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ABSTRACT 

 

The Water Energy Food (WEF) nexus is an interdependent approach which provides 

mutual integration for a sustainable ecosystem. WEF ecosystem nexuses provide the solution to 

achieve long-term environmental, economic and social goals. Particularly, an effective irrigation 

system optimizes the usage of water, reduces the consumption of energy and increase the food 

production.  An advanced water management system required for agriculture because huge 

amount of fresh water is wasted while doing the irrigation. An irrigation system is the process of 

managing water for helping the plants to gets efficient way. The different types of irrigation 

system used for agriculture such as surface, micro, Drip, and etc. An effective irrigation system 

required proper requirement analysis. The wireless system, IoT and sensors used to help the 

requirement and environments analysis. Recent technologies such as IoT, machine and deep 

learning help to analysis the present and future requirements of water and nutrition of plants.   

Water and energy consumption in the agriculture industry is not accurately calculated, 

water efficiency and planning are crucial. An irrigated field waste an enormous quantity of water 

in irrigation system. The integration of current technology offers a solution for water 

management and for establishing the right irrigation plan. In this thesis concentrated irrigation 

requirement analysis using the different parameters for crops. Particularly in this research used 

banana cultivation for experimental setup and data collections. 

In this thesis three methodologies used for irrigation requirement analysis and prediction 

of water requirements. The first methodologies used IoT sensors, reinforcement learning and 

KNN algorithms for model creations. The second methodology used cloud storage, long short-

term memory (LSTM), and adaptive network fuzzy inference system (ANFIS) techniques and 

transfer learning used for requirement prediction for irrigations. Using the LSTM algorithm short 

term requirement is analysis, ANFIS is used to calculate the long-term requirement analysis’s 

and Transfer learning used to reuse the pre-trained model form one farm to other form for better 

predictions. The third methodology used reinforcement learning KNN algorithm model in the 

federated learning environments. Using the federated learning better optimized model is created 

and updated the model using the different parameters. Using this model user data not shared with 

other farmers.  
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The proposed methodologies were implemented using the banana dataset and datasets are 

collected form location is 8.2473502, 77.2743729,345 (Kanyakumari, Tamil Nadu). The 

experiments are evaluated using R2, MSLE and accuracy. Using the first methodology 30 to 40% 

of water is optimized compared to the manual water irrigation.  Using the second methodology at 

8, 16, 24, 32, and 48 h requirements were predicted. Using the third methodology the accuracy of 

the predictions was increased from 92.1% to 97.2 %.   
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Chapter I 

Introduction 

1.1. Introduction 

Due to an expanding population and the need for food production, the 

agriculture sector utilizes around 70% of fresh water [1]. A huge amount of water and 

energy is wasted in irrigation systems. A total of 40% [2,3] of water is wasted because 

of evaporation, poor water management and poor irrigation systems. The water–energy–

food (WEF) nexus is an interdependent approach which provides mutual integration for 

a sustainable ecosystem. Particularly, an effective irrigation system optimizes the usage 

of water and reduces the consumption of energy. WEF ecosystem nexuses provide the 

solution to achieve long-term environmental, economic and social goals. Effective, 

sustainable water utilization is achieved for irrigation systems and reduces water usage. 

In addition, due to global changes, lower rainfall rates, and climatic changes, a huge 

amount of water is also required for plants. Requirement analysis and management of 

water supply to plants are important to research in today’s agricultural society. Based on 

varying environmental changes, water requirements for plants are managed using an 

irrigation system. Different water-optimization techniques and effective water-

management systems are used to reduce water usage and achieve an effective water-

requirements prediction system for plants, to increase production yields. Effective 

irrigation and scheduling systems are needed for society, and they increase productivity 

and reduce water usage. 

Energy conservation and water management are crucial in today's society. 

Precision irrigation reduces energy utilization while managing water use. The irrigation 

system is made up of a system for observation, storing, processing, and making 

decisions. Data from actual grounds, including soil moisture, soil temperature, weather, 

and environmental variables are collected using IoT components. With the help of 

several parameters, we can optimize the demands and reduce energy use. The IoT 

components' observed data is kept in a cloud environment. Machine learning methods 

anticipate irrigation system performance using data from cloud environments. In-depth 

irrigation system models and decision-making based on numerous data are presented in 

this thesis. Agriculture is the primary consumer of both fresh water and electricity. 
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Seventy percent of the water consumed worldwide is used for agriculture. Out of this, 

only around 25% of the water and power are used efficiently; the remainder is lost. For 

a range of jobs in agriculture, including planting, sowing, spraying, weeding, and 

harvesting, water and electricity are used. As a result, there is a significant amount of 

trash produced along with the consumption of fresh water and electricity. Therefore, the 

optimization solutions consume less water and electricity . The productivity of crops is 

also increased by proper water use. Due to these elements, civilization needs efficient 

water use and ways of optimization. 

The most recent effective technology applications lower the usage of water and 

power in many different industries. Various electronics components, techniques, and 

optimization algorithms are introduced by researchers from different domains. All 

industries will benefit from today's Internet of Things (IoT) and machine learning 

technology, which will help cut energy use and increase production. IoT and machine 

learning have a variety of applications in several industries, including agriculture, road 

transportation, and optimization. This method integrated machine learning and IoT for 

energy efficiency and appropriate irrigation techniques for utilizing water. The Internet 

of Things (IoT) is an assortment of mechanical, firmware-based, and programming-

based devices that are connected to one another. Data is collected using IoT devices and 

handled through cloud computing. The process of machine learning is automated that 

boosts output by taking lessons from the past. Effective machine learning methods 

include Bayesian statistics, neural networks, k-Nearest Neighbors (k-NN), support 

vector machines (SVM), decision trees (DT), and other mathematical models. The use 

of these mathematical learning models enables efficient analysis and judgment for 

particular purposes. 

The following are the three phases of processing for energy management and 

efficient irrigation system use using IoT and machine learning:  

i. Data collection, transmission, and gathering 

ii. ii. The layer of intelligence and data processing 

iii. The application layers 

The layers above have a variety of elements and functions. Data transmission 

and collection are done in the first stage. Data processing receives information collected 
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from fields or agricultural grounds. Sensors are used as certain physical components for 

data collection and processing. The main parts of the data collection process and 

transmission are Mobile data or Wi-Fi connections, local data processing using the 

ZigBee network, Wireless sensor Nodes (Single Sensor Node, Multiple Sensor Node), 

controlling components, Raspberry Pi, and other actual motors are managed by physical 

devices. The second layer is the processing of data layer, where the gathered data is 

processed using artificial intelligence and machine learning methods. Using the second 

layer, decisions are made. The application layer, the third layer, receives data from the 

second layer. Based on the output of the second layer, improvements, and enhancements 

for the third layer are planned. The complete data set is maintained in the cloud for 

preparing the future. Figure 1.1 displays the layers, IoT components, and machine 

learning method for realistic systems of irrigation representations. 

Figure 1.1, data processing structure is divided into layers, each of which has its 

own unique set of challenges. The main problems with layers and structure in general 

are as follows. 

i. There are certain manual components in the irrigation systems as a 

whole. 

ii.      Getting data from bottom layer and conveying it to the top levels is one of 

the more challenging tasks for the integration component of each layer. 

• Combining various handling levels. 

• Calculation of the water content and slope of each particular piece of land. 

• On the basis of atmospheric action, humidity, and rain, water optimization is 

selected. 
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Figure 1.1: Layers and Components of irrigation system 

They are the principal considerations that go into the different irrigation system 

projects. The quantity of moisture in the ground and plant soil, monitoring of land 

slopes, maximum plant use, month-by-month water usage, and best use based on power 

utilization were all considered in this suggested study. 

1.2. Irrigation System 

Multiple container, pump, and sprinkling device types are used to artificially add 

water to the soil. Irrigation is widely employed in areas with variable rainfall, dry spells, 

or imminent drought. There are a variety of irrigation methods available that uniformly 

distribute water throughout the entire area. All types of water can be used for irrigation, 

including groundwater from spring or water wells, surface-level water from rivers, 

lakes, or dams, as well as water from untraditional sources such as wastewater that has 

been treated or water that has been desalinated. In order to lower the risk of 

contamination, it is essential for farmers to protect their agricultural water source. As 

with any groundwater withdrawal, users of irrigation water must take care to prevent 

pumping groundwater out of an aquifer more quickly than it is filling [4]. 
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1.2.1. Types of Irrigation System 

Surface irrigation 

The earliest and most widely utilized type of irrigation is surface irrigation. In 

order to moist and permeate the soil, aerial (flood, or level basins) irrigation networks 

convey water across the highest point of agricultural lands. There are several different 

types of surface irrigation, include raise, boundary strip, and reservoir irrigation. A 

frequent phrase for irrigation that causes or almost causes flooding of the cultivated land 

is "flood irrigation.” This has historically been widely used method for irrigating 

agricultural land, and the majority of the world still use it. Where irrigation source water 

levels permit, dikes, which are normally filled with earth, are used to regulate levels. 

This is a typical sight in rice fields with tiers, also known as "rice paddies," whenever 

the method is applied to control or flood each area's water supply. In other cases, either 

human or animal power is used to pump or elevate the water above the level of the land. 

Surface irrigation typically has a poorer water application efficiency when contrasted 

with different kinds of irrigation [5]. 

Micro-irrigation 

Micro-irrigation is a technique in which each plant or the region surrounding it 

is, treated to a little discharge of water that is dispersed via a network at low pressure of 

pipes in a specified sequence. Other names for it include trickling irrigation, low 

volume irrigation, and confined irrigation. This set of irrigation techniques includes 

subsurface drip irrigation (SDI), conventional drip watering with individual 

contributors, micro spray or micro sprinkler cultivation, and mini-bubbler irrigation. 

Drip Irrigation 

Sometimes referred to as trickling irrigation, drip (or micro) irrigation, carries 

out what its name implies. This mechanism receives water at the roots, drip by drip. 

Water is slowly applied to plant roots or areas around. This method of irrigation may be 

the most water-saving one if runoff and reduced evaporation. Efficiency of field 

irrigation with drip watering is normally between 80 and 90 percent when done 

correctly. To further reduce evaporation and distribute nutrients, contemporary 

agriculture typically uses plastic mulch and drip watering. Fertigation is the name of the 

procedure. 
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Sprinklers for irrigation 

In order to irrigate the field using sprinklers water is routed to a few central 

spots throughout the field for overhead irrigation or other purposes. Sprinklers, sprays, 

or guns that are mounted above the ground on risers that are permanently erected are 

used in solid-set irrigation systems. Rotating sprinklers with a higher pressure are 

known as rotors, they are propelled by impact, ball drives, or gear drives. You can make 

rotors fully or partially revolve. Guns typically have nozzle sizes between 10 and 50 

mm (0.5 to 1.9 in), work at exceptionally high pressure of 275 to 900 kPa (40 to 130 

psi), and flow rates of 3 to 76 L/s (50 to 1200 US gal/min). In industrial settings, guns 

are employed for irrigation in addition to activities like logging and dust suppression. 

Additionally, moving platforms that are hosed to a water source may have 

sprinklers attached to them. Mobile sprinklers are unattended irrigation systems on 

wheels that automatically pass through locations like parks, sports fields, cemeteries, 

meadows, and small farms. Most of them employ a section of polyethylene tubing 

looped around a steel drum. The sprinkler is propelled around the field by irrigation 

water or a miniature gas engine as the tubing is coiled around the drum. The mechanism 

turns off as the sprinkler returns to the reel. They are extensively used for irrigation, 

dust control, and waste water application on land and are commonly referred to as 

"water reel" moving irrigation sprinklers. Others pull the sprinkler platform with a rope 

while pulling a flat rubber hose behind them. 

Pivot centre 

Sprinklers are positioned along the length of numerous pipe segments (often 

composed of aluminum or galvanized steel), which have been affixed to one another 

and held up by trusses, in centre pivot irrigation. The pipe is mounted on towers with 

wheels. Water is supplied to the system, which circulates in a circle, near the arc's pivot 

point at the middle. Any sort of terrain can be irrigated thanks to the widespread use of 

these systems. The next image shows that sprinkler heads in more recent systems can 

detach. 

In order to prevent evaporative losses, the majority of centre pivot systems as of 

2017 have drips hanging from a U-shaped pipeline connected at the highest point of the 

pipe with spraying nozzles which are situated just a few feet (at most) above the crop. 
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The water can be dispersed between crops using drag hoses or bubblers in addition to 

drops. Crops are usually seeded in a circle to conform to the centre pivot. This kind of 

system is known as a LEPA (Low Energy Precision Application) system. The majority 

of centre pivots were initially operated by water. Both hydraulic and electrical motor-

driven devices (Reinke, Valley, and Zimmatic) took their place. GPS components are 

commonly seen in modern pivots. 

Watering via lateral movement (side roll, wheel line, wheel move) Several pipes 

are linked together, each with a 1.5 m-diameter wheel mounted in the centre and 

sprinklers spaced out along its length. Water is supplied by a big hose at one end. When 

one strip of the field has received enough irrigation, the hose is disconnected, the water 

is eliminated from the system, and the assembly is moved either by hand or with the 

help of a specially designed mechanism to move the sprinkler systems to another spot 

along the field. Now the hose can be reconnected. Up until the entire field has been 

watered, the procedure is repeated in a pattern. 

Since this approach doesn't automatically move across the field like a central 

pivot does, it needs to be manually filled with water, rolled to a new strip, and then 

again manually filled with water. Most systems use aluminum pipe that is 100 or 130 

mm in diameter (4 or 5 inches). The pipe functions as an axle to turn all of the wheels as 

well as a conduit for water to move through. The wheel line is rolled by the clamped-

together pipe sections under the supervision of a drive system, which is frequently 

positioned in the centre of the wheel line. Each wheel's location may need to be adjusted 

manually if the system becomes out of alignment. 

Wheel line systems have height restrictions on the crops they can irrigate as well 

as a cap on the amount of water they can convey. A lateral move system has the benefit 

of being composed of readily separated components that, as the line is altered, adapt to 

the shape of the field. They are used most often in tiny, rectilinear, or unconventionally 

shaped areas, in steep or rugged terrain, or in places where labour is reasonably priced. 

lawn irrigation system 

A permanent installation, as compared to hose-end emitters that can be moved, is 

a feature of a lawn sprinkler system. Sprinkler systems are put on lawns at homes, 

businesses, cemeteries, schools, public parks, and golf courses. Since aesthetics are so 
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important in a landscape, the majority of these irrigation systems' components are 

hidden beneath. The number of zones in a typical sprinkler system for a lawn will 

depend on how much water the water supply can hold. Each zone will contain a distinct 

portion of the terrain. Typically, the microclimate, plant life type, and system of 

irrigation type are used to break up the landscape. In addition to sprinkler zones, an 

outdoor watering system might include bubblers, drip irrigation, and additional 

components. 

Even if manual systems are still in use, the majority of a lawn sprinkler system's 

irrigation controller, often known as a clock or timer, can automate the system. The bulk 

of automation systems employ electric solenoid valves. These valves are wired to the 

controller and can be found in one or more zones. The valve opens when the controller 

delivers power to it, letting water flow through the sprinkler within that zone. 

Pop-up spray heads and rotors are the two most typical sprinkler designs used to 

wet lawns. Rotors have a number of spinning streams, while spray heads have a set 

spray pattern. Larger areas are covered by rotors, whereas smaller ones are by spray 

heads. Golf course rotors can occasionally be so big that just one sprinkler and the valve 

will fit are combined to create a "valve in head." If applied to a turf area, the tops of the 

sprinklers are flush with the ground. Upon pressurization of the system, the head will 

raise above the surface and water the targeted area until the control valve closes, 

shutting the zone off.  The sprinkler head retracts back into the earth when the lateral 

line is not anymore under strain. Sprinklers can be installed on risers above ground to be 

flush-set like in a lawn area or even higher pop-up sprinklers in shrubbery or flowerbeds 

regions. 

Sprinklers Irrigation 

Hose-end sprinklers come in a variety of varieties. Numerous them are scaled-

down copies of huge agriculture and gardening sprinklers that can be connected to a 

garden hose for use in irrigation. Others have a sled base made to be dragged while 

connected to the hose, while some have a spiked base that allows them to be quickly 

trapped in the ground. 
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Subirrigation 

When the water table is high, field crops have been sub irrigated for a very long 

time. This technique raises the water level table artificially so that moisture can be 

introduced to the soil from the plant rooted' bottoms. These systems often feature 

drainage structures and are situated on continuous grassland in lowlands or valleys of 

rivers. A network of weirs, gates, and pumping stations enables for the management of 

the water table by raising or lowering the amount of water in a system of ditches. 

Subirrigation is sometimes used while growing plants in commercial 

greenhouses, typically used for plants in pots. Pumps from below draw water up, it is 

absorbed, while any additional water that remains is taken away for reuse. The usual 

procedure is to flood or run a water and nutrient solution through a trough for 10 to 20 

minutes before pumping it into a container for storage once more for later use. In 

greenhouses, sub-irrigation calls for fairly pricey, high-tech management and 

equipment. Reduced system upkeep and automation, labor cost reductions, and nutrient 

and water conservation are all advantages. In both theory and practice, it works 

similarly to irrigation in subsurface basins. 

The self-watering container is another kind of subirrigation, sometimes called 

sub irrigated planter. It involves employing a wicking material, like polyester rope, to 

suspend a planter above a reservoir. The wick is elevated by the water's capillary action. 

The wicking bed is a comparable method that also utilizes capillary action. 

Subsurface irrigation for textiles 

Subsurface Textile Irrigation (SSTI), a technique, was developed especially for 

subirrigation in a variety of soil types, from desert sand to deep clay. An impermeable 

base layer (usually made of polyethylene or polypropylene), a dripping line flowing 

down that foundation, an additional layer of geotextile on top above the drip line, and 

then a narrow impervious layer on top of the geotextile makes up an ordinary 

subterranean textile system for irrigation (see diagram). Contrary to conventional drip 

irrigation, up to two meters away from the dripper, the geotextile transfers water along 

the cloth, therefore the emitter spacing in the drip pipe is not crucial. It is effective to 

generate an artificial water table.  
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1.3. IoT for Irrigation System  

In cloud environments, data collection and storage are done using the Data 

Collection and Transmission layers [6]. Table 1.1 and Figure 1.2 present the essential 

elements and the functions of each element. Data is gathered using a number of sensors 

in the WSN settings. Prior to sending the data to the cloud environments, the WSN 

environments internally process it. To keep track of the condition of the soil and land in 

diverse contexts, a number of detectors and electronic inclinometers are employed. 

Using a digital inclinometer, the research circumstance reveals a slope and distortion 

pattern. The slope's stability may be easily checked, and a digital inclinometer can also 

send status alerts. The data collection process using various sensors is shown in Figure 

1.3. 

 

Figure 1.2: IoT Components of Irrigation System 
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Table 1.1: Components of smart irrigation system 

S.No Components Usage 

1 F-28 
Use of a soil sensor to 

control soil moisture 

2 
RS485, 

HPT675  

Evaluation of the water 

condition 

3 THERM200 Temperature of the soil 

4 HTM2500LF 
Measure water vapour and 

humidity  

5 SHT11 Root Moisture   

6 WSN  
Surveillance, Monitoring 

and transmission 

7 M2M (ZigBee) 
Personal communication 

network 

8 
Digital 

Inclinometer 

Gradient and slope of land 

measured. 

 

 

Figure 1.3: Data Collection from various sources 
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The different types of sensors are used to absorb and measure the irrigation 

environment for an effective irrigation. The some of the dominant sensors and 

components are as follows.  

Moisture sensors: Soil moisture sensors estimate soil moisture. They might be 

handheld probes or stationary sensors. The field has fixed positions and depths for 

stationary sensors, but numerous locations can measure the soil moisture using portable 

probes. 

Temperature Sensors: Temperature sensors measure greenhouse humidity, light, and 

more. Farmers can use a sensor to determine when the greenhouse temperature dips too 

low to grow tomatoes. The sensor will inform them to turn on heaters or plug-in 

radiators to keep the greenhouse warm. Plant development and health depend on soil 

temperature. In addition to temperatures, a temperature sensor may measure soil 

moisture. Wet or dry crop cultivation benefits from temperature-based sensors. They 

measure soil thermal energy to determine plant growth conditions. 

Digital Inclinometer:  It measures an object's tilt, relative to gravity. Precision farming 

relies on inclinometers to optimize plough performance. Farmers can optimize seedbed 

preparation and crop growth by correctly measuring plough inclination to ensure equal 

depth and furrow formation. The Plough Digital Inclinometer aids precision farmers in 

many ways. This unique technology has several benefits and uses: 

• Plough Digital Inclinometer provides exact inclination measurements to 

help farmers maintain regular ploughing depth across the field for optimal crop growth 

and seedbed preparation. 

