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         Abstract 

 
 

The present scenario of COVID-19 demands an efficient face mask detection 

application. The main goal of the project is to implement this system at 

entrances of colleges, airports, hospitals, and offices where chances of spread 

of COVID-19 through contagion are relatively higher. Reports indicate that 

wearing face masks while at work clearly reduces the risk of transmission. It 

helps raise awareness and prioritizes health and safety in public places where wearing 

a mouth and nose covering is mandatory. Using image recognition and machine-

learning technology, it monitors whether individuals are correctly wearing their face 

masks in public spaces by adding a visual overlay. A hybrid model using deep and 

classical machine learning for detecting face mask will be presented. A data set is used 

to build this face mask detector using Python, OpenCV, and TensorFlow and 

Keras. While entering the place everyone should scan their face and then enter 

ensuring they have                      a mask with them. If anyone is found to be without a face 

mask, beep alert will be generated. As all the workplaces are opening. The 

number of cases of COVID-19 are still getting registered throughout the country. If 

everyone follows the safety measures, then it can come to an end. A deep learning-

based approach for detecting masks over faces in public places to curtail the 

community spread of Corona virus is present 



Chapter  1 

Introduction 

 

In this work, a deep learning-based approach for detecting masks over faces in 

public places to curtail the community spread of Coronavirus is presented. The 

proposed technique efficiently handles occlusions in dense situations by 

making use of an ensemble of single and two-stage detectors at the pre-

processing level. The ensemble approach not only helps in achieving high accuracy 

but also improves detection speed considerably. Face mask detection refers to 

detect whether a person is wearing a mask or not. In fact, the problem is reverse 

engineering of face detection where the face is detected using different machine 

learning algorithms for the purpose of security, authentication and surveillance. 

Face detection is a key area in the field of Computer Vision and Pattern 

Recognition. 

Although numerous researchers have committed efforts in designing efficient 

algorithms for face detection and recognition but there exists an essential 

difference between ‘detection of the face under mask’ and ‘detection of mask over 

face’. As per available literature, very little body of research is attempted to detect 

mask over face. 



 

 

A. TensorFlow 

 
TensorFlow, an interface for expressing machine learning algorithms, is utilized 

for implementing ML systems into fabrication over a bunch of areas of computer 

science, including sentiment analysis, voice recognition, geographic information 

extraction, computer vision, text summarization, information retrieval, 

computational drug discovery and flaw detection to pursue research . In the 

proposed model, the whole Sequential CNN architecture (consists of several 

layers) uses TensorFlow at backend. It is also used to reshape the data (image) in 

the data processing. 

 

B. Keras 

 
Keras gives fundamental reflections and building units for creation and 

transportation of ML arrangements with high iteration velocity. It takes full 

advantage of the scalability and cross-platform capabilities of TensorFlow. The 

core data structures of Keras are layers and models . All the layers used in the 

CNN model are implemented using Keras. Along with the conversion of the class 

vector to the binary class matrix in data processing, it helps to compile the overall 

model. 

 

 



C. OpenCV 

 
OpenCV (Open Source Computer Vision Library), an open-source computer 

vision and ML software library, is utilized to differentiate and recognize faces, 

recognize objects, group movements in recordings, trace progressive modules, 

follow eye gesture, track camera actions, expel red eyes from pictures taken 

utilizing flash, find comparative pictures from an image database, perceive 

landscape and set up markers to overlay it with increased reality and so forth. The 

proposed method makes use of these features of OpenCV in resizing and color 

conversion of data image 

 

Two Face For Face Mask Detection:- 

 
 

1. Training: Here we’ll focus on loading our face mask detection dataset 

from disk, training a model (using Keras/TensorFlow) on this dataset, 

and then serializing the face mask detector to disk: Once the face mask 

detector is trained, we can then move on to loading the mask detector, 

performing face detection, and then classifying each face as With mask 

and without mask 

 

 



 
2. Deployment: Once the face mask detector is trained, we can then 

move on to loading the mask detector, performing face detection, 

and then classifying each face as With mask and without mask 

 



        Applications of face mask detection 

 

 
In our study the public services including hospitals, stations, supermarkets, 

banks, stores, or other public places. So, our research proposed an application 

of a mask detector to prevent Covid-19 in the public services area. 

