School of Basic Sciences

Department of Basic Sciences Mid Term Examination

Exam Date: 30 Sep 2023 Time : 90 Minutes Marks : 50

Sem V - C1UC503T - Number Theory and Game Theory

Your answer should be specific to the question asked Draw neat labeled diagrams wherever necessary

1)	Estimate $\phi(1105)$, where ϕ is Euler-phi function.	K2 (2)
2)	Find the number of positive integers \leq 3076 and not divisible by 24.	K1 (3)
3)	Show if 1601 is a prime number	K2 (4)
4)	Explain that $f(x) = 1/(1-x)^2$ is the generating function for 1, 2, 3, 4,	K2 (6)
5)	Applying Wilson's theorem, find is the remainder when 100! is divided by 97^2	K3 (6)
6)	Develop a generating function for each of the following sequences (a) 2, 4, 6, 8, 10, (b) 1, 5, 25, 125,	K3 (9)
7)	For two integers 540 and 168, examine the gcd (greatest common divisor) of both and write gcd as linear combination of these two integers using Euclidean algorithm.	K4 (8)
8)	Analysis and ashes the recurrence relation $z = 2z$ $2z$ with initial	KA (12

8) Analyse and solve the recurrence relation $a_n = 3a_{n-1} - 2a_{n-2}$ with initial K4 (12) conditions $a_0 = 1$ and $a_1 = 3$

OR

Consider the recurrence relation 3,6,12,24,48..... Analyse it in terms ^{K4 (12)} of initial condition, solution and general solution.