

 ANALYSIS AND DESIGN OF SOFTWARE RELIABILITY
MODEL FOR BIG FAULT DATA USING SOFT

COMPUTING

A Thesis Submitted

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER APPLICATIONS

By

SHALINI SHARMA

Regd. No. – 18SCSE3020005

 Supervisor Co-Supervisor

Dr. Naresh Kumar Dr. Kuldeep Singh Kaswan

Professor, SCSE Professor, SCSE

Galgotias University Galgotias University

Greater Noida (U.P), India Greater Noida (U.P), India

Presently-

Professor, ACSE

G L Bajaj Institute of Technology and Management

 Greater Noida (U.P), India

GALGOTIAS UNIVERSITY

GREATER NOIDA, UTTAR PRADESH

May, 2023

ii

ABSTRACT

 With technological advancement in the current scenario, software usage became an

integral part of our daily activities ranging from various applications usage through

mobile to highly complicated medical devices used in surgeries. Software reliability

plays a crucial part in the proper functioning of software at the site and rendering

services to the customer. Therefore, it is of utmost importance to eliminate as many

faults in the software as possible before its release. The need to deliver a high-quality

product becomes a major concern in the industry. Product quality is the only factor that

determines its success in the market and can be identified with its reliability.

Development of a system became complex and costly due to technological

advancement thus one needs to address the criteria regarding security, development

cost, and reliability during the development phase to ensure a defect-free, cost-

effective, and reliable final product. Moreover, a reliability assessment is required on

the upgraded versions of the already existing systems. Existing systems are

continuously monitored for any possible fault and additional components are added in

the new version to address the resulting issues which further required an up-gradation.

As the complexity of a system increases so do its functionality and capabilities but since

the reliability is inversely proportional to the degree of software complexity achieving

a balance between complexity and reliability became difficult.

 Software companies undergo rigorous testing to remove any probable causes

that result in problems and hinder the smooth functioning or reliability of software.

Although rigorous testing is carried out to remove software faults they cannot be

removed. Developers make use of software reliability models for reliability estimation

either by selecting or developing a reliability model suitable for their environmental

conditions. The usage of Software reliability growth models (SRGM) for reliability

assessment of software quality is centered around the reliability phenomenon. Although

reliability models are ideal for measuring and predicting reliability, it's challenging to

find an optimal model that works well in all environmental conditions and on different

types of datasets. Reliability models are abundant in the literature. Still, not all models

can exactly depict reality since while determining the model parameters, there is always

iii

the possibility of uncertainty. Also, model selection depends on the evaluated

parameter's value, comparison criteria for model selection, and fault data set. The

parameter evaluation and hence the model’s capability is tied to the usage of a particular

data set making predictions less accurate. With the extensive usage of Big-data, the

usage of a distributed, high-capacity storage system with a fast-accessing mechanism

is required to handle its high speed, high volume, and variety, characteristics which

may arise errors in software due to hardware malfunctioning. Similarly, because of

unfamiliarity with specific software and an abundant amount of data to handle, give

rise to errors in software because of human negligence. Several reliability models have

been developed to determine the reliability of a software product assuming that the fault

in software results only due to incorrect specifications or errors in code they didn't

consider the fault induced in software due to external factors. A great deal of research

has been carried out to make use of the various combination of existing models in

developing new hybrid models. Parameter evaluation of such hybrid models based on

the mathematical equation is very difficult. Their non-linearity and complexity make

the statistical parameter evaluation a challenging task. Software reliability models are

generally used for the development of such mathematical models which further depends

on accurate prediction and parameter optimization based on experimental data. Thus,

the motivation of this work is to develop a hybrid model using a combination of NHPP

models to handle not only pure software errors but also the errors resulting in software

due to hardware malfunctioning and manual intervention without any assumption.

This research aims to develop a hybrid model that, apart from pure software

errors, also considers induced errors in software due to environmental factors into

consideration. A direct modification in an NHPP model that can successfully handle

software errors is to combine it with other NHPP models to tackle induced errors

resulting from hardware and user. We developed 33 hybrid models by combining NHPP

models in various combinations according to their characteristics. To access these

developed models, we formulated an estimation function and ranking methodology to

select the best model based on the accuracy of estimation. The developed hybrid models

were compared with existing traditional models using thirteen comparison criteria.

Lastly, soft computing techniques like Genetic Algorithm, Simulated Aneling, and

Particle Swarm Optimization were utilized for parameter evaluation and optimization.

iv

ACKNOWLEDGMENTS

At this moment it is a pleasant task to extend my sincere thanks to the people who so

generously contributed to the completion of my doctoral dissertation. First and

foremost, my deep sense of gratitude to my research supervisor Dr. Naresh Kumar,

Dean, PG & Ph.D., Galgotias University. I thank him wholeheartedly for accepting me

as a Ph.D. student and for all his time, efforts, patience, and valuable guidance that he

invested in and provided throughout this study. All my research knowledge is the result

of his tremendous academic help, support, and encouragement. Besides my supervisor,

I wish to express my sincere gratitude to my co-supervisor Dr. Kuldeep Singh Kaswan,

Professor, School of Computing Science and Engineering, Galgotias University for his

insightful guidance, kind concern, and timely help. His constant encouragement,

motivation, and inspiration helped me in the completion of this study and made it an

unforgettable experience for me.

My sincere thanks to Dr. Alok Katiyar, Professor & Research Coordinator,

School of Computing Science and Engineering, Galgotias University for his support

related to the smooth functioning of research work and documentation.

 I am also indebted to my colleagues and all my well-wishers whose support and

affection strengthened my resolve. Special thanks to my husband Sanjay whose

consistent support and motivation made it all possible and my beloved daughter Aanya

for coping well without my consistent nurturing guidance. Without their support, care,

and understanding it would have been very difficult for me to complete this work.

 Last, but not least, I owe it all to Almighty God who has always been the

invisible divine force behind my accomplishments.

To acknowledge I solemnly owe this work.

Place: Grater Noida, U.P, India Shalini Sharma

Date:

TABLE OF CONTENT

CHAPTER 1 : INTRODUCTION 1-8

1.1. Background of Problem 1

1.2. Problem Statement 2

1.3. Motivation 3

1.4. Nature of Problem 4

1.5. Objective of Research 4

1.6. Research Methodology 4

1.7. Significance of the Research 5

1.8. Organization of Thesis 6

CHAPTER 2 : LITERATURE REVIEW 9-45

2.1. Big Data 9

 2.1.1. Big Data Analytics 9

 2.1.2. Big Data Challenges 10

2.2. Understanding Reliability 11

 2.2.1. Software V/S Hardware Reliability 11

 2.2.2. Software Development Life Cycle (SDLC) 12

2.3. Importance of Modelling 14

2.4. Elements of Reliability Modelling 16

 2.4.1. Failures, Outages, and Faults 16

 2.4.2. Calendar, Execution and Clock Time 17

2.5. Measuring Software Reliability 17

 2.5.1. Reliability Function 17

 2.5.2. Mean Time to Failure 18

 2.5.3. Mean Time to Repair 18

 2.5.4. Mean Time Between Failure 18

 2.5.5. Failure Rate 18

 2.5.6. Hazard Rate 19

2.6. Model Classifications 19

 2.6.1. Early Prediction Models 19

 2.6.2. Architecture Based Models 20

 2.6.3. Software Reliability Growth Models 21

 2.6.4. Input Domain-Based Models 21

 2.6.5. Hybrid Black Box 22

 2.6.6. Hybrid White Box 22

 2.6.7. Non-Homogeneous Poisson Process Model 22

 2.6.8. Big Data and Reliability 24

2.7. Parameter Evaluation of Reliability Models 25

2.8. Criteria For Comparing Reliability Models 26

2.9. Literature Review 28

 2.9.1. Big Data Applications 29

 2.9.2. Big Data Reliability 31

 2.9.3. Software Reliability Hybrid Model 37

 2.9.4. Parameter Estimation Technique 41

2.10. Findings of Critical Review 43

CHAPTER 3 : MODEL DEVELOPMENT, SELECTION

FUNCTION, COMPARISION CRITERIA AND

RANKING METHODOLOGY

46-70

3.1. Induced Errors in Software

 3.1.1. Volume 46

 3.1.2. Velocity 47

 3.1.3. Variety 47

3.2. Hybrid Model Development 47

 3.2.1. Pure software errors 47

 3.2.2. Hardware generated errors 48

 3.2.3. Human errors 48

3.3. Mathematical Formulation of Hybrid Models 48

 3.3.1 Sharma Kumar Kaswan – 1 model 50

 3.3.2 Sharma Kumar Kaswan – 2 model 51

 3.3.3 Sharma Kumar Kaswan – 3 model 52

 3.3.4 Sharma Kumar Kaswan – 4 model 52

 3.3.5 Sharma Kumar Kaswan – 5 model 52

 3.3.6 Sharma Kumar Kaswan – 6 model 52

 3.3.7 Sharma Kumar Kaswan – 7 model 53

 3.3.8 Sharma Kumar Kaswan – 8 model 53

 3.3.9 Sharma Kumar Kaswan – 9 model 53

 3.3.10 Sharma Kumar Kaswan – 10 model 54

 3.3.11 Sharma Kumar Kaswan – 11 model 54

 3.3.12 Sharma Kumar Kaswan – 12 model 54

 3.3.13 Sharma Kumar Kaswan – 13 model 54

 3.3.14 Sharma Kumar Kaswan – 14 model 55

 3.3.15 Sharma Kumar Kaswan – 15 model 55

 3.3.16 Sharma Kumar Kaswan – 16 model 55

 3.3.17 Sharma Kumar Kaswan – 17 model 55

 3.3.18 Sharma Kumar Kaswan – 18 model 56

 3.3.19 Sharma Kumar Kaswan – 19 model 56

 3.3.20 Sharma Kumar Kaswan – 20 model 56

 3.3.21 Sharma Kumar Kaswan – 21 model 56

 3.3.22 Sharma Kumar Kaswan – 22 model 57

 3.3.23 Sharma Kumar Kaswan – 23 model 57

 3.3.24 Sharma Kumar Kaswan – 24 model 57

 3.3.25 Sharma Kumar Kaswan – 25 model 57

 3.3.26 Sharma Kumar Kaswan – 26 model 58

 3.3.27 Sharma Kumar Kaswan – 27 model 58

 3.3.28 Sharma Kumar Kaswan – 28 model 58

 3.3.29 Sharma Kumar Kaswan – 29 model 59

 3.3.30 Sharma Kumar Kaswan – 30 model 59

 3.3.31 Sharma Kumar Kaswan – 31 model 59

 3.3.32 Sharma Kumar Kaswan – 32 model 59

 3.3.33 Sharma Kumar Kaswan – 33 model 60

3.4. Selection Function 60

3.5. Comparison Criteria 61

 3.5.1. Mean Value 61

 3.5.2. Mean Square Error 62

 3.5.3. Mean Absolute Deviation 62

 3.5.4. Predictive Ratio Risk 62

 3.5.5. Root Mean Square Error 63

 3.5.6. Noise 63

 3.5.7. Relative Absolute Error 63

 3.5.8. Root Relative Squared Error 63

 3.5.9. Mean Magnitude of Relative Error 64

 3.5.10. Predictive Power 64

 3.5.11. Coefficient of Determination 64

 3.5.12. Accuracy of Estimation 65

 3.5.13. Theil’s Statistics 65

 3.5.14. Comparison Criteria Values for all Proposed

Models

65

3.6. Ranking Methodology 66

CHAPTER 4 : EXPERIMENTAL WORK 71-112

4.1. Failure Data Sets 71

 4.1.1. Dataset #1 72

 4.1.2. Dataset #2 74

 4.1.3. Dataset #3 76

 4.1.4. Dataset #4 80

4.2. Parameter Evaluation 83

 4.2.1. Least Square Estimation 84

 4.2.2. Maximum Likelihood Estimation 85

 4.2.3. Algorithms used in Evaluating Parameters 85

4.3. Soft Computing Optimization 85

 4.3.1. Genetic Algorithm 86

 4.3.2. Fuzzy Logic 87

 4.3.3. Neural Network 87

 4.3.4. Support Vector Machines 88

 4.3.5. Particle Swarm Optimization 88

 4.3.6. Simulated Annealing 89

4.4. Parameter Evaluation and Optimization using Soft

Computing Methods and DS#1

89

 4.4.1. Proposed Methodology for Parameter Selection 90

 4.4.2. Parameters of all Proposed Models 91

 4.4.3. Parameters of Existing NHPP Models 92

 4.4.4. Parameter Evaluation using LSQ, GA, SA & PSO 92

4.5. Parameters Evaluation and Soft Computing

Optimization using DS#3

95

4.6. Parameters Evaluation and Soft Computing

Optimization using DS#4

4.7. Selection of Best Model from Ten Candidate Models

using DS#1

4.8. Ranking Candidate Models using Optimized

Parameters Values for DS#3

105

4.9. Ranking Candidate Models using Optimized

Parameters Values for DS#4

108

CHAPTER 5 : RESULTS AND DISCUSSION 113-141

5.1. Model Validation 113

 5.1.1. Failure Estimation 113

 5.1.2. Graphical Representation 115

 5.1.3. Comparison Criteria 116

5.2. A Statistical Test: t-test 124

5.3. Ranking Methodology Validation using DS#2 125

5.4. Validating Developed Models using Ranking

Methodology for DS#3

133

5.5. Validating Developed Models using Ranking

Methodology for DS#4

136

5.6. Parameter Optimization of SKK-28 Model using GA,

SA and PSO Methods

139

CHAPTER 6 : CONCLUSIONS AND FUTURE SCOPE 142

6.1. Conclusion 142

6.2. Scope for Future Research 143

REFERENCES 145

I

SUMMARY

• Chapter 1: The problem aspect of research regarding software reliability

modeling is defined. Based on the problem's nature, background, and

motivation factor the objectives of the research were formulated, and step-wise

methodology is demonstrated using a flow chart. The significance and

limitations of the research were explained concerning the conducted study.

• Chapter 2: This chapter discusses the literature published in leading journals

regarding the topics relevant to research work. A total of four reviews were

included in this chapter. Studies of literature concerning big data applications,

big data reliability, hybrid model development, and parameter estimation

techniques were carried out and presented as review reports in this chapter.

findings and gaps in these critical reviews were also outlined in the chapter.

Discussion regarding software development life cycle (SDLC) phases and

various key terms in the context of reliability models were also penned down in

this chapter. The chapter discusses the importance of reliability modeling and

the broad classification of software reliability models into different categories.

Because of the widespread use of NHPP models in developing hybrid models,

a total of seventeen NHPP models were tabulated in this chapter stating their

mean value function, and Intensity function.

• Chapter 3: This chapter presents the development of 33 hybrid reliability

models specifying their mathematical formulation. Models were further filtered

based on their estimation accuracy. An estimation function is formulated to

determine the best-performing model for the same data set using estimation

capabilities up to the five-point difference between the experimented and

evaluated values. A ranking methodology based on estimation accuracy and

section criteria is also formulated to rank the models.

II

• Chapter 4: This chapter includes the datasets description of all the fault data

used in the research The parameters of hybrid models as well as existing well-

known NHPP models were evaluated. Parameters were evaluated using MLE

and LSE statistical methods and various soft computing optimization techniques

like GA, SA, and PSO. This chapter demonstrates a criterion set used to select

the best model by comparing them against thirteen criteria values. Experimental

work related to best model selection using the weighted selection method for

DS#1 and ranking methodology to rank the models based on estimation

accuracy and section criteria for DS#3 and 4 is also included in this chapter.

• Chapter 5: In this chapter developed model is validated using comparison

criteria, Estimation accuracy, and a t-test. Graphical representation is included

to have a better understanding of models. Validation of the proposed raking

methodology is included to determine the efficiency of the method in

comparison to the existing ones.

• Chapter 6: This chapter concludes the research work by presenting the obtained

results during the study and gives ideas regarding the future scope of the work.

III

LIST OF TABLES

Table 2.1. MVF and InF of existing NHPP models

Table 2.2. Criteria used by researchers for the reliability model’s comparison

Table 3.1. Proposed hybrid software reliability models

Table 3.2. Comparison criteria of proposed candidate models

Table 3.3. Weight values assigned to the model's individual criteria rank

Table 3.4. Weighted estimation vector

Table 4.1. Fault datasets used by researchers in developed models

Table 4.2. Failure data set collected using big data analysis

Table 4.3. Data set of a middle-size project

Table 4.4. Real-time control application dataset

Table 4.5. Failure count data

Table 4.6. Evaluated parameters value using MLE of proposed hybrid models

Table 4.7. Evaluated values of parameters of traditional models using MLE

Table 4.8. Parameters evaluated of proposed ten best models using LSE

Table 4.9. Parameters evaluated of proposed ten best models using GA

Table 4.10. Evaluated parameters of proposed ten best models using SA

Table 4.11. Parameters evaluated of proposed ten best models using PSO

Table 4.12. Parameters value of proposed models using LSE, GA, SA and PSO

Table 4.13. Parameters value of existing models using LSE, GA, SA and PSO

Table 4.14. Parameters value of proposed models using LSE, GA, SA and PSO

Table 4.15. Parameters value of existing models using LSE, GA, SA and PSO

Table 4.16. The deviation between observed and estimated values

Table 4.17. Weighted estimation function

Table 4.18. Weight matrix corresponding to criteria measures rank

Table 4.19. WRM using LSE

Table 4.20. WRM using GA

Table 4.21. WRM SA

Table 4.22. WRM using PSO

IV

Table 4.23. Rank matrix using LSE

Table 4.24. Rank matrix using GA

Table 4.25. Rank matrix using LSE

Table 4.26. Rank matrix using GA

Table 4.27. Average optimized rank determination of candidate models

Table 4.28. WRM using LSE

Table 4.29. WRM using GA

Table 4.30. WRM using LSE

Table 4.31. WRM using GA

Table 4.32. Rank matrix using LSQ

Table 4.33. Rank matrix using GA

Table 4.34. Rank matrix using LSE

Table 4.35. Rank matrix using GA

Table 4.36. Average optimized rank determination of candidate models

Table 5.1. Intensity function (estimation value) calculation of models

Table 5.2. t-test for observed and estimated values

Table 5.3. t-test for cumulative observed and estimated values

Table 5.4. Parameters value of NHPP model using DS#2

Table 5.5. Criteria’s value for NHPP models

Table 5.6. Ranking of models based on individual criteria measure

Table 5.7. Weight matrix

Table 5.8. Weighted rank matrix

Table 5.9. Ranking of existing models based on developed methodology

Table 5.10. WRM using LSE

Table 5.11. WRM using GA

Table 5.12. WRM using SA

Table 5.13. WRM using PSO

Table 5.14. Rank matrix using LSE

Table 5.15. Rank matrix using GA

Table 5.16. Rank matrix using SA

Table 5.17. Rank matrix using PSO

V

Table 5.18. Given below gives the average rank of selected models

Table 5.19. WRM using LSE

Table 5.20. WRM using GA

Table 5.21. WRM using SA

Table 5.22. WRM using PSO

Table 5.23. Rank matrix using LSE

Table 5.24. Rank matrix using GA

Table 5.25. Rank matrix using SA

Table 5.26. Rank matrix using PSO

VI

LIST OF FIGURES

Figure 1.1. Adopted research methodology for the study

Figure 3.1. Flowchart of ranking methodology

Figure 4.1. Number of failures and cumulative failures with time (days) of DS1

Figure 4.2 Number of failures and cumulative failures with time (days) of DS2

Figure 4.3. Failures and cumulative failures plot concerning time for DS3

Figure 4.4. Number of failures and cumulative failures with the time of DS4

Figure 5.1. Observed values and estimation values comparison between models

Figure 5.2. Cumulative experimental and estimation value of model SKK-28

Figure 5.3. Comparison of SKK with other models for bias value

Figure 5.4. Comparative view of MSE values of various models

Figure 5.5. Comparative view of MAD values of various models

Figure 5.6. Comparative view of PRR values of various models

Figure 5.7. Comparative view of NOISE values of various models

Figure 5.8. Comparative view of RRSE values of various models

Figure 5.9. Comparative view of RAE values of various models

Figure 5.10. Comparative view of RRSE values of various models

Figure 5.11. Comparative view of MMRE values of various models

Figure 5.12. Comparative view of PP values of various models

Figure 5.13. Comparative view of R2 values of various models

Figure 5.14. Comparative view of AE values of various models

Figure 5.15. Comparative view of TS values of various models

Figure 5.16. Min value of various models for all measures in comparison criteria

Figure 5.17. Individual criteria measures rank of all models

Figure 5.18. Weighted rank sum calculations for existing models

Figure 5.19. Estimation function rank sum calculations for existing models

Figure 5.20. Models ranking using existing method in literature

Figure 5.21. Models ranking using developed methodology

Figure 5.22. Criteria set values of SKK-28 using various methods

VII

Figure 5.23. Maximum number of minimum criteria values of SKK-28

Figure 5.24. Estimation capacity of SKK-28 using various methods

VIII

ABBREVIATIONS USED

3D_SDE Three Dimensional - Stochastic Differential Equation

ABC Artificial Bee Colony

ABM Architecture-Based Models

ACO Ant Colony Optimization

AE Accuracy of Estimation

ALO Ant Lion Optimization

ARIMA Autoregressive Integrated Moving Average

BA Bat Algorithm

BDA Big Data Applications

BDR Big Data and Reliability

BDSCAN Density-Based Spatial Clustering of Applications With Noise

BLS Boneh-Lynn-Shacham Signature

BPNN Back Propagation Neural Network

CFSL Considering Fault Severity Levels

CLARA Clustering Large Applications

CRAFT Compile R-Assisted Fault Tolerance

CS Cuckoo Search

DE Differential Evolution

DEA Differential Evaluation Algorithm

DM Modified Duane Model

EACO Extended Ant Colony Optimization

EARF Exponential Reliability Function

EPM Early Prediction Model

FCM Fuzzy C Means

FFMLP Feed-Forward Multi-Layer Perceptron

FINF Failure Intensity Function

FIS Fuzzy Inference System

FL Fuzzy Logic

IX

FMNN Feed-Forward Multi-Layer Neural Network

FR Failure Rate

FTA Fault Tree Analytics

GA Genetic Algorithm

GG Generalized Goel Model

GM Gompertz-Makeham Model

GMDH Group Method of Data Handling

GMPZ Gompertz Model

GO Goel-Okumoto Model

GPS Geographical Positioning System

GSA Gravitational Search Algorithm

GWO Grey Wolf Optimizer

HBBM Hybrid Black Box Models

HGP Hybrid Gaussian Process

HWBM Hybrid White Box Models

IDBM Input Domain Based Models

INF Intensity Function

IOT Internet of Things

JM Jelinski-Moranda Model

KF Kalman Filter

K-NN K-Nearest Neighbours Algorithm

LGC Logistic Growth Curve Model

LSE Least Square Estimation

LSQ Least Square Method

LVM Littlewood- Verrall Model

MAD Mean Absolute Deviation

MD Duane Model

MEOP Mean Error of Prediction

MERF Multinomial Exponential Reliability Function

MGP Multivariate Gaussian Process

X

MHT Multiple Huffman Table

MLE Maximum Likelihood Estimation

MMRE Mean Magnitude of Relative Error

MO Musa-Okumoto Model

MSE Mean Square Error

MTBF Mean Time Between Failure

MTTF Mean Time to Failure

MTTR Mean Time to Repair

MVF Mean Value Function

NHPP Non-Homogeneous Poisson Process

NN Neural Network

OSS Open System Software

PAM Partitioning Around Medoids

PNZ Pham-Nordmann-Zhang Model

PP Predictive Power

PRR Predictive Ratio Risk

PSF Performance Shaping Factors

PSO Particle Swarm Optimization

PZ Pham-Zhang Model

PZIFD Pham-Zhang Imperfect Fault Detection Model

R2 Coefficient of Determination

RAE Relative Absolute Error

RBF Radial Bias Function

RDBMS Relational Database Management System

RF Reliability Function

RF Random Forest

RM Reliability Model

RMSE Root Mean Square Error

RMT Random Matrix Theory

RRSE Relative Root Square Error

XI

RRSQ Relative Root Squared Error

SA Simulated Annealing

SCT Soft Computing Techniques

SDLC Software Development Life Cycle

SFLA Shuffled Frog Leaping Algorithm

SHARPE Symbolic Hierarchical Automated Reliability and Performance Evaluator

SKK-1 Sharma, Kumar and Kaswan-1

SKK-2 Sharma, Kumar and Kaswan-2

SKK-3 Sharma, Kumar and Kaswan-3

SKK-4 Sharma, Kumar and Kaswan-4

SKK-5 Sharma, Kumar and Kaswan-5

SKK-6 Sharma, Kumar and Kaswan-6

SKK-7 Sharma, Kumar and Kaswan-7

SKK-8 Sharma, Kumar and Kaswan-8

SKK-9 Sharma, Kumar and Kaswan-9

SKK-10 Sharma, Kumar and Kaswan-10

SKK-11 Sharma, Kumar and Kaswan-11

SKK-12 Sharma, Kumar and Kaswan-12

SKK-13 Sharma, Kumar and Kaswan-13

SKK-14 Sharma, Kumar and Kaswan-14

SKK-15 Sharma, Kumar and Kaswan-15

SKK-16 Sharma, Kumar and Kaswan-16

SKK-17 Sharma, Kumar and Kaswan-17

SKK-18 Sharma, Kumar and Kaswan-18

SKK-19 Sharma, Kumar and Kaswan-19

SKK-20 Sharma, Kumar and Kaswan-20

SKK-21 Sharma, Kumar and Kaswan-21

SKK-22 Sharma, Kumar and Kaswan-22

SKK-23 Sharma, Kumar and Kaswan-23

SKK-24 Sharma, Kumar and Kaswan-24

XII

SKK-25 Sharma, Kumar and Kaswan-25

SKK-26 Sharma, Kumar and Kaswan-26

SKK-27 Sharma, Kumar and Kaswan-27

SOTERIA Socio-Technical Risk Analysis

SRA Software Reliability Analysis

SRGM Software Reliability Growth Models

SRHM Software Reliability Hybrid Models

SRM Software Reliability Model

SSA Sparrow Search Algorithm

SSE Sum Of Squared Errors

SVM Support Vector Machine

SWIFT Software-Only, Transient-Fault-Detection Technique

TS Theil’s Statistics

TSP Traveling Salesman Problem

UGP Univariate

WPA Wolf Pack Algorithm

YDM Modified Duane Model (Md)

YE Yamada Exponential Model

YIDM1 Yamada Imperfect Debugging Model-1

YIDM2 Yamada Imperfect Debugging Model-2

YIM Yamada Delayed S-Shaped Model

YR Yamada Rayleigh Model

ZTP Zhang-Teng-Pham

XIII

LIST OF PUBLICATIONS

1. Sharma, S., Kumar, N., & Kaswan, K. S. (2021). Big data reliability: A critical

review. Journal of Intelligent & Fuzzy Systems, 40(3), 5501-5516.

doi: 10.3233/JIFS-202503(ESCI, SCOPUS, WOS).

2. Sharma, S., Kumar, N., & Kaswan, K. S. (2021). Ranking of Reliability

Models based on Accurate Estimation and Weighted Function. 2021 3rd

International Conference on Advances in Computing, Communication Control

and Networking (ICAC3N), 1679-1685, doi:

10.1109/ICAC3N53548.2021.9725534 (SCOPUS).

3. Sharma, S., Kumar, N., and Kaswan K. S. (2023). Hybrid Software Reliability

Model for Big Fault Data and Selection of Best Optimizer Using an

Estimation Accuracy Function. Int. J. Recent Innov. Trends Comput.

Commun., 11(1), 26–37, doi: 10.17762/ijritcc.v11i1.5984 (Scopus)

4. Sharma, S., Kumar, N., & Kaswan, K. S. (2022). Development of Hybrid

Reliability Model using Big Fault Data. (Communicated)

5. Sharma, S., Kumar, N., & Kaswan, K. S. (2022). Evaluation of Parameters

using Statistical and Soft Computing Methods. (Communicated)

6. Sharma, S., Kumar, N., & Kaswan, K. S. (2019). Big Data Applications in Real

World. UGC Sponsored National Conference on Emerging Trends in

Information Technology (pp. 158-173). Delhi: Bloomsbury

XIV

1

CHAPTER 1

INTRODUCTION

The literature on software reliability is replete with reports of the development of

numerous reliability models. These models, suggested by several scholars, relied on

certain assumptions and limitations. We proposed various hybrid Non-Homogeneous

Poisson Process models developed using existing models for software reliability.

1.1. BACKGROUND OF THE PROBLEM

People have become dependent on using various forms of software in their day-to-day

lives due to the rapid development of technology in the modern world. The usage of

social media increases both the size and complexity of data as well as the software

required to process such a huge amount of information. Because of the economic

digitization and usage of software in business, it became very challenging and hard to

handle complex software. Any software failure will be fatal for the company as well as

the client consequently, before releasing the product to the public, developers must do

rigorous testing to ensure the product's reliability. The software development process

mainly emphasizes the product time estimation, human resources required, the structure

of the product, technologies, and tools required, Quality assessment, and feasibility

study to deliver high quality and well-managed controlled product within the stipulated

time and of a specific standard. It is a time-consuming task and involves factors that are

required to be controlled and accessed to determine the quality of the final product but

it will eliminate many problems resulting due to the software failure like service

termination or financial loss. Therefore, it is of utmost importance to eliminate as many

faults in the software as possible before its release. The need to deliver a high-quality

product becomes a major concern in the industry. Product quality is the only factor that

determines its success in the market and can be identified with its reliability. The

2

development of a system became complex and costly due to technological advancement

thus one needs to address the criteria regarding security, development cost, and

reliability during the development phase to ensure a defect-free, cost-effective, and

reliable final product. Moreover, a reliability assessment is required on the upgraded

versions of the already existing systems. Existing systems are continuously monitored

for any possible fault and additional components are added in the new version to

address the resulting issues which further required an up-gradation. As the complexity

of a system increases so do its functionality and capabilities but since the reliability is

inversely proportional to the degree of software complexity achieving a balance

between complexity and reliability became difficult. Although rigorous testing is

carried out to remove software faults they cannot be totally removed.

1.2. PROBLEM STATEMENT

Hidden bugs in the system are the reason for software failures. A universal model that

gives a good fit for different types of datasets and works accurately in all environmental

conditions and circumstances. Widespread usage of big data and related technologies

and tools give rise to the development of many new reliability models predicting

software faults resulting due to external interactions arises.

When trying to assess a system's dependability, the two most pressing issues are

appropriate model selection and parameter evaluation. If there isn't already a good

model available, we'll have to create one that takes into account all the factors outside

the system that prevent it from working as intended.

 Parameter estimation in the mathematical models built to describe a large

number of interactions is typically complex and non-linear. Furthermore, failure data

from a reliable source is required for parameter estimation, but it is very difficult to

obtain data from the companies due to their reluctance in releasing fault data regarding

their product. Due to the scarcity of new required data researchers are bound to use

published or previously appeared fault data for the development of their model.

Researchers are experimenting with various combinations of existing models in

order to develop new hybrid models. Parameter evaluation of such hybrid models based

3

on mathematical equations is very difficult. Their non-linearity and complexity make

the statistical evaluation of parameters challenging and difficult. The development of

such mathematical models to access reliability further depends on accurate prediction

and parameter optimization based on experimental data. In order to avoid economic

loss and product failure, it is crucial to keep an eye on a software product's reliability.

The goal of modeling is to anticipate the issues arising due to existing models

and try to come up with a model to eliminate them. No single model is best for all data

sets, so reliability analysis should be carried out for several candidate models for a

specific data set and we must choose the best candidate model giving promising results.

 Non-Homogeneous Poisson Process (NHPP) models can be coupled to create

new hybrid NHPP models, which is one of their distinguishing features. NHPP models

represent failure occurrences over a period of time and are simple to implement. The

emphasis here is on making an accurate determination of the mean value function of

the hybrid NHPP model that has been built.

1.3. MOTIVATION

Usage of software has increased many folds and so have its complexity and size. With

the change in technology and disposal of the huge amount of data, software developers

need to deliver a good quality product. Apart from the fault resulting due to wrong

specification or errors in coding, a software product might fail due to hardware

malfunctioning and also because of incorrect data entry. Due to its high velocity,

volume, and variety, big data necessitates a distributed, high-capacity storage system

with a fast-accessing mechanism to avoid software mistakes caused by hardware

failure. Similarly, because of unfamiliarity with specific software and an abundant

amount of data to handle, give rise to errors in software because of human negligence.

This work is motivated by the need to construct a hybrid model employing a

combination of NHPP models to deal with faults in software originating from both pure

software failure and hardware failure/human involvement.

4

1.4. NATURE OF THE PROBLEM

To develop a hybrid model various combinations of NHPP models must be formed that

can handle pure software errors, hardware-induced errors, and user-induced errors. The

next step is to use statistical methods to determine each model's parameters. It was

necessary to formulate an estimation function that could anticipate the prediction

capabilities of the created batch of models in order to select the best-performing model

from the set of candidates. The fault data set of the big-data analytical module is then

used to verify the selected one.

The parameter's values were obtained using statistical methods under specific

constraints on initial guess values, so we need to optimize their values by employing

various optimization results to improve the success rate of the developed model.

1.5. OBJECTIVES OF THE RESEARCH

Based on the literature review for this research work, it was found that there is a lack

of hybrid prediction models which takes into account the induced errors due to

hardware and user intervention. Most researchers use traditional reliability models or

hybrid models with existing data sets without identifying the external interactions that

influence the reliability of software directly or indirectly. The following were our

primary goals as we set out to create a new hybrid model that makes use of big-fault

data and is powered by soft computing.

• To analyse the existing techniques for software reliability analysis for big data.

• To develop and propose a hybrid reliability model using big fault data.

• To optimize the result using appropriate soft computing methods.

1.6. RESEARCH METHODOLOGY

A research methodology is a plan outlining the specific actions to be taken in order to

complete a study. The initial phase in the methodology is the extensive literature survey

to have an understanding of recent developments in the research area and determine the

5

gaps in published research so far. The literature review helps us to have an

understanding of the problem and we formulated the objectives based on our study.

Models were developed after reviewing various reliability models their performance

and constraints. The parameters of developed hybrid NHPP models were evaluated

using statistical techniques. Best-performing model is selected based on specified

measures which then need to be validated. Lastly, the result is optimized by using

various soft computing algorithms for parameter optimization. Figure 1.1 depicts the

methodology steps graphically.

Figure 1.1. Adopted research methodology for the study

1.7. SIGNIFICANCE OF RESEARCH

This research utilizes the fault data from the big data analytical system project in

conjunction with the various NHPP models and other hybrid models to create a

reliability model for improved reliability prediction. Various Big data applications and

Literature review and Study regarding Big Data Applications, Big

Data Reliability and NHPP Reliability Models.

Identification of Problem and setting objectives

Design and Modelling of hybrid models

Parameter evaluation and Model Selection

Model Validation and Reliability analysis

Result Optimization using Soft Computing

6

reliability techniques were reviewed. soft computing methods (SCM) were utilised to

give accurate predictions using the developed model.

I. Examining how big data has been used in the past can shed light on which

industries are being impacted and provide inspiration for finding fresh use cases

for big data analysis.

II. Reliability assessment related to Data, Hardware, and Software of big data gives

an idea regarding the work done, limitations, and scope of research in these

fields.

III. Identification of new techniques helps the researchers in utilizing the

appropriate methods for the reliability assessment of big data systems.

IV. The developed ranking methodology can be applied to rank reliability models

based on accurate estimation.

V. Developed 33 hybrid models can be utilized for reliability estimation using a

different data set.

VI. The suggested technique can be utilized in future studies to determine which

model is the most accurate estimator up to a given error threshold.

VII. Comparison criteria having thirteen values to choose the best model among the

group of various candidate models can be utilised for the model’s comparison.

1.8. ORGANIZATION OF THESIS

The thesis consists of eight chapters including this chapter. Undermentioned is The

outline of various chapters included in the study.

• Chapter 1: The problem aspect of research regarding software reliability

modeling is defined. Based on the problem's nature, background, and

motivation factor the objectives of the research were formulated, and step-wise

methodology is demonstrated using a flow chart. The significance and

limitations of the research were explained concerning the conducted study.

7

• Chapter 2: This chapter discusses the literature published in leading journals

regarding the topics relevant to research work. A total of four reviews were

included in this chapter. Studies of literature concerning big data applications,

Big data reliability, hybrid model development, and parameter estimation

techniques were carried out and presented as review reports in this chapter.

findings and gaps in these critical reviews were also outlined in the chapter. The

chapter discusses the importance of reliability modelling and the broad

classification of software reliability models into different categories. Because

of the widespread use of NHPP models in developing hybrid models, a total of

seventeen NHPP models were tabulated in this chapter stating their mean value

function, and Intensity function.

• Chapter 3: This chapter presents the development of 33 hybrid reliability

models specifying their mathematical formulation. Models were further filtered

based on their estimation accuracy. An estimation function is formulated to

determine the model that performs better than others, using estimation

capabilities up to the five-point difference between the experimented and

evaluated values. A ranking methodology based on estimation accuracy and

section criteria is also formulated to rank the models.

• Chapter 4: This chapter includes the datasets description of all the fault data

used in the research The parameters of hybrid models as well as existing well-

known NHPP models were evaluated. Parameters were evaluated using two

standard statistical methods and the three most commonly used soft computing

methods. In this section, we show how to select the best model by comparing

them to 13 different criteria values taken from the literature. Experimental work

related to best model selection using the weighted selection method for DS#1

and ranking methodology to rank the models based on estimation accuracy and

section criteria for DS#3 and 4 is also included in this chapter.

• Chapter 5: In this chapter developed model is validated using comparison

criteria, Estimation accuracy, and a t-test. Graphical representation is included

8

to have a better understanding of models. The efficiency of the proposed raking

approach is evaluated in comparison to the already used methods.

• Chapter 6: This chapter concludes the research work by presenting the obtained

results during the study and gives ideas regarding the future scope of the work.

CONCLUSION

Modern society's dependency on software usage becomes a crucial concern and

motivated us to do reliability analyses concerning complex systems. In this chapter, we identify

various key factors related to model development concerning big data. We developed the

Problem Statement, listed our goals, and established the parameters of our study. The

structure of the thesis is summarized at the end.

9

CHAPTER 2

LITERATURE REVIEW

Reliability models are abundant in the literature. Still, not all models can exactly depict

reality since while determining the model parameters, there is always the possibility of

uncertainty. Also, model selection depends on the evaluated parameter's value,

comparison criteria for model selection, and used fault data set. A detailed study

regarding these all aspects was done and presented in this chapter.

2.1. BIG DATA

Big data is increasing exponentially, we need sophisticated and complex techniques to

maintain, operate, and analyze it effectively. The term "big data" was coined by the

Oxford Dictionary as data that refers to the collection and storage of massive amounts

of information in order to analyze it computationally to identify patterns, trends, and

relationships, often pertaining to human behavior and interactions. The 3Vs of big data

are the volume, velocity, and variety of the data being collected. IBM scientists' veracity

adds a fourth dimension, representing redundant data. The dimensions of big data

characteristics keep increasing and till now up to 17 characteristics were identified.

2.1.1. Big Data Analytics

Hadoop, NoSQL, Hive, Apache Cassandra, etc. are all examples of the types of

frameworks that can be used to store "big data." In order to retrieve meaningful

information, the stored data must be analyzed using the appropriate analytical technique

(in-memory analytics, in-database analytics, descriptive analytics, predictive analytics,

etc.) to uncover hidden patterns and find correlations necessary for business decisions.

Analyst reveals their knowledge after analyzing the data and helps an organization

improve efficiency, increase profit, and reduce cost by making decisions based on that

insight. Big data delivers us the technology that provides insight in real-time, and many

10

private organizations, NGOs, and government sectors are benefited from the offered

information. Organizations are adopting big data analytics to make better decisions, and

thus the need to employ new methods, tools, and techniques required for data analysis

is also growing. Big data collection, storage, processing, analysis, and prediction are

not possible using traditional databases and infrastructure. Acquiring big data tools and

techniques helps in managing data and increasing the organization's capability to

capture required data. Fast data loading, efficient storage utilization, fast query

processing, and adaptivity to divergent workload patterns are the basic requirements for

analytical processing.

2.1.2. Big Data Challenges

The rate at which new methods and tools for storing and processing Big Data are being

developed is outstripped by the rate at which Big Data itself is being generated.

Increased usage of social media, e-commerce, mobile phones, video, and sensors

generates a massive amount of data that will create an enormous volume that must be

captured, cleaned, transferred, searched, shared, stored, analyzed, and visualized. Based

on the data life cycle, Akerkar (2014) and Zicari (2014) categorize the difficulties into

data, process, and management.

• Data: It solves problems brought on by data's volume, velocity, variety,

validity, etc.

• Process: It addresses the challenges related to employing techniques to

capture, analyze, integrate, transform, and deliver results regarding data.

• Management: Data privacy, security, and ethical usage come under

management challenges.

In addition, "D. P. Acharjya and Kauser Ahmed P" classify the challenges

related to big data in four broad categories. Sentiment analysis, text mining, Anomalies

detection in the Human Ecosystem, distributed storage, data visualization, scalability

of information security, and content validation are addressed in these categories.

11

2.2. UNDERSTANDING RELIABILITY

A reliable system consists of factors like correctness of design, system implementation,

and reliable execution. It determines system quality and refers to the consistency of

measurements using the same subject and method. A system is reliable if it delivers the

same result for the same set of data inputs at any time. Whereas if the system delivers

different outputs for the same set of parameter values using the same method every time

or most of the time, then the system is termed unreliable.

In today's technological world high-quality software is in demand because of its

extensive use. The software quality is measured by its reliability and must be controlled

before its release. Several models were developed to determine a system's reliability.

Researchers keep developing new models to achieve better predictions and eliminate

the problems resulting from the use of existing models. Since its an era of technological

advancement, therefore, change in the environment, functioning, and technology usage

also give rise to new models' development, making better and more reliable predictions.

2.2.1. Software v/s Hardware Reliability

Failure of hardware, whether from defective components or simple aging, can have a

negative impact on hardware reliability. Software systems do not degrade as they never

wear out with time. Undermentioned are some of the characteristics regarding the

difference in software and hardware reliability.

• Hardware reliability is time-dependent but not software reliability.

• Hardware degradation is due to its wear out with time or manufacturing defects,

whereas software becomes obsolete due to changes in technology or the

environment for which it was built due to changed or modified requirements in

terms of expectations.

12

• Hardware failures are often physical in nature, whereas software problems can

occur at any time without warning and are typically the result of erroneous

requirements during the design process or incorrect coding.

• Software is developed, whereas hardware is manufactured.

• Hardware degrades due to environmental conditions (rust and moisture) and

affects its reliability or functioning but not software reliability is not dependent

on such conditions.

• Hardware reliability can be predicted by physical measures like the amount of

degradation and wear and tear, but we cannot predict software reliability using

physical measures.

• Hardware reliability can be improved by replacing the defective part, whereas

software reliability can be improved by eliminating errors.

• Redundancy can improve hardware reliability, but modification can improve

software reliability.

2.2.2. Software Development Life Cycle (SDLC)

Testing software against varied inputs and environments and including software growth

models in the SDLC is the only way to ensure the high quality of software. Still, the

software can give below-desired performance as the measure of reliability is not

deterministic but probabilistic. SDLC is a process consisting of five phases required to

deliver high-quality software. Undermentioned are the five phases of SDLC and their

brief description.

• Requirements Phase: The requirement phase is the first phase of SDLC,

where requirements were underlined after taking customer input. A report

is generated regarding the viability and feasibility of the product after

having lengthy, and many rounds of discussions with customers, subject

13

experts, and sales heads concerning their needs, problems, scope, and

economic constraints. Their requirements are narrowed down to match their

specific domain and mapped to business requirements.

• Design Phase: The software requirement specification document prepared

in the requirements phase is converted into a design plan to implement the

requirements. All concerned parties review the generated document called

design specifications for anomalies and give their suggestions and feedback

to derive the system architecture. After minutely analysing the

requirements, a design document specification (DDS) including all related

technical and non-technical details is prepared, including various processes

required to meet the desired software requirements. The whole software

system architecture is designed to be comprised of multiple modules while

their modular structure, internal design, data flow, and interactions within

and outside the system were clearly defined during this phase. All

architectural modules must be defined and clearly described using a design

approach and the best possible DDS.

• Implementation Phase: All modules were coded based on design

specifications freezed during the design phase. During this stage, DDS is

used to create the product or put it into action. A modular approach to

coding is formulated structurally suited for the developer, consumer, and

application environment. A structural formulation of the problem is not

only comfortable for developers but also easy to code and debug.

• Testing Phase: Testing is employed using varying techniques suitable for

the stage in which it's incorporated and is generally done in all phases of

SDLC. Testing is a must to determine the product's viability in solving the

problem and issues stated during the requirement phase. Various types of

testing were carried out to determine defects or faults to fix them. Unit

testing determines the functionality of an individual module by giving

14

required input and determining the possible outcome. At the same time,

Integral testing determines the system's functionality after combining

various modules and checking the outflow and inflow of the composite unit

as a whole. Faults were reported, located, fixed, repeated, and rested in this

phase until the software product reached the desired quality.

• Validation Phase: After testing, various methodologies were used to

validate the product. Different methodologies required the feedback of

various levels of users and stakeholders in discrete or continuous modes for

external validation. According to deployment methodologies, the software

is released or deployed for internal validation by a limited section of users

in the internal environment. Based on stage 1 feedback, external validation

involves all the stakeholders and asks their opinion regarding product

satisfaction. Based on internal and external validation feedback, the

software product is either released or modified for further enhancement.

Due to the requirement for a high-quality product, measurement and

reliability prediction is in great demand before release. To guarantee better

quality software should be documented, modularly designed, well-tested,

and validated before release. Recently, SDLC has made use of existing

software reliability growth models or the creation of new models

appropriate for specific applications in order to increase quality. Software

reliability does not guarantee fault-free software; it just determines the

quality of the current version of the system.

2.3. IMPORTANCE OF MODELLING

Modeling is required for the SRA of a system. Fault data collected during testing is

used to access the system’s reliability. To be regarded as good, a model must be

straightforward, generally applicable, and capable of making accurate predictions of

failure in the future. These models were used to determine the phase development state

and to monitor and control the enhancement of the product due to new features or

15

changes in design. Developing a new model required the formulation of a mathematical

expression that satisfies the basic assumptions and the formulation of a failure function

in terms of factors affecting the product's reliability. A model is nothing but a

mathematical version or simulation of an actual situation with certain assumptions.

While developing models, the operating environment and testing environment

conditions are generally assumed to be the same. The removed fault is typically

mathematically formulated in most models under the premise that no new problems are

introduced during fault removal.

In most models, the fault removal process is based on a stable operational and

software profile, while in others, it may introduce additional faults. The parameters

required for predicting the reliability must be evaluated correctly, using enough failure

data to estimate future failure phenomena accurately. Incorporating a change in a model

for new faults is generally impractical due to its complexity. It requires a reformulation

of function, recalculation of parameters, and fine new fault data collection.

Design and validation of a model require a fault dataset, parameter estimation,

and performance criteria. The input data, mainly called fault data, is needed to

determine the reliability and compare the prediction capability of the developed model.

Models can be thought of as mathematical explanations of the problem of a

system's unreliability. The performance of a constructed model is evaluated based on a

number of different parameters, including the MVF, the InF, the reliability factor, and

the cumulative faults. For quantitative measurement of product quality, the value of the

parameter in the mathematical function needs to be evaluated. A confidence interval

should be used to represent the range of parameters value.

