
 A Project Report

 On

 Face Mask Detection Using Deep Learning

Submitted in partial fulfillment of the

requirement for the award of the degree of

Bachelor of Computer Application

Under The Supervision of

DR. SEEMA RANI

Assistant Professor

Submitted By

DEEPANSHU
BANSAL

(19SCSE1040015)

SANDEEP SINGH
(19SCSE1040027)

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING
DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING GALGOTIAS UNIVERSITY, GREATER
NOIDA, INDIA

MAY, 2022

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the project, entitled “ Face Mask

Detection using Deep learning ” in partial fulfillment of the requirements for the award of the

BACHELOR OF COMPUTER APPLICATION submitted in the School of Computing

Science and Engineering of Galgotias University, Greater Noida, is an original work carried out

during the period of JANUARY -2022 to JULY -2022, under the supervision of Dr. SEEMA

RANI , Assistant Professor, Department of Computer Science and Engineering of School of

Computing Science and Engineering , Galgotias University, Greater Noida.

The matter presented in the project has not been submitted by me/us for the award of any other

degree of this or any other places.

19SCSE1040027 - SANDEEP SINGH

19SCSE1040015 - DEEPANSHU BANSAL

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

Supervisor

 (Dr. SEEMA RANI,

 Assistant Professor)

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of 19SCSE1040015 –

DEEPANSHU BANSAL, 19SCSE10400127– SANDEEP SINGH has been held on _ and

his/her work is recommended for the award of BACHELOR OF COMPUTER APPLICATION

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date: Place:

ACKNOWLEDGEMENT

Apart from the efforts of our, the success of any project depends

largely on the encouragement and guidelines of many others. We take
this opportunity to express our gratitude to the people who have been

instrumental in the successful completion of this project.

We would like to show my greatest appreciation to DR.

SEEMA RANI . We can’t say thank you enough for his
tremendous support and help. We feel motivated and

encouraged every time, We attend his meeting. Without his

encouragement and guidance this project would not have
materialized.

The guidance and support received from all the members who
contributed and who are contributing to this project, was vital

for the success of the project. We are grateful for their constant

support and help.

Table of Contents

Chapter 1 Introduction 1

1.1 INTRODUCTION 2

1.2 USED TECHNOLOGIES 3

1.3 APPLICATION OF PROJECT

 References Publication/Copyright/Product 25

Chapter 2 Literature Survey/Project Design 5

Chapter 3

Functionality/Working of Project

9

Chapter 4

Results and Discussion

11

Chapter 5

Conclusion and Future Scope

17
 5.1 Conclusion 19
 5.2 Future Scope 21

 Reference

 Publication/Copyright/Product

24

 Abstract

The present scenario of COVID-19 demands an efficient face mask detection

application. The main goal of the project is to implement this system at

entrances of colleges, airports, hospitals, and offices where chances of spread

of COVID-19 through contagion are relatively higher. Reports indicate that

wearing face masks while at work clearly reduces the risk of transmission. It

helps raise awareness and prioritizes health and safety in public places where wearing

a mouth and nose covering is mandatory. Using image recognition and machine-

learning technology, it monitors whether individuals are correctly wearing their face

masks in public spaces by adding a visual overlay. A hybrid model using deep and

classical machine learning for detecting face mask will be presented. A data set is used

to build this face mask detector using Python, OpenCV, and TensorFlow and

Keras. While entering the place everyone should scan their face and then enter

ensuring they have a mask with them. If anyone is found to be without a face

mask, beep alert will be generated. As all the workplaces are opening. The

number of cases of COVID-19 are still getting registered throughout the country. If

everyone follows the safety measures, then it can come to an end. A deep learning-

based approach for detecting masks over faces in public places to curtail the

community spread of Corona virus is present

Chapter 1

Introduction

In this work, a deep learning-based approach for detecting masks over faces in

public places to curtail the community spread of Coronavirus is presented. The

proposed technique efficiently handles occlusions in dense situations by

making use of an ensemble of single and two-stage detectors at the pre-

processing level. The ensemble approach not only helps in achieving high accuracy

but also improves detection speed considerably. Face mask detection refers to

detect whether a person is wearing a mask or not. In fact, the problem is reverse

engineering of face detection where the face is detected using different machine

learning algorithms for the purpose of security, authentication and surveillance.

Face detection is a key area in the field of Computer Vision and Pattern

Recognition.