• With wireless connectivity and data transfer, the inclinometer lets 

farmers monitor plough performance in real time and make on-the-spot modifications. 

Real-time feedback improves efficiency and reduces errors. 

• Plow inclination data from the inclinometer can be evaluated to learn 

about field conditions, soil profiles, and ploughing technique improvements. This data-

driven strategy helps farmers optimize their farming operations. 

Humidity Sensors: Electronic humidity sensors monitor atmospheric humidity at 

minimal cost. Also called hygrometers. Absolute, relative, and specific humidity can be 
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measured. Relative and absolute humidity sensors are classed by kind. Air humidity 

measures water vapor. Relative and absolute humidity are calculated. In industrial and 

medicinal settings, relative humidity matters. Humidity over thresholds can cause 

control system failure and weather prediction inaccuracies. Measurement of humidity 

values is crucial for security and safety. Humidity sensors measure humidity. Air 

temperature is measured through relative sensors and above 100 degrees Celsius, this 

sensor is useless. 

WSN: A wireless connection module links many sensor nodes in the wireless sensor 

network (WSN). These nodes can self-organize and be deployed precisely or randomly 

because they can process, transmit, and sense. Sensor nodes in a WSN are field-

scattered. Each node collects and routes data to produce a view of the controlled field 

from above. Data is transmitted to a base station for treatment via direct or indirect 

sensors utilizing a multi-step architecture. When data analysis and decision-making 

need external network communication, a gateway network can be used by the main 

station [7]. 

An ad hoc network with three primary tasks is a wireless sensor network: 

i. Sensing: Nodes gather the required data.  

ii. Communication: Nodes exchange information with one another, the 

console, and the base station. 

iii. Computing with algorithms, hardware, microcontrollers, and programs. 

Some of the WSN characteristics include are as follows: 

i. Numerous sensor nodes (from a few tens to thousands). 

ii. Scalability: WSN protocols are designed to work well with varying 

network sizes and node counts, enabling them to thrive in various 

scenarios, including increased workload and network growth, enhancing 

their potential for various applications. 

iii. Self-operation in remote or hostile places without supervision.  

iv. Easy to use. 
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v. Limited sensor node power and storage. 

vi. Node failure handling: Wireless sensor networks face diverse 

environmental circumstances in hostile or inaccessible settings.  

To meet this difficulty, the WSN protocol stack offers techniques for handling 

node failures in difficult situations. 

M2M (ZigBee): The ZigBee Alliance developed the wireless communication system 

known as ZigBee (ZigBee Specifications, 2020). It depends on the IEEE 802.15.4 

standard (IEEE Standard for Information Technology, 2006), which specifies the 

number of communication protocols used in the design and creation of an individual 

local area network that is wireless with minimal power radio waves with a low data rate 

(IEEE Std, 2011). Zigbee is also perfect for frequent and intermediary data 

transmissions from an input device or sensors because it operates at frequencies of 915 

MHz, 868 MHz, and 2.4 GHz and has a data rate of 250 kbps [8]. 

1.4      Artificial Intelligence for Irrigation System  

Several machine learning approaches were used in agriculture for data analysis 

and prediction goals. Environmental data, irrigation control, and moisture analysis are 

forecasted and offered recommendations for the future with the aid of machine learning. 

Using a genetic algorithm, irrigation planning was carried out in this study. Utilize this 

tactic to increase production and determine various watering recommendations. The 

contributors of  offered genetic algorithm-based solutions to problems with consecutive 

irrigation. The genetic model that was proposed provided a non-constant schedule-based 

approach. A weekly irrigation strategy and supporting information, such as 

meteorological and metrological data, were proposed by the different researchers. Based 

on this irrigation recommendation, the data analysis methods of boosted extrapolation 

and classification are recommended. As a result, the accuracy of both classification and 

regression is 93 and 95 percent, respectively. The optimal irrigation allocation method 

was developed for location-based water demand. The genetic algorithm for 

optimizations is used to introduce a new irrigation strategy using data from the previous 

day. In order to schedule irrigation, the sensor data was examined using Intelligence 

IoT's and K-NN machine learning technology. The entire procedure is automated, and 

data exchange takes place via machine-to-machine communication. IoT was used to 
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introduce the work of  machine learning for agricultural development. To forecast the 

pertinent irrigation-related variables in this study, decision trees are used. Logical 

regression was occasionally used by the researchers of to anticipate the water 

requirements. Predictions of wind speed, the outside temperature, and moisture are 

made using based on the decision trees. The SysFor [9] provides superior results and 

higher prediction accuracy as compared to the decision tree. The support vector 

machine method was employed to predict the demand for irrigation, albeit the proposals' 

level of accuracy is rather poor. 

 

Figure 1.4: Gentral Block Strcutre of Irrgation System 

The general block structure diagram is shown in Figure 1.4. This diagram shows 

each necessary building block. When the system first starts, raw data is used. This raw 

data may be generated or it may come directly from the available sensors, depending on 

the demands of the system. 

The quantity of soil moisture can be determined using a sensor that detects soil 

moisture. Data can also be gathered using several pre-packaged datasets. This data is 

pre-processed or cleaned so that only the right data can be generated as system input. 

The devices are taught using any AI-based algorithm based on the data that has been 

collected, weather patterns, soil conditions, etc. 

After doing a data analysis on the processed data, decisions regarding the 

necessary data will be made. The relevant data will be transmitted to the microcontroller 
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or CPU unit through IOT layers as the desired results. Well-known microcontrollers 

include the Arduino Uno and Raspberry PI. A power module supplies electricity to each 

component. The microcontroller will process the data before transmitting it to the 

mechanical system. Relays are a particular class of current converter that convert an 

input signal into the needed current signal. Pumps of water can be used as irrigation 

system output devices.                                            

1.5       Motivation of Research  

The main motivation of this research reduces the fresh water usage, increase the 

soil dampness, increase the good yields and reduce the energy usage. The some of the 

main key points for motivations are as follows. 

i. The major consumer of fresh water and power is agriculture. Around the 

globe, 70% of water is used for agriculture. About 25% of this is efficiently consumed, 

with the balance being wasted, including water and power [1,2,3]. 

ii. Due to the irregular irrigation system, the 50% of yields of agriculture is 

reduced and increase the cost.  

iii. Due to the irrigations, the energy usage is increased. 

iv. Keep the soil moisture in required level of cultivation.  

These are the some of the main motivations of this research. Due to this research 

decrease the water and energy usage. The alternative advantage of this research is 

increasing the productivity.  

1.6       Scope of the Research 

The main scopes of the research are as follows: 

i. Smart irrigation system is friendly platform interface to learn easily to 

farmers. 

ii. Provide high accuracy water requirements and avoid waste of water. 

iii. Due to automatic process, the required manpower is very less. 

iv. The IoT and sensors devices are accurately measure the soil moisture. 
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v. Easily control and detect the humidity, temperature and find the 

requirements. 

vi. The effective water system produced better quality of yields and 

improves the benefits in term of cost.  

vii. The manual process is decreased and automatic process is increased.  

1.7      Objectives of the Research 

In this research, created four objectives for an effective model to irrigation 

model and fulfilment the requirement of crop.  

i. To create an effective irrigation model and scheduling of crop.  

ii. To predict the short- and long-term sustainable prediction requirements of 

the irrigation system.   

iii. To shares the sustainable requirements of the prediction using the cloud 

environment and shares the features with the nearest farmers for better 

requirements prediction. 

iv. To create an effective model using different farmers data, without sharing 

data. 

 

1.8      Problem Statement 

The water and energy consumption in the agriculture industry is not accurately 

calculated, water efficiency and planning are crucial. The irrigated fields waste an 

enormous quantity of water. The integration of current technology offers a solution for 

water management and for establishing the right irrigation plan. For smart agricultural 

areas, the Internet of Things and machine learning techniques are successfully applied. 

In this research focus on water optimization model, an effective short- and long-term 

requirement of water prediction of irrigation system, updation of predicted time series 

data and shared the effective method to nearest cultivation fields to better model for an 

effective irrigation. 
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1.9.   Experimental Setup and Description  

 

 

 

                                           Figure 1.5:  Sample collected location 

Table 1.1 components are interconnected together and data is collected from 

each source of the location and roots. The collected data is stored in cloud environment 

and processed using the computational intelligence. The sample data, soil moisture, 

surrounding information are collected from the kanyakumari district, India. The sample 

collected location and experimental location is shown in Figure 1.5.  The longitude and 

latitude of the experimental performed location is 8.2473502, 77.2743729,345. In this 

location early paddy cultivation was being done, but, currently, banana cultivation is 

done, here. Especially, thses two species of banana cultivation is being done in these 

areas, which are Ethapazham/Nendram Pazham/Nendrapazham/Changalikodan 

is Plantain Banana and Red dacca (Australia), Red banana, 'Red' banana (USA), and 

Claret banana are all names for this fruit in the English language. In addition to banana 

species, some regions also grow tapioca or Maravalli Kizhangu or cassava 
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plant cultivation is also done. This location has, two ponds on either side. So, apart from 

April, May and half of June, we always have water facilities available in this location. 

So, this location is chosen for this cultivation and one more reason is that, it always has 

water facilities which are required for proper banana cultivation. 

1.10     Outline of the Thesis 

This thesis contains six chapters as well as references and three appendices. 

Chapter 1 contains the introduction, scope, motivation, problem definition and dataset 

description. 

Chapter 2 presents the analysis of water requirements of irrigations and roots 

length of plants.  

Chapter 3 presents a literature survey of the past works in smart irrigation 

system which is related to the machine learning, deep learning, and comparison of 

various methods, challenges and future direction of research.   

Chapter 4 presents a requirement model prediction for smart irrigation using 

deep reinforcement learning and KNN algorithm. 

Chapter 5 presents a  short and long term water requirement prediction model 

using LSTM and ANFIS algorithm with transfer learning for an effective prediction 

model.  

Chapter 6 presents a model for share the effective predicted model and with 

features to nearest farming land using federated learning.  

Chapter 7 presents an experimental set up and performance evaluation, results 

and analysis. 

Chapter 8 concludes and describes the possible extensions of this work. 
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Chapter 2 

 

Statistical Analysis of Water Requirements in Irrigation  

 

2.1 Introduction 

Due to inefficient water management, a significant amount of the available water 

is lost during irrigation. It is necessary to have models that can estimate future water 

requirements in order to achieve better water management in irrigated areas. In this 

chapter, we construct a crop details and root information's and water management in 

India, with suitable qualities. We also include some relevant attributes. The rise in 

average temperature across the planet during the past century has contributed to a 

widespread decrease in the amount of water that has been restored across continents. 

For instance, over the years 2002–2016, worldwide endorheic systems saw a significant 

water loss equivalent to approximately 106.3 Gt yr-1. This loss can be attributed to 

reductions in surface water, soil moisture, and groundwater levels. In addition to rapidly 

expanding industry and urbanisation, as well as rapid population increase, there is a 

steady rise in the demand for water resources. This circumstance puts a significant strain 

on the water resources of the region, particularly in areas that already suffered from an 

exceptional deficit of water.  

This chapter 2.2 presents different crop and corresponding root length for 

managing water. And section 2.3 presents different water management statics in India 

and finally the 2.4 presents the summary of this chapter.  

2.2. Soil and Crop Root Analysis for Irrigation 

Electrical resistance devices are able to provide an estimate, of the moisture in 

the soil. The electrical characteristics of the soil are subject to change if there is a shift 

in the moisture content of the soil. The presence of salts and fertiliser in the soil can 

make electrical resistance detecting devices very sensitive. Typically, soil tension is 

determined by a solid-state electric resistance measuring device that also detects soil 

matric potential (SMP). The resistance is read by a sensor of this type whenever there is 

a change in the soil tension, which is a function of the moisture content of the soil. The 
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typical range of measurement for a soil tension sensor is 0 to 239 kPa. The greatest 

amount of water which the soil can store is indicated by an outcome of 0 kPa. The fact 

that the soil has a value of 239 kPa, suggests that it is dry. It is possible to estimate the 

amount of water holding capacity that has been lost based on the tension measurements 

(in kPa). Table 1 provides a description of one form of depletion in water holding 

capacity that can occur across a variety of soil types. It is possible to predict irrigation 

recommendations and time based on the depletion results. This will help to ensure that 

the soil's moisture content is just right for the development of plants [10]. 

                        Table 2.1: Depletion of water in soil types 

 

When it comes to installing soil moisture sensors, there are a few things to keep 

in mind. It is recommended that sensors be installed in the spaces between plants in a 

row's representative section.  to keep the soil moisture sensors from being placed too 

close to the edge of a wheel track or lane. Additionally, it is important to avoid placing 

sensors in portions of the field such as the summit of a hill, low sections, and the field's 

edge, which are not indicative of the majority of the landscape. It is essential to position 

the soil depth sensors in the appropriate locations. It is important for the user to take 

into account the root depth of the crop. For instance, the root system of maize can 

generally grow up to a depth of 36 inches in the soil. The depths of six, eighteen, 

twenty-four, and thirty-six inches are suggested for measuring the amount of moisture in 

the soil. The usual optimum root area moisture absorption levels for various kinds of 

crops are described in Table 2. It is essential to keep a close eye on the soil depths at 

which effective moisture extraction can occur in order to increase the precision of the 

irrigation scheduling. The sensor's immediate surrounding' little soil volume is sampled 
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                     Table 2.2: Plants and Roots Length  

 

and measured by soil moisture sensors. Therefore, the method of installing the sensor is 

quite important to the process of acquiring correct results. 

The study of roots is vital not only for enhancing and raising overall food 

production but also for preventing damage to the environment and combating the effects 

of climate change. 

i. Roots are responsible for the finding water and nutrients and the efficient 

utilisation of those resources by the plant. It is possible to draw 

conclusions about the significance of roots to plants based on the fact 

that approximately half of the food that plants produce are used to 

nourish its roots. The productivity of a plant or crop is directly 
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proportional to the degree, to which its roots make optimal use of water 

and nutrients. 

ii. The pollution of the environment that is produced by the runoff wasted 

fertilisers, which leads to the eutrophication of aquatic systems, is a 

source of concern for the environment. The overuse of water for 

irrigation, which leads to the depletion of groundwater and surface water 

reserves, is another contributor to the unsustainable nature of farming 

practises. 

iii.  Roots are an essential part of the natural ecosystem because they contain      

a significant amount of carbon. As a result, research on roots is becoming 

increasingly prevalent in all-natural ecosystems. 

Root systems have evolved to have distinct morphologies, topologies, 

distribution patterns, and architectural structures so that they can do all of their tasks. 

Each root system is customised for its expected lifespan, geographical location, and 

particular kind of soil. 

2.3. Water management Statistics in India 

The yield that an agricultural operation ultimately produces is highly dependent 

on the quality of the water that is used practically for every step of crop production. If 

plants are not given the proper amount of water, even high-quality seeds and fertilisers 

will not allow them to reach their full potential. The availability of sufficient water is 

critical to the process of animal husbandry as well. It goes without saying that the 

availability of water is essential to the fishing industry. India's share of the world's 

population is approximately 17%, despite making up about 4% of the world's freshwater 

resources. These water resources are dispersed across a large portion of the country with 

a huge discrepancy. Water supplies are being subjected to greater demands as a result of 

India's rapidly growing population, the deteriorating quality of the country's already 

existing water resources as a result of pollution, and the added demands of supporting 

India's exploding industrial and agricultural expansion have led to a situation in which 

fresh water availability is roughly constant while use of water is quickly increasing. 

This situation has led to a situation in which India is facing a water crisis. Surveys 

carried out by the Tata Institute of Social Sciences (TISS) revealed that the majority of 
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urban cities suffer from a lack of available water. Ground water supplies provide close 

to forty percent of India's urban areas' water requirements. Because of this, most 

communities are experiencing a staggering 1–2-meter annual decline in their 

underground water tables. As a direct result of water scarcity, the ecosystem, including 

lakes, rivers, wetlands, and other fresh water resources, has a number of negative 

repercussions.  

In addition, over use of water can result in a scarcity of water; this is a problem 

that frequently arises in regions that rely heavily on irrigation agriculture and causes 

damage to the environment in a number of different ways, including an increase in 

salinity, the contamination of nutrients, and the deterioration and disappearance of 

marsh and floodplain areas. In addition, the scarcity of water complicates the process of 

flow management required for the rehabilitation of urban streams. The ineffective water 

resource management system in India, along with the effects of climate change, has 

resulted in an ongoing water deficit. According to the OECD's environmental outlook 

for 2050, India would be experiencing severe water shortages by the year 2050. 

Agriculture in India accounts for 90 percent of the country's water consumption, despite 

rapid ground water depletion and inadequate irrigation systems. 

In terms of agricultural production, India is ranked second worldwide. 

Agriculture, together with industries like forestry and fisheries, contributed 50% of the 

labour force and 13.7% of the nation's gross domestic product (GDP) in 2013. The 

irrigation infrastructure consists of a network of canals that draw water from rivers, 

wells, tanks, and other rainwater collection equipment. These products are used for 

agricultural purpose. In India, the ground system currently covers 160 million hectares 

(ha) of cultivated land, making it the largest. 22 million hectares (ha) of this total are 

irrigated by canals, while 39 million hectares (ha) are irrigated by ground water. 

However, the monsoon continues to be crucial for approximately two thirds of Indian 

agriculture. 

2.3.1. Irrigation in India 

Because India is a country that places a significant emphasis on agriculture and 

more than 55 percent of the population relies on agriculture for their livelihood, many of 

India's state governments are providing financial and other incentives to ensure that 

water is available for irrigation. These include the following: Free energy is being 
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provided by the state government of Punjab in Northern India for the purpose of 

pumping ground water. In addition, the western Indian states of Gujarat and 

Maharashtra both provide generous subsidies for the installation of solar pumps. There 

are differences in the amount of water used for irrigation due, among other things, to the 

differing geographical conditions that exist in different regions of the nation. Rocky 

landscape with deep aquifers, sandy deserts, and rough mountains are the types of 

environments that typically have very inadequate irrigation facilities. This is because the 

cost of collecting water from these types of environments can be rather high. The areas 

with highest percentage of irrigation are, by a wide margin, possess the fertile alluvial 

plains that have permanent rivers and potable groundwater as well, as the regions that 

receive less than 125 centimetres of annual precipitation. 

At this moment, approximately 84% of all of the available water is used for 

irrigation. The consumption of water by the industrial sector is approximately 12%, 

while that of the domestic sector is approximately 4% of the total available water. 

Because irrigation is expected to continue to be the main consumer of water, the maxim 

"per drop more crop" is an absolute necessity. In order to increase the area that is 

irrigated while also conserving water, the efficiency with which water is used which 

needs to be improved. Over the past few decades, India's irrigation system has 

undergone significant growth and development [11]. 

2.4. Summary 

This chapter presented the analysis of water management and root depth for 

different plants. This analysis helps to fix and estimate the requirements of water and 

availability sources for irrigation in India. The Table 2.1 and Table 2.2 shows the 

different soil water observation and roots length. The roots lengths are used to mange 

the sensors and are useful to calculate the estimation of cost in irrigation systems.  
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Chapter 3 

Literature Survey 

3.1 Introduction  

This chapter introduces various existing techniques, supporting concepts and 

advantages and disadvantages of different irrigation methods.  With the aid of various 

computing approaches, including IoT, neural networks, and artificial intelligence, the 

smart irrigation system combines software, hardware, and firmware. Due to the efficient 

use of resources and creation of yields, it is crucial and necessary for civilization. 

Effective methods are required to monitor moisture levels, improve yields, and optimize 

water use. The use of the Internet of Things and artificial intelligence to create 

intelligent irrigation systems for agriculture is discussed in this article. This page 

presents the various parts, the modern irrigation system, many comparison metrics, and 

its requirements. Finally, many topics, difficulties, and the direction of future research in 

the smart irrigation system were highlighted. 

Smart agriculture requires irrigation, and efficient resource management is 

crucial. According to the World Bank, agriculture will require 70 percent more 

freshwater in the future [12]. As a result, when doing research using various approaches, 

it is crucial to take effective water usage and water optimization for agriculture into 

account. Currently, the smart system is a valuable concept for managing resources in a 

variety of fields, but it has a significant impact on agriculture in particular. These sectors 

include energy efficiency, disease prediction, management, and irrigation systems. The 

combination of sensing, control, activation, analysis, and decision-making based on 

several automated processes is what is known as a smart system [13]. The automated 

operations rely on a variety of cutting-edge new techniques, networking know-how, 

sensing powers, and intelligence computations. So, enhance harvests and efficiently 

utilize the water with the aid of a creative technique. When cutting-edge technologies 

and intelligent irrigation techniques are applied, less freshwater is used in agriculture. 