In this research, we developed an application to solve the problem for break 

the distribution chain of COVID-19 in the public service area, because when 

someone is outside the house there will be lots of threats of virus transmission. 

So the whole community needs to use masks. Then, we aim to develop 

applications and investigate mask detectors to prevent Covid-19 because the 

use of masks can prevent the transmission of sparks that can be used to protect 

others, and help contaminate the environment due to this spark, to minimize 

the spread of COVID- 19 due to the use of masks which has been monitored in 

public areas  

 

The COVID-19 epidemic has quickly impacted our daily lives by disrupting 

trade and the movement of the earth. Wearing a protective face mask has 

become a new trend. In the near future, many government service providers  

 



will be asking clients to wear a mask properly to maximize their services. 

Therefore, the discovery of a face mask has become an important task of 

helping the international community. This paper introduces a simplified way 

to achieve this goal using basic machine learning packages such as 

TensorFlow, Keras. OpenCV and Scikit-Learn. The proposed method detects 

the surface in the image correctly and indicates whether it has a mask on it or 

not. As a security guard, it can also detect faces and moving masks. The 

method gets high accuracy up to 95.77% and 94.58% respectively on two 

separate databases.  

We evaluated improved parameter values using the Sequential Convolutional 

Neural Network model to determine the presence of the mask correctly 

without causing excessive alignment. Section 1 Introduction According to the 

official World Health Organization (WHO) Situation Report - 205, 

coronavirus 2019 (COVID-19) has infected more than 20 million people 

worldwide and caused more than 0.7 million deaths. People with COVID-19 

have had a wide range of reported symptoms ranging from mild appearance to 

serious illness. Respiratory problems such as shortness of breath or difficulty 

breathing are one of them. Adults with pneumonia may be more prone to 



COVID-19 complications as they appear to be at higher risk. Other common 

human coronaviruses that infect humans worldwide are 229E, HKUI, OC43, 

and NL63. Before harming individuals. viruses such as 2019-nCoV, 

SARSCOV, and MERS- COV, infect animals and mutate into human 

coronaviruses. People with respiratory problems can expose anyone (close to 

them) to contagious beads. Circumcision of an unclean person can cause 

human infections as droplets that carry the virus 



CHAPTER-2 

 
 

      Literature Survey 
 

 
Face detection is defined as the procedure that has many applications like face 

tracking, pose estimation or compression. Face detection is a two-class 

problem where we have to decide if there is a face or not in a picture. This 

approach can be seen as a simplified face recognition problem. 

 

 

Pattern learning and object recognition are the inherent tasks that a   

computer vision (CV) technique must deal with. Object recognition 

encompasses both image classification and object detection . The task of 

recognizing the mask over the face in the pubic area can be achieved by 

deploying an efficient object recognition algorithm through surveillance 

devices. The object recognition pipeline consists of generating the region 

proposals followed by classification of each proposal into related class.  

On the way to find the face, the face is found in a picture that has a few 

features in it. According to, a facial recognition study requires attention to 

speech, facial expressions, and posture. Given the picture alone, the  

 



challenge is to see the face in the picture. Face detection is a difficult task 

because the face changes size, shape, color, etc. and does not change. It 

becomes a difficult task of blurred image by being blocked by something 

other than the camera, and so on. The authors of think that the detection of a 

blurred face comes with two major challenges the unavailability of a very 

strong database containing both the covered or uncovered surface, and 2) the 

extraction without the appearance of the face in the covered area. Using a 

locally linear embedding (LLE) algorithm and dictionaries trained in a large 

pool of covered face, a cohesive surface of the world, a few misconceptions 

can be repeated and the height of facial expressions can be greatly reduced. 

According to the work reported in convolutional neural network (CNNs) in 

computer vision comes with a strict limit on the size of the input image. 

 

 A common practice is to rearrange images before uploading them to the 

network to bypass the block Here's a great job challenge to find the face in the 

photo correctly and indicate if you have a mask on it or not. In order to 

perform surveillance tasks, the proposed route should also see a face and a 

moving mask Section 3 Dataset Two datasets have been used for  

 



experimenting the current method. Dataset 1 consists of 1376 images in which 

690 images with people wearing face masks and the rest 686 images with 

people who do not wear face mask  mostly contains front face pose with 

single face in the frame and with same type of mask having white color only. 

