

K1 (2)

School of Basic Sciences

Master of Science in Mathematics Semester End Examination - Nov 2023

Duration: 180 Minutes Max Marks: 100

1)

Sem III - MSCM403 - Applied Numerical Analysis

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Write Milne's Predictor and Corrector formula.	K1 (2)
2)	The population of a town in decennial census were given in the following table.	K2 (4)
	Year: 1921 1931 1941 1951 1961 Population (in thousand): 46 66 81 93 101 Estimate the population for the year 1955 using Newton's backward and forward formula.	
3)	Apply Muller's method to find the root of the equation $x^3 - 2x - 1 = 0$ correct to two decimal places	K2 (6)
4)	Find $f'(0)$ from the following table: $\frac{x 0 1 2 3 4 5}{f(x) 4 8 15 7 6 2}$	K3 (9)
5)	Solve the initial value problem $\frac{dy}{dx} = 1 + xy^2$, $y(0) = 1$ For $x = 0.4$ by using milne's method, when it is given that X: 0.1 0.2 0.3 Y: 1.105 1.223 1.355	K3 (9)
6)	Find the largest Eigen value and corresponding Eigen vector of the $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$ matrices taking $\begin{bmatrix} 1,0,0 \end{bmatrix}^T$ as initial Eigen vector:	K5 (10)
7)	A river is 80 feet wide. The depth d in feet at a distance x feet from one bank is given by the following table: x: 0 10 20 30 40 50 60 70 80 d: 0 4 7 9 12 15 14 8 3 Find approximately the area of cross section.	K4 (12)

Find the Hermite interpolating polynomial

- Use the Given's method to find the Eigen values of the tridiagonal (15) $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$ matrix
- Solve $\nabla^2 u = 0$ for the following mesh with boundary values, up to fifth iteration, as shown