Machine learning and the Internet of Things concepts enable centralized data 

processing, analysis, and decision-making from various omnipresent sensors [14]. An 

irrigation system is used in the agricultural process to artificially distribute resources 

like water. This irrigation technique is mostly employed in regions with low rainfall to 
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keep the soil warm and moist. In agricultural fields, the artificial irrigation technology 

prevents the growth of weeds and undesirable plants. The two types of irrigation 

systems are traditional irrigation systems and modern irrigation systems. The traditional 

irrigation system makes use of irrigation cans and buckets. The most popular traditional 

irrigation methods, such as basin, furrow, strip, and basin irrigation, which doesn't need 

any special technical knowledge. But the cost of using a traditional watering system is 

high. Modern irrigation system was developed by extending the conventional irrigation 

system with the aid of contemporary technologies. The three types of irrigation systems 

are currently in use. They are drip irrigation system, pot irrigation system, and sprinkler 

irrigation system [15]. The contemporary irrigation system has a wide range of extra 

uses. Irrigation systems, historical controllers, location-based weather measurement 

controllers, signal-based controllers, etc. are a few examples of the numerous types of 

weather evapotranspiration controllers. Depending on how the soil moisture sensor 

controller is configured, the irrigation is separated into suspended cycle irrigation 

systems and liquid on-demand irrigation. The use of elements and traits has produced a 

number of notable divisions, including the ones mentioned above. Figure 3.1 depicts the 

various sensing and regulating methods used in contemporary smart irrigation 

technology. 

 

Figure 3.1: Various controller and sensors in Smart irrigation system 

Increased yields and lower water and financial expenses are two key benefits of 

current smart irrigation systems. The automated smart irrigation system made use of a 

number of modern technologies, including big data [16], the internet of things [17], 

wireless sensor networks [15], cloud computing [19], artificial intelligence and machine 
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learning [20], etc. Computing methods, sensors, automatic controllers, satellite data, 

flow meters and valves, WSN, batteries, and other parts are the essential components of 

smart irrigation systems. Figure 3.2 depicts the contemporary irrigation system in broad 

strokes.  

 

                            Figure 3.2: Modern irrigation system Techniques 

The modern irrigation system has different steps such as i. Real-time data 

collection ii. Applying techniques iii. Classification and prediction iv. Controlling and 

decision making. 

The organization of the chapter is consisting of section 3. 2  is about the 

intelligence system method, Section 3.3 consists of various machine learning methods 

analysis, Section 3.4 consists of various techniques for irrigation system using IoT and 

machine learning, Section 3.5 various metrics for analysis of irrigation methods. Section 

3.6 consists of various issues, challenges, and future direction, and finally 3.7 Summary 

of the chapter. 

 

3.2. Intelligence System for Irrigation System 

Although they are occasionally used synonymously, the phrases intelligent and 

smart have different connotations. Both technological aptitude and the capacity to use 

previously learned knowledge are traits of intelligent people. Being intelligent is having 

the capacity to learn and use new concepts and abilities. Achieving highly intelligent 

systems requires the ability to learn preferences, routines, and precise situational 

diagnosis. They also require an organized method for learning, making decisions, and 
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responding to their environment, as well as the ability to recognize the dates, times, and 

locations of significant events. Smart irrigation systems estimate or measure TAW 

depletion to restore the crop's water needs and reduce resource waste [21].  

These systems usually use initial setup that is unique to the site, execute 

schedule updates, and incorporate scheduling and necessary cycles when they are 

programmed. Intelligent irrigation systems optimize crop watering by using artificial 

intelligence (AI) methods [22]. These systems analyze current data, form conclusions 

based on prior knowledge, and pick up behavior patterns from their surroundings. If a 

system, like an intelligent irrigation system, demonstrates intelligence traits that are 

comparable to human intellect, then we can assess it as intelligent. According to this 

definition, a virtual creature formed exclusively from software, or a physical entity 

composed of both hardware and software, with the purpose of performing tasks is called 

an intelligent agent. Intelligent agents are autonomous 

 

Figure 3.3: General structure of an intelligent agent. 

entities that have the capacity for thought, deduction, learning, and information 

updating. They exhibit social, proactive, and reactive skills as well. When a 

performance measurement is used to determine how an agent should behave in relation 

to the environment in which it is positioned, that agent is said to be acting rationally. 

Figure 3.3 depicts the intelligent agent's components, including sensors for collecting 
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environmental data, actuators for changing the environment, and a framework for 

interpretation and judgment (with or without AI). Moreover, a representative has the 

capacity to adapt, learn, coordinate, and plan. It also contains communication 

mechanisms with other agents to exchange information. An intelligent agent's core 

components for irrigation applications are shown in Figure 3.4, where information on 

the crop's hydric conditions is gathered utilizing a variety of sensors [23]. 

 

Figure 3.4: Intelligent agent for irrigation applications  

To track the physical features of plants, soil, or the surroundings, Figure. 3.4a shows 

how these sensors are implanted and arranged into nodes or motes. (For instance, 

temperature, radiation, and relative humidity). Furthermore, information can be 

gathered through non-intrusive sensing methods to take pictures of the environment 

using various wavelengths of electromagnetic radiation (thermal, multispectral, night 

vision, or photometric cameras). Multispectral or radar technologies (e.g., Sentinel2, 

Landsat, or MODIS) can be used to capture the images using cameras mounted on 

unmanned autonomous vehicles (UAVs) (Figure. 3.4b), terrestrial systems (ground 

robots or other ground vehicles), or satellite systems (Figure. 3.4c). To pinpoint the 

precise location of the measurements, it is necessary to georeferenced the data produced 

by the sensor nodes or cameras. It is possible to collect data both in live and at 

predetermined testing intervals.  
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The sensors' electrical signals, whether analog or digital, must match the 

recorded physical variables in terms of both magnitude and frequency (Figure. 3.4d). 

The DAQS collects electrical signals from the sensors, transforms, scales, and 

conditions them to provide digital data that is stored in a numerical format and is ready 

for processing or integration. Using wireless communication protocols, the digitalized 

data used to give crop information is transmitted wirelessly over DTUs (ZigBee, WiFi 

or Bluetooth). The DTUs, a collection of nodes for wireless sensors made up of modems 

and antennae, communicate crop data across a network device connected to a central 

information hub or centralized master system of control (Figure. 3.4e). The central 

master control system includes a powerful server or machine running specific software 

integrated in (Figure. 3.4g), which uses artificial intelligence processing techniques to 

alter and evaluate the information and images gathered from the crops (Figure. 3.4f). 

The algorithms of the centralized controller system enable for the display of crop data in 

real-time, interpretation and analysis of data needed to monitor and support irrigated 

applications, making decisions to provide signals to the actuators that dose water on the 

field and predicting future crops. Irrigation applications tracking, managing, or remotely 

controlling, through the internet or cloud computing, agricultural information can be 

delivered to smartphones, tablets, laptops, and other devices (Figure 3.4h and 3.4i). 

Additionally, feedback control techniques are used by irrigation control algorithms. 

3.3. Analysis of Machine learning methods 

This section presents different machine learning techniques related to analysis 

and predictions of irrigation requirements. Some of the generalized machine learning 

techniques are as follows.  This section, analyses some of the dimensionality detection 

methods and summarized various machine learning techniques.  

3.2.1. Analysis of Dimensional Reduction 

The practice of minimizing a dataset's attribute count while keeping as more 

variance as is practical in the source dataset is known as dimensionality reduction [24]. 

We do dimensionality reduction as part of the data preparation process before training 

the model. When a dataset's dimensions are reduced, we typically reduce between 1% 

and 15% of the variability in the original data, depending on how many components or 

features we keep. However, don't be concerned about reducing so the most of the 
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variation in the initial data, as diminishing the dimensions will have the benefits follows. 

Numerous methods of dimensionality reduction can be utilized for a variety of data types 

and objectives. The graphical representation below contains a list of these methods of 

dimensionality reduction. The two main groups of approaches for reducing 

dimensionality are. Those approaches scale back the dimensions, in various types. It is 

crucial to distinguish between various kinds of techniques. The First one just keeps the 

essential data while removing the redundant characteristics from the dataset. There are 

no modifications made to the set of features. Among these examples include backward 

removal, random forests, and forward selection. The alternate solution to reveals a 

variety of novel characteristics. The group of features is transformed appropriately. The 

updated group of features [25] has new data in place of the old ones. This strategy has 

both non-linear and linear versions. Manifold learning refers to non-linear techniques. 

Examples of certain non-linear dimensionality reduction techniques include Kernel PCA, 

t-distributed Stochastic Neighbor Embedding (t-SNE), Isometric mapping and 

Multidimensional Scaling (MDS). Methods for reducing the linear dimensions include 

Principal Component Analysis (PCA), Factor Analysis (FA), Truncated Singular Value 

Decomposition (SVD) (Isomap) and Linear Discriminant Analysis (LDA).The some of 

the dimensional techniques are shown in Figure 3.5. 

Normalization 

To prepare data for machine learning, normalization is utilized. The objective of 

normalization is to use a same scale for all numerical columns in a dataset without 

allowing for values to fall into distinct ranges. To do this, tables from the dataset are 

created, and the relationships between the data are identified [26]. 

Feature Selection 

Selecting qualities that are thought to be relevant or important to the issue might 

be viewed as a beneficial technique. It is also used as a measurement tool for evaluation. 

It is employed for both assessing metrics that rate different feature subsets as well as for 

making new feature subset recommendations. M. Banu Priya uses the PSO feature 

selection approach [27]. As a result, a portion of the final, standardized liver patient 

dataset is produced. It simply included the key characteristics. A swarm of particle, or 

basic processes, where every particle substitute for its solution, forms the basis of PSO 

computation. 
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Figure 3.5: Dimensional Techniques 

Principal Component Analysis (PCA) 

Among my preferred machine learning algorithms is PCA. The PCA is a 

sequential method for reducing dimensionality (algorithm) that divides a larger group of 

covariates (p) into a more condensed set of unrelated variables (k) (p), known as 

principal components, in order to keep the most variation in the given dataset as 

feasible. For the purpose of dimensionality reduction relating to neural networks, a 

machine learning technique (ML) known as PCA [28]. 

Factor Analysis (FA) 

FA and PCA are two mechanisms for dimensionality reduction. Factor analysis's 

goal is not just to lower the dimensions of the data. FA is a valuable tool for identifying 

latent variables, which are deduced from the dataset's other variables rather than being 

directly marked in one variable. These hidden variables are referred to as factors [29]. 
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Truncated Singular Value Decomposition (SVD) 

Through the use of truncated singular value decomposition, this technique 

reduces the number of linear dimensions. The data are sparse, where numerous row 

values are zero, it performs well. PCA, contrasted with, does well with voluminous data. 

Compact data can also be utilized with truncated SVD. Truncated SVD and PCA differ 

significantly in another important way: although PCA factors the covariance matrix, 

SVD factors the data matrix [30] 

3.2.2. Machine Learning Techniques 

Unsupervised learning is often referred as grouping. In unregulated instruction 

there is no label, no data set for training, and no known data for output. The guidance is 

favoring an independent learning strategy and observed by utilizing clustering methods 

such as PCA and K-Means clustering SVD. This kind of machine learning is agent-

based and action-based. State, motivation, and environment. devices and programs that 

automatically define certain behaviors based on the context's incentive feedback[31]. 

SVM 

SVM, or support vector machine, is a well-versed technique. Both regression 

and classification make use of it. The calculation generates an ideal hyperplane using 

the meticulously collected data that arranges fresh samples. [32] has suggested 

conducting research on the prediction of liver illness using classification systems. In 

such case, SVM classification performed better than Naive Bayes classification. With a 

greater accuracy rate of 79.66% than the Naive Bayes algorithm, SVM proved 

successful. Of the two methods that [33] compared, SVM was able to attain an accuracy 

of 71%. The SVM structure is depicted in the illustration 3.6. 
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Figure 3.6: Structure of SVM 

K – Nearest Neighbor 

A non-parametric classification method is K-Nearest Neighbor. Data is classified 

by determining which of the k examples in the KNN algorithm resembles an input the 

most. A measurement is used to determine this distance. Bendi Venkata Ramana [34] 

provided five arrangements computations to identify liver disease. The results of K-

Nearest Neighbor also shown a noteworthy level of accuracy. In the AP Liver dataset, it 

was able to achieve a precision of 97.47% when comparing to other classification 

methods.  The UCLA dataset, it was able to achieve a 62.89% accuracy rate. 

Decision Tree    

This method has a decision tree which includes specifically, criteria concerning 

statements. The result could be "true" or "false." To predict the class at the leaf, rules 

can be obtained using a path that travels from root to the leaf while also using the nodes 

in motion as prerequisites. The researchers of [35] utilized a variety of techniques to 

identify liver disease. Decision tree make a respectable precision of 66.14% among the 

algorithms. The accurate rating of 93.7% was finding using a decision tree technique. 

To get the best accuracy rate, a decision tree methodology was applied. The structure of 

Decision Tree in Figure 3.7. 
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Figure 3.7: Structure of Decision Tree 

Random Forest tree 

 The random forest-based algorithms are come under supervised algorithms and 

it work based on the set of training dataset with specified features. Both classification 

and regression may very well benefit from its use. A forest with many trees is essentially 

created by a random forest tree. It is therefore essentially a collection of various 

decision trees. The classification process uses a vote system to determine the class. 

When performing regression, each decision tree's returns are averaged. The Random 

Forest Tree's Structure shown in Figure 3.8 [36]. 

 

Figure 3.8: Structure of Random forest Tree 
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2.4 Various Methods and Techniques for Irrigation 

To manage intelligent irrigation, a variety of approaches and procedures are 

employed. The most modern smart irrigation technologies use machine learning, the 

Internet of Things (IoT), artificial intelligence, and deep learning to build control 

actions that precisely direct the flow of water to each crop node. These control signals 

are received by the electronic system or driver, which automatically provides the 

activation energy required by the actuators, motor pumps, or pumps used to supply 

precision irrigation learning. These methods can be used to control the soil, the water, 

and the weather. The information regarding various irrigation system prediction and 

management strategies is succinctly summarized in this section. The authors of [37] 

presented a sprinkler-based irrigation system. This method combines a solar panel with 

a built-in level indicator for the water tank. A statistical analytic strategy for managing 

water utilizing temperature, moisture, and PH was suggested by the authors of [38]. A 

little farm and piece of land use this application. According to the authors of [39], IoT 

components could be employed to automate irrigation water regulation. Water 

accumulates on the soil's surface using this technique, although other water 

management concerns are taken.  The detailed comparison of different irrigation 

techniques presented in Table 3.1. 

An IoT-based autonomous system to manage irrigation systems was presented 

by the authors of [40] using a variety of devices, including a Raspberry pi 3, a Wi-Fi 

node, and a microcontroller. If there is a water shortage, water the ground right away. 

The authors of [41] created an IoT paradigm for soil moisture monitoring using the 

Losant platform. Using the MQTT protocol, a low-cost smart watering system to send 

predicted data via sensors was proposed by the authors of [42]. The node MCU-12E 

controller regulates the water pump's operation based on the quantity of soil moisture. 

In [43], the authors introduced a paradigm for IoT-based crop environment monitoring 

and analysis. This approach effectively addresses the issues with the earlier approach 

while also conserving time, money, and energy. In order to control irrigation, the authors 

of [44] suggested using an M2M deployment architecture. Sprinkler irrigation is 

controlled using M2M technology. Soils are utilized to extract data such as temperature 

and humidity. Metrological parameters are also employed to choose the irrigation 

sprinklers. A soil management-based automatic irrigation system was created by the 
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authors of [45]. The microprocessor pumps the water according to the amount of 

moisture the land needs. The authors of [46] proposed an IoT-based method for 

autonomous fertigation. The GUI interface in this system is displayed using an SQLite 

database.  

                      Table 3.1:  Components and Advantages of various methods 

Refer

ences 

Components Advantages 

[37] 

Johar R. et 

al., 

Solar system and IoT Water 

consumption and 

electricity reduced. 

[38] 

Gupta A. et 

al., 

ATMega 8 microcontroller 

and Sensors 

Water 

management and 

power managed 

[39] 

Gulati A et 

al., 

Es-8266 WIFI module 

chip used to manage water. 

Water is 

managed using IoT 

[40] 

Imteaj A et 

al., 

Automated irrigation 

system using Raspberry P1. [ 

Microcontroller, WIFI module, 

GSM, and rely board] 

Water 

shortage is noticed 

and supplied 

immediately.  

[41]K

odali R.K. et 

al., 

Soil moisture calculated 

using ESP-8266 microcontroller, 

and moisture sensor. 

Real time soil 

moisture calculated 

using small circuit.  

[42] 

Kodali R.K. 

et al., 

Water managed using soil 

sensor, ESP-8266, node MCU-12 

E, and MQTT for data transfer.  

Measure the 

soil moisture and to 

the pumping of water.  

[43] 

Wasson T. et 

Monitor and analysis crop 

environment using RFID 

Saved the 

power, time and 
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al., technology and sensors. money. 

[44] 

Reche A. et 

al., 

The M2M deployment 

model used to control and uses 

metrological parameters and 

characteristics are used to manage 

the soil.  

Manage the 

irrigation of 

sprinklers.  

[45] 

Padalalu P . 

et al., 

Monitor the soil water 

level based on microcontroller           

(Atmega 328) and Naive bayes 

algorithm used to decision 

making.  

Based on the 

recombination, water 

is supplied. 

[46] 

Abidin S et 

al., 

Microprocessor, Web-GUI 

and control communication 

system managed automated 

fertigation.  

Monitor and 

manages the farms 

using Mobile 

applications.  

 

Krishna K.L. 

et al.,[47] 

Raspberry Pi 2 and 

intelligence robot used to monitor 

the soil and other parameters. 

Monitor the 

irrigation 

environment fields 

and various 

parameters are 

observed 

Guru

prasadh, J.P. 

et al.,[50] 

ZigBee Modules used to 

monitor the soil issues.  

The soil 

deficiency alert 

transferred to the 

farmer. 

Raut 

R. et al.,[51] 

ARM7 LPC2138 

processor, 1185 SunRom color 

sensor, UART, and Solenoid 

examined the 

soil's levels of the 

three main 

macronutrients, 
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Valves. potassium (K), 

phosphorus (P), and 

nitrogen (N). 

J. 

Gutiérrez. et 

al.,[53] 

Wireless sensor unit, 

wireless information unit, and 

web application are used to smart 

irrigation system. 

 Automated 

system was 

developed for water 

optimization.  

Köks

al, Ö. et 

al.,[54] 

Data Distribution Service, 

Advanced Message Queuing 

Protocol and Constrained 

Application Protocol used for 

farm management information 

system. 

This 

technique is used to 

gather and process 

data, monitor 

activities, plan, make 

decisions, and 

manage the farm. 

 Cambra 

Baseca C. et 

al.,[55] 

The IoT based application 

used to manage and monitor the 

real time events in the 

fertirrigation system.  

Various 

events such as wind 

flow, irrigation 

events, pressure 

levels are monitored 

and decision 

performed. 

Amarendra 

Goap . et 

al.,[56] 

Using IoT and machine 

learning soil temperature, soil 

moisture, air temperature, relative 

humidity and Ultraviolet (UV) 

light radiation are monitored.  

Intelligence 

system used to 

perform the smart 

decision making.  

Khoa TA et 

al.,[57] 

IoT and multi-sensor 

system  

Using this 

system managed the 

water.  
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A moving boat robot to be utilized for monitoring soil moisture and other 

various environmental parameters was suggested by the authors of [47]. To improve 

irrigation efficiency, the authors of [48] proposed Internet of Things application and 

wireless sensor network. In this method, sensors, Zigbee nodes, and green space are 

used to boost operation. Hardware and software are used. The authors of [49] proposed 

a sensor and microcontroller-based paradigm for autonomous irrigation and soil PH.  

A concept for an intelligent sensor network was suggested by the authors of [50] 

to identify nutrient shortages in the soil and measure soil moisture. This method is used 

to provide alerts about deficiency to farmers. The amounts of nitrogen, phosphorus, and 

potassium were measured and the authors [51] proposed an IoT-based system. These 

elements produced savings in terms of money, time, and energy. The authors of [52] 

proposed a paradigm for task management and information gathering for the judgment 

of the wise farmer. Using this method, task management, planning, and environmental 

factors are evaluated. A paradigm for simplifying water consumption was proposed by 

the authors of [53] and it makes use of a web application, a wireless sensor unit, and a 

wireless information unit, among other things. The authors of [54] provided a number of 

protocols and hardware elements for running the farm. The authors of [55,56] suggested 

a model for managing farms and an intelligent decision-making system for managing 

water. Open-source machine learning-based solutions for smart irrigation were 

recommended by the authors [56]. Using this method, various irrigation events are 

tracked. 