Although numerous researchers have committed efforts in designing efficient

algorithms for face detection and recognition but there exists an essential

difference between ‘detection of the face under mask’ and ‘detection of mask over

face’. As per available literature, very little body of research is attempted to detect

mask over face.

A. TensorFlow

TensorFlow, an interface for expressing machine learning algorithms, is utilized

for implementing ML systems into fabrication over a bunch of areas of computer

science, including sentiment analysis, voice recognition, geographic information

extraction, computer vision, text summarization, information retrieval,

computational drug discovery and flaw detection to pursue research . In the

proposed model, the whole Sequential CNN architecture (consists of several

layers) uses TensorFlow at backend. It is also used to reshape the data (image) in

the data processing.

B. Keras

Keras gives fundamental reflections and building units for creation and

transportation of ML arrangements with high iteration velocity. It takes full

advantage of the scalability and cross-platform capabilities of TensorFlow. The

core data structures of Keras are layers and models . All the layers used in the

CNN model are implemented using Keras. Along with the conversion of the class

vector to the binary class matrix in data processing, it helps to compile the overall

model.

C. OpenCV

OpenCV (Open Source Computer Vision Library), an open-source computer

vision and ML software library, is utilized to differentiate and recognize faces,

recognize objects, group movements in recordings, trace progressive modules,

follow eye gesture, track camera actions, expel red eyes from pictures taken

utilizing flash, find comparative pictures from an image database, perceive

landscape and set up markers to overlay it with increased reality and so forth. The

proposed method makes use of these features of OpenCV in resizing and color

conversion of data image

Two Face For Face Mask Detection:-

1. Training: Here we’ll focus on loading our face mask detection dataset

from disk, training a model (using Keras/TensorFlow) on this dataset,

and then serializing the face mask detector to disk: Once the face mask

detector is trained, we can then move on to loading the mask detector,

performing face detection, and then classifying each face as With mask

and without mask

2. Deployment: Once the face mask detector is trained, we can then

move on to loading the mask detector, performing face detection,

and then classifying each face as With mask and without mask

 Applications of face mask detection

In our study the public services including hospitals, stations, supermarkets,

banks, stores, or other public places. So, our research proposed an application

of a mask detector to prevent Covid-19 in the public services area.

In this research, we developed an application to solve the problem for break

the distribution chain of COVID-19 in the public service area, because when

someone is outside the house there will be lots of threats of virus transmission.

So the whole community needs to use masks. Then, we aim to develop

applications and investigate mask detectors to prevent Covid-19 because the

use of masks can prevent the transmission of sparks that can be used to protect

others, and help contaminate the environment due to this spark, to minimize

the spread of COVID- 19 due to the use of masks which has been monitored in

public areas

The COVID-19 epidemic has quickly impacted our daily lives by disrupting

trade and the movement of the earth. Wearing a protective face mask has

become a new trend. In the near future, many government service providers

will be asking clients to wear a mask properly to maximize their services.

Therefore, the discovery of a face mask has become an important task of

helping the international community. This paper introduces a simplified way

to achieve this goal using basic machine learning packages such as

TensorFlow, Keras. OpenCV and Scikit-Learn. The proposed method detects

the surface in the image correctly and indicates whether it has a mask on it or

not. As a security guard, it can also detect faces and moving masks. The

method gets high accuracy up to 95.77% and 94.58% respectively on two

separate databases.

We evaluated improved parameter values using the Sequential Convolutional

Neural Network model to determine the presence of the mask correctly

without causing excessive alignment. Section 1 Introduction According to the

official World Health Organization (WHO) Situation Report - 205,

coronavirus 2019 (COVID-19) has infected more than 20 million people

worldwide and caused more than 0.7 million deaths. People with COVID-19

have had a wide range of reported symptoms ranging from mild appearance to

serious illness. Respiratory problems such as shortness of breath or difficulty

breathing are one of them. Adults with pneumonia may be more prone to

COVID-19 complications as they appear to be at higher risk. Other common

human coronaviruses that infect humans worldwide are 229E, HKUI, OC43,

and NL63. Before harming individuals. viruses such as 2019-nCoV,

SARSCOV, and MERS- COV, infect animals and mutate into human

coronaviruses. People with respiratory problems can expose anyone (close to

them) to contagious beads. Circumcision of an unclean person can cause

human infections as droplets that carry the virus

CHAPTER-2

 Literature Survey

Face detection is defined as the procedure that has many applications like face

tracking, pose estimation or compression. Face detection is a two-class

problem where we have to decide if there is a face or not in a picture. This

approach can be seen as a simplified face recognition problem.