Dataset 2 from Kaggle consists of 853 images and its countenances are 

clarified either with a mask or without a mask. In some face collections are 

head. This project uses OpenCV Caffe-based face detector, Keras, 

TensorFlow and MobileNetV2 to detect facial masks in humans. The database 

used contains 3835 images of which 1916 images have masked characters and 

1919 masked characters. The first is a basic model. This is done using Keras 

and MobileNetV2. First a basic model is produced and a head model is made 

on top of that. The header model consists of a 128 horizontal network, a 

"Relu" activation function and a 0.5 drop followed by another 2 horizontal 

network and a "softmax" opening function. All three layers are combined, 

they will provide a model to be trained. The model produced into a training 

database with a label by dividing it into two parts. One section contains 75 

percent of the images and is used for training. The remaining part contains 25 

percent of the remaining images and is used to test model accuracy.  

 



After the model has been trained, it can be used for facemask detection on a 

person's face. A trained model is uploaded and an image containing a face 

mask with or without a mask or continuous video streaming with people is 

provided as included. The image or video frame, if the input is a video stream, 

is first sent to the default face detector module to find the person's face. This 

is done by resizing the image or video frame first, then finding the blob in it. 

This detected bridge is sent to a face detector model that only removes the 

cut-off face of a person with no back. This face is given as part of the model 

we have trained before. This weather output is a mask or not. Another model 

is trained with human faces. Photos used for model training are provided with 

that person's name and email address as labels for those images.



  CHAPTER-3 

  

Working 

 
 

This project makes the use of OpenCV, Caffe-based face detector, Keras, 

TensorFlow and MobileNetV2 for the detection of face mask on humans. The 

dataset which is being used contains 3835 images out of which 1916 images have 

people with masks in them and 1919 people without masks in them. 

 

First a base model is generated. This is done my using Keras and MobileNetV2. 

First a base model is generated and a head model is generated on top of that. The 

head model consists of a network with 128 layers, an activation function of “Relu” 

and a dropout of 0.5 followed by another network with 2 layers and an activation 

function “softmax”. All these three layers combined, will give out model which will 

be trained. 

 

The generated model is then trained with the labeled dataset by splitting it into 

two portions. One portion contains 75 percent images and it is used for training. 

The remaining portion contains the remaining 25 percent of images and is used 

for testing the model accuracy. After the model is trained, it can be used for 

detection of facemask on human faces.  

 



The trained model is loaded and image which contains human faces with or 

without masks or a continuous video stream with humans is given as input. The 

image or a frame of the video, in case the input is a video stream, is first sent to 

the default face detector module for the detection of human faces. This is done by 

resizing the image Or    the video frame first, followed by detecting the blob in it. 

This detected blob is sent to the face detector model which outputs only the 

cropped face of a person without the background. This face is given as the input 

to the model which we trained earlier. This outputs weather there is a mask or not. 

 

Another model is trained with the faces of humans. The images used for the 

training of the model are provided with the name and email address of that person 

as the labels of those images. This is done by using Open CV. When an input 

image is given to the CV model, it detects the face of a person and asks the user to 

provide the name and email address of that person which will be stored in the 

database. The output of the first model is given as the input to this model. This 

face will be compared with the persons present in the database. And if his face 

matches, then a bounding box will be drawn over his face with his name on it and 

an email and Sms will be sent to him that he is not wearing a mask. Else, only the 

words “Mask” will be present below the bounding box if the person is wearing a 

mask and “No Mask” if the person is not wearing one. 

 



 Two datasets have been used for experimenting the current method. Dataset 1 

consists of 1376 images in which 690 images with people wearing face masks and 

the rest 686 images with people who do not wear face masks. Fig. I mostly 

contains front face pose with single face in the frame and with same type of mask 

having white color only. Dataset 2 from Kaggle consists of 853 images and its 

countenances are clarified either with a mask or without a mask. In some face 

collections are head turn, tilt and slant with multiple faces in the frame and 

different types of masks having different colors as well. TensorFlow 

 

                 MASK (DATA SETS) 

 



 

 

The discovery of a face mask has become an important task of helping the 

international community. This paper introduces a simplified way to achieve this 

goal using basic machine learning packages such as TensorFlow, Keras. OpenCV 

and Scikit-Learn. The proposed method detects the surface in the image correctly 

and indicates whether it has a mask on it or not. As a security guard, it can also 

detect faces and moving masks. The method gets high accuracy up to 95.77% and 

94.58% respectively on two separate databases.  