Software reliability modeling (SRM) provides the undermentioned information

regarding the quality management of a product.

• Product reliability when testing ends.

• The time needed to reach the stated product reliability

• Resultant reliability growth because of testing.

• Field reliability of the product

Error seeding, time domain, and data domain are three fundamental approaches to

SRM.

16

2.4. ELEMENTS OF RELIABILITY MODELLING

System reliability is composed of two factors hardware reliability and software

reliability. A hardware failure occurs due to physical deterioration with time, wear and

tear, and improper maintenance, whereas software failure is mainly because of a coding

error. Software reliability, an essential element in customer satisfaction, is used as an

important factor in quantifying error occurrences in a system responsible for system

failure. However, data reliability is also arising as an essential factor because of the

extensive use of big data. When evaluating the quality of the system, we need to take

into account both the dependability of the hardware and the reliability of the software.

Only then can we establish the overall reliability of the system. In spite of the fact that

the nature of both software and hardware dependability is distinct, it is possible for us

to build theories of reliability that are compatible with both types.

2.4.1. Failures, Outages, and Faults

Failure is defined as the non-functioning of a system because of an undetected error

that causes the entire system to cease functioning. The services delivered by a software

system are nothing but a sequence of time-dependent outputs based on the initial

specification from which the system was derived. The user can choose various levels

of failures and label them as minor, major, or catastrophic depending upon the severity

of the impact on rendered services by the system.

An outage can be caused due to external factors like power failure, lightning, or

fire, and internal factors like human error, software error, or hardware malfunctioning.

The outage also comes under the category of failure. It is defined as a particular failure

caused due to the degradation of services provided to the customer over a period called

outage duration.

A fault is defined as defective programs (because of missing, wrong, or

additional instruction or instruction set) responsible for system-wide failure upon

execution. Faults are generally referred to as "bug" results because of incorrect code

due to missing or inaccurate instruction that causes system failure. There can be a single

17

fault due to an untrue statement, or a fault can trigger a sequence of incorrect

information. Whatever may be the case, a fault always results due to incorrect coding

of a program.

2.4.2. Calendar, Execution, and Clock Time

Calendar time is a time sequence, including when the computer is idle. In contrast,

execution time refers to the system's running time while processing tasks during which

instructions are executed.

A clock time is the total time elapsed in a program execution from the start till

the end, including wait time. Calendar time was required by the models, which used

calendar time instead of execution time by converting execution time prediction to

dates. It was predicated on the hypothesis that the amount of time needed to complete

a task is proportional to the number of available resources.

2.5. MEASURING SOFTWARE RELIABILITY

Undermentioned are some methods used to measure software reliability.

2.5.1. Reliability Function (RF)

 The probability that a piece of software will continue to function correctly despite the

presence of certain external factors and for a predetermined period of time is what we

mean when we talk about software reliability. In the event that the time interval ranges

from 0 to t and the probability of failure is given by P(f(t)), then

RF(t) = 1- P(f(t)) (2.1)

18

2.5.2. Mean Time to Failure (MTTF)

If a fault data set exists consisting of n values at times t1,t2,t3…..tn, then MTTF, the mean

of the next failure interval is defined as

MTTF =
𝟏

𝒏
∑ 𝒕𝒊

𝒏
𝒊=𝟏 ----(2.2)

2.5.3. Mean Time to Repair (MTTR)

Indicated as the interim for the system's successful recovery. Repair time includes

tracking and reporting errors responsible for failure.

2.5.4. Mean Time Between Failure (MTBF)

In most cases, the term "hardware reliability" refers to the process of repairing or

replacing a hardware component because it has stopped performing properly or has

been worn out. Mathematically we can represent it as

 MTBF = MTTF + MTTR ----(2.3)

Availability is the time fraction during which software modules or systems are

functionally acceptable. Mathematically in terms of MTTF and MTTR, we can

represent them as

Availability =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹+𝑀𝑇𝑇𝑅
 ---(2.4)

2.5.5. Failure Rate (FR)

Usually, in reliability modelling, the system failure is described by FR. It is defined as

the rate at which failures occur in an interval that spans t and t plus δt.

Failure rate =
𝑭(𝒕+𝜹𝒕)−𝑭(𝒕)

𝜹𝒕.𝑹(𝒕)
 ----(2.5)

19

2.5.6. Hazard Rate

 The hazard rate is the instantaneous FR at a specified time as

ɀ(t) =
𝒅𝑭(𝒕)

𝒅𝒕

𝟏

𝑹(𝒕)
 ----(2.6)

2.6. MODEL CLASSIFICATION

There are several classification schemes available in history, undermentioned is a

classification scheme based on different attributes.

• Time Domain: classification in accordance with the kind of time, for example,

calendar time as opposed to execution time.

• Category: Classification based on time duration taken for failures, i.e., finite or

infinite.

• Classification based on the functional form

▪ Class: A finite category failure classification where groping is

according to Failure Intensity Function (FInF) based on time.

▪ Family: An infinite category classification where the FInF is

represented as the anticipated total amount of failures.

• Type: classification according to the total number of setbacks encountered up

until a certain point in time.

• Class: Classification according to the functional form of, i.e., time.

Given below is a brief description of the model's characteristics according to the SDLC

classification scheme.

2.6.1. Early Prediction Models (EPM)

These models start addressing the reliability issue either in the requirement phase or the

early design phase of the SDLC. The reliability issue can also be handled in the

waterfall life cycle model during the detailed design. These models are characterized

as being formal, infrequently executable, too insubstantial, and inadequately proper to

20

be analyzed. There are significantly fewer models in this category, resulting in a modest

impact on reliability.

2.6.2. Architecture-based Models (ABM)

This class consists of models that show reliability depending on the architecture of the

software. The entirety of the software system is organized into modules, and the

reliability is evaluated at each module before being combined into a single score to

assess the overall dependability of the system. Architecture-type models are classified

as an additive, path-based, and State-based.

• Additive Models: Additive Models estimate the system's reliability by

considering individual system components' fault data rather than

explicitly considering the system's architecture. These models are called

additive as they express the systems failure intensity as a sum of

individual components' failure intensity. Additive models act like NHPP

models while calculating component reliability; thus, system failure

must also be NHPP having failure intensity, which is the total intensity

of the risk of failure across all components.

• Path-based Models: In these models, the failure phenomenon is path-

based. Reliability estimation is done using the program's execution path

either experimentally or algorithmically. Different execution paths

involving components and interfaces are obtained. Multiplying all

component reliabilities along the dying path gives us path reliability.

The overall system reliability is determined by arithmetically averaging

the individual path reliability values.

• State-based Models: A control flow diagram is used by these models

to represent system architecture and is developed using Markov models.

These models are divided into composite or hierarchical classes. To

21

predict system dependability, the earlier model takes into account both

software architecture and failure phenomena, while the latter approach

solves the architectural model first and then superimposes the answer

with failure behavior.

2.6.3. Software Reliability Growth Models (SRGMs)

SRGM calculates SR by analyzing the system's history of failures. Reliability

estimation is done using these failure patterns and data trends. SRGMs are classified

into NHPP models and FR models. Many SRGM models were developed and available

in the literature, providing a simple and best way to predict software reliability.

NHPP models can be stochastically modelled using cumulative failure time or

between models. NHPP models are black-box models, which treat the software as an

internal structure with external environment interactions. The fault data collected

during testing is utilized to evaluate the reliability factors and parameters of the model.

Model parameters are evaluated using inter-failure times. As failure time increases

more faults are being captured and amended, but this may not always be since the time

between faults is statistically changing and fluctuating. This class of models looks at

the time between failures to see if the failure rate has changed as a result of the different

error counts. The estimated function dependability is a mission time function that does

not decrease with time, where time is the discrete function reflecting program flaws.

2.6.4. Input Domain-Based Models (IDBM)

IDBM evaluates reliability based on the inputs provided to different modules of the

software. Various test cases were created to be utilized in the operation phase using the

input distribution. It is hard to obtain the Input distribution divided into different

equivalence classes that might or might not be linked to the program path. Reliability

assessment is done using test cases of an operational program. Program reliability is

evaluated when sampled test cases fail during physical or symbolic simulation of the

induction field.

22

2.6.5. Hybrid Black Box Models (HBBM)

Black Box Model (BBM) considers the internal structure as a black box and only

considers fault data in reliability estimation. All SRGMs are black-box types, whereas

the HBBM combines IDBM and SRGMs.

2.6.6. Hybrid White Box Model (HWBM)

The White Box Model (WBM) considers the internal software architecture while

estimating reliability. The hybrid white-box model combines specific features of WBM

and BBM.

2.6.7. Non-Homogeneous Poisson Process Models (NHPP)

Stochastic processes, of which NHPP models were a part, were widely employed in

establishing hardware dependability. NHPP models were used extensively to measure

reliability growth in literature and can be successfully modelled and implemented

easily. The mean value function (MVF) is distributed according to the Poisson model

for the accumulated number of failures, m(t). Numerous NHPP models can be obtained

either by using different MVFs or by modifying existing MVFs of existing NHPP

models. Parameter values of models were assessed using statistical techniques

including Maximum Likelihood Estimation (MLE) and Least Squares Estimation

(LSE). A software failure process can be modelled successfully only after studying the

testing process's factors. NHPP models are helpful to determine the software and

hardware reliability combined in a model. By summing the MVFs or InFs of many

NHPP models, one can generate an NHPP hybrid model. The resultant combined MVF

(or InF) represents the MVF of the developed hybrid model. So, we can obtain a hybrid

model by combining various NHPP models having significant parameters set, which

23

gives a good fit but with increased computations and weaker confidence of reliability.

Tabulated below in Table 2.1 are some important NHPP models’ MVF and InF.

Table 2.1. MVF and InF of existing NHPP models

Models MVF InF

Goel-Okumoto

Model (GO)

𝑚(𝑡) = (1 − 𝑒−𝑏𝑡)

 a>0,b>0

𝜆(𝑡) = 𝑎𝑏𝑒−𝑏𝑡

Generalized Goel Model

(GG)

𝑚(𝑡) = 𝑎(1 − 𝑒−𝑏𝑡𝑐
)

 𝑎 > 0, 𝑏 > 0, 𝑐 > 0

𝜆(𝑡) = 𝑎𝑏𝑐𝑡𝑐−1𝑒−𝑏𝑡𝑐

Musa-Okumoto Model

(MO)

𝑚(𝑡) = 𝑎𝑙𝑜𝑔(1 + 𝑏𝑡)

𝜆(𝑡) =
𝑥𝑦

1 + 𝑦𝑡

Gompertz Model

(GMPZ)

𝑚(𝑡) = 𝑎𝑘𝑒−𝑏𝑡 𝜆(𝑡) = 𝑎𝑏𝑙𝑛(𝑘)𝑘𝑒−𝑏𝑡
𝑒−𝑏𝑡

Duane Model (DM) 𝑚(𝑡) = 𝑎𝑡𝑏 𝑎 > 0, 𝑏 > 0

𝜆(𝑡) = 𝑎𝑏𝑡(𝑏−1)

Modified Duane Model

(MD)

𝑚(𝑡) = 𝑎(1 − (𝑏 𝑏 + 𝑡⁄)𝑐)

𝑎 > 0, 𝑏 > 0, 𝑐 > 0

𝜆(𝑡) = 𝑎𝑐𝑏𝑐(𝑏 + 𝑡)(1−𝑐)

Yamada Delayed S-

Shaped Model (YDM)

𝑚(𝑡) = 𝑎(1 − (1 + 𝑏𝑡)𝑒−𝑏𝑡)

 𝑎 ≥ 0, 𝑏 > 0

𝜆(𝑡) = 𝑎 𝑏2𝑡𝑒−𝑏𝑡

Yamada Inflection S-

Shaped Model

(YIM)

𝑚(𝑡) =
𝑎(1 − 𝑒−𝑏𝑡)

1 + 𝛽𝑒−𝑏𝑡

 𝑎 > 0, 𝑏 > 0, 𝛽 > 0

𝜆(𝑡) =
𝑎𝑏𝑒−𝑏𝑡(1 + 𝛽)

(1 + 𝛽𝑒−𝑏𝑡)2

Logistic Growth Curve

Model (LGC)

𝑚(𝑡) = 𝑎 (1 + 𝑘𝑒−𝑏𝑡) ⁄

 𝑎 > 0, 𝑏 > 0, 𝑘 > 0

𝜆(𝑡) = 𝑎𝑏𝑘𝑒−𝑏𝑡 (1 + 𝑘𝑒−𝑏𝑡)2⁄

Yamada Imperfect

Debugging Model-1

(YIDM1)

𝑚(𝑡) =
𝑎𝑏(𝑒𝑝𝑡 − 𝑒−𝑏𝑡)

𝑝 + 𝑏

𝜆(𝑡) =
𝑎𝑏(𝑝𝑒𝑝𝑡 + 𝑒−𝑏𝑡)

𝑝 + 𝑏

24

Yamada Imperfect

Debugging Model-2

(YIDM2)

𝑚(𝑡) = 𝑎(1 − 𝑒−𝑏𝑡) (1 −
𝑝

𝑏
) + 𝑝𝑎𝑡

𝜆(𝑡) = 𝑎𝑏𝑒−𝑏𝑡(1−
𝑝
𝑏

)
+ 𝑝𝑎

Yamada Rayleigh

Model (YR) 𝑚(𝑡) = 𝑎(1 − 𝑒−𝑟𝛼(1−𝑒−𝛽𝑡2
))

𝜆(𝑡) = 𝑎𝑟𝛼𝛽𝑡𝑒−𝑟𝛼(1−𝑒−𝛽𝑡2
)−𝛽𝑡2

Yamada Exponential

Model (YE)

𝑚(𝑡) = 𝑎(1 − 𝑒−𝑟𝛼(1−𝑒−𝛽𝑡))

𝜆(𝑡) = 𝑎𝑟𝛼𝛽𝑡𝑒−𝑟𝛼(1−𝑒−𝛽𝑡)−𝛽𝑡

Pham-Nordmann-

Zhang Model (PNZ)

𝑚(𝑡) =
𝑎(1 − 𝑒−𝑏𝑡) (1 −

∝
𝑏

) + 𝛼𝑎𝑡

1 + 𝛽𝑒−𝑏𝑡

𝜆(𝑡)

=
𝑎𝑏𝑒−𝑏𝑡(1 −

∝
𝑏

)

1 + 𝛽𝑒−𝑏𝑡

+
𝑎𝑏𝛽𝑒−𝑏𝑡 (1 −

∝
𝑏

) ((1 − 𝑒−𝑏𝑡) + 𝛼𝑡)

(1 + 𝛽𝑒−𝑏𝑡)2

Pham Zhang Model

(PZ)
𝑚(𝑡) =

1

1 + 𝛽𝑒−𝑏𝑡
((𝑐 + 𝑎)(1

− 𝑒−𝑏𝑡)

−
𝑎𝑏

𝑏 − 𝛼
(𝑒−𝛼𝑡

− 𝑒−𝑏𝑡))

𝜆(𝑡) =

𝑏(𝑐 + 𝑎)(1 + 𝛽) − [
 𝑏𝑒−𝑏𝑡 (1 + 𝛽𝑒−𝑏𝑡) −

𝛼𝑒−𝛼𝑡(1 + 𝛽𝑒−𝑏𝑡)
]

1 + 𝛽𝑒−𝑏𝑡

Pham-Zhang Imperfect

Fault Detection Model

(PZIFD)

𝑚(𝑡) = 𝑎 − 𝑎 𝑒−𝑏𝑡 (1 + (𝑏 + 𝑑)𝑡

+ 𝑏𝑑𝑡2)

𝜆(𝑡) = 𝑎𝑒−𝑏𝑡[𝑏𝑡(𝑏 − 𝑑) + 𝑑(𝑏2𝑡2 − 1)]

Zhang-Teng-Pham

Model (ZTP)

𝑚(𝑡)

=
∝

𝑝 − 𝛽
[(1

−
(1 + 𝛼) 𝑒−𝑏𝑡

1 + 𝛼 𝑒−𝑏𝑡
)

𝑐
𝑏

(𝑝−𝛽)
]

𝜆(𝑡)

=
𝑎𝑐

1 + 𝛼 𝑒−𝑏𝑡
[(

(1 + 𝛼) 𝑒−𝑏𝑡

1 + 𝛼 𝑒−𝑏𝑡
)

𝑐
𝑏

(𝑝−𝛽)

]

2.6.8. Big Data and Reliability

Big data has unique properties that necessitate new forms of specialized gear and

software for processing. A clerical error in the software that processes data hardware

25

subpar performance is the direct outcome of results in findings that are erroneous and

compromised, as well as lacking performance (Sharma, Kumar & Kaswan, 2021).

Big data reliability can also be classified as hardware reliability, software

reliability, and data reliability. Data reliability is data quality depicted as correctness

and completeness when inflows from heterogeneous sources. Software errors can result

from misinterpretation of specifications, inadequate testing, a mistake in code, or

incorrect usage of the software. The likelihood of mistakes skyrockets in tandem with

the exponential expansion in data volume. Therefore, evaluating the data's

dependability is essential for producing accurate outcomes. Since the purpose of the

data analysis is to help with decision-making, a reliability model should be used to

double-check for any errors that might have caused the system to provide inaccurate

results.

There are two components of hardware reliability operational and architectural.

Modern reliability large data acquired via IoT or sensor devices linked to the system is

used in operational reliability to reliably anticipate system performance and failure of

equipment in the field. The ability to quickly retrieve data from a large capacity storage

media is crucial for big data projects, which determines its architectural reliability and

is a crucial factor in the implementation of big data projects. In contrast, hardware

reliability is due to a poorly designed system, leading to performance degradation and

eventually failing to meet the specified requirements.

2.7. PARAMETER EVALUATION OF RELIABILITY MODELS

In reality, the reliability model is a mathematical statement of the problem with

unspecified values for key variables. To determine the system's reliability, we need to

find out the parameter's value as a linear or non-linear function of an optimization

problem. LSE and MLE are two widely used statistical techniques to determine

parameters in reliability modelling. LSE determines the minimum sum of squared

deviation. MLE, developed by R. A. Fisher (1920), on the other hand, calculates the

parameter value which maximizes the function. MLE is sufficient, consistent, efficient,

and parameter invariant, making it a must for inference with missing data. It isn't easy

26

to obtain parameter values when the density function is complex and non-linear,

involving too many parameters. To find the parameter value that minimizes LSE or

maximizes MLE, we need to employ numerical optimization techniques such as

Newton, quasi-Newton, Gauss-newton, and Levenberg-Marquardt. The nonlinearity

and complexity of the model function made it difficult to estimate the parameter's value

since the model returned various values for the same set of parameters depending on

the value of the guesses. With a larger number of parameters, it also got tedious to test

every possible combination of guess values to find the best one.

Optimization issues in software reliability analysis (SRA) are increasingly

being tackled with the use of soft computing methods, either alone or in tandem with

other approaches.

2.8. CRITERIA FOR COMPARING RELIABILITY MODELS

Specific techniques are required to access the predictions made by developed models.

Only calculating the difference or the summative deviation between the observed and

experimented value is not enough to determine the model's capability; therefore, a set

of values were used by many researchers to determine the model's reliability. Tabulated

below in table 2.2 are some criteria based on which models were compared in the

literature.

Table 2.2. Criteria used by researchers for the reliability model’s comparison

Researcher (Year) Comparison Criteria

Lyu and Nikora (1992) BIAS, NOISE

Zhao and Xie (1992) MEOP

Pillai and Nair (1997) BIAS, VARIANCE, RMSE

Huang and Kuo (2002) BIAS, AE, NOISE, VARIANCE, RMSE

27

Zhang et al. (2003) PRR, SSE

Li et al. (2005) TS

Zhao et al. (2006) AE, R2, SSE

Yang and Li (2007) MSE

Chiu et al.(2008) MSE, AE, R2

Zheng and Xu (2008) MSE

Huang and Huang (2008) MSE, AE, VARIANCE, RMSE

Dohi and Ishii (2008) MSE

Lin and Huang (2008) BIAS, MSE, MEOP, VARIANCE, TS, RMSE

Caiuta et al. (2008) AE, NOISE, VARIANCE

Hwang and Pham (2009) MSE

Huang et al. (2009) BIAS, MSE, VARIANCE, TS, RMSE

Kumar and Kapur (2009) BIAS, MSE, VARIANCE, R2, RMSE

Liu and Gao (2009) BIAS, NOISE

Rafi and Akthar (2010) BIAS, VARIANCE, R2, SSE

 Garg et al. (2010) BIAS, MSE, VARIANCE, TS, RSE, MEOP, AE, NOISE, PRR

Sharma et al. (2010) BIAS, MSE, VARIANCE, TS, RSE, MEOP, AE, NOISE, PRR

Miglani and Rana (2011) BIAS, MSE

Aljahdali (2011) VARIANCE

Anjum et al. (2013) MSE, MEOP, AE, NOISE, TS

28

Khalid and Sharma (2015) BIAS, MEOP, AE, PRR, RSE, TS

Lee et al. (2018) MSE

P. Govindasamy and R. Dillibabu

(2019)

MAD, RMSE, RAE, RRSE, MSE, MMRE, PRR, PP, R2

Garg (2019) BIAS, MSE, VARIANCE, TS, RSE, MEOP, AE, NOISE, PRR

Da Hye Lee et al. (2020) MSE, PRR, PP, R2, SAE, AIC, RMSE

Kamlesh Kumar Raghuvanshi et al.

(2021)

MSE, RMSE, R2

 2.9. LITERATURE REVIEW

To grasp the overall concept and the many ways in which different studies have

contributed to the subject, a comprehensive literature review was conducted. To fully

understand the work done related to a different aspect of the research problem, the

literature available in the undermentioned fields related to our research work was

explored and considered. We can broadly classify it into the following main categories

based on our literature study.

1. Big Data Applications (BDA)

2. Big Data and Reliability (BDR)

3. Software Reliability Hybrid Models (SRHM)

4. Soft Computing Techniques (SCT) and Reliability

The literature review format only discusses the representative work in a

particular area based on existing trends, technology, and future research potential.

The literature represents an indicative sample from the research pool due to the non-

availability of all the research material about the research problem. Still, it supports

the methodology development carried out in our work. The following sections

29

discuss the literature reviewed concerning major influential articles in various

categories necessary for formulating research methodology.

 2.9.1. Big Data Applications

In today's world, with so much advancement in technology, everyone is dependent on

the internet for social networking, e-commerce, and various utility apps. They generate

a vast amount of data regarding people's preferences, choices, likes, and dislikes. This

bulk data, which carries information regarding customers, can significantly help

decision-making for certain corporate houses related to a new product. A competitive

edge and improved performance in a variety of fields are possible through the analysis

of big data in the areas of management, security, sales, and customer happiness.

(Sharma, Kumar & Kaswan 2019)

Big data is characterized by various dimensions ranging from 3V's to 7V's,

consisting of volume, value, velocity, veracity, variability, etc., depending upon the

usage in application and collection point. Nowadays, we feel the presence of big data

in various fields like agriculture, education, healthcare, banking, business,

transportation, etc. It is growing at a tremendous pace.

Gang Zeng (2015) resolves the problem of traffic management by proposing an

architecture of intelligent transportation using traffic flow, the average speed of a road,

the travel path taken by the vehicle, and controlling fake vehicles.

According to Protopopta and Shanoyanb (2016), the prospective expansion of

agriculture in developing nations may be facilitated by the use of information and

communication technologies (ICTs) and global positioning systems (GPS).

Applications of big data analytics were covered by Liu, Chong, Man, K. L., and

Chan (2016). Companies that are making the most of Big data are setting the industry

standard by analyzing the vast amounts of customer feedback they receive via social

media, surveys, and reviews on their mobile apps, smartphones, and e-commerce sites

to determine what is working and why.

30

Li, Zhang & Tian (2016) study shows that healthcare is another important sector

that utilizes data generated from accurate diagnoses, successful treatment of patients,

workflow management, education, and research.

Vaitsis, Hervatis, and Zary (2016) provide the user with a formalized

understanding of education data and how to leverage big data using analytical and

scientific methods. Information gathered from students' behaviors and interactions can

help educators refine their practices and better define what constitutes high-quality

education.

Using a cloud-based service-oriented architecture to predict the likelihood of

congestion, blockages, traffic violence, and accidents, Kemp, Vargas-Solar, and

colleagues (2016) detailed how big data analysis may be utilized to govern traffic lights

and other factors.

Majumdar, Naraseeyappa & Ankalaki (2017) explained that the main

occupation of our country is agriculture, and crop production depends on factors like

climate, soil conditions, fertilizers used, and the type of seed used. By using CLARA,

PAM, and BDSCAN various data mining techniques that can obtain the best yield of

wheat.

Gill, Chana & Buyya (2017) developed a cloud-based automatic information

system, that collects and manages agricultural data using K-NN for various agricultural-

related queries. Smart farming using IoT is the need of the hour to increase crop

production.

Kamilaris, Kartakoullis & Penafeta-Boldú (2017) give brief information

regarding the source, characteristics, application, and techniques employed for big data

in agriculture.

Radmehr and Bazmara (2017) explain that for better decision-making, a bank

utilizes tools dependent on the volume of available data through a financial institution's

social or economic aspect. Financial institutions stop fraudulent attempts and unusual

activities by analysing real-time data. Robust fraud detection uses data analytics to

31

determine fraud patterns by comparing them to customers' usual patterns of cash

deposits, withdrawals, and loans.

Self-analyzing many production factors involving massive amounts of data,

Yao, Han, Yang, and Zhang (2018) created a distributed processing system based on

cloud computing and described a cloud-based storage strategy.

 Rao, Kishore, and Baglodi (2018) identify the three main domains in education,

mainly students, teachers, and institute, which can be harnessed using suitable data

mining techniques.

Rawat and Yadav (2021) discussed various analytics techniques, processes, and

prominent challenges regarding big data. Their study emphasizes the need of updating

current technology and tools with time.

Kushwaha, Kara & Dwivedi (2021) analyzed some business value frameworks

in their study that can measure unbiased BDA values and crisis management. Their

study identifies emerging management areas that are yet to get attention and are

supported by big data.

2.9.2. Big Data Reliability

We studied the research papers concerning big data reliability from 2012 to 2019 in

various reputed journals. We classified them according to the type of reliability they

address-Data, Hardware, or Software. We further compared the software reliability

models concerning the methods and techniques they use to analyze reliability.

After analyzing massive amounts of data from social networks, Han, Tian,

Yoon, and Lee (2012) presented a big data model based on Map Reduce. The reliability

of the recommendations concerning social behavior can be increased by using the

model’s parameters. The model can be modified to grow and expand by including extra

parameters to reflect external factors if required.

Meeker and Hong (2013) recognized several uses for field reliability data such

as warranty, degradation, lifespan, and recurrence field data, and they investigated

32

numerous possibilities for evaluating robust statistical approaches in forecasting the

performance of the system in the field.

A public auditing technique that uses the Boneh-Lynn-Shacham (BLS)

signature and the Multiple Huffman Table (MHT) has been suggested by Chang Liu et

al. (2014). This scheme is for approved auditing. The method offers enhanced security

by incorporating an additional authorization process to eliminate threats due to

malicious auditors and show promising results for a vast number of small updates. The

updates are not constrained by the size of the file block, thus providing better scalability

and flexibility than current schemes.

Using a three-dimensional stochastic differential equation (3D-SDE) and

assuming irregular and time-dependent fault reporting throughout the operation phase,

Tamura, Miyaoka, and Yamada (2014) suggested a reliability model which estimates

the reliability of open software systems running on the cloud.

Yoshinobu, Tamura & Yamada (2014) proposed a 3-D stochastic differential

reliability model. They also explain the indirect effect on integrated reliability by

considering the external interactions.

Bail (2014) synthesizes cultural sociology with big data by combining

traditional qualitative research techniques with modern technological advancements.

This allows for automated text extraction methods to be applied, which can then be

used to follow the growth of the cultural environment. This synthesis will utilize

automated text analysis techniques and political and computer scientists along with

linguists to answer the unmeasurable questions related to theoretical progress by

classifying cultures in schemas, frames, and different boundaries corresponding to

different types of cultures.

According to Kwon, Lee, and Shin (2014), the desire to acquire big data

analytics is significantly influenced by IT skills such as management of data quality

and expertise in data utilization and better-quality management promotes data usage

regardless of its source.

33

In order to settle disagreements across dissimilar large data sources, Li et al.

(2014) suggested a methodology based on an optimal framework consisting of two

variables: truths and source dependability. where the weights denote the degree of

trustworthiness and truth is defined as the value accountable for the least feasible

variation from multiple source inputs. They conducted various experiments to validate

the developed two-step iterative process and demonstrate the benefits of using the CRH

framework over existing conflict resolution techniques used in finding truth from

heterogeneous data.

Tamura and Yamada (2015) proposed an SRM-based K-means clustering and

hazard rate for big data environments with cloud computing. In order to assess the

dependability of cloud computing throughout its operational period, they used cluster

analysis of fault data to create an application called Application for Reliability

Assessment (AIR).

Tamura and Yamada (2015) Proposed another model to evaluate the reliability

of cloud computing. Using stochastic differential equations including two-dimensional

Weiner processes, they calculated the predicted price of the program using a jump-

diffusion model. They also describe an optimum maintenance issue in terms of a sample

path, taking into account the amount of noise present.

Tamura and Yamada (2015) developed two reliability assessment (RA)

methods for OSS based on determining component reliability and system-wide

reliability using big data. A hazard rate model based on stochastic equations was used

for a data set of cumulative faults and time intervals between failures in order to detect

SRA. They verified their model's ability to predict cumulative failures in Hadoop and

OpenStack database systems. Their research showed that the model they created could

accurately predict the total number of bugs in Hadoop and OpenStack.

Tamura, Nobukawa & Yamada (2015) used NN and clustering (K-means) to

develop a reliability model. NN was employed for cumulative faults estimating

techniques that utilized the findings of cluster analysis based on fault datasets obtained

from databases such as Hadoop and NoSQL as well as cloud technologies such as

Eucalyptus and OpenStack.

34

The Socio-technical Risk Analysis "SoTeRia" framework was introduced by

Pence et al. (2016). This method combines human error effects with traditional PRA

approaches and managerial considerations and quantifies the organizational mechanism

for performance shaping factors (PSF) in human resources. They applied the developed

method to quantify the training quality by using it as a surrogate node for PSF in HRA

and identified essential factors influencing the training quality.

Cai and Zhu (2015) developed a quality assessment framework for big data

utilizing a feedback mechanism that lists common quality elements along with

associated indicators.

Li, He & Ma (2016) developed a model for reliable network data mining using

an improved version of the PageRank algorithm. The developed model used Matrix

operations based on MapReduce to reduce time and space complexity, ensuring that the

acquired dataset of webpages was relevant to the study subject. The developed model

consists of three parts where the first module eliminates cheating webpages by utilizing

Trust-Rank and PageRank. Module two refined the webpage search related to a topic

using topic relevance combined with TC-Page-Rank. The third module determines the

relevant web pages using improved HITS, considering the similarity index and

webpage link amplification.

 Hu, Liu, Diao, Meng & Sheng (2016) suggested a big data model for power

distribution system operational reliability by applying parallel index rule mining to

conduct an analysis of the influential aspects associated with the reliability index and

by employing neural networks to evaluate the model. The proposed methodology can

effectively assess and analyse the reliability indexes and operation state in real-time.

Spichkova et al. (2016) formulated a research-oriented framework and a model

using features such as usability and reliability on the cloud computing platform. The

model can be used by researchers involved in experimenting using large computations

involving big data. The chimney platform has been tested using physics and structural

biology research disciplines.

35

Tamura and Yamada (2016) proposed a maintenance problem and method to

evaluate component reliability on the cloud platform. Both GA and NN were utilized

to evaluate the parameters of the model.

Yan, Meng, Lu, and Li (2017) suggested a spatiotemporal framework for

organizing heterogeneous large data. They simulate unseen aspects like predictive

maintenance and energy savings to make manufacturing transparent. Semi-structured

and unstructured big industrial data are both categorized using semantic web and target

recognition, and then further sub-categorized using envelope analysis, time-frequency

analysis, and signal decomposition to improve manufacturing transparency.

Wang, Wu, and Wang (2017) developed a reliability model to analyze the

likelihood of data loss and look into the best parallel recovery strategies for replication

and random shifting using 45 multi-way de-clustering data layouts. The simulation was

done using MATLAB and SHARPE.

Nachiappan, Javadi, Calherios & Matawie (2017) explored the difficulties

associated with cloud storage for large amounts of data and how replication and erasure

may help to overcome them. They also discussed conceptual architecture and proposed

a hybrid approach to handle reconstruction issues related to erasure coding utilizing less

storage and reliability improvement.

Xiang, Du, Ma & Fan (2017) developed a text classifier to determine the

reliability of online hotel reviews. To evaluate the classifier sensitivity and predict the

purpose of travel they utilised datasets of reviews on Trip Advisor. They improved the

classifier's performance using a unique solution to identify misclassification due to

noise in the data set. The study reveals that issues related to data quality arise because

of the innate nature and inconsistencies in the behavior of social media users, and

collecting data from highly reputed websites might also yield unreliable results.

For free and open-source software, Tamura and Yamada (2017) created a deep

learning-based RA model. They developed an application to access the OSS reliability

using fault datasets. The proposed tool performs reliability estimation using a hazard

rate model and deep learning.

36

Hong, Zhang & Meeker (2018) discussed and provided a review concerning the

recent modeling and reliability analysis development regarding complex dimension

structures. They emphasized the use of operating data and environment for large-scale

data systems. The illustrated linking complex data as covariates to reliability response

factors like recurrence time of events, time of failure, and degradation measurements.

Cao and Gao (2018) developed an SRM using fault tree analytics (FTA) for big

data systems. FTA evaluates the big system reliability, acts as a reference for quality

assurance, and performs a qualitative assessment of a module to determine the

probability of failure.

The similarity model, as well as other approaches and tools to detect plagiarism

and clones in software, were created by Yaremchuk and Kharchenk (2018). Researchers

developed software agents to search global networks and storage regarding the actual

reliability of pre-existed similar software.

Govindasamy and Dillibabu (2018) developed three hybrid reliability models

combining pre-existed NHPP models. Models were validated using comparison

criteria. MLE and GA were used for parameter evaluation. The expected number and

cumulative failures were calculated and compared with experimental data to show the

model's performance. To show the superiority of the developed models over other

existing models a t-test was also conducted.

On the premise that OSS fault introduction rates are reducing with time, Wang,

Zhang, and Yang (2022) proposed a Random Access Memory (RAM). The model

proposed by them is a good fit and shows improved performance than other models.

Their model can be utilized for fault prediction RA over OSS.

A hazard rate model for OSS with fault severity levels was presented by

Yanagisawa, Tamura, Anand, and Yamada (2022). The researchers set out to create an

adaptive baseline hazard function for two distinct types of fault data in the Bug

Tracking System (BTS) by use of a Hazard rate model based on covariate vectors with

CFSL. They evaluated their model's performance to that of the Hazard rate model CFSL

using a number of cases, demonstrating that their suggested model is a superior match.

37

2.9.3. Software Reliability Hybrid Model

Pietrantuono, Russo & Trivedi (2003) proposed a prototype implementation of an

online reliability monitoring approach by combining the dynamic analysis with an

architectural-based reliability model.

Bustamante and Bustamante (2003) developed a hybrid NHPP model using the

multinomial-exponential and exponential functions to determine the SRM. The repair

process is a simple multinomial distribution.

Two hybrid neural fuzzy systems were created by Pai and Lin (2005) to help

with reliability prediction issues. In the supervised learning phase, we quickly train

using a scaled conjugate gradient learning approach. Different models, such as the

Radial Bias Function (RBF), the feed-forward multi-layer perceptron (FFMLP), and

the Autoregressive Integrated Moving Average (ARIMA), were used to evaluate the

model's performance. Experiment results confirm the higher prediction capability of

the hybrid model compared to others.

To mitigate the negative consequences of defects, Reis et al. (2005) presented a

hybrid system that combines software and hardware fault detection techniques. They

developed three hybrid techniques CRAFT, SWIFT (software technique), and RMT

(hardware technique). Results indicate that adding software and hardware techniques

enhances the system's reliability.

Pai (2005) developed an SRM using a Support Vector Machine (SVM) for

lower forecasting errors. The SVM parameters were evaluated using GA The non-linear

property of the SVM model makes it a suitable candidate for capturing reliability than

other models. Improper selection of SVM parameters may result in overfitting or under-

fitting but using GA ensures the selection of proper parameters in the SVMG model for

reliability predictions.

Pai and Hong (2005) proposed a hybrid model for software reliability

measurement by combining SVM and SA methods. SA is used for parameter estimation

of the SVM model.

38

Kiran and Ravi (2007) proposed a hybrid model that uses various linear and

non-linear ensembles and uses multiple linear regression and intelligent techniques like

neuro-fuzzy inference, BPNN, and Tree Net to predict SR. The results demonstrated

that the non-linear combination of methods was superior to the linear one.

Yu-dong, Ning, Ying & Xiao-fang (2010) proposed a hybrid non-linear model

using Backpropagation NN to improve prediction accuracy. Results showed that

retained traditional models experience while incorporating the non-linear mapping of

BPNN.

Cao and Zhu (2010) developed a hybrid model combining ARIMA and Fractal

models, which incorporates the strength of both linear as well as non-linear modeling.

Jin (2010) developed a software reliability model using SVM for reliability

prediction and a combination of GA and SA methods for parameter estimation of SVM.

Blackburn and Huddell (2012) developed a hybrid Bayesian network to predict

software reliability.

Lo (2012) created a hybrid model that combines ARIMA and SVM to assess

trustworthiness by taking into account both linear and non-linear trends. The developed

method incorporates the unique strength of both ARIMA and SVM to improve

predictions.

Vamsidhar, Raju & Kumar (2012) combined various SRGM using an Ada-

boosting-based combinational model (ACM) to obtain a linear combinatorial model.

Results depicted that the fitness and prediction of ACM are better than the individual

SRGM.

To ascertain the dependability of composite web services, Prakash,

Maruthurkarasi, Ganesh, and Maheswari (2013) created a hybrid model by fusing path

and state based models. The model assumes that the web service's reliability rate is

proportional to the server workload. The services were dispatched as being in an ideal

or active state depending upon the server workload using a stochastic model. An

architecture was implemented using bounded set techniques to infer the errors by

calculating error rate, accessibility, and active state availability.

39

Using time series data, Chang, Lin, and Pai (2014) built a neuro-fuzzy hybrid

model to test the viability of dependability prediction. Generalized Neural Networks

(GRNN) and Bix-Jenkins ARIMA were used for prediction accuracy.

Kalaivani and Somsundaram (2014) proposed a framework for accessing

reliability, quality risk, and fault detection using GA and PSO methods for type II

censored data. Reliability estimation is done using hazard rate corresponding to PSO-

GA algorithms.

Pushphavathi, Suma & Ramaswamy (2014) developed a defect prediction

hybrid model using fuzzy c means (FCM) and random forest (RF). RF method is used

to screen variables and gain actual ranks. FCM then builds a fault prediction model

using the modified data set. Good classification accuracy is shown by testing the

suggested model on the empirical data set.

Mohanty, Ravi & Patra (2015) proposed a new architecture utilizing genetic

programming (GP). For the purpose of dependability estimation, they devised a number

of different hybrid models and group methods of data handling (GMDH).

Pati and Shukla (2015) developed an ARIMA + NN-based software reliability

hybrid model for failure interval series. A good deal of time, cost, and statistical testing

is required by models using only ARIMA. In contrast, the hybrid model is completely

data-oriented and provides an excellent alternative to ARIMA. The hybrid ARIMA +

NN model shows better performance than only ARIMA models in reliability prediction.

Cao, Yue, Xiong & Zhao (2015) developed a hybrid model combining neural

networks with back-propagation (BPNN) and fractal models to determine the next

failure time.

In order to measure the dependability of cloud computing, Xuejie, Zhijian, and

Feng (2015) integrate the MTTF/MTTR model with the CTMC model.

Roy, Mahapatra & Dey (2015) proposed a feed-forward multi-layer NN-based

model for predicting reliability. The neural network was trained using NN, and GA was

used to optimize the parameter's value.

40

Jin and Jin (2015) proposed an SRGM with an S-shaped testing effort function

(TEF) to determine the reliability and then utilized a modified version of PSO to

optimize the value of the parameter thus obtained.

Jabeen et al. (2017) develop a hybrid model by combining Jelinski-Moranda

(JM) and Gompertz-Makeham (GM) models. JM model is best suited for stochastic

data sequences requiring large data sets for vibrating and changing data, whereas GM

handles forecasting well when the data set is small. The developed hybrid model utilizes

the property of both models in giving better forecasting results.

Manjula and Florence (2017) developed a (GA and NN)-based model for feature

optimization and classification for the early estimation of faults.

Wang, Jin, Yang & Han (2018) developed a hybrid model using BPNN and GA.

BPNN model takes three traditional reliability models as input and GA to optimize the

weights.

Sahu and Srivastava (2018) developed a hybrid model for SRA using fuzzy

logic (FL) and NN. Compared with other models like a fuzzy neural network and

neural-fuzzy, the model showed better performance than others.

By fusing the Flower Pollination and GA(real coded) algorithms, Alneamy and

Dabdoob (2019) created a novel hybrid software reliability model. Models are validated

using PSO, Artificial Bee Colony (ABC), Dichotomous ABC, Classic, and Modified

GA. Results show that the developed hybrid model outperforms other models.

Sun, Wu, Wu, and Yang (2019) developed a hybrid model using SVM and

ARIMA to determine the prediction of failure time series.

Shakya and Smys (2020) proposed a hybrid model of ant colony optimization

(ACO) and differential evaluation algorithm (DEA) to measure software faults. The

model is tested against artificial neural networks and PSO methods. The hybrid model

achieves an impressive 96.2% precision.

Sudharson and Prabha (2020) developed a hybrid model using Pareto

distribution (PD) with ACO and neural networks for enhancing classification.

https://ieeexplore.ieee.org/author/38228379200

41

Meng Li, Sadoughia, Hub & Hua (2020) proposed a hybrid Gaussian model

(HGP_SRA) consisting of multivariate and univariate Gaussian process models

(MGP+UGP).

Gandhi et al. (2021) developed a Neuro-Fuzzy hybrid model for reliability

prediction. The developed model was compared with others for performance evaluation

using MRE and MARE criteria. Results confirm the better accuracy of the hybrid model

as compared to NN and Fuzzy Inference.

Milovancevic et al. (2021) determine the best reliability model for a particular

application using a neuro-fuzzy inference system based on root mean square evaluation.

Results showed that NHPP models combined with Littlewood- Verrall (LV) model give

optimum performance concerning software quality.

2.9.4. Parameter Estimation Techniques

Sinha Kalra & Kumar (2000) proposed a neuron model which outperforms the Kalman

filter (KF) and feed-forward multi-layer neural network (FMNN) using lambda -gamma

learning by reducing the neuron interconnections and hence the computing time. The

suggested model possessed the characteristics of both the basic neuron model and

higher neuron model and adapted well not only to standard or higher neurons but also

to their combination. Researchers also proposed to use the developed model with II

order optimization with back-propagation of errors for further reduction in

computations.

Sharma, Pant & Abraham (2011) proposed a parameter optimization method

using a modified ABC algorithm. The revised version is called Dichotomous ABC

(DABC) to create a new trial, and it moves bidirectionally. The parameters of models

like exponential, power, and S-shaped were evaluated using a developed model and

showed better performance than statistical methods.

Diwaker and Goyat (2014) optimized the Goel-Okamoto reliability model

parameters using simulated annealing. The performance of SA is superior compared to

PSO, ACO, GA, and NN optimizers.

https://link.springer.com/article/10.1007/s10836-021-05964-y#auth-Milos-Milovancevic

42

Parameter optimization utilizing a variant of genetic swarm optimization

(MGSO) and the logistic-exponential testing effort function was suggested by Rao and

Anuradha (2016).

AL-Saati and Abd-AlKareem (2016) estimated the parameters of SRGM using

the cuckoo search (CS) optimization method. Comparisons were made between the

performance of CS and that of other optimizers, such as PSO, ACO, and extended ACO

(EACO). The performance of CS was better than PSO and ACO, but in some cases,

EACO gave better results.

 Choudhary, Baghel & Sangwan (2016) proposed an effective parameter

optimization approach using the gravitational search (GSA) algorithm. They carried out

the experiments with nine datasets, and the results showed a better performance of GSA

than GA and CS.

Alneamy and Dabdoob (2017) proposed a hybrid model HGWO for parameter

estimation using grey wolf optimizer (GWO) and GA of a reliability growth model.

Kumar, Tripathi, Saraswat & Gupta (2017) developed a hybrid SRM by

combining GA and PSO for parameter optimization.

Lohmor and Sagar (2017) developed a parameter estimation technique using

hybrid Dolphin Echolocation Optimization (DEO) combined with ANN.

Latha and Premchand (2018) proposed a hybrid scheme to optimize the

parameters of SRGM by combining ACO with the Traveling Salesman Problem (TSP)

algorithm. Model validation is done using the criteria involving the Meantime to Failure

(MTTF) measure along with Meantime Between Failure (MTBF).

Sharma (2018) used a Shuffled Frog leaping algorithm (SFLA), for parameter

estimation of SRGMs. The researcher also developed a modified version of SFLA

called the opposition-based SFLA. The developed model was verified using six

benchmark functions compared with other algorithms to confirm better efficiency.

https://ieeexplore.ieee.org/author/37089076781
https://ieeexplore.ieee.org/author/37086345959
https://ieeexplore.ieee.org/author/37085990063
https://www.inderscienceonline.com/doi/abs/10.1504/IJENM.2017.087437
https://www.inderscienceonline.com/doi/abs/10.1504/IJENM.2017.087437

43

Sangeeta, Sharma & Bala (2019) developed a hybrid model for parameter

optimization using the ABC model with a differential evolution (DE) model based on

the ecological space concept.

Li, Yu, Wang & Wei (2019) proposed a hybrid parameter optimization

algorithm using hybrid ABC and PSO models.

Banga, Bansal & Singh (2019) proposed a hybrid parameter optimization

algorithm using PSO and modified GA.

 For the purpose of parameter optimization, Gao and Zhao (2019) suggested an

enhanced version of grey wolf optimization that they referred to as variable weight

GWO. Comparing the created model to ant lion optimization (ALO), particle swarm

optimization (PSO), and the bat algorithm (BA), the results demonstrated the superior

performance of the latter.

Zhen, Liu, Dongsheng & Wei (2020) developed a hybrid optimization algorithm

using PSO and wolf pack algorithm (WPA) to optimize the parameters of GO SRM

accurately.

Sangeeta and Sitender (2020) developed hybrid meta-heuristic nature-inspired

algorithms for parameter optimization using both interval domain and time domain data

sets.

Yang, Li, Wang, Miao & Wang (2021) developed a hybrid model for parameter

estimation using PSO and sparrow search algorithm (SSA).

2.10. FINDINGS OF CRITICAL REVIEW

• Hundreds of existing reliability models add more to the list every year, but not

one can be used universally. To account for the parameters representing new

interactions, model complexity continues rising with the arrival of big data

applications and changes in the architecture and technologies employed, making

their implementation more challenging.

44

• We live in an age when big data applications are ubiquitous. There are various

models for predicting dependability, but whether or not they can be used with

large-scale failure data is an open subject. We need a model which can address

all the issues arising due to big data.