3.4.1. Reinforcement Learning 

The different researchers have proposed different methods for requirement 

calculation of smart irrigation system. This section presents the related works which 

supports in reinforcement models, and corresponding advantages and limitations are 

summarized.  The authors of [58] summarized different devices, edge technologies, and 

software for smart irrigation system. And the authors have summarized different 

challenges and opportunities for irrigation system. The authors of [59] proposed deep 

reinforcement learning for irrigation system and solutions are deployed on cloud 

infrastructure. The main advantages of the proposed work are scalable and practical 

oriented but this method not considers the surrounding features of prediction and 

forecasting of requirements. The authors of [60] proposed a hybrid method for 
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prediction and requirement forecasting using IoT and machine learning techniques. The 

authors are found the requirements within short term and not supported for long term 

predictions. The implementation was performed using banana tree cultivation and 

different dynamic parameters. The authors of [61] proposed a DRL-based architecture 

for scheduling the irrigation system. The experiments conducted for 12 days and 

requirement of water is reduced to 7.5%. 

 The authors of [62] proposed an edge computing device and deep reinforcement 

learning for irrigation system. In this work, different challenges and applications are 

discussed. For the purposes of energy optimization and water minimization, the authors 

of [63] suggested a model that utilized Markov Decision and learning by reinforcement. 

This work is considered only threshold values for prediction and not used any real time 

data for estimation of requirements.   The authors of [64] proposed an irrigation model 

for rice cultivation and find the uncertainties of weather and produced best irrigation 

model. The authors of [65] proposed a model using Q-learning and reinforcement 

learning for effective irrigation system. But the accuracy of the prediction is very less 

compared to the other methods. The authors of [66] proposed an energy consumption 

and reduced the water requirement using Marko process and reinforcement learning. 

The requirement is estimated based on the threshold values and not considered the real 

scenarios. The authors of [67] proposed deep reinforcement learning for smart irrigation 

system using real time environment features. In this work the authors are not considered 

dynamic and uncertain parameters for irrigation. The key benefits of this work, 

however, are that real-time partial values rather than threshold values were used to 

estimate the requirements.  For the purpose of predicting water usage, the researchers of 

[68] suggested an RL-ABM framework incorporating Q-learning.  

Seven intelligent agents are used to simulate the case study for long-term water 

management utilizing the suggested framework. The simulated agents categorized into 

aggregative, forwarded looking, and myopic conservative for learning and action 

making. But this work is not effective for real time prediction and analysis. The authors 

of [69] proposed a model called DRLIC and neural network model for optimal learning, 

current soil requirement calculations and future requirements prediction. The authors of 

[70] proposed optimized machine learning for smart irrigation using types of plants, 

different parameters, controlling environments, sensory feedback such humidity, 

moisture measurement and camera images. The authors of [71] proposed a model to 
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implement OpenAI environment to manage policy, growth, and fertility policy to reduce 

the environmental impacts. This work is not considered the reality issues for 

implementations.  The authors of [72] investigated reinforcement learning and temporal 

features for irrigation control system. In this investigation researchers are considered 

offline data, online data and sensors are used to handle different possibilities of data. In 

the simulation, crop yields and water expenses are calculated based spatial locations. 

But in this work temporal features are not considered for the implementations.  

 The authors of [73] proposed a case study in Portugal using deep reinforcement 

learning and short-term memory for next day requirement prediction of crop to reduce 

the water shortage. In this work artificial intelligence, conventional neural network and 

LSTM are used to training the requirement table of smart irrigation system. The authors 

of [74] proposed a CNN and DDQL with the help of agent find the immediate 

requirement of crops and soil moisture. This work, in terms of rewards, answered right 

away to the demands for other regions and other time-series information. A framework 

based on behavioral psychology and reinforcement training that describes how the 

spatial and temporal behavior of resources that are pooled was proposed by the authors 

of [75]. This work utilizes deep multi-agent reinforcement learning to assist and identify 

many possible actions in dynamic, changing contexts. The authors of [76] proposed a 

model for prediction and scheduling for irrigation system using dynamic parameters. 

Using this work evapotranspiration rate is calculated using the kernel canonical and 

SVM techniques.  The most of the researchers are considered different parameters, 

threshold values, dynamic parameters are considered for irrigation system. The 

reinforcement learning also helped to improve the predictions and considered different 

parameters for predictions. But dynamic parameters and long-time predictions are not 

considered for in the irrigation system. In this work consider the spatial and temporal 

parameters in different time intervals and longtime water requirement for smart 

irrigation system.  

3.4.2. Types of Scheduling methods 

This Section examines several recent and current developments in irrigation 

scheduling techniques [77]. 

i. Feel and appearance. 
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ii. Gravimetric Method. 

iii. Weather- related irrigation scheduling. 

iv. Sensor-related irrigation scheduling. 

v. Plant-related irrigation scheduling. 

vi. IoT technology. 

vii. Smartphone APP. 

Feel and appearance. 

Based on the texture and look of the soil, the most common and efficient method 

is used. Soil samples are normally collected using a soil probe. Table 3.2 displays the 

connection between soil moisture and appearance. A rough correlation between field 

capacity and wilting point is shown in Table 3.2. Each soil type's peak corresponds to a 

state of zero soil moisture shortage, or field capacity. Each soil type's base corresponds 

to the level of maximum soil moisture shortage, or the "wilting point.” The range of the 

soil's accessible moisture is also shown by the lack of soil moisture. The table contains 

broad statistics for a certain set of soils, and it might not be applicable to all soil types. 

This method lacks precision because it is subjective and not quantitative. 

Table 3.2: Types of Soils and its Comparison 
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Gravimetric Method 

Understanding the water movement in the soil depends on the soil's moisture 

content. The most accurate way to gauge the actual soil moisture level is to take soil 

samples. To determine the mass of water lost during drying, this approach calls for 

weighing a sample of soil with a specified volume first, and then weighing it again after 

it has dried in an oven at 105°C [2]. This technique enables the determination of soil 

bulk density (g/cm3) and gravimetric water content (g/g). The volumetric water content 

(cm3/cm3) can be calculated by multiplying the gravimetric water content by the bulk 

density of the soil [77]. 

Weather- related irrigation scheduling. 

The scheduling of irrigation based on weather is determined by the weather. 

Evapotranspiration (ET), which powers the weather-based irrigation scheduling 

approach, is determined by four key meteorological conditions. The radiation from the 

sun, air humidity, temperature, and wind speed are the weather variables. The bigger the 

ET, the higher the solar radiation. This is so because the primary energy source for 

evaporating water is sunshine. Because it can store more water vapor, warmer air has a 

higher ET. Because the air already holds less water vapor, the ET increases as the air 

becomes dryer. The ET increases as the wind speed increases. Solar radiation and air 

temperatures have a major impact on daily ET in areas with humid climates. 

Sensor-related irrigation scheduling. 

Using a soil moisture sensor is an alternate method of determining the moisture 

content of the soil. The volumetric water content of soils is often estimated by a 

conventional soil moisture sensor (cm3/cm3). Without disturbing the soil, soil moisture 

sensors enable for the monitoring of changes in soil moisture levels over time. To track 

soil water movement, the sensors can be inserted at various soil depths. There are 

primarily two varieties of soil moisture sensors. The amount of tension needed for roots 

to draw water from the soil is measured by soil tension sensors. Based on the electrical 

characteristics of the soil, a volumetric water content sensor may determine the moisture 

content of the soil. For the purpose of interpreting these sensor data, it would be 

beneficial to be familiar with some of the common terminologies used in moisture in the 

soil monitor-based irrigation scheduling. 
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Plant-related irrigation scheduling. 

Utilizing a sap flow sensor is a typical technique for scheduling irrigation based 

on plants. Sap flow measures the amount of water, hormones, nutrients, and other 

substances in the water that pass through a plant's stem. The sensors monitor the heat 

transported by the sap using thermocouples and a heater. Then, you can translate this to 

sap flow in grams per hour. Once the sensors are set up and the parameters are 

established, the system will compute and record the sap flow, which can be downloaded 

whenever necessary. 

IoT Technology 

Agriculture 4.0, which incorporates the internet of things (IoT) and the use of 

big data to enhance procedures and efficiencies, is what the agricultural technology 

sector is heading toward. There are numerous microcontroller systems that can be used 

in agricultural settings, including Arduino and ESP 32. To measure soil conditions, 

analog or digital soil moisture sensors can be coupled to a microcontroller system. A 

microcontroller system can also measure additional irrigation data, such as water 

pressure, energy consumption, irrigation system uniformity, and ambient variables, in 

addition to soil conditions. Using a Wi-Fi, cellular, or long-range radio (LoRa) network 

technology, many microcontroller systems enable data transmission to a web server. 

Smartphone APP. 

There are numerous smartphone apps available for scheduling irrigation. In 

recent decades, many decision-support tools for irrigation scheduling have been 

developed and are now accessible via mobile apps. For instance, Colorado State 

University created the irrigation scheduling mobile app WISE (water irrigation 

scheduling for efficient application), which makes use of evapotranspiration data and 

the water balancing approach. 

3.5. Analysis of Various Metrics for Irrigation System  

When determining the effectiveness of the smart irrigation system, several 

criteria are taken into account. The components of the intelligent irrigation system that 

control water and soil. The management of soil involves a number of elements, 

including soil temperature, moisture content, and other variables, including soil 
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conditions and soil dryness. Dew point temperature, evapotranspiration, air temperature, 

wind temperature, and humidity are only a handful of the numerous factors that 

influence water management. The smart irrigation model also takes into account 

prediction accuracy, data transfer rate, and effective utilization. The following formulas 

are becoming more and more used for quantifying soil and water management [78]. 

Gravimetric contents of soil = (Volume of soil moisture – Volume of oven-dried 

soil) / (Volume of oven-dried soil-dried soil) 

Volumetric contents of soil water = Volume of Water/ Volume of Soil. 

 Moisture of the Soil = weight of the moisture of the soil – Weight of the dried 

Soil/weight of the dried Soil. 

Beyond these, different formula and equations are used for getting aggregate, 

mean, and prediction of present and future values.  

3.6. Challenges and Issues of Irrigation System 

Depending on the situation, smart irrigation systems must deal with a number of 

issues and challenges, among others, developing the intelligent system, transferring data 

transformation, combining hardware, taking decisions, and analyzing data. Some of the 

difficulties that are covered in this section in varied settings include the following. 

i. Because different sensors are used for different things, combining them is a 

very challenging process. Figure 1 serves as an illustration and illustrates a variety of 

sensors. It is a difficult procedure to integrate the data from the acquired nodes. 

ii. A smart system built on the Internet of Things (IoT) that has several levels of 

data observation, transformation, and hardware and software interaction. Layer 

integration has issues with cost and implementation. 

iii. Enhance the automated smart irrigation system by reducing irrigation times, 

reducing water waste, predicting soil moisture levels, and determining the water and 

nutrient requirements of the soil. 

iv. For improved automations in the IoT-based irrigation system, smart 

automated microcontrollers, efficient irrigation infrastructure, automated switches, and 

automated pumps are needed. 
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v. It's important to consider a variety of factors when adopting smart irrigations, 

such as climate features (soil parameters, moisture, humidity, timing of the rain fall, and 

future time fall projection). 

vi. When implementing, consider the connectivity, smart mobile-based 

indication, and LED indication functions. 

vii. When putting plans into action, it is essential to consider decision-making 

based on historical data and future predictions. 

These are some of the common issues that arise while installing a smart 

irrigation system. The primary research gap in the numerous publications that have been 

published is given below. 

i. The authors of [37–46] provided guidelines for controlling soil moisture or 

water efficiency. 

ii. Multi-nodes are not included for Water optimization in any of the current 

methods. 

3.6.1. The Future of Research  

The rise of new independent systems that make decisions using internet of 

things, big data, AI, and machine learning, among other advancements, necessitates the 

enhancement of the present research on smart systems for irrigation. 

Future Data Forecast: Predicting the direction of data is an essential task in 

smart irrigation. However, processing of data in future smart irrigation systems is not 

covered by the majority of the prior research gathered in the survey work [79]. 

ii. Smart irrigation infrastructure and weather forecasting connectivity have not 

yet been shown or put to use. 

Smart irrigation uses Big Data, IoT, and AI techniques to assess and predict past, 

present, and future data, which helps in decision-making. 

iv. Improved ecological smart irrigation methods are required. 

v. The new data acquisition form and frequency. 
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vi. When developing and putting irrigation systems with IoT into place for 

multiple crops, a consistent architecture is required. 

vii. The best recommunication system utilizing machine learning and deep 

learning methods. 

3.7. Summary 

In future, water and energy constraints will affect many parts of the world, 

making smart irrigation systems a crucial research area. Nearly 70% of the fresh water, 

that is available on the planet, is used for agriculture. Therefore, it is essential to 

optimize water usage and, reduce expenses, conserve energy, and employing an 

intelligent watering system to boost yields. The components of smart irrigation, the 

roles of each layer, and a modern irrigation system are all presented on this page. For 

additional research, section 3.4 provided and compiled several strategies. The section 

concludes with a discussion of a few challenges and possible future routes for the 

research. 
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Chapter IV 

 Irrigation Prediction Model Using Deep Reinforcement 

Learning 

4.1. Introduction  

Water optimization and scheduling are essential for agriculture sector because 

water and energy usage is not adequately estimated. A tremendous amount of water is 

wasted in the irrigated fields. The combination of today's technologies provides the 

solution for managing water and providing the proper irrigation schedule. The Internet 

of Things and machine learning techniques are effectively used for smart agricultural 

fields. We proposed an effective water optimization and scheduling method in this 

paper that makes use of IoT components, the KNN algorithm, reinforcement learning, 

and person correlation techniques.  

The IoT components are used to collect the current requirements and predict the 

environmental status of the cultivation files. And is also used to transfer the information 

from the entire cultivation field to control fields. The KNN algorithm captures the 

nearest features from the cultivation fields. Environmental prediction, awards, or 

requirements of specific plants are performed using IoT and KNN capabilities. In this 

work, we applied a smart irrigation system used in banana cultivation. Based on the 

current prediction, the future requirements of water are calculated in 12-hour time 

interval from 7 pm to 7 am, and it is calculated for up to 4 days. Compared to 

traditional cultivation, this proposed method reduces the water usage by upto 24% of 

the water required. 

Globally, 85% of fresh water is being utilized for agriculture as food 

requirements gradually increase, thus increasing the production of the food chain. The 

traditional irrigation system has used much water but has given less productivity. So, an 

effective irrigation system is needed. Still, it is a challenging task in today’s 

environment because, when we plan for irrigation, we need to consider different 

scenarios, such as climatic changes, moisture of the plants, wind speed, etc. The water 

requirement for each plant changes according to the seasons, the growth of the plants, 

etc. Physically, pouring water for each plant is time-consuming. So, the equalized 

method of pouring water and irrigation system helps improve the water requirement for 
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plants. Different irrigation methods were used to manage water, such as lateral move 

irrigation, centre pivot irrigation, irrigation with drips, irrigation by sprinklers, drip 

irrigation and micro-irrigation, Lawn sprinkler, Hose-end sprinklers, sub-irrigation, 

subsurface textile, etc [80]. Banana cultivation is the fourth most important crop after 

wheat, rice, and corn. The banana cultivation is the one of the most cultivation, taking 

more fresh water in the entire life span. For, example, the water requirement of banana 

cultivation per day in the litter is shown in Table 4.1[81]. In Table 4.1, cultivation starts  

      Table 4.1: Month wise Water Requirements for Banana Irrigation [2] 

Month Water Req. Lit/Day/Plant 

April 5-6 

May 4-5 

June 5-6 

July 6-8 

August 10-12 

September 8-10 

October 6-8 

November 10-12 

December 12-14 

January 16-18 

 

in April and ends in December or January. Initially, the water requirement is low but 

gradually, it is increased. Morden technologies and techniques are used manage the 

irrigation system. So, we can efficiently use the irrigation systems, by using the Internet 

of Things (IoT), Artificial intelligence and its subset, such as machine learning and deep 

learning, which plays important role to manage the irrigation systems.  Various IoT 

devices and sensors are used to connect and monitor the bottom to top of the plant. 



52 

Using IoT, we can easily monitor, control, trace and make the decision also remotely 

without any delay. Similarly, The Artificial Intelligence is used to take decision 

automatically.  

There are three processing layers of processing techniques is the combination of 

machine learning and IoT technique which are used for minimize the energy and for the 

usage of the smart irrigation system. They are: i. Data transferring and collection ii. 

Intelligence layer, and iii. End Application layers.  These three layers consist of different 

set of components and functionalities. The first stage is Data gathering and 

transmission. Data is being collected from agricultural grounds and it is being 

transmitted for further data processing, for which sensors are used. The components 

which are used for collecting data and for transmissions are, mobile data or Wi-Fi 

connections, for local data to be processed, the Zigbee Network is used, for collecting 

data from the ground, the wireless Sensor Node, is used. For controlling the motors, 

Raspberry Pi, and other controlling components are used. The intelligence and data 

processing are done in the second layer. In order to process the gathered data, intelligent 

techniques and machine learning is being used. 

In the proposed technique based on the IoT, K-NN and Reinforcement learning 

method is introduced to manage the irrigation system and reduce water requirements 

[2]. The main contribution of the proposed hybrid is as follows.  

i. The proposed method schedules and optimizes the water using IoT and the 

Reinforcement learning method. 

ii. In this proposed technique, IoT is used to collect the inputs, KNN is used to 

find the nearest features to extract useful information such as moisture, water 

requirements, root moisture level, etc. Reinforcement learning is used to minimize the 

water requirements for the smart irrigation system.  

iii. Compared to conventional irrigation systems, 10 to 24% of water 

requirement is being optimized by this proposed system in terms of long-term irrigation 

system scheduling. 

The remainder of the chapter is as follows: Section 4. 2 presents the associated 

and current works on smart irrigation techniques. The section 4.3 presents features 

selection and water requirement prediction using IoT and reinforcement learning. The 
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section 4.4 delves implementation details and result discussion of proposed work with 

previous dominating methods. And finally presented the summary in Section 4.5. 

4.2. Pre-Request Concepts 

Software agents can learn how to accomplish their goals with the aid of deep 

reinforcement learning, which integrates neural networks that are artificial with a 

learning-based reinforcement framework. It connects states and behaviors to the 

rewards they provide by combining target optimization and function approximation, to 

put it another way. All of those ideas, which you may not be familiar with, will be 

described in greater detail and in plainer language below, based on your own 

experiences as a traveler through life. Neural networks are not only the key component 

of recent developments in artificial intelligence (AI) in areas such as data-driven 

prediction, machine interpretation, and machine vision, but they can also be used in 

conjunction with reinforcement learning strategies to achieve astounding results, such as 

DeepMind's AlphaGo, a Go board game algorithm that outperformed the world's 

winners. You should be cautious about deep RL because of this. 

Reinforcement learning is the name given to learnable focused objectives 

algorithm, through a series of steps how to maximize along a particular axis, such as the 

number of points scored during a game. Under the right conditions, reinforcement 

learning systems are capable of superhuman performance from scratch. These 

algorithms receive rewards when they make the right decisions and penalties when they 

don't. Reinforcement is when you reward and correct a pet. As opposed to the limited 

options of a repetitive video game, reinforcement learning algorithms are gradually 

improving in uncertain, real-world conditions while choosing from an infinite number 

of possible behaviors. To put it another way, people are beginning to make progress in 

the real world. If you need to achieve quantifiable KPIs, deep RL might be helpful. 
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                                      Figure 4.1: Reinforcment Learning 

A deep neural network policy that links an input state to an output action and an 

algorithm in charge of updating this policy make up deep reinforcement learning agents. 

Popular examples of methods include deep Q networks (DQN), deep deterministic 

policy gradients (DDPG), soft actor critics (SAC), and proximal policy optimizations 

(PPO). To optimize the anticipated long-term return, the algorithm adjusts the policy 

based on observations and rewards gathered from the environment. Neural networks 

(and/or associated technologies) called Deep Q Networks (DQN) make use of deep Q 

learning to produce models. Deep Q learning frequently uses generalized policy 

repetition, which is the mixture of policy assessment and policy repetition, to acquire 

rules using high dimensionality sensory data. For instance, a well-known deep Q 

network described by tech publications such as Medium models outcomes using inputs 

from the senses from video games from the Atari 2600. On the most basic level, the Q 

network is updated by collecting samples, archiving them, and using them for 

experience replay. 

Deep Q networks, in general, learn to match inputs representing active 

participants in the region or other seasoned examples with desired outputs. Another 

notable illustration of how AI makes advantage of the types of interfaces that were 

previously only employed by human beings is the Atari or chess video game. This is an 

effective technique for creating artificial intelligence that can perform other complex 

cognitive tasks or play games like chess at a high level. This is an effective technique 
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for creating artificial intelligence that can perform other complex cognitive tasks or play 

games like chess at a high level. 