 



The model is trained, certified and tested on two databases. According to database 

1, the method achieves 95.77% accuracy shows how this precision precision 

reduces the cost of error. Database 2 is more flexible than Database I as it has more 

faces on the frame and different types of masks of different colors as well. 

Therefore, the model obtains 94 58% accuracy in database shows the difference 

between training and loss of validation associated with the database One of the main 

reasons for gaining this accuracy is in Max Pooling. It provides consistent 

translation on internal representation and a reduction in the number of parameters 

the model should study. This discretization-based sampling process enables input 

samples that comprise the image, by reducing their size. The number of neurons has 

a set value of 64 which is not very high. Too high a number of neurons and filters 

can lead to worse performance. Improved filter values and pool size_help to filter 

the main part (face) of the image to determine the presence of the mask correctly 

without causing it 

 



 

 

SOURCE CODE 
 

 

# import the necessary packages 

from tensorflow.keras.applications.mobilenet_v2 import preprocess_input 

from tensorflow.keras.preprocessing.image import img_to_array 

from tensorflow.keras.models import load_model 

from imutils.video import VideoStream 

import numpy as np 

import imutils 

import time 

import cv2 

import os 

 

def detect_and_predict_mask(frame, faceNet, maskNet): 

    # grab the dimensions of the frame and then construct a blob 

    # from it 

    (h, w) = frame.shape[:2] 

    blob = cv2.dnn.blobFromImage(frame, 1.0, (224, 224), 

        (104.0, 177.0, 123.0)) 

 

    # pass the blob through the network and obtain the face detections 

    faceNet.setInput(blob) 

    detections = faceNet.forward() 

    print(detections.shape) 

 

    # initialize our list of faces, their corresponding locations, 

    # and the list of predictions from our face mask network 

    faces = [] 

    locs = [] 

    preds = [] 

 

    # loop over the detections 

    for i in range(0, detections.shape[2]): 

        # extract the confidence (i.e., probability) associated with 

        # the detection 

        confidence = detections[0, 0, i, 2] 

 

        # filter out weak detections by ensuring the confidence is 

        # greater than the minimum confidence 

        if confidence > 0.5: 

            # compute the (x, y)-coordinates of the bounding box for 

            # the object 

            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) 

            (startX, startY, endX, endY) = box.astype("int") 

 



            # ensure the bounding boxes fall within the dimensions of 

            # the frame 

            (startX, startY) = (max(0, startX), max(0, startY)) 

            (endX, endY) = (min(w - 1, endX), min(h - 1, endY)) 

 

            # extract the face ROI, convert it from BGR to RGB channel 

            # ordering, resize it to 224x224, and preprocess it 

            face = frame[startY:endY, startX:endX] 

            face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) 

            face = cv2.resize(face, (224, 224)) 

            face = img_to_array(face) 

            face = preprocess_input(face) 

 

            # add the face and bounding boxes to their respective 

            # lists 

            faces.append(face) 

            locs.append((startX, startY, endX, endY)) 

 

    # only make a predictions if at least one face was detected 

    if len(faces) > 0: 

        # for faster inference we'll make batch predictions on *all* 

        # faces at the same time rather than one-by-one predictions 

        # in the above `for` loop 

        faces = np.array(faces, dtype="float32") 

        preds = maskNet.predict(faces, batch_size=32) 

 

    # return a 2-tuple of the face locations and their corresponding 

    # locations 

    return (locs, preds) 

 

# load our serialized face detector model from disk 

prototxtPath = r"face_detector\deploy.prototxt" 

weightsPath = r"face_detector\res10_300x300_ssd_iter_140000.caffemodel" 

faceNet = cv2.dnn.readNet(prototxtPath, weightsPath) 

 

# load the face mask detector model from disk 

maskNet = load_model("mask_detector.model") 

 

# initialize the video stream 

print("[INFO] starting video stream...") 

vs = VideoStream(src=0).start() 

 

# loop over the frames from the video stream 

while True: 

    # grab the frame from the threaded video stream and resize it 

    # to have a maximum width of 400 pixels 

    frame = vs.read() 

    frame = imutils.resize(frame, width=400) 

 

