

## **School of Basic Sciences**

Master of Science in Physics Mid Term Examination - Nov 2023

**Duration : 90 Minutes Max Marks : 50** 

## Sem I - C1PO105T - Nuclear Physics

Approved data hand books are allowed subject to verification by the Invigilator

General Instructions
Answer to the specific question asked
Draw neat, labelled diagrams wherever necessary

| 1) | Explain the main features of the shell model of a nucleus.                                                                                                                                                                                                                  | K2 (2)  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 2) | List the properties of nuclear forces.                                                                                                                                                                                                                                      | K1 (3)  |
| 3) | Draw the mass parabola curve of a nucleus.                                                                                                                                                                                                                                  | K2 (4)  |
| 4) | Illustrate the basic assumptions of the nuclear shell model.                                                                                                                                                                                                                | K2 (6)  |
| 5) | Using the liquid drop model, find the most stable isobars for $A = 27$ , $A = 118$ , and $A = 238$ .                                                                                                                                                                        | K3 (6)  |
| 6) | Calculate the (i) mass defect, (ii) binding energy and (iii) the binding energy per nucleon for a $_6C^{12}$ nucleus. Nuclear mass of $_6C^{12}$ =12.000000 a.m.u., mass of hydrogen nucleus =1.007825 a.m.u. and mass of neutron =1.008665 a.m.u. Given 1 a.m.u. =931 MeV. | K3 (9)  |
| 7) | Define: (i) Mass defect, (ii) Binding energy, and (iii) Packing fraction and provide example.                                                                                                                                                                               | K4 (8)  |
| 8) | Obtain the relation between Binding energy per nucleon and packing fraction.                                                                                                                                                                                                | K4 (12) |
|    | OR                                                                                                                                                                                                                                                                          |         |
|    | Classify the transitions in β-decay and write the selection rules for allowed and forbidden transitions up to second order                                                                                                                                                  | K4 (12) |