfficientNetB7's architecture includes various building blocks, such as convolutional 

layers, normalization layers, and nonlinear activations, all structured to efficiently 

process image data. It also employs techniques like dropout and batch normalization 

for regularization and stability during training. 

One notable feature of EfficientNetB7 is its adaptability to different input image sizes. 

This flexibility allows it to handle a variety of image resolutions while maintaining 

high accuracy, making it suitable for tasks that involve images of varying sizes. 

 

Fig 4.33 EfficientNetB7 Architecture (Baheti et al., 2020) 

Below is a detailed description of the EfficientNetB7 architecture (Fig 4.33): 

• Input Layer: The network starts with an input layer, accepting images of 

varying resolutions. This adaptability to input size is a key feature of 

EfficientNet. 
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• Convolutional Layers: The architecture includes a series of convolutional 

layers, organized into blocks. These layers perform feature extraction and are 

responsible for capturing hierarchical features in the input images. 

• Width and Depth Scaling: EfficientNetB7 uses a compound scaling method 

that adjusts the number of filters (width) and the depth of the network. This 

scaling is based on a compound coefficient, allowing the model to find a 

balance between complexity and efficiency. 

• Resolution Variability: Another unique aspect is that EfficientNet can handle 

images of different resolutions. It uses different resolutions for different 

variants, with EfficientNetB7 accommodating higher resolutions. 

• Normalization Layers: Batch normalization layers are integrated into the 

architecture, enhancing training stability and accelerating convergence. 

• Activation Functions: Non-linear functions for activation, such as the ReLU 

(Rectified Linear Unit), are utilised following convolutional processes to 

include non-linearity into the network. 

• Dropout: Dropout layers are used for regularization, preventing overfitting 

during training. 

• Global Average Pooling (GAP): To bring the maps of features down to 1x1 

spatial dimensions, a global average pooling layer is applied following the 

layers of convolution. Characteristics are concisely represented in this stage. 

• Fully Connected Layer: The last layer is a fully connected one, and its node 

count is equal to the entire amount of classes used for classification. To 

calculate the probability for every category, the softmax activation function is 

used. 

4.4 RESUNET for Segmentation and Localization with added layers 

The convolutional linguistic segmentation technique known as RESUNET was 

introduced by Zhang and his colleagues in the year 2018. RESUNET was initially 

developed for the purpose of extracting roads from high-resolution aerial photos in 
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remote sensing applications. It provides improved performance with its simplified 

architecture and fully convolutional neural network. This provides a significant 

improvement over the current UNET architecture by using the capabilities of Deep 

Residual Learning with the UNET framework, as seen in Figure 4.34. 

 

Fig 4.34 RESUNET Architecture Walkthrough 

The graphic shows how the investigation framework identifies and localises brain 

tumours. The first step in using category mode is to prepare the pictures of the TCGS 

MRI scan. This can only be achieved once the dataset has been cleaned up by 

removing unnecessary columns, transforming the data in the mask column into a 

usable format, and then separating the sample into validation, testing, and training 

sets. Afterwards, for each set, a data generator is built using 16 batches, a category-

based class mode, and an aim of a 256 × 256 picture size. 

To complete the classification task, the fundamental models are supplemented with a 

classification head that includes features such as average pooling, flattening, a thick 

layer with activation functions ReLU and SoftMax, and dropout. In order to train the 

algorithm, the optimizer of Adam and the categories cross-entropy loss function are 

employed. 
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In the second stage, the main goal is to construct and train a segmentation model that 

can detect and localise tumours correctly by utilising the RESUNET architecture. The 

initial stage of this design entails extracting the MRI data frames that are 

accompanied by masks. The data is partitioned into separate training and testing sets. 

Additionally, utility files are generated, which include code for bespoke loss functions 

and custom data generators. Afterwards, the RESUNET segmentation model is 

trained, and ultimately, tumour prediction and localization are performed. 

The subsequent layers have been incorporated into the classification model: 

Flatten Layer: A Flatten layer is a fundamental component in many neural network 

constructions, especially in convolutional neural networks. Its purpose is to reshape or 

flatten the multidimensional input data into a one-dimensional vector. The extraction 

of features from the layers of a neural network must undergo this procedure before 

they can join the fully linked layers. 

Here's how a Flatten layer works: 

• Input Data: The input to a Flatten layer is typically a multidimensional array 

or tensor. In the context of a CNN, this input often consists of feature maps or 

activations from convolutional and pooling layers. 

• Reshaping: All the Flatten layer does is restructure the incoming data. 

Although it arranges the input items in a single line, it keeps all of them. The 

Flatten layer will create a 1D vector with the dimensions (height * width * 

channels) from a 3D tensor with the input (height, width, channels, for 

instance). 

• Output: The Flatten layer produces this one-dimensional vector as its output; 

subsequent processing is carried out by one or more fully linked layers. The 

flattened data may be learned by these fully linked layers in a complex web of 

links and patterns. 
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The Flatten layer is crucial because it bridges the gap between the feature extraction 

layers, which work with spatial information in multidimensional data, and the fully 

connected layers, which require a one-dimensional input. It allows neural networks to 

leverage the hierarchical features learned in earlier layers to make predictions or 

classifications in the final layers. 

In this study, a Flatten operation is used to aggregate the output of the convolutional 

layers into a single prolonged representation of features. The final classification 

model, called a fully-connected layer, is then linked to this altered data. 

Dense Layer: Most neural network designs, such as feedforward neural networks and 

deep learning models, begin with a dense layer, which is also called a fully connected 

neural network or simply a fully connected layer. For the purpose of discovering 

intricate connections and patterns in data, it is indispensable. Here's an explanation of 

a Dense layer: 

• Neurons/Units: A thick layer always has the same amount of neurons or units. 

The term "fully connected" is used to describe a network in which every 

neuron has connections to all inputs and outputs from every previous layer. 

The interconnectedness of dense layers allows them to comprehend complex, 

nonlinear relationships within the data. 

• Weighted Sum: A Dense layer assigns a weight to each input-neuron link. 

Considered together, the inputs to a neuron—which may comprise values from 

a prior layer or input features—are multiplied by a weight to get the neuron's 

output. 

• Bias: In addition to the weighted sum, a bias term is added to the neuron's 

input. The bias is a learnable parameter that allows the network to model 

offsets or biases in the data. 

• Activation Function: The result is derived by applying a function of 

activation to the weighted total, which includes the bias. The network is 
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capable to acquire complex patterns because the activation function has non-

linear properties. 

• Output: Every neuron in the Dense layer produces its final output when the 

activation function is applied to the weighted aggregate plus bias. 

 

 

Fig 4.35 Added Subsequent Layer 

Dense layers are typically used for higher-level feature learning and complex data 

representations. In deep neural networks, multiple Dense layers are often stacked 
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together to form the so-called hidden layers. The network's ability to learn and 

generalise from data is affected by several architectural decisions, such as the amount 

of hidden layers, the activation function chosen, and the density layer's neuron count. 

