

School of Computing Science and Engineering

Bachelor of Technology in Computer Science and Engineering Semester End Examination - Jun 2024

Duration : 180 Minutes Max Marks : 100

	Sem II - C1UC222B - Engineering Mathematics-II	
	<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator	
1)	Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by	K1(3)
	$T(a_1, a_2, a_3) = (3a_1 - 2a_2 + a_3, a_1 - 3a_2 - 2a_3)$. Find the matrix	
2)	associated with T with respect to standard basis. Find the general solution of second order linear homogeneous differential equation	K2(4)
	$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 0$	()
3)	Find the directional derivative of $f(x, y, z) = xy^2 + 4xyz + z^2$ at the point (1, 2, 3) in the direction of $3i + 4j - 5k$.	K2(6)
4)	Apply separation of variable method to solve the following partial differential equation	K3(6)
5)	$2u_t + u_x = 0.$ Determine whether the differential equation cos(x + y)dx + (2y + cos(x + y))dy = 0	K3(6)
6)	Is exact. If exact, solve it. Evaluate the line integral $\oint_c (3x^2 - 8y^2)dx + (4y - 6xy)dy$ where C	K3(9)

- is the boundary of the region defined by x = 0, y = 0, x + y = 1. 7) K3(9) Solve: $x^2y'' - 3xy' + 3y = 3\ln(x)$
- 8) Find the general solution of the following heat equation: K4(8) $u_t - u_{xx} = 0$; with initial condition u(0,t) = 0 = u(L,t).
- 9) K4(12) Solve $y'' - 2y' - 8y = e^x sinx.$
- 10) K5(10) Solve: $\frac{d^2y}{dx^2} - \frac{dy}{dx} = e^{3x}$ with initial condition y(0) = 1, y'(0) = 2.

Solve: $x^2y'' - 5xy' + 6y = 21ln(x)$

11)

OR

Consider the set $B = \{v_1, v_2, v_3\}$ where vectors: $v_1 = (1,1,1), v_2 = (1,1,2), v_3 = (1,2,-4)$. Is B K5(15) an orthonormal set? If not, find the orthonormal set corresponding to set B using Gram-Schmidt orthogonalization process.

12) Let u(x,t) be the solution of initial value problem $u_t - u_{xx} = 0$, u(0,t) = 0, u(80,t) = 0and $u(x,0) = 100sin(\pi x/80)$. Find the solution u.

OR

Let S consist of the following vectors in \mathbb{R}^4 : $u_1 = (1,1,0,-1), u_2 = (1,2,1,3),$ $u_3 = (1,1,-9,2), u_4 = (16,-13,1,3).$ Show that

1. S is orthogonal,

2. S forms a basis of \mathbb{R}^4 .