Q-learning and Policy variations are used in a reinforcement learning technique 

known as Deep Deterministic Policy Gradient (DDPG). In order to evaluate actors, 

DDPG employs a pair of models: the actor and the critic. An actor is a network of 

policies that gets the state's information as its input and produces the precise action 

(continuous), as opposed to providing a distribution of probabilities of actions. The 

critic is a Q-value network that takes state and activity as inputs and outputs the Q-

value. A approach that is "off" policy is DDPG. In DDPG, the term "deterministic" refers 

to the actor computing the action explicitly as opposed to a chance distribution of 

actions. In the continual activity scenario, DDPG is used. DDPG replaces the actor-

critic and is useful in settings with continuous action.  By optimizing a stochastic policy 

in an off-policy way, the Soft Actor Critic (SAC) technique overcomes the distinction 

between unpredictable policy evaluation and DDPG-style techniques. Although it was 

published roughly concurrently with TD3, it is not a direct replacement for TD3. 

Nevertheless, it features the clipped double-Q trick and advantages from smoothing 

target policies because of the policy's inherent stochasticity. Entropy regularization is 

one of SAC's key characteristics. Entropy, a gauge of the policy's randomness, and 

expected return are trade-offs that the goal of the policy is to maximize. This is directly 

related to the trade-off between exploration and exploitation: when entropy rises, 

exploration increases, which speeds up learning later on. Additionally, it can stop the 

strategy from prematurely achieving a suboptimal local optimum [82]. 

In 2017, OpenAI developed Proximal Policy Optimization (PPO), a set of 

model-free learning by reinforcement algorithms. PPO algorithms are approaches using 

policy gradients, which means that rather than putting values on state-action pairings, 

they search the space of policies. Trust region policy optimization (TRPO) algorithms 

provide several advantages that PPO methods do not, however PPO algorithms are more 

broad, easier to construct, and have superior sample complexity. To do this, a new 

objective function is used. 

4.3 Related Work and supporting Existing works 

The different researchers have proposed various methods for requirement 

calculation of smart irrigation system. In this section presented different related works 
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support to reinforcement models, corresponding advantages and limitations are 

summarized.  The different devices, edge technologies, and software for smart irrigation 

system. And the, authors have summarized different challenges and opportunities for 

irrigation system. The deep reinforcement learning for irrigation system and solutions 

are deployed on cloud infrastructure. The main advantages of the proposed work are 

scalable and practical oriented but this method not considers the surrounding features of 

prediction and forecasting of requirements. The  hybrid method for prediction and 

requirement forecasting using IoT and machine learning techniques. The authors are 

found the requirements within short term and not supported for long term predictions. 

The implementation was performed using banana tree cultivation and different dynamic 

parameters. The DRL-based architecture for scheduling the irrigation system. The 

experiments conducted for 12 days and requirement of water is reduced upto 7.5%. The 

edge computing device and deep reinforcement learning for irrigation system. In this 

work different challenges and applications are discussed. The Markov Decision and 

reinforcement learning used for energy optimization and water reduction. This work is 

considered only threshold values for prediction and not used any real time data for 

estimation of requirements.   The irrigation model for rice cultivation and find the 

uncertainties of weather and produced best irrigation model. The Q-learning and 

reinforcement learning for effective irrigation system. But the accuracy of the prediction 

is very less compared to the other methods. The energy consumption and reduced the 

water requirement using Marko process and reinforcement learning. The requirement is 

estimated based on the threshold values and not considered the real scenarios. The deep 

reinforcement learning for smart irrigation system using real time environment features. 

In this work the authors are not considered dynamic and uncertain parameters for 

irrigation. But the main advantages of this work are not considered the threshold values 

for estimation of requirements and considered the real time partial values.  RL-ABM 

framework with Q-learning is used for water usage prediction. This proposed 

framework is applied into case study for long time water management and this work is 

simulated using seven intelligent agents. The simulated agents categorized into 

aggregative, forwarded looking, and myopic conservative for learning and action 

making. But this work is not effective for real time prediction and analysis. The DRLIC 

and neural network model for optimal learning, current soil requirement calculations 

and future requirements prediction. The optimized machine learning for smart irrigation 

using types of plants, different parameters, controlling environments, sensory feedback 
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such humidity, moisture measurement and camera images. The OpenAI environment to 

manage policy, growth, and fertility policy to reduce the environmental impacts. This 

work is not considered the reality issues for implementations.  The reinforcement 

learning and temporal features for irrigation control system. In this investigation 

researchers are considered offline data, online data and sensors are used to handle 

different possibilities of data. In the simulation, crop yields and water expenses are 

calculated based spatial locations. But in this work temporal features are not considered 

for the implementations.   

The case study in Portugal using deep reinforcement learning and short-term 

memory for next day requirement prediction of crop to reduce the water shortage. In 

this work artificial intelligence, conventional neural network and LSTM are used to 

training the requirement table of smart irrigation system. The CNN and DDQL with the 

help of agent find the immediate requirement of crops and soil moisture. This work 

reward wise immediately responded for the requirements to different regions and other 

temporal data. The behavior theory and reinforcement learning spatial- temporal 

behavior of pooled resources are managed. This work used to support and find the 

different possible activities in the dynamic changing environments using deep multi-

agent reinforcement learning. The model for prediction and scheduling for irrigation 

system using dynamic parameters. Using this work evapotranspiration rate is calculated 

using the kernel canonical and SVM techniques.  The most of the researchers are 

considered different parameters, threshold values, dynamic parameters are considered 

for irrigation system. The reinforcement learning also helped to improve the predictions 

and considered different parameters for predictions. But dynamic parameters and long-

time predictions are not considered for in the irrigation system. This study considers the 

spatial and temporal parameters in different time intervals and longtime water 

requirement for smart irrigation system.  

4.4. Materials and Method for Prediction Model 

This section presents the required materials and proposed method for prediction 

and forecasting of smart irrigation system. The proposed irrigation system consists of 

IoT devices, KNN and deep reinforcement learning. The IoT devises and sensors are 

used to collect current dynamic information. The KNN collect the nearest features 

information and deep reinforcement learning used current and future requirement of 
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irrigation system. Using this propose method current and future requirement of water is 

managed.  

4.4.1. Materials 

The proposed method consists of two parts such as requirement collection and 

intelligence part. The data collection is performed using different components such as 

sensors, IoT devices and transmission devices. Requirement collections are performed 

using Table 1.1. components [3]. The sample components for data collection are shown 

in Figure 1.2.  

Table 1.1 components are interconnected together and data is collected from 

each source of the location and roots. The collected data is stored in cloud environment 

and processed using the computational intelligence. The sample data, soil moisture, 

surrounding information are collected from the Kanyakumari district, India. The 

longitude and latitude of the experimental performed location is 8.2473502, 

77.2743729,345. In this location early paddy cultivation was being done, but, currently, 

banana cultivation is done, here. Especially, these two species of banana cultivation is 

being done in the areas, which are Ethapazham/Nendram 

Pazham/Nendrapazham/Changalikodan is Plantain Banana and known in English as 

Red dacca (Australia), Red banana, 'Red' banana (USA), and Claret banana. Aside from 

certain varieties of banana, some regions also have tapioca or Maravalli Kizhangu or 

cassava plant cultivation is also done. This location has, two ponds on either side. So, 

apart from April, May and half of June, we always have water facilities available in this 

location. So, this location is chosen for this cultivation and one more reason is that, it 

always has water facilities which are required for proper banana cultivation. 
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       Figure 4.2: Block Diagram Using IoT and Reinforcement Learning  

4.4.2. Methodology  

The proposed method used IoT devices, KNN algorithm and Deep 

Reinforcement Learning. The IoT devices are used to connect all the devices, sense all 

the requirements and communicate between the devices.  The nearest required features 

are managed and collected using KNN algorithm.  Reinforcement learning is used to 

find the behavior of the online and offline data. Based on the behavior and rewards from 

the data new prediction and decision is performed. The proposed block diagram has 

shown in Figure 4.2.  

To determine the closest values from the anticipated sensors, the KNN algorithm 

is used. This algorithm is non-parametric that generates real numbers devoid of any 

presumptions. The dataset or data gleaned from the sources K closest values make up 

the input. The distance or prediction of the closest neighbour affects the prediction's 

outcome. The vote of the closest forecast is used to predict the output class. Multiple 

features and space are present in the KNN training set. The prediction values depend on 

whether the distance between the features is continuous or discontinuous. Euclidean 

Distance affects how far apart the feature's predictions are. Equation 4.1 displays the 
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representation of the prediction made by the nearest neighbours using different x 

parameters. 

                                                                                           4.1                                              

 Y - denotes predicted features, C - denotes nearest required features, n denotes 

features, w denotes weight of different, {x1,...,xn}  denotes different weight. The 

variations of the features are calculated using Euclidean distance has represented in 

equation 4.2.   

                                                                                       4.2                                                    

D – denotes distance, n- denotes number of features x, j - and i - various features 

variations.  

Machine learning technique agent interacting with its environment is known as 

reinforcement learning with   series of observations, actions, and rewards. The agent 

seeks to identify the best possible course of action, or optimal policy that maximizes the 

total amount of future benefits. The representation of the reinforcement learning and 

agent with different parameters are shown in the equation 4.3. 

                    E= {S, A, P, R}                                                                               4.3                                                                                

State space is denoted by S in the equation. A denotes action, P for transition, 

and R stands for reward function.  The state space S consists of environmental 

parameters for irrigation system and it is represented in 4.4. 

             St = (Wt, pt, Wmin, Wmax, Xp)                                                                 4.4                                                                                                       

St –It denotes state with time, Wt is the water depth on particular time, Wmin,- 

Minimum Water depth, Wmax- Maximum Water depth, Xp- Future prediction of rainfall.  

4.4.3. Working Process 

The proposed work process has represented in the Algorithm 4.1. Initially the 

IoT devices are used to collect required information’s form the bottom of the layers. The 

initially all the parameters are considered as the zero. After that in the particular interval 
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initial predictions are performed and initial calculations are performed and required 

water is pumped using pumping motors. The KNN algorithm collected nearest features 

and transferred to the reinforcement learning. The required parameters are collected 

continuously and transferred to processing unit. The entire values are collated using 

Pearson correlations (PC). The entire step by step process has shown in the Algorithm 

4.1.  

Algorithm 4.1:  

Input: KNN, E, S, A, P, R, Required parameters                          

Output: Estimated values 

1. Initialization 

2. Criteria           1  

3. For (Criteria ≤ 12) do 

4. KNN                     PC( Initial Prediction) 

5. E                               (RL parameters) 

6. RL            (Rewards and Actions) 

7. Action                                { KNN, RlPara, E} 

8. Besth
SR                    PC { KNNn

SR  , RlPara } 

9. R (hr)             { rewards of Actions  } 

10. hr                          hr +1 

11. While (hr≤ 12) do 

12. Final Action hr
n                         R(hr)* Besth

SR   

13. End 

 

4.5 Results and Discussion 

The basic experimental setup and material requirements are described in the 

section 3.1.  The basic experimental measurement and number of nodes and other 

information’s are mentioned in the Table 4.2 and training and testing ratios of water 

requirement has shown in the Table 4.3. 
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Table 4.2:  Experimental Basic Requirements 

Parameters 
Crop details 

(Banana) 

No of Tree 
1000/ Per 

Acre 

Duration April- Jan 

Maximum water requirements of single 

node in each month 
50 Litres  

Start of Agriculture  April, 2020 

Max Requirements of Water per node      360/400 Litres 

Interval of smart irrigation 7 Days 

 

The cultivation starts from April 2020 to End Jan 2020. The starting of the cultivation 

due to environmental rewards first two months required more water. But after the two-

month due to the environmental changes the requirement of the prediction is changed 

immediately. The experiment values are predicted using following metrics such as 

spearman correlation (S.C,) Coefficient of Determination (R2), and Root-Mean-Square 

Error (RSTM). The predicted values are shown in Table 4.5. 
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                               Table 4.3: Training and Testing Ratio 

 

        Table 4.4: Predicted values of R2 and RSTM using KNN and RL 

Zone 

KNN +RL 

epochs S.C R2 RSTM PT(s) 

12 0.72 0.95 0.41 16 

24 0.61 0.92 0.63 22 

36 0.63 0.93 0.43 21 

48 0.69 0.94 0.54 35 

60 0.96 0.96 0.71 36 

72 0.68 0.92 0.45 34 

 

Table 4.4 predicted the different values in different time intervals such as 12, 24 and etc. 

The processing timing entire structure also has shown in the Table 4.4. The numbers of 

the hours are increased, automatically the processing time also increased in the different 

way.  The Figure 4.3 has shown the water requirement for at the month of middle and it 

Shown the initially requirement prediction is low and gradually the requirement of the  

Hours Zone 

Min and Max 

Water 

Requirements 

Training 

Ratio 

(70%) 

Testing 

Ratio 

(15%) 

Validation 

Ratio (15%) Total  

12 1 

Min 4900 1050 1050 7000 

Max 3500 750 750 5000 

24 1 

Min 3150 675 675 4500 

Max 2800 600 600 4000 
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                          Figure 4.3: Water Requirements in different time intervals 

water is increased in the different time intervals.  Similarly, every month water 

requirement of prediction has shown in Figure 4.3. The month wise water requirement 

has shown in the Figure 4.4. In this graph initially in the month of April cultivation is 

started and initial time the water requirement is very less. After that requirement of the 

water is gradually increased in next two months. But in the July and Aug water 

requirement is reduced due to rain in the cultivation location. Again, at the end of the 

cultivation the water requirement is reduced. 

 

Figure 4.4: Month wise water Optimization of Entire cultivation for one Tree. 
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4.6. Summary 

The proposed technique is based on the IoT, K-NN and Reinforcement learning, 

which is introduced to manage the irrigation system and reduce water requirements. The 

main contribution of the proposed hybrid is as follows. The proposed method schedules 

and optimizes the water using IoT and the Reinforcement learning method. In this 

proposed technique, IoT is used to collect the inputs, KNN is used to find the nearest 

features to extract useful information such as moisture, water requirements, root 

moisture level, etc. Reinforcement learning is used to minimize the water requirements 

for the smart irrigation system. Compared to the conventional irrigation system, 10 to 

24% of water requirement is being optimized by this proposed system in terms of long-

term scheduling. This work is extended in three ways: effective knowledge sharing, 

appending different techniques, and collaborations of predicted parameters. The 

continual learning technique is used to recommend better predictions. The ensemble 

learning algorithms are recommended for better appending different prediction 

techniques. Federated learning is recommended for collaborating in different cultivation 

fields and sharing the best effective model using the best effective prediction models. 
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Chapter V 

Irrigation Requirement Prediction Using IoT and 

Transfer Learning 
 

5.1. Introduction 

Irrigation systems are a crucial research area because it is essential to conserve 

fresh water and utilize it wisely. As a part of this study, the reliability of predicting the 

usage of water in the present and future is investigated in order to develop an effective 

prediction model to communicate demand. In order to improve prediction, we develop a 

prediction model and share the updated model with nearby farmers. In order to forecast 

the irrigation requirements, the recommended model utilizes the Internet of Things 

(IoT), k-nearest neighbours (KNN), cloud storage, long short-term memory (LSTM), 

and adaptive network fuzzy inference system (ANFIS) techniques. By collecting real-

time environmental data, KNN identifies the closest water requirement from the roots 

and its surrounding. In order to predict short-term requirements, ANFIS is used. To 

transfer the new requirements for better prediction, transfer learning is used. Time-

series-data updates are predicted using LSTM for future forecasting, and the integrated 

model is shared with other farmers using cloud environments to enhance forecasting and 

analysis. For implementation, a period of nine to ten months of data was collected from 

February to December 2021, and banana tree was used to implement the planned 

strategy. Four farms, with measurements, were considered at varying intervals to 

determine the minimum and maximum irrigation needs. The requirements of farms were 

collected over time and compared to the predictions. Future requirements at 8, 16, 24, 

32, and 48 h were also anticipated. The results indicated were compared to manual 

water pouring, and, thus, the entire crop used less water, making our prediction model a 

real-world option for irrigation. The prediction model was evaluated using R2, MSLE 

and the average initial prediction value of R2 was 0.945. After using transfer learning, 

the prediction of the model of Farm-2, 3 and 4 were 0.951, 0.958 and 0.967, 

respectively. 

Recent technologies are used to effectively manage sustainable irrigation 

systems and decision-making. Artificial intelligence plays a major role in decision-

making and requirement predictions in recent technologies such as IoT. The 
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combination of IoT, the cloud and artificial intelligence constitutes a new methodology 

for decision-making because interconnected technologies such as firmware and 

mechanical and programming techniques are used to manage irrigation systems. IoT 

devices are used to sense the data from their surroundings, a cloud environment is used 

to process the data, and artificial-intelligence techniques are used to make decisions and 

predict the time-series data. Importantly, recent machine-learning and deep-learning 

techniques play a vital role in decision-making systems. Dominant techniques for 

decision-making include neural networks, KNN, support vector machines, decision tree 

(DT), LSTM, deep neural networks, etc. 

The combination of machine learning and IoT in a smart irrigation system has 

three layers for processing the entire application [83]: data gathering, data processing 

and intelligent system, and application layers. 

i. Data gathering and transmission: in the first layer of an effective irrigation 

system, the layer collects all the information using sensors and transmits it 

using networking devices [84]. 

ii. Data processing and intelligence layer: in the second layer, intelligence 

techniques are used for processing and decision-making. 

iii. Application layers: the third layer performs planning, optimization and 

implementations using the second layers’ decision [85]. 

The data-processing layers are used to collect the data and perform the 

processing steps at the initial stages. The data-processing steps, collect all the inputs 

from the sensors, atmosphere and other inputs. The data-processing layers apply the 

initial processing of surrounding information and intelligence techniques. The data-

processing layer uses intelligence techniques such as machine-learning models and 

other statistical techniques to process the data. The application layer helps to connect to 

the real world. The first and second layers are interconnected to processing and 

decision-making. Similarly, the second and third layers are connected to decision-

making applied to the real world. The previous research [86] shows different challenges 

and limitations in irrigation systems. Some of the dominant limitations are as follows. 

i. The irrigation system must be fully automated from the end-to-end process. 
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ii. The integrations of different functionalities of irrigation systems cannot be 

interconnected from data collection to processing. 

iii. The real environment inputs (rain, soil moisture and atmosphere inputs) are 

not interconnected. 

iv. The current- and future-requirements prediction still has one of the main 

research gaps in smart irrigation systems. 

v. The predicted feature and requirements are not shared with the neighbour farmers.  

To overcome the above challenges, the key contribution of the proposed work is 

as follows: 

i. In this work, IoT sensors and k-nearest neighbours are used to sense and collect 

the requirements. 

ii. We also propose a system to predict the short- and long-term sustainable 

prediction requirements of the irrigation system using ANFIS and LSTM 

techniques. 

iii. The proposed model shares the sustainable requirements of the prediction using 

the cloud environment and shares the features with the nearest farmers for 

better requirements prediction using transfer learning. 

iv. The proposed model reduces and optimizes the sustainable irrigation 

requirements of the crops. It reduces by 42% to 50% the freshwater 

requirements compared to the previous traditional methods. The proposed work 

reduces water usage because the short- and long-term usage of irrigation 

requirements are calculated using the sensors, weather and history. Compared 

to the previous methods, the coefficient of determination (R2) is better (0.955), 

and mean squared logarithmic error (MSLE) is less (0.439). 

v. Compared to previous methodologies, this work is the first to introduce transfer 

learning to an irrigation system and forecast irrigation requirements using 

transfer learning to predict one farm from another. Compared to the previous 

method of irrigation requirements prediction, our method of LSTM and ANFIS 

with transfer learning reduces by 30.24% the water requirements in the single 
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node of a banana tree in the implementations. Our method has tuned to consume 

1.16% less water in a single banana-tree node than in ref. [85].  

The rest of the chapter is organized as follows. Section 5. 2 presents different 

irrigation methods and requirement analysis methods. Section 5.3 presents the materials, 

working methodology, and optimized methods. Section 5.4 presents implementation 

results and comparison with dominant existing methods and the paper finishes with the 

Section 5.5. 

5.2. Related work 

This section presents different existing smart irrigation models, frameworks, 

techniques, machine-learning and deep-learning techniques, transfer learning, and a 

comparison of different irrigation systems for supporting the proposed work. Different 

researchers have presented various works related to machine learning, deep learning, the 

Internet of Things, cloud computing, and highly integrated technologies for smart 

irrigation. Initial data processing and decision-making are performed using these 

technologies. 