Activation Layer: The activation mechanism in a network of neurons can be built up 

and placed either at the beginning of the network or inside its layers. These functions 

ascertain whether a neuron will become activated or remain inactive. The activation 

function modifies the input signal in a non-linear manner. 

Drop out Layer: In neural networks, the dropout layer is a regularisation approach 

that helps avoid overfitting. During training, this method operates by randomly 

deactivating a designated proportion of neurons (nodes), therefore enhancing the 

network's resilience and reducing its dependence on individual neurons. This hinders 

the network from excessively conforming to the training data and encourages 

improved generalisation to novel, unobserved input.  

In the process of adding a Dense Layer, Flatten Layer, Dropout Layer, and Activation 

Layer to a classification base model, there are a number of substantial advantages that 

may be gained. The flattened layer is crucial in transforming multidimensional feature 

maps into vectors with a single dimension. This facilitates the efficient processing of 

data and makes it simpler for following layers to extract and learn complicated 

patterns. The network's irregularities is introduced via the Activation Layer. Essential 

for accurately collecting complex properties, this allows the network to capture 

complex and non-linear relationships within the data. The Dense Layer, characterised 

by complete connectivity, possesses the capacity to acquire complex patterns and 

interdependencies, rendering it a good layer for extracting information and facilitating 

learning. As an additional function, the Dropout Layer functions as a regularisation 

strategy, which prevents overfitting by randomly deactivating neurons while the 

training is being performed. Because of this, the network may be generalised and do 

well on data it has never seen before. The combination of these layers not only 
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improves the categorization model's performance as a whole, but it also makes it more 

resilient and versatile for use in other areas of machine learning. 

 

 

Fig 4.36 Proposed Model 

4.5 Model Performance Measuring Parameter 

Accuracy: The accuracy of a model is determined by its ability to effectively 

recognize patterns and relationships among the variables in the dataset when trained 

with the input data. 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

[4.1] 
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Precision: It is a performance measure in the fields of deep learning and statistics that 

measures the precision of positive predictions produced by a model, specifically in 

issues involving binary classification. Precision is a quantification of the accuracy of 

positive predictions. An alternative name for this metric is the "proportion of 

accurately produced positive forecasts," and it is simply the proportion of the 

algorithm's actual positive forecasts to its overall number of positive predictions. The 

preciseness of positive predictions, or more precisely, the proportion of truly positive 

occurrences predicted, is the primary focus of precision. 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

[4.2] 

Here's what precision represents: 

• True Positives (TP): The count of accurately forecasted of positive 

occurrences. 

• False Positives (FP): The total number of cases when the projected outcome 

was negative. 

F1-Score: When it comes to binary categorization tasks, the F1-score is an efficiency 

metric that is heavily used in analytics and deep learning. It is a single numerical 

value that measures both precision and recall, combined to give a complete 

assessment of the efficacy of a model. When dealing with unevenly distributed 

samples or when trying to strike a balance between recall and accuracy, the F1-score 

comes in quite handy. 

The F1-score is calculated using the following formula: 

 
𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

[4.3] 

When accuracy and recall are combined in the F1-score, a harmonic mean is 

produced, which means that both measures are given equal weight in the overall 

result. Obtaining a high F1-score requires good memory in addition to accurate 
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results. This indicates that such a score is reached. In situations in which the outcomes 

of false positives and false negatives are considerably different from one another, the 

F1-score is a very helpful tool. 

Recall: For tasks involving binary classification in particular, recall is a useful 

performance measure in learning as well as statistics areas. The term "sensitivity" can 

be used interchangeably with "true positive rate" in different contexts. Precision 

measures how well a model can identify all occurrences of a given class, also called 

the positive class. Basically, recall is a way to quantify how many real positive 

examples the model accurately identifies as positive. 

The recall formula is as follows: 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

[4.4] 

Recall is particularly important in scenarios where the cost of false negatives (missing 

relevant instances) is high, and there is a need to ensure that as many true positives as 

possible are correctly identified. This is common in applications were failing to detect 

positive instances can have significant consequences, such as in medical diagnoses, 

fraud detection, or security-related tasks. 

Key points about recall: 

• It measures the model's ability to capture all relevant positive instances. 

• It ranges from 0 to 1, with a higher value indicating better recall. 

• It is a critical metric when minimizing false negatives is a primary concern. 

Loss: To quantify the degree to which a strategy predicted values diverge from the 

actual values in the dataset—also called the ground truth—the idea of "loss" or "loss 

function" is fundamental in deep learning. The loss function quantifies the degree of 

success or failure of the model in performing its designated task. Throughout the 
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training phase, the aim is to minimise this loss to indicate that the model is more 

matched with the data. 

Tversky Loss: The Tversky loss is a loss function employed in the realm of deep 

learning, specifically in tasks pertaining to picture segmentation, object recognition, 

and other scenarios necessitating the equitable consideration of various error kinds. It 

is an extension of the Dice loss and is named after Amos Tversky, a cognitive 

psychologist. 

The Tversky loss is designed to handle imbalanced data and to provide more control 

over the balance between unreliable results and inaccurate results. It allows you to 

assign different weights to these types of errors, making it a versatile choice for tasks 

where one type of error is more costly or significant than the other. 

The Tversky loss is demarcated by the subsequent formula: 

 
𝑇𝑣𝑒𝑟𝑠𝑘𝑦 𝐿𝑜𝑠𝑠 =

|𝑋 ∩ 𝑌|

|𝑋 ∩ 𝑌| +  𝛼|𝑋\𝑌| +  𝛽 |𝑌\𝑋|
 

 

[4.5] 

• ∣X∩Y∣ represents the intersection of sets X and Y, which corresponds to the 

true positives. 

• ∣X\Y∣ represents the elements in set X that are not in set Y, corresponding to 

false positives. 

• ∣Y\X∣ represents the elements in set Y that are not in set X, corresponding to 

false negatives. 

• α and β are hyperparameters that control the weight assigned to false positives 

and false negatives, respectively. The values of α and β determine the trade-off 

between these two types of errors. 

4.6 Results and Evaluation Graph 

The table displays the classification model's level of accuracy. 
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Table 4.2 Average Accuracy performance matrices for classification model. 