Pattern learning and object recognition are the inherent tasks that a

computer vision (CV) technique must deal with. Object recognition

encompasses both image classification and object detection . The task of

recognizing the mask over the face in the pubic area can be achieved by

deploying an efficient object recognition algorithm through surveillance

devices. The object recognition pipeline consists of generating the region

proposals followed by classification of each proposal into related class.

On the way to find the face, the face is found in a picture that has a few

features in it. According to, a facial recognition study requires attention to

speech, facial expressions, and posture. Given the picture alone, the

challenge is to see the face in the picture. Face detection is a difficult task

because the face changes size, shape, color, etc. and does not change. It

becomes a difficult task of blurred image by being blocked by something

other than the camera, and so on. The authors of think that the detection of a

blurred face comes with two major challenges the unavailability of a very

strong database containing both the covered or uncovered surface, and 2) the

extraction without the appearance of the face in the covered area. Using a

locally linear embedding (LLE) algorithm and dictionaries trained in a large

pool of covered face, a cohesive surface of the world, a few misconceptions

can be repeated and the height of facial expressions can be greatly reduced.

According to the work reported in convolutional neural network (CNNs) in

computer vision comes with a strict limit on the size of the input image.

 A common practice is to rearrange images before uploading them to the

network to bypass the block Here's a great job challenge to find the face in the

photo correctly and indicate if you have a mask on it or not. In order to

perform surveillance tasks, the proposed route should also see a face and a

moving mask Section 3 Dataset Two datasets have been used for

experimenting the current method. Dataset 1 consists of 1376 images in which

690 images with people wearing face masks and the rest 686 images with

people who do not wear face mask mostly contains front face pose with

single face in the frame and with same type of mask having white color only.

Dataset 2 from Kaggle consists of 853 images and its countenances are

clarified either with a mask or without a mask. In some face collections are

head. This project uses OpenCV Caffe-based face detector, Keras,

TensorFlow and MobileNetV2 to detect facial masks in humans. The database

used contains 3835 images of which 1916 images have masked characters and

1919 masked characters. The first is a basic model. This is done using Keras

and MobileNetV2. First a basic model is produced and a head model is made

on top of that. The header model consists of a 128 horizontal network, a

"Relu" activation function and a 0.5 drop followed by another 2 horizontal

network and a "softmax" opening function. All three layers are combined,

they will provide a model to be trained. The model produced into a training

database with a label by dividing it into two parts. One section contains 75

percent of the images and is used for training. The remaining part contains 25

percent of the remaining images and is used to test model accuracy.

After the model has been trained, it can be used for facemask detection on a

person's face. A trained model is uploaded and an image containing a face

mask with or without a mask or continuous video streaming with people is

provided as included. The image or video frame, if the input is a video stream,

is first sent to the default face detector module to find the person's face. This

is done by resizing the image or video frame first, then finding the blob in it.

This detected bridge is sent to a face detector model that only removes the

cut-off face of a person with no back. This face is given as part of the model

we have trained before. This weather output is a mask or not. Another model

is trained with human faces. Photos used for model training are provided with

that person's name and email address as labels for those images.

 CHAPTER-3

Working

This project makes the use of OpenCV, Caffe-based face detector, Keras,

TensorFlow and MobileNetV2 for the detection of face mask on humans. The

dataset which is being used contains 3835 images out of which 1916 images have

people with masks in them and 1919 people without masks in them.

First a base model is generated. This is done my using Keras and MobileNetV2.

First a base model is generated and a head model is generated on top of that. The

head model consists of a network with 128 layers, an activation function of “Relu”

and a dropout of 0.5 followed by another network with 2 layers and an activation

function “softmax”. All these three layers combined, will give out model which will

be trained.

The generated model is then trained with the labeled dataset by splitting it into

two portions. One portion contains 75 percent images and it is used for training.

The remaining portion contains the remaining 25 percent of images and is used

for testing the model accuracy. After the model is trained, it can be used for

detection of facemask on human faces.

