

ADMISSION NUMBER

School of Basic Sciences

Bachelor of Science Honours in Mathematics Mid Term Examination - Nov 2023

Duration : 90 Minutes Max Marks : 50

Sem III - C1UC303B - Mathematical Statistics

General Instructions

Answer to the specific question asked

Draw neat, labelled diagrams wherever necessary

Approved data hand books are allowed subject to verification by the Invigilator

1)	Explain moment generating functions in the continuous and discrete distribution.	K2 (2)
2)	If two coins are tossed simultaneously. Let X be the head on the up face, find its probability mass function and its distribution.	K1 (3)
3)	Let a X random variable and its probability mass function is given by x: 1 2 3 4 5 $P(X = x)$: 0.3 0.1 0.1 0.3 0.2 Estimate the value of X	K2 (4)
4)	If M is the mgf and x is random variables then show that $M_{x_1+x_2+x_3}=M_{x_1}M_{x_2}M_{x_3}$.	K2 (6)
5)	If the sum of the mean and the variance of binomial distribution of 5 trials are 4.8, develop the binomial distribution.	K3 (6)
6)	Let Z is a standard normal variable. Find $P(Z < 1.2)$ and $P(Z > -1.2)$.	K3 (9)
7)	Find the value of $P(X=3)$ if X is the discrete random variable taking values x1, x2, x3 where $P(X=0)=0$, $P(X=1)=1/4$ and $P(X=2)=1/4$.	K4 (8)
8)	A student obtained the following answer to a certain problem given to him. Mean=2.4; Variance=3.2 for a binomial distribution. Analyze the consistency of results.	K4 (12)
OR		
	Is the binomial distribution possible whose mean is 9 and variance 9/4.	K4 (12)