

School of Computing Science and Engineering Master of Technology in Computer Science and Engineering

Semester End Examination - Jun 2024

Duration: 180 Minutes Max Marks: 100

Sem II - R1PV202B - MachineLearning

General Instructions

Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	List the advantages of bagging over boosting.	K1 (2)
2)	Describe the ROC curve and AUC score. How are they used to assess the performance of binary classification algorithms?	K2 (4)
3)	Describe precision and recall. How are they calculated from a confusion matrix.	K2 (6)
4)	Evaluate the performance of a logistic regression model using receiver operating characteristic (ROC) curve and area under the curve (AUC) metrics.	K3 (9)
5)	Use logistic regression to predict the probability of an event occurring given certain independent variables, and determine the optimal threshold for classification.	K3 (9)
6)	Discuss strategies for dealing with class imbalance in logistic regression, such as oversampling, undersampling, or using class weights.	K5 (10)
7)	Discuss strategies for tuning hyperparameters in a Random Forest model, such as the number of trees, maximum depth, or minimum samples per leaf.	K4 (12)
3)	Using the concept of conditional independence, simplify a given Bayesian belief network by removing redundant nodes and edges.	K5 (15)
9)	Construct a Bayesian belief network to model the relationship between symptoms and diseases, given a set of conditional probability tables (CPTs).	K5 (15)
10)	Construct a Bayesian belief network to model the relationship between various features of a financial dataset and predict the likelihood of a stock price increase or decrease.	K6 (18)