5.2.1. Irrigation Techniques 

This section on related work presents how previous techniques are supported for 

centralized storage, data processing, and decisions. The authors of [87] present an IoT 

structure for processing, storing, and analysing data using a decision system. An 

intelligence application system using an IoT system with different dimensions, such as 

moisture, water evaporation, and land slope, is considered for decision-making 

processing. The authors of [88] present two models, geography and climatology, and use 

different parameters for prediction, including moisture, wetness, daily and monthly soil 

requirements rates, evaporation of moisture and weather reports. The authors of [85] 

propose a CWSI framework for irrigation management using temperature distributions, 

and, with the help of this structure, water requirements are reduced. The requirement 

optimization is performed using time intervals and continuously checking the 

requirements of the plants. The authors of [89,90] propose an irrigation system using 

control-based scheduling to manage different factors such as humidity, wind speed, 

wind velocity, soil moisture, etc. The sensor-based prediction for managing irrigation 

and soil moisture sensor senses different soil conditions, and mobile applications are 
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used to measure and monitor different activities of the irrigation system. Different 

recommendation systems such as statistical, machine-learning, and deep learning 

models are used to manage the prediction. The authors of [91,92] present different 

activities-based machine- and deep-learning, regression model, GBT and DNN methods 

to increase the prediction rate. In this model, the accuracy of predictions is increased by 

93% ploys  thermal images to analyze the various requirements of an irrigation system. 

Various parameters are measured using thermal images, and leaf potential is calculated. 

The main drawback of this work is that soil-moisture measurement is difficult to 

analyze. The authors of [93] propose machine-learning and IoT techniques to manage 

smart irrigation with the help of different parameters, such as various soil conditions, 

environmental parameters, temperature and nearest features, which are considered for 

requirement calculation. The authors of [94] propose a system for optimizing the water 

requirement of crops using the WSN and different node sensors. Control devices are 

used to manage the crop using mobile and web applications. With the help of mobile 

and web applications, soil moisture and future requirements are calculated. The IoT 

with multiple sensors is used for water management [95,96] using different parameters 

such as soil properties, moisture, temperature, and rain sensors. In this work, the output 

is predicted and operated automatically and manually. The authors of [97,98] propose 

different monitoring and control systems for irrigation systems. Different energy models 

and IoT platforms are used to analyze parameters and use a decision pumping schedule. 

The authors of [99] propose a LoRa network structure with an energy-efficient model to 

cover up to 5 km with smart control. All the information is transferred to different 

places using the LoRa structure. The various machine- and deep-learning approaches 

analyze the requirements, moisture analysis, and future recommendations of irrigation 

systems.  

The authors of [83] propose a model, with the help of genetic techniques, to 

increase yields and analyze various recommendations. The genetic model [100] 

provides the solution using sequential inputs and non-continuous scheduling. The 

authors of [87] propose a system using metrological data and created a weekly 

irrigation-requirement plan using regression and classifier techniques. This system 

achieves 95% and 93% accuracy using classification and regression techniques. The 

authors of [101] propose a location-based optimized irrigation system using a genetic 

algorithm with the help of previous data. The location-based water-requirement analysis 
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for irrigation systems using the KNN algorithm with an intelligent IoT sensor is used to 

plan irrigation systems [84]. In addition, this work is fully automated with machine-to-

machine data transmission for effective decision-making. The heterogeneous data 

management in irrigation systems uses machine learning and IoT, and this work predicts 

the requirement for irrigation using the related data. The time-to-time irrigation 

requirements are also calculated using logical regression analysis. The authors of [102] 

calculate humidity and temperature using a decision tree. The future requirements for 

the prediction of irrigation systems are calculated using the SVM algorithm, but the 

requirements for prediction accuracy are very low. The summary of the different IoT 

frameworks, models, and machine learning algorithms is presented in Table 5.1.  

The authors of [103] present a comparative study for precision agriculture using 

deep learning and IoT. In this work, authors have gathered and analysed disease, weeds, 

and soil yields using deep learning techniques. And also, the authors analysed different 

components of agriculture, such as sensors, UAVs, data acquisition, annotations and 

datasets used for predictions. Finally, pest detection is performed using VGG16 and 

transfer learning, which achieves 96.58% accuracy in prediction. The authors of [104] 

presented the state of the art for managing water using IoT devices. Using the 

connecting devices, the authors address water-planning and water-distribution issues. 

This case study is planned with the help of IoT-enabled devices. The author of [105] 

propose a smart and green irrigation system using gradients and regression trees, which 

are used for the implementation part. The authors of [106,107] use different parameters 

such as temperature, humidity and weather data, which are used for the prediction of 

irrigation requirement. The SVR and K-means are used for soil-moisture prediction. 

The different limitations are summarized using the above-related works. Most of 

the work did not address the requirements of roots, and the nearest features were not 

considered for the irrigation-system requirement analysis. The recent works do not 

consider all parameters, such as wind, moisture, and temperature, for requirement 

prediction. The previous systems need to be integrated with the full automation system. 

In this work, we planned the different irrigation parameters to predict and analyze the 

requirement of the irrigation system based on the crop requirements. 
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Table 5.1: Summary of advantages and Limitations of Previous works 

 

Previous works advantages Limitations 

IoT framework 

[84,87,94,101] 

The site-specific 

variable-rate sprinkler 

irrigation [87] (SS-VRT) 

used crop and soil 

conditions for irrigation, 

KMO [101] is used to 

analyse the factors of 

irrigations, SWAMP [84] 

architecture provides better 

scalability, Federated 

learning [94] is used for 

irrigation without sharing 

the data, using machine 

learning. 

SS-VRT does not 

support long-term 

application, KMO is not 

considered as a real factor 

affecting the irrigation, 

SWAMP is not considered 

as one of the multiple 

features for irrigation and 

the Federated learning. 

Irrigation models 

[85,88,89,102,108] 

A sprinkler–solid, 

centre pivot, travelling 

irrigator, and micro-spray 

are used for 

spatial-based 

irrigation. Automatic 

sensors and evaporation-

based models are used to 

predict the requirements. 

The spatial-based 

irrigation model is only 

supported at particular 

locations. Central 

data storage, 

irrigation scheduling, and 

root moisture are not 

considered for processing 

an effective system. 

Recommendation 

system – Irrigation system 

[91] 

Irrigation 

performed based on 

climate change, water 

availability, and a policy 

of productivity. 

 

Considers area-wise 

irrigation and not irrigation 

technology, makes way for 

better decision-

making. 

Optimization and Genetic algorithm, Effective sensor 
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machine-learning 

algorithms 

[83,85,87,89,90,100–102] 

KNN, logical regression, 

SVM and decision-tree 

algorithms are considered 

for irrigation 

requirement 

predictions. 

data and data on weather 

should be combined for 

effective predictions. 

 

5.2.2. Transfer Learning for Agriculture and Irrigation System 

Transfer learning is a knowledge-storing problem which applies similar and 

related tasks for prediction and classification problems. The transfer of learning is used 

in different applications, classification problems, knowledge transfer, agriculture, etc. In 

agriculture [109], it is used in plant disease prediction, species detection, plant-domain-

knowledge transfer and plant classification and information sharing. Recently, different 

researchers have addressed different problems related to transfer learning in agriculture. 

The authors of [110,111] proposed a knowledge-transfer model to classify different 

crops and reduce the retraining and labelling time. In this work, authors reduced 20% of 

the time compared to the normal time. 

Similarly, the authors of [112] use transfer learning for weed identification 

among different plants and achieved an accuracy of 99.29%. Similarly, the authors of 

[113] propose deep transfer learning for trash classification. In this framework, the 

authors achieved 94% and 98% accuracy using different datasets. The authors of [114] 

proposed a model for identifying bale detection using deep transfer learning and a 

domain-adaptation approach, which transfers the source images to target domain 

images. The authors of [115] proposed a CNN and transfer-learning model for 

identifying crop-attacking pests in the early stages of crop growth. Transfer learning is 

used to create fine-tuned pre-trained models. The authors of [116] propose a transfer 

learning for transferring a base model, characterized using different samples/features, 

from one place to another. In this framework, the transfer of features is performed in 

two places in the context of the irrigation mapping of time-series features in two 

locations. The authors of [117] propose transfer learning with IoT to train the model 

better using soil moisture and transfer the soil conditions from one soil to another, with 

the two soils having different distributions. 
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The previous works [119–115] on transfer learning are used in classification 

based on features, which are transferred within the framework and between the models. 

The authors of [116,117] proposed models for transferring the features from one spatial 

location to another  

5.3. Materials and Method for Requirement Prediction 

This section presents the materials and methods for the proposed work. The 

proposed work uses live data and historical datasets to predict the requirement for the 

present and future irrigation systems. Live weather data is used to correlate current and 

future requirements. IoT devices are interconnected for present-requirement collecting, 

and different components are used for future-requirement collections. The proposed 

method uses k-nearest neighbours, cloud storage, LSTM, and ANFIS to predict an 

irrigation system. 

The IoT devices must collect the data from the environments, for which KNN 

find the nearest water requirements from the root and surroundings, and ANFIS predicts 

short-term conditions. The LSTM is used to predict time-series-data updates for future 

prediction, and the transfer learning is used to transfer the learning features information 

from one cultivation field to another. 

5.3.1. Materials 

In the proposed method, materials are collected in three ways: IoT sensors, past 

data collected from previous years, and live data collected from the weather data. The 

sensor and IoT devices are also used to transfer the data from one machine to another 

and to the cloud environment.  

The live-data collection location and the latitude and longitude of the 

experimental location is 8.2473502, 77.2743729, 345. The data was collected from 

Kanyakumari, Tamil Nadu, India. This location has seasonal rainfall, and basic 

requirements were collected using IoT devices. Three basic components, such as IoT 

devices, gateway and cloud, were interconnected to communicate and transfer data from 

the physical location to the cloud. Four different fields were used for collaboration and 

decision-making in the mentioned location. The basic requirements for prediction were 

measured using various sensors. Figure 5.1 shows the different requirements predictions 
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presented in 3 h time intervals. Similarly, the basic requirements were also measured 

between 5 h, 8 h and 10 h. The cultivation requirement of the Plantain Banana or Red 

Dacca (Australia) from the beginning to the end is represented in Table 4.1 The entire 

cultivation of the species started in February and ended in October.  The summarises the 

basic water requirement from the beginning of February till the end of the cultivation in 

October. This basic requirement is plotted manually with the help of farmers, and four 

farmers were involved in the cultivation. 

 

                      Figure 5.1. Collections of atmosphere requirements. 

5.3.2. Methodology 

This proposed work used IoT devices, k-nearest neighbours, cloud storage, 

LSTM, and ANFIS to predict an irrigation system. The IoT devices must collect the 

data from the environments, for which KNN find the nearest water requirements from 

the root and surroundings, and ANFIS predicts short-term conditions. The LSTM is 

used to predict time-series-data updates for future prediction, and the Spearman rank 

correlation method correlates the needs in different intervals. The proposed work’s basic 

goal is to predict current and future requirements for different time intervals, such as 3 

h, 8 h, 12 h and 24 h and 48 h. 

 

The basic structure of the proposed work is presented in Figure 5.2. The 

proposed structure of the prediction model consists of three main parts: initial-value 

predictions, integrated prediction model and transfer learning. The initial-requirements 
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prediction is performed using the group of sensors. The group of sensors sensed soil-

moisture, root-moisture, and weather data. In the integrated model, KNN, ANFIS and 

LSTM algorithms were used for sensing nearest values and short-term and long-term 

predictions. The prediction values and features were shared using transfer learning. 

 

                                    Figure 5.2. Structure of the proposed work 

5.3.2.1. KNN Algorithm 

KNN is a supervised algorithm to find the nearest values predicted using sensors 

with many assumptions [118,119]. The dataset inputs considered the real values, taking 

the values from the certain k nearest distance from the input dataset. The prediction 

output is the average distance between the input taken and the given sensed input using 

the average voting of the nearest prediction. The trained data of multiple inputs consist 

of multiple features, and different classes are labelled using a supervised KNN 

algorithm. The nearby sensed values depend on the discrete or continuous distance. The 

different features’ relationship or distance between the features is predicted using 

Euclidean distance. The discrete values, such as soil moisture, atmospheric moisture and 

weather data, are evaluated using the Euclidean distance. The recommendation of the 

features is also evaluated and considered as the input value for the integrated prediction 

model. The Euclidean distance vector evaluated the different region-wise and root-

moisture values considered as the input. 
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5.3.2.2. ANFIS 

The ANFIS is an artificial neural network with a combination of neural-network 

and fuzzy-logic properties. The inference system is a set of if-then rules with non-linear 

functions [120,121]. The ANFIS was constructed using five layers: an antecedent layer, 

three hidden layers, and a consequent layer. The antecedent layer is an input layer, and 

the consequent is an output layer. The three hidden layers are based on rule-based and 

fuzzy logic applied to these three layers. The first input layer between 0 and 1 is called 

the “premise parameter”. The second layer estimates the income for each neuron using 

the product operator. The third layer normalizes the input signal, and the fourth layer is 

fuzzification. The fifth layer is a summarized weighted output layer. The ANFIS is an 

optimal and intelligent way to manage the energy system [122]. 

 

5.3.2.3. Long Short-Term Memory 

LSTM is a recurrent neural network which predicts and classifies data 

requirements using time-series data. It consists of input, output and forget gates. The 

different gates control the flow of information and help exit and enter the gates. The 

LSTM predicts future time-series data in short- and long-term predictions [123,124]. 

 

5.3.2.4. Transfer Learning 

Transfer learning is used to train the system to perform the relevant similar 

learning of the existing model. The main part of the learning is generalized, and the 

different scenarios or relevant conditions are transferred from one model to another. The 

main advantages of transfer learning are saving resources, timing to complete similar 

learning, increasing the learning model’s efficiency, and avoiding the negative 

prediction from the pre-trained model [116,125]. 

 

5.3.3. Working Principle 

This proposed work predicts various requirements of irrigation using IoT 

sensors and weather inputs and helps in finding short- and long-term predictions. The 

flow of the representation of the proposed work is presented in Figure 5.3. The working 

process of the proposed work consists of four main parts: data collection from various 

sources, nearest requirement prediction, short-term prediction (ANFIS), long time-series 

prediction (LSTM) and predicted knowledge sharing to nearest farms (transfer 

learning). The working process of the proposed work uses four steps: processing the 
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inputs and storage, short-term prediction, long-term prediction and transfer learning and 

sharing features from one data source to another data source. Initially, the data is 

collected from the sensors, with the help of KNN algorithms for predictions. With the 

collected data, weather forecasts and previous data are used as the input. The processed 

data is applied for short-term prediction using the ANFIS. The short-term prediction of 

irrigation recommends water pumping. For long-term prediction, the LSTM technique is 

used, and, if required, it recommends water pumping. This prediction is performed on a 

single farm for short- and long-term prediction. Once the farming location requirement 

is predicted, the features are transferred to another farm for better predictions. The 

second farm processes the new input data from a particular location and processes the 

farm 1 features for better performance. 

 

Figure 5.3. Workflow representation of proposed work. 

The entire working procedure is described in Algorithm 5.1. The processing 

steps of the algorithms consist of data processing, and prediction and sharing of 

knowledge gained from other farmers, as well. Initially, the sensor data from farm 1 and 

weather data are transferred to the cloud storage. The history data and collected data are 
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initially processed for the prediction of requirements. The processed data predicts the 

short-term (Sp) and long-term (Lp) requirements using ANFIS and LSTM techniques. 

Using these techniques and collected data, initial requirements are predicted in the long 

term and short term. The first farm (X1) gains the knowledge, and so the stored model 

weight is shared with the nearest second farm for better prediction. A detailed 

description of the working process is as follows. 

Initially the input collected which are collected from various sources of input 

are, real data, with help of IoT devices, Past data and weather information from the 

nearest weather stations. In this work we consider four farms for banana cultivations.  

Each farm is considered as X1, X2, X3, and X4. The output of four farms with input 

process model is represented in the equation 5.1.  

 

Algorithm 5.1: Requirement Prediction and Features Transfer 

 

Input: Data Collection Using Sensors (Moisture (Xm), 

Weather details (Xw), Temperature (TT) 

Farms Prediction Details (X1, X2, X3, and X4) 

Output: Short- and Long-term Prediction Details (Sp, Lp) 

Generating algorithm Begin: 

1. (Moisture (Xm), Weather details (Xw), Temperature (TT) > 0 

2. X1, X2, X3, and X4 > 0 

3. Calculate (Xm), (Xw), (TT); 

4.  If (Xm, Xw TT >0) 

5.   Predict of Each Farm Requirements Details 

6.        {N = C (Prediction of Nearest features with respect to 
weights and time) 

7.        D = {Prediction of distance features between two 
terminals} 

8.        Sp = Tp -AP // Short- term prediction 

9.        Lp = Tp -AP // Long- term prediction 

10.    End of Each Farm Prediction 

11.   Share the month wise history data   

12.   Y = X1 (End prediction of single Farm) 

13.  Share X1 to X2 

14.   T = [Y, f(.)]  //Start Transfer Learning                         

15.  If X1 > X2 / X2 >X1 

16.   Share the Y values 

17.  If (Xw = Rainy) 

18.  Stop   // Stop sharing, Sensors in Sleep Mode 
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19.  End 

 

                               Y= {X1, X2, X3, and X4}                                               5.1 

Each farm used three input sources such as past cultivation data (x1), weather 

data (x2), and current data, collected with the help of IoT and Sensors (x3). The 

combination of inputs and output representation of model is shown in equation 5.2. 

Y= {X1(x1, x2, x3), X2(x1, x2, x3), X3, (x1, x2, x3), and X4(x1, x2, x3)}             5.2 

The x3 is the combination of the nearest features, short term requirement 

predictions, long time prediction and transfer of knowledge from the one farm to 

another farm. Initially the nearest features are predicted using the KNN algorithms and 

nearest features are calculated based on the distance between the roots from the initial 

prediction to next nearest predictions. The distance is calculated using the Euclidian 

distance.  The mathematical representation of nearest features calculation and distance 

measurement between the features are represented in the equation 5.3 and 5.4.  

, ,…,                                                                     5.3 

                                 

N – denotes the predicted nearest values, C - denotes features, n denotes 

different features, w denotes weight, {x1, xn} denotes different weight. The distance 

between the initial root prediction features and next feature distance as follows.  

     

 

D denotes distance, n- number of measurement of features x, i and j denotes the 

starting and ending points of moisture measured in the roots. The based on the nearest 

features, past data and weather information short term inferences are calculated using 

ANFIS. The inference model and short-term learning prediction are represented in 

equation 5.5 and 5.6.  
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                                2                                             5.5 

 The Sp denotes short term prediction, Tp denotes the targeted prediction and Ap 

denotes actual prediction. Similarly, the learning rate of ANFIS representation is as 

follows.  

 

 -denotes the learning rate, k -denotes the learning size, - denotes the error 

rates and - denotes the training data. Based on the equation 5.5 and 5.6, the short-

term interference result is, as calculated. If the short-term inference result is not 

required, long time prediction is performed using the LSTM algorithm. The LSTM 

algorithm prediction long term series data prediction with the help of three types of the 

inputs as mentioned in the earlier. The LSTM algorithm consists of three gates, such as 

forget gate, remember cell, activation sigmoid function and new states of prediction 

represented 5.7 to 5.10.  

                                        5.7 

ft denotes Activation function, ht-1 – denotes previous unit output t-1, xt – denotes 

input data, bf denote bias,  denote sigmoid function. The sigmoid function denotes as 

S(t) is represented as follows. 

 

 

The remember cell and new state function are, as follows.  
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With the help of KNN, ANFIS and LSTM prediction is done, using, the short 

term and long-term prediction of the requirements. The requirements of X1, X2, X3, and 

X4, are shared using the knowledge transfer. The knowledge transfer, is represented in 

the equation 511[16]. The initial learning performed from the X1 ((x1, x2, x3) and 

predicted values or known value is considered as Y. So, the transferring learning is 

denoted as  

                                                  T = [Y, f(.)]                                                5.11 

T denotes, learning task transferred to next node or prediction task, Y- denotes 

the prediction output and f(.) denotes prediction function with different instance. This 

predicted task is transferred to the other farm using different threshold or different 

conditions.  

5.4. Results and Discussion 

For experimental and implementation requirement, the specification is described 

in Table 5.1 and Table 5.2. Data has been collected form the metrological deportment 

and banana cultivation research centre of India. Initially, the requirement, such as X1 is 

collected from the IoT sensors. Using the sensor, surrounding moisture, Root moisture 

and humidity values are also collected. And, minimum and maximum water 

requirements are collected manually from the farmers. The maximum water 

requirements for a month (50) litres and interval of irrigation (7days) are collected for 

fixing the threshold values for training and testing.  Some of the fixed and basic 

parameters which are considered for irrigation, is shown in Table 5.2.  

