

## **School of Biomedical Science**

Bachelor of Science in Medical Biotechnology Semester End Examination - Jun 2024

Duration: 180 Minutes Max Marks: 100

## Sem IV - Q1UG404T - Fermentation technology

General Instructions
Answer to the specific question asked

Draw neat, labelled diagrams wherever necessary
Approved data hand books are allowed subject to verification by the Invigilator

| 1)  | Define doubling time.                                                                                                                                                    | K1(2)  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 2)  | Give examples of four lactic acid fermenting bacteria from at least two different genus.                                                                                 | K2(4)  |
| 3)  | Compare between batch and continuous sterilisation and comment on which one is more suitable for enzyme fermentation under solid state fermentation conditions.          | K2(6)  |
| 4)  | Illustrate with examples different categories of industries which utilize enzyme and mention the names of responsible microbes.                                          | K3(9)  |
| 5)  | Explain along with proper examples why particularly microbes are being used in enzyme fermentation processes despite the fact that all living organisms produce enzymes. | K3(9)  |
| 6)  | Represent working protocols in two separate flowsheets to depict ideal fermentation processes for any two biotransformed products.                                       | K5(10) |
| 7)  | Discuss the general construction of an industrially used batch fermentor.                                                                                                | K4(12) |
| 8)  | Establish a relationship between Thermal death time (TDT) and decimal reduction time (DRT)                                                                               | K5(15) |
| 9)  | Formulate a kinetic expression to establish substrate utilisation kinetics during cell growth and propose the effects of shear forces on growth.                         | K5(15) |
| 10) | Formulate three recombinant DNA technology assisted strategies for improving the quality and yield of lactic acid in a yogurt fermentation industry.                     | K6(18) |