

School of Basic Sciences

Bachelor of Science Honours in Physics Semester End Examination - Jun 2024

Duration: 180 Minutes Max Marks: 100

Sem IV - C1UD403T - Electromagnetic Theory

General Instructions

Answer to the specific question asked
Draw neat, labelled diagrams wherever necessary
Approved data hand books are allowed subject to verification by the Invigilator

1) 2) 3)	Define magnetization and magnetic dipole moment. What is Nicol's prism and its use in polarization. Write Maxwell's equation in differential and integral form for good conductors.	K1(3) K2(4) K2(6)
4)	Illustrate the magnetic boundary conditions when Electromagnetic wave propagates from one linear medium to another linear medium.	K3(6)
5)	Derive the one dimensional general wave equation and find the solution for wave equation.	K3(6)
6) 7)	Explain specific rotation using diagram. Briefly explain about the wave incident obliquely to the surface of perfect conductor.	K3(9) K3(9)
8)	Explain field energy and power transmitted in optical fiber Communications.	K4(8)
9)	Discuss the advantages of optical fiber communication system with respect to wavelength and attenuation.	K4(12)
10)	A step index fiber has a normalized frequency V = 29.9 at 13.50 nm wavelength. If the core radius is 35 μ m, find the numerical aperture.	K5(10)
11)	Derive General Field relation for time varying electric and magnetic fields using Maxwell's' equations.	K5(15)
	OR	
	Write Maxwell equation for conducting medium and find its solutions.	K5(15)
12)	What is the difference between acceptance angle, critical angle and numerical aperture? OR	K6(12)
	Draw a block diagram of fiber optic communication system and describe the function of each component.	K6(12)