The trained model is loaded and image which contains human faces with or

without masks or a continuous video stream with humans is given as input. The

image or a frame of the video, in case the input is a video stream, is first sent to

the default face detector module for the detection of human faces. This is done by

resizing the image Or the video frame first, followed by detecting the blob in it.

This detected blob is sent to the face detector model which outputs only the

cropped face of a person without the background. This face is given as the input

to the model which we trained earlier. This outputs weather there is a mask or not.

Another model is trained with the faces of humans. The images used for the

training of the model are provided with the name and email address of that person

as the labels of those images. This is done by using Open CV. When an input

image is given to the CV model, it detects the face of a person and asks the user to

provide the name and email address of that person which will be stored in the

database. The output of the first model is given as the input to this model. This

face will be compared with the persons present in the database. And if his face

matches, then a bounding box will be drawn over his face with his name on it and

an email and Sms will be sent to him that he is not wearing a mask. Else, only the

words “Mask” will be present below the bounding box if the person is wearing a

mask and “No Mask” if the person is not wearing one.

 Two datasets have been used for experimenting the current method. Dataset 1

consists of 1376 images in which 690 images with people wearing face masks and

the rest 686 images with people who do not wear face masks. Fig. I mostly

contains front face pose with single face in the frame and with same type of mask

having white color only. Dataset 2 from Kaggle consists of 853 images and its

countenances are clarified either with a mask or without a mask. In some face

collections are head turn, tilt and slant with multiple faces in the frame and

different types of masks having different colors as well. TensorFlow

 MASK (DATA SETS)

The discovery of a face mask has become an important task of helping the

international community. This paper introduces a simplified way to achieve this

goal using basic machine learning packages such as TensorFlow, Keras. OpenCV

and Scikit-Learn. The proposed method detects the surface in the image correctly

and indicates whether it has a mask on it or not. As a security guard, it can also

detect faces and moving masks. The method gets high accuracy up to 95.77% and

94.58% respectively on two separate databases.

The model is trained, certified and tested on two databases. According to database

1, the method achieves 95.77% accuracy shows how this precision precision

reduces the cost of error. Database 2 is more flexible than Database I as it has more

faces on the frame and different types of masks of different colors as well.

Therefore, the model obtains 94 58% accuracy in database shows the difference

between training and loss of validation associated with the database One of the main

reasons for gaining this accuracy is in Max Pooling. It provides consistent

translation on internal representation and a reduction in the number of parameters

the model should study. This discretization-based sampling process enables input

samples that comprise the image, by reducing their size. The number of neurons has

a set value of 64 which is not very high. Too high a number of neurons and filters

can lead to worse performance. Improved filter values and pool size_help to filter

the main part (face) of the image to determine the presence of the mask correctly

without causing it

SOURCE CODE

import the necessary packages

from tensorflow.keras.applications.mobilenet_v2 import preprocess_input

from tensorflow.keras.preprocessing.image import img_to_array

from tensorflow.keras.models import load_model

from imutils.video import VideoStream

import numpy as np

import imutils

import time

import cv2

import os

def detect_and_predict_mask(frame, faceNet, maskNet):

 # grab the dimensions of the frame and then construct a blob

 # from it

 (h, w) = frame.shape[:2]

 blob = cv2.dnn.blobFromImage(frame, 1.0, (224, 224),

 (104.0, 177.0, 123.0))

 # pass the blob through the network and obtain the face detections

 faceNet.setInput(blob)

 detections = faceNet.forward()

 print(detections.shape)

 # initialize our list of faces, their corresponding locations,

 # and the list of predictions from our face mask network

 faces = []

 locs = []

 preds = []

 # loop over the detections

 for i in range(0, detections.shape[2]):

 # extract the confidence (i.e., probability) associated with

 # the detection

 confidence = detections[0, 0, i, 2]

 # filter out weak detections by ensuring the confidence is

 # greater than the minimum confidence

 if confidence > 0.5:

 # compute the (x, y)-coordinates of the bounding box for

 # the object

 box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])

 (startX, startY, endX, endY) = box.astype("int")

 # ensure the bounding boxes fall within the dimensions of

 # the frame

 (startX, startY) = (max(0, startX), max(0, startY))

 (endX, endY) = (min(w - 1, endX), min(h - 1, endY))

 # extract the face ROI, convert it from BGR to RGB channel

 # ordering, resize it to 224x224, and preprocess it

 face = frame[startY:endY, startX:endX]

 face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)

 face = cv2.resize(face, (224, 224))

 face = img_to_array(face)

 face = preprocess_input(face)