S. No Deep Learning Model with added Layer  Average Accuracy 

1 InceptionV3 + Added Layer 0.9681 

2 InceptionResNetV2 + Added Layer 0.9600 

3 MobileNet + Added Layer 0.9600 

4 NASNetMobile + Added Layer 0.9700 

5 ResNet101 + Added Layer 0.9500 

6 Xception + Added Layer 0.9700 

7 DenseNet201 + Added Layer 0.9600 

8 ResNet50 + Added Layer 0.9630 

9 EfficientNetB7 + Added Layer 0.9800 

 

 

Fig 4.37 Accuracy Performance Graph of InceptionV3 + Added Layer 
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Fig 4.38 Accuracy Performance Graph of InceptionResNetV2 + Added Layer 

 

Fig 4.39 Accuracy Performance Graph of MobileNet + Added Layer 

 

 

Fig 4.40 Accuracy Performance Graph of NASNetMobile + Added Layer 
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Fig 4.41 Accuracy Performance Graph of ResNet101 + Added Layer 

 

Fig 4.42 Accuracy Performance Graph of Xception + Added Layer 

 

Fig 4.43 Accuracy Performance Graph of DenseNet201 + Added Layer 
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Fig 4.44 Accuracy Performance Graph of ResNet50 + Added Layer 

 

 

Fig 4.45 Accuracy Performance Graph of EfficientNetB7 + Added Layer 

Table 4.3 Classification Report 

S 

No 

Deep Learning Model with 

added Layer 
Parameter Precision Recall F1 Score 

1 InceptionV3 + Added Layer 

0 0.96 1.00 0.98 

1 0.99 0.94 0.96 

Accuracy 0.97 0.97 0.97 

Micro Average 0.98 0.98 0.97 

weighted Average 0.98 0.97 0.97 
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S 

No 

Deep Learning Model with 

added Layer 
Parameter Precision Recall F1 Score 

2 
InceptionResNetV2 + 

Added Layer 

0 0.96 0.97 0.97 

1 0.95 0.93 0.94 

Accuracy 0.96 0.96 0.96 

Micro Average 0.96 0.96 0.96 

weighted Average 0.96 0.96 0.96 

3 MobileNet + Added Layer 

0 0.95 0.99 0.97 

1 0.98 0.92 0.95 

Accuracy 0.96 0.96 0.96 

Micro Average 0.97 0.95 0.96 

weighted Average 0.96 0.96 0.96 

4 
NASNetMobilev + Added 

Layer 

0 0.96 0.99 0.98 

1 0.99 0.93 0.96 

Accuracy 0.97 0.97 0.97 

Micro Average 0.97 0.96 0.97 

weighted Average 0.97 0.97 0.97 

5 ResNet101 + Added Layer 

0 0.97 0.96 0.96 

1 0.93 0.94 0.94 

Accuracy 0.95 0.95 0.95 

Micro Average 0.95 0.95 0.95 

weighted Average 0.95 0.95 0.95 

6 Xception + Added Layer 

0 0.96 0.99 0.97 

1 0.99 0.92 0.95 

Accuracy 0.97 0.97 0.97 

Micro Average 0.97 0.96 0.96 

weighted Average 0.97 0.97 0.97 

7 
DenseNet201 + Added 

Layer 

0 0.95 0.99 0.97 

1 0.99 0.92 0.95 
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S 

No 

Deep Learning Model with 

added Layer 
Parameter Precision Recall F1 Score 

Accuracy 0.96 0.96 0.96 

Micro Average 0.97 0.95 0.96 

weighted Average 0.97 0.96 0.96 

8 ResNet50 + Added Layer 

0 0.97 0.98 0.97 

1 0.96 0.94 0.95 

Accuracy 0.96 0.96 0.96 

Micro Average 0.96 0.96 0.96 

weighted Average 0.96 0.96 0.96 

9 
EfficientNetB7 + Added 

Layer 

0 0.97 0.99 0.98 

1 0.98 0.95 0..97 

Accuracy 0.98 0.98 0.98 

Micro Average 0.98 0.97 0.97 

weighted Average 0..98 0.98 0.98 

 

Table 4.4 Loss performance matrices for classification model. 

S. No Deep Learning Model with added Layer  Loss Tversky Loss 

1 InceptionV3 + Added Layer 0.1658 0.9086 

2 InceptionResNetV2 + Added Layer 0.1567 0.9152 

3 MobileNet + Added Layer 0.1556 0.9161 

4 NASNetMobile + Added Layer 0.1580 0.9142 

5 ResNet101 + Added Layer 0.1659 0.9085 

6 Xception + Added Layer 0.1651 0.9089 

7 DenseNet201 + Added Layer 0.1767 0.9001 

8 ResNet50 + Added Layer 0.1742 0.9024 

9 EfficientNetB7 + Added Layer 0.1614 0.9116 
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Fig 4.46 Loss and Tversky Performance for InceptionV3 + Added Layer 
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Fig 4.47 Loss and Tversky Performance for InceptionResNetV2 + Added Layer 

 

 

Fig 4.48 Loss and Tversky Performance for MobileNet + Added Layer 
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Fig 4.49 Loss and Tversky Performance for NASNetMobile + Added Layer 
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Fig 4.50 Loss and Tversky Performance for ResNet101 + Added Layer 

 

 

Fig 4.51 Loss and Tversky Performance for Xception + Added Layer 
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Fig 4.52 Loss and Tversky Performance for DenseNet201 + Added Layer 
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Fig 4.53 Loss and Tversky Performance for ResNet50 + Added Layer 

 

 

Fig 4.54 Loss and Tversky Performance for EfficientNetB7 + Added Layer 
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Fig 4.55 Confusion Matrix for Classification Models 
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Fig 4.57 Localization of tumor and InceptionV3 + Added Layer Prediction 
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Fig 4.58 Localization of tumor and InceptionResNetV2 + Added Layer 

Prediction 
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Fig 4.59 Localization of tumor and MobileNet + Added Layer Prediction 
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Fig 4.60 Localization of tumor and NASNetMobile + Added Layer Prediction 
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Fig 4.61 Localization of tumor and ResNet101 + Added Layer Prediction 
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Fig 4.62 Localization of tumor and Xception + Added Layer Prediction 
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Fig 4.63 Localization of tumor and DenseNet201 + Added Layer Prediction 
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Fig 4.64 Localization of tumor and ResNet50 + Added Layer Prediction 
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Fig 4.65 Localization of tumor and EfficientNetB7 + Added Layer Prediction 
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4.7 Discussion 

The representation depicts the precise position of the tumour as well as the model's 

accurate forecasts regarding the tumor's existence or nonexistence. Subsequently, the 

performance of the suggested model is assessed and contrasted with other established 

techniques in the current body of research. The results indicate that when the 

customized EfficientNetV7 is used as the base layer and an additional layer is added 

with RESUNET, it outperforms traditional approaches, producing more accurate and 

clinically relevant images. 

Table 4.7 Comparison with other state of art model 

 

Our experimental findings provide several key insights into the proposed approach: 
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(i). The model performed exceptionally well on the provided dataset in accurately 

determining the presence or absence of a tumor. 

(ii). Utilizing Deep Learning Model as the base layer with an additional layer using 

the RESUNET technique was highly effective in both localizing tumors and 

predicting their presence or absence. 

(iii). The introduction of augmented data during training significantly improved 

classification performance on the testing set. 

(iv). Large imbalances in training data between different classes should be avoided, 

as they can lead to noticeable variations in performance across individual 

classes. 

(v). When compared to various state-of-the-art methods, our suggested approach 

achieved performance that was on par with fully supervised approaches, 

indicating its competitiveness and effectiveness. 

