

School of Engineering M.Tech Structural Engineering Mid Term Examination - Nov 2023

Duration : 90 Minutes Max Marks : 50

Sem I - C1PC120T - Advanced Numerical and Statistical Methods

General Instructions Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Explain Crout LU decomposition method.	K2 (2)
2)	Find, whether the system 1.01x+2y=2.01, x+2y=2 is well conditioned or not?	K1 (3)
3)	Estimate whether the system 4x+3y=5, 2x+2y=3 is well conditioned or not?	K2 (4)
4)	Estimate the value of $\int_{-1}^{1} \frac{\sin x dx}{1+x^2}$ using Gauss formula for n=2 and n=3.	K2 (6)
5)	Compare Jacobi method and Gauss Seidel method results for the given example: x+3y=16, x+4y=18.	K3 (6)
6)	Solve the following equations by using Gauss Seidel method: , , .	K3 (9)
7)	Classify the values of x, y and z from the following equations by Crout's method: $4x + y + z = 4$, $x + 4y - 2z = 4$, $3x + 2y - 4z = 6$	K4 (8)
8)	Analyze the system of nonlinear equations: $x^2 + y = 11$, $y^2 + x = 7$ with the help of Newton Raphson method.	K4 (12)
OR		

Classify advanced Newton-Raphson method and solve the system of K4 (12) equations $x^2 + y^2 - 1 = 0$, taking initial approximation $y - x^2 = 0$ $(x_0, y_0) = (0.7071, 0.7071)$