

| ADMISSION NUMBER |  |  |  |  |  |  |  |  |  |  |  |
|------------------|--|--|--|--|--|--|--|--|--|--|--|
|                  |  |  |  |  |  |  |  |  |  |  |  |

## **School of Liberal Education**

Master of Arts in Economics Mid Term Examination - Mar 2024

Duration : 90 Minutes Max Marks : 50

## Sem IV - ECO6025 - Operations Research in Economics

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

| 1) | What factors lead to an unbounded solution in linear programming?                                                     |         |  |  |  |  |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|--|--|--|--|
| 2) | What is the primary objective of the Simplex Method?                                                                  |         |  |  |  |  |  |  |  |  |
| 3) | Can you describe the role of decision variables in a linear programming problem related to blending models?           | K2 (4)  |  |  |  |  |  |  |  |  |
| 4) | What are the key components of a simplex tableau?                                                                     |         |  |  |  |  |  |  |  |  |
| 5) | Develop a linear programming model to address a blending problem involving multiple ingredients and cost constraints. |         |  |  |  |  |  |  |  |  |
| 6) | Can you explain how the objective function is incorporated into the simplex method?                                   |         |  |  |  |  |  |  |  |  |
| 7) | Evaluate the effectiveness of linear programming in solving complex optimization problems in various industries.      |         |  |  |  |  |  |  |  |  |
| 8) | Utilize condensed tableaus to solve linear programming problems efficiently.                                          | K4 (12) |  |  |  |  |  |  |  |  |
|    | OR                                                                                                                    |         |  |  |  |  |  |  |  |  |
|    | Analyze scenarios where no feasible solution exists in the context of                                                 | K4 (12) |  |  |  |  |  |  |  |  |

linear programming.