The combination of Deep Learning Models with added layers, including Dense Layer, 

Flatten Layer, Dropout Layer, and Activation Layer, in conjunction with the 

RESUNET architecture can be highly effective for various tasks. However, there are 

some limitations to be aware of: 

• Complexity and Resource Requirements: Adding extra layers and 

complexity to a model can significantly increase its computational and 

memory requirements. This may limit its feasibility for deployment on 

resource-constrained devices or in situations where computational resources 

are limited. 

• Overfitting Risk: With the introduction of additional layers, there is a risk of 

overfitting the model to the training data, especially if the dataset is not large 

enough or if the regularization provided by the Dropout Layer is insufficient. 

Careful hyperparameter tuning and the use of a diverse and representative 

dataset are essential to mitigate this risk. 
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• Training Time: More complex models with added layers typically require 

longer training times. This can be a limitation when you need to quickly train 

and deploy a model. 

• Interpretability: As models become more complex, it can be challenging to 

interpret and understand their decision-making processes. This is particularly 

important in applications where model interpretability is a critical factor. 

• Limited Generalization: Although the addition of layers can improve the 

model's capacity to understand intricate patterns in the training data, it can also 

diminish its ability to generalise. Put simply, the model may become too 

tailored to the training data and exhibit worse performance when faced with 

unfamiliar data. 

• Data Requirements: Highly complex models with added layers may require 

more extensive and diverse training data to perform optimally. In situations 

where collecting such data is challenging or expensive, this can be a 

limitation. 

• Hyperparameter Tuning: Optimising the hyperparameters of the further 

layers, such as the neuron count in the Dense Layer, the dropout rate, and the 

selection of activation function, may need extensive testing and fine-tuning. 

• Model Size: The addition of layers can increase the model's size, which might 

be a concern in scenarios where model size needs to be minimized for 

deployment, such as on mobile devices. 

4.8 Conclusion 

The deep learning model enriched with added layers, including Dense Layer, Flatten 

Layer, Dropout Layer, and Acivation Layer, in conjunction with the RESUNET 

architecture, brings about a significant and noteworthy conclusion. This model has 

demonstrated remarkable improvements in performance, particularly excelling in 

image segmentation, object detection, and tumor localization tasks. The additional 

layers have not only boosted accuracy but have also contributed to striking a delicate 
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balance between model complexity and its generalization capacity. The integration of 

Dropout Layers has proven to be an effective means of preventing overfitting, 

reinforcing the model's reliability and robustness. Despite its increased complexity, 

this model maintains efficiency and manageability in terms of computing resources, 

making it a versatile option for many applications without requiring excessive 

computer resources. Moreover, the use of data augmentation techniques during the 

training phase has significantly improved the model's capacity to produce precise 

predictions on testing data, highlighting the importance of data preparation. The 

success of this approach is particularly noteworthy, serving as evidence of its strong 

competitiveness and efficacy. When compared to other advanced techniques, it has 

produced similar results to fully supervised algorithms, indicating its usefulness in 

many and challenging machine learning problems.  
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CHAPTER 5 

MRI BASED BRAIN TUMOR FEATURE EXTRACTION WITH 

OVERALL SURVIVAL PREDICTION USING DEEP LEARNING 

INSPIRED REPLICATOR NEURAL NETWORK 

 

In general, predicting a patient's overall survival involves estimating the duration of 

their life following a given treatment while considering the current state of their 

tumor. This automated prediction of overall survival takes into account various tumor-

related features, such as tumor status, clinical data, age, and gene expression that may 

be available. Collecting all this information can be somewhat challenging in the 

healthcare field. Fortunately, the BraTS training dataset offers valuable information 

like age, resection status, and survival duration to assist in making accurate overall 

survival predictions. According to the BraTS classification, a patient's survival 

outcome is categorized into three groups: long-term survivors, mid-term survivors, 

and short-term survivors.  

The mean ages of individuals who survive for mid-term, short-term, and long-term 

durations are 59, 66 and 57, respectively. However, there is considerable age overlap 

observed within these groups. Efficient feature selection from MRI images is essential 

for training the model to make accurate predictions. This section showcases the 

characteristics derived from MRI scans and highlights the utilisation of a replicator 

neural network influenced by deep learning for the objective of predicting Overall 

Survival. 

There are a number of important ways in which this study advances healthcare and 

imaging in medicine. 

• The study focuses on the crucial matter of identifying and categorising brain 

tumours through the use of MRI images. This is highly significant in the 
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prompt identification and treatment of brain-related diseases. The study makes 

substantial progress in enhancing the precision and dependability of tumour 

diagnosis by utilising methods such as deep learning and the Replicator Neural 

Network. 

• Going beyond tumor detection, the study takes a step further by incorporating 

overall survival prediction, a vital component in clinical decision-making. By 

leveraging deep learning methods, the research provides a more holistic and 

comprehensive approach to brain tumor diagnosis and patient care. 

• A crucial stage in the processing of medical visuals, obtaining features from 

MRI exams is the subject of the work. Research aids in the creation of better 

diagnostic tools by creating and using sophisticated methods for feature 

extraction. 

• The utilization of the Replicator Neural Network showcases innovation in 

deep learning. This novel approach has the potential to enhance the efficiency 

and effectiveness of neural networks, making it a valuable addition to the field 

of medical imaging and healthcare. 

This investigate significantly contributes to the progression of medical imaging and 

healthcare by addressing critical challenges in brain tumor detection, overall survival 

prediction, and feature extraction using innovative deep learning techniques. It has the 

potential to bring about positive changes in the diagnosis and treatment of brain-

related pathologies, ultimately benefitting patients and the medical community as a 

whole. 

5.1 Specification of Image Dataset 

In this intriguing study, we set out to assess the effectiveness of our innovative 

approach in extracting features and segmenting brain MRI scans using the BraTS2020 

dataset. This treasure trove comprises 368 MRI scans, each a canvas of 240x240 

dimensions with 155 intricate slices. Within this rich tapestry, we harnessed the power 
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of four separate forms of imaging: T1, T1C, T2, and FLAIR, as elegantly depicted in 

Fig 5.1. 

 

Fig 5.1 Visualization of imaging modalities: T1C (contrast enhanced T1-weighted), T1 

(T1-weighted), FLAIR (Fluid Attenuation Inversion Recovery), T2 (T2-weighted). 

 

Fig 5.2 Visualization of MR image and mask 

Our scientific journey was charted on a machine boasting an i7-6500U CPU, a chip 

running at a brisk 2.50 GHz, flanked by 16GB of RAM, and graced with the presence 

of an NVIDIA GEFORCE GTX. Each of these modalities bestowed us with a unique 

lens through which to unravel the mysteries of brain tumors. The T1 images unveiled 

the secrets of healthy tissues, while the T1C mode became our guide in tracing the 

contours of tumors. FLAIR images provided the clues to distinguish edema regions 
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from cerebrospinal fluid, and the trusty T2 images were our beacon for navigating the 

edema tumor regions. 

With a deft touch, we included all these imaging modalities in our novel approach, 

giving them the care and attention, they deserved through preprocessing. These 

preprocessed images then assumed their roles as the artistic brushstrokes on the 

canvas of neural networks, contributing to a symphony of discovery and insight. 

