

School of Engineering

M.Tech Power System Engineering Semester End Examination - Jun 2024

Duration: 180 Minutes Max Marks: 100

Sem II - G2PI204B - Power Electronics Applications in Renewable Energy Systems

General Instructions

Answer to the specific question asked
Draw neat, labelled diagrams wherever necessary
Approved data hand books are allowed subject to verification by the Invigilator

1)	Define an AC-DC-AC converter, and what is its role in distributed	K1(2)
	power generation systems?	
2)	Explain how the bandgap of a semiconductor material influences	K2(4)
	the efficiency of a solar cell.	
3)	Explain, how do wind farm accessories contribute to the overall	K2(6)
	performance and efficiency of wind turbines in a wind farm?	
4)	Can you illustrate the operation of a parabolic trough solar collector	K3(9)
	used for solar thermal energy conversion?	
5)	Can you illustrate the operation of a grid-tied wind energy system	K3(9)
	with power electronics for grid support services?	
6)	Examine the significance of energy security and resilience in	K5(10)
	ensuring reliable energy supply.	
7)	Analyze the impact of reactive power compensation provided by	K4(12)
	AC-DC-AC converters on grid stability and power quality.	
8)	Examine the role of pitch control systems in regulating rotor blade	K5(15)
	angle for optimal energy capture.	
9)	Examine the importance of interconnection techniques, such as	K5(15)
	series and parallel connections, in solar cell arrays.	
10)	Elaborate on the concept of energy transition and its implications	K6(18)
	for global energy markets and geopolitics.	