Name			Printed Pages:01		
Student Admn. No.:					
School of Liberal Education					
Backlog Examination (SEE), June 2023					
[Programme: BA (H) Economics] [Semester: II] [Batch:]					
Course Title: Mathematics for Economics			Max Marks: 100		
Course Code: ECO1007			Time: 3 Hrs.		
Instructions: 1. All questions are compulsory.					
2. Assume missing data suitably, if any.					
			K	COs	Marks
			Level	COS	Marks
SECTION-A (15 Marks) 5 Marks eac					
	Differentiate the following functions.				
1.	$y = (4x^3 - 3)^3$	-	K1	CO1	5
-	÷	5) (3x ⁵ - 8)			
2.		demand schedule $p = 120 - 3q$ derive a function for MR and find the which TR is a maximum	K2	CO2	5
	output at v				
3.	Define the Critical points		K1	CO3	5
SECTION-B (40 Marks) 10 Marks each					
		er's rule to solve given equations.			
		+3x3 = 16	K2	CO4	10
4.	$\begin{array}{c} 2x1 + 3x2 \\ 4x1 - 5x2 \end{array}$		K2	04	10
	4XI - JXZ	+ 0x3 - 7			
	Given the	IS equation $0.3Y + 100i - 252 = 0$ and the LM equation $0.25 Y - 200i - $			10
5.		Use Cramer's rule to find the equilibrium level of income and rate of	K3	CO1	
	interest.				10
-	Find (a) th	e minors and (b) cofactors for the elements of the second column, given	K2	CO 2	10
6.		$\mathbf{A} = \begin{bmatrix} 13 & 6 & 11 \\ 12 & 9 & 4 \\ 7 & 10 & 2 \end{bmatrix}$	K3	CO2	
	Analyse gl	lobal maxima and global minima.			
7.		OR	K4	CO4	10
	Analyse lo	cal maxima and global minima.			
	1	SECTION-C (45 Marks) 15 Marks ea	1	~~ :	
8.		st (b) second and (c) cross partial derivatives for $z=7x^5+9xy+2y^5$	K3	CO1	15
9.	Find the m	arginal productivity of all factors of production of given equation.	K5	CO3	15
).	Q = 45 + 1	$6x + 3x^2 + 3x^3 + 5y + 2y^2 + 3z^2 + 5z$			
	Find the m	arginal cost of a firm's different products when the total cost function is	K5		
		$-6x + 2.5 xy + 8y + 4y^2$ and also determine the marginal cost of x and y			
10	when $x = 6$	o, y=4 OR		CO4	15
10	(a) Find th	e critical points (b) Test whether the function is at a relative maximum or		007	15
	minimum.				
	$z = 2y^3 - x$	$x^{3} + 147x - 54y + 12$			