The visualization of MR images and their masks using unique image values, minimum and 

maximum values, and unique mask values is shown in figure 6. For the MR image dataset 

used in this study, one image had 1202 unique values, with minimum and maximum image 

values of 0 and 1. The number of unique mask values was given as (array ([0., 1.], 

dtype=float32), array ([8727379, 200621])). 

5.2 Preprocessing 

Improving MR image quality for human and artificial intelligence system interpretations is 

the primary goal of the pre-processing step. This transformative process not only elevates the 

visual appeal of MR images but also optimizes their utility by amplifying the signal-to-noise 

ratio, eliminating undesirable background elements and noise, smoothing out imperfections 

within regions, and preserving their defining edges. 

 

In the context of the BRATS 2020 dataset, which houses a collection of 368 MR images in the 

nii format, practical considerations led us to work with a subset of 150 MR images for this 

experiment. These were thoughtfully partitioned into three segments for training, testing, and 

validation, corresponding to 75%, 13%, and 12% of the dataset, respectively. 

 

Once these images underwent resizing and were introduced into our system, the next step 

involved their normalization. In order to ensure that the extraction of features goes smoothly, 

this normalisation step strengthens them. To achieve this, we harnessed the MinMax scaling 

technique, a method that ensures consistency among variables assessed at varying scales. 

 

MinMax scaling, a widely embraced practice in data preparation, entails the transformation of 

input variables into a standardized range of [0,1], where 0 and 1 represent the minimum and 
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maximum values for each feature or variable. This operation adheres to the underlying 

principle of equitably adjusting variables to forestall biases during model fitting and learning 

functions. Equation 1 outlines the mathematical formulation for the min-max scaling process. 

 

 
𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =

𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
 

[5.1] 

 

Fig 5.3 represents the distribution graph for training, testing and validation. 

 

 

Fig 5.3 Distribution graph for BRATS 2020 Dataset 

Pseudocode of class implementation for BRATS Dataset – Pre-processing for feature extraction 

process 

Description: Here Dataset is a set of MR image that will used in the process of pre-processing  

 Initialization (instance of class, dataframe, phase, resize operation) 

Description: Here the process of initialization will be acquired for pre-processing   

  Set instance of class 

  Set phase for dataset 

  Set Augmentation variable to initialize with calling the function for given phase 

  Set data_types for dataset images 

  Set resize variable for images 

   

 Length (instance of class) 

Description: Here to find the shape in dataframe 

  Return the value of shape in dataframe 
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 Fetch_Images(instance of the class , id for images) 

  Set id for the location of BRATS images 

  Set root_path to fatch the value 

  Set variable for images to load all the modalities   

  for data_type in class_instance.data_types 

   Set image_path as per given datatypes 

   Set variable img to load images from image_path 

   if class_instance.resize is true then 

    Update the img with new image size 

   Load value in img after the calling class_instance.normalize function 

with given img value as  a pareameter  

   Append all the images 

  Create a stack for the images 

  Update the axis  

  if class_instance.phase not equal to the passed value then 

   Set variable for the mask_path using the .seg value of MR image 

   Set variable mask for the loading of segmented value 

   if class_instance.resize is true then 

    Update mask with resize value 

    Convert mask value from int to float and update mask variable 

    Update mask with 0 and 1 value 

   Call the function to update the mask label 

   Perform the operation of augmentation 

   Set img and mask for augmented value of image and mask 

   Return value of id, image and mask 

  Return id and image 

   

 Load_Images(class_instance, path of the file) 

Description: This function to load all the images and convert into array form 

  Set data variable to load value of file path 

  Update data variable after converting into array 

  Return data value 

   

 Normalize_data(class_instance, data as array form) 

Description: This function dedicated to normalize the data as per min and max value of 
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images 

  Set datamin for minimum value of the data 

  Return value of the expression [(data – datamin)/(max(data) - datamin] 

   

 Preprocess_label_mask(class_instance, mask as an array) 

Description: Update mask value for the object of WT, TC and ET 

  Update mask value for Whole Tumor with the value of 0 and 1 

  Update mask value for Tumor Core with the value of 0 and 1 

  Update mask value for Enhanced Tumor with the value of 0 and 1 

  Create a stack for WT, TC and ET mask value 

  Update the axis for mask value 

  Return value of the mask 

 

 

Fig 5.4 Work flow for Preprocessing 
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5.3 Network Architecture and Training Approach for Feature Extraction 

(3D Replicator Neural Network Methodology) 

A Replicator Neural Network belongs to the family of feedforward neural networks 

that possesses the unique ability to reconstruct output based on the very input it 

receives. It follows a distinctive process wherein it initially reduces the dimensionality 

of the input data and subsequently generates the output based on this transformed 

representation. These networks find frequent application in the domain of 

unsupervised learning, where their prowess lies in unveiling concealed data 

relationships and rendering them in a more concise and understandable format. 

One of the intriguing qualities of Replicator Neural Networks is their capability to 

reframe unsupervised learning challenges into supervised learning algorithms. By 

doing so, they become adept at discerning intricate patterns within datasets. The core 

operation of these networks involves transmitting the input through to the output. 

Simultaneously, an encoder network takes on the role of compressing the input into a 

more compact encoded form, while a decoder network is entrusted with the task of 

decoding this encoding to reconstruct the original input, as detailed in (Chen & Guo, 

2023). 

The encoding created by the encoder layer not only represents the information in a 

lower-dimensional form but also unveils intricate and complex connections between 

data points. The components of a Replicator Neural Network, as elucidated in Figure 

5.5, are as follows: 

• Encoder: The encoder is a part of the network that takes in data and uses it to generate 

a lower-dimensional encoding. 

• Bottleneck: The encoding originates in the lower-dimensional hidden layer. It decides 

on the dimensional encoding of the input and reduces the number of nodes in the 

bottleneck layer. 

• Decoder: The decoder takes the input data and uses it to recreate the original data 

using the encoded data. 
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Hyperparameters: 

• Code Size: Signifies the number of intermediate layer nodes, where fewer nodes lead 

to more compression. 

• Number of Layers: Shows the entire number of layers used by the encoder as well as 

the decoder network. 

• Nodes per layer: a stacked encoding network, like the replicator neural network in the 

above picture, has a decreasing number of vertices per level in the encoder levels that 

follow the homogeneous decoder and an increasing number in the symmetric decoder. 

• Loss Function: Cross entropy is commonly used if the input values are within the 

range [0, 1], otherwise should be used Mean Squared Error. 

 

 

 

Fig 5.5 Component of Replicator Neural Network with Latent Space (Kay et al., 2022) 

According to the following elements, replicator neural network is described: The spaces of 

decoded instructions (X) and encoded information (Z) are two sets. The majority of the time, 

X and Z are both Euclidean spaces, with X=Rm and Z=Rn  for certain m and n. 
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There are two primary components of functions that have been parametrized: the encoder 

family 𝑬∅ ∶ 𝑿 → 𝒁, parametrized by Ø; and the decoder family 𝑫𝜽 ∶ 𝒁 → 𝑿; parametrized by 

θ. 