    # detect faces in the frame and determine if they are wearing a 



    # face mask or not 

    (locs, preds) = detect_and_predict_mask(frame, faceNet, maskNet) 

 

    # loop over the detected face locations and their corresponding 

    # locations 

    for (box, pred) in zip(locs, preds): 

        # unpack the bounding box and predictions 

        (startX, startY, endX, endY) = box 

        (mask, withoutMask) = pred 

 

        # determine the class label and color we'll use to draw 

        # the bounding box and text 

        label = "Mask" if mask > withoutMask else "No Mask" 

        color = (0, 255, 0) if label == "Mask" else (0, 0, 255) 

 

        # include the probability in the label 

        label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100) 

 

        # display the label and bounding box rectangle on the output 

        # frame 

        cv2.putText(frame, label, (startX, startY - 10), 

            cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2) 

        cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2) 

 

    # show the output frame 

    cv2.imshow("Frame", frame) 

    key = cv2.waitKey(1) & 0xFF 

 

    # if the `q` key was pressed, break from the loop 

    if key == ord("q"): 

        break 

 

# do a bit of cleanup 

cv2.destroyAllWindows() 

vs.stop() 

                                                          

 

 

 

 

 

 

 

 

 

 



 

TRAINING 
 

# import the necessary packages 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

from tensorflow.keras.applications import MobileNetV2 

from tensorflow.keras.layers import AveragePooling2D 

from tensorflow.keras.layers import Dropout 

from tensorflow.keras.layers import Flatten 

from tensorflow.keras.layers import Dense 

from tensorflow.keras.layers import Input 

from tensorflow.keras.models import Model 

from tensorflow.keras.optimizers import Adam 

from tensorflow.keras.applications.mobilenet_v2 import preprocess_input 

from tensorflow.keras.preprocessing.image import img_to_array 

from tensorflow.keras.preprocessing.image import load_img 

from tensorflow.keras.utils import to_categorical 

from sklearn.preprocessing import LabelBinarizer 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import classification_report 

from imutils import paths 

import matplotlib.pyplot as plt 

import numpy as np 

import os 

 

# initialize the initial learning rate, number of epochs to train for, 

# and batch size 

INIT_LR = 1e-4 

EPOCHS = 20 

BS = 32 

 

DIRECTORY = r"C:\Mask Detection\CODE\Face-Mask-Detection-master\dataset" 

CATEGORIES = ["with_mask", "without_mask"] 

 

# grab the list of images in our dataset directory, then initialize 

# the list of data (i.e., images) and class images 

print("[INFO] loading images...") 

 

data = [] 

labels = [] 

 

for category in CATEGORIES: 

    path = os.path.join(DIRECTORY, category) 

    for img in os.listdir(path): 

        img_path = os.path.join(path, img) 

        image = load_img(img_path, target_size=(224, 224)) 

        image = img_to_array(image) 

        image = preprocess_input(image) 

 



        data.append(image) 

        labels.append(category) 

 

# perform one-hot encoding on the labels 

lb = LabelBinarizer() 

labels = lb.fit_transform(labels) 

labels = to_categorical(labels) 

 

data = np.array(data, dtype="float32") 

labels = np.array(labels) 

 

(trainX, testX, trainY, testY) = train_test_split(data, labels, 

    test_size=0.20, stratify=labels, random_state=42) 

 

# construct the training image generator for data augmentation 

aug = ImageDataGenerator( 

    rotation_range=20, 

    zoom_range=0.15, 

    width_shift_range=0.2, 

    height_shift_range=0.2, 

    shear_range=0.15, 

    horizontal_flip=True, 

    fill_mode="nearest") 

 

# load the MobileNetV2 network, ensuring the head FC layer sets are 

# left off 

baseModel = MobileNetV2(weights="imagenet", include_top=False, 

    input_tensor=Input(shape=(224, 224, 3))) 

 

# construct the head of the model that will be placed on top of the 

# the base model 

headModel = baseModel.output 

headModel = AveragePooling2D(pool_size=(7, 7))(headModel) 

headModel = Flatten(name="flatten")(headModel) 

headModel = Dense(128, activation="relu")(headModel) 

headModel = Dropout(0.5)(headModel) 

headModel = Dense(2, activation="softmax")(headModel) 

 

# place the head FC model on top of the base model (this will become 

# the actual model we will train) 

model = Model(inputs=baseModel.input, outputs=headModel) 

 

# loop over all layers in the base model and freeze them so they will 

# *not* be updated during the first training process 

for layer in baseModel.layers: 

    layer.trainable = False 

 

# compile our model 

print("[INFO] compiling model...") 

opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS) 



model.compile(loss="binary_crossentropy", optimizer=opt, 

    metrics=["accuracy"]) 

 

# train the head of the network 

print("[INFO] training head...") 

