

ADMISSION NUMBER											

School of Engineering

B.TECH Electronics and Communication Engineering in Artificial Intelligence and Machine

Mid Term Examination - May 2024

Duration : 90 Minutes Max Marks : 50

Sem VI - G2UC604T - Information Theory and Coding

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Why is Huffman code called as minimum redundancy code?	K2 (2)
2)	Identify the properties of entropy.	K1 (3)
3)	What is the main idea of discrete memory-less channel and its matrix form involving transition probabilities?	K2 (4)
4)	A source emits one of four symbols S1, S2, S3 and S4 with probabilities {1/3, 1/6, 1/4, 1/4}. Determine entropy, average code word length and coding efficiency using Huffman coding.	K2 (6)
5)	An analog signal is band limited to 500 Hz and is sampled at Nyquist rate. The samples are quantized into 4 levels. The quantization levels are assumed to be independent and occur with probability $P1 = P4 = 1/8$, $P2 = P3 = 3/8$. Determine the information rate of the source.	K3 (6)
6)	A card is drawn from a deck, determine the information i). If drawn card is a spade ii). If drawn card is an ace iii). If drawn card is an ace of spades iv) Is the information obtained in (c) is the sum of the information's obtained in (a) & (b).	K3 (9)
7)	Given a binary source with two symbols X1 and X2. Given X2 is twice as long as X1 and half as probable. The duration of X1 is 0.3 seconds. Determine the information rate of the source.	K4 (8)
8)	A discrete memory less source has an alphabet of five symbols whose probabilities of occurrence are as described here Symbols: X1, X2, X3, X4, X5 Probability: 0.2, 0.2, 0.1, 0.1, 0.4 Compare the Huffman code for this source. Also calculates the efficiency of the source encoder.	K4 (12)
	OR	
	A voice grade channel of telephone network has a bandwidth of 3.4 kHz. Determine (i) The information capacity of the telephone channel for a signal to noise ratio of 30 dB and	K4 (12)

(ii) The minimum signal to noise ratio required to support information transmission through the telephone channel at the rate of 9.6Kb/s