 # add the face and bounding boxes to their respective

 # lists

 faces.append(face)

 locs.append((startX, startY, endX, endY))

 # only make a predictions if at least one face was detected

 if len(faces) > 0:

 # for faster inference we'll make batch predictions on *all*

 # faces at the same time rather than one-by-one predictions

 # in the above `for` loop

 faces = np.array(faces, dtype="float32")

 preds = maskNet.predict(faces, batch_size=32)

 # return a 2-tuple of the face locations and their corresponding

 # locations

 return (locs, preds)

load our serialized face detector model from disk

prototxtPath = r"face_detector\deploy.prototxt"

weightsPath = r"face_detector\res10_300x300_ssd_iter_140000.caffemodel"

faceNet = cv2.dnn.readNet(prototxtPath, weightsPath)

load the face mask detector model from disk

maskNet = load_model("mask_detector.model")

initialize the video stream

print("[INFO] starting video stream...")

vs = VideoStream(src=0).start()

loop over the frames from the video stream

while True:

 # grab the frame from the threaded video stream and resize it

 # to have a maximum width of 400 pixels

 frame = vs.read()

 frame = imutils.resize(frame, width=400)

 # detect faces in the frame and determine if they are wearing a

 # face mask or not

 (locs, preds) = detect_and_predict_mask(frame, faceNet, maskNet)

 # loop over the detected face locations and their corresponding

 # locations

 for (box, pred) in zip(locs, preds):

 # unpack the bounding box and predictions

 (startX, startY, endX, endY) = box

 (mask, withoutMask) = pred

 # determine the class label and color we'll use to draw

 # the bounding box and text

 label = "Mask" if mask > withoutMask else "No Mask"

 color = (0, 255, 0) if label == "Mask" else (0, 0, 255)

 # include the probability in the label

 label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)

 # display the label and bounding box rectangle on the output

 # frame

 cv2.putText(frame, label, (startX, startY - 10),

 cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)

 cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)

 # show the output frame

 cv2.imshow("Frame", frame)

 key = cv2.waitKey(1) & 0xFF

 # if the `q` key was pressed, break from the loop

 if key == ord("q"):

 break

do a bit of cleanup

cv2.destroyAllWindows()

vs.stop()

TRAINING

import the necessary packages

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.applications import MobileNetV2

from tensorflow.keras.layers import AveragePooling2D

from tensorflow.keras.layers import Dropout

from tensorflow.keras.layers import Flatten

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import Input

from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.applications.mobilenet_v2 import preprocess_input

from tensorflow.keras.preprocessing.image import img_to_array

from tensorflow.keras.preprocessing.image import load_img

from tensorflow.keras.utils import to_categorical

from sklearn.preprocessing import LabelBinarizer

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report

from imutils import paths

import matplotlib.pyplot as plt

import numpy as np

import os

initialize the initial learning rate, number of epochs to train for,

and batch size

INIT_LR = 1e-4

EPOCHS = 20

BS = 32

DIRECTORY = r"C:\Mask Detection\CODE\Face-Mask-Detection-master\dataset"

CATEGORIES = ["with_mask", "without_mask"]

grab the list of images in our dataset directory, then initialize

the list of data (i.e., images) and class images

print("[INFO] loading images...")

data = []

labels = []

for category in CATEGORIES:

 path = os.path.join(DIRECTORY, category)

 for img in os.listdir(path):

 img_path = os.path.join(path, img)

 image = load_img(img_path, target_size=(224, 224))

 image = img_to_array(image)

 image = preprocess_input(image)

 data.append(image)

 labels.append(category)

perform one-hot encoding on the labels

lb = LabelBinarizer()

labels = lb.fit_transform(labels)

labels = to_categorical(labels)

data = np.array(data, dtype="float32")

labels = np.array(labels)