We often write 𝒛 =  𝑬∅  for any value of 𝒙 ∈  𝑿 and refer to it by many names, including the 

code, latent variable, latent representation, latent vector, etc. On the other hand, we often 

write 𝒙′ = 𝑫𝜽 (z) and correspond to this as the (decoded) message for any 𝒛 ∈ 𝒁. 

Typically, multilayer perception is used to design both the encoder and the decoder. As an 

illustration, the one-layer MLP encoder 𝑬∅ is 

 𝑬∅(𝒙) =  𝝈 (𝑾𝒙 + 𝒃)  [5.2] 

 

The term "weight" refers to a matrix represented by W, "bias" refers to a vector indicated by 

b, and "activation function," denoted by 𝝈. 

 

5.3.1 Training a Replicator Neural Network 

The training of proposed 3D replicator neural network consists of just a bundle of two factors 

on its own. Training needs an assignment in order to assess its quality. A benchmark 

probability distribution 𝝁𝒓𝒆𝒇 over 𝑿 and a "reconstruction efficiency" function 𝒅 ∶ 𝑿 × 𝑿 →

[𝟎, ∞] are used to define a job, and 𝒅(𝒙, 𝒙′) is a measurement of how far x' deviates from x. 

These enable us to construct the replicator neural network's loss function as 

 𝑳(𝜽, ∅) ≔ 𝐄𝒙~𝝁𝒓𝒆𝒇
[𝒅(𝒙, 𝑫𝜽(𝑬∅(𝒙)))] [5.3] 

 

The presented replicator neural network for the assumed job (𝝁𝒓𝒆𝒇, 𝒅) is then 

𝐚𝐫𝐠 𝐦𝐢𝐧
𝜽,∅

𝑳(𝜽, ∅).  Any mathematical optimization approach can be used to find the suggested 

replicator neural network. 

The two primary components of replicator neural network are an encoder that converts a 

communication to a code and a decoder that extracts the information from the code. The 

recovery quality function d defines "near to perfect" as the performance that an ideal 

replicator neural network may achieve in terms of restoration. 
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5.3.2 Interpretation 

Figure 10 illustrates how the 3D Replicator Neural Network for feature extraction interprets 

the model; the model is displayed after input has undergone pre-processing and normalisation, 

and the encoder has three convolutional layers, three pooling layers, and one linear layer. 

Step 1 - Initialization for encoding representation is like that 

𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝐿𝑎𝑦𝑒𝑟 =  {

𝑐𝑜𝑛𝑣1 → 𝑐𝑜𝑛𝑣3𝑑(4,16,3)
 𝑐𝑜𝑛𝑣2 → 𝑐𝑜𝑛𝑣3𝑑(16,32,3)
𝑐𝑜𝑛𝑣3 → 𝑐𝑜𝑛𝑣3𝑑(32,96,3)

 

 

𝑃𝑜𝑜𝑙𝑖𝑛𝑔 𝐿𝑎𝑦𝑒𝑟

=  {

𝑝𝑜𝑜𝑙1 → 𝑀𝑎𝑥𝑃𝑜𝑜𝑙3𝑑(𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 2, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2, 𝑟𝑒𝑡𝑢𝑟𝑛_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = 𝑇𝑟𝑢𝑒)
𝑝𝑜𝑜𝑙2 → 𝑀𝑎𝑥𝑃𝑜𝑜𝑙3𝑑(𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 3, 𝑠𝑡𝑟𝑖𝑑𝑒 = 3, 𝑟𝑒𝑡𝑢𝑟𝑛_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = 𝑇𝑟𝑢𝑒)
𝑝𝑜𝑜𝑙3 → 𝑀𝑎𝑥𝑃𝑜𝑜𝑙3𝑑(𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 2, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2, 𝑟𝑒𝑡𝑢𝑟𝑛_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = 𝑇𝑟𝑢𝑒)

 

Step 2 - Initialization for decoding representation is like that 

𝐷𝑒𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝐿𝑎𝑦𝑒𝑟 =  {

𝑑𝑒𝑐𝑜𝑛𝑣1 → 𝐶𝑜𝑛𝑣𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒3𝑑(96, 32, 2)
 𝑑𝑒𝑐𝑜𝑛𝑣2 → 𝐶𝑜𝑛𝑣𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒3𝑑(32, 16, 3)
𝑑𝑒𝑐𝑜𝑛𝑣3 → 𝐶𝑜𝑛𝑣𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒3𝑑(16, 4, 3)

 

𝑈𝑛𝑝𝑜𝑜𝑙𝑖𝑛𝑔 𝐿𝑎𝑦𝑒𝑟 =  {

𝑢𝑛𝑝𝑜𝑜𝑙1 →  𝑀𝑎𝑥𝑈𝑛𝑝𝑜𝑜𝑙3𝑑(𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 2, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2)
𝑢𝑛𝑝𝑜𝑜𝑙2 →  𝑀𝑎𝑥𝑈𝑛𝑝𝑜𝑜𝑙3𝑑(𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 3, 𝑠𝑡𝑟𝑖𝑑𝑒 = 3)
𝑢𝑛𝑝𝑜𝑜𝑙3 →  𝑀𝑎𝑥𝑈𝑛𝑝𝑜𝑜𝑙3𝑑(𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 2, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2)

 

Step 3 – To perform the operation of Encoding the data frame: 

𝑐𝑜𝑛𝑣1 → 𝑝𝑜𝑜𝑙1 → 𝑐𝑜𝑛𝑣2 → 𝑝𝑜𝑜𝑙2 → 𝑐𝑜𝑛𝑣3 → 𝑝𝑜𝑜𝑙3 → 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔_𝑙𝑖𝑛𝑒𝑎𝑟 

After the process of the above mention layers, the Replicator Neural Network 3D model 

returns the features that will be decoded by the next steps. 

Step 4 – The layering structure for the decoding as per the return features using deconvolution 

and unpooling like that: 

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔_𝐿𝑖𝑛𝑒𝑎𝑟 → 𝑢𝑛𝑝𝑜𝑜𝑙1 → 𝑑𝑒𝑐𝑜𝑛𝑣1 → 𝑢𝑛𝑝𝑜𝑜𝑙2 → 𝑑𝑒𝑐𝑜𝑛𝑣2 → 𝑢𝑛𝑝𝑜𝑜𝑙3

→ 𝑑𝑒𝑐𝑜𝑛𝑣3 
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Fig 5.6. 3D Replicator Neural Network Working Flow 

5.4 Measuring Parameter and Experimental Results 

Feature extraction involves the process of acquiring additional, in-depth information 

from an image, encompassing attributes like its texture, shape, contrast, and color. 

Texture analysis holds a pivotal part in both learning systems and human visual 

interpretation. When we meticulously select and highlight significant features, it has 

the possible to considerably augment the precision of diagnostic systems. 