                           Table 5.2: Basic Implementation Parameters  

Parameters and 

requirements  
Values 

Number of Nodes 4 

Number of trees in 

each Nodes 

9/10 Months [ 

Feb- Oct/Nov] 

Maximum requirement 

per month 
50 Litres 

Irrigation Interval Feb to November 
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Minimum 

Temperature  
0 C 

Maximum 

Temperature 
37 C 

Interval of irrigation 7 Days 

Average requirement 

of water per month 
36 Litres 

 

Initially, is the basic requirement of prediction training, testing and validation 

accuracy which is predicted using the combination of ANFIS and LSTM. The Figure 

5.4 represents the accuracy of the training and testing of 97 iteration and 100 nodes 

data.  

 

Figure 5.4: Training and testing accuracy of prediction 

In figure 5. 2, various live indicators such as temperate, humidity, rain 

possibility, and wind speed, has been taken for x3 calculation.  The past cultivation data 

(x1), weather data (x2), and current data collected with the help of IoT and Sensors (x3) 

and root moisture are also calculated continuously with the help of THERM200 and 

SHT11. In this work, irrigation requirement is predicted in terms of 8 hours, 16 hours, 

24 hours, 48 hours and 60 hours.  Two main requirements directly affect the 
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requirements, such as temperature and humidity. The year wise temperature and 

humidity, which is presented in the Figure 5.5 and 5.6.  

 

Figure 5.5: Month wise Temperature  

 

Figure 5.6: Month wise Humidity  

So, in this work three types of the requirements are predicted such as short term 

(8 hours, 16 hours), long term (, 24 hours, 48 hours and 60 hours) and changes are 

implemented after transfer learning from the one farm to another farm. The shortest 

inference result is predicted with the help of ANFIS and long-term prediction is done 

with the help of LSTM. The shortest-term prediction analysis is done in two months 

such as march and July. The reason for prediction of March and July is, during march, 

rain fall is low and in July rainfall starts and thus the atmospheric temperature is low.  

The moisture and humidity of current and the short-term requirement prediction of 

march and July requirement prediction, using ANFIS has been presented in the Table 

5.3. The shortest-term prediction requirements are shown in the Figure 5.7. Figure 5.5 

and 5.6 presents, two main requirements of short- and long-term predictions such as 

temperature and humidity in-terms of 8, 16, 24, 32, 48 hours. The figure described the 

minimum and maximum temperature and humidity, and it starts from the 8 am and it 

continuously measures up to 48 hours.  
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Figure 5.7: Minimum and Maximum Temperature and Humidity of March and 

July Months 

Table 5.3: Short-Term Prediction of Requirement 

 

Based on the minimum and maximum temperature and humidity, the 

requirements of irrigation for march month and April month are summarized in the 

Table 5.5. When compared with table 3, the maximum requirement per day in march is 

6 to 7 litters and in the requirement, prediction is also according to maximum 

requirement per day, which is near about 6 to 7 days. Similarly, July also received 2 to 3 
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litres per day based on the ANFIS prediction.  Similarly, the long-term prediction is 

performed with the help of LSTM algorithm and prediction intervals are 24, 48, 72 and 

etc.  Using the long-term prediction irrigation is performed because generally in the 

banana irrigation intervals are between 3 days to 5 days. So, based on the long-term 

prediction irrigation is scheduled. The long-term prediction of farm-1is presented in 

Table 5.4.  

             Table 5.4: Long-Term Prediction of Requirement 

 

Based on the Table 5.5 and 5.6, the entire prediction requirements of irrigation 

in march and April are presented in Table 5.7.  This prediction requirement is calculated 

between four-day intervals.  The short-term and long-term prediction is correlated by 

four-day intervals. Minimum and maximum requirements of irrigation are presented in 

Table 5.5 and Figure 5.6.  

Table 5.5: March and April Irrigation Dates and Requirement -Farm 1 

 



87 

The Table 5.5, 5.6 and 5.6 are the short, long and month wise requirement 

prediction of Farm 1 prediction. In this prediction, ANFIS and LSTM are used. And 

based on these two techniques the month wise prediction is presented in the Table 5.7. 

The Table 5.7 clearly presents the minimum and maximum requirements of irrigation in 

4 days’ time interval. The four days’ time interval is measured with the help of ANFIS 

and LSTM and corresponding correlation of long and short-term prediction. In the 

month of March, the humidity, temperature and other parameters such as weather, wind 

speed and previous year information’s are considered for prediction. In the month of 

march generally the above-mentioned parameters are very high and wind speed also 

very low compared to the other months in the specified location. So, the maximum 

requirement of the irrigation is increased in that year and minimum requirement is also 

similar to the maximum requirements. The difference between the minimum and 

maximum requirements difference is 8 liters. Similarly, the month of July is monsoon 

season and it rains in the specified location, so automatically the requirements of 

irrigation decreases. In the month of July, mostly the requirements are decreased, as the 

humidity is very less.  So, the minimum requirement of irrigation is 9 and maximum 

requirements is 16. Similarly in next three month, requirements are very less, but during 

the summer season, the irrigation requirements is very high in the month of April, may 

and middle of July. The entire year wise irrigation requirements of Farm 1 are presented 

in the Figure 5.8. In this Figure 5.8, minimum and maximum requirements are 

summarized in the Farm 1. The maximum requirements are increased in the months of 

March, April and May.  

 

           Figure 5.8: Month wise Requirement Prediction of Irrigation -Farm 1 
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Similarly, with the help of transfer learning, from the Farm 1, prediction is 

transferred to the Farm 2. Based on the Farm 1, the basic information is shared to the 

Farm 2. The basic requirements of irrigation in March and April are shown in the Table 

8 and year wise predicted results are presented in the Figure 5.8. 

The transfer learning helps to reuse the model for new task prediction. Table 5.8 

and Figure 9 shows the difference between the first prediction (Farm1) and new 

prediction (Farm2). Comparing Table 5.5 and 5.7, the requirement prediction is 

reduced, because, it produced better optimization and saved the irrigation requirements 

in the two months and overall requirements are also reduced in the farm 2.  

         Table 5.6: March and April Irrigation Dates and Requirement (Farm-2) 
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           Figure 5.9: Month wise Requirement Prediction of Irrigation -Farm 2 

In comparison to the Farm 1 and Farm 2 the requirements of irrigation are 

reduced to 7 litters per single plant of banana. Farm 1 total requirement is 200 litre per 

plant and after applying the transfer learning total requirement of irrigation is 193. So, 

after applying the transfer learning, 7 litre irrigation is requirement has been reduced in 

the Farm 2. In the overall, irrigation process, every day prediction is transferred form 

Farm 1 to Farm 2 in 5 minutes time interval, after that Farm 2 irrigation requirement is 

predicted.  

Compared to Farm 1 and Farm 2, the irrigation requirements are reduced to 7 

litres per banana plant. Farm 1 total requirement is 200 litre per plant, and after applying 

the transfer learning total requirement of irrigation is 193. The after applying transfer 

learning, the 7-litre irrigation requirement has been reduced in Farm 2. In the overall 

irrigation process, everyday prediction is transferred from Farm 1 to Farm 2 in 5 

minutes time intervals delay, and after that, Farm 2 irrigation requirement is predicted.  
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                Table 5.7. Comparison of R2, MSLE and EV.                          

 

The proposed work is evaluated using the coefficient of determination (R2). The 

R2 determines the model prediction measurements when increasing the iterations. 

Initially, the model was predicted to be 0.920 at 15 epochs and 0.958 at the 75th epochs. 

After applying the transfer learning, the farm-2, farm-3 and farm-4 values gradually 

increase. Table 5.7 shows that the model prediction and relationship accuracy values 

increase after transferring the features.   

 

5.4.1. Comparison with Other Methods of Estimation and Transfer of Learning 
 

The proposed method was compared to the existing approach, which decreased 

the water consumption of a single node by 31.4% in the period of 2020. When 

compared to the previous approach, our method optimized 30.24% of water after 

applying transfer learning on a single node of the banana tree. Our method was tuned to 

consume 1.16% less water in a single node of a banana tree. Comparing our suggested 

method to the manual and technology-based approaches, we find that it optimized 41% 

to 50% more water in the farm. Using transfer learning, the proposed method reduced 

from31.4% to 30.24% the water of a single node tree. Tables 5.6 and 5.7 clearly 

illustrate the optimization of water usage following the implementation of transfer 

learning. Our proposed work was compared with the recent work [6,105–107], and it 

optimized the irrigation requirements. Compared to previous work, total water usage is 

reduced. Table 5.10 shows the water usage of our work and its comparison with 

previous work. Compared to the previous work, total irrigation requirements were 

reduced. 
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           Table 5.8. Comparison of Accuracy with Existing Methods. 

S.No Methods Accuracy 

1 GBRT[105] 87.23 

2 SVR+ K-Means [106] 88.13 

3 LSTM +GBT [6] 92.04 

4 RBFN [107] 89 

5 Our Method 94 

 

5.5. Summary 

This work integrates IoT, machine-learning and transfer-learning techniques to 

achieve sustainability and predict irrigation-system water requirements. The main 

finding of this work is that it reduced water usage and transferred the features of the 

prediction model and exchange for better prediction and requirement analysis. IoT 

sensor devices collected basic requirements such as humidity, temperature, and 

moisture. The weather data and past data collected from the banana research centre were 

used for implementation. The proposed work used ANFIS for short-term predictions, 

such as 8, 16, 24, etc. The LSTM predicted long-time requirement predictions such as 

24, 48, 72, etc. Based on short- and long-term predictions, the entire requirement was 

predicted in 4 days. In this work, data of two months, March and July, was predicted 

and analyzed. The entire requirement of overall cultivation was predicted and calculated 

in the short and long term, with the help of weather and past data. The farm-1 data 

features were transferred to farm two, and, thus, it predicted the irrigation requirement. 

Comparing farms 1 and 2, after irrigation, farm 2 had lower irrigation requirements in 

July, a change from 16 to 15; during May, the requirement increased from 31 to 34. 

Similarly, comparing the year-wise requirement of farm 1 to farm 2, we see that it 

reduces the requirements from 200 to 193 for a single banana tree. This work reduces 

the irrigation requirement and predicts the short- and long-term requirements of an 

effective irrigation structure at a particular interval. In the future, this approach will be 

extended to multiple farms. Based on that, the requirements can be optimized. In 

addition, further implementation of this work is being carried out using Federated 

learning, sharing the farm data, which predicts and shares the model for further 

irrigation. 
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Chapter 6 

Collaborative Irrigation Model using Federated 

Learning 

 

6.1. Introduction 

An irrigation is the process of controlling the water usage for agriculture and 

increase the productivity using an effective cultivation. The researchers are mentioned 

different usage using the irrigation such as proper utilization of water, optimizing the 

fresh water usage and avoid water usage, increase the  nutrition, landscape plants, 

grow crops and etc.  The different types of the irrigations are used to optimize the water 

usage such as drip, surface, furrow, Trench, Fertigation and etc. The suitable irrigation 

types are selected based on the different parameters such as crop type, slop of the land, 

types of technology and etc. The different types of the crops are used to optimize the 

water usage such paddy, corn, banana, sunflower and etc. In this work used banana 

irrigation water usage optimization perform in the different collaborative manner for 

effective irrigation in the homogeneous environment.  The main purpose of this research 

is to find the effective prediction model for irrigation in the distributed environment 

using the collaborative manner.  

Artificial intelligence includes machine learning as a subset. The various 

machine learning methods are used to predict the requirement and optimize the 

irrigation system. The traditional machine learning techniques, the data are centralized 

and not having privacy, while managing the data. So, recently the federated learning is 

introduced to manage huge amount of data in the distributed environment with 

collaborative manner.  The federated learning's major benefits are Control over 

information, data anonymity, manage huge data personally, minimize the risk of data 

and provide an effective consolidated solution in the distributed manner. So, federated 

learning-based solution provide an effective solution for irrigation system. The 

following way the federated learning provides an effective solution in the irrigation 

system to farmers such as farmer data no need to share own data to others, it provides 

the consolidated solution from the various nodes, model move and data having privacy, 

and share the optimize model to other farmers for better solutions.  

https://en.wikipedia.org/wiki/Landscape_plant
https://en.wikipedia.org/wiki/Crop
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The organization of this chapter are as follows: The section 6.2 presents the 

related information about federated learning and its advantages. The section 6.3 presents 

the definition of the problem, dataset information’s used for implementation, algorithms 

for node selection and aggregations, and working process of proposed work. The section 

6.4 presents the implementation details and result and discussion and finally 6.5 

presents the conclusion and future work.  

6.2. Related Work 

While the training data for older machine learning methods must be 

concentrated in a single computer or data centre, modern science and technology have 

made the data available everywhere. Data access has become more challenging as a 

result of governments' increased focus on data protection and the development of 

rigorous privacy clauses. Data islands are an issue in many sectors since integration 

encounters strong opposition and sharing is challenging. It will be expensive to adhere 

to the right to privacy and to consolidate these data in the data centre. The three types of 

federated learning such as i. Horizontal types of learning, ii. Vertical types of Learning, 

and iii. Federated transfer learning. The different locations and corresponding data 

processing presented in Figure 6.1. 

 

Figure 6.1: Federated learning system for different locations 
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First, the initialization parameters for the unified model and the identical model 

specification will be provided to each participant. To train the model, repeatedly iterate 

the following steps: The structure of the process of federated learning shown in Figure 

6.2. The working process of the proposed work has as follows:  

i. Each participant (business or device user), after training the model with 

its own data and determining the gradient, transmits the encrypted gradient correction 

amount to the server. 

ii. The server updates the model by integrating each participant's gradients. 

iii. The server sends each participant the model's modified gradient. 

iv. The participants revise their individual models. 

Because of its straightforward structure, horizontal alliance learning is currently 

the most popular. The different learning of federated learning are as follows.  

 

                             Figure 6.2: Structure of the Processing of Federated Learning 

i. Horizontal federated learning 

When sample overlap is minimal and feature overlap is substantial, horizontal 

federated learning is appropriate. For instance, Industries and hospitals in various places 

may have comparable operations (similar features), but diverse patient populations 

(distinct samples). 
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ii. Vertical Alliance Learning 

When there is a lot of sample overlap, little feature overlap, and one of the 

parties also possesses the label that the model needs to predict, vertical coalition 

learning is appropriate. The different scenarios and corresponding instance, are all locals 

(the same sample), but the nature of the businesses is distinct (different features). Data 

transfers to the general public are prohibited by privacy and security regulations. As a 

result, A and B must utilize encrypted sample alignment technology (also known as 

encrypted entity alignment) to check the customers that both parties share before using 

these data for encrypted training. 

During the technique, the participants are fully uninformed of the details and 

characteristics of the other party, and after training, they only receive the model 

parameters they have independently determined. The vertical alliance attempts to reduce 

feature overlap, but as long as there are more participants, the process architecture will 

deteriorate and become more difficult to implement. 

iii. Federated transfer learning 

When there is relatively little feature and sample overlap among those with data, 

federated transfer learning may be used. Instead of reducing the data, transfer learning 

will be employed in this case to overcome the labels and data. insufficient circumstance. 

The primary difference between horizontal alliance learning and distributed machine 

learning is that each node (node) is an individual participant (data owner), and as such, 

the modelling process may be influenced by the engagement of the participant (data 

owner). Dynamic preference adjustments are conceivable, and the entire learning 

process is protected by encryption. However, I think that horizontal federated learning is 

just decentralized learning that has been encrypted. 

6.2.1. Advantages of Federated Learning 

Dispersed data are used in federated learning to train models. The created 

models were trained on a variety of data and had minimal latencies without endangering 

the anonymity of the persons who helped with their creation. Here are a few more 

advantages to think about: 

 

 



96 

i. It is team-based by definition. 

Federated learning enables mobile phones and other devices to work together to 

create a prediction model. This approach keeps training data locally on the device rather 

than uploading and storing it on a centralized server. 

ii. Time is saved 

Organizations can work together to solve problems using conventional ML 

models. As an illustration, highly regulated businesses like hospitals can collaborate to 

train a potentially life-saving machine learning model while safeguarding patient 

privacy and delivering results more swiftly. It is not necessary to continually gather and 

combine data from diverse sources. 

iii. It's secure. 

In federated learning, secure aggregation is employed to shield client updates 

from prying eyes. As a result, the server is unable to determine the value or source of 

any model updates sent by users. Data attribution and inference attacks are hence less 

likely. Businesses like financial institutions and hospitals that are subject to strict 

privacy requirements might profit from the protection it provides because personal data 

stays local. Since it is simpler to combine data on a single, external server, data is less 

susceptible to breaches. 

iv. A wider range of data is used. 

Federated learning facilitates enhanced data diversity because the centralized 

model continuously learns from numerous organizations and groups rather than a single 

dataset with a potentially skewed population. The model becomes more inclusive and 

representative as a result. For instance, in the healthcare industry, federated learning 

algorithms are trained across several hospitals dispersed throughout several 

geographies. It makes it easier to develop models that are well-rounded because the 

patients included in the dataset have a variety of traits, including age, ethnicity, gender, 

and physical attributes. 
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v.  Real-time predictions are made. 

Federated learning produces real-time predictions that are created on the device 

itself. By doing this, the time that passes between the time that raw data is transmitted 

back to a central server and the time that the results are sent back to the device is 

minimized. Because the models are immediately downloaded to the device, the 

prediction process still works even when there is no internet connection. 

vi. It is passive and unobtrusive. 

Due to federated learning, the training-related gadgets have longer battery lives. 

In reality, devices only take part in training while their users aren't using them. As a 

result, training can be done while your phone is in charge, idle, or in the do not disturb 

mode. 

6.2.2. Federated learning in Irrigation system 

Machine learning approaches are deployed using cloud-based centralized 

systems that process data and perform computational analysis. However, there has been 

a shift, and interest in federated learning is expanding because of privacy concerns over 

user-generated data. Devices like local clients, nodes, and sensors can collaborate to 

build and exchange forecasting models through a process called federated learning, 

although each device keeps its own data. Data recorded on close or distant gadgets are 

used to create a global statistical model. Nonetheless, several difficulties related to the 

literature has mentioned federated learning applications. This includes the difficulties in 

communicating that arise the use of confidentiality safeguards when transmitting 

firmware updates from diverse devices that impair model performance and system 

efficiency. However, spreading the prediction model to other sites is anticipated to yield 

possible benefits from the implementation of federated learning.  

Developing nations, particularly those in Africa and some areas of Asia, are less 

likely to have adopted smart agriculture methods and digitization. Because most African 

countries confront infrastructure issues, adoption is slow. For example, many farmers 

are found in rural locations with low broadband penetration and limited internet 

connectivity . Therefore, further study is required to develop novel technologies that 

may be used in underdeveloped nations to apply machine learning to enhance irrigation 

that is affordable. Among these is the application of inexpensively wide-area 
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communication methods for rural agricultural operations, which includes long-range 

(LoRa) technology for communication , which fuses federated learning with computing 

at the edge. 

6.2.3. Analysis of Client Selection and Aggregation methods 

 

                                        Figure 6.3: Client Selection Process 

Node Selection Methods: In federated learning, choosing a client is a common 

procedure where the device in issue is initially charged and idle. To obtain the accuracy 

of communication, and the worldwide model, gathered characteristics and weights, and 

receive the global model, a server or worldwide node is linked to and associated with 

each authorized edge equipment. Figure 6.3 shows the many features and a general 

overview of the client decision-making process [126], from enrolment through client 

decisions.  The FedCS [127] was used in this instance as the principal client selection 

technique, with the aim of actively selecting the client in accordance with the resource 

condition. The primary flaw in this work was that dynamic scenarios and updating were 

not taken into consideration during the selection process, which was carried out using 

random criteria. In order to mitigate this, fewer resources were explored, exploited, and 

traded inside the mobile network through the use of the multi-armed bandit technique 
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[128]. This technique reduces learning time, which is one of its key benefits. It is 

advised for use in future situations to minimize resource utilization in fluctuating FL 

operations, as it helps handle uncertainty brought on by vast amount of data.  

Aggregation Methods: FL's main goal is to create an effective global model by using 

models acquired through dispersed local data of collaborating clients. The learnt client 

models' excellent data are then pooled to create an entirely new kind of model known as 

the aggregation model. Generally speaking, applications such as internet applications 

and meta-data analysis use both aggregation and rank aggregation techniques in 

different ways. The majority of the aggregation methods [129] are stochastic and 

heuristic in nature. In federated learning, aggregation is typically applied at two levels: 

local device aggregation and federated or cross device aggregation [130]. 

Local Aggregation: The term "local aggregation" describes the various samples that 

each client has. It sequentially uses the local parameters and the model parameters. With 

the use of local streams, it takes into account average loss, computer accuracy, and other 

parameters for local iterations 

[131].