• Different models have different properties; it's better to combine two or more

models to get the desired result to address all the issues. NHPP models are

simple and effective and are primarily used for SRA. We may also add the mean

value functions of many NHPP models and evaluate their parameters to get a

single hybrid NHPP model.

• Parameter evaluation is a critical task in complex and non-linear hybrid models.

Moreover, the fault data required to evaluate and test the models are scarcely

available, making it difficult to validate the parameter's value in the context of

real applications. This deficiency of experimental data acts as a roadblock to

successfully implementing reliability models.

• Parameters can be evaluated statically using LSE or MSE techniques. In the

case of non-linear and complex distribution functions, various soft computing

techniques were utilised to get results.

• Parameter evaluation using MLE or LSE techniques requires various optimizers

like Newton-Raphson, Nelder-Mead, Trust-region, Trust-region-dogleg, and

Lavenberg-Marquardt. These methods were used to solve the linear equations

and determine the parameter’s value. Each method has its merits and demerits,

and not one can be used universally for all types of applications. Newton-

Rapson can be used for non-linear functions, but if the initial guess is not

correct, it might not converge, whereas the trust-region algorithm is more

effective on sparse problems, and trust-region-dodge is specifically designed to

handle non-linear equations. Nelder-Mead is efficient, robust, and always

45

converges but can work only with a specific number of parameters and is slow

in the neighborhoods of minima as compared to other methods.

• There is no guideline that we can accommodate to select a particular model.

Researchers have been using various comparison criteria to choose a specific

model, but no one can ensure the suitability of a specific model for reliability

prediction giving rise to the need to develop new models for newer and

technically advanced applications.

CONCLUSION

There is an abundance of models to choose from for the reliability prediction of

a specific application but the model's classification according to their

applicability is not present. Although literature discusses the MLE and LSE

statistical techniques, how to use them in reliability modelling to evaluate

parameters effectively is missing. Researchers did not test various combinations

of model selection criteria set for any specific model to obtain the pros and cons

of a grouping of multiple selection methods. Everyone includes these methods

without any explanation. There was no suitable material in the literature

regarding the acceptable range for guess values for obtaining parameters. There

is no explanation in the literature regarding which in-built functions of

particular applications they used and in what way we can use them for parameter

evaluation. The discussion regarding specific queries like: Is it better to develop

programs for parameter evaluation or to use in-built functions of a particular

application, which platform is best suited for, which type of reliability

modelling is entirely missing, and which optimization algorithm to choose?

46

CHAPTER 3

MODEL DEVELOPMENT, SELECTION FUNCTION,

COMPARISON CRITERIA, AND RANKING

METHODOLOGY

Traditional reliability models attributed program failures to internal causes, such as

faulty specifications or coding, rather than external causes. Technological advancement

and the widespread use of big data have led to the creation of several types of specialist

software. It was observed that any software might contain many errors and each fault

require a different mechanism and method to be detected and corrected. In this chapter,

we proposed some hybrid models that, apart from pure software errors, also consider

induced errors in software due to environmental factors into consideration.

Additionally, a ranking approach to rank models is presented, along with a selection

function and comparison criteria to choose the best model among the candidate models.

3.1. INDUCED ERRORS IN SOFTWARE

A system interacts with its environment to get the intended work done. As big data is

increasingly used, specialized hardware is needed to store and retrieve the massive

amounts of information involved. Big data needs particular treatment because of its

volume, velocity, and veracity, which may generate the following sorts of errors

3.1.1. Volume

 Due to the high volume, a large enough memory space is required with an advanced

access mechanism. Any fault due to the current load while fetching data results in

software failure due to hardware-induced error.

47

3.1.2. Velocity

Data is streaming in the system in continuous mode and in real-time, requiring fast

collection and processing. High velocity requires new cache architecture for the

primary access mechanism and advanced techniques for processing and analysing

massive data rapidly. Malfunctioning in any can also affect the reliability of software.

3.1.3. Variety

 Since the database of Big Data is not usually structured, the faults resulting from the

employment of techniques for keeping unstructured data in the memory come under

this category. When a model accounts for every possible failure scenario, it is

considered to be more flexible. To make advantage of faulty data, the hybrid system

design must account for the flaws arising from these features of big data. A developed

model must catch all pure errors as well hardware and user-induced errors.

3.2. HYBRID MODEL DEVELOPMENT

To develop a model, we consider that apart from pure software faults, mainly resulting

from a coding error; software failure may occur due to induced errors in software.

Errors can be caused either by malfunctioning hardware or by a user's error while

handling data. A direct modification in an NHPP model that can successfully handle

software errors is to combine it with other NHPP models to tackle induced errors

resulting from hardware and user. The hybrid model is then developed by adding three

NHPP models to capture three types of errors: pure software, hardware, and user.

3.2.1. Pure Software Errors

Software errors are generated because of a bug in code or incorrect design specifications

and remain constant throughout the life of software until removed. Pure software errors

can be successfully modelled using well-known existing NHPP models.

48

3.2.2. Hardware-Generated Errors

Hardware reliability depends on time. Suppose there is an error due to hardware

malfunctioning. In that case, the hardware will degrade with time, and the error will

amplify and be represented by a growing curve of cumulated errors concerning the time

until the problem is solved. When there is no hardware malfunctioning, then the error

is eliminated, giving us a curve similar to the Weibull distribution.

We used Duane and modified Duane NHPP reliability models to capture fault

distribution related to hardware.

3.2.3. Human Errors

Human errors involve faults due to the mishandling of software. Initially, when

personnel are less skilled in handling software, the errors generated will be increased.

As time passes, their expertise increases, and they become familiar with the software;

the errors reduce. The user-induced errors take on the form of an exponential

distribution or can be described by the Yamada S-shaped curve.

3.3. MATHEMATICAL FORMULATION OF HYBRID MODELS

To develop a mathematical formulation and determine the MVF of a hybrid model, we

combined the MVF of three NHPP models:

𝐦(𝐭) = 𝐦𝟏(𝐭) + 𝐦𝟐(𝐭) + 𝐦𝟑(𝐭)

Where,

m(t) : MVF of hybrid model.

m1(t): MVF of models for capturing pure software errors.

m2(t): MVF of models for capturing hardware-induced errors in software.

49

m3(t): MVF of models for induced errors in software due to human negligence.

 We used m1(t) values of Generalized Goel(GG), Gompertz(GMPZ), Goel-

Okumoto(GO), Yamada Delayed(YDM), and Inflection S-shaped(YIM), and logistic

growth curve (LGC) models in combination with m2(t) values of the Duane model(DM)

and modified Duane(MD) model and m3(t) values of the Exponential model(ExpM),

Yamada’s Delayed and exponential(YEM) models to obtain 33 various hybrid models

and name them Sharma Kumar Kaswan-1(SKK-1) up to Sharma Kumar Kaswan-33

(SKK-33) as shown in Table 3.1.

Table 3.1. Proposed hybrid software reliability models

Model

Name

Models used for Pure

Software error

Models used for

hardware-

induced errors

Models used for user-

induced errors

SKK-1 Goel-Okumoto Modified Duane Exponential

SKK-2 Yamada Delayed S-Shaped Modified Duane Exponential

SKK-3 Yamada Inflection S-Shaped Modified Duane Exponential

SKK-4 Generalized Goel Duane Exponential

SKK-5 Generalized Goel Modified Duane Exponential

SKK-6 Gompertz Duane Exponential

SKK-7 Gompertz Modified Duane Exponential

SKK-8 Logistic Growth Curve Duane Exponential

SKK-9 Logistic Growth Curve Modified Duane Exponential

SKK-10 Yamada Exponential Duane Exponential

SKK-11 Yamada Exponential Modified Duane Exponential

SKK-12 Generalized Goel Duane Yamada Delayed S-Shaped

SKK-13 Gompertz Duane Yamada Delayed S-Shaped

SKK-14 Goel-Okumoto Duane Yamada Delayed S-Shaped

SKK-15 Yamada Inflection S-Shaped Duane Yamada Delayed S-Shaped

SKK-16 Logistic Growth Curve Duane Yamada Delayed S-Shaped

SKK-17 Generalized Goel Modified Duane Yamada Delayed S-Shaped

50

SKK-18 Gompertz Modified Duane Yamada Delayed S-Shaped

SKK-19 Goel-Okumoto Modified Duane Yamada Delayed S-Shaped

SKK-20 Yamada Inflection S-Shaped Modified Duane Yamada Delayed S-Shaped

SKK-21 Logistic Growth Curve Modified Duane Yamada Delayed S-Shaped

SKK-22 Generalized Goel Duane Yamada Exponential

SKK-23 Gompertz Duane Yamada Exponential

SKK-24 Goel-Okumoto Duane Yamada Exponential

SKK-25 Yamada Inflection S-Shaped Duane Yamada Exponential

SKK-26 Logistic Growth Curve Duane Yamada Exponential

SKK-27 Yamada Delayed S-Shaped Duane Yamada Exponential

SKK-28 Generalized Goel Modified Duane Yamada Exponential

SKK-29 Gompertz Modified Duane Yamada Exponential

SKK-30 Goel-Okumoto Modified Duane Yamada Exponential

SKK-31 Yamada Inflection S-Shaped Modified Duane Yamada Exponential

SKK-32 Logistic Growth Curve Modified Duane Yamada Exponential

SKK-33 Yamada Delayed S-Shaped Modified Duane Yamada Exponential

3.3.1. Sharma, Kumar & Kaswan-1 Hybrid Model

We derived the MVF of the SKK-1 hybrid model by combining:

a. The MVF 𝑚1 (𝑡) of Goel-Okumoto Model for pure software errors.

b. The MVF 𝑚2 (𝑡) of modified Duane for hardware-induced errors.

c. The MVF 𝑚3 (𝑡) of exponential model for user-induced errors.

𝒎𝒉𝟏 (𝒕) = 𝒎𝟏 (𝒕) + 𝒎𝟐 (𝒕) + 𝒎𝟑 (𝒕) (3.1)

 𝝀𝒉𝟏 (𝒕) = 𝝀𝟏 (𝒕) + 𝝀𝟐 (𝒕) + 𝝀𝟑 (𝒕) (3.2)

Where,

 𝜆1 (𝑡), 𝜆2 (𝑡) and 𝜆3 (𝑡) represents the InF of Goel-Okumoto, modified Duane, and

exponential models. The MVF 𝑚ℎ1 (𝑡) and InF 𝜆ℎ1 (𝑡) of SKK-1 hybrid model

can be derived as

Using Goel-Okumoto model: -

51

𝒎𝟏(𝒕) = 𝒙(𝟏 − 𝒆−𝒚𝒕) (3.3)

𝝀𝟏(𝒕) = 𝒙𝒚𝒆−𝒚𝒕 (3.4)

 Using the modified Duane model: -

 𝒎𝟐 (𝒕) = 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ (3.5)

 𝝀𝟐(𝒕) = 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) (3.6)

 Using the Exponential model: -

𝒎𝟑 (𝒕) = 𝜶𝒕 (3.7)

𝝀𝟑(𝒕) = 𝜶 (3.8)

Substituting equations (3), (5), and (7) in equation (1), we get

𝒎𝒉𝟏 (𝒕) = 𝒙(𝟏 − 𝒆−𝒚𝒕) + 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ + 𝜶𝒕 (3.9)

Combining equations (4), (6), and (8) the SKK-1 Intensity function 𝜆ℎ1(𝑡) is derived

as

𝝀𝒉𝟏(𝒕) = 𝒙𝒚𝒆−𝒚𝒕 + 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) + 𝜶 (3.10)

3.3.2. Sharma, Kumar & Kaswan-2 Hybrid Model

SKK-2 model was developed by combining MVF of YDM, MD, and ExpM.

we derived the MVF 𝑚ℎ2(𝑡) of SKK-2 model as:

𝒎𝒉𝟐 (𝒕) = 𝒙(𝟏 − (𝟏 + 𝒚𝒕)𝒆−𝒚𝒕) + 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ + 𝜶𝒕 (3.11)

 Similarly combining intensity functions, we derived the InF 𝜆ℎ2(𝑡) of the hybrid

model as

𝝀𝒉𝟐(𝒕) = 𝒙𝒚𝟐𝒕𝒆−𝒚𝒕 + 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) + 𝜶 (3.12)

52

3.3.3. Sharma, Kumar & Kaswan-3 Hybrid Model

The MVF and InF of SKK-3 can be derived by combining Yamada Inflection S-Shaped

Model with Modified Duane and Exponential model as:

𝒎𝒉𝟑 (𝒕) =
𝒙(𝟏−𝒆−𝒚𝒕)

𝟏+𝒛𝒆−𝒚𝒕 + 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ + 𝜶𝒕 (3.13)

𝝀𝒉𝟑(𝒕) =
𝒙𝒚𝒆−𝒚𝒕(𝟏+𝒛)

(𝟏+𝒛𝒆−𝒚𝒕)𝟐
+ 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) + 𝜶 (3.14)

3.3.4. Sharma, Kumar & Kaswan-4 Hybrid Model

The MVF and Inf of SKK-4 were derived by combining GG Model, Duane, and

Exponential model as

𝒎𝒉𝟒 (𝒕) = 𝒙(𝟏 − 𝒆−𝒚𝒕𝒛
) + 𝒂𝒕𝒃 + 𝜶𝒕 (3.15)

𝝀𝒉𝟒(𝒕) = 𝒙𝒚𝒛𝒕𝒛−𝟏𝒆−𝒚𝒕𝒛
+ 𝒂𝒃𝒕(𝒃−𝟏) + 𝜶 (3.16)

3.3.5. Sharma, Kumar & Kaswan-5 Hybrid Model

The MVF and Inf of SKK-5 can be derived by combining GG Model with the modified

Duane and Exponential model as:

𝒎𝒉𝟓 (𝒕) = 𝒙(𝟏 − 𝒆−𝒚𝒕𝒛
) + 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ + 𝜶𝒕 (3.17)

𝝀𝒉𝟓(𝒕) = 𝒙𝒚𝒛𝒕𝒛−𝟏𝒆−𝒚𝒕𝒛
+ 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) + 𝜶 (3.18)

3.3.6. Sharma, Kumar & Kaswan-6 Hybrid Model

The MVF and Inf of SKK-6, derived after combining the GMPZ model, Duane, and

Exponential model as:

𝒎𝒉𝟔 (𝒕) = 𝒙𝒛𝒆−𝒚𝒕 + 𝒂𝒕𝒃 + 𝜶𝒕 (3.19)

𝝀𝒉𝟔(𝒕) = 𝒙𝒚 𝐥𝐧(𝒛) 𝒛𝒆−𝒚𝒕
𝒆−𝒚𝒕 + 𝒂𝒃𝒕(𝒃−𝟏) + 𝜶 (3.20)

53

3.3.7. Sharma, Kumar & Kaswan-7 Hybrid Model

Combining Gompertz Growth Curve (GMPZ) Model, Modified Duane, and

Exponential model, we got the MVF and InF of the SKK-7 model as:

𝒎𝒉𝟕 (𝒕) = 𝒙𝒛𝒆−𝒚𝒕 + 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ + 𝜶𝒕 (3.21)

𝝀𝒉𝟕(𝒕) = 𝒙𝒚 𝐥𝐧(𝒛) 𝒛𝒆−𝒚𝒕
𝒆−𝒚𝒕 + 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) + 𝜶 (3.22)

3.3.8. Sharma, Kumar & Kaswan-8 Hybrid Model

The MVF and Inf of SKK-8, derived after combining the LGC model, Duane, and

Exponential model as:

𝒎𝒉𝟖 (𝒕) =
𝒙

(𝟏+𝒛𝒆−𝒚𝒕)
+ 𝒂𝒕𝒃 + 𝜶𝒕 (3.23)

𝝀𝒉𝟖(𝒕) =
𝒙𝒚𝒛𝒆−𝒚𝒕

(𝟏+𝒛𝒆−𝒚𝒕)𝟐 + 𝒂𝒃𝒕(𝒃−𝟏) + 𝜶 (3.24)

3.3.9. Sharma, Kumar & Kaswan-9 Hybrid Model

Combining the LGC-modified Duane and Exponential model, we got MVF and InF of

the SKK-9 model as:

𝒎𝒉𝟗 (𝒕) =
𝒙

(𝟏+𝒛𝒆−𝒚𝒕)
+ 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ + 𝜶𝒕 (3.25)

𝝀𝒉𝟗(𝒕) =
𝒙𝒚𝒛𝒆−𝒚𝒕

(𝟏+𝒛𝒆−𝒚𝒕)𝟐 + 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) + 𝜶 (3.26)

54

3.3.10. Sharma, Kumar & Kaswan-10 Hybrid Model

The MVF and Inf of SKK-10, derived after combining the Yamada exponential curve

model, Duane, and Exponential model as:

𝒎𝒉𝟏𝟎 (𝒕) = 𝒙{𝟏 − 𝒆−𝒛𝒘(𝟏−𝒆𝒚𝒕)} + 𝒂𝒕𝒃 + 𝜶𝒕 (3.27)

𝝀𝒉𝟏𝟎(𝒕) = 𝒙𝒘𝒛𝒚𝒆−𝒛𝒘(𝟏−𝒆−𝒚𝒕)−𝒚𝒕 + 𝒂𝒃𝒕(𝒃−𝟏) + 𝜶 (3.28)

3.3.11. Sharma, Kumar & Kaswan-11 Hybrid Model

Combining YEM with the Modified Duane and Exponential Model, we derived the

MVF and InF of the SKK-11 hybrid model as:

𝒎𝒉𝟏𝟏 (𝒕) = 𝒙{𝟏 − 𝒆−𝒛𝒘(𝟏−𝒆𝒚𝒕)} + 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ + 𝜶𝒕 (3.29)

𝝀𝒉𝟏𝟏(𝒕) = 𝒙𝒘𝒛𝒚𝒆−𝒛𝒘(𝟏−𝒆−𝒚𝒕)−𝒚𝒕 + 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) + 𝜶 (3.30)

3.3.12. Sharma, Kumar & Kaswan-12 Hybrid Model

The MVF and Inf of SKK- 12, derived after combining the GG model, Duane model,

and YDM as:

𝒎𝒉𝟏𝟐 (𝒕) = 𝒙(𝟏 − 𝒆−𝒚𝒕𝒛
) + 𝒂𝒕𝒃 + 𝜶{𝟏 − (𝟏 + 𝜷𝒕)𝒆−𝜷𝒕 } (3.31)

𝝀𝒉𝟏𝟐(𝒕) = 𝒙𝒚𝒛𝒕𝒛−𝟏𝒆−𝒚𝒕𝒛
 + 𝒂𝒃𝒕(𝒃−𝟏) + 𝜶𝜷𝟐𝒕𝒆−𝜷𝒕 (3.32)

3.3.13. Sharma, Kumar & Kaswan-13 Hybrid Model

Combining GMPZ, DM, and YDM, we got the MVF and InF of the SKK-13 model as:

𝒎𝒉𝟏𝟑 (𝒕) = 𝒙𝒛𝒆−𝒚𝒕 + 𝒂𝒕𝒃 + 𝜶(𝟏 − (𝟏 + 𝜷𝒕)𝒆−𝜷𝒕) (3.33)

𝝀𝒉𝟏𝟑(𝒕) = 𝒙𝒚 𝐥𝐧(𝒛) 𝒛𝒆−𝒚𝒕
𝒆−𝒚𝒕 + 𝒂𝒃𝒕(𝒃−𝟏) + 𝜶𝜷𝟐𝒕𝒆−𝜷𝒕 (3.34)

55

3.3.14. Sharma, Kumar & Kaswan-14 Hybrid Model

The MVF and Inf of SKK-14, derived after combining the GO model, DM, and YDM

as:

𝒎𝒉𝟏𝟒 (𝒕) = 𝒙(𝟏 − 𝒆−𝒚𝒕) + 𝒂𝒕𝒃 + 𝜶(𝟏 − (𝟏 + 𝜷𝒕)𝒆−𝜷𝒕) (3.35)

𝝀𝒉𝟏𝟒(𝒕) = 𝒙𝒚𝒆−𝒚𝒕 + 𝒂𝒃𝒕(𝒃−𝟏) + 𝜶𝜷𝟐𝒕𝒆−𝜷𝒕 (3.36)

3.3.15. Sharma, Kumar & Kaswan-15 hybrid model

Combining the YIM, DM, and YDM, we got the MVF and InF of the SKK-15 model

as:

𝒎𝒉𝟏𝟓 (𝒕) =
𝒙(𝟏−𝒆−𝒚𝒕)

𝟏+𝒛𝒆−𝒚𝒕 + 𝒂𝒕𝒃 + 𝜶(𝟏 − (𝟏 + 𝜷𝒕)𝒆−𝜷𝒕) (3.37)

𝝀𝒉𝟏𝟓(𝒕) =
𝒙𝒚𝒆−𝒚𝒕(𝟏+𝒛)

(𝟏+𝒛𝒆−𝒚𝒕)𝟐 + 𝒂𝒃𝒕(𝒃−𝟏) + 𝜶𝜷𝟐𝒕𝒆−𝜷𝒕 + 𝜶𝜷𝟐𝒕𝒆−𝜷𝒕 (3.38)

3.3.16. Sharma, Kumar & Kaswan-16 Hybrid Model

The MVF and Inf of SKK- 16, derived after combining the LGC model, Duane, and

YDM as:

𝒎𝒉𝟏𝟔 (𝒕) =
𝒙

(𝟏+𝒛𝒆−𝒚𝒕)
+ 𝒂𝒕𝒃 + 𝜶(𝟏 − (𝟏 + 𝜷𝒕)𝒆−𝜷𝒕) (3.39)

𝝀𝒉𝟏𝟔(𝒕) =
𝒙𝒚𝒛𝒆−𝒚𝒕

(𝟏+𝒛𝒆−𝒚𝒕)𝟐
+ 𝒂𝒃𝒕(𝒃−𝟏) + 𝜶𝜷𝟐𝒕𝒆−𝜷𝒕 (3.40)

3.3.17. Sharma, Kumar & Kaswan-17 Hybrid Model

Combining the GG, MDM, and YDM, we got the MVF and InF of the SKK-17 model

as:

𝒎𝒉𝟏𝟕 (𝒕) = 𝒙(𝟏 − 𝒆−𝒚𝒕𝒛
) + 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ + 𝜶(𝟏 − (𝟏 + 𝜷𝒕)𝒆−𝜷𝒕) (3.41)

𝝀𝒉𝟏𝟕(𝒕) = 𝒙𝒚𝒛𝒕𝒛−𝟏𝒆−𝒚𝒕𝒛
+ 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) + 𝜶𝜷𝟐𝒕𝒆−𝜷𝒕 (3.42)

56

3.3.18. Sharma, Kumar & Kaswan-18 Hybrid Model

The MVF and Inf of SKK-18, derived after combining the GMPZ model, Duane, and

YDM as:

𝒎𝒉𝟏𝟖 (𝒕) = 𝒙𝒛𝒆−𝒚𝒕 + 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ + 𝜶(𝟏 − (𝟏 + 𝜷𝒕)𝒆−𝜷𝒕) (3.43)

𝝀𝒉𝟏𝟖(𝒕) = 𝒙𝒚 𝐥𝐧(𝒛) 𝒛𝒆−𝒚𝒕
𝒆−𝒚𝒕 + 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) + 𝜶𝜷𝟐𝒕𝒆−𝜷𝒕 (3.44)

3.3.19. Sharma, Kumar & Kaswan-19 Hybrid Model

Combining the GO model, MDM, and YDM, we got the MVF and InF of the SKK-19

model as:

𝒎𝒉𝟏𝟗 (𝒕) = 𝒙(𝟏 − 𝒆−𝒚𝒕) + 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ + 𝜶(𝟏 − (𝟏 + 𝜷𝒕)𝒆−𝜷𝒕) (3.45)

𝝀𝒉𝟏𝟗(𝒕) = 𝒙𝒚𝒆−𝒚𝒕 + 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) + 𝜶𝜷𝟐𝒕𝒆−𝜷𝒕 (3.46)

3.3.20. Sharma, Kumar & Kaswan-20 Hybrid Model

The MVF and InF of SKK-20, derived after combining YIM, MDM, and YDM as

𝒎𝒉𝟐𝟎 (𝒕) =
𝒙(𝟏−𝒆−𝒚𝒕)

𝟏+𝒛𝒆−𝒚𝒕 + 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ + 𝜶(𝟏 − (𝟏 + 𝜷𝒕)𝒆−𝜷𝒕) (3.47)

𝝀𝒉𝟐𝟎(𝒕) =
𝒙𝒚𝒆−𝒚𝒕(𝟏+𝒛)

(𝟏+𝒛𝒆−𝒚𝒕)𝟐
+ 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) + 𝜶𝜷𝟐𝒕𝒆−𝜷𝒕 (3.48)

3.3.21. Sharma, Kumar & Kaswan-21 Hybrid Model

Combining LGC, Modified Duane, and Yamada Exponential model, we got MVF and

InF of the SKK-21 model as:

57

𝒎𝒉𝟐𝟏 (𝒕) =
𝒙

(𝟏+𝒛𝒆−𝒚𝒕)
+ 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ + 𝜶 (𝟏 − 𝒆−𝒓𝒑(𝟏−𝒆𝜷𝒕)) (3.49)

𝝀𝒉𝟐𝟏(𝒕) =
𝒙𝒚𝒛𝒆−𝒚𝒕

(𝟏+𝒛𝒆−𝒚𝒕)𝟐 + 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) + 𝜶𝒓𝒑𝜷𝒆−𝒓𝒑(𝟏−𝒆−𝜷𝒕)−𝜷𝒕 (3.50)

3.3.22. Sharma, Kumar & Kaswan-22 Hybrid Model

The MVF and InF of SKK-22, derived after combining the GG model, Duane, and

Yamada Exponential model as:

𝒎𝒉𝟐𝟐 (𝒕) = 𝒙(𝟏 − 𝒆−𝒚𝒕𝒛
) + 𝒂𝒕𝒃 + 𝜶 (𝟏 − 𝒆−𝒓𝒑(𝟏−𝒆𝜷𝒕)) (3.51)

𝝀𝒉𝟐𝟐(𝒕) = 𝒙𝒚𝒛𝒕𝒛−𝟏𝒆−𝒚𝒕𝒛
+ 𝒂𝒃𝒕(𝒃−𝟏) + 𝜶𝒓𝒑𝜷𝒆−𝒓𝒑(𝟏−𝒆−𝜷𝒕)−𝜷𝒕 (3.52)

3.3.23. Sharma, Kumar & Kaswan-23 Hybrid Model

Combining the GMPZ, DM, and YEM, we got MVF and InF of the SKK-23 model as

𝒎𝒉𝟐𝟑 (𝒕) = 𝒙𝒛𝒆−𝒚𝒕 + 𝒂𝒕𝒃 + 𝜶 (𝟏 − 𝒆−𝒓𝒑(𝟏−𝒆𝜷𝒕)) (3.53)

𝝀𝒉𝟐𝟑(𝒕) = 𝒙𝒚 𝐥𝐧(𝒛) 𝒛𝒆−𝒚𝒕
𝒆−𝒚𝒕 + 𝒂𝒃𝒕(𝒃−𝟏) + 𝜶𝒓𝒑𝜷𝒆−𝒓𝒑(𝟏−𝒆−𝜷𝒕)−𝜷𝒕 (3.54)

3.3.24. Sharma, Kumar & Kaswan-24 Hybrid Model

The MVF and InF of the SKK-24, derived after combining the GO model, DM, and

YEM

𝒎𝒉𝟐𝟒 (𝒕) = 𝒙(𝟏 − 𝒆−𝒚𝒕) + 𝒂𝒕𝒃 + 𝜶 (𝟏 − 𝒆−𝒓𝒑(𝟏−𝒆𝜷𝒕)) (3.55)

𝝀𝒉𝟐𝟒(𝒕) = 𝒙𝒚𝒆−𝒚𝒕 + 𝒂𝒃𝒕(𝒃−𝟏) + 𝜶𝒓𝒑𝜷𝒆−𝒓𝒑(𝟏−𝒆−𝜷𝒕)−𝜷𝒕 (3.56)

3.3.25. Sharma, Kumar & Kaswan-25 Hybrid Model

Combining the YIM, the DM, and the YE model, The MVF and InF are given as

58

𝒎𝒉𝟐𝟓 (𝒕) =
𝒙(𝟏−𝒆−𝒚𝒕)

𝟏+𝒛𝒆−𝒚𝒕 + 𝒂𝒕𝒃 + 𝜶 (𝟏 − 𝒆−𝒓𝒑(𝟏−𝒆𝜷𝒕)) (3.57)

𝝀𝒉𝟐𝟓(𝒕) =
𝒙𝒚𝒆−𝒚𝒕(𝟏+𝒛)

(𝟏+𝒛𝒆−𝒚𝒕)𝟐
+ 𝒂𝒃𝒕(𝒃−𝟏) + 𝜶𝒓𝒑𝜷𝒆−𝒓𝒑(𝟏−𝒆−𝜷𝒕)−𝜷𝒕 (3.58)

3.3.26. Sharma, Kumar & Kaswan-26 Hybrid Model

Combining the LGC model with Duane and YE to derive MVF and InF of the SKK-26

hybrid model as:

𝒎𝒉𝟐𝟔 (𝒕) =
𝒙

(𝟏+𝒛𝒆−𝒚𝒕)
+ 𝒂𝒕𝒃 + 𝜶 (𝟏 − 𝒆−𝒓𝒑(𝟏−𝒆𝜷𝒕)) (3.59)

𝝀𝒉𝟐𝟔(𝒕) =
𝒙𝒚𝒛𝒆−𝒚𝒕

(𝟏+𝒛𝒆−𝒚𝒕)𝟐 + 𝒂𝒃𝒕(𝒃−𝟏) + 𝜶𝒓𝒑𝜷𝒆−𝒓𝒑(𝟏−𝒆−𝜷𝒕)−𝜷𝒕 (3.60)

3.3.27. Sharma, Kumar & Kaswan-27 Hybrid Model

Combining the YDM, MDM, and YEM, we got the MVF and InF of the SKK-27 model

as:

𝒎𝒉𝟐𝟕 (𝒕) = 𝒙(𝟏 − (𝟏 + 𝒚𝒕)𝒆−𝒚𝒕) + 𝒂𝒕𝒃 + 𝜶 (𝟏 − 𝒆−𝒓𝒑(𝟏−𝒆𝜷𝒕)) (3.61)

𝝀𝒉𝟐𝟕(𝒕) = 𝒙𝒚𝟐𝒕𝒆−𝒚𝒕 + 𝒂𝒃𝒕(𝒃−𝟏) + 𝜶𝒓𝒑𝜷𝒆−𝒓𝒑(𝟏−𝒆−𝜷𝒕)−𝜷𝒕 (3.62)

3.3.28. Sharma, Kumar & Kaswan-28 Hybrid Model

Combining the GG model, MDM, and YEM, we derived the MVF and InF of the SKK-

28 hybrid model as:

𝒎𝒉𝟐𝟖 (𝒕) = 𝒙(𝟏 − 𝒆−𝒚𝒕𝒛
) + 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ + 𝜶 (𝟏 − 𝒆−𝒓𝒑(𝟏−𝒆𝜷𝒕)) (3.63)

𝝀𝒉𝟐𝟖(𝒕) = 𝒙𝒚𝒛𝒕𝒛−𝟏𝒆−𝒚𝒕𝒛
+ 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) + 𝜶𝒓𝒑𝜷𝒆−𝒓𝒑(𝟏−𝒆−𝜷𝒕)−𝜷𝒕 (3.64)

59

3.3.29. Sharma, Kumar & Kaswan-29 Hybrid Model

Combining GMPZ, MDM, and YEM, we got MVF and InF of the SKK-29 model as

𝒎𝒉𝟐𝟗 (𝒕) = 𝒙𝒛𝒆−𝒚𝒕 + 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ + 𝜶 (𝟏 − 𝒆−𝒓𝒑(𝟏−𝒆𝜷𝒕)) (3.65)

𝝀𝒉𝟐𝟗(𝒕) = 𝒙𝒚 𝐥𝐧(𝒛) 𝒛𝒆−𝒚𝒕
𝒆−𝒚𝒕 + 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) + 𝒓𝒑𝜷𝒆−𝒓𝒑(𝟏−𝒆−𝜷𝒕)−𝜷𝒕 (3.66)

3.3.30. Sharma, Kumar & Kaswan-30 Hybrid Model

Combining the GO model with MDM and YIM, we derived MVF and InF of the SKK-

30 hybrid model as:

𝒎𝒉𝟑𝟎 (𝒕) = 𝒙(𝟏 − 𝒆−𝒚𝒕) + 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ + 𝜶 (𝟏 − 𝒆−𝒓𝒑(𝟏−𝒆𝜷𝒕)) (3.67)

𝝀𝒉𝟑𝟎(𝒕) = 𝒙𝒚𝒆−𝒚𝒕 + 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) + 𝜶𝒓𝒑𝜷𝒆−𝒓𝒑(𝟏−𝒆−𝜷𝒕)−𝜷𝒕 (3.68)

3.3.31. Sharma, Kumar & Kaswan-31 Hybrid Model

Combining the YIM with MD and YE models, we derived the MVF and InF of the

SKK-31 hybrid model as:

𝒎𝒉𝟑𝟏 (𝒕) =
𝒙(𝟏−𝒆−𝒚𝒕)

𝟏+𝒛𝒆−𝒚𝒕 + 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ + 𝜶 (𝟏 − 𝒆−𝒓𝒑(𝟏−𝒆𝜷𝒕)) (3.69)

𝝀𝒉𝟑𝟏(𝒕) =
𝒙𝒚𝒆−𝒚𝒕(𝟏+𝒛)

(𝟏+𝒛𝒆−𝒚𝒕)𝟐 + 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) + 𝜶𝒓𝒑𝜷𝒆−𝒓𝒑(𝟏−𝒆−𝜷𝒕)−𝜷𝒕 (3.70)

3.3.32. Sharma, Kumar & Kaswan-32 Hybrid Model

Combining LGC, MDM, and YE models, we derived the MVF and InF of the SKK-32

hybrid model as:

60

𝒎𝒉𝟑𝟐 (𝒕) =
𝒙

(𝟏+𝒛𝒆−𝒚𝒕)
+ 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ + 𝜶 (𝟏 − 𝒆−𝒓𝒑(𝟏−𝒆𝜷𝒕)) (3.71)

𝝀𝒉𝟑𝟐(𝒕) =
𝒙𝒚𝒛𝒆−𝒚𝒕

(𝟏+𝒛𝒆−𝒚𝒕)𝟐 + 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) + 𝜶𝒓𝒑𝜷𝒆−𝒓𝒑(𝟏−𝒆−𝜷𝒕)−𝜷𝒕 (3.72)

3.3.33. Sharma, Kumar & Kaswan-33 Hybrid Model

Combining the Yamada Delayed model with MDM and YIM, we derived MVF and

InF of the SKK-33 hybrid model as:

 𝒎𝒉𝟑𝟑 (𝒕) = 𝒙(𝟏 − (𝟏 + 𝒚𝒕)𝒆−𝒚𝒕) + 𝒂(𝟏 − (𝒃 (𝒃 + 𝒕))𝒄)⁄ + 𝜶 (𝟏 − 𝒆−𝒓𝒑(𝟏−𝒆𝜷𝒕))

(3.73)

𝝀𝒉𝟑𝟑(𝒕) = 𝒙𝒚𝟐𝒕𝒆−𝒚𝒕 + 𝒂𝒄𝒃𝒄 (𝒃 + 𝒕)(𝟏−𝒄) + 𝜶𝒓𝒑𝜷𝒆−𝒓𝒑(𝟏−𝒆−𝜷𝒕)−𝜷𝒕 (3.74)

3.4. SELECTION FUNCTION

Since it is common to multi-develop models, we developed 33 models and evaluated

the value of their parameters. After discarding models having homogeneous failure

rates and negative parameter values, we were left with ten suitable candidate models.

To select the best estimator out of developed ten we developed an estimation function

based on prediction accuracy. The estimation function calculated the error Ei between

observed and estimated values up to a five-point dimension for i= 0 to 5. Five-point

dimension specifies six error 𝐸0, 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5 where 𝐸0 specifies no error means

when the model's forecast exactly matches the observed data. Errors

𝐸1,𝐸2, 𝐸3, 𝐸4 & 𝐸5 specify the 1-point deviation till the five-point deviation means when

the discrepancy between the two sets of numbers is 1,2,3,4 and 5 respectively. We also

used a weighted function W based on the total match till the five-point dimension was

calculated using error deviation from zero to five as

W = 𝑬𝒊−𝟏𝒘𝒊 ----(3.75)

61

Where 𝒘𝒊 , 𝐢 = 𝟏 𝐭𝐨 𝟔 are the weights assigned to errors having values as

10,8,6,4,2,1 corresponding to errors 𝑬𝟎, 𝑬𝟏, 𝑬𝟐, 𝑬𝟑, 𝑬𝟒, 𝑬𝟓 respectively. The highest

weight 10 is given to no error condition when the model accurately estimates the

observed value. We then decrease the weights uniformly by a difference of 2 till we

have weight 1 corresponding to a maximum deviation that is 5.

3.5. COMPARISION CRITERIA

How well a model estimates the failure data determines its performance. We developed

an estimation function to find the top design from the few that have been perfected

based on accurate estimation. Oval is used to represent the observed fault data and Eval

to represent the estimated fault values predicted by the model. For comparing the

model’s capability following are the thirteen measures for its performance criteria

utilized in our research work.

3.5.1. Mean Value (bias)

The average cumulative discrepancy between predicted and measured quantities is

calculated using bias. For best prediction ability a model must have a small value of

bias in comparison to other models. The only drawback of this criteria is that if the

dataset includes both positive and negative values then while taking summation, they

tend to cancel out each other and give the wrong prediction. When working with data

sets of varying polarities, it is preferable to calculate estimates and predictions using

the absolute value of the mean.

∑ (𝑬𝒗𝒂𝒍(𝒊) − 𝑶𝒗𝒂𝒍(𝒊))/𝒏𝒏
𝒊=𝟏 (3.76)

62

3.5.2. Mean Square Error (MSE)

When comparing observed and estimated values, MSE calculates the sum of the

squares of the differences. Small values represent better prediction. It also provides

the best-fit line for the data set.

∑
(𝑶𝒗𝒂𝒍(𝒊)−𝑬𝒗𝒂𝒍(𝒊))^𝟐

𝒏

𝒏
𝒊=𝟏 (3.77)

3.5.3. Mean Absolute Deviation (MAD)

Displays the cumulative average absolute difference between the values that were

observed and those that were estimated. Small values of MAD indicate lesser deviation

and better estimation capability of a model.

 ∑
|𝑶𝒗𝒂𝒍(𝒊)−𝑬𝒗𝒂𝒍(𝒊)|

𝒏

𝒏
𝒊=𝟏 (3.78)

3.5.4. Predictive Ratio Risk (PRR)

When comparing estimated and observed values, PRR provides a cumulative measure

of the discrepancy for estimated values.

∑
(𝑬𝒗𝒂𝒍(𝒊)−𝑶𝒗𝒂𝒍(𝒊))

𝑬𝒗𝒂𝒍(𝒊)

𝒏
𝒊=𝟏 (3.79)

3.5.5. Noise

Noise gives us the deviation in the value corresponding to the previous value. It is

calculated by adding the variance between the estimated values at times t and t-1 with

respect to the estimated value at time t-1.

∑
𝑬𝒗𝒂𝒍(𝒕𝒊)−𝑬𝒗𝒂𝒍(𝒕𝒊−𝟏)

𝑬𝒗𝒂𝒍(𝒕𝒊−𝟏)

𝒏
𝒊 (3.80)

63

3.5.6. Root Mean Square Error (RMSE)

The Root Mean Squared Error (RMSE) measures the average squared error. The value

is calculated by taking the square root of the total of the squared differences between

the observed and estimated values. Low values of RMSE indicate a better fit for a

model.

√∑
(𝑶𝒗𝒂𝒍(𝒊)−𝑬𝒗𝒂𝒍(𝒊))^𝟐

𝒏

𝒏
𝒊=𝟏 (3.81)

3.5.7. Relative Absolute Error (RAE)

When calculating the deviation of an estimated value from its mean, RAE calculates

the total of the absolute differences between the actual and predicted values. A model

is said to be a better predictor if this ratio value is near zero.

∑ |𝑶𝒗𝒂𝒍(𝒊))−𝑬𝒗𝒂𝒍(𝒊)|𝒏
𝒊=𝟏|

∑ |𝑬𝒗𝒂𝒍(𝒊)−𝑬𝒗𝒂𝒍 ̅̅ ̅̅ ̅̅ ̅̅𝒏
𝒊=𝟏 |

 (3.82)

3.5.8. Root Relative Squared Error (RRSE)

Using the sum of the squared deviations of the value that was observed from the mean,

RRSE calculates the square root of the difference among the predicted and measured

values. By taking into account the dispersion of the estimated values from their mean

value, RRSE normalizes the difference between the measured and predicted values. The

smaller the RRSE value, the better the fitting model.

√
∑ (𝑬𝒗𝒂𝒍(𝒊)−𝑶𝒗𝒂𝒍(𝒊))

𝟐𝒏
𝒊=𝟏

∑ (𝑶𝒗𝒂𝒍(𝒊)−𝑶𝒗𝒂𝒍)^𝟐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝒏
𝒊=𝟏

 (3.83)

64

3.5.9. Mean Magnitude of Relative Error (MMRE)

The MMRE is calculated as the absolute value of the standard deviation of the

observable quantities. Calculated as the mean absolute difference between observed

and estimated values for the same set of observations. When gauging the accuracy of a

model's predictions, the MMRE number should be as near to zero as possible.

𝟏

𝒏
∑ |

𝑶𝒗𝒂𝒍(𝒊)−𝑬𝒗𝒂𝒍(𝒊)

𝑶𝒗𝒂𝒍(𝒊)
|𝒏

𝒊=𝟏 (3.84)

3.5.10. Predictive Power (PP)

The PP value represents the total discrepancy between the estimated and observed

values.

 ∑ (
𝑬𝒗𝒂𝒍(𝒊)−𝑶𝒗𝒂𝒍(𝒊)

𝑶𝒗𝒂𝒍(𝒊)
)

𝟐
𝒏
𝒊=𝟏 (3.85)

3.5.11. Coefficient of Determination (R2)

R2 is one minus the ratio of the sum of squared errors (between the actual and predicted

values) to the sum of mean deviations (actual value). R2 values close to 1 indicate a

good match between data and a model.

1-
∑ (𝑶𝒗𝒂𝒍(𝒊)−𝑬𝒗𝒂𝒍(𝒊))^𝟐𝒏

𝒊=𝟏

∑ (𝑶𝒗𝒂𝒍(𝒊)−𝑶𝒗𝒂𝒍̅̅ ̅̅ ̅̅ ̅)𝒏
𝒊=𝟏 ^𝟐

 (3.86)

65

3.5.12 . Accuracy of Estimation (AE)

AE is calculated by dividing the disparity between the reported and predicted

cumulative values by the reported cumulative value [18]. Small values close to zero of

AE yield a model that is well-fitting.

𝑶(𝒂)−𝑬(𝒂)

𝑶(𝒂)
 (3.87)

3.5.13. Theil’s Statistics (TS)

The evaluation of TS is expressed as a percentage. It computes the square root of the

squared difference between recorded and predicted values, divided by the squared sum

of recorded values [17]. Lower readings of TS indicate a better model fit.

√
∑ (𝑬𝒗𝒂𝒍(𝒊)−𝑶𝒗𝒂𝒍(𝒊))^𝟐𝒏

𝒊=𝟏

∑ 𝑶𝒗𝒂𝒍(𝒊)^𝟐𝒏
𝒊=𝟏

 × 𝟏𝟎𝟎% (3.88)

3.5.14. Comparison Criteria Values for all Proposed Models

The calculated criterion values for ten candidate models are displayed in Table 3.2.

Analyzing the table reveals that model SKK-28 has the greatest number of minimum

values compared to other candidate models meeting the specified criteria. SKK-31 has

a minimum value in criteria PRR and SKK-7 have a minimum value in criteria RAE.

The minimum value of MMRE was shown by model SKK-26. Model SKK-28 has

minimum values in ten criteria measures as compared to thirteen. So, we can safely say

that model SKK-28 is the best model out of the proposed ten candidate models.

66

Table 3.2. Comparison criteria of proposed candidate models

COMPARISON CRITERIA VALUES

Models Bias MSE MAD PRR NOISE RMSE RAE RRSE MMRE PP R^2 AE TS

SKK-1 5990
28000

0000
5990

353

00

742

00
16700 0.66 1830 1190 1.00 -3330000 621 1260

SKK-2 5910
27400

0000
5920

391

00

736

00
16600 0.66 1810 1170 0.51 -3270000 613 1250

SKK-3 18200
16800

00000
18200 25.7

158

000
41000 0.74 4470 3680 1.00

-

20000000
1890 3080

SKK-5 5940
27400

0000
5950

190

0

733

00
16600 0.66 1810 1180 1.21 -3260000 617 1240

SKK-7 2670
71200

000
2680

118

0

400

00
8440 0.62 921 522 0.81 -848000 277 635

SKK-

11
3610

12200

000
3630

770

000

514

00
11000 0.63 1200 710 0.59 -1450000 375 830

SKK-

25
-8.93 168 8.93

611

00
8.10 13.00 15.50 1.41 0.86 7780.00 -1.00 0.93 0.97

SKK-

26
-8.92 167 8.92

394

00
6.96 12.90 18.10 1.41 0.86 0.97 -0.99 0.93 0.97

SKK-

28
2.44 94.7 7.21 16.7 5.30 9.73 1.81 1.06 1.45 0.17 -0.13 0.25 0.73

SKK-

31
3.54 103 7.72 14.6 6.16 10.10 1.81 1.11 1.61

4290000

000000
-0.23 0.37 0.76

3.6. RANKING METHODOLOGY

Additionally, we devised a methodology for ranking models based on the estimation

precision. We used the estimation function up to ten point error difference. The above-

mentioned criteria set was used to determine the thirteen criteria values for several

models. The criteria matrix holds the value of all these criteria for all models.

Criteria Matrix = [

𝒂𝟏𝟏

𝒂𝟐𝟏

𝒂𝟏𝟐

𝒂𝟐𝟐

… 𝒂𝟏𝒏

… 𝒂𝟐𝒏

⋮
𝒂𝒎𝟏

⋮
𝒂𝒎𝟐

… ⋮
 … 𝒂𝒎𝒏

] (3.89)

Where [𝑎𝑖𝑗] represents the jth criteria value of an ith model.

67

The models under consideration were ranked based on individual criteria. A rank

matrix holds the rank of all m models corresponding to each of n criteria as

Rank = [

𝒓𝒏𝒌𝟏𝟏

𝒓𝒏𝒌𝟐𝟏

𝒓𝒏𝒌𝟏𝟐

𝒓𝒏𝒌𝟐𝟐

… 𝒓𝒏𝒌𝟏𝒏

… 𝒓𝒏𝒌𝟐𝒏

⋮
𝒓𝒏𝒌𝒎𝟏

⋮
𝒓𝒏𝒌𝒎𝟐

… ⋮
 … 𝒓𝒏𝒌𝒎𝒏

] (3.90)

Where [𝑟𝑖𝑗] specifies the rank of the ith model in the jth criteria.