(trainX, testX, trainY, testY) = train_test_split(data, labels,

 test_size=0.20, stratify=labels, random_state=42)

construct the training image generator for data augmentation

aug = ImageDataGenerator(

 rotation_range=20,

 zoom_range=0.15,

 width_shift_range=0.2,

 height_shift_range=0.2,

 shear_range=0.15,

 horizontal_flip=True,

 fill_mode="nearest")

load the MobileNetV2 network, ensuring the head FC layer sets are

left off

baseModel = MobileNetV2(weights="imagenet", include_top=False,

 input_tensor=Input(shape=(224, 224, 3)))

construct the head of the model that will be placed on top of the

the base model

headModel = baseModel.output

headModel = AveragePooling2D(pool_size=(7, 7))(headModel)

headModel = Flatten(name="flatten")(headModel)

headModel = Dense(128, activation="relu")(headModel)

headModel = Dropout(0.5)(headModel)

headModel = Dense(2, activation="softmax")(headModel)

place the head FC model on top of the base model (this will become

the actual model we will train)

model = Model(inputs=baseModel.input, outputs=headModel)

loop over all layers in the base model and freeze them so they will

not be updated during the first training process

for layer in baseModel.layers:

 layer.trainable = False

compile our model

print("[INFO] compiling model...")

opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS)

model.compile(loss="binary_crossentropy", optimizer=opt,

 metrics=["accuracy"])

train the head of the network

print("[INFO] training head...")

H = model.fit(

 aug.flow(trainX, trainY, batch_size=BS),

 steps_per_epoch=len(trainX) // BS,

 validation_data=(testX, testY),

 validation_steps=len(testX) // BS,

 epochs=EPOCHS)

make predictions on the testing set

print("[INFO] evaluating network...")

predIdxs = model.predict(testX, batch_size=BS)

for each image in the testing set we need to find the index of the

label with corresponding largest predicted probability

predIdxs = np.argmax(predIdxs, axis=1)

show a nicely formatted classification report

print(classification_report(testY.argmax(axis=1), predIdxs,

 target_names=lb.classes_))

serialize the model to disk

print("[INFO] saving mask detector model...")

model.save("mask_detector.model", save_format="h5")

plot the training loss and accuracy

N = EPOCHS

plt.style.use("ggplot")

plt.figure()

plt.plot(np.arange(0, N), H.history["loss"], label="train_loss")

plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss")

plt.plot(np.arange(0, N), H.history["accuracy"], label="train_acc")

plt.plot(np.arange(0, N), H.history["val_accuracy"], label="val_acc")

plt.title("Training Loss and Accuracy")

plt.xlabel("Epoch #")

plt.ylabel("Loss/Accuracy")

plt.legend(loc="lower left")

plt.savefig("plot.png")

 REQUIREMENTS

tensorflow>=1.15.2

keras==2.3.1

imutils==0.5.3

numpy==1.18.2

opencv-python==4.2.0.*

matplotlib==3.2.1

 scipy==1.4.1

 CHAPTER 4

 RESULT AND DISCUSSION

The model is trained, validated and tested upon two datasets. Corresponding

to dataset 1, the method attains accuracy up to 95.77% . depicts how this

optimized accuracy mitigates the cost of error. Dataset 2 is more versatile

than dataset 1 as it has multiple faces in the frame and different types of

masks having different colors as well. Therefore, the model attains an

accuracy of 94.58% on dataset depicts the contrast between training and

validation loss corresponding to dataset . One of the main reasons behind

achieving this accuracy lies in Max Pooling. It provides rudimentary

translation invariance to the internal representation along with the reduction in

the number of parameters the model has to learn. This sample-based

discretization process down-samples the input representation consisting of

image, by reducing its dimensionality. Number of neurons has the optimized

value of 64 which is not too high. A much higher number of neurons and

filters can lead to worse performance. The optimized filter values and

pool_size help to filter out the main portion (face) of the image to detect the

existence of mask correctly without causing over-fitting.

This is done using an Open CV. When a photo is provided with a CV model, it

identifies the person's face and asks the user to provide that person's name and email

address to be stored on the website. The output of the first model is provided as input

to this model. This face will be compared to the people present on the website. And if

her face is the same, then a binding box will be drawn with her name and email and

sms will be sent to her that she is not wearing a mask. Alternatively, only "Mask"

words will appear below the check box if the person is wearing a mask and "No

Mask" if the person is not wearing it

 CHAPTER 5

CONCLUSION

We briefly explained the motivation of the work at first. Then, we

illustrated the learning and performance task of the model. Using

basic ML tools and simplified techniques the method has achieved

reasonably high accuracy. It can be used for a variety of

applications. Wearing a mask may be obligatory in the near future,

considering the Covid-19 crisis. Many public service providers

will ask the customers to wear masks correctly to avail of their

services. The deployed model will contribute immensely to the

public health care system. In future it can be extended to detect if a

person is wearing the mask properly or not. The model can be

further improved to detect if the mask is virus prone or not i.e. the

type of the mask is surgical, N95 or not.

