

ADMISSION NUMBER											

School of Basic Sciences

Bachelor of Science Honours in Chemistry Mid Term Examination - May 2024

Duration : 90 Minutes Max Marks : 50

Sem IV - C1UB403B - Electrochemistry and Magnetism

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Explain Conductivity.	K2 (2)
2)	Define an electrolyte and a non-electrolyte according to Arrhenius.	K1 (3)
3)	Explain how Arrhenius theory explain the conductivity of electrolyte solutions.	K2 (4)
4)	Explain the significance of the Debye-Hückel-Onsager equation.	K2 (6)
5)	Illustrate transference numbers and their relation to ionic mobilities.	K3 (6)
6)	Illustrate the principle of titration in volumetric analysis. What is titration, and how does it help determine the concentration of a substance in a solution? Provide an example of a common titration technique and its application in analytical chemistry.	K3 (9)
7)	Analyze transference numbers and explain their significance in electrolyte solutions. Discuss how transference numbers are related to the movement of ions in solution.	K4 (8)
8)	Analyze three applications of conductance measurement.	K4 (12)

OR

Analyze the Hittorf method for the determination of transference ^{K4 (12)} numbers.