Weights were assigned to ranks in increasing order of ranks to determine

weighted rank values so that models having lower ranks in maximum criteria should

give a low value. The highest weight assigned was 11 and the lowest was 0.0001

corresponding to rank 11 and rank 1 respectively as tabulated below in Table 3.3: -

Table 3.3. Weight values assigned to the model's individual criteria rank

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11

0.0001 0.0005 0.001 0.005 1 2 3 4 5 6 7

For each candidate model, the Weight Matrix was computed by replacing the

rank with the associated weight according to the preceding table. To acquire a weighted

rank matrix, the model's rank in each criterion was then multiplied by the associated

weight.

Weight matrix = [

𝒘𝟏𝟏

𝒘𝟐𝟏

𝒘𝟏𝟐

𝒘𝟐𝟐

… 𝒘𝟏𝒏

… 𝒘𝟐𝒏

⋮
𝒘𝒎𝟏

⋮
𝒘𝒎𝟐

… ⋮
 … 𝒘𝒎𝒏

] (3.91)

Where [𝑤𝑖𝑗] represents the weight of the ith model rank in the jth criteria.

Even though the rank matrix assigns rank according to the measure’s value

specifying the performance of a model, it might be the case that the two models still

have the same graded weights because of specific rank combinations. In such situations,

68

it is possible that the model with the highest ranking is not the most accurate estimator.

Thus, we need to compute a weighted rank matrix to eliminate any such possibility.

 Weighted Rank Matrix = Rank Matrix * Weight Matrix

=[

𝒓𝒏𝒌𝟏

𝒓𝒏𝒌𝟐𝟏

𝒓𝒏𝒌𝟏𝟐

𝒓𝒏𝒌

… 𝒓𝒏𝒌𝟏𝒏

… 𝒓𝒏𝒌𝟐𝒏

⋮
𝒓𝒏𝒌𝒎𝟏

⋮
𝒓𝒏𝒌𝒎𝟐

… ⋮
 … 𝒓𝒏𝒌𝒎𝒏

] * [

𝒘𝟏𝟏

𝒘𝟐𝟏

𝒘𝟏𝟐

𝒘𝟐𝟐

… 𝒘𝟏𝒏

… 𝒘𝟐𝒏

⋮
𝒘𝒎𝟏

⋮
𝒘𝒎𝟐

… ⋮
 … 𝒘𝒎𝒏

] (3.92)

 = [

𝒓𝒏𝒌𝒘𝟏𝟏

𝒓𝒏𝒌𝒘𝟐𝟏

𝒓𝒏𝒌𝒘𝟏𝟐

𝒓𝒏𝒌𝒘𝟐𝟐

… 𝒓𝒏𝒌𝒘𝟏𝒏

… 𝒓𝒏𝒌𝒘𝟐𝒏

⋮
𝒓𝒏𝒌𝒘𝒎𝟏

⋮
𝒓𝒏𝒌𝒘𝒎𝟐

… ⋮
 … 𝒓𝒏𝒌𝒘𝒎𝒏

] (3.93)

Where [𝑟𝑤𝑖𝑗] represents the weighted rank value of the ith model in the jth

criteria. We calculated the weighted function using weights from minimum zero error

difference E0 to E10, where E10 gives a maximum difference of 10 between observed

and estimated values according to the following Table 3.4: -

Table 3.4. Weighted estimation vector

Ei 0 1 2 3 4 5 6 7 8 9 10

Wi 20 18 16 14 12 10 8 6 4 2 1

The order of the models was determined by dividing the sum of rows of the weighted

rank matrix by the weighted estimation function. Rank 1 represents the best model

having maximum values in criteria corresponding to best fit as compared to other

models.

𝑹𝒋 =
∑ 𝒓𝒘𝒋𝒊

𝒏
𝒊=𝟏

∑ 𝑾𝑭𝒋
 , 𝒘𝒉𝒆𝒓𝒆 𝒋 = 𝟏 𝒕𝒐 𝒎 (3.94)

69

The complete ranking methodology based on accurate estimation is represented

below in Figure 3.1.

Figure 3.1. Flowchart of ranking methodology

Evaluate Criteria Matrix = Mat [𝑎𝑖𝑗] using criteria values

Evaluate Rank of individual criteria using Rank Matrix = Mat [𝑟𝑖𝑗]

Determine Weight vector and compute Weight Matrix and Weighted criteria

Rank Matrix as Weight Matrix = Mat [𝑟𝑖𝑗] * Mat [𝑤𝑖𝑗]

Weighted Rank Matrix = Mat [𝑟𝑤𝑖𝑗]

Determine Estimation Vector and Calculate Estimation function

Evaluate Rank of each model by dividing weighted criteria rank sum by the

weighted estimation function 𝑅𝑗 =
∑ 𝑊𝑅𝑗𝑖

𝑛
𝑖=1

∑ 𝑊∗𝐸𝐹𝑗

The model with the smallest Rank is deemed the finest model in

comparison to other models based on evaluation criteria.

70

CONCLUSION

 Fault-free execution of software for a significant period determines its reliability under

given conditions. These faults are generally caused due to incorrect specifications

during the design phase or coding errors. Due to technological advancement and big

data, the storage capacity and access mechanism undergo tremendous change to

incorporate its characteristics. Traditional reliability models mostly consider pure

software errors during reliability analysis. To incorporate induced errors in software

due to hardware and human error 33 hybrid models were developed. Since a hybrid

NHPP model can be obtained by adding the MVF and InF of two or more NHPP

models, proposed hybrid models consist of three NHPP models first for handling pure

software errors, second for handling hardware-induced errors in software, and third to

handle induced errors in software due to the human factor.

71

CHAPTER 4

EXPERIMENTAL WORK

This chapter describes datasets used in research work for parameter evaluation,

parameter optimization, and determining the ranking of reliability models. Different

failure datasets taken from the literature represent the observed faults and cumulated

faults time of fault (in days/weeks) for a specific period.

4.1. FAILURE DATA SETS

A group of related information sets consisting of various components which the system

can manipulate as a unit is called a data set. Four datasets, including one big fault data,

are used. Graphical representations of these datasets concerning faults and cumulative

faults are shown to understand the failure behavior. All models and parameter

evaluation techniques require data regarding the time at which failures occurred. In

early-developed models, calendar time was utilized by researchers instead of execution

time. The undermentioned Table 4.1 contains datasets used in this research to evaluate

parameter values and validate the developed models. The focus of our study is to utilize

these datasets in creating a hybrid model for accurate reliability estimation.

Table. 4.1. Fault datasets used by researchers in developed models

S.No Data Sets Author

1. DS#1 Govindasamy and Dillibabu (2018)

2. DS#2 Peng, Hu and Ng (2008)

3. DS#3 Minohara and tohma (1995)

4. DS#4 Lyu (1996)

72

4.1.1. Data Set #1 (DS1)

Data was collected through big data analysis (Govindasamy and Dillibabau,2018). The

data set includes testing duration in days, the number of failures, and the cumulative

number of failures for 30 days, as displayed in Table 4.2 shown below. A total of 289

cumulative failures were reported.

Table 4.2. Failure data set collected using big data analysis

Testing time (In days) Total Failures Cumulative no. of failure

1 6 6

2 4 10

3 7 17

4 3 20

5 9 29

6 5 34

7 4 38

8 3 41

9 9 50

10 5 55

11 14 69

12 29 98

13 4 102

14 6 108

15 9 117

16 1 118

17 45 163

18 14 177

73

19 9 186

20 6 192

21 9 201

22 3 204

23 5 209

24 23 232

25 3 235

26 5 240

27 8 248

28 14 262

29 22 284

30 5 289

The graph shown below in Figure 4.1 is plotted to examine the behavior of the

failure data set DS1. Y-axis represents the failures while X-axis represents the time of

fault measured in days. The orange line shows the pattern of cumulative errors while

the blue line depicts the behavior of the number of failures per day.

Figure 4.1. Number of failures and cumulative failures with time (days) of DS1

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fa
ilu

re
s

Time(In days)

DS1

No. of failures Cumulative no. of failure

74

4.1.2. Data Set #2 (DS2)

This data set (2008) was utilized by Peng, Hu, and Ng during the assessment of a

medium-sized software venture. The data set contains testing time in weeks, and fault

detection, and correction data for 21 days. Only the fault detection and cumulative fault

data were utilized from the dataset. A total of 191 cumulative failures were reported as

shown in Table 4.3. The distribution of the failure data set is illustrated via a graph.

Table 4.3. The data set of a middle-size project

Time Testing time (In

weeks)

No. of failures Cumulative no. of failure

1 15 15

2 20 35

3 25 60

4 14 74

5 20 94

6 8 102

7 12 114

8 20 134

9 5 139

10 2 141

11 7 148

12 1 149

13 8 157

14 15 172

15 6 178

16 3 181

75

17 2 183

18 1 184

19 2 186

20 4 190

21 1 191

The graph shown below in Figure 4.2 is plotted to examine the behavior of the

failure data set DS2. Y-axis represents the cumulative failures while X-axis represents

the time of fault measured in days. The orange line shows the pattern of cumulative

errors while the blue line depicts the behavior of the number of failures measured per

day.

 Figure 4.2. Number of failures and cumulative failures with time (days) of DS2

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Fa
ilu

re
s

Time(In weeks)

DS2

No. of failures Cummulative failures

76

4.1.3. Data Set #3 (DS3)

This dataset represents real test and debugs data. The data set contains testing time in

days and is tabulated below in Table 4.4 along with its graphical representation. The

total cumulative faults detected were 534 over 109 days.

Table 4.4. Real-time control application dataset

Time Testing time

(In weeks)

No. of failures Cumulative no. of failure

1 4 4

2 0 4

3 7 11

4 10 21

5 13 34

6 8 42

7 13 55

8 4 59

9 7 66

10 8 74

11 1 75

12 6 81

13 13 94

14 7 101

15 9 110

16 8 118

17 5 123

18 10 133

19 7 140

20 11 151

77

21 5 156

22 8 164

23 13 177

24 9 186

25 7 193

26 7 200

27 5 205

28 7 212

29 6 218

30 6 224

31 4 228

32 12 240

33 6 246

34 7 253

35 8 261

36 11 272

37 6 278

38 9 287

39 7 294

40 12 306

41 12 318

42 15 333

43 14 347

44 7 354

45 9 363

46 11 374

47 5 379

48 7 386

49 7 393

50 14 407

78

51 13 420

52 14 434

53 11 445

54 2 447

55 4 451

56 4 455

57 3 458

58 6 464

59 6 470

60 2 472

61 0 472

62 0 472

63 3 475

64 0 475

65 4 479

66 0 479

67 1 480

68 2 482

69 0 482

70 1 483

71 2 485

72 5 490

73 3 493

74 2 495

75 1 496

76 11 507

77 1 508

78 0 508

79 2 510

80 2 512

79

81 4 516

82 1 517

83 0 517

84 4 521

85 1 522

86 1 523

87 0 523

88 2 525

89 0 525

90 0 525

91 1 526

92 1 527

93 0 527

94 0 527

95 0 527

96 0 527

97 1 528

98 0 528

99 1 529

100 0 529

101 0 529

102 0 529

103 0 529

104 2 531

105 0 531

106 1 532

107 0 532

108 2 534

109 0 534

80

The graph shown below in Figure 4.3 is plotted to examine the behavior of the

failure data set DS3. Y-axis represents the cumulative failures while X-axis represents

the time of fault measured in days. The orange line shows the pattern of cumulative

errors while the blue line depicts the behavior of the number of failures measured per

day.

Figure 4.3. Failures and cumulative failures plot concerning time for DS3

4.1.4. Data Set #4 (DS4)

This data set is derived from Lyu's (1996) handbook on software reliability. The

testing time is given in weeks. We calculated the cumulative failures and tabulated the

data set in Table 4.5. The total cumulative faults detected were 133 over 62 days.

0

100

200

300

400

500

600

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101105109

Fa
ilu

re
s

Time (In days)

DS3

No. of failures Cummulative failures

81

Table 4.5. Failure count data

Time Testing time (In

weeks)

No. of failures Cumulative no. of failure

1 6 6

2 1 7

3 1 8

4 0 8

5 1 9

6 3 12

7 0 12

8 5 17

9 6 23

10 1 24

11 0 24

12 3 27

13 9 36

14 3 39

15 2 41

16 3 44

17 0 44

18 2 46

19 4 50

20 0 50

21 0 50

22 0 50

23 0 50

24 0 50

25 2 52

26 0 52

82

27 0 52

28 2 54

29 3 57

30 11 68

31 5 73

32 3 76

33 2 78

34 4 82

35 2 84

36 0 84

37 1 85

38 2 87

39 0 87

40 1 88

41 3 91

42 0 91

43 1 92

44 6 98

45 2 100

46 0 100

47 5 105

48 10 115

49 3 118

50 3 121

51 2 123

52 1 124

53 0 124

54 3 127

55 0 127

56 2 129

83

57 0 129

58 1 130

59 0 130

60 1 131

61 0 131

62 2 133

The graph shown below in Figure 4.4 is plotted to examine the behavior of the

failure data set DS4. Y-axis represents the cumulative failures while X-axis represents

the time of fault measured in days. The orange line shows the pattern of cumulative

errors while the blue line depicts the behavior of the number of failures measured per

day.

Figure 4.4. Number of failures and cumulative failures with the time of DS4

4.2. PARAMETER EVALUATION

Using the right technique for parameter evaluation is crucial for model design.

Reliability and failure behavior are estimated using various methods or a combination

of techniques to get an accurate estimation using precise parameters value. The

reliability estimation and model validation all depend upon the true value of the

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Fa
ilu

re
s

Time (In weeks)

DS4

No. of failures Cummulative failures

84

parameters. Using large datasets, statistical methods provide a quantifiable

measurement of parameter values, which is then utilized to assess the model's fitness.

The good fit specifies how precisely a developed model reflects the observed data. To

figure out the gap between experimental and predicted values, it is necessary to

minimize a given objective function. If the developed model is non-linear, it will be

very difficult to estimate parameters value accurately using statistical methods. For

non-linear and complex models, hybrid techniques employing statistical methods in

combination with soft computing techniques were developed by researchers in the

literature. In situations where the statistical estimation is inaccurate, the parameters'

values were optimized using soft computing methods. LSE and MLE are the two most

frequently employed statistical methods for estimating parameter values. Commonly

used soft computing techniques for optimization are GA, PSO, NN, fuzzy system,

Gray-Wolf, Firefly, Cuckoo search, Sparrow search, etc. Using any technique has some

advantages and disadvantages, and none is 100% accurate. It's up to the user to employ

one that is best suited for their model and datasets.

Reliability modelling parameter estimation uses MLE and LSE. Uniformity

and adequateness make MLE a popular standard technique. LSE works well for linear

models with moderate or small amounts of data and is assessed mainly using linear

regression. LSE minimizes the observed-estimated divergence to assess parameters.

4.2.1. Least Square Estimation

The LSE better predicted small data sets because of either a smaller bias or a faster

normality approach. The goal of LSE is to reduce the relative difference between

measured and predicted values as much as possible. The intensity function value, or

rate of error, is used to estimate the model's parameters.

 LSE = ∑ ((𝝀(𝒕)𝑬𝒗𝒂𝒍 − 𝝀(𝒕)𝑶𝒗𝒂𝒍
𝒏
𝒊=𝟏)^𝟐 (4.1)

85

4.2.2. Maximum Likelihood Estimation

Fisher (1920s) first introduced the principle of MLE. He claims that the optimal

choices for the parameters are those that maximize the loglikelihood function, after

which the likelihood function L may be derived from the intensity function λ(t) using

the following equation as

L = ∏ 𝝀(𝒕𝒊
𝒏
𝒊=𝟏) (4.2)

As stated by Pham (2006) the log of L can be derived as

Log L = log (∏ 𝝀(𝒕𝒊
𝒏
𝒊=𝟏)) (4.3)

 = ∑ 𝐥𝐨𝐠 (𝝀(𝒕𝒊)
𝒏
𝒊=𝟏 − 𝒎(𝒕𝒏) (4.4)

4.2.3. Algorithms Used in Evaluating Parameters

The preceding formula is differentiated m times for every parameter with regards to

time, leading to m equations to be solved for a model with m parameters. Algorithms

for solving m equations are then utilized to solve these equations. The parameter

accuracy thus now depends upon the precision of these methods to overcome local

minima and find suitable values. Newton Raphson, Finite Difference, and Brayden’s

method are some numerical methods used to solve non-linear equations. Many software

platforms have inbuilt solvers to solve non-linear equations, but how and when to use

them is not discussed in the literature, making it very hard to explore all possible

methods which might give better results. We use MATLAB solver FSOLVE with the

default Levenberg-Marquardt algorithm to evaluate parameters value.

4.3. SOFT COMPUTING OPTIMIZATION

Soft computing is emerging as a popular solution for optimizing parameters value.

Recently, many researchers have employed several soft computing approaches for

optimization and reliability evaluation in software engineering. These include genetic

86

algorithms (GA), neural networks (NN), fuzzy logic (FL), support vector machines

(SVMs), particle swarms (PS), ant colonies (ACs), gray wolves (GWs), cuckoo swarms

(Cs), sparrow swarms (SS), and artificial bee colonies (ABCs), among others. Soft-

computing methods exploit uncertain, approximate, partial, and imprecise behavior to

obtain practical, robust, and low-cost reliability models. Fuzzy sets, artificial neural

networks, and evolutionary algorithms are the three primary subfields of soft

computing. Research on various applications of soft computing for reliability

assessment and parameter optimization has been carried out in recent years.

Undermentioned are some of these techniques:

4.3.1. Genetic Algorithm (GA)

The genetic algorithm (GA) is a method for optimizing evolutionary processes that are

based on genetics and evolution. It is a subset of evolutionary computations and uses

natural selection in biology evolution to solve the problem using the global optimization

search method. GA was introduced by Holland (1973,1975), a pioneer of GA, and his

students and colleagues. Inspired by Darwin's theory of evolution, it was further refined

by Goldberg (1989), who used it with a higher success rate to solve various optimization

problems. Initially, a pool of possible solutions regarding the stated problem is defined

in GA called population. These multiple solutions are then mutated to reproduce a new

generation as in natural genetics. The process of producing children is repeated over

many generations by assigning a fitness value to each candidate solution. According to

Darwin's principle of survival of the fittest, healthier people have a greater chance of

finding a suitable partner and producing healthier offspring. This process continued

over generations, and better candidates kept evolving until a stopping criterion was met.

The nature of GA is random, and it makes use of knowledge about the past to resolve a

particular issue. In the population pool, each potential solution is represented by a

chromosome, and the fitness function is used to determine its position in the ranking.

From this pool of individuals, the parents are picked using fitness-based selection

criteria. Offspring with improved chromosomal counts and fitness levels are produced

by applying operations like crossover and mutation to the parent. Over several

87

generations, a chromosome's fitness value determines which mutations are picked, and

ultimately, the optimal solution to the issue. GA is used widely in various areas, i.e.,

cryptography, Sequence scheduling, asset allocation, robotics, etc. The bottleneck of

GA is the selection and coding of fitness functions. Wrong choice of mutation

parameters and crossover rate results in bad output.

4.3.2. Fuzzy Logic (FL)

Zadeh (1965) introduced FL. Fuzzy logic imitates human decision-making by

considering vague and imprecise information to solve real-world problems. It maps

statistical input to scalar data. It’s logical to describe fuzziness by using the fuzzy

Inference system(FIS) to make decisions. The FIS relied on IF/THEN principles and

OR/AND logic to make its inferences. The outcome of FIS will always be fuzzy, even

if the input provided is fuzzy or crisp. FIS uses a defuzzification unit to convert the

fuzzy variables to crisp variables. Rule base (RB), database (DB), decision-making

unit(DMU), fuzzification interference unit (FIU), and defuzzification unit (DFU) are

the five primary functional components that make up a FIS. The RB contains the fuzzy

rules in IF/THEN form, whereas the database defines the membership function. Rules

are used by the DMU to guide its actions. FU and DFU are used to convert the crisp

values into fuzzy values and vice-versa, respectively. The main application area of

fuzzy logic is in controllers of speed and temperature units of various devices. Making

fuzzy rules for huge, complicated issues is arduous and time-consuming, which is a

major drawback of fuzzy logic.

4.3.3. Neural Network (NN)

NN is modelled after the biological neural network, which learns and changes itself

based on the provided inputs. Learning and improving the property of NN affects its

structure on the basis of information flows through it. NN is utilized for trend detection

and complex pattern extraction. To solve a problem, NN uses a network of many linked

neurons that function and process data in the same way as a human brain does. NN is

88

classified into feed-forward (FFNN) and feed-backword (FBNN) networks. In FFNN,

the information flows in one direction only, and it may be single-layered or multi-

layered. Single-layer perceptrons have three distinct layers: input, hidden, and output

whereas multi-layered NN have more than one hidden layer beside other layers.

Feedback NN supports the bi-directional flow of information from input to output as

well as from output to hidden layers. Various layers are connected through weights

which are modified by using a learning algorithm. NN employed supervised and

unsupervised learning techniques and can learn by example data. NN-based reliability

models can be categorized as non-parametric and better predictors with fault tolerance

to noisy data.

4.3.4. Support Vector Machines (SVM)

SVM is another learning algorithm proposed by Vapnik (1998,2000). It consists of an

optimal hyperplane for linearly separable patterns, including kernel function as a

support vector for pattern recognition. SVM provides an optimal solution by

maximizing the margin near the hyperplane and specifying the decision function by

supporting vectors and training samples subset. SVM gives better performance as its

answer is absent from local minima, unlike other non-linear optimizers that get stuck

in local minima. The major drawback of SVM is its high computation cost.

4.3.5. Particle Swarm Optimization (PSO)

PSO, introduced by Kennedy and Ebhert (1995) is a population-based stochastic

metaheuristic nature-inspired optimization algorithm. PSO starts with a swarm which

is nothing but a randomly generated set of particles denoting a probable solution vector

for the problem to be optimized. Each particle assesses its location based on velocity,

previous position, and neighboring information in the multi-dimensional search space.

Thus, the behavior of a single particle contributes toward the collective behavior of the

swarm to which it belongs. Each particle in the search space represents a possible

solution with fitness corresponding to the objective function. Classical PSO converges

89

quickly, but complicated problems might trap it in local minima, and prematurely

converge. PSO is a robust stochastic search technique used in many application areas

like data mining, telecommunications, power systems, combinatorial optimization, etc.

PSO is more flexible than GA and can control and balance the local and global

exploration of search space.

4.3.6. Simulated Annealing (SA)

SA is another optimization technique that is useful in finding global optima when a

large number of local optima are present. Annealing word is borrowed from

thermodynamics which specifies the heating of metal and then cooling it to alter its

physical properties. Metal keeps its changed structure and characteristics after cooling.

SA optimizes its objective function rather than material energy and temperature is

treated as a variable to simulate the heating and cooling process when the temperature

is high, the algorithm accepts more solutions with high frequency, allowing it to escape

local optima. As temperature drops, the algorithm must concentrate on the search space

where the near-optimal solution may be located to avoid accepting an inferior answer.

4.4. PARAMETERS EVALUATION AND OPTIMIZATION

USING SOFT COMPUTING METHODS AND DS#1

Since all models we developed are non-linear and complex in nature with a number of

parameters ranging from six(min) to ten(max), we use MLE to obtain model

parameters. The value of the initial guess vector starts with 0.025 for all variables,

incremented by 0.025 till all guess vectors become 2. After trying various possible

permutations and combinations for parameter guess values, we utilized eighty guess

vectors as models were not converging to a single solution. Since we were getting

numerous minima for different values of parameters, we wanted to select one value that

gives the best possible outcome.

90

4.4.1. Proposed Methodology for Parameter Selection

 Sharma et al. (2010) ranking technique was used to choose the parameter with the best

estimate among the many possibilities. The algorithm tries to determine the minimum

distance of all feasible solutions from the optimal solution. Considering the observed

values as optimum vectors, we determine the distance of each feasible solution vector

(estimated values vector corresponding to each of eighty parameter values) from the

optimal vector and arrange them in the increasing order of their distance. Distance, in

our case, is the error between the observed and estimated value vectors.

Undermentioned is the adopted methodology

Ranking_Parameter ()

{

Matrix I(n, m)  Intensity value of all m values of parameters for t= 1 to n.

Matrix O(n)  Observed values (Optimal vector)

Matrix P(m, k)  m parameter vector of length k

Delete P  Delete Entries corresponding parameters having negative values

from possible candidate parameter vectors

Delete (P, I)  Delete Entries regarding parameters giving constant or zero

Intensity distribution.

Update P  Substitute 0 by 0.0001 as we assumed the value of all parameters

to be positive.

Matrix R  Determine the ranking of each m parameter value for m initial

guess vector using a ranking algorithm.

Sort (PI)  Sort parameters index according to their ranks in ascending order.

Parameter  P(PI) Select the parameter with the lowest rank.

}

91

4.4.2. Parameters of all Proposed Models

The undermentioned Table 4.6. reflects the parameters evaluated using MLE for all

developed hybrid models. The proposed selection methodology was adopted to choose

parameter values giving the best estimate out of 80 values calculated using 80 guess

vectors.

Table 4.6. Evaluated parameters value using MLE of proposed hybrid models

Models Evaluated Parameters of Proposed Models

SKK-1 0.00 0.00 0.09 4.31 232.85 126.46

SKK-2 0.52 0.03 0.09 4.30 231.89 126.79

SKK-3 0.26 0.08 0.08 25.34 5.48 342.35 118.85

SKK-4 0.00 0.26 0.10 0.00 0.38 0.58

SKK-5 0.00 1.97 0.09 4.43 239.26 126.18 0.34

SKK-6 1.47 2.71 0.10 0.00 1.00 1.53

SKK-7 0.00 0.01 0.09 3.26 187.22 132.02 1.29

SKK-8 49.50 0.00 0.00 0.40 0.10 2605.80

SKK-9 0.07 0.01 4.35 234.50 0.09 126.33 22.75

SKK-10 0.13 1.29 0.10 671.24 0.00 0.36 0.36

SKK-11 0.07 0.26 0.09 3.77 199.71 130.66 0.03 0.03

SKK-12 0.70 1.70 1.70 1.70 1.63 0.54 1.69

SKK-13 0.38 0.93 38.66 0.01 305.34 0.00 0.57

SKK-14 0.90 1.00 0.00 0.10 32104.00 0.00

SKK-15 0.00 0.18 0.00 0.00 0.23 0.86 1.17

SKK-16 17.20 0.00 0.00 0.30 0.20 0.90 3622.80

SKK-17 1.65 1.65 1.65 1.65 5.54 3.39 0.28 1.65

SKK-18 16.70 0.10 0.00 0.00 54.00 8140.90 22.30 6.60

SKK-19 3.1 0.1 0.1 -0.1 50.2 6400.9 19.3

 3.1 0.1

SKK-20 0.0001 0.0001 -9378 0.0001 30 670 -10 -20 0.0001 0.0001

SKK-21 0.0001 0.0001 -7114 0.0001 30 570 10 10 0.0001 0.0001

SKK-22 2.00 2.00 2.00 1.89 0.51 2.00 2.00 2.00 2.00

SKK-23 0.03 1.79 0.83 0.23 0.86 0.01 0.10 0.01 0.01

SKK-24 27.96 0.01 0.05 0.95 0.24 0.02 0.24 0.24

SKK-25 0.01 0.05 4.67 251.20 0.02 0.17 0.86 0.47 0.47

92

SKK-26 0.38 0.07 15.43 44.82 0.10 0.13 0.85 0.42 0.42

SKK-27 0.72 2.81 0.23 0.86 0.00 0.11 0.00 0.00

SKK-28 0.11 0.01 5.47 4.63 2.28 0.25 0.03 0.01 0.03 0.03

SKK-29 25.80 0.10 0.30 50.90 7660.10 22.80 0.00 0.00 0.00 0.00

SKK-30 0.00 0.00 51.00 22427.00 69.00 0.00 0.00 0.00 0.00

SKK-31 7.99 10.25 207.75 4.85 2.48 0.26 0.06 0.01 0.07 0.07

SKK-32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SKK-33 0.00 0.00 50.30 6325.30 19.10 0.00 0.00 0.00 0.00

4.4.3. Parameters of Existing NHPP Models

Parameter values of some existing models were calculated using FSOLVE with default

trust-region-dogleg or Levenberg-Marquardt algorithm and Parameter ranking in Table

4.7.

Table 4.7. Evaluated values of parameters of traditional models using MLE

Models Parameters Value

GG 3.4973 3.0321 0.0683

GMPZ 5.6556 0.0001 0.0001

GO 65.4959 0.0021

YMD 35.9874 0.0112

YMI 41.3078 0.0113 8.3713

GD-1 0.2 0.01 2910 0.0001 0.1

GD-2 0.0016 0.0157 703.9721 0.0003 0.099

GD-3 0.0228 0.3871 1.8808 512.0351 0.0005 0.0991

4.4.4. Parameters Evaluated using LSE, GA, SA & PSO

The LSE method was utilized to calculate the parameter value of selected ten proposed

models and well-known traditional models in Table 4.8.

93

Table 4.8. Parameters evaluated of proposed ten best models using LSE

Models
Pure S/W Parameters H/W induced Parameters User induced Parameters

x Y z w a b c x1 x2 p r

SKK-1 0.3144 0.0158 5.8329 1.2452 0.7874 0.1000

SKK-2 1.7290 1.8794 2.1661 2.5305 0.4991 2.7218

SKK-3 0.8343 0.8225 0.8259 2.5579 2.7020 0.2538 1.2642

SKK-5 0.9563 0.9490 0.9544 2.8189 2.0014 0.5697 1.8561

SKK-7 1.8481 1.8536 1.8467 2.1641 2.5686 0.5288 2.7400

SKK-11 1.8498 1.8506 1.8505 1.8505 2.1671 2.5727 0.5291 2.7410

SKK-25 1.4775 1.4748 1.4754 1.5441 1.5182 1.4757 1.4741 1.4745 1.4745

SKK-26 1.5513 1.0361 1.6980 3.6137 1.2840 1.9324 1.7655 1.7655 1.7655

SKK-28 1.7256 1.7249 1.7245 2.9901 2.6318 0.6384 1.7252 1.7249 1.7247 1.7247

SKK-31 0.2891 0.0916 0.1554 6.9368 2.4461 0.0838 0.1529 0.1489 0.1529 0.1529

GA was used to generate the parameters of 10 suggested models and well-

known classic models using LSE as an objective function in Table 4.9. given below.

Table 4.9. Parameters evaluated of proposed ten best models using GA

Models Parameters

PURE S/W H/W induced User Induced

x y z w a b c x1 x2 p r

SKK-1 -110.94 4.72 5.67 -10.08 0.33 36.27

SKK-2 -9.50 4.40 -1.79 -4.96 -0.32 2.45

SKK-3 -8.69 -0.24 0.87 -5.88 -7.70 0.40 1.13

SKK-5 9.99 129.76 -3.54 1.86 -13.80 0.69 19.48

SKK-7 -11.40 2.30 -133.73 2.44 -5.25 0.49 8.86

SKK-11 5.06 17.71 -5.49 2.28 -1.27 -7.78 -0.45 8.46

SKK-25 102.81 -0.40 5.22 4.54 1.22 84.83 1.63 -0.79 -4.51

SKK-26 -44.01 0.47 10.07 7.90 1.09 64.77 20.74 -1.43 6.76

SKK-28 -61.61 -3.48 -2.20 -45.24 -0.19 0.81 46.15 0.00 -2.79 21.65

SKK-31 5.50 1.52 80.95 -3.23 -4.73 0.75 45.44 0.13 -0.28 -2.59

94

SA was used to generate the parameters of 10 suggested models and well-known

classic models using LSE as an objective function in Table 4.10. given below.

Table 4.10. Evaluated parameters of proposed ten best models using SA

Models Parameters

PURE S/W H/W induced User Induced

x y z w a b c x1 x2 p r

SKK-1
18.28 16.91 0.00 0.00 4.72 49.09 0.03 0.23 0.00 0.00 0.00

SKK-2 7.85 30.34 0.00 0.00 7.91 0.33 0.61 2.71 0.00 0.00 0.00

SKK-3 0.94 2.15 4.19 0.00 1.95 1.16 0.29 8.38 0.00 0.00 0.00

SKK-5 0.08 30.47 15.07 0.00 18.30 0.23 67.48 9.63 0.00 0.00 0.00

SKK-7 34.06 43.59 7.29 0.00 8.91 8.64 0.02 5.21 0.00 0.00 0.00

SKK-11 15.11 4.16 19.18 8.96 5.58 0.26 0.50 4.22 0.00 0.00 0.00

SKK-25 3.16 2.41 2.17 0.00 3.49 1.29 0.00 2.01 1.07 6.65 3.12

SKK-26 11.33 9.90 17.46 0.00 3.78 1.27 0.00 7.63 9.96 6.97 6.15

SKK-28 1.59 2.08 10.45 0.00 8.98 0.61 0.71 13.13 7.44 3.89 11.25

SKK-31 7.47 16.77 4.68 0.00 2.52 3.29 0.64 10.86 2.24 11.93 12.33

PSO was used to generate the parameters of 10 suggested models and well-

known classic models using LSE as an objective function in Table 4.11. given below.

Table 4.11. Parameters evaluated of proposed ten best models using PSO

Model

s

Parameters

PURE S/W H/W induced User Induced

x y z w a b c x1 x2 p r

SKK-1 9768 0 10198 0 68 7218

SKK-2 730.80 0
2020.4

0
0

5028.1

0
0

SKK-3

1636.2

0

1323.9

0

2474.3

0
 198.40 32.90 0 0

SKK-5 18002 701 0 526 0 0 0

SKK-7 1532 19504 0 526 0 0 0

SKK-

11
5850 165130 13060

519

0
200 0 0 10

95

SKK-

25
977 0 0 0 0

3812.0

0
22429 66976 32217

SKK-

26
25250 1290 430 0 0 202260 0 50 0

SKK-

28
383.10

162960

0

13590

0

136570

0

1893500.

00

172810

0

102200

0.

136760

0

102000

0

72650

0

SKK-

31
7454 14226 0 22 424 0 4759 0 1079 346

4.5. PARAMETERS EVALUATION AND SOFT COMPUTING

OPTIMIZATION USING DS#3

The undermentioned Tables 4.12. and 4.13. contains the parameter value of the

candidate models and existing models evaluated using soft computing techniques in

MATLAB 2022a. The constraints applied were that the lower bound is fixed to 0.1 and

the upper bound to 1000 for SA and PSO. In the absence of these constraints, the value

of the parameter became too big and we get, + inf or Nan values during Intensity

function and comparison criteria evaluation.

Table 4.12. Parameters value of proposed models using LSE, GA, SA, and PSO

USING LSE

Models x y z w a b c x1 x2 p r

SKK-1 0.08 0.04 0.00 0.00 2.99 2.99 1.33 0.00 0.00 0.03 0.00

SKK-2 0.03 0.03 0.00 0.00 2.34 3.27 1.43 0.00 0.00 1.27 0.00

SKK-3 0.05 0.04 0.02 0.00 1.27 1.38 1.28 0.00 0.00 0.24 0.00

SKK-5 0.02 0.02 0.02 0.00 2.34 3.27 1.43 0.00 0.00 1.27 0.00

SKK-7 0.02 0.01 0.05 0.00 2.76 2.70 1.44 0.00 0.00 1.65 0.00

SKK-11 0.03 0.03 0.03 0.03 2.34 3.27 1.43 0.00 0.00 1.27 0.00

SKK-25 5.72 2.06 0.01 0.00 1.72 1.19 0.00 0.03 0.03 0.03 0.03

SKK-26 0.17 0.08 0.17 0.00 1.64 1.20 0.00 0.03 0.03 0.03 0.03

SKK-28 0.03 0.03 0.03 0.00 2.99 2.99 1.33 0.03 0.03 0.03 0.03

SKK-31 0.08 0.04 0.03 0.00 2.99 2.99 1.33 0.03 0.03 0.03 0.03

GA

SKK-1 -24.42 0.54 0.00 0.00 -0.04 -52.50 1.39 0.00 0.00 22.04 0.00

96

SKK-2 77.05 12.91 0.00 0.00 -3.39 -1.93 1.43 0.00 0.00 3.81 0.00

SKK-3 -68.30 7.25 -62.11 0.00 1.73 -0.59 6.74 0.00 0.00 -19.22 0.00

SKK-5 24.89 3.71 -3.04 0.00 -1.45 -7.13 0.09 0.00 0.00 10.06 0.00

SKK-7 16.98 1.90 3.64 0.00 -73.96 -0.42 3.56 0.00 0.00 4.48 0.00

SKK-11 -46.63 -0.17 -1.19 1.97 8.58 2.06 1.30 0.00 0.00 -4.22 0.00

SKK-25 233.89 -0.88 2.85 0.00 30.46 0.64 0.00 -89.73 10.10 -0.39 11.69

SKK-26

-32.50 1.94 46.48 0.00 32.62 0.63 0.00

-

389.31 4.18 1.59 0.69

SKK-28 -82.51 21.99 16.45 0.00 -1.87 -2.31 0.77 175.62 2.50 57.67 0.10

SKK-31 -66.84 1.07 6.46 0.00 2.67 5.51 1.87 13.31 5.73 0.84 -1.86

SA

SKK-1 0.10 1.76 0.00 0.00 0.62 11.77 1.54 0.00 0.00 0.57 0.00

SKK-2 4.35 7.98 0.00 0.00 0.54 12.96 1.57 0.00 0.00 0.10 0.00

SKK-3 6.46 0.10 0.50 0.00 6.59 0.62 1.28 0.00 0.00 0.10 0.00

SKK-5 0.11 5.31 15.44 0.00 0.56 12.62 1.57 0.00 0.00 0.10 0.00

SKK-7 16.89 17.49 1.70 0.00 4.50 2.16 1.33 0.00 0.00 0.10 0.00

SKK-11 3.78 6.27 2.02 2.79 0.60 11.95 1.55 0.00 0.00 0.10 0.00

SKK-25 0.37 0.10 14.54 0.00 14.57 0.77 0.00 10.87 17.78 15.10 26.58

SKK-26 0.10 1.27 5.05 0.00 14.94 0.77 0.00 10.30 1.53 2.18 26.20

SKK-28 10.62 4.65 7.41 0.00 0.21 28.19 1.84 8.33 30.83 4.22 18.76

SKK-31 5.53 8.46 0.25 0.00 0.27 23.32 1.75 2.72 7.02 6.97 1.98

PSO

SKK-1 889.65 964.27 0.00 0.00 0.10 49.35 2.18 0.00 0.00 939.32 0.00

SKK-2 850.19 874.02 0.00 0.00 0.10 48.74 2.19 0.00 0.00 0.10 0.00

SKK-3 437.91 0.10 31.80 0.00 49.17 0.10 977.26 0.00 0.00 507.15 0.00

SKK-5 1000.00 1000.00 135.40 0.00 0.10 207.00 0.10 0.00 0.00 996.70 0.00

SKK-7 1.65 527.07 0.10 0.00 0.10 430.56 0.10 0.00 0.00 0.10 0.00

SKK-11 0.62 0.88 1.00 0.98 0.00 0.00 0.93 0.00 0.00 0.00 0.00

SKK-25 410.80 0.10 38.78 0.00 94.74 0.10 0.00 864.15 319.96 338.87 847.54

SKK-26 421.40 0.10 38.78 0.00 94.74 0.10 0.00 78.99 592.31 520.81 989.88

SKK-28 880.42 979.27 0.10 114.59 0.10 279.83 196.01 364.71 279.65 0.10 667.40

SKK-31 437.55 0.10 32.15 0.00 992.13 5.48 72.26 519.48 997.93 977.95 149.69

97

Table 4.13. Parameters value of existing models using LSE, GA, SA, and PSO

Using LSE

Models a b c w p r

Duane 1.6392 1.1967 0.00 0.00 0.00 0.00

GO 225.0253 0.1 0.00 0.00 0.00 0.00

MO 44.3025 0.4845 0.00 0.00 0.00 0.00

YDM 303.7175 8.6539 0.00 0.00 0.00 0.00

GG 1196 0.1 1 0.00 0.00 0.00

GMPZ 4.57 0.1 20.7638 0.00 0.00 0.00

MD 2.9376 3.0351 1.3259 0.00 0.00 0.00

YIM 647.3118 0.1102 117.9695 0.00 0.00 0.00

LGC 115.7953 0.12 78.58 0.00 0.00 0.00

YMID1 1 1 1 0.00 0.00 0.00

YMID2 1.0017 0.9991 1.0067 0.00 0.00 0.00

PZIFD 3.5727 0.6311 2.8181 0.00 0.00 0.00

YR 13.1409 0.1 2.1355 2.1355 0.00 0.00

YE 223.1181 0.1 0.5617 0.5617 0.00 0.00

PNZ 0.1 7.1172 0.1 0.1 0.00 0.00

PZ 0.9766 1.5907 0.9766 0.5938 0.1 0.00

ZTP 0.2811 0.1063 0.3034 0.1 0.137 0.2348

Using GA

Models
a b c w p r

Duane 18.6497 0.719 0.00 0.00 0.00 0.00

GO 407.397 0.0251 0.00 0.00 0.00 0.00

MO 252.6591 0.0563 0.00 0.00 0.00 0.00

YDM 521.2111 0.0506 0.00 0.00 0.00 0.00

GG 297.2607 0.3129 86.5723 0.00 0.00 0.00

GMPZ 4.0941 41.6711 1.2004 0.00 0.00 0.00

MD 1.1259 6.6853 1.3713 0.00 0.00 0.00

YIM 379.6384 0.1248 103.3072 0.00 0.00 0.00

LGC 461.7704 0.10 27.86 0.00 0.00 0.00

YMID1 299.2651 5.3338 0.0081 0.00 0.00 0.00

YMID2 4.0941 41.6711 1.2004 0.00 0.00 0.00

PZIFD 51.4282 0.5704 0.4132 0.00 0.00 0.00

YR 338.9798 0.0012 7.2419 0.4322 0.00 0.00

98

YE 103.058 0.0573 0.7897 0.4379 0.00 0.00

PNZ 94.6938 0.2773 0.0704 231.6193 0.00 0.00

PZ 12.2833 0.0292 4.2764 9.1458 58.2949 0.00

ZTP 5.503 4.1216 -13.2735 -28.3087 18.2626 19.3442

Using SA

Models
a b c w p r

Duane 50.3804 0.5018 0.00 0.00 0.00 0.00

GO 0.1 0.1 0.00 0.00 0.00 0.00

MO 174.8743 0.1 0.00 0.00 0.00 0.00

YDM 2.2205 0.1 0.00 0.00 0.00 0.00

GG 25.6764 0.3261 4.3896 0.00 0.00 0.00

GMPZ 59.1202 5.9122 65.5597 0.00 0.00 0.00

MD 0.1 49.3404 2.18 0.00 0.00 0.00

YIM 439.4487 0.1 31.9303 0.00 0.00 0.00

LGC 7.4454 0.48 0.48 0.00 0.00 0.00

YMID1 0.1 0.1 0.1 0.00 0.00 0.00

YMID2 4.64 0.8304 0.808 0.00 0.00 0.00

PZIFD 1 1 1 0.00 0.00 0.00

YR 20.8451 0.1237 7.23 9.2987 0.00 0.00

YE 66.7955 0.1 0.1 6.3686 0.00 0.00

PNZ 83.2186 0.1781 0.1 63.4938 0.00 0.00

PZ 2.4062 0.1 38.1124 0.209 0.1 0.00

ZTP 13.2595 20.3141 0.5808 7.394 58.4827 58.4826

Using PSO

models a b c w p r

Duane 225.0253 0.1 0.00 0.00 0.00 0.00

GO 150.4174 0.1 0.00 0.00 0.00 0.00

MO 174.8729 0.1 0.00 0.00 0.00 0.00

GG 2307.8 0.1 0.1 0.00 0.00 0.00

GMPZ 3229.5 11 665.3 0.00 0.00 0.00

MD 0.1 0.1 0.1 0.00 0.00 0.00

YDM 310.1484 0.1 0.00 0.00 0.00

YIM 437.9114 0.1 31.8047 0.00 0.00 0.00

LGC 451.6789 0.10 31.80 0.00 0.00 0.00

YMID1 0.1 0.1 0.1 0.00 0.00 0.00

99

YMID2 49 3100 0.1 0.00 0.00 0.00

PZIFD 153.69 0.1612 0.1 0.00 0.00 0.00

YE 3121.8 0.1 0.1 0.1 0.00 0.00

YR 5590.8 0.1 0.1 0.1 0.00 0.00

PNZ 285.7985 11.1987 10.3021 101.2182 0.00 0.00

PZ 0.1 0.1 0.1 243.9541 0.1 0.00

ZTP 0.1 1965.4 49 46 0.1 0.1

4.6. PARAMETERS EVALUATION AND SOFT COMPUTING

OPTIMIZATION USING DS#4

The undermentioned tables 4.14. and 4.15. contains the value of the model’s,

(developed candidates and existing well-known) parameters evaluated using LSE, GA,

SA, and PSO in MATLAB 2022a. The constraints applied were that the lower bound

is fixed to 0.1 and the upper bound to 1000 for SA and PSO. In the absence of these

constraints, the parameter's value became too big and we get, + inf or Nan values during

Intensity function and comparison criteria evaluation.