H = model.fit( 

    aug.flow(trainX, trainY, batch_size=BS), 

    steps_per_epoch=len(trainX) // BS, 

    validation_data=(testX, testY), 

    validation_steps=len(testX) // BS, 

    epochs=EPOCHS) 

 

# make predictions on the testing set 

print("[INFO] evaluating network...") 

predIdxs = model.predict(testX, batch_size=BS) 

 

# for each image in the testing set we need to find the index of the 

# label with corresponding largest predicted probability 

predIdxs = np.argmax(predIdxs, axis=1) 

 

# show a nicely formatted classification report 

print(classification_report(testY.argmax(axis=1), predIdxs, 

    target_names=lb.classes_)) 

 

# serialize the model to disk 

print("[INFO] saving mask detector model...") 

model.save("mask_detector.model", save_format="h5") 

 

# plot the training loss and accuracy 

N = EPOCHS 

plt.style.use("ggplot") 

plt.figure() 

plt.plot(np.arange(0, N), H.history["loss"], label="train_loss") 

plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss") 

plt.plot(np.arange(0, N), H.history["accuracy"], label="train_acc") 

plt.plot(np.arange(0, N), H.history["val_accuracy"], label="val_acc") 

plt.title("Training Loss and Accuracy") 

plt.xlabel("Epoch #") 

plt.ylabel("Loss/Accuracy") 

plt.legend(loc="lower left") 

plt.savefig("plot.png") 
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tensorflow>=1.15.2  

keras==2.3.1 

imutils==0.5.3 

numpy==1.18.2 

opencv-python==4.2.0.* 
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                                                CHAPTER 4 
 

 

                                 RESULT AND DISCUSSION 

 
 

The model is trained, validated and tested upon two datasets. Corresponding 

to dataset 1, the method attains accuracy up to 95.77% .  depicts how this 

optimized accuracy mitigates the cost of error. Dataset 2 is more versatile 

than dataset 1 as it has multiple faces in the frame and different types of 

masks having different colors as well. Therefore, the model attains an 

accuracy of 94.58% on dataset depicts the contrast between training and 

validation loss corresponding to dataset . One of the main reasons behind 

achieving this accuracy lies in Max Pooling. It provides rudimentary 

translation invariance to the internal representation along with the reduction in 

the number of parameters the model has to learn. This sample-based 

discretization process down-samples the input representation consisting of 

image, by reducing its dimensionality. Number of neurons has the optimized 

value of 64 which is not too high. A much higher number of neurons and 

filters can lead to worse performance. The optimized filter values and 

pool_size help to filter out the main portion (face) of the image to detect the 

existence of mask correctly without causing over-fitting. 



 

This is done using an Open CV. When a photo is provided with a CV model, it 

identifies the person's face and asks the user to provide that person's name and email 

address to be stored on the website. The output of the first model is provided as input 

to this model. This face will be compared to the people present on the website. And if 

her face is the same, then a binding box will be drawn with her name and email and 

sms will be sent to her that she is not wearing a mask. Alternatively, only "Mask" 

words will appear below the check box if the person is wearing a mask and "No 

Mask" if the person is not wearing it



 

           CHAPTER 5 

 

 

CONCLUSION 
 

 
 

We briefly explained the motivation of the work at first. Then, we 

illustrated the learning and performance task of the model. Using 

basic ML tools and simplified techniques the method has achieved 

reasonably high accuracy. It can be used for a variety of 

applications. Wearing a mask may be obligatory in the near future, 

considering the Covid-19 crisis. Many public service providers 

will ask the customers to wear masks correctly to avail of their 

services. The deployed model will contribute immensely to the 

public health care system. In future it can be extended to detect if a 

person is wearing the mask properly or not. The model can be 

further improved to detect if the mask is virus prone or not i.e. the 

type of the mask is surgical, N95 or not. 
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