 

                           Figure 6.4: Federated Aggregation Structure 
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Federated Aggregation: Cross-device aggregation is another name for federated 

aggregation. In order to create a global model, this relates to the accumulation of 

numerous linked devices utilizes model metrics, averaged client aggregations, and 

model parameter [131]. Figure 6.4 shows a diagrammatic representation of a Federated 

Aggregation structure. To develop useful models, scholars in the field have taken into 

account various federated aggregation techniques over time. Originally, a stochastic 

gradient optimization was used to introduce federated averaging [132] using four 

datasets and five different models to average. The foundational paradigm for federated 

aggregation was this one. Unevenly distributed big nodes were later added by Jakub and 

McMahan et al. [133] to provide high-quality data for the consolidated algorithm's 

training. We referred to this procedure as "federated ptimization" or "algorithm." 

Features, node count, and communication rounds were used in this method's evaluation. 

Following up on this, Yushi Wang [135] carried out additional research and suggested 

an asynchronous technique known as CO-OP for combining local samples into global 

models and training the local model using freshly generated samples. In this work, 

evaluation factors for communication overhead and model correctness were taken into 

account. 

 

6.3. Collaborative Irrigation Model 

This section presents the objective of the model, dataset information’s used for 

implementation, algorithms for node selection and aggregations, and working process of 

proposed work presented briefly. 

Objective of the Model: The main objective is to create an effective model using 

different farmers data without sharing for better prediction.  A method for training 

machine learning models on decentralized data, where the data is dispersed among 

numerous devices or nodes, is called federated learning.  

Dataset Information’s:  The components and data source of the location presented in the 

Section 1.10. The gathered data is processed with artificial intelligence and saved in a cloud 

environment. The sample information, soil moisture data, and location data are gathered from 

the Kanyakumari district in India. In this work we considered 5 farmers (Clients) for 

implementation.  

 



101 

6.3. 1. Functional Design of Collaborative Model 

The proposed model is divided into three sections, including assumptions of 

federated learning environments, federated learning functional designs and prediction 

models. 

Assumptions of Federated Learning: The implementation assumptions for federated 

learning model presented in global model and considered 5 clients. The local data is 

private and was initially shared with clients or local data. The initial model is built and 

given to all consultants as data is updated on the nearby client disc. Based on the 

criteria, the client model is run and shared with the aggregations.  

Federated learning functional designs: The overall functional requirements of 

federated learning shown in Figure 6.5. The following are the many steps involved in 

federated learning: 

 

Figure 6.5: Functional Design of Federated Learning 

i. Setting up the participant's gadgets. 

ii. Request for participation made to the resources. 
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iii. Client Choice 

iv. The parameters' distribution. 

v. updating the new parameters and uploading them, and finally. 

vi. combining the transferred parameters and weights. 

The issues that have emerged as the most important research, with an eye to 

emerging technologies are client selection, aggregation and optimization, knowledge 

transfer, and data management with respect to the high requirements for the designing, 

collaboration, and applications of the FL system model and design.  

Prediction Model: The detailed description of the proposed model presented in Chapter 

4. The same model is used in global model.  The model uses of IoT components, the 

KNN algorithm and reinforcement learning. The Internet of Things (IoT) components 

are utilized to gather current needs and forecast the environmental status of agriculture 

fields. The nearest features from the agricultural fields are captured by the KNN 

algorithm. IoT and KNN are used to do environmental prediction, awards, or needs for 

individual plants. 

6.3.2. Client Selection and Aggregation Models 

 

         Figure 6.6: Structure of client selection and aggregation 
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The design of federated learning is the primary concern of this work.  The basic 

structure of the client selection and aggregation process shown in Figure 6.6. The two 

core elements of the federated learning design are client selection and the aggregation 

mechanism. The client selection is used to choose the client's genuine client data based 

on the different conditions such as data updation, density, arrival of data and etc. The 

aggregation approach effectively brings together the various client-processed data. 

FedCS [127] algorithms are used to choose the nodes, and Federated Averaging [135] 

methods are used to determine the average of all the nodes.  

Federated Client Selection, commonly known as FedCS, is used to choose the 

client for the desired job [136]. We select the clients from whom we will collect 

information at random for this work. The random client selection is used by wireless 

devices, computational devices, mobile edge devices, and resource information. 

Initializing the protocol or process, resource requests to participate or client 

participation, client selection and resource information determination, client distribution 

and client selection, aggregation of selected device data, and scheduling and uploading 

of client data are all parts of the client selection procedure. From the client to the global 

model, this data is continuously being consolidated. The random client selection 

presented in algorithm 6.1. 

Algorithm 6.1: Client Selection Method 
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Algorithm 6.2: Federated Average Aggregation Method 

 

The aggregation is carried out using the FedAvg [118], often known as the 

federated average method.  This federated aggregation was performed using stochastic 

gradient optimization (SDG) [118]. This aggregation approach randomly selects the 

clients for each communication cycle.  After each iteration, trained data is collected 

from the random data. The FedAvg approach uses trained data that is randomly 

obtained, yet the aggregated results are reliable.  The vast number of rounds means that 

the proposal is more precise in terms of accuracy. The federated averaging client 

selection algorithm presented in algorithm 6.2. 

6.3.3. Working Process of Federated Model for Irrigation 

The overall working process of the collaborative learning irrigation model for 

better model updation steps involved are listed shown Figure 6.7.  

i. The clients are first given access to the reinforcement learning model for 

initial prediction of requirements. The requirement trained using the different samples 

for predictions.  
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                 Figure 6.7: Working Process of Federated Learning for an effective 

model 

ii. The initial model transferred to the participants clients. Client data are 

used to trained the model, and the most recent data and parameters are used to assess its 

accuracy.  

iii. After accessing the client’s activities, the global model call for updation 

from the clients using algorithm 6.1. The random selection algorithms used for client 

selections. 

iv. Clients are chosen at random for aggregation and performed the 

aggregation in global model. 

v. The aggregated parameters and weighted aggregates are added to the 

overall model. 

vi. New accuracy tests are conducted after the clients receives the updated 

model. 
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6.4. Results and Discussion 

This section consists of implementation details and result and discussion of 

proposed model. The proposed model used five clients and basic implementation model. 

The dataset details and model information’s are described in the section 1.10 and 

chapter 4. The implementation steps are presented in section 6.3.3. The accuracy, client 

prediction model accuracy and aggregated accuracy were presents in Figure 6.8 to 6 .11.  

 

                           Figure 6.8:  Global Model Accuracy for Prediction 

Using high-dimensional IoT sensor feedback, deep reinforcement learning 

model data is used for irrigation requirement predictions. Because deep reinforcement 

learning applies adaptive amounts of water based on different measures throughout 

time, so it enhances irrigation requirements in many cropping irrigation systems. The 

initial training and testing accuracy of the global model of federated learning presented 

in Figure 6.8. The overall training and testing accuracy of deep reinforcement with 

KNN algorithm are 77% and 68%.  The experiment is conducted using 100 iteration and 

summarized the training and testing accuracy of proposed system. The training iteration 

of 25 received highest accuracy is 92% and similarly 23rd iteration provided highest 
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testing accuracy is 83%.  This initial training and testing accuracy transferred to the 

different 5 clients (farmers) local accuracy and requirement of water predictions.  

 

Figure 6.9: Client – 1 and 2 Irrigation requirement prediction Accuracy 

 

Figure 6.10: Client – 3 and 4 Irrigation requirement prediction Accuracy 

The clients and global model performed the testing of requirement prediction 

using the local data. The server iteratively gathers client model changes in federated 

learning. Usually, a random selection of clients is made at each cycle. To incentivize 

clients with high-quality data to participate in the federated learning process, an 

incentive system grounded in contract theory has been suggested. FedCS random 

selection is a new protocol that selects more clients with less resource constraints in a 

single round in an attempt to aggregate more updates. Power-of-choice selection is a 

technique that uses a random selection process to determine which clients are included 
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in each round's test group for the loss of local data when using the current global model. 

After that, a few clients with the biggest losses are chosen for round training. In this 

experiment, considered only client different iteration wise accuracy and requirement of 

irrigations are calculated.  The figure 6.9, 6.10 and 6.11 shown the accuracy of the 

requirement predictions of irrigation system. 

 

Figure 6.11: Client -5 Accuracy 

The sharing of model parameters between clients and servers in federated learning 

raises the possibility of client historical gradient leakage. In order to address this issue, a 

technique for the safe aggregation of high-dimensional data has been  

                       Table 6.1: Model, Clients and Aggregation Accuracy 

S. No  Different Accuracy 

1      Basic Model Training Accuracy 77 

2 Model Testing Accuracy 68 

3 Client -1 Accuracy 

88.1

2 

4 Client -2 Accuracy 84.4 

5 Client -3 Accuracy 87 

6 Client -4 Accuracy 91 

7 Client -5 Accuracy 

88.7

7 

8 Aggregative Model Accuracy 89.2 

 

developed, enabling the server to securely summarise client-provided updates to local 

models. Furthermore, even in the event that a randomly chosen portion of the clientele 

abruptly leaves the system, the network's anonymity can still be protected. Applying 

differential privacy technology to federated learning, which conceals client 
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contributions during training, protects client information. To stop information leaking, 

federated learning systems can incorporate and combine multiple ways. After different 

iterations with data privacy and using the local parameters the accuracy of requirement 

is increased.  The summarized accuracy of experiment different iteration presented in 

Table 6.1. In the client 1 iteration 20th received 94% highest accuracy, but the summary 

of 20 iteration us 88.12%. The client 2, 9th iteration received 96% highest accuracy, but 

the summary of 20 iteration us 84.4%. In client 4, 3th iteration received 95% highest 

accuracy, the summary of 20 iteration is 91%. And similarly, the client 3 and client 5 

received 87% and 88.77% respectively. 

Finally, the suggested aggregation approach to achieve high global model 

accuracy with a minimal number of communication rounds. The client selection 

technique and 20 communication round aggregate pipelines produced 89.2% accuracy 

for prediction of requirements.  Compared to the training and aggregated accuracy, the 

global model received 12.2% accuracy improved and similarly the requirement of 

irrigation also updated in each farm. The global model, 20 iteration requirement and 

after the aggregation the reequipment of water irrigation shown in Table 6.2. The 

summarized 6.2 Table shown the three types of requirements and shown the optimized 

requirements.  

Table 6.2: Comparison of basic and Aggregated Model 

S.No Single Tree Water 

Requirement for 

Global Model per 

month 

Single Tree Water 

Requirement for 

Local Client per 

month 

Aggregative 

requirement for 

Month 

Client -1 (Farm)  

 

20 Litres  

24  

 

20.8 Litres  

Client -2 (Farm) 22 

Client -3 (Farm) 18 

Client -4 (Farm) 19 

Client -5 (Farm) 21 

 

 

 



110 

 

6.5. Summary 

The older machine learning methods have been concentrated in a single 

computer or data centre, modern science and technology have made the data available 

everywhere. The federated learning provides data privacy and share the updated 

effective model to concern clients or farms. In this chapter used IoT components, the 

KNN algorithm and reinforcement learning for initial global model requirement 

predictions. The Internet of Things (IoT) components are utilized to gather current 

needs and forecast the environmental status of agriculture fields. The nearest features 

from the agricultural fields are captured by the KNN algorithm. The implementation of 

the proposed work used datasets from the five different locations and transferred the 

global model. Compared the global model to aggregative model reduced the water 

requirements and increase the requirement prediction accuracy.  
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Chapter 7 

Result and Analysis of Methodologies 

7.1 Introduction 

The objectives of the thesis are providing an effective water irrigation to 

agriculture using the modern devices and an effective machine learning technique. The 

objectives of the proposed methods are to create an effective irrigation model, to predict 

the short- and long-term sustainable prediction requirements of the irrigation system, to 

shares the sustainable requirements of the prediction using the cloud environment and 

shares the features with the nearest farmers for better requirements prediction and to 

create an effective model using different farmers data, without sharing data.  The 

proposed methods which were discussed in chapter 4, 5, and 6 are compared with each 

other in terms of their metrics and performance results analysis are given in the 

following sections. 

The experimental setup is performed using an IoT devices, different dynamic 

parameters and cloud environments. The section 1.10 provided the detailed explanation 

about the data sources collected details. The chapter 4 used only collected information’s 

from the 8.2473502, 77.2743729,345.  The chapter 5 and 6 used IoT devices collected live 

dataset, banana research centre dataset for Ethapazham/Nendram Pazham and local dataset 

metrological dataset for requirement predictions.  The chapter 4, 5 and 6 used different soil 

nature also for calculation requirement of water based on the depletion holding capacity of 

water. The experimental areas used red loam variety of soil and 1.50 - 2.30% of water 

holding capacity per foot of soil.   

 

7.2 Results and Performance Analysis 

The different crops and corresponding root length provided in Table 2.2. The 

average banana root length is 21 inches.  The performance analysis of irrigation 

requirements analysis using the different parameters such as accuracy of requirement 

prediction model, water consumption using manual calculation and advanced machine 

learning concepts, and requirement calculation of concern plants in different situations. 
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The parameter and setting of overall comparison of banana irrigation is shown in Table 

7.1. 

             Table 7.1: Common Experimental setup and Parameters 

Parameter   Setting 

Number of Trees 1000 Per Acre 

Duration 

April- Jan 2020 

Feb -Nov 2021 

Starting of Agriculture  

April 2020 and Feb 

2021 

Number of Farms 5 

Maximum Water 

requirements of Single 

node in each month 40 Liters 

Maximum Water 

requirements of Single 

node in Entire Cultivations 360/400 Liters 

Interval of Smart 

Irrigation 3  Days 

 

7.2.1 Accuracy of Prediction Requirements 

The accuracy of the water requirements calculated using the three methodologies 

such as deep reinforcement learning with KNN algorithm, initial prediction with LSTM 

and transfer learning, and initial prediction with federated learning. Using the 

refinement learning with the help of different stats such as weather information, KNN 

provided features, and past history data accuracy of the requirement is predicted. In the 

second methodology using the LSTM algorithm long and short-term requirements were 

prediction and after applying the transfer learning the accuracy of requirement rate is 

increased, similarly after applying the federated learning different the aggregate 

accuracy and different client’s accuracy also varied.   The overall comparisons of the 

different techniques and methodologies were presented in Table 7.2 and Figure 7.1. 

The overall comparisons show that the DRL and KNN received 92% and this 

model is considered as the initial level of predication accuracy of water requirements.  

In this method not used any weather or past history data for requirement predictions. 
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                 Table 7.2: Comparison of Techniques and Accuracy 

Methodology Techniques 

Acc

uracy 

Methodology - 

I 

IoT Devices + 

DRL + KNN 92 

Methodology - 

II 

KNN+ANFIS+LS

TM 91.3 

KNN+ANFIS+LS

TM with Transfer Learning 94 

Methodology-

III 

Client 1 with FL 94.2 

Client 2 with FL 92.1 

Client 3 with FL 93 

Client 4 with FL 96 

Client 5 with FL 95 

Aggregative 

Results with 20 Rounds 94.6 

 

 

 

Figure 7.1:  Comparison of Accuracy using Methodologies 

The IoT sensors devices used for requirements predictions. The long term and short-

term requirement prediction are performed using KNN, ANFIS and LSTM algorithms. 

In this method the weather data and history data used with IoT data. The initial 

prediction of the requirements is 91.3% and same initial method applied in different 
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farms using transfer learning. After the transfer learning, the accuracy of the prediction 

is increased input 94% and different between with and without transfer learning is 2%. 

With transfer learning, 2% of requirement prediction rate is increased. The initial 

prediction model is applied using federated learning and implemented using the 5 

client’s setup. The table 7.2 shown the different results of each clients and the 

aggregated results shown 94.6% improvements. In this federated learning and transfer 

learning, similar dataset and same division of data contribution is used for 

implementations. So, the performance of the accuracy is slightly changed. If the dataset 

and other supporting features are changed, automatically the accuracy also increase.  

 

7.2.2. Comparison of Accuracy with Previous methods 

 

                        Table 7.3:  Overall Comparison of Accuracy 

S

. No 

Methods Accuracy 

1 GBRT [27] 87.23 

2 SVR+ K-Means [28] 88.13 

3 LSTM + GBT [8] 92.04 

4 RBFN [29] 89.0 

5 DRL +KNN 92.0 

6 KNN+ANFIS+LST

M with Transfer Learning 

94.0 

7 Aggregative Results 

with 20 Communication 

Rounds 

 

94.6 

 

The accuracy of the water requirement is compared with previous similar 

methods, but the implementation crops are not used the same. The proposed three 

methodologies were compared with the recent work [8,27–29], and it optimized the 

irrigation requirements. Compared to previous work, total water usage is reduced. Table 

7.3 shows the requirements prediction accuracy of our work and its comparison with 

previous work. Compared to the previous work, total irrigation requirements prediction 
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accuracy had increased. The previous methods detailed explanation and technical 

information’s were included in the section 5.2.1. 

 

7.3. Summary 

The proposed methods deep reinforcement learning, ANFIS + LSTM with 

transfer learning, and federated learning method with clients are implemented, trained 

and tested on various data and different parameters. The two types of the datasets were 

used for implementation. When we compare our methods and previous methods, the 

accuracy of the prediction has, increased. The ANFIS + LSTM with transfer learning, 

and federated learning methods produced effective accuracy and maintained the 

moisture in the soil for better irrigation.  
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Chapter 8 

Conclusion and Future work 

An irrigation is the process of controlling the water usage for agriculture and 

increase the productivity using an effective cultivation. The researchers have mentioned 

different usages of the irrigation, such as proper utilization of water, optimizing the 

fresh water usage and avoiding water usage, increase nutrition, landscape plants, grow 

crops and etc.  Different types of the irrigation are used to optimize the water usage. 

Suitable irrigation types are selected based on various parameters such as crop type, 

slop of the land, types of technology, etc.  

The main motivation of this research is agriculture is the largest field which 

consumes fresh water and electricity. Around the globe, 70% of water is used for 

agriculture. Of this, around 25% water and electricity are consumed efficiently and 

remaining is being wasted. Due to the irregular irrigation system, 50% of yields of 

agriculture is reduced and increase the cost. Due to the irrigations, the energy usage is 

increased. Keep the soil moisture in required level of cultivation. Due to these 

motivations, in this research three objectives are created to provide the effective 

solutions such as  create an effective irrigation model and scheduling of crop,  predict 

the short- and long-term sustainable prediction requirements of the irrigation system, 

shares the sustainable requirements of the prediction using the cloud environment and 

shares the features with the nearest farmers for better prediction and  create an effective 

model using different farmers data, without sharing data. The experiment data is 

collected form the location is 8.2473502, 77.2743729,345. The species of banana crop is used 

for implementation and water requirements analysis. Three methodologies were used for 

implementation.  

The first methodology proposed an effective water optimization and scheduling 

method with the use of IoT components, the KNN algorithm, and deep reinforcement 

learning. The IoT components are used to collect the current requirements and predict 

the environmental status of the cultivation files. The KNN algorithm captures the 

nearest features from the cultivation fields. Environmental prediction, of specific plants 

are performed using IoT and KNN capabilities. In this method, we applied a smart 

irrigation system used in banana cultivation. Based on the current prediction, the future 
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requirements of water are calculated in 12-hour time interval from 7 pm to 7 am, and it 

is calculated for up to 4 days. This method produced 92% prediction accuracy during 

various levels of requirement predictions.  

The second methodology is used to forecast the irrigation requirements, and 

utilize Internet of Things (IoT), k-nearest neighbours (KNN), cloud storage, long short-

term memory (LSTM), and adaptive network fuzzy inference system (ANFIS) 

techniques. By collecting real-time environmental data, KNN identifies the closest 

water requirement from the roots and its surrounding. In order to predict short-term 

requirements, ANFIS is used. To transfer the new requirements for better prediction, 

transfer learning is used. Time-series-data updates are predicted using LSTM for future 

forecasting, and the integrated model is shared with other farmers using cloud 

environments to enhance forecasting and analysis. This method produced, 91.3% 

prediction accuracy without transfer learning, and with transfer learning, the prediction 

accuracy increased to 94%.  

The third methodology has used collaborative learning mechanism for an 

effective prediction of requirements. The same first model is used for global model and 

5 clients were used for implementation. The client selection is performed using the 

random selection method and aggregation is performed using the federated averaging 

methods. The experiment conducted using 20 communication rounds which produced 

94.6 aggregate accuracy. Comparing to these three methods, the transfer and federated 

learning produced an effective performance for better requirement predictions.  

This work can be extended, using the effective knowledge sharing in the 

irrigation system, appending different techniques for hybrid model, and collaborations 

of predicted effective parameters. The continual learning technique is used to 

recommend better predictions. The ensemble learning algorithms are recommended for 

appending different prediction in the model.  
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