Table 4.14. Parameters value of proposed models using LSE, GA, SA, and PSO

Using LSE

Models x y z w a b c x1 x2 p r

SKK-1 0.08 0.06 0.00 0.00 1.68 1.52 1.10 0.00 0.00 0.03 0.00

SKK-2 0.03 0.03 0.00 0.00 1.25 0.84 1.54 0.00 0.00 1.86 0.00

SKK-3 0.06 0.05 0.02 0.00 1.07 0.97 1.66 0.00 0.00 0.15 0.00

SKK-5 0.03 0.03 0.03 0.00 1.25 0.84 1.54 0.00 0.00 1.86 0.00

SKK-7 0.03 0.03 0.05 0.00 1.28 0.97 1.14 0.00 0.00 1.27 0.00

SKK-11 0.03 0.03 0.03 0.03 1.25 0.84 1.54 0.00 0.00 1.86 0.00

SKK-25 2.31 1.02 0.00 0.00 0.03 0.83 1.21 0.03 0.03 0.03 0.03

SKK-26 0.08 0.05 0.00 0.00 0.08 0.96 1.18 0.03 0.03 0.03 0.03

SKK-28 0.03 0.03 0.03 0.00 1.68 1.52 1.10 0.03 0.03 0.03 0.03

SKK-31 0.08 0.04 0.03 0.00 2.99 2.99 1.33 0.03 0.03 0.03 0.03

100

Using GA

Models x y z w a b c x1 x2 p r

SKK-1 133.64 46.31 0.00 0.00 -2.60 -1.72 1.29 0.00 0.00 18.80 0.00

SKK-2 -6.85 62.85 0.00 0.00 -4.33 -0.97 1.29 0.00 0.00 0.15 0.00

SKK-3 -29.44 -1.76 1.08 0.00 -0.14 -13.73 0.31 0.00 0.00 -30.13 0.00

SKK-5 -12.23 35.41 -3.12 0.00 0.94 -3.55 1.46 0.00 0.00 2.17 0.00

SKK-7 -9.73 1.54 -8.10 0.00 57.42 0.20 2.60 0.00 0.00 2.46 0.00

SKK-11 -8.09 2.59 -2.70 0.49 42.73 -0.23 1.42 0.00 0.00 2.47 0.00

SKK-25 -24.85 6.61 0.00 0.00 -27.20 2.02 1.01 -8.27 0.16 2.05 1.73

SKK-26 103.05 -2.13 0.00 0.00 -5.86 34.23 0.42 48.54 0.43 -0.46 1.61

SKK-28 61.71 12.43 0.31 0.00 1.25 46.83 0.02 -49.78 1.54 2.20 3.78

SKK-31 -56.77 12.90 -29.91 0.00 28.19 -0.48 8.48 232.88 27.50 -0.05 8.04

Using SA

Models x y z w a b c x1 x2 p r

SKK-1 10.77 1.93 0.00 0.00 4.77 0.45 1.01 0.00 0.00 4.46 0.00

SKK-2 5.21 5.29 0.00 0.00 0.10 14.88 1.07 0.00 0.00 0.59 0.00

SKK-3 11.99 6.06 3.40 0.00 0.11 0.81 2.64 0.00 0.00 12.14 0.00

SKK-5 2.19 3.57 17.81 0.00 1.58 0.60 16.57 0.00 0.00 2.08 0.00

SKK-7 19.71 59.40 26.86 0.00 39.86 8.89 84.93 0.00 0.00 2.08 0.00

SKK-11 18.20 11.99 1.13 6.70 26.68 3.62 27.75 0.00 0.00 2.08 0.00

SKK-25 28.44 41.74 0.00 0.00 31.17 3.55 0.88 2.33 12.63 94.63 28.91

SKK-26 8.61 4.39 0.00 0.00 3.64 2.81 0.93 3.27 3.50 0.55 0.82

SKK-28 6.68 1.31 0.84 0.00 0.25 8.58 1.05 11.79 0.26 20.00 17.44

SKK-31 16.84 33.65 2.75 0.00 0.11 46.59 2.13 39.90 15.20 12.95 1.97

Using PSO

Models x y z w a b c x1 x2 p r

SKK-1 69.82 126.88 0.00 0.00 0.10 186.40 0.10 0.00 0.00 84.55 0.00

SKK-2 8.98 0.10 0.00 0.00 0.10 0.10 0.10 0.00 0.00 0.10 0.00

SKK-3 755.83 14.45 707.63 0.00 0.10 0.10 0.10 0.00 0.00 239.73 0.00

SKK-5 0.10 791.82 0.10 0.00 0.10 0.10 61.21 0.00 0.00 2.24 0.00

SKK-7 784.40 1000.00 1000.00 0.00 210.60 0.10 20.40 0.00 0.00 2.10 0.00

SKK-11 1000.00 999.40 0.10 18.10 1.30 176.40 0.10 0.00 0.00 0.10 0.00

SKK-25 103.62 0.10 0.00 0.00 39.84 52.62 0.10 165.04 772.05 383.90 15.22

SKK-26 106.21 0.10 0.00 0.00 39.83 52.62 0.10 408.06 196.34 635.39 187.18

SKK-28

444.16 -584.64 -797.34 0.00 -622.73 2.60 173.25 924.60

-

498.52 -33.07 800.17

101

SKK-31

712.20 127.10 -324.70 0.00 1436.90 152.90 0.00

-

943.00

-

681.10

-

1519.90 103.70

 Table 4.15. Parameters value of existing models using LSE, GA, SA, and PSO

Using LSE

Models a b c w p r

Duane 0.7639 1.2823 0.00 0.00 0.00 0.00

GO 49.4449 0.1 0.00 0.00 0.00 0.00

MO 26.9533 0.207 0.00 0.00 0.00 0.00

YDM 98.6311 0.1 0.00 0.00 0.00 0.00

GG 10.8446 1.4973 1 0.00 0.00 0.00

GMPZ 0.8479 1.3636 138.1299 0.00 0.00 0.00

MD 1.6151 1.5963 1.1025 0.00 0.00 0.00

YIM 22.7848 0.1084 19.8891 0.00 0.00 0.00

LGC 6.523 0.16 3.60 0.00 0.00 0.00

YMID1 1 1 1 0.00 0.00 0.00

YMID2 1.0001 1 1.0002 0.00 0.00 0.00

PZIFD 6.3431 4.0536 3.4572 0.00 0.00 0.00

YR 18.054 0.2401 2.6265 2.6265 0.00 0.00

YE 16.246 0.1156 2.748 2.748 0.00 0.00

PNZ 1 33.6963 0.1 1 0.00 0.00

PZ 1 1 1 1 1.0012 0.00

ZTP 1.0004 1 1.0004 1 0.9991 1.0101

Using GA

Models a b c w p r

Duane 1.9374 1.0287 0.00 0.00 0.00 0.00

GO 207.4256 0.0155 0.00 0.00 0.00 0.00

MO 39.7592 0.1598 0.00 0.00 0.00 0.00

YDM 141.5727 0.0547 0.00 0.00 0.00 0.00

GG 133.3192 0.2818 78.1872 0.00 0.00 0.00

GMPZ 18.9848 2.0933 -10.5472 0.00 0.00 0.00

MD -3.187 -1.5424 1.3645 0.00 0.00 0.00

YIM 111.4086 0.1137 44.677 0.00 0.00 0.00

102

LGC -31.2966 4.95 -6.02 0.00 0.00 0.00

YMID1 -36.6345 20.2261 -0.1402 0.00 0.00 0.00

YMID2 -8.8121 41.2357 -0.2423 0.00 0.00 0.00

PZIFD 6.5884 4.6282 4.6326 0.00 0.00 0.00

YR -18.0379 20.952 -2.2079 6.409 0.00 0.00

YE -4.21 9.2598 6.4101 -0.8827 0.00 0.00

PNZ -28.4724 -2.1161 8.769 61.1013 0.00 0.00

PZ -21.5471 8.8904 18.1951 -1.0723 0.92 0.00

ZTP -12.6531 3.5602 -9.7462 -15.8466 5.7515 7.3925

 Using SA

Models a b c w p r

Duane 19.9172 0.4421 0.00 0.00 0.00 0.00

GO 49.7598 0.1 0.00 0.00 0.00 0.00

MO 53.6351 0.1 0.00 0.00 0.00 0.00

YDM 242.6952 7.8108 0.00 0.00 0.00 0.00

GG 152.1458 0.2599 33.5759 0.00 0.00 0.00

GMPZ 402.6484 7.8843 149.7526 0.00 0.00 0.00

MD 43.6476 0.1 1.157 0.00 0.00 0.00

YIM 122.7276 0.1 24.9035 0.00 0.00 0.00

LGC 121.8336 0.10 22.30 0.00 0.00 0.00

YMID1 0.1237 0.1 0.1 0.00 0.00 0.00

YMID2 20.904 2.903 0.1 0.00 0.00 0.00

PZIFD 109.788 9.3411 6.9634 0.00 0.00 0.00

YR 20.04 0.1 2.1455 9.8199 0.00 0.00

YE 0.1 0.1 0.1 0.1 0.00 0.00

PNZ 6.5613 15.1291 2.745 21.2942 0.00 0.00

PZ 0.1 9.8527 0.1 0.1002 4.3421 0.00

ZTP 18.004 12.3468 0.4364 26.4662 0.1 0.1

Using PSO

Models a b c w p r

Duane 81.1259 0.1 0.00 0.00 0.00 0.00

GO 49.7088 0.1 0.00 0.00 0.00 0.00

MO 53.4543 0.1 0.00 0.00 0.00 0.00

YDM 88.9666 0.1 0.00 0.00 0.00 0.00

GG 893.6732 0.1 241.316 0.00 0.00 0.00

103

GMPZ 0.1 0.1 177.0499 0.00 0.00 0.00

MD 0.1 0.1 0.1 0.00 0.00 0.00

YIM 122.9165 0.1 24.7396 0.00 0.00 0.00

LGC 118.1409 0.10 24.74 0.00 0.00 0.00

YMID1 0.1 0.1 0.1 0.00 0.00 0.00

YMID2 0.1 0.1 0.1 0.00 0.00 0.00

PZIFD 41.0329 0.1904 0.1 0.00 0.00 0.00

YR 895.577 0.1 0.1 0.1 0.00 0.00

YE 7819.3 0.1 0.1 983.4 0.00 0.00

PNZ 564.1 1833.1 900.1 426.9 0.00 0.00

PZ 0.1 0.1 0.1 106.6234 1.2707 0.00

ZTP 188.1 0.1 0.1 3.9 2938.7 2939.1

4.7. SELECTION OF BEST MODEL FROM TEN CANDIDATE

MODELS USING DS#1

The following Table 4.16. shows the error deviation of various candidate models.

Table 4.16. The deviation between observed and estimated values

SKK-1 SKK-2 SKK-3 SKK-5 SKK-7 SKK-11 SKK-25 SKK-26 SKK-28 SKK-31

74214 73623 157973 79394 40031 51433 1 2 2 1

43449 42947 112134 47196 19993 27001 1 2 0 1

25491 25106 79671 28093 10017 14216 5 5 2 1

14993 14713 56667 16797 5041 7511 2 2 3 3

8830 8635 40336 9991 2538 3974 8 8 3 2

5217 5083 28746 6015 1286 2112 4 4 2 3

3088 2998 20505 3616 653 1125 3 3 4 4

1831 1772 14641 2177 333 601 2 2 5 6

1082 1043 10457 1311 164 315 8 8 0 1

645 620 7482 790 84 169 4 4 4 5

374 358 5347 468 33 80 14 13 4 3

203 193 3814 264 4 22 29 28 18 18

104

135 129 2753 174 9 24 4 4 7 8

78 73 1974 103 2 9 6 6 6 7

41 39 1414 58 4 1 9 9 3 4

30 28 1023 40 2 4 1 1 12 13

27 28 692 20 43 42 45 45 32 31

3 3 517 2 12 13 14 14 0 1

2 3 374 1 7 8 9 9 5 6

2 2 271 0 5 6 6 6 9 10

6 7 191 5 8 9 9 9 6 7

1 1 142 0 2 3 3 3 13 14

4 4 100 3 4 5 5 5 11 12

22 22 53 22 22 23 23 23 6 5

3 3 52 2 2 3 3 3 14 15

5 5 35 4 4 5 5 5 13 14

8 8 21 7 7 8 8 8 10 11

14 14 7 14 13 14 14 14 4 6

22 22 7 22 21 22 22 22 3 2

5 5 6 5 4 5 5 5 14 16

After calculating deviations, we need to determine which model is giving the

best approximate prediction by utilizing the weighted estimation function. The

undermentioned Table 4.17. represents the number of different error deviation values

from each Ei.

Table 4.17. Weighted estimation function

Error SKK- SKK- SKK- SKK- SKK- SKK- SKK- SKK- SKK- SKK-

1 2 3 5 7 11 25 26 28 31

𝑬𝟓 2 2 0 2 1 3 4 4 2 2

𝑬𝟒 1 1 0 1 5 1 3 3 4 2

𝑬𝟑 2 3 0 1 0 2 3 3 4 3

𝑬𝟐 2 1 0 2 4 0 2 4 3 2

105

𝑬𝟏 1 1 0 1 0 1 3 1 0 5

𝑬𝟎 0 0 0 2 0 0 0 0 3 0

W.Fun 32 30 0 48 35 21 58 54 74 70

Ranking 7 8 10 5 6 9 3 4 1 2

 It is clear from Table 4.17. that model SKK-28 gives the best approximate

estimation out of all the ten models followed by SKK-31, SKK-25, SKK-26, SKK-5,

and so on. SKK-3 gives the wort performance with no deviation till the 5-point

dimension. Also, SKK-28 gives the maximum number of exact matches between

observed and predicted values. SKK-31 has a maximum number of 1 point deviation

and SKK-26 & 4 gives the maximum number of 2-point error deviation, SKK-28 has

both 3 - points and 4 - points maximum deviation point and SKK-25 and SKK-26 both

give a maximum number of 5 - point error difference.

4.8. RANKING CANDIDATE MODELS USING OPTIMIZED

PARAMETERS VALUES FOR DS#3

We evaluated the rank of ten candidate models using DS#3 to determine the best model

when the fault data used is not related to big data. The undermentioned tables from

Table 4.18 to Table 4.22 show the weighted rank vector used and the weighted rank

matrix evaluated during the procedure using dataset-3. The comparison criteria set used

to contain four measures MSE, RMSE, RAE, and, RRSE.

Table 4.18. Weight matrix corresponding to criteria measures rank

Rank 1 2 3 4 5 6 7 8 9 10

Weight 0.0001 0.002 0.003 0.01 0.05 0.1 1 4 12 40

106

 Table 4.19. WRM using LSE Table 4.20. WRM using GA

LSE

R_MS

E

R_RMS

E

R_RA

E

R_RRS

E

GA R_MSE R_RMSE R_RAE R_RRSE

SKK-1 3 3 3 3 SKK-1 8 8 9 8

SKK-2 4 4 5 4 SKK-2 1 2 5 2

SKK-3 10 10 10 10 SKK-3 10 10 10 10

SKK-5 5 5 6 5 SKK-5 4 4 1 4

SKK-7 6 6 7 6 SKK-7 2 1 7 1

SKK-11 7 7 4 7 SKK-11 7 7 6 7

SKK-25 8 8 9 8 SKK-25 5 5 4 5

SKK-26 9 9 8 9 SKK-26 9 9 2 9

SKK-28 2 2 1 2 SKK-28 3 3 8 3

SKK-31 1 1 2 1 SKK-31 6 6 3 6

 Table 4.21. WRM using SA Table 4.22. WRM using PSO

LSE R_MSE R_RMSE R_RAE R_RRSE GA R_MSE R_RMSE R_RAE R_RRSE

SKK-1 5 5 5 5 SKK-1 8 8 7 8

SKK-2 3 3 3 3 SKK-2 3 3 4 3

SKK-3 10 10 10 10 SKK-3 7 7 6 7

SKK-5 4 4 4 4 SKK-5 9 9 8 9

SKK-7 6 6 6 6 SKK-7 4 4 5 4

SKK-11 9 9 7 9 SKK-11 5 5 9 5

SKK-25 7 7 9 7 SKK-25 1 1 2 1

SKK-26 8 8 8 8 SKK-26 6 6 3 6

SKK-28 2 2 1 2 SKK-28 10 10 10 10

SKK-31 1 1 2 1 SKK-31 2 2 1 2

Table 4.23 to Table 4.26 evaluate the rank f candidate models when parameters were

evaluated using LSE and GA, SA, and PSO optimization methods.

107

Table 4.23. Rank matrix using LSE Table 4.24. Rank matrix using GA

MODELS LSE(WR) MODELS GA(WR)
SKK-1

3

SKK-1
8

SKK-2
4

SKK-2
3

SKK-3
10

SKK-3
10

SKK-5
5

SKK-5
2

SKK-7
6

SKK-7
6

SKK-11
7

SKK-11
7

SKK-25
8

SKK-25
4

SKK-26
9

SKK-26
9

SKK-28
2

SKK-28
1

SKK-31
1

SKK-31
5

 Table 4.25. Rank matrix using SA Table 4.26. Rank matrix using PSO

MODELS SA.WR MODELS PSO.WR

SKK-1
5

SKK-1
8

SKK-2
3

SKK-2
6

SKK-3
10

SKK-3
5

SKK-5
4

SKK-5
9

SKK-7
6

SKK-7
3

SKK-11
9

SKK-11
7

SKK-25
7

SKK-25
1

SKK-26
8

SKK-26
4

SKK-28
2

SKK-28
10

SKK-31
1

SKK-31

2

108

Combining all method's ranks and taking the average we get Table 4.27 as shown

below.

Table 4.27. Average optimized rank determination of candidate models

MODELS LSE GA SA PSO

Avg. RANK

SKK-1 3 8 5 8 7

SKK-2 4 3 3 6 3

SKK-3 10 10 10 5 10

SKK-5 5 2 4 9 4

SKK-7 6 6 6 3 6

SKK-11 7 7 9 7 8

SKK-25 8 4 7 1 5

SKK-26 9 9 8 4 9

SKK-28 2 1 2 10 2

SKK-31 1 5 1 2 1

4.9. RANKING CANDIDATE MODELS USING OPTIMIZED

PARAMETERS VALUES FOR DS#4

Utilizing DS#4 to determine the individual ranking corresponding to each evaluation

method used. Table 4.28 to Table 4.31. corresponds to the weighted rank matrix

(WRM) using various methods. Table 4.32. to Table 4.35. shows the rank of candidate

models for various techniques and Table 4.36. aggregate the ranks.

109

 Table 4.28. WRM using LSE Table 4.29. WRM using GA

LSE R_MSE R_RMSE R_RAE R_RRSE GA R_MSE R_RMSE R_RAE R_RRSE

SKK-1 0.01 0.01 0.003 0.01 SKK-1 1 1 12 1

SKK-2 0.0001 0.0001 0.01 0.0001 SKK-2 0.01 0.01 0.1 0.01

SKK-3 0.1 0.1 0.1 0.1 SKK-3 4 4 40 4

SKK-5 0.002 0.002 0.05 0.002 SKK-5 0.002 0.0001 0.01 0.0001

SKK-7 0.05 0.05 8 0.05 SKK-7 0.003 0.002 0.05 0.002

SKK-

11 1 1 1 1

 SKK-

11 0.05 0.1 1 0.1

SKK-

25 12 12 12 12

 SKK-

25 12 12 0.003 12

SKK-

26 8 8 40 8

 SKK-

26 40 40 0.0001 40

SKK-

28 0.003 0.003 0.002 0.003

 SKK-

28 0.1 0.05 4 0.05

SKK-

31 40 40 0.0001 40

 SKK-

31 0.0001 0.003 0.002 0.003

Table 4.30. WRM using LSE Table 4.31. WRM using GA

 LSE R_MSE R_RMSE R_RAE R_RRSE GA R_MSE R_RMSE R_RAE R_RRSE

SKK-1 0.05 0.05 12 0.05 SKK-1 0.1 0.1 1 0.1

SKK-2 0.01 0.01 1 0.01 SKK-2 0.003 0.003 0.1 0.003

SKK-3 4 4 40 4 SKK-3 1 1 4 1

SKK-5 0.0001 0.0001 0.01 0.0001 SKK-5 0.002 0.002 40 0.002

SKK-7 0.002 0.002 0.05 0.002 SKK-7 0.0001 0.0001 12 0.0001

SKK-

11 1 1 4 1

 SKK-

11 0.05 0.05 0.05 0.05

SKK-

25 40 40 0.0001 40

 SKK-

25 4 4 0.003 4

SKK-

26 12 12 0.002 12

 SKK-

26 12 12 0.002 12

SKK-

28 0.003 0.003 0.1 0.003

 SKK-

28 40 40 0.0001 40

SKK-

31 0.1 0.1 0.003 0.1

 SKK-

31 0.01 0.01 0.01 0.01

110

Table 4.32. Rank matrix using LSE Table 4.33. Rank matrix using GA

MODEL LSE (WR) MODEL GA (WR)

SKK-1
5

SKK-1
9

SKK-2
4

SKK-2
2

SKK-3
10

SKK-3
1

SKK-5
7

SKK-5
3

SKK-7
6

SKK-7
5

SKK-11
8

SKK-11
8

SKK-25
9

SKK-25
10

SKK-26
2

SKK-26
6

SKK-28
1

SKK-28
4

SKK-31
3

SKK-31
7

Table 4.34. Rank matrix using LSE Table 4.35. Rank matrix using GA

MODELS SA (WR) MODELS PSO (WR)
SKK-1

7

SKK-1
4

SKK-2
5

SKK-2
2

SKK-3
9

SKK-3
5

SKK-5
1

SKK-5
9

SKK-7
2

SKK-7
6

SKK-11
6

SKK-11
3

SKK-25
10

SKK-25
7

SKK-26
8

SKK-26
8

SKK-28
3

SKK-28
10

SKK-31
4

SKK-31
1

111

Combining all method's ranks and taking the average we get Table 4.36 as shown

below.

Table 4.36. Average optimized rank determination of candidate models

MODELS LSE GA SA PSO

Avg. RANK

SKK-1
5 9 7 4 7

SKK-2
4 2 5 2 1

SKK-3
10 1 9 5 8

SKK-5
7 3 1 9 5

SKK-7
6 5 2 6 4

SKK-11
8 8 6 3 9

SKK-25
9 10 10 7 10

SKK-26
2 6 8 8 6

SKK-28
1 4 3 10 3

SKK-31
3 7 4 1 2

CONCLUSION

Fault data from the software product's testing phase predicts or estimates future defects,

determining its dependability. Most models were developed using data available in

published research papers. The non-availability of new data sets regarding new

technologies makes it difficult for accurate parameter estimation and validation of the

model. Parameters were evaluated of developed 33 hybrid models as well-known

traditional models using MLE and LSE statistical techniques. Since these proposed

models were nonlinear in nature so soft computing methods like GA, PSO, and SA

were used to optimize the result. According to comparison criteria ranks SKK-26 model

112

performs better when parameters were evaluated using the LSE method. SKK-1 gives

better performance in the case of GA evaluation, SKK-3 when parameters were

evaluated using the PSO method and SKK-25 performs better than others when SA was

employed.

Software is released only when it reached a defined level of reliability which

signifies software quality within specified limits. Various SRGM are in existence and

one can either choose from them or develop a model based on the environment,

requirements, and techniques used. While developing models it is a common trend to

use develop multiple models first and then choose the best among them. We developed

33 models and then narrow it down to ten models based on parameters and estimation

value. SKK-28 is selected as the best model out of candidate ten based on the estimation

function. This best-suited model is then required to be validated by comparing it with

other models based on certain criteria to obtain a good fit model. The proposed ranking

methodology shows a good result when checked against DS#2 and ranks the models

taking into account their estimation capability apart from individual rank in the criteria

set.

113

CHAPTER 5

RESULTS AND DISCUSSION

In this chapter, we utilized various methodologies for model validation. The suggested

model is compared to others to establish it is the best estimator for massive fault data.

We determine the correlation between actual and predicted values using a t-test and

show that they are drawn from the same population pool. Various graphs were analysed

to confirm our claim of a better-performing model and methodology.

5.1. MODEL VALIDATION

Validation determines the model's estimate capabilities for which we used three

methods. First, the estimation values of all models are calculated to have an idea

regarding the best estimator. We also utilized the criteria set values to analytically

determine the model’s capability. The cumulative mean value and Cumulative error

rate are plotted to have an idea regarding the model’s validity and enhanced

performance. Finally, a t-test shows that actual and predicted values are from the same

pool.

5.1.1. Failure Estimation

The error rate of the proposed models and selected traditional models are shown in

Table 5.1. For each time period, all current models predict a value close to zero. In

comparison to the GG, GO, GMPZ, YMD, YMI, GD-1, GD-2, and GD-3 models, the

SKK-28 model's predicted values provide the most precise approximation. According

to our data analysis, we can state that the developed hybrid model has the greatest

accuracy rate for the provided DS#1 dataset.

114

Table 5.1. Intensity function (estimation value) calculation of models

t(Days) O(i) SKK-28 GMPZ GG GO YDS YDI GD1 GD2 GD3 YME

1.00 6.00 4.00 0.00 0.03 0.14 0.00 0.05 0.41 0.31 0.36 0.17

2.00 4.00 4.00 0.00 0.02 0.14 0.01 0.10 0.26 0.21 0.23 0.17

3.00 7.00 5.00 0.00 0.01 0.14 0.01 0.14 0.21 0.17 0.19 0.17

4.00 3.00 6.00 0.00 0.01 0.14 0.02 0.19 0.19 0.15 0.17 0.17

5.00 9.00 6.00 0.00 0.01 0.14 0.02 0.24 0.17 0.14 0.15 0.17

6.00 5.00 7.00 0.00 0.00 0.14 0.03 0.29 0.16 0.13 0.14 0.17

7.00 4.00 8.00 0.00 0.00 0.14 0.03 0.34 0.15 0.13 0.14 0.17

8.00 3.00 8.00 0.00 0.00 0.14 0.03 0.39 0.15 0.13 0.13 0.17

9.00 9.00 9.00 0.00 0.00 0.14 0.04 0.44 0.14 0.12 0.13 0.17

10.00 5.00 9.00 0.00 0.00 0.14 0.04 0.49 0.14 0.12 0.13 0.17

11.00 14.00 10.00 0.00 0.00 0.13 0.04 0.55 0.13 0.12 0.12 0.17

12.00 29.00 10.00 0.00 0.00 0.13 0.05 0.60 0.13 0.12 0.12 0.17

13.00 4.00 10.00 0.00 0.00 0.13 0.05 0.65 0.13 0.12 0.12 0.17

14.00 6.00 10.00 0.00 0.00 0.13 0.05 0.71 0.13 0.11 0.12 0.17

15.00 9.00 10.00 0.00 0.00 0.13 0.06 0.77 0.12 0.11 0.12 0.17

16.00 1.00 10.00 0.00 0.00 0.13 0.06 0.82 0.12 0.11 0.12 0.17

17.00 45.00 10.00 0.00 0.00 0.13 0.06 0.88 0.12 0.11 0.11 0.16

18.00 14.00 10.00 0.00 0.00 0.13 0.07 0.94 0.12 0.11 0.11 0.16

19.00 9.00 10.00 0.00 0.00 0.13 0.07 1.00 0.12 0.11 0.11 0.16

20.00 6.00 10.00 0.00 0.00 0.13 0.07 1.06 0.12 0.11 0.11 0.16

21.00 9.00 20.00 0.00 0.00 0.13 0.07 1.13 0.12 0.11 0.11 0.16

22.00 3.00 20.00 0.00 0.00 0.13 0.08 1.19 0.12 0.11 0.11 0.16

23.00 5.00 20.00 0.00 0.00 0.13 0.08 1.25 0.12 0.11 0.11 0.16

24.00 23.00 20.00 0.00 0.00 0.13 0.08 1.32 0.11 0.11 0.11 0.16

25.00 3.00 20.00 0.00 0.00 0.13 0.09 1.38 0.11 0.11 0.11 0.16

26.00 5.00 20.00 0.00 0.00 0.13 0.09 1.45 0.11 0.11 0.11 0.16

27.00 8.00 20.00 0.00 0.00 0.13 0.09 1.52 0.11 0.11 0.11 0.16

28.00 14.00 20.00 0.00 0.00 0.13 0.09 1.59 0.11 0.11 0.11 0.16

29.00 22.00 20.00 0.00 0.00 0.13 0.09 1.66 0.11 0.11 0.11 0.16

30.00 5.00 19.00 0.00 0.00 0.13 0.10 1.73 0.11 0.11 0.11 0.16

115

5.1.2. Graphical Representation

We calculated the hazard rate function to determine the estimated and accumulated

number of faults. In figure 5.1 we plot the observed and estimated values of SKK-28

with other models. Figure 5.2 represents the cumulative plotting of the SKK-28 model’s

estimated values and observed values.

Figure 5.1. Observed values and estimation values comparison between models

-5

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N
u

m
b

e
r

o
f

 f
ai

lu
re

s

Time Interval (days)

Observed values O(i) SKK28 GMPZ GG

GO YDS YDI GD1

GD2 GD3 YME

116

Figure 5.2. Cumulative experimental and estimation value of model SKK-28

5.1.3. Comparison Criteria

A comparison criterion having thirteen measures is used to determine the SKK-28

model’s ability to predict fault in comparison with other models.

• BIAS: A model must have a low value of bias for better prediction. The plot of

bias for SKK-28 and other existing models is given below in Figure 5.3.

Figure 5.3. Comparison of SKK with other models for bias value.

GMPZ GG GO YDS YDI YME GD1 GD2 GD3 SKK-28

BIAS 9.63 9.63 9.5 9.58 8.8 5985 9.49 9.51 9.5 2.44

0

50

100

150

200

250

300

350

400

450

500

BIAS

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

cu
m

m
u

la
ti

ve
 f

ai
lu

te
rs

Cummulative Time Interval
cummulative O Cummulative SKK28

117

It is clear from the graph that SKK-28 has the lowest value in comparison to other

models.

• MSE: Smaller values of MSE are desired for a better fit. The mean squared error

(MSE) for each best-predictor candidate model is shown in Figure 5.4. We can

see that SKK-28 has the smallest MSE value in comparison to other models for

big-fault data.

Figure 5.4. Comparative view of MSE values of various models

• MAD: Smaller values indicate lesser deviation so a small value of MAD for a

model is considered to be the best fit for it. Figure 5.5 represents the MAD

values of various models and SKK-28 have the smallest value among them.

Figure 5.5. Comparative view of MAD values of various models.

GMPZ GG GO YDS YDI YME GD1 GD2 GD3 SKK-28

MSE 176.77 176.71 174.23 175.59 160.11 2796 174.2 174.47 174.37 94.66

0

50

100

150

200

MSE

GMPZ GG GO YDS YDI YME GD1 GD2 GD3 SKK28

MAD 9.63 9.63 9.50 9.58 8.80 5994.10 9.49 9.51 9.50 7.21

0.00

10.00

20.00

30.00

40.00

50.00

MAD

118

• PRR: Small value of PRR is considered best for a model. Figure 5.6 given below

demonstrates the PRR values of different models. SKK-28 model is the best

estimator in comparison to other models for PRR measure.

Figure 5.6. Comparative view of PRR values of various models.

• NOISE: Since it represents an error rate smaller values of noise are desirable

for a good-fitting model. Figure 5.7 gives the noise in various models for dataset

DS#1. GMPZ has the smallest value in comparison to other models.

Figure 5.7. Comparative view of NOISE values of various models

GMPZ GG GO YDS YDI YME GD1 GD2 GD3 SKK28

PRR 18982471 41810040 297865.5 3913112. 26860.32 35322.05 413090.0 392286.4 351986.9 16.71

0.00

10.00

20.00

30.00

40.00

50.00

PRR

GMPZ GG GO YDS YDI YME GD1 GD2 GD3

NOISE 0.02 3.47 0.20 3.60 4.11 74230.16 1.59 1.28 1.44

0.00

10.00

20.00

30.00

40.00

50.00

NOISE

119

• RMSE: Lower values of RMSE are desirable for a better-fitting model. Figure

5.8 given below indicates RMSE values of various models. SKK-28 gives the

lowest value of RMSE.

Figure 5.8. Comparative view of RRSE values of various models

• RAE: A model is a better predictor if its RAE value is near zero. Figure 5.9

shows the RAE values of various models in comparison to SKK-28 developed

model. With the lowest RAE value, YME is the best option for the DS#2 dataset,

followed closely by SKK-28.

Figure 5.9. Comparative view of RAE values of various models

GMPZ GG GO YDS YDI YME GD1 GD2 GD3

RRSE 13.30 13.29 13.20 13.25 12.65 16723.12 13.20 13.21 13.20

0.00

10.00

20.00

30.00

40.00

50.00

RRSE

GMPZ GG GO YDS YDI YME GD1 GD2 GD3

RAE 297050100 2625.54 4530.21 402.43 20.30 0.66 265.21 406.55 325.12

0.00

10.00

20.00

30.00

40.00

50.00

RAE

120

• RRSE: RRSE values smaller values are desirable for the best predictor model.

Figure 5.10 below gives the RRSE value of SKK-28 in comparison with other

models.SKK-28 gives the smallest RRSE value.

Figure 5.10. Comparative view of RRSE values of various models

• MMRE: For a perfect fit, a model’s MMRE must be closer to zero. Figure 5.11

represents the MMRE value of various candidate models for the best predictor.

Among various candidate models, YDI is the best predictor using the MMRE

measure.

Figure 5.11. Comparative view of MMRE values of various models

GMPZ GG GO YDS YDI YME GD1 GD2 GD3

RRSE 13.30 13.29 13.20 13.25 12.65 16723.12 13.20 13.21 13.20

0.00

10.00

20.00

30.00

40.00

50.00

RRSE

GMPZ GG GO YDS YDI YME GD1 GD2 GD3 SKK28

MMRE 1.00 1.00 0.97 0.99 0.85 1188.36 0.97 0.98 0.97 1.45

0.00

10.00

20.00

30.00

40.00

50.00

MMRE

121

• PP: PP is squared deviation, its low values for a model are required for it to be

the best predictor. Figure 5.12 shows the value comparison of PP values for

various models and SKK-28 gives the lowest value.

Figure 5.12. Comparative view of PP values of various models

• R2: High value of R2 near 1 is required for a model to be a better predictor.

Figure 5.13 given below shows the comparison between various models for R2

values. Since all values of this measure are negative so smallest negative

number represents the maximum value. For this measure too SKK-28 gives

better performance than other models.

Figure 5.13. Comparative view of R2 values of various models

GMPZ GG GO YDS YDI YME GD1 GD2 GD3

PP 1.00 1.00 0.98 1.00 1.00 1.00 0.95 0.96 0.97

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

PP

GMPZ GG GO YDS YDI YME GD1 GD2 GD3 SKK28

R^2 1.11 1.10 1.07 1.09 0.91 3330683. 1.07 1.08 1.08 0.13

0.00

10.00

20.00

30.00

40.00

50.00

R^2

122

• AE: AE represents cumulative error and smaller values near zero give a good

fitting model. Figure 5.14 shown below gives us a comparative view of AE

values for various models. 0.2 of SKK-28 represents near zero value making it

a better-fit model in comparison to other models

Figure 5.14. Comparative view of AE values of various models

• TS: Smaller values of TS represent a good fit for a model. Figure 5.15

represents a comparative view of various models. SKK-28 has the smallest

value of TS.

Figure 5.15. Comparative view of TS values of various models

GMPZ GG GO YDS YDI YME GD1 GD2 GD3

AE 1.00 1.00 0.99 0.99 0.91 621.37 0.98 0.99 0.99

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

AE

GMPZ GG GO YDS YDI YME GD1 GD2 GD3 SKK28

TS 1.00 1.00 0.99 1.00 0.95 1257.82 0.99 0.99 0.99 0.73

0.00

10.00

20.00

30.00

40.00

50.00

TS

123

Figure 5.16 gives represents the minimum value of various measures for various

models. SKK-28 gives the best fit in ten measures out of 13. GMPZ, YDI, and YME

give min measure corresponding to NOISE, RAE, and MMRE and SKK-28 gives a

deviation of 5.28,1.14 and 0.60 from these minimum values. Thus, we can safely state

that SKK-28 gives the best fit out of GMPZ, GG, YDS, YDI, YME, GD1, GD2

S. No. Models

1 GMPZ

2 GG

3 GO

4 YDS

5 YDI

6 YME

7 GD1

8 GD2

9 GD3

10 SKK28

Figure 5.16. Min value of various models for all measures in comparison criteria

0

2

4

6

8

10

12

Bias MSE MAD PRR NOISE RMSE RAE RRSE MMRE PP R^2 AE TS

Min Values of Criterian Measures

124

5.2. A Statistical Test: t-test

When comparing two samples taken from the same population, the t-test is conducted

as shown in Table 5.2 to demonstrate that the difference between the sample means

(observed and estimated) is not statistically significant. To further verify that the SKK-

28 model gives the best fit we determine whether estimation values give the same

variance as observed values for DS#2 fault data. we conducted a t-test using the

different variances in Excel. Null and alternate hypotheses are formulated as

1) H0: There is no significant difference between the population mean of observed and

estimated values and cumulative values.

2) H1: There is a significant difference between the population mean of observed and

estimated values and cumulative values.

Table 5.2. t-test for observed and estimated values

t-test: Two-Sample Assuming Unequal Variances

Observed values O(i) SKK-28

Mean 9.6333333 12.077669

Variance 86.86092 22.257145

Observations 30 30

Hypothesized Mean Difference 0

df 43

t Stat -1.281661

P(T<=t) one-tail 0.1034148

t Critical one-tail 1.6810707

P(T<=t) two-tail 0.2068296

t Critical two-tail 2.0166922

The value of α is set to default as 0.05. We check the value of p. Null hypothesis is

accepted if p > α otherwise we reject it.

125

 Since (p = 0.1034148) > (α=0.05) ➔ We accept the null hypothesis, that is there is

no significant difference between the population mean of observed and estimated

values. So, we can state that both values belong to the same population pool. For

cumulative values too the null hypothesis is accepted as shown in Table 5.3, since the

value of (p = 0.310282141) > (α=0.05).

Table 5.3. t-test for cumulative observed and estimated values

t-Test: Two-Sample Assuming Unequal Variances

cumulative O Cumulative SKK-28

Mean 134.4666667 147.6292267

Variance 8589.981609 12383.34571

Observations 30 30

Hypothesized Mean Difference 0

df 56

t Stat -0.497814252

P(T<=t) one-tail 0.310282141

t Critical one-tail 1.672522303

P(T<=t) two-tail 0.620564281

t Critical two-tail 2.003240719

5.3. RANKING METHODOLOGY VALIDATION USING DS#2

We calculated the value of the parameter given in Table 5.4 by analyzing the DS2

fault data collected by Rajpal Garg et al. (2010).

126

Table 5.4. Parameters value of NHPP model using DS#2

MODELS Parameter1 Parameter2 Parameter3

GO 216 0 -

YMD 191 0 -

MO 113 0 -

GG 185 0 3

GMPZ 192 0 0

LGC 188 0 7

YMI 203 0 1

PZIF 191 0 0

MD 238 40 4

YIDM1 128 0 0

YIDM2 128 0 0

We also determine the values of all measures in the criteria set shown in Table

5.5 for all eleven NHPP models using MATLAB 2020 b.

Table 5.5. Criteria’s value for NHPP models

MODE

LS

BIA

S
MSE MAD PRR NOISE RMSE RAE RRSE MMRE PP R2 AE TS

GO
-

0.46
24.37 2.97 60.76 22.96 4.94 0.92 0.76 0.71 0.00 0.42 0.07 0.49

YMD
-

0.33
33.59 3.54

773.7

1
16.09 5.80 0.81 0.90 0.66 0.06 0.19 0.05 0.57

MO
-

0.27
23.70 3.12 19.71 22.62 4.87 1.23 0.75 0.88 0.04 0.43 0.04 0.48

GG
-

0.39
95.80 6.05

28905

60.00
12.12 9.79 1.18 1.52 1.41 0.06

-

1.30
0.06 0.96

GMPZ

-

12.3

4

315.0

7
12.34

786.0

7
14.46 17.75 3.33 2.75 1.78 0.49

-

6.56
1.88 1.75

LGC
-

1.20
41.41 3.95

2229.

61
12.31 6.44 1.14 1.00 0.74 0.00 0.01 0.18 0.63

127

YMI
12.3

4

289.0

0
12.78 11.12 21.15 17.00 2.95 2.63 4.55 0.21

-

5.93
1.88 1.67

PZIF
-

0.33
33.59 3.54

773.4

5
16.09 5.80 0.81 0.90 0.66 0.93 0.19 0.05 0.57

MD
1429

8.55

33260

8000.

00

14298

.55
20.98

36485.3

1

18237.

54
3.15

2824.

27
3415.26

11.6

1

-

7976

513.

00

217

7.44

179

4.39

YIDM1
-

6.53

102.3

5
6.53

42724

53.00
2.62 10.12

270.9

7
1.57 0.69 0.02

-

1.45
0.99 1.00

YIDM2
-

0.49
23.23 3.04 20.03 22.38 4.82 1.16 0.75 0.81

37.2

5
0.44 0.08 0.47

Models raking based on individual criteria is determined and shown in Table 5.6.

Table 5.6. Ranking of models based on individual criteria measure

MODELS BIAS MSE MAD PRR NOISE RMSE RAE RRSE MMRE PP R2 AE TS

GO 5 3 1 5 10 3 3 3 4 2 3 5 3

YMD 2 4 4 7 6 4 1 4 1 6 4 2 4

MO 1 2 3 2 9 2 7 2 7 4 2 1 2

GG 4 7 7 10 2 7 6 7 8 5 7 4 7

GMPZ 10 10 9 8 4 10 10 10 9 8 10 10 10

LGC 7 6 6 9 3 6 4 6 5 1 6 7 6

YMI 9 9 10 1 7 9 8 9 10 7 9 9 9

PZIF 3 5 5 6 5 5 2 5 2 9 5 3 5

MD 11 11 11 4 11 11 9 11 11 10 11 11 11

YIDM1 8 8 8 11 1 8 11 8 3 3 8 8 8

YIDM2 6 1 2 3 8 1 5 1 6 11 1 6 1

Figure 5.17, represents the graphical view of ranking of models in individual criteria

measures.

128

Figure 5.17. Individual criteria measures and the rank of all models

Weights were assigned to ranks and the weight matrix and weighted rank matrix

are evaluated in Table 5.7 and Table 5.8.

0

2

4

6

8

10

12

GO YMD MO GG GMPZ LGC YMI PZIF MD YMD1 YMD2

MODEL'S RANK IN INDIVIDUAL CRITERIA

R1 R2 R3 R4 R5 R6

R7 R8 R9 R10 R11

129

Table 5.7. Weight matrix

MODEL BIAS MSE MAD PRR NOISE RMSE RAE RRSE MMRE PP R2 AE TS

GO 1.0000 0.0010 0.0001 1.0000 6.0000 0.0010 0.0010 0.0010 0.0050 0.0005 0.0010 1.0000 0.0010

YMD 0.0005 0.0050 0.0050 3.0000 2.0000 0.0050 0.0001 0.0050 0.0001 2.0000 0.0050 0.0005 0.0050

MO 0.0001 0.0005 0.0010 0.0005 5.0000 0.0005 3.0000 0.0005 3.0000 0.0050 0.0005 0.0001 0.0005

GG 0.0050 3.0000 3.0000 6.0000 0.0005 3.0000 2.0000 3.0000 4.0000 1.0000 3.0000 0.0050 3.0000

GMPZ 6.0000 6.0000 5.0000 4.0000 0.0050 6.0000 6.0000 6.0000 5.0000 4.0000 6.0000 6.0000 6.0000

LGC 3.0000 2.0000 2.0000 5.0000 0.0010 2.0000 0.0050 2.0000 1.0000 0.0001 2.0000 3.0000 2.0000

YMI 5.0000 5.0000 6.0000 0.0001 3.0000 5.0000 4.0000 5.0000 6.0000 3.0000 5.0000 5.0000 5.0000

PZIF 0.0010 1.0000 1.0000 2.0000 1.0000 1.0000 0.0005 1.0000 0.0005 5.0000 1.0000 0.0010 1.0000

MD 7.0000 7.0000 7.0000 0.0050 7.0000 7.0000 5.0000 7.0000 7.0000 6.0000 7.0000 7.0000 7.0000

YIDM1 4.0000 4.0000 4.0000 7.0000 0.0001 4.0000 7.0000 4.0000 0.0010 0.0010 4.0000 4.0000 4.0000

YIDM2 2.0000 0.0001 0.0005 0.0010 4.0000 0.0001 1.0000 0.0001 2.0000 7.0000 0.0001 2.0000 0.0001

130

Table 5.8. Weighted rank matrix

MODELS BIAS MSE MAD PRR NOISE RMSE RAE RRSE MMRE PP R2 AE TS

GO 5 0.003 0.0001 5 60 0.003 0.003 0.003 0.020 0.001 0.003 5 0.003

YMD 0.001 0.02 0.02 21 12 0.02 0.0001 0.02 0.0001 12 0.02 0.001 0.02

MO 0.0001 0.001 0.0030 0.0010 45 0.001 21 0.001 21 0.02 0.001 0.0001 0.001

GG 0.02 21 21 60 0.001 21 12 21 32 5 21 0.02 21

GMPZ 60 60 45 32 0.02 60 60 60 45 32 60 60 60

LGC 21 12 12 45 0.003 12 0.02 12 5 0.0001 12 21 12

YMI 45 45 60 0.0001 21 45 32 45 60 21 45 45 45

PZIF 0.003 5 5 12 5 5 0.001 5 0.001 45 5 0.003 5

MD 77 77 77 0.02 77 77 45 77 77 60 77 77 77

YIDM1 32 32 32 77 0.0001 32 77 32 0.003 0.003 32 32 32

YIDM2 12 0.0001 0.001 0.003 32 0.0001 5 0.0001 12 77 0.0001 12 0.0001

131

The model rank is calculated by dividing the weighted sum by the weighted

estimation function value. The undermentioned Figures 5.18 & 5.19, show the weighted

function calculation and estimation function calculation which were used as permanent

in literature and in our study respectively.

Figure 5.18. Weighted rank sum calculations for existing models

Figure 5.19. Estimation function rank sum calculations for existing models

Table 5.9 shows the models arranged according to their rank, where the lowest

rank specifies the best model.

9.0116 7.0312 11.0092

31.0105

66.005

24.0061

57.0001

14.003

81.005

53.002

18.002

0

20

40

60

80

100

GO YMD MO GG GMPZ LGC YMI PZIF MD YIDM1 YIDM2

WEIGHTED RANK SUM

255 230 249
184

73

219

48

230

0.0001

160
249

0

200

400

GO YMD MO GG GMPZ LGC YMI PZIF MD YIDM1 YIDM2

WEIGHTED ESTIMATION FUNCTION

132

Table 5.9. Ranking of existing models based on the developed methodology

S. No. Models

Rank

1 GO 2

2 YMD 1

3 MO 3

4 GG 7

5 GMPZ 9

6 LGC 6

7 YMI 10

8 PZIF 4

9 MD 11

10 YIDM1 8

11 YIDM2 5

Undermentioned Figure 5.20 and Figure 5.21, give a comparative view of

model ranking using the developed methodology in our research and the existing,

methodology in the literature

Figure 5.20. Models ranking using existing methods in literature

7

1

6

4

10

3

9

2

11

5

8

0

2

4

6

8

10

12

GO YMD MO GG GMPZ LGC YMI PZIF MD YIDM1 YIDM2

MODELS RANK WITH RESPECT TO WEIGHTED SUM

133

Figure 5.21. Models ranking using developed methodology

We observed that even though YIMD2 is the best model according to min criteria

values but our proposed approach shows that the best model is YMD as it considers the

weighted criteria ranks as well as the estimation capability of the model into account.

5.4. VALIDATING DEVELOPED MODELS USING RANKING

METHODOLOGY FOR DS#3

We utilized Dataset DS#1 which is a fault dataset collected during Big Data Analysis

and selected the Best Model SKK-28 from the candidate models. We also tested the

candidate models for their performance on other Dataset DS#3 and DS#4, which is not

related to Big-data. We utilized a developed ranking methodology to determine the

performance of our candidate models to rank them against well-known existing NHPP

models using criteria set. We used MSE, RMSE, RAE, and RRSE measures in the

criteria set. The undermentioned tables from Table 5.10 to Table 5.13 represent the

weighted rank matrix.

2
1

3

7

9

6

10

4

11

8

5

0

2

4

6

8

10

12

GO YMD MO GG GMPZ LGC YMI PZIF MD YIDM1 YIDM2

MODELS RANK WITH RESPECT TO ESTIMATION
SUM

134

 Table 5.10. WRM using LSE Table 5.11. WRM using GA

LSE R_MSE R_RMSE R_RAE R_RRSE GA R_MSE R_RMSE R_RAE R_RRSE

GO 0.01 0.01 0.003 0.1 GO 0.01 0.05 0.05 0.1

MO 0.003 0.003 0.01 0.05 MO 0.003 0.01 0.01 0.05

YDM 0.002 0.002 0.002 0.01 YDM 0.05 0.1 12 1

GG 0.1 0.1 0.1 4 GG 4 12 0.0001 12

GMPZ 0.05 0.05 1 1 GMPZ 0.1 1 40 4

MD 0.0001 0.0001 4 0.002 MD 0.002 0.003 4 0.003

YIM 40 40 0.0001 40 YIM 40 40 0.003 40

SKK2 1 1 40 0.0001 SKK2 0.0001 0.002 0.1 0.002

SKK9 4 4 12 0.003 SKK9 1 4 1 0.01

SKK10 12 12 0.05 12 SKK10 12 0.0001 0.002 0.0001

 Table 5.12. WRM using SA Table 5.13. WRM using PSO

SA R_MSE R_RMSE R_RAE R_RRSE PSO R_MSE R_RMSE R_RAE R_RRSE

 GO 0.003 0.003 4 0.05 GO 0.003 0.003 0.1 0.003

MO 0.05 0.05 0.003 1 MO 0.0001 0.0001 0.05 0.0001

YDM 0.01 0.01 0.05 0.1 YDM 0.002 0.002 0.01 0.002

GG 4 4 0.0001 4 GG 1 1 0.002 1

GMPZ 0.0001 0.0001 0.01 0.0001 GMPZ 0.01 0.01 1 0.05

MD 0.002 0.002 1 0.002 MD 0.05 0.05 12 0.1

YIM 40 40 0.002 40 YIM 12 12 0.003 12

SKK2 1 1 40 0.01 SKK2 0.1 0.1 40 0.01

SKK9 0.1 0.1 12 0.003 SKK9 40 40 0.0001 10

SKK10 12 12 0.1 12 SKK10 4 4 4 4

The evaluated rank of seven existing NHPP models and three best-performing

models are shown in Table 5.14 to Table 5.17 corresponding to LSE, GA, SA, and PSO

evaluation methods for parameter optimization.