Observations and analyses of texture can be invaluable in the assessment of various 

tumor stages (tumor staging) and in aiding the diagnostic process. The formulae for 

pertinent statistical measures and the outcomes of our experiments are presented 

below. 
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Mean (M): Taking the total of every value for each pixel and calculating them by the 

total quantity of pixels in an object yields the object's mean. 

 

𝑀 = (
1

𝑚 × 𝑛
) ∑ ∑ 𝑓(𝑥, 𝑦)

𝑛−1

𝑦=0

𝑚−1

𝑥=0

 

[5.4] 

Experimental result of mean for the BRATS 2020 dataset with t1 weighted, t1ce 

weighted, t2 weighted and flair is shown in figure 12. 

 

 

 

(a) t1 weighted values 
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(b) t1ce weighted values 

    

(c) t2 weighted values 
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(d) flair values 

Fig 5.7 Mean Value Experimental Result for BRATS2020 MRI Dataset 

Skewness (Skn): Skewness is a metric for symmetry or lack thereof. The definition of the 

skewness of an arbitrary variable X, represented as Skn(X), is the determination of the image's 

mean. 

 
𝑆𝑘𝑛(𝑋) =  (

1

𝑚 × 𝑛
)

∑(𝑓(𝑥, 𝑦) − 𝑀)3

𝑆𝐷3
 

[5.5] 

Where SD is standard deviation and will be evaluated like that 

 

𝑆𝐷(𝜎) = √(
1

𝑚 × 𝑛
) ∑ ∑(𝑓(𝑥, 𝑦) − 𝑀)2

𝑛−1

𝑦=0

𝑚−1

𝑥=0

 

[5.6] 

Experimental result of Skewness for the 2020 dataset of BRATS with t1 weighted, t1ce 

weighted, t2 weighted and flair is shown in fig 5.8. 
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Kutosis (Krt): The Kurtosis parameter describes the probability distribution's form for a 

random variable. For the random identifier X, the Kurtosis is identified as Krt (X) and it is 

defined as  

 
𝐾𝑟𝑡(𝑋) =  (

1

𝑚 × 𝑛
)

∑(𝑓(𝑥, 𝑦) − 𝑀)4

𝑆𝐷4
 

[5.7] 

Experimental result of Kurtosis for the 2020 dataset of BRATS with t1 weighted, t1ce 

weighted, t2 weighted and flair is shown in fig 5.9. 

Skewness Difference: The amount and direction of a distribution's asymmetry are shown by 

the skewness measure differences. Fig 5.10 shows the experimental result of skewness 

differences for the 2020 dataset of BRATS with t1 weighted, t1ce weighted, t2 weighted and 

flair. 

Intensive Distance: When this happens, it means that the provided data value is higher than 

the mean value. Experiment results for the 2020 dataset of BRATS with t1 weighted, t1ce 

weighted, t2 weighted, and flair are shown in Figure 5.11. 

 

Fig 5.8 Skewness for t1 Weighted Values, t2 Weighted Value, t1ce Weighted Values, Flair 

Value 
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Fig 5.9 Kurtosis for t1 Weighted Values, t2 Weighted Value, t1ce Weighted Values, Flair 

Value 

 

 

 

Fig 5.10 Skewness Difference for t1 Weighted Values, t2 Weighted Value, t1ce Weighted 

Values, Flair Value 
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Fig 5.11 Intensive Distance for t1 Weighted Values, T2 Weighted Value, T1ce Weighted 

Values, Flair Value 

Non-Intensive Distance: It is the condition in which the input value is less than the 

mean value. Fig 5.12 show the experimental result of non-intensive distribution for 

the BRATS 2020 data set with t1 weighted, t1ce weighted, t2 weighted and flair. 

 

Fig 5.12 Non-Intensive Distance for t1 Weighted Values, t2 Weighted Value, t1ce 

Weighted Values, Flair Value 
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Intensive Skewness: It is the measurement of skewness for intensive distribution data. 

Fig 5.13 shows the experimental result of intensive skewness for the BRATS 2020 

dataset with t1 weighted, t1ce weighted, t2 weighted and flair. 

 

Fig 5.13 Intensive Skewness for t1 Weighted Values, t2 Weighted Value, t1ce Weighted 

Values, Flair Value 

Non-Intensive Skewness: It is the measurement of skewness for non-intensive 

distribution data. Fig 5.14 shows the experimental result of non-intensive skewness 

for the BRATS 2020 dataset with t1 weighted, t1ce weighted, t2 weighted and flair. 

Data Intensive Skewness Difference: It is the difference between data skewness and 

data intensive skewness. Fig 5.15 show the experimental result of Intensive Skewness 

Difference for the BRATS 2020 data set with t1 weighted, t1ce weighted, t2 weighted 

and flair. 
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Data Non-Intensive Skewness Difference: It is the difference between data skewness 

and non-intensive skewness. Fig 5.16 show the experimental result of data non 

intensive skewness Difference for the BRATS 2020 data set with t1 weighted, t1ce 

weighted, t2 weighted and flair. 

Latent Feature: A set of objects is embedded within a multidimensional in a latent 

space, often referred to as a latent feature space or embedding space (fig 5.17). In the 

latent space, the items that are more similar to one another are placed closer to one 

another. Simply said, the latent space is a depiction of compressed data, where like 

data points are located near to one another. Latent space is helpful for discovering 

more straightforward visualisations for analysis as well as for learning data features. 

 

Fig 5.14 Data Non-Intensive Skewness for t1 Weighted Values, t2 Weighted Value, t1ce 

Weighted Values, Flair Value 
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Fig 5.15 Data Intensive Skewness Difference for t1 Weighted Values, t2 Weighted 

Value, t1ce Weighted Values, Flair Value 

 

Fig 5.16 Data Non-Intensive Skew Difference for t1 Weighted Values, t2 Weighted 

Value, t1ce Weighted Values, Flair Value 
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Fig 5.17 Latent Feature 

 

Fig 5.18 Distribution of Rounded Ages in BRATS2020 
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Brain tumour survival prediction is a complicated and multi-faceted process that necessitates 

a thorough assessment of several criteria, such as tumour type, location, stage, size, age, and 

patient's general health. Many criteria may be used to predict how long a patient with a brain 

tumour will live, including the tumor's histology, its level of malignancy, the amount of tissue 

removed, whether or not metastases are present, the patient's age, and their general health. 

The graph fig 5.18 and 5.19 is representing the distribution of rounded ages of data as given 

in BRATS 2020. 

 

Fig 5.19 Distribution of Rounded Survival Days of Patient as given in BRATS 2020 

The utilization of MRI-based brain tumor feature extraction with overall survival prediction 

through a deep learning-inspired Replicator Neural Network offers several notable 

advantages: 

• Early Detection: By leveraging MRI data, this approach enables early and accurate 

detection of brain tumors, facilitating prompt medical intervention. Early detection 

often translates to improved patient outcomes. 

• Survival Prediction: The integration of overall survival prediction is a crucial 

advancement. It equips medical practitioners with insights into a patient's prognosis, 

aiding in personalized treatment plans and enhancing patient care. 
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• Advanced Imaging Analysis: This method delves into the intricate details of MRI 

images, extracting essential features such as texture, shape, and color. This in-depth 

analysis provides a comprehensive understanding of the tumor's characteristics. 

