

ADMISSION NUMBER													

School of Engineering

B.TECH Civil Engineering Mid Term Examination - May 2024

Duration : 90 Minutes Max Marks : 50

Sem IV - C1UC421T - Probability and Statistics

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Define mutually exclusive events and exhaustive events.					
2)	Define sample space and event with example.					
3)	lf P(A) P(A∩B	=1/4, P(B)=1/2 and P(AUB)=5/8 then what is the value of	K2 (4)			
4)	Find th	e mean of the given frequency distribution e following data:	K2 (6)			
	Marks	No. of Students				
	0-4	3				
	5-9	5				
	10-14	7				
	15-19	4				
	20-24	6				
5)	State a	ddition and multiplication theorem for probability.	K3 (6)			
6)	From th	ne following data compute standard deviation	K3 (9)			
		erval Frequency				
	0-4	4				
	4-8	8				
	8-12	2				
	12-16	1				
7)	Constru	uct a straight line to the following data by least square method.	K4 (8)			
	X 10 5 8	12 3				
	Y573	7 6				
8)	Find th $Y = A + B$	e equations for fitting the straight line	K4 (12)			
		OR				
	In a be	olt factory, three machines M1, M2, and M3 manufacture 2000,	, K4 (12)			

2500, and 4000 bolts every day. Of their output 3%, 4%, and 2.5% are defective bolts. One of the bolts is drawn very randomly from a day's production and is found to be defective. What is the probability that it

was produced by machine M₂?