135

Table 5.14. Rank matrix using LSE Table 5.15. Rank matrix using GA

Models LSE_Rank

Models GA_Rank

GO 4

GO 4

MO 6

MO 6

YDM 2

YDM 2

GG 7

GG 7

GMPZ 1

GMPZ 1

MD 8

MD 8

YIM 5

YIM 5

SKK2 9

SKK2 9

SKK9 3

SKK9 3

SKK10 10

SKK10 10

Table 5.16. Rank matrix using SA Table 5.17. Rank matrix using PSO

Models SA_Rank

Models PSO_Rank

GO 7

GO 7

MO 5

MO 10

YDM 3

YDM 9

GG 8

GG 6

GMPZ 10

GMPZ 4

MD 9

MD 2

YIM 6

YIM 5

SKK2 2

SKK2 3

SKK9 4

SKK9 8

SKK10 1

SKK10 1

136

Table 5.18. Given below gives the average rank of selected models

MODELS LSE GA SA PSO

AVG_RAN

K

GO 4 4 7 7 3

MO 6 6 5 10 5

YDM 2 2 3 9 9

GG 7 7 8 6 7

GMPZ 1 1 10 4 1

MD 8 8 9 2 10

YIM 5 5 6 5 8

SKK2 9 9 2 3 2

SKK9 3 3 4 8 6

SKK10 10 10 1 1 4

According to Table 5.18, the ensemble of proposed models shows good

performance if not the best as SKK-9 is ranked 3rd when using LSE and GA method

whereas GMPZ is ranked 1st and YDM. SKK-10 is ranked 1st, whereas SKK -2 is

ranked 2nd and 3rd when evaluating parameters using SA and PSO. The average rank

evaluation shows that GMPZ is the best-performing model followed by GO and then

SKK-2 in third place. It is clear that even though models SKK-1 to SKK-10 were

developed for big data but they are showing good performance even though we use

other fault data sets.

5.5. VALIDATING DEVELOPED MODELS USING RANKING

METHODOLOGY FOR DS#4

We tested the candidate models for their performance for Dataset DS#3 according to

their average rank by combining all methods. We calculated the model's criteria values

using LSE, GA, SA, and PSO contained in tables from Table 5.19 to Table 5.22 by

including the first three ranked models from SKK-1 to SKK-10 using four criteria

137

measures. The rank of models is determined by using these three models along with

seven existing NHPP models to demonstrate their performance for DS#4, which is also

not related to Big-data.

 Table 5.19. WRM using LSE Table 5.20. WRM using GA

LSE R_MSE R_RMSE R_RAE R_RRSE GA R_MSE R_RMSE R_RAE R_RRSE

GO 0.01 0.01 0.003 0.1 GO 0.01 0.05 0.05 0.1

MO 0.003 0.003 0.01 0.05 MO 0.003 0.01 0.01 0.05

YDM 0.002 0.002 0.002 0.01 YDM 0.05 0.1 12 1

GG 0.1 0.1 0.1 4 GG 4 12 0.0001 12

GMPZ 0.05 0.05 1 1 GMPZ 0.1 1 40 4

MD 0.0001 0.0001 4 0.002 MD 0.002 0.003 4 0.003

YIM 40 40 0.0001 40 YIM 40 40 0.003 40

SKK8 1 1 40 0.0001 SKK2 0.0001 0.002 0.1 0.002

SKK9 4 4 12 0.003 SKK3 1 4 1 0.01

SKK10 12 12 0.05 12 SKK4 12 0.0001 0.002 0.0001

 Table 5.21. WRM using SA Table 5.22. WRM using PSO

SA R_MSE R_RMSE R_RAE R_RRSE PSO R_MSE R_RMSE R_RAE R_RRSE

GO 0.003 0.003 4 0.05 GO 0.003 0.003 0.05 0.003

MO 0.05 0.05 0.003 1 MO 0.0001 0.0001 0.01 0.0001

YDM 0.01 0.01 0.05 0.1 YDM 0.002 0.002 0.003 0.002

GG 4 4 0.0001 4 GG 1 1 0.0001 1

GMPZ 0.0001 0.0001 0.01 0.0001 GMPZ 0.01 0.01 0.1 0.05

MD 0.002 0.002 1 0.002 MD 0.05 0.05 12 0.1

YIM 40 40 0.002 40 YIM 40 40 0.002 40

SKK4 1 1 40 0.01 SKK2 0.1 0.1 40 0.01

SKK5 0.1 0.1 12 0.003 SKK6 12 12 4 12

SKK10 12 12 0.1 12 SKK10 4 4 1 4

Table 5.23 to Table 5.26 below contains the Ranking corresponding to the evaluation

method.

138

Table 5.23. Rank matrix using LSE Table 5.24. Rank matrix using GA

MODEL LSE(WR)

MODEL GA(WR)

GO 3

GO 3

MO 2

MO 1

YDM 1

YDM 7

GG 6

GG 8

GMPZ 4

GMPZ 9

MD 5

MD 4

YIM 10

YIM 10

SKK8 9

SKK2 2

SKK9 7

SKK3 5

SKK10 8

SKK4 6

Table 5.25. Rank atrix using SA Table 5.26. Rank matrix using PSO

MODEL SA(WR)

MODEL PSO(WR)

GO 5

GO 3

MO 4

MO 2

YDM 2

YDM 1

GG 6

GG 5

GMPZ 1

GMPZ 4

MD 3

MD 6

YIM 10

YIM 10

SKK4 9

SKK2 9

SKK5 7

SKK6 8

SKK10 8

SKK10 7

Developed model SKK-2 ranked 2nd and SKK-9 and SKK-10 as 5th and 6th when

using GA for optimization. In the case of LSE, SA, and PSO developed models didn’t

show good performance but still not the worst performance. Thus, we may conclude

that model performance is very sensitive to the dataset and assessment technique used.

139

5.6. PARAMETER OPTIMIZATION OF SKK-28 MODEL USING

GA, SA, AND PSO METHODS

• The parameter’s value of the SKK-28 model was evaluated using LSE and

optimized by using GA, SA, and PSO using the LSE equation as an objective

function.

• All thirteen measures of the comparison criteria set were evaluated.

• These measures were then ranked in increasing order to have an idea regarding

the best soft computing technique as an optimizer.

• Any technique is best than others if it includes the min value in maximum

criteria measures.

• Estimated values were also calculated using the value of the parameters

obtained by GA, SA, and PSO techniques.

The graph in Figure 5.22, below shows the individual criteria ranking with respect to

various soft computing methods.

Figure 5.22. Criteria set values of SKK-28 using various methods

0

1

2

3

4

5

6

BIAS MSE MAD PRR NOISE RMSE RAE RRSE MMRE PP Rsquare AE TS

CRITERIA SET VALUES (MLE, LSE, GA, SA AND PSO)

MLE LSQ GA SA PSO

140

• SA (Yellow line) has a minimum value in most criteria measures – 8.

• MLE (Blue line) gives the minimum value in 3.

• LSE (Orange line) gives the minimum value in 1.

• GA (Grey line) gives minimum value in 1 criterion.

• Out of the three optimizers PSO raked last concerning criteria set values.

Thus, we can safely say that SA is the best optimizer. Shown below in Figure 5.23

are the maximum number of criteria values (Cobalt blue bar) corresponding to

increasing order of minimum values (first minimum (blue bar), second minimum

(orange bar), third minimum (grey bar), etc.)

Figure 5.23. Maximum number of minimum criteria values of SKK-28

Shown below in Figure 5.24. is the estimation capability of the SKK-28 model using

various evaluation methods. It is clear from the figure that SA shows the best and PSO

worst Estimation capability among all optimization methods.

3

1 1

8

0

1

8

0

3

1

9

3

0 0

1

0

1

10

1 1

0 0

2

1

10

0

2

4

6

8

10

12

MLE LSQ GA SA PSO

Series1 Series2 Series3 Series4 Series5

141

Figure 5.24. Estimation capacity of SKK-28 using various methods

CONCLUSION

The goal of validation is to determine whether or not the model is fit for its designated

function. The result shows that model SKK-28 is the best fit among other candidate

models considered in the comparison. Utilizing other datasets i.e., DS#3 and DS#4 we

confirmed that our developed models show good performance not only for big fault

data but other software fault data too. Soft computing optimization methods i.e., GA,

SA, and PSO were used for parameter evaluation apart from LSE and MLE and we

found that SA is the best optimizer while PSO is worst in the case of chosen best model

SKK-28 for the dataset DS#1.

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Observed Value MLE LSQ GA SA PSO

142

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

The model development was considered by utilizing NHPP models to obtain various

hybrid models suitable for big data environments. A ranking methodology and

estimation function was developed to select the best model out of a few based on their

prediction capabilities. Various parameter evaluation techniques were employed to

determine the one suitable for highly complex non-linear reliability models.

6.1. CONCLUSION

Some major findings of said research work are

1. Popular and widely used NHPP models are combined to obtain a hybrid model

which itself is an NHPP model, this characteristic of NHPP models was used in

developing hybrid models based upon different scenarios.

2. Applications of Big data range from home agriculture, industry, tourism,

transportation, medicines, etc. Acquiring big data tools and techniques helps in

managing data and increasing the organization's capability to capture required data.

3. A manager can choose a software reliability model from a readily available one

based on the requirements of the product. With the advent of big-data applications

and changes in the architecture and technologies used, the complexity of models

keeps on increasing to accommodate the parameters reflecting new interactions

making their implementation difficult.

4. Parameters were usually evaluated using two statistical techniques LSE and MLE.

We evaluated the selected ten models based on their accurate estimation and find

that MLE gives better results than LSM in the case of developed hybrid non-linear

models.

143

5. A ranking methodology was developed based on accurate estimation and

comparison criteria. Comparison criteria consist of thirteen error measures and it

was found that a model having maximum low ranks in maximum criteria doesn't

need to be a good predictor. Including the estimation capability of models in

determining their rank ensures that a model with consistent performance in all

criteria is ranked above others.

6. Soft computing optimization algorithms GA, SA, and PSO were utilized to

optimize the parameters value of SKK-28. It was found that SA is the best

optimizer while PSO is the worst optimizer for SKK-28 using DS#1.

7. The best-selected model SKK-28 shows the best performance for DS#1, good for

DS#3, and bad for DS#4. Another developed candidate model SKK-2 performed

better than SKK-28 and other existing NHPP models for DS#3 in all three

considered soft computing techniques. SKK-2 also performed well for DS#4 using

GA.

 6.2. SCOPE FOR FUTURE RESEARCH

The developed hybrid models can be tested for various other applications using

various datasets.

• Hybrid models can be modified to include other external factors like interactions

between open-source software, and networking software and their effect on the

reliability of big data processing software.

• Optimization algorithms combining two soft computing techniques or one

statistical and other soft computing can be developed for parameter evaluation

of reliability models.

144

• A developed ranking methodology and estimation function can be utilized to

rank and select the model for a specific application.

145

REFERENCES

[1] AL-Saati, D. N. A., & Abd-AlKareem, M. (2013). “The Use of Cuckoo Search

in Estimating the Parameters of Software Reliability Growth Models”. (IJCSIS)

International Journal of Computer Science and Information Security, 11(6).

http://arxiv.org/abs/1307.6023.

[2] Anjum, M., Haque, M. A., & Ahmad, N. (2013). “Analysis and Ranking of

Software Reliability Models Based on Weighted Criteria Value”. International

Journal of Information Technology and Computer Science, 5(2), pp. 1–14.

https://doi.org/10.5815/ijitcs.2013.02.01.

[3] Banga, M., Bansal, A., & Singh, A. (2019). “Proposed hybrid approach to predict

software fault detection”. International Journal of Performability Engineering,

15(8), pp. 2049–2061. https://doi.org/10.23940/ijpe.19.08.p4.20492061.

[4] Bellon-maurel, V., Brossard, L., Garcia, F., & Termier, A. (2022). “Agriculture

and Digital Technology: Getting the most out of Digital Technology to Contribute

to the Transition to Sustainable Agriculture and Food Systems”. HAL, pp. 1-185,

ff10.17180/wmkb-ty56-enff. ffhal-03604970.

[5] Bidhan, K., & Awasthi, A. (2014). “Estimation of Reliability Parameters of

Software Growth Models using a Variation of Particle Swarm Optimization”.

Confluence The Next Generation Information Technology Summit (Confluence),

IEEE, Noida, pp. 800-805.

[6] Blackburn, M., & Huddell, B. (2012). “Hybrid Bayesian Network Models for

Predicting Software Reliability”. International Conference on Software Security

and Reliability Companion, IEEE, Gaithersburg, pp. 33–34.

https://doi.org/10.1109/SERE-C.2012.38.

[7] Bo, Y., & Xiang, L. (2007). “A Study on Software Reliability Prediction based

on Support Vector Machines”. International Conference on Industrial

Engineering and Engineering Management, IEEE, Singapore, pp. 1176-1180.

https://doi: 10.1109/IEEM.2007.4419377.

146

[8] Cai, L., & Zhu, Y. (2015). “The Challenges of Data Quality and Data Quality

Assessment in The Big Data Era”. Data Science Journal, 14, pp. 1–10.

https://doi.org/10.5334/dsj-2015-002.

[9] Caiuta, R., Pozo, A., Emmendorfer, L., & Vergilio, S. R. (2008). “Selecting

Software Reliability Models with a Neural Network Meta Classifier”.

International Joint Conference on Neural Networks, IEEE, Hongkong, pp. 3747–

3754. https://doi.org/10.1109/IJCNN.2008.4634336.

[10] Cao, R., & Gao, J. (2018). “Research on Reliability Evaluation of Big Data

System”. 2018 3rd IEEE International Conference on Cloud Computing and Big

Data Analysis, IEEE, pp. 261–265.

https://doi.org/10.1109/ICCCBDA.2018.8386523.

[11] Cao, Y., & Zhu, Q. (2010). “The Software Reliability Model using Hybrid Model

of Fractals and ARIMA”. IEICE Transactions on Information and Systems, E93-

D(11), pp. 3116–3119. https://doi.org/10.1587/transinf.E93.D.3116

[12] Chan, T., & Shi, K. (2011). “Parameter Estimation Using Neural Networks”.

Applied Intelligent Control of Induction Motor Drives, John Wiley & Sons,

Singapore, pp. 199–241. https://doi.org/10.1002/9780470825587.ch8

[13] Chang, P. T., Lin, K. P., & PF, P. (2004). “Hybrid Learning Fuzzy Neural Models

in Forecasting Engine System Reliability”. Fifth Asia Pacific Industrial

Engineering and Management Systems Conference, pp. 2361–2366.

[14] Chiu, K. C., Huang, Y. S., & Lee, T. Z. (2008). “A Study of Software Reliability

Growth from the Perspective of Learning Effects”. Reliability Engineering and

System Safety, 93(10), pp. 1410–1421.

https://doi.org/10.1016/j.ress.2007.11.004

[15] Choudhary, A., Baghel, A. S., & Sangwan, O. P. (2017). “An Efficient Parameter

Estimation of Software Reliability Growth Models using Gravitational Search

Algorithm”. International Journal of System Assurance Engineering and

Management, 8(1), pp. 79–88. https://doi.org/10.1007/s13198-016-0541-0

[16] Choudhary, A., Baghel, A. S., & Sangwan, O. P. (2018). “Parameter Estimation

of Software Reliability Model using Firefly Optimization”. Advances in

147

Intelligent Systems and Computing, 542, pp. 407–415.

https://doi.org/10.1007/978-981-10-3223-3_39

[17] De Bustamante, A. S., & De Bustamante, B. S. (2003). “Multinomial Exponential

Reliability Function: A Software Reliability Model”. Reliability Engineering and

System Safety, 79(3), pp.281–288. https://doi.org/10.1016/S0951-

8320(02)00160-6

[18] Diwaker, C., & Goyat, S. (2014). “Parameter Estimation of Software Reliability

Growth Models Using Simulated Annealing Method”. International Journal of

Computer Applications Technology and Research, 3(6), pp. 377–380.

https://doi.org/10.7753/ijcatr0306.1013

[19] Gandhi, P., Khan, M. Z., Sharma, R. K., Alhazmi, O. H., Bhatia, S., &

Chakraborty, C. (2022). “Software Reliability Assessment using Hybrid Neuro-

Fuzzy Model”. Computer Systems Science and Engineering, 41(3), pp. 891–902.

https://doi.org/10.32604/csse.2022.019943

[20] Gao, Z. M., & Zhao, J. (2019). “An improved Grey Wolf Optimization Algorithm

with Variable Weights”. Computational Intelligence and Neuroscience,

https://doi.org/10.1155/2019/2981282

[21] Garg, Rajpal, Sharma, K., Kumar, R., & Garg, R. K. (2010a). “Performance

Analysis of Software Reliability Models using Matrix Method”. World Academy

of Science, Engineering and Technology, 71(11), pp. 31–38.

[22] Garg, Rakesh. (2019). “Parametric Selection of Software Reliability Growth

Models using Multi-Criteria Decision Making Approach”. International Journal

of Reliability and Safety, 13(4), pp. 291–309.

https://doi.org/10.1504/IJRS.2019.102888

[23] Ghavifekr, S., & Wong, S. Y. (2021). “Role of Big Data in Education: Challenges

and Opportunities for the Digital Revolution in Malaysia”. Handbook of

Research on Big Data, Green Growth, and Technology Disruption in Asian

Companies and Societies, pp. 22-37.

[24] Gill, S. S., Buyya, R., & Chana, I. (2017). “IoT based Agriculture as a Cloud and

Big Data Service: The Beginning of Digital India”. Journal of Organizational and

148

End User Computing, 29(4), pp. 1–23.

https://doi.org/10.4018/JOEUC.2017100101

[25] Goel, A. L. (1985). “Software Reliability Models: Assumptions, Limitations, and

Applicability”. IEEE Transactions on Software Engineering, SE-11(12), pp.

1411–1423. https://doi.org/10.1109/TSE.1985.232177

[26] Goel, A. L., & Okumoto, K. (1979). “Time-Dependent Error-Detection Rate

Model for Software Reliability and Other Performance Measures”. IEEE

Transactions on Reliability, R-28(3), pp. 206–211.

https://doi.org/10.1109/TR.1979.5220566

[27] Gokhale, S. S., Marinos, P. N., & Trivedi, K. S. (1996). “Important Milestones

in Software Reliability Modelling”. Seke, pp. 345–352.

[28] Gokhale, S. S., Wong, W. E., Horgan, J. R., & Trivedi, K. S. (2004). “An

Analytical Approach to Architecture Based Software Performance and

Reliability Prediction”. Performance Evaluation, 58(4), pp. 391–412.

https://doi.org/10.1016/j.peva.2004.04.003

[29] Govindasamy, P., & Dillibabu, R. (2020b). “Development of Software

Reliability Models Using a Hybrid Approach and Validation of the Proposed

Models using Big Data”. Journal of Supercomputing, Springer, 76(4), pp. 2252-

2265. https://doi.org/10.1007/s11227-018-2457-8

[30] Han, X., Tian, L., Yoon, M., & Lee, M. (2012). “A Big Data Model supporting

Information Recommendation in Social Networks”. 2nd International

Conference on Cloud and Green Computing and 2nd International Conference

on Social Computing and Its Applications, Xiangtan, pp. 810–813.

https://doi.org/10.1109/CGC.2012.125

[31] Haque, M. A., & Ahmad, N. (2021). “An Effective Software Reliability Growth

Model”. Safety and Reliability, pp. 1–12.

https://doi.org/10.1080/09617353.2021.1921547

[32] Hema Latha, D., & Premchand, P. (2018). “Estimating Software Reliability using

Ant Colony Optimization Technique with Salesman Problem for Software

Process”. International Journal of Advanced Trends in Computer Science and

Engineering, 7(2), pp. 20–29. https://doi.org/10.30534/ijatcse/2018/04722018

149

[33] Hong, Y., Zhang, M., & Meeker, W. Q. (2018). “Big data and reliability

applications: The complexity dimension”. Journal of Quality Technology, 50(2),

pp. 135–149. https://doi.org/10.1080/00224065.2018.1438007

[34] Hossain, S. A., & Dahiya, R. C. (1993). “Estimating the Parameters of a Non-

homogeneous Poisson-Process Model for Software Reliability”. IEEE

Transactions on Reliability, 42(4), pp. 604–612.

https://doi.org/10.1109/24.273589

[35] Hu, L., Liu, K. Y., Diao, Y., Meng, X., & Sheng, W. (2017). “Operational

Reliability Evaluation Method based on Big Data Technology”. International

Conference on Cyber-Enabled Distributed Computing and Knowledge

Discovery, Chengdu, pp. 341–344. https://doi.org/10.1109/CyberC.2016.71

[36] Huang, C. Y., & Huang, W. C. (2008). “Software Reliability Analysis and

Measurement using Finite and Infinite Server Queueing Models”. IEEE

Transactions on Reliability, 57(1), pp. 192–203.

https://doi.org/10.1109/TR.2007.909777

[37] Huang, C. Y., & Kuo, S. Y. (2002). “Analysis of Incorporating Logistic Testing

Effort Function into Software Reliability Modelling”. IEEE Transactions on

Reliability, 51(3), pp. 261–270. https://doi.org/10.1109/TR.2002.801847

[38] Huang, C. Y., Hung, T. Y., & Hsu, C. J. (2009). “Software Reliability Prediction

and Analysis using Queueing Models with Multiple Change-Points”.

International Conference on Secure Software Integration Reliability

Improvement, Shanghai, pp. 212–221. https://doi.org/10.1109/SSIRI.2009.11

[39] Huang, C. Y., Lyu, M. R., & Kuo, S. Y. (2003). “A Unified Scheme of some

Nonhomogenous Poisson Process Models for Software Reliability Estimation”.

IEEE Transactions on Software Engineering, 29(3), pp. 261–269.

https://doi.org/10.1109/TSE.2003.1183936

[40] Hwang, S., & Pham, H. (2009). “Quasi Renewal Time Delay Fault Removal

Consideration in Software Reliability Modelling”. IEEE Transactions on

Systems, Man, and Cybernetics Part A:Systems and Humans, 39(1), pp. 200–

209. https://doi.org/10.1109/TSMCA.2008.2007982

150

[41] Iannino, A., & Musa, J. D. (1990). “Software Reliability”. Advances in

Computers, 30(C). https://doi.org/10.1016/S0065-2458(08)60299-5

[42] Ishii, T., & Dohi, T. (2008). “A New Paradigm for Software Reliability

Modelling-From NHPP to NHGP”. International Symposium on Dependable

Computing, Taipei, pp. 224–231. https://doi.org/10.1109/PRDC.2008.24

[43] Jabeen, G., Yang, X., Ping, L., Rahim, S., Sahar, G., & Shah, A. A. (2018).

“Hybrid Software Reliability Prediction Model Based on Residual Errors”.

International Conference on Software Engineering and Service Sciences,

Beijing, pp. 479–482. https://doi.org/10.1109/ICSESS.2017.8342959

[44] Jin, C. (2011). “Software Reliability Prediction based on Support Vector

Regression using a Hybrid Genetic Algorithm and Simulated Annealing

Algorithm”. IET Software, 5(4), pp. 398–405. https://doi.org/10.1049/iet-

sen.2010.0073

[45] Jin, Cong, & Jin, S. W. (2016). “Parameter Optimization of Software Reliability

Growth Model with S-Shaped Testing-Effort Function using Improved Swarm

Intelligent Optimization”. Applied Soft Computing Journal, 40, pp. 283–291.

https://doi.org/10.1016/j.asoc.2015.11.041

[46] Kalaivani, K., & Somsundaram, S. (2014). “A Hybrid GA - PSO Approach for

Reliability Under Type II Censored Data using Exponential Distribution”.

International Journal of Mathematical Analysis, 8(49–52), pp. 2481–2492.

https://doi.org/10.12988/ijma.2014.49286

[47] Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). “A Review on

the Practice of Big Data Analysis in Agriculture”. Computers and Electronics in

Agriculture, 143(October), pp. 23–37.

https://doi.org/10.1016/j.compag.2017.09.037

[48] Kaur, K., & Anand, S. (2013). “Review on Software and Hardware Reliability

and Metrics”. International Journal of Science, Engineering and Technology

Research, 2(5), pp. 1108–1110.

[49] Kemp, G., Vargas-solar, G., Ferreira, C., Collet, C., Kemp, G., Vargas-solar, G.,

Ferreira, C., Ghodous, P., & Collet, C. (2016). Service Oriented Big Data

151

Management for Transport, Communications in Computer and Information

Science, Springer, Cham.

[50] Khurshid, S., Shrivastava, A. K., & Iqbal, J. (2021). “Effort Based Software

Reliability Model with Fault Reduction Factor, Change Point and Imperfect

Debugging”. International Journal of Information Technology (Singapore),

13(1), pp. 331–340. https://doi.org/10.1007/s41870-019-00286-x

[51] Kumar, Anurag, Tripathi, R. P., Saraswat, P., & Gupta, P. (2018). “Parameter

Estimation of Software Reliability Growth Models using Hybrid Genetic

Algorithm”. International Conference on Image Information Processing, IEEE,

Shimla, pp. 317–322. https://doi.org/10.1109/ICIIP.2017.8313732

[52] Kumar, Archana, & Kapur, P. K. (2009). “SRGMs based on Stochastic

Differential Equations”. International Conference on Communication Theory,

Reliability and Quality of Service, Colmar, pp. 1–7.

https://doi.org/10.1109/CTRQ.2009.26

[53] Kwon, O., Lee, N., & Shin, B. (2014). “Data Quality Management, Data Usage

Experience and Acquisition Intention of Big Data Analytics”. International

Journal of Information Management, 34(3), pp. 387–394.

https://doi.org/10.1016/j.ijinfomgt.2014.02.002

[54] Lee, D. H., Chang, I. H., Pham, H., & Song, K. Y. (2018). “A Software Reliability

Model Considering the Syntax Error in Uncertainty Environment, Optimal

Release Time, and Sensitivity Analysis”. Applied Sciences, 8(9), pp. 1483.

https://doi.org/10.3390/app8091483

[55] Lee, D. H., Hong Chang, I., & Pham, H. (2020). “Software Reliability Model

with Dependent Failures and SPRT”. Mathematics, 8(8), pp. 1436.

https://doi.org/10.3390/MATH8081366

[56] Li, J., He, Y., & Ma, Y. (2017). “Research of Network Data Mining Based on

Reliability Source under Big Data Environment”. Neural Computing and

Applications, 28, pp. 327–335. https://doi.org/10.1007/s00521-016-2349-x

[57] Li, J.-S., Zhang, Y.-F., & Tian, Y. (2016). “Medical Big Data Analysis in

Hospital Information System”. Big Data on Real-World Applications,

IntechOpen, pp. 65, https://doi.org/10.5772/63754

https://doi.org/10.1007/s41870-019-00286-x
https://doi.org/10.3390/app8091483

152

[58] Li, M., Sadoughi, M., Hu, Z., & Hu, C. (2020). “A Hybrid Gaussian Process

Model for System Reliability Analysis”. Reliability Engineering and System

Safety, 197(February), pp. 106816. https://doi.org/10.1016/j.ress.2020.106816

[59] Li, P. L. (2005). “Forecasting Field Defect Rates Using a Combined Time-based

and Metrics-based Approach : a Case Study of OpenBSD”. International

Symposium on Software Reliability Engineering, IEEE, Chicago, pp. 10

[60] Li, Q., Li, Y., Gao, J., Zhao, B., Fan, W., & Han, J. (2014). “Resolving Conflicts

in Heterogeneous Data by Truth Discovery and Source Reliability Estimation”.

International Conference on Management of Data, Association for Computing

Machinery, NewYork, pp. 1187–1198.

https://doi.org/10.1145/2588555.2610509

[61] Li, Z., Yu, M., Wang, D., & Wei, H. (2019).” Using Hybrid Algorithm to

Estimate and Predicate Based on Software Reliability Model”. IEEE Access,

7(c), pp. 84268–84283. https://doi.org/10.1109/ACCESS.2019.2917828

[62] Lin, C. T., & Huang, C. Y. (2008). “Enhancing and Measuring the Predictive

Capabilities of Testing Effort Dependent Software Reliability Models”. Journal

of Systems and Software, 81(6), pp. 1025–1038.

https://doi.org/10.1016/j.jss.2007.10.002

[63] Littlewood, B. (1984). ”Rationale for a Modified Duane Model”. IEEE

Transactions on Reliability, 33(2), pp. 157-159.

[64] Liu, C., Chen, J., Yang, L. T., Zhang, X., Yang, C., Ranjan, R., & Rao, K. (2014).

“Authorized Public Auditing of Dynamic Big Data Storage on Cloud with

Efficient Verifiable Fine Grained Updates”. IEEE Transactions on Parallel and

Distributed Systems, 25(9), pp. 2234–2244.

https://doi.org/10.1109/TPDS.2013.191

[65] Liu, Y., & Gao, Y. (2009). “Automation Software Reliability Model Selection

Based on Unascertained Set”. International Conference on Information

Management, Innovation Management and Industrial Engineering, IEEE, Xian,

4, pp. 643–646. https://doi.org/10.1109/ICIII.2009.614

153

[66] Lo, J. H. (2012). “A Data-Driven Model for Software Reliability Prediction”.

International Conference on Granular Computing, IEEE, Hangzhou pp. 326–

331. https://doi.org/10.1109/GrC.2012.6468581

[67] Lohmor, S., & Sagar, B. B. (2017). “Estimating the Parameters of Software

Reliability Growth Models Using Hybrid DEO-ANN Algorithm”. International

Journal of Enterprise Network Management, 8(3), pp. 247–269.

https://doi.org/10.1504/IJENM.2017.087437

[68] Lyu M. R. (1996), “Handbook of Software Reliability Engineering”, McGraw-

Hill. ISBN:0-07-039400-8

[69] Majumdar, J., Naraseeyappa, S., & Ankalaki, S. (2017). “Analysis of Agriculture

Data using Data Mining Techniques: Application of Big Data”. Journal of Big

Data, 4(1). https://doi.org/10.1186/s40537-017-0077-4

[70] Manjula, C., & Florence, L. (2019). “Deep Neural Network based Hybrid

Approach for Software Defect Prediction using Software Metrics”. Cluster

Computing, 22, pp. 9847–9863. https://doi.org/10.1007/s10586-018-1696-z

[71] Meeker, W. Q., & Hong, Y. (2014).” Reliability Meets Big Data: Opportunities

and Challenges”. Quality Engineering, 26(1), pp. 102–116.

https://doi.org/10.1080/08982112.2014.846119

[72] Miglani, N., & Rana, P. (2011). “Ranking of Software Reliability Growth Models

using Greedy Approach”, Global Journal of Business Management and

Information Technology, 1(2), pp. 119–124.

[73] Miller, D. R. (1986). “Exponential Order Statistic Models of Software Reliability

Growth”. IEEE Transactions on Software Engineering, SE-12(1), pp. 12–24.

https://doi.org/10.1109/TSE.1986.6312915

[74] Mohanty, R., Ravi, V., & Patra, M. R. (2013). “Hybrid Intelligent Systems for

Predicting Software Reliability”. Applied Soft Computing Journal, 13(1), pp.

189–200. https://doi.org/10.1016/j.asoc.2012.08.015

[75] Muthulakshmi, P., & Udhayapriya, S. (2018). “A Survey on Big Data Issues and

Challenges”. International Journal of Computer Sciences and Engineering, 6(6),

pp. 1238–1244. https://doi.org/10.26438/ijcse/v6i6.12381244

154

[76] Muthuraj, R. J., & Loganathan, A. (2017), Importance of Environmental Factors

Affecting Software Reliability”. Global and Stochastic Analysis, 5(4), pp. 1350–

1355.

[77] Nachiappan, R., Javadi, B., Calheiros, R. N., & Matawie, K. M. (2017). “Cloud

Storage Reliability for Big Data Applications: A state of the art survey”. Journal

of Network and Computer Applications, 97, pp. 35–47.

https://doi.org/10.1016/j.jnca.2017.08.011

[78] Naganathan, V. (2018). “Comparative Analysis of Big Data, Big Data Analytics:

Challenges and Trends”. International Research Journal of Engineering and

Technology, 5(5), pp. 1948–1964.

[79] Ohishi, K., Okamura, H., & Dohi, T. (2009). “Gompertz Software Reliability

Model: Estimation Algorithm and Empirical Validation”. Journal of Systems and

Software, 82(3), pp. 535–543. https://doi.org/10.1016/j.jss.2008.11.840

[80] Okumoto, J. D. M. and K. (1983). “A Logarithmic Poisson Execution Time

Model for Software Reliability Measurement”. International Conf. on Software

Engineering, Whippany, pp. 230–237.

[81] Osaki, S. (1984). “S-Shaped Software Reliability Growth Models and Their

Applications”. IEEE Transactions on Reliability, R-33(4), pp. 289–292.

https://doi.org/10.1109/TR.1984.5221826

[82] Pai, P. F., & Lin, K. P. (2006). “Application of Hybrid Learning Neural Fuzzy

Systems in Reliability Prediction”. Quality and Reliability Engineering

International, 22(2), pp. 199–211. https://doi.org/10.1002/qre.696

[83] Pati, J., & Shukla, K. K. (2015). “A Hybrid Technique for Software Reliability

Prediction”. ACM International Conference Proceeding Series, ACM, Banglore,

pp. 139–146. https://doi.org/10.1145/2723742.2723756

[84] Pence, J., Mohaghegh, Z., Ostroff, C., Dang, V., Kee, E., Hubenak, R., &

Billings, M. A. (2015). “Quantifying Organizational Factors in Human

Reliability Analysis using The Big Data Theoretic Algorithm”. International

Topical Meeting on Probabilistic Safety Assessment and Analysis, ANS, Sun

Valley, 2, pp. 650–659.

155

[85] Peng, R., Hu, Q. P., & Ng, S. H. (2008, September). “Incorporating Fault

Dependency and Debugging Delay in Software Reliability Analysis”.

International Conference on Management of Innovation and Technology , IEEE,

Bangkok, pp. 641-645.

[86] Pham, H. (2003). “Software Reliability and Cost Models: Perspectives,

Comparison, and Practice". European Journal of Operation Research, 149, pp.

475–489.

[87] Pham, H., Nordmann, L., & Zhang, X. (1999). “A General Imperfect Software-

Debugging Model with S-Shaped Fault Detection Rate”. IEEE Transactions on

Reliability, 48(2), pp. 169–175. https://doi.org/10.1109/24.784276.

[88] Pietrantuono, R., Russo, S., & Trivedi, K. S. (n.d.). “Online Reliability

Monitoring : A Hybrid Approach”. Proactive Failure Avoidance, Recovery and

Maintenance (PFARM) Summary of DSN Workshop at Estoril, Portugal, pp. 3–

8.

[89] Pillai, K., & Sukumaran Nair, V. S. (1997). “A model for Software Development

Effort and Cost Estimation”. IEEE Transactions on Software Engineering, 23(8),

pp. 485–497. https://doi.org/10.1109/32.624305

[90] Pillar, V. D. (1997). “Multivariate Exploratory Analysis and Randomization

Testing with MULTIV. Coenoses, Springer, 12(January), pp. 145–148.

[91] Prakash, C. J., Rohini, P. M., Ganesh, R. B., & Maheswari, V. (2013). “Hybrid

Reliability Model to Enhance the Efficiency of Composite Web Services”.

International Conference on Emerging Trends in Computing, Communication

and Nanotechnology, IEEE, Tirunelveli, pp. 79–83. https://doi.org/10.1109/ICE-

CCN.2013.6528468

[92] Protopop, I., & Shanoyan, A. (2016). “Big Data and Smallholder Farmers: Big

Data Applications in the Agri-Food Supply Chain in Developing Countries”.

International Food and Agribusiness Management Review, 19, pp. 173–190.

[93] Pushphavathi, T. P., Suma, V., & Ramaswamy, V. (2014). “A Novel Method for

Software Defect Prediction: Hybrid of FCM and Random Forest”. International

Conference on Electronics and Communication Systems,IEEE, Coimbatore, pp.

1–5. https://doi.org/10.1109/ECS.2014.6892743

156

[94] Qi, Y. D., Ying, L., Ning, Q., & Xie, X. F. (2010). “A BP Neural Network based

Hybrid Model for Software Reliability Prediction”. International Conference on

Computer Application and System Modelling, IEEE, Taiyuan, pp. 11–14.

https://doi.org/10.1109/ICCASM.2010.5622531

[95] Radmehr, E., & Bazmara, M. (2017). “A Survey on Business Intelligence

Solutions in Banking Industry and Big Data Applications”. International Journal

of Mechatronics, 7(23), pp. 3280–3298.

[96] Rafi, S. M., & akthar, shaheda. (2010). “Software Reliability Growth Model with

Gompertz TEF and Optimal Release Time Determination by Improving the Test

Efficiency”. International Journal of Computer Applications, 7(11), pp. 34–43.

https://doi.org/10.5120/1337-1741

[97] Raghuvanshi, K. K., Agarwal, A., Jain, K., & Singh, V. B. (2021).” A Time-

Variant Fault Detection Software Reliability Model”. SN Applied Sciences, 3(1),

pp. 1–10. https://doi.org/10.1007/s42452-020-04015-z

[98] RahamanSk, A., RajeshK, S., Rani, G. K., Professor, A., & Scholar, R. (2018).

“Challenging tools on Research Issues in Big Data Analytics”. International

Journal of Engineering Development and Research, 6(1), pp. 2321–9939.

[99] Raj Kiran, N., & Ravi, V. (2008). “Software Reliability Prediction by Soft

Computing Techniques”. Journal of Systems and Software, 81(4), pp. 576–583.

https://doi.org/10.1016/j.jss.2007.05.005

[100] Rao, K. M., & Anuradha, K. (2016). “A Hybrid Method for Parameter Estimation

of Software Reliability Growth Model using Modified Genetic Swarm

Optimization with the Aid of Logistic Exponential Testing Effort Function”.

International Conference on Research Advances in Integrated Navigation

Systems, IEEE, Banglore, pp. 1-8. https://doi.org/10.1109/RAINS.2016.7764400

[101] Reis, G. A., Chang, J., Vachharajani, N., Rangan, R., August, D. I., & Mukherjee,

S. S. (2005). “Design and Evaluation of Hybrid Fault Detection Systems”.

International Symposium on Computer Architecture, IEEE, Madison, pp. 148–

159. https://doi.org/10.1109/ISCA.2005.21

[102] Roy, P., Mahapatra, G. S., & Dey, K. N. (2015). “Neuro Genetic Approach on

Logistic Model based Software Reliability Prediction”. Expert Systems with

157

Applications, 42(10), pp. 4709–4718.

https://doi.org/10.1016/j.eswa.2015.01.043

[103] Sahu, K., & Srivastava, R. K. (2019). “Revisiting software reliability”. Advances

in Intelligent Systems and Computing, 808, pp. 221–235.

https://doi.org/10.1007/978-981-13-1402-5_17

[104] Salahaldeen, J., & Marwan, M. (2017). “The Use of Original and Hybrid Grey

Wolf Optimizer in Estimating the Parameters of Software Reliability Growth

Models”. International Journal of Computer Applications, 167(3), pp. 12–21.

https://doi.org/10.5120/ijca2017914201

[105] Sangeeta, & Sitender. (2020). “Comprehensive Analysis of Hybrid Nature-

Inspired Algorithms for Software Reliability Analysis”. Journal of Statistics and

Management Systems, 23(6), pp. 1037–1048.

https://doi.org/10.1080/09720510.2020.1814498

[106] Sangeeta, Sharma, K., & Bala, M. (2020). “An Ecological Space Based Hybrid

Swarm-Evolutionary Algorithm for Software Reliability Model Parameter

Estimation”. International Journal of System Assurance Engineering and

Management, 11(1), pp. 77–92. https://doi.org/10.1007/s13198-019-00926-2

[107] Shakya, S., & S., S. (2020). “Reliable Automated Software Testing Through

Hybrid Optimization Algorithm”. Journal of Ubiquitous Computing and

Communication Technologies, 2(3), pp. 126–135.

https://doi.org/10.36548/jucct.2020.3.002

[108] Sharma K., Garg R., Nagpal C. K. and Garg R. K.(2010). “Selection of Optimal

Software Reliability Growth Models Using a Distance Based Approach.” IEEE

Transactions on Reliability, 59(2) , pp. 266-276, doi: 10.1109/TR.2010.2048657

[109] Sharma, D., & Chandra, P. (2019). “A comparative analysis of soft computing

techniques in software fault prediction model development”. International

Journal of Information Technology, 11(1), pp. 37–46.

https://doi.org/10.1007/s41870-018-0211-3

[110] Sharma, T. K. (2018). “Estimating Software Reliability Growth Model

Parameters using Opposition-Based Shuffled Frog-Leaping Algorithm”. Soft

158

Computing Applications, Springer, Singapore, pp. 149-164.

https://doi.org/10.1007/978-981-10-8049-4_8

[111] Sharma, T. K., Pant, M., & Abraham, A. (2011). “Dichotomous Search in ABC

and its Application in Parameter Estimation of Software Reliability Growth

Models”. World Congress on Nature and Biologically Inspired Computing,

IEEE, Salamanca, pp. 207–212. https://doi.org/10.1109/NaBIC.2011.6089460

[112] Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). “Critical

Analysis of Big Data Challenges and Analytical Methods”. Journal of Business

Research, 70, pp. 263–286. https://doi.org/10.1016/j.jbusres.2016.08.001

[113] Spichkova, M., Schmidt, H. W., Yusuf, I. I., Thomas, I. E., Androulakis, S., &

Meyer, G. R. (2016). “Towards Modelling and Implementation of Reliability and

Usability Features for Research Oriented Ccloud Computing Platforms”.

Communications in Computer and Information Science, 703, pp. 158–178.

https://doi.org/10.1007/978-3-319-56390-9_8

[114] Sudharson, D., & Dr, P. (2020). Hybrid Software Reliability Model with Pareto

Distribution and Ant Colony Optimization (PD–ACO)”. International Journal of

Intelligent Unmanned Systems, 8(2), pp. 129–140.

https://doi.org/10.1108/IJIUS-09-2019-0052

[115] Sun, H., Wu, J., Wu, J., & Yang, H. (2019). Hybrid SVM and ARIMA Model for

Failure Time Series Prediction based on EEMD”. International Journal of

Performability Engineering, 15(4), 1161–1170.

https://doi.org/10.23940/ijpe.19.04.p11.11611170

[116] Tamura, Y., & Yamada, S. (2014). “Reliability Analysis Based on AHP and

Software Reliability Models for Big Data on Cloud Computing”. International

Journal of Statistics–Theory and Applications 1(1), pp. 43–49.

[117] Tamura, Y., & Yamada, S. (2015a). “Reliability Analysis Based on a Jump

Diffusion Model with Two Wiener Processes for Cloud Computing with Big

Data”. Entropy, 17(7), pp. 4533–4546. https://doi.org/10.3390/e17074533

[118] Tamura, Y., & Yamada, S. (2015b). “Software Reliability Analysis Considering

the Fault Detection Trends for Big Data on Cloud Computing”. Lecture Notes in

159

Electrical Engineering, 349, pp. 1021–1030. https://doi.org/10.1007/978-3-662-

47200-2_106

[119] Tamura, Y., & Yamada, S. (2015c). “Software Reliability Assessment Tool

Based on Fault Data Clustering and Hazard Rate Model Considering Cloud

Computing with Big Data”. International Conference on Reliability, Infocom

Technologies and Optimization: Trends and Future Directions, IEEE, Noida, pp.

1–6. https://doi.org/10.1109/ICRITO.2015.7359208

[120] Tamura, Y., & Yamada, S. (2017a). “Dependability Analysis Tool Based on

Multi-Dimensional Stochastic Noisy Model for Cloud Computing with Big

Data”. International Journal of Mathematical, Engineering and Management

Sciences, 2(4), pp. 273–287. https://doi.org/10.33889/ijmems.2017.2.4-021

[121] Tamura, Y., & Yamada, S. (2017b). “Fault Identification and Reliability

Assessment Tool Based on Deep Learning for Fault Big Data”. Software

Networking, 1, pp. 161–167. https://doi.org/10.13052/jsn2445-9739.2017.008

[122] Tamura, Y., Nobukawa, Y., & Yamada, S. (2016). “A Method of Reliability

Assessment Based on Neural Network and Fault Data Clustering for Cloud with

Big Data”. International Conference on InformationScience and Security, IEEE,

pp. Seoul, pp. 4–7. https://doi.org/10.1109/ICISSEC.2015.7370965

[123] Tamura, Y., Takeuchi, T., & Yamada, S. (2017). “Software Reliability and Cost

Analysis Considering Service User for Cloud with Big Data”. International

Journal of Reliability, Quality and Safety Engineering, 24(2), pp. 1–14.

https://doi.org/10.1142/S0218539317500097

[124] Vaitsis, C., Hervatis, V., & Zary, N. (2016). “Introduction to Big Data in

Education and Its Contribution to the Quality Improvement Processes”. Big Data

on Real-World Applications, In Tech, pp. 41-64, Chap. 3.

https://doi.org/10.5772/63896

[125] Vamsidhar, Y., Raju, P. S. S., & Kumar, T. R. (2012). “Performance Analysis of

Reliability Growth Models using Supervised Learning Techniques”. International

Journal of Scientific & Technology Research, 1(1), pp. 1–7.

[126] Viswanathan, A. S., & Ramani, S. (2018). “Algorithm and Matlab Program for

Software Reliability Growth Model Based on Weibull Order Statistics

160

Distribution”. International Journal of Advanced Scientific Research and

Management, 3(11), pp. 0–4.

[127] Wang, J., Wu, H., & Wang, R. (2017).”A New Reliability Model in Replication-

Based Big Data Storage Systems”. Journal of Parallel and Distributed

Computing, 108, pp. 14–27. https://doi.org/10.1016/j.jpdc.2017.02.001

[128] Wang, R., Jin, F., Yang, L., & Han, X. (2018). “A Software Reliability

Combination Model Based on Genetic Optimization BP Neural Network”.

Communications in Computer and Information Science, Springer, Singapore, pp

https://doi.org/10.1007/978-981-13-0896-3_15

[129] Weersink, A., Fraser, E., Pannell, D., Duncan, E., & Rotz, S. (2018).

