K3(6)

School of Computing Science and Engineering

Bachelor of Computer Applications Semester End Examination - Jun 2024

Duration: 180 Minutes Max Marks: 100

Sem II - C1UC323T - Linear Algebra

General Instructions

Answer to the specific question asked

Draw neat, labelled diagrams wherever necessary

Approved data hand books are allowed subject to verification by the Invigilator

1) 2) 3)	Explain whether \mathbb{R}^2 is a subspace of \mathbb{R}^3 ? Let C be the set of all continuous real valued functions defined on \mathbb{R} and let D be the set of all differentiable real valued functions defined on \mathbb{R} . Show that C and D are subspaces of F, the vector space of all real-valued functions defined on \mathbb{R} . Verify the rank-nullity theorem for the linear transformation T: $\mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x,y) = (x+y, x-y, y)$.	K1(3) K2(4) K2(6)
4)	Classify the following matrices into singular and non-singular matrices: $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 2 \\ -3 & 6 \end{bmatrix}$ $C = \begin{bmatrix} 7 & 4 \\ 0 & 5 \end{bmatrix}, D = \begin{bmatrix} 0 & 0 \\ 2 & -1 \end{bmatrix}$	K3(6)

Consider the matrix $A = \begin{pmatrix} 2 & 3 \\ x & y \end{pmatrix}$. If the eigen values of A are 4 and 8, then find the values of x and y.

Let $A = \begin{pmatrix} 4 & -2 \\ -9 & 3 \end{pmatrix}$. Compute

- (a) the characteristic polynomial of A,
- (b) the eigenvalues of A,
- (c) a basis for each eigenspace of A and
- (d) the algebraic and geometric multiplicity of each eigen value.

7) Let
$$A = \begin{pmatrix} 2 & 8 \\ 1 & -1 \end{pmatrix}$$
. Compute

- (a) the characteristic polynomial of A,
- (b) the eigenvalues of A,

- (c) a basis for each eigenspace of A and
- (d) the algebraic and geometric multiplicity of each eigen value.

8)
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 3 & -1 & 3 \\ 2 & 0 & 1 \end{pmatrix}$$
. Compute

- (a) the characteristic polynomial of A,
- (b) the eigenvalues of A.
- (c) a basis for each eigenspace of A and
- (d) the algebraic and geometric multiplicity of each eigen value.

9)
$$A = \begin{pmatrix} 1 & 2 & 0 \\ -1 & -1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
. Compute

- (a) the characteristic polynomial of A,
- (b) the eigenvalues of A.
- (c) a basis for each eigenspace of A and
- (d) the algebraic and geometric multiplicity of each eigen value.
- 10) Let the linear transformation T: $\mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x, y, z) = K5(10) (x + y - z, x + y + z, y - z). Then find matrix of linear transformation T with respect to the ordered basis (a) $B = \{(0, 1, 0), (0, 0, 1), (1, 0, 0)\}$ and

 - (b) $B = \{(1,0,0), (1,1,0), (1,1,1)\}.$
- 11) K5(15) Find the values of λ and μ for which the system of linear equations: x + 2y + z = 6, x + 4y + 3z = 10, $x + 4y + \lambda z = \mu$, has
 - (a) a unique solution,
 - (b) infinite number of solutions,

that the obtained solution is correct.

(c) no solution.

Solve the system of equations
$$x_1 + 3x_2 + 4x_3 = 4$$
, $-x_1 + 3x_2 + 2x_3 = 2$, and $3x_1 + 9x_2 + 6x_3 = -6$ by Gauss elimination. Further, also verify

12) Determine whether $A = \begin{pmatrix} 2 & -1 \\ -3 & 4 \end{pmatrix}$ is diagonalizable and if so, find K6(12) an invertible matrix P and a diagonal matrix D such that . $P^{-1}AP = D.$