• Enhanced Diagnostic Accuracy: Through feature extraction and deep learning, the 

model enhances diagnostic accuracy, reducing the chances of misclassification and 

ensuring that medical decisions are based on robust data. 

• Reduced Subjectivity: The use of a neural network minimizes the subjectivity in 

tumor diagnosis. It provides a standardized and objective assessment, reducing inter-

observer variability. 

• Optimized Resource Allocation: With survival predictions, medical resources can be 

allocated more efficiently. Patients with a lower survival prognosis can receive more 

intensive care, while others can benefit from a more conservative approach. 

• Interdisciplinary Approach: The research bridges the fields of medical imaging, 

deep learning, and healthcare, fostering collaboration between these domains and 

potentially leading to innovative solutions. 

• Potential for Personalized Medicine: The ability to predict overall survival allows 

for personalized treatment strategies, tailoring medical interventions to individual 

patient needs. 

• Research Advancement: This research contributes to the evolving landscape of 

medical image analysis and deep learning, paving the way for future developments 

and breakthroughs in healthcare. 

5.5 Conclusion 

Overall survival prediction utilising a Replicator Neural Network influenced by deep 

learning and MRI-based brain tumour feature extraction is a huge step forward for 

medical imaging and patient care. This novel strategy has enormous potential for 

improving the detection and treatment of brain tumours in the future, thanks to its 

many advantages. This technology allows for the early and precise diagnosis of brain 

tumours through the rigorous examination of MRI data, enabling medical intervention 

to be initiated promptly. Furthermore, the integration of overall survival prediction 

empowers healthcare professionals with invaluable insights into patient prognosis, 
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enabling the tailoring of treatment plans to individual needs. The deep dive into MRI 

images, extracting crucial features like texture, shape, and color, provides a 

comprehensive understanding of tumor characteristics. This in-depth analysis 

significantly enhances diagnostic accuracy, reducing the risk of misclassification and 

ensuring that medical decisions are grounded in robust data. One of the most 

noteworthy advantages of this approach is the reduction of subjectivity in tumor 

diagnosis. The neural network provides a standardized and objective assessment, 

mitigating inter-observer variability in medical practice. Additionally, the 

incorporation of survival predictions optimizes the allocation of medical resources, 

ensuring that patients receive the most appropriate level of care based on their 

prognoses. This approach opens doors to personalized medicine, where treatment 

strategies can be tailored to individual patient needs. By bridging the fields of medical 

imaging, deep learning, and healthcare, this research encourages interdisciplinary 

collaboration and has the potential to inspire innovative solutions and future 

developments in the medical field. A major step forward that could change the game 

for brain tumour diagnosis and treatment is MRI-based feature extraction with overall 

survival prediction using a Replicator Neural Network influenced by deep learning. It 

might lead to better health outcomes for patients, lower healthcare expenditures, and 

new discoveries in the field of medicine. The future of healthcare is looking better and 

more optimistic thanks to this study. 
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 

6.1 Conclusion 

The research on "Survival Prediction in Glioblastoma Brain Tumor using 

Segmentation and Detection with Advanced Computational Techniques" represents a 

pivotal milestone in the domain of medical imaging, predictive healthcare, and the 

battle against one of the most aggressive and devastating forms of brain tumors, 

glioblastoma. This study amalgamates cutting-edge segmentation and detection 

techniques with advanced computational methods to offer a comprehensive approach 

to glioblastoma diagnosis, localization, and overall survival prediction. 

The primary focus of this research is the development of an integrated framework that 

combines the strengths of image analysis, machine learning, and clinical data to 

enhance our understanding of glioblastoma and improve patient outcomes. By 

leveraging state-of-the-art computational techniques, this research has achieved 

notable success in the accurate segmentation and detection of glioblastoma tumors, 

enabling precise diagnosis and localization. 

One of the most significant achievements of this research is the incorporation of 

survival prediction into the diagnostic process. The ability to forecast patient 

outcomes is transformative. It empowers healthcare professionals to make data-driven 

decisions, tailor treatments to individual patients, and allocate medical resources more 

efficiently. This is a pivotal step towards personalized medicine in the realm of 

glioblastoma treatment. 

However, while this research marks a substantial advancement, it is essential to 

acknowledge its limitations. The predictive accuracy of survival outcomes, while 

promising, can be further refined through the inclusion of more extensive and diverse 

patient data. As medical imaging and machine learning technologies continue to 
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evolve, it is reasonable to expect that future iterations of this framework will yield 

even more accurate predictions. 

6.2 Future Scope 

The future scope of "Survival Prediction in Glioblastoma Brain Tumor using 

Segmentation and Detection with Advanced Computational Techniques" is both 

exciting and filled with opportunities for further advancements in the field of medical 

imaging, predictive healthcare, and the battle against glioblastoma. As we reflect on 

the achievements of this research, it becomes evident that there is much more to 

explore and develop in the quest for improved diagnosis, treatment, and survival 

prediction for glioblastoma patients. 

One of the key avenues for future exploration is the expansion of the dataset. By 

incorporating a more extensive and diverse range of patient data, including various 

demographic factors, genetic information, and comprehensive treatment histories, the 

predictive power of the model can be significantly enhanced. The inclusion of such 

data can provide a more holistic understanding of the patient's condition and 

prognosis. In the realm of medical imaging, the integration of multiple imaging 

modalities, such as MRI, CT, and PET scans, holds great promise. Each modality 

offers unique insights into the tumor's characteristics, and the combination of these 

modalities can lead to more accurate and detailed segmentation and detection. 

Genetic and molecular data represent another frontier of exploration. By incorporating 

genetic information, researchers can unveil the underlying genetic mutations and 

biomarkers associated with glioblastoma. This information can enable a more 

personalized approach to treatment, targeting the specific genetic drivers of the tumor. 

Advancements in deep learning techniques continue to shape the landscape of medical 

image analysis. Researchers can explore state-of-the-art deep learning models, such as 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs), to 

further refine the segmentation and detection processes, ultimately improving 
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accuracy and efficiency. Beyond prediction, future research can focus on treatment 

optimization. By integrating the predicted survival outcomes with treatment 

recommendations, the framework can assist healthcare professionals in tailoring 

treatment plans for each patient, potentially improving the effectiveness of therapies. 

The development of real-time predictive models that can adapt to changing patient 

conditions during the course of treatment is an exciting avenue for future research. 

Such models can provide dynamic recommendations based on evolving patient data, 

optimizing treatment strategies. The generalizability of the framework to other types 

of brain tumors and even various forms of cancer is a promising direction. The 

principles and techniques developed in this research can serve as a foundation for 

broader applications in the field of oncology. 

Translating the research findings into clinical practice is a critical step on the horizon. 

Collaboration with healthcare institutions and clinicians can facilitate the integration 

of the developed framework into the healthcare system, where it can directly impact 

patient care and contribute to the advancement of glioblastoma treatment. 
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