“Opportunities and Challenges for Big Data in Agricultural and Environmental

Analysis”. Annual Review of Resource Economics, 10(2018), pp. 19–37.

https://doi.org/10.1146/annurev-resource-100516-053654

[130] Wood, A. (1996). “Software Reliability Growth Model: Primary Failures

Generate Secondary Faults under Imperfect Debugging” . IEEE Transactions on

Reliability, 43(3) pp. 408-413,

http://linkinghub.elsevier.com/retrieve/pii/0026271496819585

[131] Xiang, Z., Du, Q., Ma, Y., & Fan, W. (2018). Assessing Reliability of Social

Media Data: Lessons from Mining TripAdvisor Hotel Reviews”. Information

Technology and Tourism, 18, pp. 43–59. https://doi.org/10.1007/s40558-017-

0098-z

[132] Xie, M. (1991). Software Reliability modelling, World Scientific, Singapore.

[133] Xie, M. (1995). Software Reliability Models for Practical Applications. Software

Quality and Productivity, Springer, Boston, pp. 211–214.

https://doi.org/10.1007/978-0-387-34848-3_32

[134] Xie, Min, Hong, G. Y., & Wohlin, C. (2003). Modelling and Analysis of Software

System Reliability. Case Studies in Reliability and Maintenance, Wiley, pp. 233–

250, Chap. 10. https://doi.org/10.1002/0471393002.ch10

[135] Xuejie, Z., Zhijian, W., & Feng, X. (2013). “Reliability Evaluation of Cloud

Computing Systems Using Hybrid Methods”. Intelligent Automation and Soft

Computing, 19(2), pp. 165–174. https://doi.org/10.1080/10798587.2013.786969

161

[136] Yadav, H. B., & Yadav, D. K. (2017). “Early Software Reliability Analysis using

Reliability Relevant Software Metrics”. International Journal of Systems

Assurance Engineering and Management, 8(1992), pp. 2097–2108.

https://doi.org/10.1007/s13198-014-0325-3

[137] Yaghoobi, T. (2020). “Parameter Optimization of Software Reliability Models

using Improved Differential Evolution Algorithm”. Mathematics and Computers

in Simulation, 177, 46–62. https://doi.org/10.1016/j.matcom.2020.04.003

[138] Yamada, S., & Osaki, S. (1985). “Software Reliability Growth Modelling:

Models and Applications”. IEEE Transactions on Software Engineering, SE-

11(12), pp. 1431–1437. https://doi.org/10.1109/TSE.1985.232179

[139] Yamada, S., Hishitani, J., & Osaki, S. (1993). “Software-Reliability Growth with

a Weibull Test-Effort: A Model & Application”. IEEE Transactions on

Reliability, 42(1), pp. 100–106. https://doi.org/10.1109/24.210278

[140] Yamada, S., Ohba, M., & Osaki, S. (1983). “S-Shaped Reliability Growth

Modelling for Software Error Detection”. IEEE Transactions on Reliability, R-

32(5), pp. 475–484. https://doi.org/10.1109/TR.1983.5221735

[141] Yamada, S., Ohtera, H., & Narihisa, H. (1986). “Software Reliability Growth

Models with Testing-Effort”. IEEE Transactions on Reliability, 35(1), pp. 19–

23. https://doi.org/10.1109/TR.1986.4335332

[142] Yamada, S., Tokuno, K., & Osaki, S. (1992).” Imperfect Debugging Models with

Fault Introduction Rate for Software Reliability Assessment”. International

Journal of Systems Science, 23(12), pp. 2241–2252.

https://doi.org/10.1080/00207729208949452

[143] Yan, J., Meng, Y., Lu, L., & Li, L. (2017). “Industrial Big Data in an Industry 4.0

Environment: Challenges, Schemes, and Applications for Predictive

Maintenance”. IEEE Access, 5(c), pp. 23484–23491.

https://doi.org/10.1109/ACCESS.2017.2765544

[144] Yang, L., Li, Z., Wang, D., Miao, H., & Wang, Z. (2021). “Software Defects

Prediction Based on Hybrid Particle Swarm Optimization and Sparrow Search

Algorithm”. IEEE Access, 9, pp. 60865–60879.

https://doi.org/10.1109/ACCESS.2021.3072993

162

[145] Yanyan, Z., & Renzuo, X. (2008). “An Adaptive Exponential Smoothing

Approach for Software Reliability Prediction”. International Conference on

Wireless Communications, Networking and Mobile Computing, IEEE, Dalian,

pp.1–4. https://doi.org/10.1109/WiCom.2008.2946

[146] Yaremchuk, S., & Kharchenko, V. (2018). “Big Data and Similarity Based

Software Reliability Assessment: The Technique and Applied Tools”.

International Conference on Dependable Systems, Services and Technologies,

IEEE, Kyiv, pp. 485–490. https://doi.org/10.1109/DESSERT.2018.8409182

[147] Zeng, G. (2015). “Application of Big Data in Intelligent Traffic System”. IOSR

Journal of Computer Engineering, 17(1), pp. 2278–2661.

https://doi.org/10.9790/0661-17160104

[148] Zhang, X., Teng, X., & Pham, H. (2003). “Considering Fault Removal Efficiency

in Software Reliability Assessment”. IEEE Transactions on Systems, Man, and

Cybernetics Part A:Systems and Humans., 33(1), pp. 114–120.

https://doi.org/10.1109/TSMCA.2003.812597

[149] Zhao, J., Liu, H. W., Cui, G., & Yang, X. Z. (2006). “Software Reliability Growth

Model with Change Point and Environmental Function”. Journal of Systems and

Software, 79(11), pp. 1578–1587. https://doi.org/10.1016/j.jss.2006.02.030

[150] Zhao, M., & Xie, M. (1992). “On the Log-Power NHPP Software Reliability

Model”. International Symposium on Software Reliability Engineering,IEEE,

Trangle Park, pp. 14–22. https://doi.org/10.1109/ISSRE.1992.285862

[151] Zhen, L., Liu, Y., Dongsheng, W., & Wei, Z. (2020). “Parameter Estimation of

Software Reliability Model and Prediction Based on Hybrid Wolf Pack

Algorithm and Particle Swarm Optimization”. IEEE Access, 8, pp. 29354–29369.

https://doi.org/10.1109/ACCESS.2020.2972826

[152] Zicari, R. V. Big Data: Challenges and Opportunities. https://pdfs.

semanticscholar.org /2d43/ 056cf8eff8f8d6e031f51f073187808676a3.pdf. 5/3/2019.

Journal of Intelligent & Fuzzy Systems 40 (2021) 5501–5516
DOI:10.3233/JIFS-202503
IOS Press

5501

Big data reliability: A critical review

Shalini Sharma∗, Naresh Kumar and Kuldeep Singh Kaswan
School of Computing Science and Engineering, Galgotias University, Greater Noida, India

Abstract. Big data requires new technologies and tools to process, analyze and interpret the vast amount of high-speed
heterogeneous information. A simple mistake in processing software, error in data, and malfunctioning in hardware results
in inaccurate analysis, compromised results, and inadequate performance. Thus, measures concerning reliability play an
important role in determining the quality of Big data. Literature related to Big data software reliability was critically examined
in this paper to investigate: the type of mathematical model developed, the influence of external factors, the type of data sets
used, and methods employed to evaluate model parameters while determining the system reliability or component reliability
of the software. Since the environmental conditions and input variables differ for each model due to varied platforms it is
difficult to analyze which method gives the better prediction using the same set of data. Thus, paper summarizes some of the
Big data techniques and common reliability models and compared them based on interdependencies, estimation function,
parameter evaluation method, mean value function, etc. Visualization is also included in the study to represent the Big data
reliability distribution, classification, analysis, and technical comparison. This study helps in choosing and developing an
appropriate model for the reliability prediction of Big data software.

Keywords: Reliability models, Big data, stochastic equation, hazard rate, jump diffusion

1. Introduction

Because of rapid change in the volume, velocity,
and veracity of Big data new kinds of storage and
analytical methods are required [1]. Organizations
nowadays thrive upon the usage of Big data. Due to
the advancement of technology bulk of data is gener-
ated at an amazingly fast speed every second, which is
to be stored and processed to gain useful information.
Recently Big data is being accumulated and utilized
in many domains [2] like agriculture [3], forestry
monitoring [4], energy management [5, 6], medical
[7], city management [8], operations management [9,
10], social networks [11], etc.

The main challenges associated with Big data are
data quality and its maintenance. Business houses
might lose sales, time, and margins due to inad-
equate data and incorrect interpretation [12]. The

∗Corresponding author. Shalini Sharma, School of Computing
Science and Engineering, Galgotias University, Greater Noida,
India. E-mail: shalinisharma@kalindi.du.ac.in.

rapidly changing nature of Big data requires a new
type of technologies and analytical methods [13] for
fast retrieval and storage so that pertaining infor-
mation can be extracted and utilized for decision
making [14]. Big data technologies like Hadoop,
Cassandra, HDFS, MapReduce, NoSQL, MongoDB,
HIVE, PIG, and HBASE work together to extract
meaningful information from data [15], whereas the
performance of an analytical method depends on the
process, which visualizes data after acquisition and
interpretation. Estimating the performance of a pro-
cess helps in taking corrective measures before it is
too late, and the problem deteriorates [16]. The major
issue in Big data is reliability assessment of software
utilizing Big data. Software fault is concerned pri-
marily with process, design, and data. Hardware fault
results due to wear-out, faulty design, and inappro-
priate environmental or operational conditions which
leads to software failure, compromising the reliabil-
ity of the system. Reliability of software is defined as
“the probability that it will function failure-free for a
specified period under specific conditions” [17].

ISSN 1064-1246/$35.00 © 2021 – IOS Press. All rights reserved.

mailto:shalinisharma@kalindi.du.ac.in

5502 S. Sharma et al. / Big data reliability

Failure of software is generally predicted and esti-
mated with the help of software reliability models
[18]. Software Reliability Growth Models (SRGM’s)
describe the phenomenon of software failure or fault
detection in the testing phase.

Many reliability assessment methods for quality
control of the software or testing process have been
proposed by various researchers. Also, reliability is
the foremost concern in Open System Software (OSS)
because of its extensive use due to reduced cost, easy
accessibility, and quick delivery. Cloud computing
enables a user to perform complicated, highly paral-
lel, data-intensive, and long-running experiments that
are too complicated to run on desktop machines [19].
Mobile software, Application software, and Cloud
computing source code are open to all, therefore the
security and reliability of OSS [20, 21] become a
major problem. This paper contributes to providing
the analysis of literature related to reliability concern-
ing Big data.

Various features of software reliability models
(developed by different researchers) for predicting
the reliability in Big data scenario were investigated.
Different criteria like interdependencies, parameter
estimation, mode of working, datasets used, etc. are
used for comparing these models. For the critical
review of Big data reliability, several papers related
to Big data, Big data analytics, and Big data reliabil-
ity were studied. Papers were then classified based on
reliability in hardware, data reliability, and software
reliability. Literature is further pursued to determine
the interdependencies in Big data software reliability
as shown in Fig. 1. Since research in Big data is a
contemporary topic the research papers sought were
mostly from acclaimed journals and conferences with
publication years ranging from 2012 to 2019.

Fig. 1. Interdependencies in Big data Reliability.

2. Related work

Big data requires the use of new techniques to pro-
cess large data sets, various such techniques which are
generally used to get information from data are dis-
cussed in section 2.1. In Section 2.2 some traditional
software reliability models are discussed. These reli-
ability models are not accurate enough to predict the
Big data reliability because of its characteristics and
interdependencies. Thus, the need to develop new
models that can predict the Big data reliability bet-
ter than these traditional models arises. Reliability
models that incorporated the external factors affect-
ing the reliability of Big software are discussed in
Section 2.3.

2.1. Big data

Big data is a gigantic amount of data that is
difficult to store, process and manage, using tradi-
tional RDBMS due to its characteristics. In RDBMS,
all data is related, and losing a small part of data
affects other data in significant ways contrary to
Big data where we employ methods that knowingly
lose a fraction of data for the smooth functioning
of unstructured high-velocity voluminous data in a
short span. Nowadays Big data is generated in vari-
ous forms like text-sound, image, voice, and video. It
is exceedingly difficult to handle these types of data
sets using traditional data processing applications.
Also due to unstructured and scattered file system,
data analysis is a challenging task, and we require
some new techniques like Genetic Algorithms(GA),
Neural Networks(NN), Sentiment Analysis, Network
Analysis, Machine Learning(ML), etc. and tools
like Apache Hadoop, Apache Storm, Apache Spark,
Mongo DB, NoSQL HPCC to handle Big data. A
summary of some techniques is given below.

2.1.1. Associative rule learning
It is a method to find out the correlation between

database variables. It looks for patterns in a database
to uncover new relationships. Associative rules can
predict a variable instead of class, giving the flex-
ibility to predict the combination of attributes. It
uses a machine learning model and identifies the if-
then association, called association rules. If and then
are two parts of association rule called antecedents
and consequent respectively which represents the fre-
quent co-occurrence of items in the dataset [22].
Different association rules predict different things
and specify different irregularities in a dataset.

S. Sharma et al. / Big data reliability 5503

Coverage represents the number of instances for
which prediction is correct and accuracy represents
the number of correctly predicted instances.

2.1.2. Classification tree analysis
A new observation is categorized using this

method. It is a common technique used in data mining
to classify new data sets depending upon the historical
training data. Classification of the dependent variable
is based on the forecast variable, the nodes represent-
ing data are divided into smaller subgroups and the
output is a tree structure with an association between
nodes [22]. In Machine Learning (ML) supervised
learning and unsupervised learning are nothing but
classification and clustering, respectively.

2.1.3. Regression analysis
It is a statistical method that determines the rela-

tionship between two variables, dependent often
called outcome variable and independent called pre-
dictor variable. Independent variables influence the
dependent variable which is yet to be predicted. Lin-
ear Regression specifies a linear relationship, whereas
Nonlinear Regression which specifies a nonlinear
relationship is used for complicated datasets [24].
Regression can be used for prediction as well as fore-
casting [23].

2.1.4. Sentiment analysis
Sentiment Analysis is contextual text mining

which determines whether a piece of text is negative,
positive, or neutral. Sentiment Analysis is generally
used in web mining, data mining, and social media
analytics. It deals with the emotions, feelings, as well
as judgment responses generated from text. In Senti-
ment Analysis, we need to find an appropriate dataset
and discover opinions while classifying and catego-
rizing the opinion they convey. Machine Learning and
Natural Language Processing techniques are com-
bined in sentiment analysis of the text, to assign
weighted sentiment scores to topics, themes cate-
gories, and entries in a sentence [25].

2.1.5. Genetic algorithms
Genetic Algorithms are based on the principles

of Genetics. They provide optimal or near-optimal
solutions to problems that might take a lifetime to
be solved. In Machine learning these are frequently
used to solve optimization problems, where optimiza-
tion refers to maximizing or minimizing the objective
function by varying the input values [26]. The set of
all possible values constitute a search space and out of

these sets, there is one such value that gives the opti-
mal solution. In Genetic Algorithms, there is a pool
of possible solutions, by recombining and mutating
these solutions we get new solutions called children.
The process of mutation is repeated over many gen-
erations [26]. A fitness value is attached with each
possible solution based on objective function value.
According to the “Darwinian theory of survival of
fittest” fitter individuals are assigned higher fitness
value to yield more fitter individuals [27]. With bet-
ter solutions, we keep evolving over generations till
we reach the desired result or stop criteria.

2.1.6. Machine learning
Machine learning mainly focuses on the theory,

performance, and properties of learning systems
[28]. Machine learning provides systems to learn
and improve by themselves through the experience
without being programmed. It focuses on automatic
learning by recognizing complex patterns and making
intelligent decisions based on data [28]. It includes
various software and makes predictions based on
learned properties from training datasets. It is an
application of AI which focuses on the develop-
ment of self-learning programs for computers. For
all applications of Big data, efficient infrastructure
is required to support and develop efficient machine
learning algorithms [29]. The aim is to make com-
puters self-reliant to learn automatically without
assistance. The learning process begins with the
observations that look for specific data patterns to
make better futuristic decisions based on providing
examples [30]. Deep Learning, Feature Learning,
Distributed Learning, Transfer Learning, and Active
Learning are some of the advanced ML techniques
proposed for Big data [31].

2.1.7. Neural networks
Neural Network is a set of algorithms that were

developed to mimic the functioning of the human
brain, when constructing an Artificial Neural Net-
work designer must be cautious to choose the right
size Network for the task [32]. Just like the human
brain has neurons, a Neural Network has a node and
sensory data is interpreted through machine percep-
tion, clustering, or labeling of raw input [30]. We
train the Neural Network using an algorithm that
compares the expected output and the desired one
and adjusts the weight of nodes accordingly [33].
“Dr. Robert Hecht-Nielsen” defined the Neural Net-
work as “The computing system made up of several
simple, highly interconnected processing elements,

5504 S. Sharma et al. / Big data reliability

which process information by their dynamic state
response to external inputs”. Simple Neural Networks
consist of an input layer, an output layer, and a hidden
layer. The weighted sum of the input data is applied to
a node which passes through its activation function,
which acting as an on-off switch determines whether
to let it pass or not and if yes to what extent, thereby
assigning importance to inputs concerning the prob-
lem an algorithm is trying to solve [34]. A new
model for neural-like networks called the Geomet-
ric Transformation model(GTM) provides solutions
to the problems related to optimization, pattern recog-
nition, lost data recovery, classification, etc. [72].
GTM provides the detailed analysis of the input data
by replacing the slow training based on randomized
input of Neural Network by high-speed training and
can be used to construct the models using fractions
and high degree polynomials [72].

2.1.8. Clustering techniques
In these techniques [35] data sets are termed as

objects and we group or cluster the objects in such
a way that objects having similarity belong in one
group and dissimilar objects in another. An object is
described either by a set of objects or by the rela-
tionship between the object and other objects [36].
Similarity is defined as the distance between two
objects and the diameter of a cluster is the maximum
distance between two objects in a cluster. Another
measure of cluster quality is the centroid method
which is defined as the average distance of each clus-
ter object from the centroid of the cluster. The use of
a clustering algorithm and appropriate distance func-
tion depends upon the type of datasets and intended
use of the result. Cluster Analysis is an iterative pro-
cess of discovering knowledge. It is often required to
modify data pre-processing and parameters until the
desired result is achieved with specific properties. It
is generally used in many fields like Statistical Data
Analysis, Data Mining, Pattern Recognition, Image
Analysis, Information Retrieval, Data Compression,
Machine Learning, Computer Graphics, and many
more.

2.2. Reliability models

The stability of the software is determined by its
reliability. Reliability is termed as the probability of
smooth functioning of software without any failure
under specified conditions for a given time. Software
failure is nothing but a defect in the software product,
which arises due to many factors like an error in soft-

ware code, a design defect, improper specifications.
Software Failure mainly depends upon the number
and type of errors probably encountered during a pro-
cess, as the errors are discovered and corrected the
reliability increases [37]. Reliability of software is
accessed at various stages during development for a
system to evaluate whether the laid down reliability
requirements have been met or not. The reliability
model generally used a mathematical equation that
estimates the number of remaining errors during the
debugging process of a software package [38]. The
reliability of a system is analysed by using either pre-
diction or estimation techniques, in both techniques
fault data collected during the testing phase of the
software is utilized to access reliability.

Software reliability modelling techniques observe
and accumulate failure data and use statistical infer-
ence to analyse reliability [39]. Software reliability
models try to understand how software fails and its
cause, to form a random process that explains the
behaviour of software failure with respect to time
and attempt to quantify the reliability of software.
There are almost 200 plus models that tried to quan-
tify the reliability of software, but no one can be used
universally for all conditions as they are application
specific. The applicability and realism of assumptions
of these models for accessing software reliability are
still questionable [40].

Undermentioned are some most common reliabil-
ity models for estimating software reliability.

2.2.1. The Jelinski-Moranda model [41]
In 1942 Jelinski-Moranda (J-M) developed a time

between failure model using the following assump-
tions

• Initially, before testing n number of faults are
there in code.

• Faults are equally likely and independent
• Removing a fault does not introduce any other

fault
• Hazard rate z(t) is proportional to the number of

errors present in the system at a specified time t.

Thus, the likelihood of each fault causing failure is
the same, and hazard rate z(t) can be represented by
a constant (�). If m(t) represents the total number of
failures till time (t) then after removal of (i-1) fault
from the system, we have the total number of faults
as n- m(ti-1)) and the hazard rate of the software is:

z(δt/ti−1) = �(n − m(ti−1)) (1)

S. Sharma et al. / Big data reliability 5505

software reliability for this model is given as:

r(ti) = e−�(N−(i−1)t (2)

2.2.2. The Goel-Okumoto model [42]
Goel-Okumoto (G-O) in 1979 proposed a Non-

Homogeneous Poisson Process (NHPP) model using
imperfect debugging as compared to perfect debug-
ging of the J-M model. Failure counts at time t can
be represented by a poison distribution with the mean
value function �(t). The failure count is a finite value
n observed in infinite time. Following assumptions
are made based on the model.

• Let u represent undetected faults then the failure
count is given by n- �(t).

• Failure count is proportional to u in the time
interval (t, t+δt).

• There is no correlation between the failure
counts observed in the subsequent intervals (0,
t1), (t1, t2), (t2, t3)(tn-1, tn).

• The hazard rate for each fault is constant and
time-invariant.

• The process of removing faults upon detection
of failure is instantaneous.

Above mentioned assumptions give mean

value function :� (t) = n(1 − e−φ) (3)

and failure intensity function as:

� (t) = N � e−�t =� (N− � (t)) (4)

for expected failure counts detected by time (t) [43].

2.2.3. Musa’s basic execution time model [44]
In 1979 J.D. Musa developed a model based on

execution time. The said model is easy to under-
stand, simple, and accurately predicted the reliability
using execution time which was later converted into
calendar time. The failure behavior was given by
the Non-Homogeneous Poisson Process. The model
assumes that all observed faults are independent and
are equally likely to occur. Piecewise exponentially
distributed model was used to represent execution
time failures. The rate of fault correction was pro-
portional to the occurrence rate and failure intensity
was proportional to the number of faults left.

If t represents the execution time and � as failure
intensity, then the mean failure experienced was given
by

� () = 0.x(1 − exp(−(�0 / 0)) (5)

Where �0 is initial failure intensity, v0 is the total
number of failures discovered over an infinite period,

Undermentioned is failure intensity function in
terms of execution time and mean time � [44]

� () =� (�) =�0 (1− � / 0) (6)

� () =�0 .x. exp(−(�0 / 0) (7)

2.2.4. Littlewood – Verrall Bayesian model [45]
The models discussed so far assumes the availabil-

ity of fault data and apply the Maximum Likelihood
Estimation (MLE) statistical technique to estimate
unknown but fixed parameters from the available
data. In case when failure data is not available or
sufficient, MLE is not a trustworthy technique as it
can result in incorrect estimations [43]. Littlewood-
Verrall Bayesian model [45], developed in 1973, is a
Bayesian SRGM that considers reliability in the con-
text of the detected number of faults and failure-free
operation. Because of the non-availability of failure
data, model parameters may be of a prior version or
data based on history. The model assumes that the
time between successive failures is exponential with
parameters having gamma distribution. The hazard
function in this model is an unknown constant having
a Gamma distribution function with shape parameter
� and scale parameter �.

2.2.5. Weibull model (Wm)
The Weibull function is extensively used in relia-

bility due to its versatility. It is used both for software
as well as hardware reliability estimation. Model is
based on failure rate and is used quite extensively
when the data indicate a monotone hazard function
[46]. If on a logarithmic scale we plot failure rate ver-
sus cumulative testing time, then the model is valid for
the plotted points if it gives an approximate straight
line. Weibull model assumes that mean value function
m(t) is given by:

m(t) = (t/ �)� (8)

and occurrence of failure at time t is given by � (t) as:

� (t) = dm(t)/d(t) =� / � (t/ �)�−1 [47] (9)

The model can be estimated by using LSE or MLE
estimations [39].

5506 S. Sharma et al. / Big data reliability

2.2.6. S-shaped model
Cumulative faults are s-shaped whereas the mean

value function is exponential. The reason for the
S-shaped [48] is explained: as generally the faults
are dependent and are of the same size, even if
we remove a fault at the initial stage it does not
guarantee the decreased failure intensity because
the software can still fail due to some other fault
for the same test. Another reason for S-shape is
explained by Yamada (1984) as testing software reli-
ability is a learning process and with time the skill
and effectiveness of test increases as one becomes
familiar with test tools and software. Thus, S-
shape implies that in the beginning when skill and
test effectiveness is low the reliability is moder-
ate but as the numbers of faults are discovered and
corrected it increases quickly and gradually slows
down. Several NHPP S-shaped models were pro-
posed in the literature [49–53] but Delayed S-shaped
and inflected S-shaped are the most interesting
ones.

• Delayed S-Shape: The mean value and corre-
sponding intensity function for Delayed S-shape
two parameter curve is given as [47]:

m(t) =� [1 − (1+ � .t)e−�t], �> 0 (10)

� (t) =� . � (1+ � .t)e−�t(- � . � .

E−�t) =� . �2 .t.e-�t (11)

where �=detected number of faults and
�=failure rate. At time t expected remaining
faults are given by

m(∞) − m(t) =� - � [1 − (l+ � .t)e−�t]

=� (l+ � .t)e−�t (12)

• Inflection S-Shaped: Basic assumption behind
this model is that if the faults in a program are
mutually dependent than the reliability growth
curve become S shape [54].

The mean value is given by:

m(t) = a(1 − e−bt)/(1 + ce−bt), b > 0, c > 0 (13)

and intensity function is given by:

� (t) = a.b(1 + c)e−bt/(1 + c.e−bt)2 (14)

for this model [55]. Similarly, as in delayed S,
a is detected number of faults while b is failure
detection rate and c is inflection factor, respectively.

Expected number of remaining faults for inflected
model is

m(∞) − m(t) = a(1 + c)e−bt/(1 + c.e−bt) (15)

2.3. Reliability in big data

Because of Big data characteristics, the Big data
software is equipped with number of advanced tech-
niques to handle heterogeneous bulk storage, fast
retrieval, and parallel processing. To determine the
reliability of such Big software various techniques or
methods were developed by researchers. Undermen-
tioned is the brief insight into the work of eminent
scholars working in this field.

2.3.1. Based on three-dimensional stochastic
equations for big data on cloud, 2014:
[56]

Researchers Yoshinobu Tamura, Kenta Miyaoka,
and Shigeru Yamada proposed a new model to access
the software reliability of Big data on the Cloud
based on a three-dimensional Stochastic Differential
Equation(SDE). Their method of analyzing software
reliability depends upon three factors Network, Big
data, and Cloud. If reporting a fault in the opera-
tion phase is represented by an irregular process and
fault detection of software depends on time, Brown-
ian motions are used to represent three kinds of noise
reflecting the indirect effect of reliability. Under com-
mon assumptions for Software Reliability Growth
Models (SRGM’s) they formulated the following

dm(t)/dt =� (t){r(t) − m(t)} (16)

where m(t) is a continuous real value function rep-
resenting a cumulative number of detected faults,
these faults were assumed to be latent in a bug track-
ing system of an OSS by operational time t (t ≥ 0).
m(t) gradually increases during the operation phase
as latent faults were detected and eliminated.

• �(t) is a non-negative function and represents
software fault-detection rate.

• r(t) represents the change in requirement speci-
fications and is defined as:

r(t) = −ae−bt (17)

a: number of latent faults in Open System Soft-
ware (OSS) and b: represents the rate of change of
requirements specification. r(t) is used to represent
the exponential growth of OSS requirement specifi-
cation in terms of t. The positive value of � shows a

S. Sharma et al. / Big data reliability 5507

reliability growth trend and the negative value shows
a reliability regression trend. Equation (1) is extended
to 3D equation including Brownian motions as

dmi(t)/dt = {�i (t)+ �i .νi(t)}{ri(t)–mi(t)}

where i = 1, 2, 3 (18)

where � 1, � 2, and � 3 are positive constants repre-
senting irregular fluctuation levels, ν1(t), ν2(t), and
ν3(t) represents standardized Gaussian white noise.
Also, it is assumed that mi(t) and ri(t) are related with
�i(t) based on software failure, Cloud computing,
Network environment, and Big data. The above-
mentioned Equation (2) is represented as a SDE
having ω i Wiener process(an integration of white
noise νi(t) with respect to time t). Then for each noise,
the integrated Stochastic Differential Equation was
obtained.

2.3.2. Reliability analysis based on AHP and
software reliability models for big data on
cloud computing,2014: [57]

Researchers Yoshinobu Tamura and Shigeru
Yamada propose a method of computing soft-
ware reliability taking into consideration the 3V’s
characteristics of Big data on the Cloud plat-
form. Parameters were estimated using Analytic
Hierarchy Process (AHP) [58] based on the Big
data model representing its characteristics as vol-
ume, velocity, and veracity. Three-dimensional
Wiener process is used to model the effect of
reliability

Dmi(t)/dt = {bi(t)+ �i .νi(t)}{ri(t)–mi(t)},

where i = 1, 2, 3 (19)

function r(t) represents the amount of change required
in specifications. Where parameters are specified as

b(t) : Software fault-detection rate at time t.
� : Irregular fluctuation magnitude.
v : Standardized Gaussian white noise.
Also, it is assumed that mi(t) and ri(t) are related

with �i(t) based on software failure, Cloud computing
Network environment, and Big data. The model was
assessed based on AHP estimation results.

2.3.3. Software reliability assessment tool based
on fault data clustering and hazard rate
model considering cloud computing with
big data, 2015: [59]

Yoshinobu Tamura and Shigeru Yamada proposed
a method of accessing the reliability of software based
on fault data clustering using Big data with a Cloud
computing environment. Paper focused on collected
fault data sets from various sources like Big database
software, server software, and the Cloud. Since the
amount of fault data is vast and managed by bug
tracking systems K-means non-hierarchical Cluster
Analysis is used because of its simplicity. The data
set used is defined as �i and the fault data set in
it is defined as a tuple (�i, �i) where (i = 1,2,...,).
The three-dimensional K-means clustering algorithm
assumes that the clusters are randomly assigned to the
fault data set and center points of clusters were calcu-
lated. The data sets were classified depending upon
the nearest center point, calculated based on the min-
imum distance between fault data sets and cluster’s
center. This procedure continued till the specified
conditions were met under the assumption that the
level of fault severity depends upon the number of
detected faults. Also, the cluster number m represents
the severity level of classified software faults. Using
the result analysis of K-means Cluster Analysis for
identifying the software fault data Hazard rate model
was proposed. A software reliability assessment tool
AIR was also developed.

2.3.4. Reliability analysis based on a jump
diffusion model with two wiener processes
for cloud computing with big data, 2015:
[60]

Yoshinobu Tamura and Shigeru Yamada proposed
reliability analysis of Big data on the Cloud using
the Jump Diffusion Model. To access the reliabil-
ity of software developed as third-party software in
the Cloud, one needs to consider the installed soft-
ware, installer software, and Network traffic situation
while monitoring the whole system for any debugging
effect.

In the case of mobile devices, the security of the
Network as well as the reliability of OSS become
a major issue. Mobile devices are used by many
individuals each using different installer software
to access the Network, resulting in the installa-
tion of third-party software through the Network.
These mobile devices access the Cloud service
through specific Networks, and they reconfigure the
data storage area of Cloud Computing Network

5508 S. Sharma et al. / Big data reliability

through unstructured and complex Big data from the
Internet.

The indirect influence of Big data on reliability can
result in system-wide failure. Interaction of indirect
factors like Cloud, Big data and Network contributes
to system reliability directly or indirectly, thus they
proposed an effective method for reliability assess-
ment.

Actual software fault data was used for the estima-
tion of parameters used in the proposed model. An
optimum maintenance problem was formulated using
the amount of noise in the sample path to minimized
software maintenance cost and time.

2.3.5. Software reliability analysis considering
the fault detection trends for big data on
cloud computing, 2015: [61]

Yoshinobu Tamura and Shigeru Yamada used
the detected cumulative number faults and time-
interval of software faults data sets to access Big
data reliability on Cloud. Component-based as well
as system-wise reliability was calculated. Software
reliability is deeply analyzed using the Stochastic
Differential Equation. The proposed model can esti-
mate cumulative faults for database software as well
as Cloud software. They found that at the end of
fault detection Hadoop reliability is more stable as
compared to OpenStack in the early operation phase.

2.3.6. Method of reliability assessment based on
neural network and fault data clustering
for cloud with big data, 2015: [62]

Yoshinobu Tamura, Yumi Nobukawa, and Shigeru
Yamada proposed a software reliability assessment
method based on neural Network and fault data clus-
tering in the Cloud environment using Big data. K-
means Cluster Analysis is used for fault data col-
lected from Big databases (NoSQL and Hadoop)
and Cloud software (Eucalyptus and OpenStack).
Also proposed is the method of detecting cumulative
faults using fault data for cluster analysis as input
for Neural Networks. Based on Neural Network an
estimation method is also proposed using estimates
obtained through training data of fault data cluster-
ing. Discussed in the paper are the various numerical
examples using fault data sets collected from web-
sites of OpenStack and Hadoop using a bug tracking
system from an open-source project. The result shows
that the software fault of Hadoop is independent of
OpenStack.

2.3.7. Software reliability and cost analysis
considering service user for cloud with
big data, 2017: [63]

Yoshinobu Tamura and Shigeru Yamada proposed
a method based on Jump Diffusion Model on Cloud
environment for reliability assessment. Based on
Jump an optimum maintenance problem is also
proposed and Genetic Algorithm is used for parame-
ters estimation. Various examples were shown using
datasets collected by using the bug tracking system.
Minimizing the total software cost they estimated the
optimum maintenance time for a maximum number
of Cloud subscribers.

2.3.8. Research on reliability evaluation of big
data system, 2018: [64]

Rui Cao And Jing Gao accessed Big data reliability
on Cloud by using the Fault Tree Model. The type and
cause of faults were summarized and analyzed using
experiments. Using the Fault Tree Model one can for-
mulate the qualitative assessment of a component and
find out the probability of failure for the whole sys-
tem. Computer-Aided Fault Tree Analysis (CAFTA)
was used for reliability analysis by the researchers.
Model is used for graphical visualization of reliabil-
ity and can not only find the probability of failure but
also the cause of the problem.

2.3.9. Development of software reliability
models using a hybrid approach and
validation of the proposed models using
big data, 2018: [65]

P. Govindasamy and R. Dillibabu proposed three
hybrid models using the NHPP model [42, 51, 52]
Weibull model [66] and Exponential model [67].
Weibull model was used for hardware induced faults,
NHPP models for pure software faults, and the Expo-
nential model was adapted for user induced faults.
Validation of the model was done using data collected
during testing, Genetic Algorithm and Maximum
Likelihood Estimation were used for estimating the
value of the parameter. Calculation of cumulative and
expected number of failures was done and observed
values were compared to determine the performance
of the model. Graphs were plotted to show the
better estimation capability of the model as com-
pared to other models and a comparison criterion
was formulated to determine the estimation accu-
racy of the proposed model. A paired test was also
done to show that the proposed model is better
than other models in not only reliability estimation
but also in the estimation of another metric like

S. Sharma et al. / Big data reliability 5509

mean failures, cumulative failures, and intensity of
failures.

2.3.10. Study of software reliability on big data
open-source software, 2019: [68]

Ranjan Kumar, Subhash Kumar, and Sanjay K.
Tiwari determined the suitability of NHPP based
reliability models for open-source big fault data. To
determine whether a best-fit model can be the best
predictor, five NHPP models on various prediction
criteria and fitness scales were compared. They found
out that the best-fitted model is not the best predictor
for fault data.

3. Summarization

To access the reliability of software many models
have been developed. However, in the context of Big
data software reliability, only a few have been pre-
sented. Big database software like Spark and Hadoop
is often used with OpenStack and Eucalyptus, Open-
Source Software’s, therefore it is important to access
the reliability of big software in conjunction with
Cloud computing for the overall estimation of system
reliability. It is also important to determine the indi-
rect effect of overly complex Big data characteristics
on software reliability.

There are various reliability models available, but
they cannot access the indirect influence on software
reliability resulting due to interdependencies of Big
data, Cloud service, Open-Source Software, and Net-
work traffic. It is difficult for traditional models to
formulate these indirect influences as parameters or
noise for the overall reliability assessment of soft-
ware.

Various techniques incorporating the external fac-
tors and interdependencies related to Big data in
reliability assessment have been tabulated in Table 1.

It is clear from the summary that most models
are Cloud-based having integrated reliability because
of the relationship between Big data, Cloud, and
Network. Various methods like AHP, Maximum
Likelihood, and Least Square are used for parameter
estimation along with Stochastic Differential Equa-
tion for reliability computation.

In Jump Diffusion Model a jump term is added
to incorporate the indirect effect of either the Big
data factor or Cloud computing factor resulting due
to complicated data usage over the internet by Cloud
software. Moreover, several noises have been applied
for proper reliability assessment using indirect
factors.

4. Comparison of different reliability
assessment methods

With the help of a comparative statement, we can
visualize all possible alternatives, compare, and con-
trast them for a specific application and select the best
suitable one depending upon the underlined require-
ments.

In Table 2, various Big data reliability tech-
niques are compared in terms of external factors or
interdependencies affecting the reliability, the main
difference between the techniques while computing
reliability, the estimation and evaluation methods
used for parameter estimation, type of mean value
function used while calculating parameters value and
whether the value of the cumulative and expected
number of faults are derived or not.

This comparison outlined certain facts about the
compared techniques. It was observed that all tech-
niques incorporate the multi-factor and most of them
use the Stochastic Differential Equation with Wiener
process to include these interactions.

The dimension of the Wiener process is chosen
to reflect these interdependencies also the jump term
and hazard value is used to incorporate Big data influ-
ence while reducing the dimension of the Wiener
process.

Some techniques consider the system-wide reli-
ability including the effect of Big data in Cloud
computing environment, while other techniques
develop component-based reliability assessment. K-
means clustering is used because of its simplicity and
ease to work with complicated data.

For parameters estimation most techniques use
MLE for evaluating parameters related to specified
models and Genetic Algorithm is used for the estima-
tion of jump-diffusion parameters. The rapid growth
of new technologies suggests that these algorithms
will be used for Big data software reliability in the
coming years. The above-mentioned table helps the
researchers who are working in the field of Big data
reliability to understand the type of technique that can
be utilized for their work.

5. Graphical representation

The graph in Fig. 2 shows the percentage of pub-
lished papers per year from 2012 till 2019. Maximum
papers were published in 2014, 2015, and 2017
whereas min papers were published in the year 2016
and 2013.

5510
S.Sharm

a
etal./B

ig
data

reliability
Table 1

Summarization of Big data software reliability papers

S.No. Study Year Data Summary of result Ref.

1. Xiaoyue Han, Lianhua Tian,
Minjoo Yoon, Minsoo Lee

2012 Social Network Increase in the reliability of recommended information [69]

2. Yoshinobu Tamura and Shigeru
Yamada

2014 Data collected using Bug tracking
system on OpenStack website

The model can access the combined system reliability dealing with
factors like Big data, Network traffic, and Cloud computing.
Also, the model can visually assess the reliability because of
sensitivity analysis using the volume, velocity, and variety: the
3V’s of Big data as noise.

[57]

3. Yoshinobu Tamura, Kenta
Miyaoka and Shigeru Yamada

2014 Bug tracking data of OpenStack
collected from the website.

System reliability can be accessed in terms of Big data renewal
rate, Network traffic, and software failure. Reasonably selecting
the value of model parameters results in a more accurate
assessment than traditional models.

[56]

4. Yoshinobu Tamura and Shigeru
Yamada

2015 Data collected using Bug tracking
system on OpenStack website

Efficient reliability assessment using developed AIR tool. [59]

5. Yoshinobu Tamura and Shigeru
Yamada

2015 Actual software fault data. Optimal maintenance problem on Cloud environment is defined
based on the noise in sample-path. The proposed method can be
used for dependability assessment.

[60]

6. Yoshinobu Tamura and Shigeru
Yamada

2015 Data collected using Bug tracking
system on OpenStack and Hadoop
website of Open system projects.

The reliability of Hadoop is more stable than OpenStack after the
end of fault detection time during the early phase.

[61]

7. Yoshinobu Tamura, Yumi
Nobukawa, Shigeru Yamada

2015 Software fault dataset, Hadoop, and
OpenStack bug tracking data

Hadoop and OpenStack might have independent software faults. [62]

8. Yoshinobu Tamura and Shigeru
Yamada

2017 Data collected using Bug tracking
system on OpenStack and Hadoop
website of Open system projects.

Useful for software managers for reliability assessment. [63]

9. Yoshinobu Tamura and Shigeru
Yamada

2017 Data sets of Apache HTTP server The proposed deep learning method increases the reliability of OSS
and application software was developed using NW.js technology
as the cross-platform to analyze fault data available on the bug
tracking system.

[70]

10. Rui Cao and Jing Gao 2018 uses CAFTA Used for Quantitative assessment for a component and
visualization for reliability assessment.

[64]

11. P Govindasamy R. Dillibabu 2018 Software failure data collected during the
testing phase

Better estimation capability of the proposed hybrid model than
traditional NHPP models.

[65]

12. Svitlana Yaremchuck,
Vyacheslav Kharchenko

2018 Tera-PROMISE Repository Formalized the software similarity features and method of
reliability analysis and search is extended to similar systems

[71]

13. Ranjan Kumar, Subhash Kumar,
Sanjay K. Tiwari

2019 Data collected from JIRA bug tracking
and management tool of Hadoop and
Open Spark on OSS.

It was found that the best-fitted model on the bug dataset is not the
best predictor.

[68]

14. Ritu Ratra and Preeti Gulia 2019 Review paper which provides
Comparison among Big data tools and
techniques.

Differentiation between Hadoop, Spark, and MongoDB is
highlighted concerning various parameters.

[22]

S.Sharm
a

etal./B
ig

data
reliability

5511

Table 2
Comparative analysis of Big data reliability techniques

S. No Technique Inter-dependencies Difference Parameter Mean value Cumulative Expected
estimation functions no. of faults number of

derived faults derived

1. Stochastic Differential
Equation

Big data, Network
traffic, Cloud
computing

Use 3 kinds of Brownian
motion to show
interdependencies between
Cloud, Big data, and
Network

Maximum likelihood. Inflection S-shaped
SRGM

yes yes

2. AHP and Wiener
Process

Big data, Network
traffic, Cloud
computing

Use the method of reliability
assessment in terms of
AHP using 3V’s of Big data

Maximum likelihood Inflection S-shaped
SRGM

yes yes

3. Jump Diffusion with
Wiener Process

Big data, Mobile
Clouds, Cloud
computing

Jump term is added in the
stochastic equation of
reliability assessment to
incorporate Big data factor

Maximum likelihood
and Genetic
algorithms (for
jump-diffusion
parameters)

Inflection S-shaped
SRGM

No No

4. Hazard rate with
Stochastic
Differential
Equation

Big database and
Cloud software.

Component-based reliability
assessment

Using distribution
function of hazard
rate model.

Inflection S-shaped
SRGM

No No

5. Clustering and Hazard
Rate

Big database and
Cloud software

K-mean Clustering is applied
on fault data obtained from
Big data, Cloud, and server
software.

Maximum likelihood Not required No No

6. Neural Network and
Clustering

Big database and
Cloud software

Software fault data is applied
to the input of NN and
learning data is derived
using normalized Mean
Square errors obtained
through clustering of fault
data.

Not required Not required No No

7. Neural Network and
Jump Diffusion

Big database and
Cloud software

Reliability assessment based
on the component ratio of
database software per unit
time on Cloud

Maximum likelihood
and Genetic
algorithms (for
jump-diffusion
parameters)

Delayed-S shaped
SRGM

No No

8. Development of
hybrid models

Weibull model, NHPP
models,
Exponential model

A hybrid model is developed Using Maximum
likelihood, G.A, and
MATLAB 2014a

No No No

5512 S. Sharma et al. / Big data reliability

Fig. 2. Analysis of Big data reliability.

Although there are many papers published related
to Big data, discussing its applications, techniques,
tools, and analytics used but we have taken only those
which discuss the reliability of Big data and classify
them according to hardware, software, and data reli-

ability. As shown in Fig. 3. The overall percentage of
papers based on hardware reliability is 16%, 28% dis-
cussed the issues related to data reliability, and 56%
of papers emphasized software reliability in Big data.

In Fig. 4 Software reliability models are com-
pared (X-axis represents the paper numbers taken
from Table 1) based on different factors or parame-
ters like Maximum Likelihood Estimation, Stochastic
Equation used, inflection S-Shaped SRGM and
fault dataset. It was found that out of 56% papers
on software reliability in Big data, approximately
35% papers used Maximum Likelihood Function
for parameter estimation and Stochastic Differential
Equation to determine reliability. To calculate the
mean value function 64% papers used inflection S-
shaped SRGM and to evaluate software reliability
71% papers used fault data of Hadoop and Spark.

Figure 5 is the graphical representation of the
comparative view of the different techniques used

Fig. 3. Big data reliability classification.

Fig. 4. Big data software reliability analysis.

S. Sharma et al. / Big data reliability 5513

Fig. 5. Comparison of software reliability techniques for Big data.

(Y-axis represents the techniques represented by
serial number in Table 2) to calculate software reli-
ability in Big data. Main techniques used in major
papers were identified and a comparison is made
among them depending upon the various factors
shown in the graph. Most papers calculate the system-
wide reliability whereas some papers also calculated
the component reliability of Big database and Soft
computing software.

Expected and cumulative faults were derived in
few techniques using three-dimensional Stochastic
Equation for software reliability. Majority of tech-
niques calculated the mean value function using
inflection and delayed S-shaped SRGM. Some tech-
niques used only Maximum Likelihood Estimation
for parameter evaluation while others used LSE either
with Genetic algorithm or some other methods for
determining the overall parameter.

6. Conclusion

In this paper, various research papers based on
Big data reliability are studied and their classifica-
tion is done based on various important parameters.

The Paper also summarizes certain new techniques
required to handle Big data. Additionally, few com-
monly used software reliability models were also
explained. The Paper also provides a comprehensive
insight into newly developed reliability models of Big
data. It is difficult to determine the indirect effect of
Big data in reliability computation along with fault
data that is why only a few effective measures have
been proposed based on the various dimensions to
incorporate the multi factors in various papers.

The study indicates that most papers use Stochas-
tic Differential Equation to determine the reliability
of the system while considering the multiple inter-
actions either as the additional dimension or a jump
value or by using hazard rate function. Maximum
Likelihood Method and inflection S-shaped SGRM is
employed by most techniques for parameter estima-
tion and for calculating the mean value, respectively.
A hybrid model for reliability assessment was also
developed which is derived using NHPP, Weibull,
and Exponential models giving a better estimation
of reliability than most of the traditional models for
Big fault data.

While comparing these reliability techniques it
came into notice that some models calculate the

5514 S. Sharma et al. / Big data reliability

reliability of the whole system on the cloud, con-
sidering the interactions between Network traffic and
Cloud software with the Big data software while oth-
ers calculate the component reliability of software
modules of a system separately. These Big data tech-
niques have been compared and provide a meticulous
understanding of what type of mathematical models
one needs to develop for a specific platform, which
methods were employed to calculate the value of
reliability parameters, what type of soft computing
techniques can be used for determining the value of
parameters, what type of datasets were being used,
how the developed model is being utilized.

The motivation of this paper is to provide a com-
mon base for all the researchers working in the field
of Big data reliability. Researchers can be benefitted
from the provided summary and can develop their
model by considering the methods and techniques
mostly employed while analyzing the reliability in
Big data scenarios.