 REFERENCES

[1] P.B. Kanade, and P. Gumaste, Brain tumor detection using MRI images. vol. Vol.

3. Brain, 2015.

[2]. A. Ben Rabeh, F. Benzarti, and H. Amiri, "Segmentation of brain MRI using

active contour model",Int. J. Imaging Syst. Technol., vol. 27, no. 1, pp. 3-11,

2017.[http://dx.doi.org/10.1002/ima.22205]

 [3]. K. Kamnitsas, C. Ledig, V.F.J. Newcombe, J.P. Simpson, A.D. Kane, D.K.

Menon, D. Rueckert, andB. Glocker, "Efficient multi-scale 3D CNN with fully

connected CRF for accurate brain lesion segmentation", Med. Image Anal., vol. 36,

pp. 61-78, 2017.[http://dx.doi.org/10.1016/j.media.2016.10.004] [PMID: 27865153]

 [4]. K.B. Vaishnave, and K. Amshakala, "An automated MRI brain image

segmentation and tumordetection using SOM-clustering and proximal support vector

machine classifier", IEEE Int.Conf.Engineering and Technology (ICETECH),

2015[http://dx.doi.org/10.1109/ICETECH.2015.7275030]

 [5]. N.J. Tustison, B.B. Avants, P.A. Cook, Y. Zheng, A. Egan, P.A. Yushkevich,

and J.C. Gee, "N4ITK:improved N3 bias correction", IEEE Trans. Med. Imaging, vol.

29, no. 6, pp. 1310-1320, 2010.[http://dx.doi.org/10.1109/TMI.2010.2046908]

[PMID: 20378467]

 [6]. K. Siddiqi, Y.B. Lauzière, A. Tannenbaum, and S.W. Zucker, "Area and length

minimizing flows forshape segmentation", IEEE Trans. Image Process., vol. 7, no. 3,

pp. 433-443, 1998.[http://dx.doi.org/10.1109/83.661193] [PMID: 18276263]

 [7]. J.G. Sled, A.P. Zijdenbos, and A.C. Evans, "A nonparametric method for

automatic correction ofintensity nonuniformity in MRI data", IEEE Trans. Med.

Imaging, vol. 17, no. 1, pp. 87-97, 1998.[http://dx.doi.org/10.1109/42.668698]

[PMID: 9617910] 39.

 [8]. A. Parveen Singh, "Detection of brain tumor in MRI images, using combination

of fuzzy Cmeans andSVM", 2nd Int. Conf. Signal Processing and Integrated

Networks (SPIN), 2015 pp. 98- 102[http://dx.doi.org/10.1109/SPIN.2015.7095308]

[9]. Bhandary, A. Deep-learning framework to detect lung abnormality–A study with

chest X-Ray and lung CT scan images. Pattern Recogn. Lett. 2020, 129, 271–278.

[10]. https://braintumor.org/wp-content/assets/WHO-Central-Nervous-System-

TumorClassification. [11].https://www.dreamstime.com/brain-cancer-different-types-

primary-brain-tumors-brain-cancerdifferent-types-primary-brain-tumors-categorized-

image158760967

	A Project Report
	On
	Face Mask Detection Using Deep Learning
	Under The Supervision of DR. SEEMA RANI
	SANDEEP SINGH (19SCSE1040027)
	SCHOOL OF COMPUTING SCIENCE AND ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING GALGOTIAS UNIVERSITY, GREATER NOIDA, INDIA

	SCHOOL OF COMPUTING SCIENCE AND ENGINEERING
	CANDIDATE’S DECLARATION

	ACKNOWLEDGEMENT
	Table of Contents
	Abstract
	A. TensorFlow
	B. Keras
	C. OpenCV
	Two Face For Face Mask Detection:-
	CHAPTER-2
	CHAPTER-3
	REQUIREMENTS
	tensorflow>=1.15.2
	keras==2.3.1
	imutils==0.5.3
	numpy==1.18.2
	opencv-python==4.2.0.*
	matplotlib==3.2.1
	scipy==1.4.1
	CHAPTER 4
	CHAPTER 5