This paper provides a comparative review of the
techniques used for Big data reliability with the
belief that it will support the understanding of cur-
rent developments and future research prospects in
this direction. Further work required the analysis of
all these models for a specific data set while adjusting
certain parameters for uniformity, using new tech-
niques to calculate the value of the parameter of these
overly complex equations, and comparing which one
gives the more accurate prediction. Existing soft com-
puting techniques can also be utilized to optimize the
result of these models or a new one can be devel-
oped for a specific model which gives more accurate
reliability prediction.

References

[1] N. Elgendy and A. Elragal, “Big data analytics: A litera-
ture review paper,” in Industrial conference on data mining,
Cham, pp. 214–227, 2014.

[2] D.P. Achariya and K. Ahmed, A survey on Big data
analytics: challenges, open research issues, and tools,
International Journal of Advanced Computer Science and
Applications 7(2) (2016), 511–518.

[3] A. Kamilaris, A. Kartakoullis and F.X. Prenafeta-Boldu, A
review on the practice of Big data analysis in agriculture,
Computers and Electronics in Agriculture 143 (2017), 23–
37.

[4] W. Zou, W. Jing, G. Chen, Y. Lu and H. Song, A survey of
Big data analytics for smart forestry, IEEE Access 7 (2019),
46621–46636.

[5] A.R. Al-Ali, I.A. Zualkernan, M. Rashid, R. Gupta and M.
Alikarar, A smart home energy management system using
IoT and Big data analytics approach, IEEE Transactions on
Consumer Electronics 63(4) (2017), 426–434.

[6] Y. Zhang, T. Huang and E.F. Bompard, Big data analytics
in smart grids: A review, Energy Informatics 1(1) (2018), 8.

[7] I. Adjerid and K. Kelley, Big data in psychology: A frame-
work for research advancement, American Psychologist
73(7) (2018), 899.

[8] S. Chauhan, N. Agarwal and A. Kumar, Addressing Big data
challenges in smart cities: A systematic literature review,
info 18(4) (2016), 73–90.

[9] L. Hu, K. Liu, Y. Diao, X. Meng and W. Sheng, Operational
reliability evaluation method based on Big data tech-
nology, 2016 International Conference on Cyber-Enabled
Distributed Review 23(5) (1983), 903–943.

[10] T.M. Choi, S.W. Wallace and Y. Wang, Big data analyt-
ics in operations management, Production and Operations
Management 27(10) (2018), 1868–1883.

[11] V. Chang, A proposed social Network analysis platform for
Big data analytics, Technological Forecasting and Social
Change 130 (2018), 57–68.

[12] N. Venkatesh, Comparative analysis of Big data, Big data
analytics: Challenges and trends, International Research
Journal of Engineering and Technology (IRJET) 5 (2018),
1948–1964.

[13] U. Narayanan, V. Paul and S. Joseph, Different analytical
techniques for Big data analysis: A review, in International
Conference on Energy, Communication, Data Analytics and
Soft Computing (ICECDS-2017), Chennai, pp. 372–382,
2017.

[14] A. Gandomi and M. Haider, Beyond the hype: Big data
concepts, methods, and analytics, International Journal of
Information Management 35(2) (2015), 137–144.

[15] J. Zakir, T. Seymour and K. Berg, Big data analytics, Issues
in Information Systems 16(2) (2015), 81–90.

[16] I.M. Ali, Y.Y. Jusoh, R. Abdullah, R. Nor, H. Nor and L.S.
Affendey, Measuring the performance of Big data analytical
process, Journal of Theoretical and Applied Information
Technology 97(14) (2019), 3796–3808.

[17] A. Hudaib and M. Moshref, Survey in software reliability
growth models: Parameter estimation and models ranking,
International Journal of Computer Systems 5(5) (2018), 11–
25.

[18] J.G. shantikumar, Software reliability models: A Computing
and Knowledge Discovery (CyberC), Chengdu, 2016, pp.
341–344, doi: 10.1109/CyberC.2016.71.

[19] M. Spichkova, H.W. Schmidt, II. Yusuf, I.E. Thomas,
S. Androulakis, G.R. Meyer, Towards modelling and
implementation of reliability and usability features for
research-oriented Cloud computing platforms, in Commu-
nication in Computer and Information Science, 703 (2016),
158–178, cham, springer.

[20] Y. Tamura and S. Yamada, Optimisation analysis for relia-
bility assessment based on Stochastic Differential Equation
modeling for open source software, International Journal
of Systems Science 40(4) (2009), 429–438.

[21] R. Nachiappan, B. Javadi and R.N. Calhe, Cloud storage
reliability for Big data applications: A state of the art survey,
Journal of Network and Computer Applications 97 (2017),
35–47.

[22] R. Ratra and P. Gulia, Big data tools and techniques:
A roadmap for predictive analytics, International Journal
of Engineering and Advanced Technology (IJEAT) 9(2)
(2019), 4986–4992.

[23] P. Gupta, A. Sharma and R. Jindal, Scalable machine-
learning algorithms for Big data analytics: A comprehensive
review, Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery 6(6) (2016), 194–214.

S. Sharma et al. / Big data reliability 5515

[24] J. Fox, Applied regression analysis, linear models and meth-
ods, Sage Publications, 1997.

[25] W. Medhat, A. Hassan and H. Korashy, Sentiment analysis
algorithms and applications: A survey, Ain Shams Engineer-
ing Journal 5(4) (2014), 1093–1113.

[26] M. Srinivas and L.M. Patnaik, Genetic Algorithms: A sur-
vey, Computer 27(6) (1994), 17–26.

[27] D.E. Goldberg, Genetic algorithm, Pearson education India,
2006.

[28] J. Qiu, Q. Wu, G. Ding, Y. Xu and S. Feng, A survey of
machine learning for Big data processing, EURASIP Jour-
nal on Advances in Signal Processing 2016(1) (2016), 67.

[29] Z. Lv, H. Song, P. Basanta, A. Steed and M. Jo, Next-
generation Big data analytics: State of the Art, Challenges,
and Future Research Topics, IEEE transactions on Indus-
trial Informatics 13(4) (2017), 1891–1899.

[30] A. L’Heureux, K. Grolinger, H.F. Elyamany and M.A.
Capretz, Machine Learning with Big data : Challenges and
approaches, IEEE Access 5 (2017), 7776–7797.

[31] R.H. Hariri, E.M. Fredericks and K.M. Bowers, Uncertainty
in Big data analytics: survey, opportunities, and challenges,
Journal of Big data 6(1) (2019), 44.

[32] E.D. Karnin, A simple procedure for pruning back-
propagation trained neural Networks, IEEE Transactions
on Neural Network 1(2) (1990), 239–242.

[33] I. Lakshmanan and S. Ramasamy, An Artificial Neural-
Network approach to software reliability growth modeling,
Procedia Computer Science 57 (2015), 695–702.

[34] X. Chen and X. Lin, Big data Deep Learning: Challenges
and perspective, IEEE Access 2 (2014), 514–525.

[35] S. Arora and I. Chana, A survey of clustering techniques
for Big data analysis, in 5th International Conference-
Confluence The Next Generation Information Technology
Summit, Noida, pp. 59–65, 2014.

[36] A.K. Jain and R.C. Dubes, Algorithms for clustering data.,
Prentice-Hall Inc, 1988.

[37] P.N. Misra, Software reliability analysis, IBM Systems Jour-
nal 22(3) (1983), 262–270.

[38] G.J. Schick and R.W. Wolverton, An analysis of computing
Software reliability models, IEEE Transactions on Software
Engineering SE-4(2) (1978), 104–120.

[39] M. Prasad, L. Flowrence and C.V. Srikrishna, Overview of
software reliability models, International Journal of Engi-
neering and Management Research (IJEMR) 3(5) (2013),
11–15.

[40] A.L. Goel, Software reliability models: Assumptions, lim-
itations, and applicability, IEEE Transactions on Software
Engineering SE-11(12) (1985), 1411–1423.

[41] Z. Jelinski and P. Moranda, Software reliability research,
Statistical Computer Performance Evaluation, pp. 465-484,
1972.

[42] A.L. Goel and K. Okumoto, Time-dependent error-detection
rate model for software reliability and other performance
measures, IEEE Transactions on Reliability R-28(3) (1979),
206–211.

[43] G.J. Pai, A survey of software reliability models. arXiv
preprint arXiv 1304(4539), 2013.

[44] J.D. Musa, Software reliability measurement, Journal of
Systems and Software 1 (1979), 223–241.

[45] B. Littlewood and J.L. Verrall, A Bayesian reliability model
with a stochastically monotone failure rate, IEEE Transac-
tions on Reliability R-23(2) (1974), 108–114.

[46] D.D.Hanagal and N.N. Bhalerao, Modeling on generalized
extended inverse Weibull software reliability growth model,
Journal of Data Science 17(3) (2019), 575–592.

[47] M. Xie and B. Bergman, On modeling reliability growth
for software, IFAC Identification and Systems 21(9) (1988),
567–570.

[48] M. Ohba, S. Yamada, K. Takeda and S. Osaki, S-shaped soft-
ware reliability growth curve: how good is it? Proceedings
IEEE COMPSAC 82, Chicago, 1982, pp. 38–4.

[49] M. Ohba and S. Yamada, S-shaped software reliability
growth models, In International Colloquium on Reliability
and Maintainability 4 (1984), 430–436.

[50] M. Ohba, Inflection S-shaped software reliability growth
model, in Stochastic Models in Reliability Theory, Heidel-
berg, 1984.

[51] P.K. Kapur and R.B. Garg, Optimum release policy for
an inflection s-shaped software reliability growth model,
Microelectronics Reliability 31(1) (1991), 39–41.

[52] S. Yamada, M. Ohba and S. Osaki, S-shaped reliability
growth modeling for software error detection, IEEE Trans-
actions on Reliability R-32(5) (1983), 475–484.

[53] S. Yamada, M. Ohba and S. Osaki, S-shaped software
reliability growth models and their applications, IEEE
Transactions on Reliability R-33(4) (1984), 289–292.

[54] M. Ohba, Software reliability analysis models, IBM Journal
of Research and Development 28(4) (1984), 428–443.

[55] R.K. Sharma, A. Kumar and S. Bajaj, Analysis of various
software reliability models and proposing a new model of
software reliability for embedded systems, International
Journal of Innovative Research in Computer Science &
Technology (IJIRCST) 5(3) (2017), 287–290.

[56] Y. Tamura, K. Miyaoka and S. Yamada, Reliability analysis
based on three-dimensional stochastic differential equation
for Big data on Cloud computing, pp. 863-867, 2014.

[57] Y. Tamaru and S. Yamada, Reliability analysis based on
AHP and software reliability models for big data on cloud
computing, International Journal of Statistics – Theory and
Applications 1(1) (2014), 43–49.

[58] R.W. Saaty, The analytic hierarchy process—what it is and
how it is used, Mathematical modelling 9(3–5) (1987), 161–
176.

[59] Y. Tamura and S. Yamada, “Software reliability assess-
ment tool based on fault data clustering and hazard rate
model considering Cloud computing with Big data,” in
2015 4th International Conference on Reliability, Info-
com Technologies and Optimization(ICRITO)(Trends and
Future Directions), Noida, pp. 1-6, 2015.

[60] Y. Tamura and S. Yamada, Reliability analysis based on a
jump diffusion model with two wiener processes for cloud
computing with big data, Entropy 17(12) (2015), 4533–
4546.

[61] Y.Tamura and S. Yamada, Software reliability analysis con-
sidering the fault detection trends for big data on cloud
computing, in Industrial Engineering, Management Science
and Applications, Berlin, Heidelberg, Springer 349 (2015),
1021–1030.

[62] Y. Tamura, Y. Nobukawa and S. Yamada, “A method of
reliability assessment based on Neural Network and fault
data clustering for Cloud with Big data,” in 2015 2nd Inter-
national Conference on Information Science and Security
(ICISS), Seoul, pp.1-4, 2015.

[63] Y.Tamura T. Takeuchi and S. Yamada, Software reliability
and cost analysis considering service user for Cloud with
Big data, International Journal of Reliability, Quality, and
Safety Engineering 24(2) (2017), 1–14.

[64] R. Cao and J. Gao, “research on reliability evaluation
of Big data system,” in 2018 the 3rd IEEE Interna-
tional Conference on Cloud Computing and Big data

5516 S. Sharma et al. / Big data reliability

Analysis, Chengdu, 2018 pp. 261–265, doi: 10.1109/ICC-
CBDA.2018.8386523(11).

[65] P. Govindasamy and R. Dillibabu, Development of software
reliability models using a hybrid approach and validation of
the proposed models using Big data, The Journal of Super-
computing 76 (2018), 1–2.

[66] S. Yamada, J. Hishitani and S. Osaki, Software-reliability
growth with a Weibull test-effort: a model and application,
in IEEE Transactions on Reliability 42(1) (1993), 100–106.

[67] R. Miller, Exponential order statistic models of software
reliability growth, IEEE Transactions on Software Engi-
neering SE-12(1) (1986), 12–24.

[68] R. Kumar, S. Kumar and S.K. Tiwari, A study of software
reliability on Big data Open-Source Software, International
Journal of System Assurance Engineering and Management
10 (2019), 242–250.

[69] X. Han, L. Tian, M. Yoon and M. Lee, A Big data model sup-
porting information recommendation in Social Networks, in
2012 Second International Conference on Cloud and Green
Computing, Xiangtan, pp. 810–813, 2012.

[70] Y. Tamura and S. Yamada, “Fault identification and reli-
ability assessment tool based on deep learning for fault
Big data,” Journal of Software Networking 2017(1) (2018),
161–167.

[71] S. Yaremchuk and V. Kharchenko, Big data and similarity-
based software reliability assessment: The technique
and applied tools, in The 9th IEEE International
Conference on Dependable Systems, Services and Tech-
nologies, DESSERT’2018, Kyiv, 2018, pp. 485-490, doi:
10.1109/DESSERT.2018.8409182.

[72] R. Tkachenko and I. Izonin, Model and principles for the
implementation of neural-like structures based on Geomet-
ric Data Transformations, in International Conference on
Computer Science, Engineering and Education Applica-
tions ICCSEEA 2018: Advances in Computer Science for
Engineering and Education 754 (2019), 578–587.

2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN)

ISBN: 978-1-6654-3811-7/21/$31.00 ©2021 IEEE

1679

Ranking of Reliability Models based on Accurate

Estimation and Weighted Function

Shalini Sharma

School of Computing Science and

Engineering

Galgotias University, Greater Noida

shalini.sharma@rediffmail.com

Naresh Kumar

School of Computing Science and

Engineering

Galgotias University, Greater Noida

Naresh.dhull@gmail.com

Kuldeep Sing Kaswan

School of Computing Science and

Engineering

Galgotias University, Greater Noida

kaswankuldeep@gmail.com

Abstract—Many software reliability models have been

developed and are in use extensively. Because of advancements

in technology, no single model gives optimal results for all

applications; therefore, selecting the best model for a particular

application always remains an area of interest. This paper uses

different computational methods using various weighted

functions to determine models' ranking. A set of thirteen

comparison criteria using observed value and an estimation

value of models has been formulated. We assess the model's

suitability in estimating the fault by calculating model rank

based on various factors. We developed a ranking model that

takes into account the weightage of the model ranks in all

individual comparison criteria and incorporates the estimation

capability of a model through a weighted estimation function.

Keywords— Ranking Algorithm, Comparison Criteria, Hybrid

Models, Weighted Rank Method

I. INTRODUCTION

In recent times software has become an integral part of
our lives. Software quality determined by its reliability is
specified as (IEEE Std. 1633-2016) the probability of failure-
free operation of software under specific conditions for a
limited time. Software reliability growth models were
developed to determine the quality of developed software and
predict the failure phenomenon. This paper investigated the
most commonly used two or three-parameter Non-
homogeneous Poisson process models and selected the best
fit model based on their ranking. The software failure rate can
be estimated by collecting fault data as a function of time. To
guarantee failure-free software, one must use various tools
and techniques to keep track of fault, determine its cause, and
correct it in order to avoid further defects. The quality of the
software is determined using various well-known models
using multiple assumptions in determining the reliability and
has been proposed earlier. Best model selection required that
the models be classified and filtered based on their suitability
for the product environment, techniques used, and basic
assumptions used. The model best suited for the application
after all the scrutiny is selected. If there is no such model, one
needs to develop a tailored model specifically for the
requirements. We propose a ranking method that considers
the model's performance based on pre-set comparison criteria
and evaluates the model's prediction capability in comparison
with the observed values.

The paper is structured as: Section II gives a brief
introduction of literature related to reliability modeling.
Section III defines various comparison criteria formulas used
to determine the individual criterion ranking of the reliability
model. Section IV explains our methodology for determining
rank. Section V used the developed method using fault data

and derived the rank of considered models. Section VI
concludes the paper.

II. LITERATURE REVIEW

The reason for software failures is the fault remained in
software; detection and removal of these inherent faults is
desired for the successful operation of any automated system
[1]

In the last 40 years, researchers developed many
reliability models to aid decisions relating to software release
in the market. Models were classified into various categories
by various researchers. Broadly models can be classified into
two categories static and dynamic. A static model uses
software metrics to estimate the number of defects (or faults)
in the software, whereas a dynamic model uses the past
failure discovery rate during software execution overtime to
count the number of failures [2]. Some well-known Software
Reliability Growth Models (SRGM) are Goel-Okumoto
(GO): first Non-Homogeneous Poison Process Model
(NHPP), Generalized Goel: A generalization of GO model,
Yamada Delayed S-shaped model, Yamada Inflection S-
shaped model, Logistic growth curve model, and Yamada
exponential model. Each model gives a good result for a
specified data set, but no one can be selected as the best model
for all types of datasets.

Another classification divides the models into five
categories: Early Prediction Models, Software Reliability
Growth Models, Architecture-Based Models, Hybrid Black
Box Models, and Hybrid White Box Models.

Software fault prediction helps in maintaining the quality
of the software product [3]. Early Prediction Models
extrapolates the characteristics of software from the
requirement phase to the testing phase to predict the software
behavior during operation [4], SRGM concludes software
failure during the testing phase [5], Input domain model
utilizes the input properties to determine the probability of
correct estimation from properly executed test cases [6],
Architecture-based models derive the reliability estimate by
combining the reliability estimate of different software
modules [4], Hybrid Black Box model is a combination of the
input domain model and SRGMs features. In contrast, Hybrid
White Box Models use specific characteristics of white-box
models and black box models [7].

SRGM based models are further classified into NHPP
models and failure rate models [6], whereas architecture-
based models are divided into state-based models, additive
models, and path-based models [7].

20
21

 3
rd

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

dv
an

ce
s i

n
C

om
pu

tin
g,

 C
om

m
un

ic
at

io
n

C
on

tro
l a

nd
 N

et
w

or
ki

ng
 (I

C
A

C
3N

) |
 9

78
-1

-6
65

4-
38

11
-7

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
A

C
3N

53
54

8.
20

21
.9

72
55

34

Authorized licensed use limited to: DRDO-DESIDOC. Downloaded on June 25,2022 at 09:02:18 UTC from IEEE Xplore. Restrictions apply.

2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN)

1680

The mean value function (MF) and Intensity function (IF)
of some well-known models are tabulated in TABLE I.

TABLE I. NHPP MODELS

Models 𝒎(𝒕) 𝝀(𝒕)

Goel-Okumoto

Model [8]

𝑥(1 − 𝑒−𝑦𝑡) 𝑥𝑦𝑒−𝑦𝑡

Generalized Goel

[4]

𝑥(1 − 𝑒−𝑦𝑡𝑧
)

𝑥𝑦𝑧𝑡𝑧−1𝑒−𝑦𝑡𝑧

Gompert Model
[2]

𝑥𝑧𝑒−𝑦𝑡 𝑥𝑦 ln(𝑘) 𝑧𝑒−𝑦𝑡
𝑒−𝑦𝑡

Logistic Growth

Curve [2]

𝑥

(1 + 𝑧𝑒−𝑦𝑡)

𝑥𝑦𝑧𝑒−𝑦𝑡

(1 + 𝑧𝑒−𝑦𝑡)2

Yamada Delayed

S-Shaped [9]

𝑥{1 − (1 + 𝑦𝑡)𝑒−𝑦𝑡 } 𝑥𝑦2𝑡𝑒−𝑦𝑡

Yamada Inflection
S-Shaped [9]

𝑥(1 − 𝑒−𝑦𝑡)

1 + 𝑧𝑒−𝑦𝑡

𝑥𝑦𝑒−𝑦𝑡(1 + 𝑧)

(1 + 𝑧𝑒−𝑦𝑡)2

Yamada

exponential [10]
𝑥{1 − 𝑒−𝑧𝑤(1−𝑒𝑦𝑡)} 𝑥𝑧𝑤𝑦𝑒−𝑧𝑤(1−𝑒−𝑦𝑡)−𝑦𝑡

Musa-Okumoto
[2] 𝑥𝑙𝑜𝑔(1 + 𝑦𝑡)

𝑥𝑦

1 + 𝑦𝑡

Modified Duane

[4]

𝑎(1 − (

𝑏

𝑏 + 𝑡
)

𝑐

𝑎𝑐𝑏𝑐(𝑏+𝑡)1−𝑐

Yamada imperfect
debugging

model1[2]

𝑎𝑏(𝑒𝑝𝑡 − 𝑒−𝑏𝑡)

𝑝 + 𝑏

𝑎𝑏(𝑝𝑒𝑝𝑡 + 𝑒−𝑏𝑡)

𝑝 + 𝑏

Yamada imperfect
debugging model2

[2]

𝑎(1 − 𝑒−𝑏𝑡) (1 −
𝑝

𝑏
)

+ 𝑝𝑎𝑡

𝑎𝑏𝑒−𝑏𝑡(1−
𝑝
𝑏

)
+ 𝑝𝑎

III. COMPARISON CRITERIA

Many researchers" [11],[7],[12],[13],[14],[15]" used
comparison criteria set to determine the ability of a model to
give effective results. The comparison criteria set we used to
evaluate models quantitatively is mentioned below.

A. Mean Value (Bias):

Bias gives deviation between estimated and observed

values [14,15]. Smaller mean values are desired for best

prediction as it signifies the lesser deviation between the

observed and predicted values. If there are positive and

negative values in the data, then all these terms cancel out

each other while taking the summation, giving the wrong

result. In such cases, it is advisable to use the Mean Absolute

Error/Deviation (MAE/MAD) instead of Mean for better

prediction.

∑(𝐸𝑣𝑎𝑙(𝑖) − 𝑂𝑣𝑎𝑙(𝑖))/𝑛

𝑛

𝑖=1

B. Mean Square Error (MSE):

MSE gives the summative square of observed and

estimated values deviation [13]. It gives the best fit line

corresponding to the data set, and smaller values of MSE

indicate better prediction.

∑
(𝑂𝑣𝑎𝑙(𝑖) − 𝐸𝑣𝑎𝑙(𝑖))

2

𝑛

𝑛

𝑖=1

C. Mean Absolute Deviation (MAD):

MAD gives absolute deviation between observed and

estimated values [13]. A smaller value means lesser variation.

∑
|𝑂𝑣𝑎𝑙(𝑖) − 𝐸𝑣𝑎𝑙(𝑖)|

𝑛

𝑛

𝑖=1

D. Predictive Ratio Risk (PRR)

PRR gives a summative difference between the estimated

and observed values compared to calculated values [17].

∑
(𝐸𝑣𝑎𝑙(𝑖) − 𝑂𝑣𝑎𝑙(𝑖))

𝐸𝑣𝑎𝑙(𝑖)

𝑛

𝑖=1

E. Noise

Noise gives the sum of the difference between

intensity function at time t and intensity function at time

t-1, concerning intensity function value at time t-1 [16].

∑
𝜆(𝑡𝑖) − 𝜆(𝑡𝑖−1)

𝜆(𝑡𝑖−1)

𝑛

𝑖

F. Root Mean Square Error (RMSE)

RMSE gives the square root of Mean Square Error

[13]. Lower the value better is the prediction capability of

a model.

∑
(𝑂𝑣𝑎𝑙(𝑖) − 𝐸𝑣𝑎𝑙(𝑖))^2

𝑛

𝑛

𝑖=1

G. Relative Absolute Error (RAE)

RAE gives the summative absolute difference
between the observed and estimated values concerning
the sum of the absolute difference between the estimated
value and the mean estimated value of the model [13]. For
a model to be a better estimator, this ratio must be close
to zero.

∑ |𝑂𝑣𝑎𝑙(𝑖)) − 𝐸𝑣𝑎𝑙(𝑖)|𝑛
𝑖=1|

∑ |𝐸𝑣𝑎𝑙(𝑖) − 𝐸𝑣𝑎𝑙 ̅̅ ̅̅ ̅̅ ̅𝑛
𝑖=1 |

H. Root Relative Squared Error (RRSE)

RRSE gives the square root of the summative squared
difference between the estimated and observed value
compared to the summative squared difference between
the observed value and the mean of practical value [13].

The deviation of square errors between observed
values and estimated values is being normalized by the

Authorized licensed use limited to: DRDO-DESIDOC. Downloaded on June 25,2022 at 09:02:18 UTC from IEEE Xplore. Restrictions apply.

2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN)

1681

squared deviation of the estimated values from the mean
value of the model. Smaller values of RRSE give a better
fitting model.

√
∑ (𝐸𝑣𝑎𝑙(𝑖) − 𝑂𝑣𝑎𝑙(𝑖))

2𝑛
𝑖=1

∑ (𝑂𝑣𝑎𝑙(𝑖) − 𝑂𝑣𝑎𝑙)^2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛
𝑖=1

I. Mean Magnitude of Relative Error (MMRE)

MMRE gives MAD divided by observed values [13].
Ideally, for a perfect fit, the value of absolute error should
be zero. While accessing the model for a good fit, this
value must be closer to zero.

1

𝑛
∑ |

𝑂𝑣𝑎𝑙(𝑖) − 𝐸𝑣𝑎𝑙(𝑖)

𝑂𝑣𝑎𝑙(𝑖)
|

𝑛

𝑖=1

J. Predictive Power (PP)

PP gives the sum of the square difference between the
estimated and observed values regarding the observed
value [13].

∑ (
𝐸𝑣𝑎𝑙(𝑖) − 𝑂𝑣𝑎𝑙(𝑖)

𝑂𝑣𝑎𝑙(𝑖)
)

2𝑛

𝑖=1

K. Coefficient Of Determination (R2)

R2 gives deviation from the sum of the squared difference
between the observed value and estimated value concerning
the sum of the squared deviation of the practical value from
its mean value [18]. A high R2 value near 1 represents a good
fit.

1 −
∑ (𝑂𝑣𝑎𝑙(𝑖) − 𝐸𝑣𝑎𝑙(𝑖))^2𝑛

𝑖=1

∑ (𝑂𝑣𝑎𝑙(𝑖) − 𝑂𝑣𝑎𝑙(𝑖))^2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛
𝑖=1

L. Accuracy Of estimation (AE)

AE gives the difference between observed and
estimated cumulated values concerning observed
cumulative value [18]. Near zero values of cumulative
difference provides a good fit, so smaller values of AE are
desirable for better estimation.

𝑂(𝑎) − 𝐸(𝑎)

𝑂(𝑎)

M. Theil's Statistics (TS)

TS gives the percentage of average deviation concerning
the summative square of observed values [17]. Smaller values
of these statistics provide a good fit.

√
∑ (𝐸𝑣𝑎𝑙(𝑖)−𝑂𝑣𝑎𝑙(𝑖))^2𝑛

𝑖=1

∑ 𝑂𝑣𝑎𝑙(𝑖)^2𝑛
𝑖=1

 × 100%

IV. RANKING METHOD

we developed a methodology to rank the models based on

a weighted ranking method. For this, we first evaluate each

model's criteria values and arrange them in matrix form called

Criteria Matrix. Then criteria values were ranked, assigned

weights, and estimation functions were calculated to evaluate

the rank of a model.

A. Criteria Matrix

Each element 𝑎𝑖𝑗 that belongs to this matrix represents

the jth criteria value of an ith model. If there are n criteria and

m models to rank, then we can represent this matrix as:

A = Mat [𝑎𝑖𝑗]= [

𝑎11

𝑎21

𝑎12

𝑎22

… 𝑎1𝑛

… 𝑎2𝑛

⋮
𝑎𝑚1

⋮
𝑎𝑚2

… ⋮
 … 𝑎𝑚𝑛

]

B. Individual Criteria Ranking Matrix

Let us call this matrix R. It consists of ranking all m

models according to each n criteria. We can represent it as

R = Mat [𝑟𝑖𝑗] =[

𝑟11

𝑟21

𝑟12

𝑟22

… 𝑟1𝑛

… 𝑟2𝑛

⋮
𝑟𝑚1

⋮
𝑟𝑚2

… ⋮
 … 𝑟𝑚𝑛

]

C. Weight Matrix

Next, we assign the weights to all these ranks, Then the

model having a consistent lower position gives a low value.

The model with the lowest sum of weight is considered the

best model compared to other models against considered

criteria for evaluation. The highest weight, seven, is assigned

to rank 11, and the lowest weight, 0.0001, is given to rank 1

in a gradually increasing manner according to the rank

number as shown in TABLE II.

TABLE II. WEIGHT VECTOR ASSIGNED TO RANKS

R1 R2 R3 R4

R

5

R

6

R

7

R

8

R

9

R

10

R

11

W1 W2 W3 W4

W

5

W

6

W

7

W

8

W

9

W

10

W

11

0.00

01

0.00

05

0.0

01

0.0

05 1 2 3 4 5 6 7

Weight Matrix for each model is calculated by substituting

the rank of the model by corresponding rank weight as:

W=Mat [𝑤𝑖𝑗] =[

𝑤11

𝑤21

𝑤12

𝑤22

… 𝑤1𝑛

… 𝑤2𝑛

⋮
𝑤𝑚1

⋮
𝑤𝑚2

… ⋮
 … 𝑤𝑚𝑛

]

Authorized licensed use limited to: DRDO-DESIDOC. Downloaded on June 25,2022 at 09:02:18 UTC from IEEE Xplore. Restrictions apply.

2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN)

1682

D. Weighted Criteria Matrix

The weighted rank value of each model was obtained by

multiplying the rank of each model with its weight for each

criterion.

WR= Mat[𝑟𝑤𝑖𝑗]= Mat[𝑟𝑖𝑗] * Mat[𝑤𝑖𝑗]

[

𝑟11

𝑟21

𝑟12

𝑟22

… 𝑟1𝑛

… 𝑟2𝑛

⋮
𝑟𝑚1

⋮
𝑟𝑚2

… ⋮
 … 𝑟𝑚𝑛

]*

 [

𝑤11

𝑤21

𝑤12

𝑤22

… 𝑤1𝑛

… 𝑤2𝑛

⋮
𝑤𝑚1

⋮
𝑤𝑚2

… ⋮
 … 𝑤𝑚𝑛

]

E. Weighted Estimation Function

The weighted estimation function is calculated based on

the difference in estimation and observed values. We

considered the deviation from 0 (for the same value) to 10,

giving each model a weight vector of 11 values. Calculated

deviation determines which model provides the estimation

with values closer to observed values.

F. Rank Evaluation

The model, which is the best estimator and has a low rank

in most criteria, is considered the best model. All the models

were ranked based on this assumption by dividing the row

summation of the weighted criteria matrix by weighted

estimation function of that particular model as:

𝑅𝑗 =
∑ 𝑊𝑅𝑖𝑗

𝑛
𝑖=1

∑ 𝑊𝐹𝑗

 , 𝑤ℎ𝑒𝑟𝑒 𝑗 = 1 𝑡𝑜 𝑚

V. ILLUSTRATED EXAMPLE

We used the Fault data set, and parameters value used by

Rajpal Garg et al. [15], shown in TABLE III and TABLE IV.

We used thirteen comparison criteria discussed above to rank

eleven different SRGMs having two or three parameters.

TABLE III. FAULT DATASET

Time

(In weeks) Observed Faults Cumulative Faults

1 20 20

2 25 45

3 14 59

4 20 79

5 8 87

6 12 99

7 20 119

8 5 124

9 2 126

10 7 133

11 1 134

12 8 142

13 16 158

14 6 164

15 3 167

16 2 169

17 1 170

18 2 172

19 4 176

20 1 177

21 20 197

TABLE IV. PARAMETERS VALUE

MODELS Parameter1 Parameter2 Parameter3

GO 2.157630e+2 1.08e-1 -

YMD 1.907960e+2 2.96e-1 -

MO 1.130030e+2 2.30e-1 -

GG 1.853600e+2 8.00e-4 3.1005

GMPZ 1.917870e+2 2.42e-1 5.97e-2

LGC 1.883490e+2 3.32e-1 7.21

YMI 2.033070e+2 1.55e-1 5.24e-1

PZIF 1.907950e+2 2.96e-1 1.00e-5

MD 2.375810e+2 4.0437e+1 4.096

YIDM1 128 1.89e-1 2.47e-2

YIDM2
128 1.91e-1 3.26e-2

Authorized licensed use limited to: DRDO-DESIDOC. Downloaded on June 25,2022 at 09:02:18 UTC from IEEE Xplore. Restrictions apply.

2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN)

1683

The criteria values for each of the thirteen criteria reflected

in TABLE V were calculated using MATLAB-2020b.

Based on the values of these criteria, each model's ranking
for individual measures is determined and shown in TABLE VI.

Next, we assigned the weights so that the weightage given
to low ranks when added up for different criteria for a specific
model remains small compared to others. The weight matrix is
evaluated according to the weight vector and shown in Table
VII.

The weight matrix is then multiplied by the rank matrix to
get a weighted rank-sum of a model as shown in TABLE VIII.
This matrix is evaluated to ensure that models with consistent
performance for all criteria must be given low rank.

Even though the Weighted matrix gives the rank according
to the consistent performance of a model against set criteria, but
it may happen that the two models still have equal weighted
grades because of specific rank combinations. The best-ranked
model may not be the best estimator for the same set of failure
data and parameters.

TABLE V. COMPARISON CRITERIA’S VALUE

MODEL

S BIAS MSE MAD PRR NOISE RMSE RAE RRSE

MMR

E PP R2 AE TS

GO -0.46 24.37 2.97 60.76 22.96 4.94 0.92 0.76 0.71 0.00 0.42 0.07 0.49

YMD -0.33 33.59 3.54 773.71 16.09 5.80 0.81 0.90 0.66 0.06 0.19 0.05 0.57

MO -0.27 23.70 3.12 19.71 22.62 4.87 1.23 0.75 0.88 0.04 0.43 0.04 0.48

GG -0.39 95.80 6.05

2890560.

00 12.12 9.79 1.18 1.52 1.41 0.06 -1.30 0.06 0.96

GMPZ -12.34 315.07 12.34 786.07 14.46 17.75 3.33 2.75 1.78 0.49 -6.56 1.88 1.75

LGC -1.20 41.41 3.95 2229.61 12.31 6.44 1.14 1.00 0.74 0.00 0.01 0.18 0.63

YMI 12.34 289.00 12.78 11.12 21.15 17.00 2.95 2.63 4.55 0.21 -5.93 1.88 1.67

PZIF -0.33 33.59 3.54 773.45 16.09 5.80 0.81 0.90 0.66 0.93 0.19 0.05 0.57

MD

14298.5

5

332608000.

00

14298.5

5 20.98

36485.3

1

18237.5

4 3.15

2824.2

7

3415.2

6

11.6

1

-

7976513.

00

2177.4

4

1794.3

9

YIDM1 -6.53 102.35 6.53

4272453.

00 2.62 10.12

270.9

7 1.57 0.69 0.02 -1.45 0.99 1.00

YIDM2 -0.49 23.23 3.04 20.03 22.38 4.82 1.16 0.75 0.81
37.2

5 0.44 0.08 0.47

TABLE VI. RANKING OF DIFFERENT MODELS BASED ON A SPECIFIC CRITERION

MODELS BIAS MSE MAD PRR NOISE RMSE RAE RRSE MMRE PP Rsquare AE TS

GO 5 3 1 5 10 3 3 3 4 2 3 5 3

YMD 2 4 4 7 6 4 1 4 1 6 4 2 4

MO 1 2 3 2 9 2 7 2 7 4 2 1 2

GG 4 7 7 10 2 7 6 7 8 5 7 4 7

GMPZ 10 10 9 8 4 10 10 10 9 8 10 10 10

LGC 7 6 6 9 3 6 4 6 5 1 6 7 6

YMI 9 9 10 1 7 9 8 9 10 7 9 9 9

PZIF 3 5 5 6 5 5 2 5 2 9 5 3 5

MD 11 11 11 4 11 11 9 11 11 10 11 11 11

YIDM1 8 8 8 11 1 8 11 8 3 3 8 8 8

YIDM2 6 1 2 3 8 1 5 1 6 11 1 6 1

Authorized licensed use limited to: DRDO-DESIDOC. Downloaded on June 25,2022 at 09:02:18 UTC from IEEE Xplore. Restrictions apply.

2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN)

1684

TABLE VII. WEIGHT MATRIX

MODELS BIAS MSE MAD PRR NOISE RMSE RAE RRSE MMRE PP Rsquare AE TS

GO 1.0000 0.0010 0.0001 1.0000 6.0000 0.0010 0.0010 0.0010 0.0050 0.0005 0.0010 1.0000 0.0010

YMD 0.0005 0.0050 0.0050 3.0000 2.0000 0.0050 0.0001 0.0050 0.0001 2.0000 0.0050 0.0005 0.0050

MO 0.0001 0.0005 0.0010 0.0005 5.0000 0.0005 3.0000 0.0005 3.0000 0.0050 0.0005 0.0001 0.0005

GG 0.0050 3.0000 3.0000 6.0000 0.0005 3.0000 2.0000 3.0000 4.0000 1.0000 3.0000 0.0050 3.0000

GMPZ 6.0000 6.0000 5.0000 4.0000 0.0050 6.0000 6.0000 6.0000 5.0000 4.0000 6.0000 6.0000 6.0000

LGC 3.0000 2.0000 2.0000 5.0000 0.0010 2.0000 0.0050 2.0000 1.0000 0.0001 2.0000 3.0000 2.0000

YMI 5.0000 5.0000 6.0000 0.0001 3.0000 5.0000 4.0000 5.0000 6.0000 3.0000 5.0000 5.0000 5.0000

PZIF 0.0010 1.0000 1.0000 2.0000 1.0000 1.0000 0.0005 1.0000 0.0005 5.0000 1.0000 0.0010 1.0000

MD 7.0000 7.0000 7.0000 0.0050 7.0000 7.0000 5.0000 7.0000 7.0000 6.0000 7.0000 7.0000 7.0000

YIDM1 4.0000 4.0000 4.0000 7.0000 0.0001 4.0000 7.0000 4.0000 0.0010 0.0010 4.0000 4.0000 4.0000

YIDM2 2.0000 0.0001 0.0005 0.0010 4.0000 0.0001 1.0000 0.0001 2.0000 7.0000 0.0001 2.0000 0.0001

TABLE VIII. WEIGHTED RANK MATRIX

MODELS BIAS MSE MAD PRR NOISE RMSE RAE RRSE MMRE PP R2 AE TS

GO 5.000 0.003 0.000 5.000 60.000 0.003 0.003 0.003 0.020 0.001 0.003 5.000 0.003

YMD 0.0010 0.0200 0.0200 21.0000 12.0000 0.0200 0.0001 0.0200 0.0001 12.0000 0.0200 0.0010 0.0200

MO 0.0001 0.0010 0.0030 0.0010 45.0000 0.0010 21.0000 0.0010 21.0000 0.0200 0.0010 0.0001 0.0010

GG 0.0200 21.0000 21.0000 60.0000 0.0010 21.0000 12.0000 21.0000 32.0000 5.0000 21.0000 0.0200 21.0000

GMPZ 60.0000 60.0000 45.0000 32.0000 0.0200 60.0000 60.0000 60.0000 45.0000 32.0000 60.0000 60.0000 60.0000

LGC 21.0000 12.0000 12.0000 45.0000 0.0030 12.0000 0.0200 12.0000 5.0000 0.0001 12.0000 21.0000 12.0000

YMI 45.0000 45.0000 60.0000 0.0001 21.0000 45.0000 32.0000 45.0000 60.0000 21.0000 45.0000 45.0000 45.0000

PZIF 0.0030 5.0000 5.0000 12.0000 5.0000 5.0000 0.0010 5.0000 0.0010 45.0000 5.0000 0.0030 5.0000

MD 77.0000 77.0000 77.0000 0.0200 77.0000 77.0000 45.0000 77.0000 77.0000 60.0000 77.0000 77.0000 77.0000

YIDM1 32.0000 32.0000 32.0000 77.0000 0.0001 32.0000 77.0000 32.0000 0.0030 0.0030 32.0000 32.0000 32.0000

YIDM2 12.0000 0.0001 0.0010 0.0030 32.0000 0.0001 5.0000 0.0001 12.0000 77.0000 0.0001 12.0000 0.0001

To overcome this problem, we computed a weighted
function based on estimation values, and undermentioned
Table X gives the weighted function values of different
models. Zero value is replaced by 0.0001 for computation
purposes.

The estimation values for all the models were calculated
and formatted to number values without any decimal part.
The Estimation function is then calculated, giving the highest
weight to zero deviation and lowest to ten point deviation.

Weights gradually decrease by two points for each increased
variation from 20 to 1.

The rank of a model based on set criteria and estimation
capabilities is then calculated by dividing the weighted sum
value by the weighted estimation function value. The models
are then arranged according to their rank in Table XI, where
the lowest rank value specifies the best model for selected
fault data.

Authorized licensed use limited to: DRDO-DESIDOC. Downloaded on June 25,2022 at 09:02:18 UTC from IEEE Xplore. Restrictions apply.

2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN)

1685

TABLE IX. WEIGHTED ESTIMATION FUNCTION

MODELS Estimation Function

GO 255

YMD 230

MO 249

GG 184

GMPZ 73

LGC 219

YMI 48

PZIF 230

MD 0.0001

YIDM1 160

YIDM2 249

TABLE X. MODEL'S RANKING

S. No. Models

Rank

1 GO 2

2 YMD 1

3 MO 3

4 GG 7

5 GMPZ 9

6 LGC 6

7 YMI 10

8 PZIF 4

9 MD 11

10 YIDM1 8

11 YIDM2 5

VI. CONCLUSION
Various researchers developed ranking models based

only on the specific criteria set in the past. This paper
specified a comparison criterion to determine the model's
rank. The comparison criteria consist of thirteen criteria
generally used in the literature to determine the
performance and ranking of models. We developed a
ranking methodology by specifying various matrices.
Criteria Matrix and Rank Matrix represent the criteria
values and rank of eleven models against each measure.
Weight matrix assigns different weights to models rank in
such a way that models showing good consistent
performance must be assigned a low value. The weighted
estimation function matrix gives the weighted sum of th-
number of deviations of model estimation with observed
value, ranging from 0 to 19 for each model. The summation
of the weighted rank of each model for all thirteen criteria
is then divided by the weighted estimation function of that
specific model to give us the best model, which has the
lowest rank and better estimation capabilities than other
models.

No model is optimal for all applications, and we can
select the best-suited model by specifying criteria tailored
to our requirements. The rank calculation methodology
adopted in this paper involves simple calculations and is
easy to use. The model can be modified by including more
relevant values into the criteria set, and weights can be
assigned depending on measures set values regarding the
problem. The only limitation of our methodology is the
inclusion of reliability models up to three parameters, and
one can also generalize the method for reliability models
with more than three parameters.

REFERENCES

[1] S. Khurshid, A. K. Shrivastava, and J. Iqbal, "Effort based software
reliability model with fault reduction factor, change point and
imperfect debugging," Int. J. Inf. Technol., vol. 13,

 no. 1, pp. 331–340, 2021, doi: 10.1007/s41870-019-00286-x.

[2] M. Anjum, M. A. Haque, and N. Ahmad, "Analysis and Ranking of
Software Reliability Models Based on Weighted Criteria Value," Int.
J. Inf. Technol. Comput. Sci., vol. 5, no. 2, pp. 1–14, 2013, doi:
10.5815/ijitcs.2013.02.01.

[3] D. Sharma and P. Chandra, "A comparative analysis of soft
computing techniques in software fault prediction model
development," Int. J. Inf. Technol., vol. 11, no. 1, pp. 37–46, 2019,
doi: 10.1007/s41870-018-0211-3.

[4] M. Xie, "Software Reliability Models for Practical Applications,"
pp. 211–214, 1995, doi: 10.1007/978-0-387-34848-3_32.

[5] S. S. Gokhale, P. N. Marinos, and K. S. Trivedi, "Important
milestones in software reliability modeling," Seke, pp. 345–352,
1996.

[6] S. S. Gokhale, W. E. Wong, J. R. Horgan, and K. S. Trivedi, "An
analytical approach to architecture-based software performance and
reliability prediction," Perform. Eval., vol. 58, no. 4, pp. 391–412,
2004, doi: 10.1016/j.peva.2004.04.003.

[7] K. Sharma, R. Garg, C. K. Nagpal, and R. K. Garg, "Selection of
optimal software reliability growth models using a distance based
approach," IEEE Trans. Reliab., vol. 59, no. 2, pp. 266–276, 2010,
doi: 10.1109/TR.2010.2048657.

[8] A. L. Goel and K. Okumoto, "Time-Dependent Error-Detection Rate
Model for Software Reliability and Other Performance Measures,"
IEEE Trans. Reliab., vol. R-28, no. 3, pp. 206–211, 1979, doi:
10.1109/TR.1979.5220566.

[9] S. Yamada and S. Osaki, "Software Reliability Growth Modeling:
Models and Applications," IEEE Trans. Softw. Eng., vol. SE-11, no.
12, pp. 1431–1437, 1985, doi: 10.1109/TSE.1985.232179.

[10] S. Yamada, H. Ohtera, and H. Narihisa, "Software Reliability
Growth Models with Testing-Effort," IEEE Trans. Reliab., vol. 35,
no. 1, pp. 19–23, 1986, doi: 10.1109/TR.1986.4335332.

[11] P. Govindasamy and R. Dillibabu, "Development of software
reliability models using a hybrid approach and validation of the
proposed models using big data," J. Supercomput., vol. 76, no. 4, pp.
2252–2265, 2020, doi: 10.1007/s11227-018-2457-8.

[12] K. Pillai and V. S. Sukumaran Nair, "A model for software
development effort and cost estimation," IEEE Trans. Softw. Eng.,
vol. 23, no. 8, pp. 485–497, 1997, doi: .1109/32.624305.

[13] C. Y. Huang and S. Y. Kuo, "Analysis of incorporating logistic
testing-effort function into software reliability modeling," IEEE
Trans. Reliab., vol. 51, no. 3, pp. 261–270, 2002, doi:
10.1109/TR.2002.801847.

[14] K. C. Chiu, Y. S. Huang, and T. Z. Lee, "A study of software
reliability growth from the perspective of learning effects," Reliab.
Eng. Syst. Saf., vol. 93, no. 10, pp. 1410–1421, 2008, doi:
10.1016/j.ress.2007.11.004.

[15] R. Garg, K. Sharma, R. Kumar, and R. K. Garg, "Performance
analysis of software reliability models using matrix method," World
Acad. Sci. Eng. Technol., vol. 71, pp. 31–38, 2010, doi:
10.5281/zenodo.1330575

Authorized licensed use limited to: DRDO-DESIDOC. Downloaded on June 25,2022 at 09:02:18 UTC from IEEE Xplore. Restrictions apply.

