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Preface

In the Winter of 	
�	 I was honored by an invitation� from the National Sci�

ence Council of the Republic of China� to visit National Tsing Hua University in

Hsinchu� Taiwan and to give a six week course of lectures on the general subject

of �gauge �eld theory�� My initial expectation was that I would be speaking to a

rather small group of advanced mathematics students and faculty� To my surprise

I found myself the �rst day of the course facing a large and heterogeneous group

consisting of undergraduates as well as faculty and graduate students� physicists as

well as mathematicians� and in addition to those from Tsing Hua a sizable group

from Taipei� many of whom continued to make the trip of more than an hour to

Hsinchu twice a week for the next six weeks� Needless to say I was �attered by this

interest in my course� but beyond that I was stimulated to prepare my lectures

with greater care than usual� to add some additional foundational material� and

also I was encouraged to prepare written notes which were then typed up for the

participants� This then is the result of these e
orts�

I should point out that there is basically little that is new in what follows�

except perhaps a point of view and style� My goal was to develop carefully the

mathematical tools necessary to understand the �classical� �as opposed to �quan�

tum�� aspects of gauge �elds� and then to present the essentials� as I saw them� of

the physics�

A gauge �eld� mathematically speaking� is �just a connection�� It is now certain

that two of the most important �forces� of physics� gravity and electromagnetism

are gauge �elds� and there is a rapidly growing segment of the theoretical physics

community that believes not only that the same is true for the �rest� of the fun�

damental forces of physics �the weak and strong nuclear forces� which seem to
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manifest themselves only in the quantum mechanical domain� but moreover that

all these forces are really just manifestations of a single basic �uni�ed� gauge �eld�

The major goal of these notes is to develop� in su�cient detail to be convincing� an

observation that basically goes back to Kuluza and Klein in the early 	
���s that

not only can gauge �elds of the �Yang�Mills� type be uni�ed with the remarkable

successful Einstein model of gravitation in a beautiful� simple� and natural manner�

but also that when this uni�cation is made they� like gravitational �eld�

disappear as forces and are described by pure geometry� in the sense that particles

simply move along geodesics of an appropriate Riemannian geometry�
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Some Motivational Remarks�

The Geometrization of Physics in the ��th Century�

Suppose we have n particles with masses m�� � � � � mn which at time t are at

�x��t�� � � � � �xn�t� � R
�� How do they move� According to Newton there are func�

tions �fi��x�� � � � � �xn� � R
� �fi is force acting on i

th particle� such that

mi
d��xi
dt�
� �fi

�	� x�t� � �x��t�� � � � � xn�t�� � R
�n �ctitious particle in R�n

F � �
	

m�

�f�� � � � �
	

mn

�fn�

d�x

dt�
� F Introduce high dimensional

space into mathematics

�Free� particle �non�interacting system�

F � �
Note� image only

depends on
d�x

dt�
� � x � x� � tv

v

kvk �
xi � x�i � tvi

Particle moves in straight line �geometric��
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���

�
Z t�

t�
K�

dX

dt
�dt � � Lagrang�s Principle

of Least Action

�K�
dX

dt
� �
	

�

X
i

mi

�����dxidt

�����
�

� Riemann metric�

Extremals are geodesics parametrized proportionally to arc length� �pure ge�

ometry��

�Constraint Forces� only�

��� M � R
�n given by G�X� � �

G � R�n � R
k G�X� � �G��X�� � � � � Gk�X��

Gj�X� � Gj�x�� � � � � xn�

Example� Rigid Body kxi � xjk� � dij i� j � 	� � � � � n �k � n�n� 	����

Force F normal to M

M

F

K de�nes an induced Riemannian metric onM � Newton�s equations still equiv�

alent to�

�M

Z t�

t�
K�

dX

dt
�dt � �

�����
�M � only vary

w�r�t� paths
in M�
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OR

Path of particle is a geodesic on M parametrized proportionally to arc length

�Introduces manifolds and Riemannian geometry into physics and mathematics���

General Case� F � rV �conservation of energy��

L�X�
dX

dt
� � k�

dX

dt
�� V �X�

�M

Z t�

t�
Ldt � �

�possibly with constraint forces too�

Kinematical dilemma

"fast" comet

v

v

massive particle
(sun)

"slow" planet

Can these be geodesics �in the constraint manifoldM� w�r�t� some Riemannian

metric�

Geodesic image is determined by the direction of any tangent vector� A slow

particle and a fast part with same initial direction in gravitational �eld of massive

particle have di
erent pathsin space�

Nevertheless it has been possible to get rid of forces and bring back geometry

 in the sense of making particle path geodesics  by �expanding� our ideas of

�space� and �time�� Each fundamental force took a new e
ort�

Before 	
�� the known forces were gravitation and electromagnetism�

ix



Since then two more fundamental forces of nature have been recognized  the

�weak� and �strong� nuclear forces� These are very short range forces  only

signi�cant when particles are within 	���� cm� of each other� so they cannot be

�felt� like gravity and electromagnetism which have in�nite range of action�

The �rst force to be �geometrized� in this sense was gravitation� by Einstein in

	
	�� The �trick� was to make time another coordinate and consider a �pseudo�

Riemannian structure in space�time R� � R � R
�� It is easy to see how this gets

rid of the kinematic dilemma�

x

earth

sun

comet

y

t

time

If we parametrize a path by its length function then a slow and fast particle

with the same initial direction �r � �dx�
ds
� dx�

ds
� dx�

ds
� have di
erent initial directions

in space time �dx�
ds

dx�
ds

dx�
ds

dt
ds
�� since dt

ds
� �

v
is just the reciprocal of the velocity�

Of course there is still the �much more di�cult� problem of �nding the correct

dynamical law� i�e� �nding the physical law which determines the metric giving

geodesics which model gravitational motion�

The quickest way to guess the correct dynamical law is to compare Newton�s

law d�xi
dt�
� � �v

�xi
with the equations for a geodesic d�x�

ds�
�!���

dx�
ds

dx�
ds
� Then assuming

static weak gravitational �elds and particle speeds small compared with the speed

of light� a very easy calculation shows that if ds� � g��dx�dx� is approximately

dx����dx���dx���dx��� �x� � t� then g�� � 	��V � Now Newton�s law of gravitation

x



is essentially equivalent to�

"V � �

or �
R jrV j�dv � �

�where variation have compact support��

So we expect a second order PDE for the metric tensor which is the Euler�

Lagrange equations of a Lagrangian variational principle �
R
Ldv � �� Where

L is some scalar function of the metric tensor and its derivatives� A classical

invariant these argument shows that the only such scalar with reasonable invariance

properties with respect to coordinate transformation �acting on the metric� is the

scalar curvature  and this choice in fact leads to Einstein�s gravitational �eld

equations for empty space �cf� A� Einstein�s �The Meaning of Relativity� for details

of the above computation��

What about electromagnetism�

Given by two force �elds �E and �B�

The force on a particle of electric charge q moving with velocity �v is�

q� �E � �v � �B� �Lorentz force�

If in ��dimensional space�time we de�ne a ��norm F �
P
���

F��dx� � dx� �i�e� a

skew ��tensor� the Faraday tensor� by

F � Eidxi � dx� �
	

�
Bieijkdxj � dxk

so

F �

�BBB�
� B� �B� E�

�B� � B� E�

B� �B� � E�

�E� �E� �E� �

	CCCA
then the ��force on the particle is�

qF��v
�

xi



Now the �empty�space� Maxwell equation become in this notation

dF � � and d��F � � �

where�

�F � Bidxidx� �
	

�
Eieijkdxjdxk�

The equation dF � � is of course equivalent by Poincar#e�s lemma to F � dA for a

	�form A �
P
�
A�dx� �the ��vector potential�� while the equation d�

�F � � � says

that A is �harmonic�� i�e� a solution of Lagrangian variational problem

�
Z
kdAk�dv � ��

Now is there some natural way to look at the paths of particles moving under

the Lorentz force as geodesics in some Riemannian geometry� In the late 	
���s

Kaluza and Klein gave a beautiful extention to Einstein�s theory that provided

a positive answer to this question� On the ��dimensional space p � R
� � S� �on

which S� acts by ei��p� ei�� � �p� ei��	�
�� consider metrics � which are invariant

under this S� action� What the Kaluza�Klein theory showed was�

	� Such metrics � correspond 	�	 with pairs �g� A� where g is a metric and A a

	�form on R��

�� If the metric � on P is an Einstein metric� i�e� satis�es the Einstein variational

principle

�
Z
R���dv� � �

then

a� the corresponding A is harmonic �so F � dA satis�es the Maxwell equations�

b� the geodesics of � project exactly onto the paths of charged particles in R�

under the Faraday tensor F � dA�

c� the metric g on R� satis�es Einstein�s �eld equations� not for �empty�space��

but better yet for the correct �energy momentum tensor� of the electromag�

netric �eld F �

xii



What has caused so much excitement in the last ten years is the realization

that the two short range �nuclear forces� can also be understood in the same

mathematical framework� One must replace the abelian compact Lie group S� by

a more general compact simple group G and also generalize the product bundle

R
��G by a more general principal bundle� The reason that the force is now short

range �or equivalently why the analogues of photons have mass� depend on a very

interesting mathematical phenomenon called �spontaneous symmetry breaking� or

�the Higg�s mechanism� which we will discuss in the course�

Actually we have left out an extremely important aspect of physics�quantization�

Our whole discussion so far has been at the classical level� In the course I will only

deal with this �pre�quantum� part of physics�
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REVIEW OF SMOOTH VECTOR BUNDLES

M a smooth �C��� paracompact� n�dimensional manifold� C��M� W � smooth

maps of M to W � Here we sketch concepts and notations for theory of smooth

vector bundles over M � Details in written notes� extra lectures�

De�nition of smooth k�dimension vector bundle over M �

E a smooth manifold� � � E �M smooth

E �	
p
Ep Ep � ����p� a k�dimensional real v�s�

	 �M s � 	 � E smooth is a section if s�p� � Ep

all p � 	

!�Ej	� � all sections of E over 	
s � s�� � � � � sk � !�Ej	� is called a local basis of sections for E over 	 if the

map
F S � 	 � R

k � Ej	 
 ����	�
�p� 
� � 
�s��p� � � � �� 
ksk�p�

is a di
eo F S � I � R
k 
 Ej	

θ

R
k

( )

π  (θ)=
-1

E θ
F

M

E

θ

Note F S
p is linear fpg�Rk 
 Ep� Conversely given F � 	�Rk 
 Ej	 di
eo such

that for each p � 	 Fp � F�fpg�R
k maps Rk linearly onto Ep� F arises as above

�with si�p� � Fp�ei��� These maps F � 	 � Rk 
 E�	 play a central role in what

	



follows� They are called local gauges forE over 	� Basic de�ning axiom for smooth

vector bundle is that each p � 	 has a neighborhood 	 for which there is a local

gauge F � 	 � R
k 
 Ej	�

Whenever we are interested in a �local� question about E we can always choose

a local gauge and pretend Ej	 is 	 �Rk  in particular a section of E over 	 be�

comes a map s � 	 � R
k� Gauge transition functions� Suppose F k � 	i � Rk �

Ej	i i � 	� � are two local gauges� Then for each p � 	� � 	� we have two

isomorphisms F i
p � R

k 
 Ep� hence there is a unique g�p� � �F
�
p �

�� 
 F �
p � GL�k�

is easily seen to be smooth and is called the gauge transition map from the local

gauge F� to the local gauge F�� It is characterized by�

F� � F�g in �	� � 	��� Rk �where F�g�p� 
� � F��p� g�p�
���

Cocycle Condition If Fi � 	i � R
k 
 Ej	i are three local gauges and gij � 	i � 	j �

GL�k� is the gauge transition function from Fj to Fi then in 	��	��	� the following
�cocycle condition� is satis�ed� g�� � g�� 
 g���

De�nition� A G�bundle structure for E� where G is a closed subgroup of GL�k��

is a collection of local gauges Fi � 	i�R
k � Ej	i for E such that the f	ig cover M

and for all i� j the gauge transition function gij for Fj to Fi has its image in G�

Examples and Remarks� If S is some kind of �structure� for the vector space

R
k which is invariant under the group G� then given a G�structure for E we can

put the same kind of structure on each Ep smoothly by carrying S over by any of

the isomorphism �Fi�p � R
k 
 Ep with p � 	i �since S is G invariant there is no

contradiction�� Conversely� if G is actually the group of all symmetries of S then

a structure of type S put smoothly on the Ep gives a G�structure for E�

SO� An O�k��structure is the same as a �Riemannian structure� for E� a

GL�m� C ��structure �k � �m� is the same as complex vector bundle structure� a

U�m� structure is the same as a complex�structure together with a hermitian inner

product� etc�

�



n

θ

θ ψ

α

β
β

ψ
α IR

Example� f�� � 	� � R
ng the charts de�ning the di
erentiable structure of M

��� � �� 
 ���
� g�� � D��� 
 ��

Maximal G�structures� Every G�structure for E is included in a unique maxi�

mal G�structure� �Will always assume maximality� G�bundle Atlas� An �indexed�

open cover f	�g��A of M together with smooth maps g�� � 	� � 	� � G satisfying

the cocycle condition �again� can be embedded in a unique maximal such atlas��

A G�vector bundle gives a G�bundle atlas� Conversely�

Theorem� If f	�� g��g is any G�bundle atlas then there is a G�vector bundles
having the g�� as transition functions�

How unique is this�

If E is a G�cover bundle over M and p � M then a G�frame for E at p is a

linear isomorphism f � Rk 
 Ep for some gauge F � 	 � R
k 
 Ej	 of the G�bundle

structure for E with p � 	� Given one such G�frame f� then f � f� 
 g is also a
G�frame for every g � G and in fact the map g � f� 
 g is a bijection of G with
the set of all G�frames for E at p��

Given vector bundles E� and E� over M a vector bundle morphism between

them is a smooth map f � E� � E� such that for all p � M f j�E��p is a

linear map fp � �E��p � �E��p� If in addition each fp is bijective �in which case

f�� � E� � E� is also a vector bundle morphism� then f is called an equivalence

�



of E� with E�� If E� and E� are both G�vector bundle and fp maps G�frames of E�

at p to G�frames of E� at p then f is called an equivalence of G�vector bundles�

Theorem� Two G�vector bundles overM are equivalent �as G vector bundles� if

and only if they have the same �maximal�G�bundle atlas� hence there is a bijective

correspondence between maximal G�bundle atlases and equivalence classes of G�

bundles�

If E is a smooth vector bundle over M then Aut�E� will denote the group of

automorphisms �i�e� self�equivalences of E as a vector bundle� and if E is aG�vector

bundle than AutG�E� denotes the sub�group of G�vector bundle equivalences of E

with itself� AutG�E� is also called the group of gauge transformations of E�

CONSTRUCTION METHOD FOR VECTOR BUNDLES

	� �Gluing�� Given �G� vector bundles E� over 	�� E� over 	� with 	� 	� � M

and a G equivalence E�j�	� 	��
	
 E��	� 	�� get a bundle E over M with

equivalence �� � Ej	� 
 E� and �� � Ej	� 
 E� such that in 	� 	� �� � ���
� �

��

�� �Pull�back�� Given a smooth vector bundles E

� M and a smooth map

f � N � M get a smooth vector bundles f �E over N � f �E � f�n� e� �
N � Ejf�n� � �eg with projection $��n� e� � n� so �f �E�n � Ef�n
� A G�

structure also pulls back�

�� �Smooth functors�� Consider a �functor� �like direct sum or tensor prod�

uct� which to each r�tuple of vector spaces v�� � � � � vr associate a vector space

F �v�� � � � � vr� and to isomorphism T� � v� � w�� � � � � Tr � vr � wr asso�

ciate on isomorphism F �T�� � � � � Tr� of F �v�� � � � � vr� with F �w�� � � � � wr� and

assume GL�v�� � � � � � GL�vr�
F� GL�F �v�� � � � � vr�� is smooth� Then given

smooth vector bundles E�� � � � � Er overM we can form a smooth vector bundle

�



F �E�� � � � � Er� over M whose �ber at p is F ��E��p� � � � � �Er�p�� In particular

in this way we get E� � � � � � Er� E� � � � � � Er� L�E�� E��� %
p�E�� %p�E� F ��

�� Sub�bundles and Quotient bundles

E� is said to be a sub�bundle of E� if E� � E� and the inclusion map is a

vector bundle morphism� Can always choose local basis for E� such that initial

element are a local base for E�� It follows that there is a well de�ned smooth

bundle structure for the quotient E��E� so that �� E� � E� � E��E� � �
is a sequence of bundle morphism� Moreover� using a Riemannian structure

for E� we can �nd a second sub�bundle E
�
� � E�

� in E� such that E� � E��E �
�

and then the projection of E� on E��E� maps E
�
� isomorphically onto E��E��

LINEAR DIFFERENTIAL OPERATORS


 � �
�� � � � � 
n� � �Z	�n multi�index

j
j � 
� � � � � � 
n

D� � 
� �

j�j


x��� � � �
x�nn
D� � C��Rn� Rk�� C��Rn� Rk�

De�nition� A linear map L � C��Rn� Rk�� C��Rn� R�� is called an r�th order

linear di
erential operator �with smooth coe�cients� if it is of the form

�Lf��x� �
X
j�j�r

a��x�D
�f�x�

where the a� are smooth maps of R
n into the space L�Rk� R�� of linear maps of Rk

into R� �i�e� k � � matrices��

Easy exercises� L � C��Rn� Rk�� C��Rn� R�� is an rth�order linear di
erential

operator if and only if whenever a smooth g � Rn � R vanishes at p � R
n then

�



for any f � C��Rn� Rk� L�gr	�f� � � �use induction and the product rule for

di
erentiation��

De�nition� Let E� and E� be smooth vector bundles over M and let L �

!�E��� !�E�� be a linear map� We call L an r
th�order linear di
erential operator

if whenever g � C��M� R� vanishes at p � M then for any section s � !�E���

L�gr	�s��p� � �� The set of all such L is clearly a vector space which we denote

by Di
r�E�� E���

Remark� If we choose local gauges Fi � 	 � R
ki 
 Eij	 then sections of Ei�

restricted to 	 get represented by elements of C��	� Rki�� If 	 is small enough

to be inside the domain of a local coordinate system x�� � � � � xn for M then any

L � Di
r�E�� E�� has a local representation
P
j�j�r

a�D
� as above�

DIFFERENTIAL FORMS WITH VALUES IN A VECTOR BUNDLE

If V is a vector space %p�V � denote all skew�symmetric p�linear maps of V

into R� If W is a second vector space then %p�V � �W is canonically identi�ed

with all skew�symmetric p�linear maps of V into W � �If � � %p�V � and � � W

then �� � is the alternating p�linear map �v�� � � � � vp� �� ��v�� � � � � vp�w��

If E is a smooth bundle over M then the bundle %p�T �M�� � E play a very

important role� and so the notation will be shortened to %p�M� � E� This is

called the �bundle of p�forms on M with values in E�� and a smooth section

� � !�%p�M� � E� is called a smooth p�form on M with values in E� Note that

for each q �M �q � %p�TMq��Eq is an alternating p�linear map of TMq into Eq�

so that if x�� � � � � xp are p vector �elds on M then

q � �q��x��q� � � � � �xp�q�

is a smooth section ��x�� � � � � xp� of E which is skew in the xi�

Given �i � %�!pi�M� � Ei� i � 	� � we de�ne their wedge product ��$��� in

�



!�%p�	p��M�� �E� � E��� by�

��$����v�� � � � � vp�	p��

�
p�� p��

�p� � p���

X
��sp��p�

�������v���
� � � � � v��p�
�� ���v��p�	�
� � � � � v��p�	p�
�

so in particular if �� and �� are one forms with value in E� and E� then

��$����v�� v�� �
	

�
����v��� ���v��� ���v��� ���v���

In case E� � E� � E is a bundle of algebras  i�e� we have a vector bundle

morphism E � E � E then we can de�ne a wedge product �� � �� which is

a p� � p� form on M with values in E again� In particular for the case of two

one�forms again we have

�� � �� �
	

�
��� � �� � �� � ���

where �� � ���v�� v�� � ���v�����v���

In case E is a bundle of anti�commutative algebras �e�g� Lie algebras�

�� � �� � ��� � ��

so we have

�� � �� � �� � ��

for the wedge product of two 	�forms with values in a bundle E of anti�commutative

algebras� In particular letting

� � �� � ��

� � � � � � �

for a 	�form with values in a Lie algebra bundle E� If the product inE is designated�

as usual� by the bracket � � � then it is customary to write ��� �� instead of � � ��

Note that

��� ���v�� v�� � ���v��� ��v���

�



In particular if E is a bundle of matrix Lie algebras� whose � � � means commutation

then

� � ��v�� v�� � ��v����v��� ��v����v���

Another situation in which we have a canonical pairing of bundles� E��E� �
E� is when E� � E� E� � E�� the dual bundle and E� � RM � M � R� Similarly

if E is a Riemannian vector bundle and E� � E� � E we have such a pairing

into RM � Thus in either case if �i is a pi�form with values in Ei then we have a

wedge product �� � �� which is an ordinary real valued p� � p��form�

THE HODGE ��OPERATOR

Let M have a Riemannian structure� The inner product on TMq induces one

on each %p�M� � %p�TMq�� �characterized by�

� v� � � � � vp� �� � � � ��p ��
X

�sp

���� � v
��
� �� � � � � � v
�p
� �p �

If e�� � � � � ep is any orthogonal basis for TMq then the


n
p

�
elements ej�� � � � �ejp

�where 	 � j� � � � � � jp � n� is an orthonormal basis for %p�M�q� In particular

%n�M�p is 	�dim� and has two elements of norm 	� If we can choose � � !�%n�M��
with k�qk � 	 M is called orientable� The only possible chooses are �� and a
choice of one of them �call it �� is called an orientation for M and � is called the

Riemannian volume element�

Now �x p and consider the bilinear map �� � �� ��v of %p�M�p�%n�p �M�p �
%n�Mp�� Since � is a basis for %

n�M�p there is a bilinear form Bp � %
p�%n�p � R�

� � v � Bp��� v��

We shall now prove the easy but very important fact that Bp is non�degenerate

and therefore that it uniquely determines an isomorphism � � %p�M� 
 %n�p�M��
Such that�

�%�v �� �� v � �

�



Given I � �i�� � � � � ip� with 	 � i� � � � � � ip � n let eI � ei� � � � � � ei�

for any orthonormal basis e�� � � � � en of TMq and let I
C � �j�� � � � � jn�p� be the

complementary set in �	� �� � � � � n� in increasing order� Let ��I� be the parity of

the permutation �
	� �� � � � � p� p� 	� � � � � n
i�� i�� � � � � ip� j�� � � � � jn�p




Then clearly eI � eIC � ��I�� while for any other �n � p��element subset J of

�	� �� � � � � n� in increasing order eI � eJ � �� Thus clearly as I ranges over all

p�element subsets of �	� �� � � � � n� in increasing order feIg and f��I�eICg are bases
for %p�M�q and %

n�p�M�q dual w�r�t� Bp�

This proves the non�degeneracy of Bp and the existence of
� � �

p� and also that

�eI � ��I�eIC � It follows that
�
n�p 
 �p � ��	�p�n�p
� In particular if n is a multiple

of � and p � n�� then ��
p � 	 so in this case %

p�M�q is the direct sum of the �	

and �	 eigenspaces of �p �called self�dual and anti�self dual elements of %p�M�q��

Generalized Hodge ��operator�

Now suppose E is a Riemannian vector bundle over M � Then as remarked

above the pairing E �E � Rn given by the inner product on E induces a pairing

�� v �� � � v from �%p�M�q � Eq� � %n�p�M�q � Eq � R so exactly as above we

get a bilinear form Bp so that � � v � Bp��� v��q� And also just as above we see

that Bp is non�degenerate by showing that if e�� � � � � en is an orthonormal basis

for TMq and u�� � � � � uk an orthonormal basis for E� then feI�ujg and feIC �ujg
are dual bases w�r�t� Bp� It follows that�

For p � 	� � � � � n there is an isomorphism �p � %p�M�� E 
 %n�p�n�� E

characterized by�

� � �v �� �� v � �

moreover if e�� � � � � en is an orthonormal basis for TMq and u�� � � � � uk is an or�

thonormal base for Eq then
��eI � uj� � ��I�eIC � uj�

The subspace of !�E� consisting of sections having compact support �dis�

joint form 
M if M �� �� will be denoted by !C�E�� If s�� s� � !C�E� then






q �� s��q�� s��q� � is a well�de�ned smooth function �when E has a Rieman�

nian structure� and clearly this function has compact support� We denote it by

� s�� s� � and de�ne a pre�hilbert space structure with inner product ��s�� s���

on !C�E� by

��s�� s��� �
Z
M
� s�� s� � �

Then we note that� by the de�nition of the Hodge ��operator� given �� � � !C�%p�M�
�E�

���� ��� �
Z
M
�%��

THE EXTERIOR DERIVATIVE

Let E � M � V be a product bundle� Then sections of %p�M� � E are just

p�forms on M with values in the �xed vector space V � In this case �and this case

only� we have a natural �rst order di
erential operator

d � !�%p�M�� E�� !�%p	��M�� E�

called the exterior derivative� If � � %p�M��E and x�� � � � � xp	� are p�	 smooth

vector �elds on M

dw�x�� � � � � xp	�� �
p	�X
i��

��	�i	�xiw�x�� � � � � &xi� � � � � xp	�� �X
��i�j�p	�

��	�i	jw��xi� xj�� x�� � � � � &xi� � � � � &xj� � � � � xp	��

�It needs a little calculation to show that the value of dw�x�� � � � � xp	�� at a point q

depends only on the values of the vector �elds xi at q� and not also� as it might at

�rst seem also on their derivative�

We recall a few of the important properties of d�

	� d is linear

	�



�� d�w�$�w�� � �dw��$�w� � ��	�p�w�$�d�w�� for wi � %pi�M�� E

�� d� � �

�� If w � !C�%n���M� � E� then
R
M dw � � �This is a special case of Stoke�s

Theorem�

ADJOINT DIFFERENTIAL OPERATORS

In the following E and F are Riemannian vector bundles over a Riemannian

manifoldM � Recall !C�E� and !C�F � are prehilbert space� If L � !�E�� !�F � is
in Di
r�E� F � then it maps !C�E� into !C�F �� A linear map L

� � !�F �� !�E� in
Di
r�F� E� is called a �formal� adjoint for L if for all s� � !C�E� and s� � !C�F �

��Ls�� s��� � ��s�� L
�s����

It is clear that if such an L� exists it is unique� It is easy to show formal adjoints

exist locally �just integrate by parts� and by uniqueness these local formal adjoints

�t together to give a global formal adjoint� That is we have the theorem that

any L � Di
r�E� F � has a unique formal adjoint L� � Di
r�F� E�� We now com�
pute explicitly the formal adjoint of d � dp � !�%

p�M� � E� � !�%p	��M� � E�

�E �M � V � which is denoted by

� � �p	� � !�%
p	��M�� E�� !�%p�M�� E��

Let � � !C�%p�M� � E� and let � � !C��p	��M� � E�� Then �%�� is �because

of the pairing E � E � R given by the Riemannian structure� a real valued

p��n� �p�	�� � n�	 form with compact support� and hence by Stokes theorem

� �
Z
M
d��%�p	����

Now

d��%��� � d�%�p	�� � ��	�p�%d��p	���

		



so recalling that

�
p
�
n�p � ��	�p�n�p


d��%��� � d�%�� � ��	�p	p�n�p
�%�p�n�pd�p	�

so integrating over M and recalling the formula for �� � �� on forms

� �
Z
M
d��%���

�
Z
M
d�%�� � ��	�p	p�n�p


Z
M
�%�p�

�
n�pd

�
p	���

� ��d�� ���� ���� ����

where

� � �p	� � ���	�p�n�p	�
�
n�pd

�
p	�

Since dp	� 
 dp � � it follows easily that �p	� 
 �p	� � �

The Laplacian " � "p � dp���p � �p	�dp is a second order linear di
erential

operator "p � Di
��%p�M�� E� %p�M�� E��

The kernel of "p is called the space of harmonic p�forms with values in E �

M � V �or values in V ��

Theorem� If w � !C�%p�M��E� then w is harmonic if and only if dw � � and

�w � ��

Proof�

� � ��"w� w��

� ��d�w � �d�w� w��

� ��d�w� w�� � ���dw� w��

� ���w� �w�� � ��dw� dw���

So both �w and dw must be zero�

Exercise� Let Hp denote the space of harmonic p�norms in !C�%
p�M� � E�

show that Hp� im�dp���� and im��p	�� are mutually orthogonal in !C�%
p�M��E��

	�



HODGE DECOMPOSITION THEOREM

Let M be a closed �i�e� compact� without boundary� smooth manifold and let

E �M � V be a smooth Riemannian bundle over M � Then !�%p�M��E� is the

orthogonal direct sum

Hp � im�dp���� im��p	��

Corollary� If w � !�%p�M�� E� is closed �i�e� dw � �� then there is a unique

harmonic form h � !�%p�M� � E� which di
ers from w by an exact form ��

something in image of dp���� That is very de Rham cohomology class contains a

unique harmonic representative�

CONNECTIONS ON VECTOR BUNDLES

Notation� In what followsE denotes a k�dimensional smooth vector bundle over

a smooth n�dimensional manifold M � G will denote a Lie subgroup of the group

GL�k� of non�singular linear transformations of Rk �identi�ed where convenient

with k � k matrices�� The Lie algebra of G is denoted by G and is identi�ed with
the linear transformations A of Rk such that exp�tA� is a one�parameter subgroups

of G� The Lie bracket �A� B� of two elements of G is given by AB � BA� We

assume that E is a G�vector bundle� i�e� has a speci�ed G�bundle structure� �This

is no loss of generality� since we can of course always assume G � GL�k��� We

let fFig denote the collection of local gauges Fi � 	i � R
k 
 E�	i for E de�ning

the G�structure and we let gij � 	i � 	j � G the corresponding transition function�

Also we shall use F � 	 � R
k � E�	 to represent a typical local gauge for E and

g � 	 � G to denote a typical gauge transformation� and s�� � � � � sk a typical local

base of sections of E �si � F �ei���

De�nition� A connection on a smooth vector bundle E over M is a linear map

r � !�E�� !�T �M � E�

	�



such that given f � C��M� R� and s � !�E�

r�fs� � frs� df � s

Exercise� r � Di
��E� T �M � E�

Exercise� If E �M � V so !�E� � C��M� V � then d � !�E�� !�T �M � E�

is a connection for E� �Flat connection�

Exercise� If f � E� 
 E� is a smooth vector bundle isomorphism then f induces

a bijection between connections on E� and E��

Exercise� Put the last two exercises together to show how a gauge F � 	�R
k 


E�	 de�nes a connection rF for E�	� �called �at connection de�ned by F �

Exercise� If f	�g is a locally �nite open cover of M � f��g a smooth partition
of unity with supp���� � 	�� r� a connection for E�	�� then

P
�
��r� � r is a

connection for E� �The preceding two exercises prove connections always exist��

Covariant Derivatives�

Given a connection r for E and s � !�E�� the value of rs at p � M is an

element of T �Mp � Ep� i�e� a linear map of TMp into Ep� Its value at X � TMp is

denoted by rxs and called the covariant derivative of s in the directionX� �For the

�at connection r � d on E �M � V � if s � f � C��M� V � then rxs � df�X� �

the directional derivative of f in the direction X�� If X � !�TM� is a smooth
vector �eld on M then rxs is a smooth section of E� Thus for each X � !�TM�
we have a map

rx � !�E�� !�E�

�called convariant di
erentiation w�r�t� X�� Clearly�
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�	� rx is linear and in fact in Di

��E� E��

��� The map X � rx of !�TM� into Di

��E� E� is linear� Moreover if f �

C��M� R� then rfx � frx�

��� If s � !�E�� f � C��M� R�� X � !�TM�

rx�fs� � �Xf�s� frxs

Exercise� Check the above and show that conversely given a map X � rx

form !�TM� into Di
��E� E� satisfying the above it de�nes a connection�

CURVATURE OF A CONNECTION

Suppose E is trivial and let r be the �at connection comming from some gauge
E 
 M � V � If we don�t know this gauge is there someway we can detect that r
is �at�

Let f � !�E� 
 C��M� V � and let X� Y � !�E�� Then rxf � Xf so

rx�ryf� � X�Y f�� hence if we write �rx� ry� for the commutator rxry�ryrx

of the operatorsrx� ry in Di

��E� E� then we see �rx� ry�f � X�Y f��Y �Xf� �

�X� Y �f � r
X
Y �f � In other words�

r
X
 Y � � �rx� ry�

or X � rx is a Lie algebra homeomorphism of !�TM� into Di

��E� E�� Now in

general this will not be so if r is not �at� so it is suggested that with a connection
we study the map ' � !�TM�� !�TM�� Di
��E� E�

'�X� Y � � �rx� ry��r
X
 Y �

which measure the amount by which X �rx fails to be a Lie algebra homeomor�

phism�
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Theorem� '�X� Y � is in Di
��E� E�� i�e� for each p �M there is a linear map

'�X� Y �p � Ep � Ep such that if s � !�E� then �'�X� Y �s��p� � '�X� Y �ps�p��
Proof� Since ry�fs� � �Y f�s� frys we get rxry�fs� � x�yf�s��yf�rxs�

�xf�rys � frxrys and interchanging x and y and subtracting� then subtracting

r
x
 y��fs� � ��x� y�f�s� f
x
 y�s we get �nally�

��rx� ry��r
x
 y���fs� � f��rx� ry��r
x
 y��s

from which at follows that if f vanishes at p � M then ��rx� ry� � r
x
 y���fs�

vanishes at p� so �rx� ry��r
x
 y� � Di
��E� E�� �

Theorem� There is a two from ' on M with values in L�E� E� �i�e� a section

of %��M�� L�E� E�� such that for any x� y � !�TM�

'p�xp� yp� � '�x� y�p�

Proof� What we must show is that '�x� y�p depends only in the value of x and y

at p� Since ' is clearly skew symmetric it will su�ce to show that if x is �xed

then y � '�x� y� is an operator of order zero� or equivalently that '�x� fy� �

f�'�x� y�� if f � C��M� R�� Now recalling that rfys � frys we see that

rxrfys � �xf�rys� frxrys�

On the other hand rfyrxs � fryrxs so �rx� rfy� � f �rx� ry� � �xf�ry� On

the other hand since

�x� fy� � f �x� y� � �xf�f

we have

r
x
 yf � � rf 
x
 y� �r�xf
y

� fr
x
 y� � �xf�ry�

Thus

'�x� fy� � �rx� rfy��r
x
 fy�
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� f �rx� ry�� fr
x
 y�

� f'�x� y��

�

This two form ' with values in L�E� E� is called the curvature form of the con�

nection r� �If there are several connection under consideration we shall write 'r��
At this point we know only the vanishing of ' is a necessary condition for there to

exist local gauges 	 � R
k � E�	 with respect to which r is the �at connection� d�

Later we shall see that this condition is also su�cient�

Torsion� Suppose we have a connection r on E � TM� In this case we can
de�ne another di
erential invariant of r� its torsion � � !�%��M� � TM�� Given
x� y � !�TM� de�ne ��x� y� � !�TM� by

��x� y� � rxy �ryx� �x� y��

Exercise� Show that there is a two�form � on M with values in TM such that

if x� y � !�TM� then �p�xp� yp� � ��x� y�p� �Hint� it is enough to show that if

x� y � !�TM� then ��x� fy� � f��x� y� for all f � C��M� R���

Exercise� Let � � 	 � R
n be a chart for M � Then � induces a gauge F � �

	 � R
n 
 TM�	 for the tangent bundle of M �namely F �p� v� � D���

p �v��� Show

that for the �at connection on TM�	 de�ned by such a gauge not only the curvature

but also the torsion is zero�

Remark� Later we shall see that� conversely� if r is a connection for TM and if
both 'r and �r are zero then for each p �M there is a chart � at p with respect

to which r is locally the �at connection coming from F ��
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STRUCTURE OF THE SPACE C�E� OF ALL CONNECTION ON E

Let C�E� denote the set of all connection on E and denote by "�E� the space of
all smooth one�form on M with values in L�E� E� � "�E� � !�%��M��L�E� E��

De�nition� If w � "�E� and s � !�E� we de�ne w � s in !�%��M�� E� by

�w � s��x� � w�x�s�p�

for x � TMp�

Exercise� Show that s� w� s is in Di
��E� T �M �E� and in fact w �� �s�
w � s� is a linear isomorphism of "�E� with Di
��E� T �M � E��

The next theorem says that C�E� is an �a�ne� subspace of Di
��E� T �M �E�

and in fact that if r� � C�E� then we have a canonical isomorphism

C�E� 
 r� �Di
��E� T �M � E�

of C�E� with the translate by r� of the subspace Di
��E� T �M � E� � "�E� of

Di
��E� T �M � E��

Theorem� If r� � C�E� and for each w � "�E� we de�ne rw � !�E� �
!�T �M � E� by rws � r�s� w � s� then rw � C�E� and the map w �� rw is a

bijective map "�E� 
 C�E��

Proof� It is trivial to verify that "w � C�E�� If r� � �E� then since ri�fs� �

fris � df � s for i � �� 	 it follows that �r� � r���fs� � f�r� � r��s so

r� � r� � Di
��E� T �M � E� and hence is of the form s �� w � s for some

w � "�E�� This shows w� rw is surjective and injectivity is trivial�

We shall call "�E� � !�%��M��L�E� E�� the space of connection forms for E�
Note that a connection form w does not by itself de�ne a connection rw� but only
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relative to another connection r�� Thus r�E� is the space of �di
erences� of
connection�

Connections in a Trivial Bundle

Let E be the trivial bundle inM�Rk� Then !�E� � C��M� Rk� and !�%��M��
E� � !�%��M� � R

k� � space of Rk valued one forms� so as remarked earlier

we have a natural �origin� in this case for the space C�E� of connection on E�
namely the ��at� connection d � C��M� Rk� � !�%��M� � R

k� i�e� the usual

di
erential of a vector valued function� Now "�E� � !�%��E� � L�E� E�� �

!�%��M� � L�Rk� Rk�� � the space of �k � k��matrix valued 	�forms on M � so

the theorem of the preceding section says that in this case there is a bijective

correspondence w �� rw � d�w from �k� k��matrix valued one�form w on M to

connections rw for E� given by

rwf � df � wf�

To be more explicit� let e� � e�� � � � � ek be the standard base for Rk and t�� the

standard base for L�Rk� Rk��t���e�� � ���e
��� Then w �

P
w���t�� where w�� are

uniquely determined ordinary �i�e� real valued� one forms on M � w�� � !�%��M���

Also f �
P
�
f�e

� where f� � C��M� R� are real valued smooth function in M �

Then� using summation convertion�

�rwf�� � df� � w��f�

which means that if x � TMp then

�rw
x f���p� � df��x� � w���x�f��p�

� xf� � w���x�f��p��

It is easy to see how to �calculate� the forms w�� given r � rw� If we take

f � e� then f� � ��� and in particular df� � � and �rwf�� � w����� � w�� �

	




Thus

w�� � �rwe���

or

rwe� �
X
�

w�� � e�

or �nally�

rw
x e

� �
X
�

w���x�e
�

or in words�

Theorem� There is a bijective correspondence w�rw between k�k matrices

w � �w��� of one forms on M and connections rw on the product bundle E �

M � R
k� rw is determined from w by� �rw

x f��p� � xf � w�x�f�p� for x � TMp

and f � !�E� � C��M� Rk�� Conversely r � C�E� determines w by the following
algorithm� let e�� � � � � ek be the standard �constant� sections of E� then for x �
TMp w���x� is the coe�cient of e

� when rxe is expanded in this basis�

rxe
� �

X
�

w���x�e
��p��

Since %��M� � L�E� E� � %��M� � L�Rk� Rk�� the curvature two�form ' �
!�%��M�� L�E� E�� of a connection r � rw in C�E� is a �k � k��matrix '�� of

	�form on M �

' �
X
�
 �

'��e
��

or

'�x� y�e� �
X
�
 �

'���x� y�e
�

Recall '�x� y�e� � �rxry �ryrx �r
x
 y��e
�� Now

rye
� � w���y�e

�

rxrye
� � �xw���y��e

� � w���y�rxe
�

� ��xw���y� � w���x�w���y��e
�

��



and we get easily

'�x� y�e� � ��xw���y��� �yw���x��� w����x� y��e
�

��w���x�w���y�� w���y�w���x��e
�

� �dw�� � �w � w�����x� y�e�

Thus '�� � dw�� � �w � w����

Theorem� If w is a �k�k��matrix of one�forms onM andr � rw � d�w is the

corresponding connection on the product bundle E �M � R
k� then the curvature

form 'w of r is the �k� k��matrix of two forms on M given by 'w � dw�w �w�

Bianchi Inequality� The curvature matrix of two�forms 'w satis�es�

d'w � w � 'w � ' � w � �

Proof�

d' � d�dw � w � w�
� d�dw� � dw � w � w � dw
� �'� w � w� � w � w � �' � w � w�

� ' � w � w � '�

�

Christo
el Symbols� If x�� � � � � xn is a local coordinate system in 	 � M then

in 	 w�� �
nP
i��
!�i�dxi� The !

�
i� are Christo
el symbols for the connection rw w�r�t�

these coordinates�

REPRESENTATION OF A CONNECTION W�R�T� A LOCAL BASE

It is essentially trivial to connect the above description of connection on a

�	



product bundle to a description �locally� of connections on an arbitrary bundle E

with respect to a local base �s�� � � � � sk� for E�	� Namely�

Theorem� There is a bijective correspondence w�rw between �k�k��matrices
w � w�� of 	�forms on 	 and connections rw for E�	� If s �

P
f�s

� and x � TMp�

p � 	 then rw
x s � �xf� � w���x�f��p��s

��p�� Conversely given r we get w such
that r � rw by expanding rxs

� in terms of the s�� i�e� rxs
� �

P
�
w���x�s

��

If �s� is the dual section basis for E� so �s��s� is the local base for L�E� E� �
E� � E over 	 then the curvature form 'w for rw can be written in 	 as

' �
X
�
 �

'w��
�s� � s�

where the �k � k��matrix of two forms in 	 is determined by

'�x� y�s� �
X
�
 �

'����x� y�s
��

These forms 'w�� can be calculated directly form w � w�� by

'w � dw � w � w�

and satisfy

d'w � w � 'w � 'w � w � ��

Change of gauge�

Suppose we have two local bases of sections forE�	� say s�� � � � � sk and $s�� � � � � $sk

and let g � 	 � GL�k� be the gauge transition map from one gauge to the other�

i�e��

s �
X

g��s
��

Let r be a connection for E� Then restricted to sections of E�	� r de�nes a
connection on E�	 which is of the form rw w�r�t� the basis s�� � � � � sk� and rw

��



w�r�t� the basis $s�� � � � � $sk� What is the relation between the �k � k��matrices of

	�forms w and $w�

Letting g�� � g��
�� denote the matrix inverse to g� so that

s� � g��
�� $s

�

rx$s
� � rx�g��s

��

� dg���x�s
� � g��rxs

�

� �dg���x� � g��w���x��s
�

� �g��
��dg���x� � g��

��w���x�g���s
��

from which we see that�

$w � g��dg � g��wg

i�e�

$w���x� � g��
��dg���x� � g��

��w���x�g���

Exercise� Show that $' � g��'g i�e� that $'���x� y� � g��
��'���x� y�g���

CONSTRUCTING NEW CONNECTION FROM OLD ONES

Proposition� Let f	�g be an indexed covering of M by open sets� Suppose r�

is a connection on E�	� such that r� and r� agree in E��	� � 	��� Then there is
a unique connection r on E such that r restrict to r� in E�	��

Proof� Trivial�

Theorem� If r is any connection on E there is a unique connection r� on the

dual bundle E� such that if � � !�E�� and s � !�E� then

x���s�� � r�
x��s� � ��rxs�

for any x � TM�

��



Proof� Consider the indexed collection of open sets f	sg of M such that the

index s is a basis of local section s�� � � � � sk for E�	s� By the preceding proposition

it will su�ce to show that for each such 	s there is a unique connection
sr� for E��	s

satisfying the given property� for then by uniqueness
sr� and

s�r� must agree on

E���	i � 	s��� Let rxs
� � w���x�s

� and let r� be any connection on E��	s� Let

��� � � � � �k be the bases for E��	s dual to s�� � � � � sk and let r��
� � w�

���x��
��

Since ���s�� � ��� if r� satis�es the given condition

� � x����s��� � w�
���x��

��s�� � ���w���x�s
�� � w�

���x� � w���x�

and thus w� �and hence r�� is uniquely determined by w to be w�
���x� � �w���x��

An easy computation left as an exercise shows that with this choice of w�� r� does

indeed satis�es the required condition� �

Theorem� If ri is a connection in a bundle Ei over M � i � 	� � then there is

a unique connection r � r� � 	 � 	�r� on E� �E� such that if si � !�Ei� and

x � TM then
rx�s

� � s�� � �rxs
��� s� � s� � �rxs

���

Proof� Exercise� �Hint� follow the pattern of the preceding theorem� Consider

open sets 	 of M for which there exist local bases s�� � � � � sk� for E� over 	 and

��� � � � � �k� for E� over 	� Show that the matrix of 	�form w for r relative to the
basis si � sj for E� � E� over 	 can be chosen in one and only one way to give r
the required property��

Remark� It follows that given any connection on E there are connections on

each of the bundles
r� E�� s� E which satisfy the usual �product formula� and

�commute with contractions�� Moreover these connections are uniquely deter�

mined by this property�

Theorem� If E�� � � � � Er are smooth vector bundles over M then the natural

map �r�� � � � � rr� �� r� � � � � � rr is a bijection C�E��� � � � � C�Er� 
 C�E� �

��



� � � � Er��

Proof� Trivial�

From the smooth bundle E

�M and a smooth map � � N �M we can form

the pull back bundle ���E� over N

���E� � f�x� v� � N � E j��v� � ��v�g ���E�x � E��x
�

There is a canonical linear map

�� � !�E�� !����E��
s �� s 
 �

and if s�� � � � � sk is a local base for E over 	 then ���s��� � � � � ���sk� is a local base

for ���E� over ����	��

Theorem� Given r � C�E� there is a uniquely determined connection r�

for ���E� such that if s � !�E�� y � TN and s � D��y� then r�
y��

�s� � ���rxs��

Proof� Exercise� �Hint� given a local base s�� � � � � sk for E over 	 for which the

matrix of 	�forms of r is w��� show that the matrix of one�forms of r� must be

���w���� w�r�t� ���s��� � � � � ���sk� for the de�ning condition to hold and that in

fact it does hold with this choice�

Special case 	� Let N be a smooth submanifold of M and i � N � M the

inclusion map� Then i��E� � E�N and i� � !�E� � !�E�N� is s � s�N � If

r � !�E� write r�N � ri� Suppose x � TNp � TMp� Then for s � !�E�

rxs � r�N
x �s�N�

In particular if s and $s are two section of E with the same restriction to N

then rxs � rx$s for all x � TN �We can see this directly w�r�t� a local trivializa�

tion �gauge� rxs � x�s� � w�x�s��

��



Special case �� N � I � �a� b�� � � � � I � M � r� � C����E��� A section $s
of ���E� is a map t � $s�t� � E��t
� We write

D�s
dt
� Dr�s

dt
� r�

�
�t

�$s�� Called the

covariant derivative of s along �� With respect to a local base s�� � � � � sk for E

with connection forms w�� suppose $s�t� � v��t�s
����t��� Then the components

Dv�
dt
of D�s

dt
are given by

Dv�
dt
�
dv�
dt
� w����

��t��v��t��

If x�� � � � � xn are local coordinates inM and we put w�� � !
i
��dxi and xi���t�� �

�i�t� then
Dv�
dt
�
dv�
dt
� !�i����t��

d�i
dt

v��t��

Note that this is a linear �rst order ordinary di
erential operator with smooth coef�

�cients in the vector function �v��t�� � � � � vk�t�� � R
k�

Parallel Translation

We have already noted that a connectionr on E is ��at� �i�e� locally equivalent
to d in some gauge� i
 its curvature ' is zero� Since ' is a two form it automatically

is zero if the base space M is one�dimensional� so if � � �a� b� � M is as above

then for connection r on any E over M the pull back connection r� on ���E� is

�at� parallel translation is a very powerful and useful tool that is an explitic way

of describing this �atness of r��

De�nition� The kernel of the linear map D
dt
� r�

�� � !��
�E� � !���E� is a

linear subspace P ��� of !���E� called the space of parallel �or covariant constant�

vector �elds along ��

Theorem� For each t � I the map s �� s�t� is a linear isomorphism of P ���

with E��t
�

Proof� An immediate consequence of the form of D
dt
is local coordinates �see

above� and the standard elementary theory of linear ODE�

��



De�nition� For t�� t� � I we de�ne a linear operator P��t�� t�� � E��t�
 � E��t�


�called parallel translation along � from t� to t�� by P��t�� t��v � s�t��� where s is

the unique element of P ��� with s�t�� � v�

Properties�

	� P��t� t� � identity map of E��t


�� P��t�� t��P��t�� t�� � P��t�� t��

�� P��t�� t�� � P��t�� t��
��

�� If v � E��t�
 then t �� P��t� t��v is the unique s � P ��� with s�t�� � v�

Exercise� Show that r can be recovered from parallel translation as follows�
given s � !�E� and x � TM let � � ��� 	��M be any smooth curve with ����� � x

and de�ne a smooth curve $s in E���
 by $s�t� � P���� t�s���t��� Then

rxs �
d

dt

�����
t��

$s�t��

Remark� This shows that in some sense we shall not try to make precise here co�

variant di
erentiation is the in�nite�simal form of parallel translation� One should

regard parallel translation as the basic geometric concept and the operator r as a
convenient computational description of it�

Remark� Let s�� � � � � sk� and $s�� � � � � $sk be two local bases for �
�E and w and $w

their respective connection forms relative to r�� If g � I � GL�k� is the gauge

transition function from s to $s �i�e� $s� � g��s
�� we know that w � $w�g��dg� Now

suppose v�� � � � � vk is a basis for E��t�
 and we de�ne $s
��t� � P��t� t��v�� so that

the $s� are covariant constant� and hence r�$s� � � so $w � �� Thus r� looks like d

in the basis $s� and for the arbitrary basis s�� � � � � sk we see that its connection

form w has the form g��dg�

��



Holonomy� Given p �M let %p denote the semi�group of all smooth closed loops

� � ��� 	� � M with ���� � ��	� � p� For � � %p let P� � P��	� �� � Ep 
 Ep

denote parallel translation around �� It is clear that � � P� is a homomorphism

of %p into GL�Ep�� Its image is called the holonomy group of r �at p� conjugation
by P��	� �� where � is a smooth path from p to q clearly is an isomorphism of this

group onto the holonomy group of r at q��

Remark� It is a �non�trivial� fact that the holonomy group at p is a �not

necessarily closed� Lie subgroup of GL�Ep�� By a Theorem of Ambrose and Singer

its Lie algebra is the linear span of the image of the curvature form 'p in L�Ep� Ep��

Exercise� If r is �at show that P� � id if � is homotopic to the constant loop

at p� so that in this case � �� P� induces a homomorphism P � ���M�� GL�Ep��

This latter homomorphism need not be trivial� LetM � C
� � C �f�g and consider

the connection rc � d � wc on M � C � M � R
� de�ned by the connection 	�

form wc on M with values in C � LC �C � C � � L�R�� R�� wc � cdz
z
� cd�log z��

ADMISSIBLE CONNECTIONS ON G�BUNDLES

We �rst recall some of the features of a G�bundle E over M � At each p �M

there is a special class of admissible frames e�� � � � � ek for the �ber Ep� Given

one such frame every other admissible frame at p� $e�� � � � � $ek is uniquely of the

form $e � g��e
� where g � �g��� � G and conversely every g � G determines

an admissible frame in this way  so once some admissible frame is picked� all

admissible frames at p correspond bijectively with the group G itself� A linear

map T � Ep � Eq is called a G�map if it maps admissible frames at p to admis�

sible frames at q  or equivalently if given admissible frames e�p� � � � � e
k
p at p and

e�q� � � � � e
k
q at q the matrix of T relative to these frames lies in G� In particular the

��



group of G�maps of Ep with itself is denoted by Aut�Ep� and called the group of

G�automorphism of the �ber Ep� It is clearly a subgroup of GL�Ep� isomorphic

to G� and its Lie algebra is thus a subspace of L�Ep� Ep� � L�E� E�p denoted by

LG�Ep� Ep� and isomorphic to G� �T � LG�Ep� Ep� i
 exp�tT � is a G map of Ep

for all t��

De�nition� A connection r for E is called admissible if for each smooth path
� � ��� 	��M parallel translation along � is a G map of E���
 to E���
�

Theorem� A NASC that a connectionr for E be admissible is that the matrixw
of connection one�forms w�r�t� admissible bases have values in the Lie algebra of G�

Proof� Exercise�

Corollary� If r is admissible then its curvature two form ' has values in the
subbundle LG�E� E� of L�E� E��

QUASI�CANONICAL GAUGES

Let x�� � � � � xn be a convex coordinate system forM in 	 with p� � 	 the origin�

Given a basis v�� � � � � vk for Ep� we get a local basis s
�� � � � � sk for E over 	 by

letting si�p� be the parallel translate of vi along the ray ��t� joining p� to p �i�e�

xi���t�� � txi�p��� If r is an admissible connection and v�� � � � � vk an admissible
basis at p� then s�� � � � � sk is an admissible local basis called a quasi canonical

gauge for E over 	�

Exercise� Show that the si really are smooth �Hint� solutions of ODE depending

on parameters are smooth in the parameters as well as the initial conditions� and

also show that the connection forms for r relative s�� � � � � sk all vanish at p��

�




THE GAUGE EXTERIOR DERIVATIVE

Given a connection r for a vector bundle E we de�ne linear maps

Dr
p � Dp � !�%

p�M�� E�� !�%p	��M�� E�

called gauge exterior derivative by�

Dp �w�x�� � � � � xp	�� �
p	�X
i��

��	�i	�rxiw�x�� � � � � &xi� � � � � xp	��

�
X

��i�j�p	�

��	�i	jw��xi� xj�� x�� � � � � &xi� � � � � &xj� � � � � xp	��

for x�� � � � � xp	� smooth vector �elds on M � Of course one must show that this

really de�nes Diw as a �p � 	��form� i�e� that the value of the above expression

at a point q depends only on the values of the xi at q� �Equivalently� since skew�

symmetry is clear it su�ces to check thatDpw�fx�� � � � � xp	� � fDpw�x�� � � � � xp	��

for f a smooth real valued function on M��

Exercise� Check this� �Hint� This can be considered well known for the �at

connection r � d  and relative to a local trivialization r anyway looks like
d� w��

Remark� Note that D� � r�

Theorem� If s � !�E� then

�D�D�s��X� Y � � '�X� Y �s�

Proof�
D��D�s��X� Y �

� rXD�s�Y ��rYD�s�X��D�s��X� Y ��

� rXrY s�rYrXs�r
X
Y �s�

Corollary� Dp � !�%
p�M�� E�� !�%p	��M�� E� is a complex i
 ' � ��

��



Theorem� If ri is a connection in Ei� i � 	� �� and r is the corresponding
connection on E� � E� then if wi is a pi�form on M with values in Ei

Dr
p�	p�

w�

�� w� � Dr�

p�
w�

�� w� � ��	�p�w�

�� Dr�

p�
w��

Proof� Exercise� �Hint� Check equality at some point p by choosing a quasi�

canonical gauge at p��

Corollary� If w� is a real valued p�form and w� an E valued q�form then

D�w� � w�� � dw� � w� � ��	�pw� �Dw��

Corollary� If � is a real values p�form and s is a section of E

D��� s� � d� � s� ��	�p� �rs�

Theorem� Let � be a p�form with values in E and let s�� � � � � sk be a local basis

for E� Then writing � �
P
�
��s

� where the �� are real valued p�forms

D� � �d�� � w�� � ���s
�

where w is the matrix of connection forms for r relative to the s�� Thus the
formula for gauge covariant derivative relative to a local base may be written

D� � d�� w � �

Proof� Exercise�

Exercise� Use this to get a direct proof that

D�D�� � '�

�
X
�'�����s

�

where

' � dw � w � w�

�	



Theorem� Given a connection r on E let $r be the induced connection of
L�E� E� � E� � E� If w is the matrix of connection 	�forms for r relative to a
local basis s�� � � � � sk and 
 is a p�form onM with values in L�E� E� �given locally

by the matrix 
�� of real valued p�forms� where 
 � 
��
�
s � � s�� then

D
�r
 � d
� w � 
� ��	�p
 � w

Proof� Exercise�

Corollary� The Bianchi identity d'�w�'�'�w is equivalent to the statement
D' � � �or more explicitly r �r'r � ���

Proof� Take p � � and 
 � '�

Exercise� Given a connection r on E and � � "�E� � !�%��M� � L�E� E��

let r� � r � � and let D � Dr� Show that the curvature '� of r� is related to

the curvature ' of ' by

'� � ' �D� � � � �
�Remark� Note how this generalizes the formula ' � dw � w � w which is the

special case r � d �so D � d� and � � w��

CONNECTION ON TM

In this section rT is a connection on TM� � its torsion� x�� � � � � xn a local coor�

dinate system forM in 	� X� � �
�x�
the corresponding natural basis for TM over 	�

w�� the connection form for rT relative to this basis �rTX � w��X
�� and !��� the

Christo
el symbols �w�� � !
�
��dx��� Also� g will be a pseudo�Riemannian metric

forM and g�� its components with respect to the coordinate system x�� � � � � xn� i�e�

g�� is the real valued function g�X
�� X�� de�ned in 	� We note that the torsion �

is a section of %��M��TM � T �M�T �M�TM 
 T �M�L�TM� TM� � "�TM��
hence we can de�ne another connection $rT �called the torsionless part of rT � by

$rT � rT � 	
�
�

��



or more explicitly

$rT
x y � rT

x y �
	

�
��x� y�

Exercise� Check that $rT has in fact zero torsion�

The remaining exercises work further details of this situation�

Exercise� Write � � ����dx� � dx� � x� and show that

���� � !
�
�� � !���

so $rT has Christo
el symbols $!��� given by the �symmetric part� of !
�
�� w�r�t� its

lower indices

$!��� �
	

�
�!��� � !

�
���

and r has zero torsion i
 !��� is symmetric in its lower indices�

Recall that a curve � in M is called a geodesic for rT if its tangent vector

�eld ��� considered as a section of ���TM�� is parallel along �� Show that if � lies

in 	 and x����t�� � ���t� then the condition for this is

d���
dt�
� !������t��

d�

dt

d��
dt
� �

�Note this depends only on the symmetric part of !��� w�r�t� its lower indices� so rT

and $rT have the same geodesics��

Exercise� Let p� � 	� Show there is a neighborhood U of � in R
n such that

if v � U then there is a unique geodesics �v � ��� 	� � M with �v��� � p� at

��v��� �
P
�
v�x

��p��� De�ne �geodesic coordinates� at p� by the map � � U �
M given by ��v� � �v�	�� Prove that D���v� �

P
�

v�x��p�� so D�� is linear

isomorphism of Rn onto TMp� and hence by the inverse function theorem � is in

fact a local coordinate system at p�� Show that in these coordinate the Christo
el

symbols of $rT vanish at p�� �Hint� show that for small real s� �sv�t� � �v�st���

��



Now let r be a connection in any vector bundle E over M � Let x�� � � � � xn be
the coordinate basis vectors for TM with respect to a geodesic coordinate system

at p� as above and let s
�� � � � � sk be a quasi�canonical gauge for E at p� constructed

from these coordinates  i�e� the s� are parallel along the geodesic rays emanating

from p�� Then if �and only if� rT is torsion free� so rT � $rT � connection forms

for rT and r w�r�t� x�� � � � � xn and s�� � � � � sk respectively all vanish at p�� Using
this prove�

Exercise� Let &r be the connection &r � !��pT �M � E� � !��p	�T �M � E�

coming from rT on TM and r on E� If w is a p�form on M with values in E then
Dpw coincides with Alt� &rw�� the skew�symmetrized &rw� provided rT has zero

torsion�

Exercise� If we denote still by rT the connection on T �M � T �M induced

by rT recall that g is admissible for the ��n� structure de�ned by g i
 rTg � ��

Show this is equivalent to the condition


g��

x�

� g��!
�
�� � g��!

�
���

Show that if rT has torsion zero then this can be solved uniquely in 	 for the !���

in terms of the g�� and their �rst partials�

YANG�MILLS FIELDS

We assume as given a smooth� Riemannian� n�dimensional manifold M and a

k�dimensional smooth vector bundle E over M with structure group a compact

subgroup G of O�k� with Lie algebra G� We de�ne for each � � G a linear map
Ad��� � G � G by � � ��� �� � �� � ��� We assume that the �Killing form�

� �� � �� �tr�Ad���Ad���� is positive de�nite  which is equivalent to the
assumption that G is semi�simple� By the Jacobi identity each Ad��� is skew�

��



adjoint w�r�t� this inner product� Since

exp�tAd����� � �exp t����exp t����

� ad�exp t���

this means that the action of G on G by inner automorphisms is orthogonal w�r�t�
the Killing form�

Recall that LG�E� E� � L�E� E� is the vector bundle whose �ber at p is the

Lie algebra of the group of G�automorphisms of Ep� A gauge 	�R
k 
 Ej 	 induces

a gauge 	 � G 
 LG�E� E�j 	 and the gluing together under di
erent gauge is by
ad� �� So LG�E� E� has a canonical inner product which is preserved by any

connection coming from a G�connection in E� Thus there is a Hodge ��operator

naturally de�ned for forms with values in LG�E� E� by means of the pseudo Rie�

mann structure in TM and this Killing Riemannian structure for LG�E� E��

Now in particular if r is a G�connection in E then its curvature ' � 'r is a
two form with values in LG�E� E� so

�' is an n� � form with values in LG�E� E�

and �' � �D�' is a 	�form with values in LG�E� E�� The ��free�� Yang�Mills

equation for r are �
�' � �

D' � �

Note that the second equation is actually an identity �i�e� automatically satis�

�ed� namely the Bianchi identity�

Let us de�ne the action of a connection r on M to be

A�r� � 	
�

Z
M
k'rk�� � 	

�

Z
M
'r � �'r

Now let � � "G�E� � !�%
��M� � LG�E� E�� so r� � r � � is another G

connection on E� We recall that

'r� � 'r �Dr� � � � ��

Thus

A�r� t�� � A�r� � t
Z
'r � �D� � t�

Z
� � �

��



and

d

dt

�����
t��

A�r � t�� � ��'r� Dr
� �� � ����Dr�'r� ���

Thus the Euler�Lagrange condition that r be an extremal of A is just the non�
trivial Yang�Mills equation �' � ��

We note that the Riemannian structure ofM enters only very indirectly �via the

Hodge ��operator on two�forms� into the Yang�Mills equation� Now if we change

the metric g on M to a conformally equivalent metric $g � c�g it is immediate

from the de�nition that the new ��operator on k�forms is related to the old by
��
k � c�k�n�k� In particular if n is even and k � n�� then we see �

k is invariant

under conformal change of metric on M � Thus

Theorem� If dim�M� � � then the Yang�Mills equations for connection on G�

bundles over M is invariant under conformal change of metric onM � In particular

since R� is conformal to S��fpg under stereographic projection� there is a natural
bijective correspondence between Yang�Mills �elds on R� and Yang�Mills �elds on

S� � p�

If ' is a Yang�Mills �eld on S� then of course by the compactness of S� its

action Z
R
�
' � �' �

Z
S��fpg

' � �' �
Z
S�
' � �'

is �nite� By a remarkable theorem of K� Uhlenbeck� conversely any Yang�Mills

�eld of �nite action on R
� extends to a smooth Yang�Mills �eld on S�� Thus the

�nite action Yang�Mills �elds on R
� can be identi�ed with all Yang�Mills �elds

in S��

Now also when n � � we recall that ����� � 	 and hence

%��M�� F �F � LG�E� E��

splits as a direct�sum into the sub�bundles �%��M�� F �	 of �	 eigenspaces of ���
In particular any curvature form ' of a connection in M splits into the sum of its

��



projection '	 on these two bundles

' � '	 � '� ��'	� � �'	�

Now in general a two�form � is called self�dual �anti�self dual� if �� � � ��� � ���
and a connection is called self dual �anti�self dual� if its curvature is self�dual

�anti�self dual��

Theorem� If dim�M� � � then self�dual and anti�self dual connections are

automatically solutions of the Yang�Mills equation�

Proof� Since �' � �' the Bianchi identity D' � � implies D��'� � ��

De�nition� An instanton �anti�instanton� is a self�dual �anti�self dual� connec�

tion on R� with �nite action� or equivalently a self�dual �anti�self dual� connection

on S��

It is an important open question whether there exist any Yang�Mills �elds in S�

which are not self dual or anti�self dual�

Theorem� If E any smooth vector bundle over S� then the quantity

C � C�E� �
Z
S�
' � '

where ' is the curvature form of a connectionr on E is a constant �in fact �� times
an integer� called the �nd Chern number of E� depending only on E and not on r�
If we write a �

R
S� ' � �' for the Yang�Mills action of ' and a	 �

R
'	 � �'	�

a� �
R
'� � �'� for the lengths of '	 and '�� then

a � a	 � a� and c � a	 � a�

so

a � c� �a� � �c � �a	�
Thus if c � � then an instanton �i�e� a� � �� is an absolute minimum of the action
and if c � � then an anti�instanton �i�e� a	 � �� is an absolute minimum of the
action�

��



Proof� The fact that c is independent of the connection on E follows from our

discussion of characteristic classes and numbers below� Now�

c �
Z
�'	 � '�� � ��'	 � '��

�
Z
'	 � �'	 �

Z
'� � �'�

� a	 � a�

a �
Z
�'	 � '�� � ��'	 � '��

�
Z
'	 � �'	 �

Z
'� � �'�

� a	 � a��

�

TOPOLOGY OF VECTOR BUNDLES

In this section we will review some of the basic facts about the topology of

vector bundles in preparation for a discussion of characteristic classes�

We denote by VectG�M� the set of equivalence classes of G�vector bundles

over M � Given f � N � M we have an induced map� given by the �pull�back�

construction�

f � � VectG�M�� VectG�N��

If E is smooth G�bundle over N we will denote by E � I the bundle we get over

N � I by pulling back E under the natural projection of N � I � N �so the �ber

of �E � I� at �x� t� is the �ber of E at x��

Lemma� Any smooth G�bundle $E over N � I is equivalent to one of the form

E � I�

Proof� Let E � i�
�� $E� where i� � N � N � I is x � �x� �� so Ex � $E�x
 �


at hence �E � I��x
 t
 � $E�x
 �
� Choose an admissible connection for $E and de�ne

��



an equivalence � � E � I 
 $E by letting ��x
 t
 � �E � I��x
 t
 
 $E�x
 t
 be parallel

translation of $E�x
 �
 along � � �x� ���

Theorem� If f�� f� � N � M are homotopic then f �� � VectG�M�� VectG�N�
and f �� � VectG�M�� VectG�N� are equal�
Proof� Let F � N�I �M be a homotopy of f� with f� at let it � N � N�I be

x� �x� t�� Let $E � F ��E �� for some E � � VectG�M�� By the Lemma $E 
 E � I

for some bundle E over N � hence since ft � F 
 it �t � �� 	� f �t �E �� � it
�F ��E �� 


it
��E � I� � E�

Corollary� If M is a contractible space then every smooth G bundle over M is

trivial�

Proof� Let f� denote the identity map ofM and let f� � M �M be a constant

map to some point p� If E � VectG�M� then f �� �E� � E and f �� �E� � Ep �M �

Since M is contractible f� and f� are homotopic and E 
 Ep �M �

Corollary� If E is a G�bundle over Sn then E is equivalent to a bundle formed

by taking trivial bundles E	 and E� over the �closed� upper and lower hemi�

spheres Dn
	 and D

n
� and gluing them along the equator S

n�� � Dn
	 � Dn

� by a

map g � sn�� � G� Only the homotopy class of g matters in determining the

equivalence class of E� so that we have a map VectG�s
n� � �n���G� which is in

fact an isomorphism�

Proof� Since Dn
	 are contractible EjDn

	 
 Dn � Ep� so we can in fact recon�

struct E by gluing� It is easy to see that a homotopy between gluing maps g�

and g� of s
n�� � G de�nes an equivalence of the glued bundles and vice versa�

Remark� It is well�known that for a simple compact group G ���G� � Z�

so in particular VectG�S
�� 
 Z� In fact E �� �

�

C�E� � �

�

C�E� � �

�


R
' � '

�� �nd Chern number of E� Where ' is the curvature of any connection on E

gives this map�

�




The preceding corollary is actually a special case of a much more general fact�

the bundle classi�cation theorem� It turns out that for any Lie group G and

positive integer N we can construct a space BG � BN
G �the classifying space of G

for spaces of dimension � N� and a smooth G vector bundle �G � �NG over BG

�the �universal� bundle� so that if M is any smooth manifold of dimension � N

and E is any smooth G vector bundle overM then E � f ��G for some smooth map

f � M � BG� in fact the map f � f ��G is a bijective correspondence between the

set �M� BG� of homotopy class of M into BG and the set VectG�M� of equivalence

classes of smooth G�vector bundles overM � This is actually not as hard as it might

seem and we shall sketch the proof below for the special case of GL�k� �assuming

basic transversality theory��

Notation�

Qr � fT � L�Rk� R�� j rank�T � � rg
Proposition� Qr is a submanifold of L�Rk� R�� of dimension k� � �k � r��� �

r�� hence of condimension �k � r��� � r�� Thus if dim�M� � � � k � 	� i�e� if

dim�M� � ��� k�� then any smooth map of M into L�Rk� R�� which is transversal

to Q�� � � � � Qk�� will in fact have rank k everywhere�

Proof� We have an action �g� h�T � gTh�� of GL��� � GL�k� on L�Rk� R��

and Qr is just the orbit of Pr � projection of R
k into Rr � R

�� The isotropy group

of Pr is the set of �g� h� such that gPr � Prh� If e�� � � � � er� � � � � ek� � � � � e� is usual

basis then this means gei � Prhei i � 	� � � � � r and Prhei � � i � r � 	� � � � � k�

Thus �g� h� is determined by�

�a� hjRr � L�Rr� Rk�

�b� P�
r hjRk�r � L�Rk�r� Rk�r� �PrhjRk�r � ��

�c� gjR��r � L�R��r� R�� �gjRr det� by h��
rk��k� r��k� r�� ���� r� � ����k��� �k�� �k� r���� r�� is the dimension

of the isotropy group of Qr hence�

dim�Qr� � dim�GL����GL�k��isotropy group�

��



� k�� �k � r���� r��

�

Extension of Equivalence Theorem� If M is a �compact� smooth manifold and

dim�M� � ��� k� then any smooth k�dimensional vector bundle over M is equiv�

alent to a smooth subbundle of the product bundle R�M �M �R
�� and in fact if N

is a closed smooth submanifold of M then an equivalence of EjN with a smooth
sub�bundle of R�N can extended to an equivalence of E with a sub�bundle of R

�
M �

Proof� An equivalence of E with a sub�bundle of R�M is the same as a section �

of L�E� R�M� such that �x � Ex � R
� has rank k for all x� In terms of local

trivialization of E� � is just a map of M into L�Rk� R�� and we want this map to

miss the submanifolds Qr� r � �� 	� � � � � k�	� Then Thom transversality theorem
and preceding proposition now complete the proof� �

G � GL�k�

BG � G�k� ��

� k � dim� linear subspace of R�

� fT � L�Rk� R�� jT � � T� T � � T� tr�T � � kg
�G � f�P� v� � G�k� ��� R jPv � v i�e� v � im�P �g

This is a vector bundle over BG whose �ber at p is image of p�

Bundle Classi�cation Theorem

If dim�M� � ���k� then any smooth G�bundle E overM is equivalent to f �� �G

for some smooth f� � M � BG� If also E is equivalent to f
�
� �

G then f� and f� are

homotopic�

�	



Proof� By preceding theorem we can �nd an isomorphism �� of E with a k�

dimensional sub�bundle of R�M � Then if f� � M � BG is the map x �� im���
x�� �

�

is an equivalence of E with f �� �
G� Now suppose �� � E 
 f �� �

G and regard �� 	��

as an equivalence over N � M � f�g 	M � f	g of �E � I�jN with a sub�bundle
of R�N � The above extension theorem says �since dim�M�I� � dimM�	 � ���k��
that this can be extended to an isomorphism � of E� I with a k�dimensional sub�

bundle of R�M
I � Then F � M � I � BG� �x� t�� im���x
 t
� is a homotopy of f�

with f�� �

CHARACTERISTIC CLASSES AND NUMBERS

The theory of �characteristic classes� is one of the most remarkable �and

mysterious looking� parts of bundle theory� Recall that given a smooth map

f � N � M we have induced maps f � � VectG�M� � VectG�N� and also

f � � H��M� � H��N�� where H��M� denotes the de Rham cohomology ring

of M � Both of these f ��s depend only on the homotopy class of f � N � M �

Informally speaking a characteristic class C �for G�bundles� is a kind of snapshot

of bundle theory in cohomology theory� It associates to each G�bundle E over M

a cohomology class C�E� in H��M� in a �natural� way  where natural means

commuting with f ��

De�nition� A characteristic class for G�bundle is a function c which asso�

ciates to each smooth G vector bundle E over a smooth manifold M an element

c�E� � H��M�� such that if f � N � M is a smooth map then c�f �E� � f �c�E��

�In the language of category theory this is more elegant� c is a natural transforma�

tion from the functor VectG to the functor H
�� both considered as contravariant

functors in the category of smooth manifolds�� We denote by Char�G� the set of

all characteristic classes of G bundles�

��



Remark� Since f � � H��M� � H��N� is always a ring homomorphism it is

clear that Char�G� has a natural ring structure�

Exercise� Let �G be a universal G bundle over the G�classifying space BG�

Show that the map c �� c��G� is a ring isomorphism of Char�G� with H
��BG�� i�e�

every characteristic class arises as follows� Choose an element c � H��BG� and

given E � VectG�M� let f � M � BG be its classifying map �i�e� E 
 f ��G�� Then

de�ne c�E� � f ��c��

Unfortunately this description of characteristic classes� pretty as it seems� is

not very practical for their actual calculation� The Chern�Weil theory� which we

discuss below for the particular case of G � GL�k� c� on the other hand seems

much more complicated to describe� but is ideal for calculation�

First let us de�ne characteristic numbers� If w � H��M� with M closed� thenR
M w denote the integral over M of the dim�M��dimensional component of w� The

numbers
R
M c�E�� where c � Char�G�� are called the characteristic numbers of a

G�bundle E over M � They are clearly invariant� i�e� equal for equivalent bundles�

so they provide a method of telling bundles apart� �In particular if a bundle is

trivial it is induced by a constant map� so all its characteristic classes and numbers

are zero� Thus a non�zero characteristic number is a test for non�triviality�� In

fact in good cases there are enough characteristic numbers to characterize bundles�

hence their name�

THE CHERN�WEIL HOMOMORPHISM

Let X � X�� 	 � 
� � � k be a k � k matrix of indeterminates and consider

the polynomial ring C �X�� If P � P �X� is in C �X� then given any k� k matrix of

elements r � r�� from a commutative ring R we can substitute r for X in P and

get an element P �r� � R�

In particular if V is a k�dimensional vector space over C and T � L�V� V � then

��



given any basis e�� � � � � ek for V � Te� � T��e� de�nes the matrix T�� of T relative

to this basis� and substituting T�� for X�� in P gives a complex number P �T����

Given g � g�� � GL�k� C � de�ne a matrix $X � ad�g�X of linear polynomials

in C �X� by

�ad�g�X��� � g��
��X��g��

If we substitute �ad�g�X��� for X�� in the polynomial P � C �X� we get a new

element pg � ad�g�P of C �X� � pg�X� � P �g��Xg�� Clearly ad�g� � C �X�� C�X�

is a ring automorphism of C �X� and g � ad�g� is a homomorphism of GL�k� C �
into the group of ring automorphisms of C �X��

De�nition� The subring of C �X� consisting of all P � C �X� such that P �X� �

P g�X� � P �g��Xg� for all g � GL�k� C � is called the ring of �adjoint� invariant

polynomials and is denoted by C G�X��

What is the signi�cance of C G�X��

Theorem� Let P �X��� � C �X���� A NASC that p be invariant is the following�

given any linear endomorphism T � V � V of a k�dimensional complex vector

space V � the value P �T��� � C of P on the matrix T�� of T w�r�t� a basis e�� � � � � ek

for V does not depend on the choice of e�� � � � � ek but only on T and hence gives

a well de�ned element P �T � � C �

Proof� If $e� � g��e� is any other basis for V then g � GL�k� C � and if $T��

is the matrix of T relative to the basis $e� then $T�� � g��
��T��g��� from which the

theorem is immediate� �

Examples of Invariant Polynomials�

	� Tr�X� �
P
�
X�� � X�� � � � �Xkk

�� Tr�X�� �
P
��

X��X��

�� Tr�Xm�

��



�� det�X� �
P

��Sk
����X����
X����
 � � �Xk��k


Let t be a new indeterminate� If I is the k � k identity matrix then tI �X �

t��� �X�� is a k� k matrix of elements in the ring C �X��t� so we can substitute it

in det and set another element of the latter ring det�tI �X� � tk � c��X�t
k�� �

� � � � ck�X� where c�� � � � � ck � C �X� and clearly ci is homogeneous of degree i�

Since g���tI �X�g � tI � gXg�� it follows easily from the invariance of det that

c�� � � � � ck are also invariant�

Remark� Let T be any endomorphism of a k�dimensional vector space V �

Choose a basis e�� � � � � en for V so that T is in Jordan canonical form and let

��� � � � � �k be the eigenvalues of T � Then we see easily

	� Tr�T � � �� � � � �� �k

�� Tr�T �� � ��
� � � � �� ��

k

�� Tr�Tm� � �m� � � � �� �mk

�� det�T � � ���� � � ��k
Also det�tI � T � � �t � ��� � � � �t� �k� from which it follows that

�� cm�T � � �m���� � � � � �k�

where �m is the m
th �elementary symmetric function of the �i�

�m���� � � � � �k� �
X

��i������im�k
�i��i� � � ��ik

This illustrates a general fact�

If P � C
G�x� then there is a uniquely determined symmetric polynomial of

k�variables &P �%�� � � � � %k� such that if T � V � V is as above then P �T � �

P ���� � � � � �k�� We see this by checking an the open� dense set of diagonalizable T �

Now recall the fundamental fact that the symmetric polynomials in %�� � � � � %k

form a polynomial ring in the k generators ��� � � � � �k or in the k power sums

p�� � � � � pk� pm�%�� � � � � %k� � %
m
� �� � �%mk � From this we see the structure of C G�X��

Theorem� The ring C G�X� of adjoint invariant polynomials in the k�k matrix of

��



indeterminatesX�� is a polynomial ring with k generators� C
G�X� � C�y�� � � � � yk��

For the yk we can take either ym�X� � tr�X
m� or else ym�X� � cm�X� where the cm

are de�ned by det�tI �X� �
kP

m��
cm�X�t

k�

Now let E be a complex smooth vector bundle overM �i�e� a real vector bundle

with structure group G � GL�k� C � � GL��k� R��� and let r be an admissible
connection for E� Let s�� � � � � sk be an admissible �complex� basis of smooth

sections of E over 	� with connection forms and curvature forms W�� and '���

Now the '�� are two�forms �complex valued� in 	 hence belong to the commutative

ring of even dimensional di
erential forms in 	 and if P � C�X� then P �'��� is

a well de�ned complex valued di
erential form in 	� If $'�� are the curvature

forms w�r�t� basis $s� � g��s
� for Ej	 �where g � 	 � GL�k� C � is a smooth map�

then $' � g��'g so P �$'�x � P �$'x� � P �g���x�'xg�x�� � pg�x
�'x�� Thus if

P � C
G�X�� so P g � P for all g � GL�k� C � the P �$'�x � P �'x� � P �'�x for all

x � 	� and hence P �'� is a well de�ned complex valued form in 	� depending only

on r and not in the choice of s�� � � � � sk� It follows of course that P �'� is globally
de�ned in all of M �

Chern�Weil Homomorphism Theorem� �G � GL�k� C ��� Given a complex vec�

tor bundle E over M and a compatible connection r� for any P � C
G�X� de�ne

the complex�valued di
erential form P �'r� on M as above� Then

	� P �'r� is a closed form on M �

�� If $r is any other connection on M then P �'
�r� di
ers from P �'r� by an

exact form� hence P �'r� de�nes an element P �E� of the de Rham cohomol�

ogy H��M� of M � depending only on the bundle E and not on r�

�� For each �xed P � C
G�X� the map E � P �E� thus de�ned is a characteristic

class� that is an element of Char�GL�k� C ��� �In fact if f � N �M is a smooth

map and rf is the connection on f �E pulled back from r on E� then since

��



'r
f

� f �'r� P �'r
f

� � P �f �'r� � f �P �'r���

�� The map C
G�X� � Char�GL�k� C �� �which associates to P this map E �

P �E�� is a ring homomorphism �the Chern�Weil homomorphism��

�� In fact it is a ring isomorphism�

Proof� Parts �� and �� are completely trivial and it is also evident that the

Chern�Weil homomorphism is injective� That it is surjective we shall not try to

prove here since it requires knowing about getting the de Rham cohomology of a

homogeneous space from invariant forms� which would take us too far a�eld� Thus

it remains to prove parts 	� and ��� We can assume that P is homogeneous of

degree m� Let $P be the �polarization� or mth di
erential of P � i�e� the symmetric

m�linear form on matrices such that

P �X� � $P �X� � � � � X�

�Explicitly if y�� � � � � ym are k � k matrices then $P �y�� � � � � ym� equals


m


t� � � �
tm

�����
t��

P �t�y� � � � �� tmym�

�� If we di
erentiate with respect to t at t � � the identity

$P �ad�exp ty�X� � � � � ad�exp ty�X� � P �X�

we get the identity

X
$P �X� � � � � yX �Xy� X� � � � � X� � �

If we substitute in this from the exterior algebra of complex forms in 	� y � w��

and X � '�� X
$P �'� � � � � w � '� ' � w� '� � � � � '� � ��

On the other hand from the multi�linearity of $P and P �'� � $P �'� � � � � '� we get

d�P �'�� �
P $P �'� � � � � d'� '� � � � � '�� Adding these equations and recalling the

��



Bianchi identity d'�w�'�'�w � � gives d�P �'�� � � as desired� proving 	�� We
can derive �� easily from 	� by a clever trick of Milnor�s� Given two connections r�

and r� on E use M � I �M to pull them up to connection $r� and $r� on E � I

and let $r � � $r���	��� $r� where � � M�I � R is the projectionM�I � I � R�

If �i is the inclusion of M into M � I� x� �x� i� for i � �� 	 then ��i �E � I� � E

and �i pulls back $r to ri� so as explained in the statement of ��

P �'r
i

� � ��iP �'
�r��

Thus P �'r
�

� and P �'r
�

� are pull backs of the same closed �by�	�� form P �'
�r�

on M � I under two di
erent maps ��i � H
��M � I� � H��M�� Since �� and ��

are clearly homotopic maps of M into M � I� ��� � ��� which means that �
�
��'

�r�

and ����'
�r� are cohomologous in M �

The characteristic class � i
�

�mCm�E� is called the m

th Chern class of E� Since

the Cm are polynomial generators for C
G�X� m � 	� �� � � � � k it follows that any

characteristic class is uniquely a polynomial in the Chern classes�

For a real vector bundle we can proceed just as above replacing C by R and

de�ning invariant polynomials Em�X� by det�tI �
�
�

X� �

P
m
Em�X�t

k�m and the

Pontryagin classes Pm�E� are de�ned by pm�E� � E�m�'� where ' is the curvature

of a connection for E� These are related to the Chern classes of the complexi�ed

bundle EC � E � C by

pm�E� � ��	�mC�m�EC �

PRINCIPAL BUNDLES

Let G be a compact Lie group and let G denote its Lie algebra� identi�ed
with TGe� the tangent space at e� If X � G then exp�tX� denotes the unique
one parameter subgroup of G tangent to X at e� The automorphism ad�g� of G

�x � g��xg� has as its di
erential at e the automorphism Ad�g� � G � G of the

��



Lie algebra G� Clearly ad�g��exp tX� � exp�tAd�g�X��
Let P be a smooth manifold on which G acts as a group of di
eomorphisms�

Then for each p � P we have a linear map Ip of G into TPp de�ned by letting Ip�X�
be the tangent to �exp tX�p at t � �� Thus I�X�� �p �� Ip�X��� is the smooth vector

�eld on P generating the one�parameter group exp tX of di
eomorphism of P and

in particular Ip�X� � � if and only if exp tX �xes P �

Exercise�

a� im�Ip� � tangent space to the orbit GP at p�

b� Igp�X� � Dg�Ip�Ad�g�X��

Let � be a Riemannian metric for P � We call � G�invariant if g���� � � for

all g � G� i�e� if G is included in the group of isometries of �� We can de�ne a
new metric (� in P �called then result of averaging � over G� by (� �

R
G g

����d��g�

where � is normalized Haar measure in G�

Exercises� Show that (� is an invariant metric for P � Hence invariant metrics

always exists�

De�nition� P is a G�principal bundle if G acts freely on P � i�e� for each p � P

the isotropy group Gp � fy � G j gp � pg is the identity subgroup of G� We de�ne
the base space M of P to be the orbit space P�G with the quotient topology� We

write � � P � M for the quotient map� so the topology of M is characterized by

the condition that � is continuous and open�

De�nition� Let 	 be open in M � A local section for P over 	 is a smooth

submanifold
P
of M such that

P
is transversal to orbits and

P
intersects orbit

in 	 in exactly one point�

Exercise� Given p � P there is a local section
P
for P containing p� �Hint�

With respect to an invariant metric exponentiate an ��ball in the space of tangent

�




vector to P at p normal to the orbit Gp��

Theorem� There is a unique di
erentiable structure on M characterized by

either of the following�

a� The projection � � P �M is a smooth submersion�

b� If
P
is a section for P over 	 then �jP is a di
eomorphism of P onto 	�

Proof� Uniqueness even locally of a di
erentiable structure for M satisfying a�

is easy� And b� gives existence�

Since � � P � M is a submersion� Ker�D�� is a smooth sub�bundle of TP

called the vertical sub bundle� Its �ber at p is denoted by Vp�

Exercises�

a� Vp is the tangent space to the orbit of G thru p�

b� If ) is a local section for P and p � ) then T)p is a linear complement to Vp
in TPp�

c� For p � P the map Ip � G � TPp is an isomorphism of G onto Vp�

De�nition� For each p � P de�ne $wp � Vp � G to be I��
p �

Exercise� Show that $w is a smooth G valued form on the vertical bundle V �

De�nition� For each g � G we de�ne a G valued form g� $w on V by �g� $w�p �

$wg��p 
Dg�� �Note Dg�� maps Vp onto Vg��p���

Exercise�

g� $w � Ad�g� 
 $w

��



Connections on Principal Bundles

De�nition� A connection�form on P is a smooth G valued one�form w on P

satisfying

g�w � Ad�g�w

and agreeing with $w on the vertical sub bundle�

De�nition� A connection on P is a smooth G�invariant sub bundle H of TP

complementary to V �

Remark� H is called the horizontal subbundle� The two conditions mean that

Hgp � Dg�Hp� and TPp � Hp�Vp at all p � P � We will write &Hp and &Vp to denote

the projection operator of TPp on the subspaces Hp and Vp w�r�t� this direct sum

decomposition� Clearly�

&Hgp 
Dg � Dg 
 &Hp

&Vgp 
Dg � Dg 
 &Vp

Theorem� If H is a connection for P then for each p � P D�p � TPp � TM
�p


restricts to a linear isomorphism hp � Hp 
 TM
�p
� Moreover if g � G then

hgp 
Dgp � hp

�where Dg � TPp � TPgp��
Proof� Since � � P �M is a submersion andHp is complementary to Ker�D�p�

it is clear that hp maps Hp isomorphically onto TM
�p
� the rest is an easy exercise�

De�nition� If H is a connection for P we de�ne the connection one form wH

corresponding to H by wH � $w 
 &V � i�e� wH
p � TPp � G is the composition of the

vertical projection TPp � Vp and $wp � Vp � G�

�	



Exercise� Check that wH really is a connection form on P at that H can be

recovered from wH by Hp � Ker�WH
p ��

Theorem� The map H � wH is a bijective correspondence between all connec�

tions on P and all connection forms on P �

Proof� Exercise�

Remark� Note that if we identify the vertical space Vp at each point with G
�via the isomorphism $wp� then the connection form w of a connection H is just�

wp � projection of TPp on Vp along Hp

This is the good geometric way to think of a connection and its associated con�

nection form� The basic geometric object is the G invariant sub bundle H of TP

complementary to V � and w is what we use to explicitly describeH for calculational

purpose�

Henceforth we will regard a section s of P over 	 as a smooth map s � 	 � P

such that ��s�x�� � x� �i�e� for each orbit x � 	 s�x� is an element of x�� If $s is

a second section over 	 then there is a unique map g � 	 � G such that $s � gs

�i�e� $s�x� � g�x�s�x� for all x � 	�� We call g the transition function between the

sections $s and s�

For each section s � 	 � P and connection form w on P de�ne a G valued
one�form ws on 	 by ws � s��w� �i�e� ws�X� � w�Ds�X�� for X � TMp� p � 	��

Exercise� If s and $s are two section for P over 	� $s � gs� and if w is a connection

	�form in P then show that

w�s � Ad�g� 
 ws � g��Dg

or more explicitly�

w�s
x � Ad�g�x��w

s
x � g�x���Dgx

��



�the term g�X���Dgx means the following� since g � 	 � G� Dgx maps TMp

into TGg�x
� then g�x�
��Dgx�x� is the vector in G � TGe obtained by left transla�

tion Dgx�x� to e� i�e� g�x�
�� really means D� where � � G� G is � � g�x������

Exercise� Conversely show that if for each section s of P over 	 we have a G
valued one�form ws in 	 and if there satisfy the above transformation law then

there is unique connection form w on P such that ws � s�w�

De�nition� If w is a connection form on the principal bundle P we de�ne its

curvature ' to be the G valued two form on P � ' � dw � w � w�

Exercise� If H is the connection corresponding to w �i�e� H � Kerw� and

&Hp � projection of TPp on Hp along Vp show that ' � Dw� where by de�nition

Dw�u� v� � dw� &Hu� &Hv��

Remark� This shows '�X� Y � � � if either X or Y is vertical� Thus we may

think of 'p as a two form on TM
�p
 with values in G�

THE PRINCIPAL FAME BUNDLE OF A VECTOR BUNDLE

Now suppose E is a G�vector bundle over M � We will show how to construct

a principal G�bundle P �E� with orbit space �canonically di
eomorphic to� M �

called the principal frame bundle of E� such that connections in E and connections

in P �E� are �really the same� thing  i�e� correspond naturally�

The �ber of P �E� at x � M is the set P �E�x of all admissible frames for Ex

and so P �E� is just the union of these �bers� and the projection � � P �E� � M

maps P �E�x to x� If e � �e
�� � � � � ek� is in P �E�x and g � g�� � G�GL�k� then

ge � $e � �$e�� � � � � $ek� where $e� � g��e�� so clearly G acts freely on P �E� with the

�bers P �E�x as orbits� If s � �s
�� � � � � sk� is a local base of section of E over 	

then we get a bijection map 	 � G 
 P �E�j	 � ����	� by �x� g� � gs�x�� We

��



make P �E� into a smooth manifold by requiring these to be di
eomorphisms�

Exercise� Check that the action of G on P �E� is smooth and that the smooth

local sections of P �E� are just the admissible local bases s � �s�� � � � � sk� of E�

Theorem� Given a admissible connection r for E the collection ws of local

connection forms de�ned by

rs� � w�� � s�

de�ned a unique connection form w in P �E� such that ws � s�w� and hence a

unique connection H in P �E� such that w � $w 
 &V � This map r � H is in fact a

bijective correspondence between connections in E and connections in P �E��

Proof� Exercise�

INVARIANT METRICS IN PRINCIPAL BUNDLES

Let � � P � M be a principal G bundle� G a compact group and let 
 be an

adjoint invariant inner product on G the Lie algebra of G� �We can always get such
an 
 by averaging over the group� if G is simple 
 must be a constant multiple

of the killing form�� By using the isomorphism $wp � Vp 
 G we get a G�invariant
Riemannian metric we shall also call 
 on the vertical bundle V such that each of

the maps $wp is isometric�

By an invariant metric for P we shall mean a Riemannian metric g for P which

is invariant under the action of G and restricts to 
 on V �

Theorem� Let $g be an invariant metric for P and let H be the sub bundle

of TP orthogonally complementing V with respect to $g� Then H is a connection

for P and moreover there is a unique metric g for M such that for each p � P �

D� maps Hp isometrically onto TM
�p
� This map $g � �H� g� is a bijective

correspondence between all invariant metric in P and pairs �H� g� consisting of a

connection for P and metric for M � If wH is the connection form for H then we

��



can recover $g from H and g by

$g � ��g � 
 
 wH�

Proof� Trivial�

Corollary� If g is a �xed metric on M there is a bijective correspondence be�

tween connections H for P and invariant metrics $g for P such that �jHp � Hp 

TM
�p
 is an isometry for all p � P �namely $g � ��g � 
 
 wH��

It turns out� not surprisingly perhaps� that there are some remarkable relations

between the geometry of �M� g� and that of �P $g�� involving of course the con�

nection� Moreover these relationships are at the very heart of the Kaluza�Klein

uni�cation of gravitation and Yang�Mills �elds� We will study them with some

care now�

MATHEMATICAL BACKGROUND OF KALUZA�KLEIN THEORIES

In this sectionM will as usual denote an n�dimensional Riemannian �or pseudo�

Riemannian� manifold� We let v�� � � � � vn be a local o�n� frame �eld in M and

	�� � � � � 	n the dual coframe �In general indices i� j� k have the range 	 to n��

G will denote a p�dimensional compact Lie group with Lie algebra G � TGe

having an adjoint invariant inner product 
� We let en	�� � � � � en	p denote an o�n�

basis for G and �� the dual basis for G�� �In general indices 
� �� � have the range
n� 	 to n� p�� We let C�

�� be the structure constants for G relative to the e�

�e�� e�� � C�
��e��

Of course C�
�� � �C�

��� Now for 
 �xed C
�
�� is the matrix of the skew adjoint

operator Ad�e�� � G � G w�r�t� the o�n� basis e�� hence also C�
�� � �C�

�� �

We let P be a principal G�bundle overM with connection H having connection

form w� We recall that we have a canonical invariant metric on P such that D�

��



maps Hp isometrically onto M
�p
� We shall write 	i also for the forms �
��	i� in P

and we write 	� � �� 
 w� Then letting the indices A� B� C have the range 	
to n � p it is clear 	A is an o�n� coframe �eld in P � We let vA be the dual frame

�eld� �Clearly the v� are vertical and agree with the e� � G under the natural
identi�cation� and the vi are horizontal and project onto the vi in M ��

In what follows we shall use these frames �elds to �rst compute the Levi�Civita

connection in P � With this in hand we can compute the Riemannian curvature

of P in terms of the Riemannian curvature of M � the Riemannian curvature of G

�in the bi�invariant metric de�ned by 
� and the curvature of the connection on P �

Also we shall get a formula for the �acceleration� or curvature of the projection (�

on M of a geodesic � in P � The calculations are complicated� but routine so we

will give the main steps and leave details to the reader as exercises� First however

we list the main important results�

Notation� Let ' be the curvature two�form of the connection formw �a G valued
two form on P � and de�ne real valued two�forms '� by ' � '�e� and functions F

�
ij

�skew in i� j� by '� �
�
�
F �
ij	i � 	j� we let 	AB denote the connection forms of the

Levi�Civita connection for P � relative to the frame �eld vA� i�e� 	AB � �	BA and

rvB � 	ABvA

�or equivalently d	B � 	AB � 	A�� Finally we let (	ij denote the Levi�Civita con�

nection forms onM relative to 	i� and we also write (	ij for �
�(	ij� these same forms

pulled up to P �

Theorem 	� �������
	ij � (	ij � �

�
F �
ij	�

	�i �
�
�
F �
ij	j

	�� � ��
�
C�
��	�

Notation� Let � � I � P be a geodesic in P and let (� � � 
 � � I � M be

its projection in M � We de�ne a function q � I � G called the speci�c charge
of � by q�t� � w����t�� �i�e� q�t� is the vertical component of the velocity of ���

��



We de�ne a linear functional *f���t�� on TM��t
 by *f���t���w� � '��t
�w� (�
��t�� � q

�where � means inner product in G and we recall 'p can be viewed as a two form
on TM
�p
� *f is called the Lorentz co�force and the dual element *f���t�� � TM��t


is called the Lorentz force�

Remark� If we write�

���t� � uivi � q�v�

then q � q�v� and (�
��t� � uivi� Recalling ' �

�
�
F �
ij	i�	je�� we have '�w� (���t�� �

�
�
F �
ijwiuje� so '�w� (�

��t�� � q � �
�
q�F

�
ijwiuj thus we see that the Lorentz force is

given by *f����t�� � �
�
q�F

�
ijujvi�

Theorem �� The speci�c charge q is a constant� Moreover the �accelera�

tion� D���

dt
of the projection (� of � is just the Lorentz force�

Remark� Note that in the notation of the above remark this says that the q�

are constant and
D

dt
�
dui
dt
� �
	

�
q�F

�
ijuj�

Before stating the �nal result we shall need� we recall some terminology and nota�

tion concerning curvature in Riemannian manifolds�

The curvature M' of �the Levi�Civita connection for� M is a two form on M

with values in the bundle of linear maps of TM to TM� so if x� y � TMp then

M'�x� y� � TMp � TMp is a linear map� The Riemannian tensor of M �
MRiem�

is the section of ��T �M given by

MRiem�x� y� z� w� �� M'�x� z�y� w � �

It�s component with respect to a frame vi are denoted by

MRijk� �
MRiem�vi� vj� vk� v��

The Ricci tensor MRic is the symmetric bilinear form on M given by

MRic�x� y� � trace�z � M'�x� z�y�

��



so its components MRij are given by

MRij �
X
k

MRikjk�

Finally� the scalar curvature MR of M is the scalar function

MR � traceMRic �
X
i
 k

MRikik�

Of course P also has a scalar curvature function PR which by the invariance of

the metric is constant on orbits of G so is well de�ned smooth function onM � Also

the adjoint invariant metric 
 on G � TGe de�nes by translation a bi�invariant

metric on G� so G has a scalar curvature GR which of course is a constant� Finally

since the curvature ' of the connection form w is a two form on M with values

in G �and both TMp and G have inner products�� ' has a well de�ned length k'k
which is a scalar function on M

k'k� �X
�
 i
 j

�F �
ij�

��

Theorem ��

PR � MR � 	
�
k'k� � GR�

Proof of Theorem 	�

	� 	AB � 	BA � �

�� d	A � 	BA � 	B

are the structure equation� Lifting the structural equation d	i � (	ji � 	j on M
to P and comparing with the corresponding structural equation on P gives

�� d	i � (	ji � 	j � 	ji � 	j � 	�i � 	� on the other hand w � 	�e�� and so d	�e� �

dw � '��w� w� � �
�
F �
ij	i�	je�� �

�
	��	� �e�� e� � � ���F �

ij	i�	j� �
�
C�
��	��	��e�

which with the structural equation d	� � 	i� � 	i � 	�� � 	� gives

�� 	i� � 	i � 	�� � 	� �
�
�
F �
ij	i � 	j � �

�
C�
��	� � 	�

��



We can solve 	�� ��� ��� �� by comparing coe�cient� making use of C�
�� �

�C�
�� � C�

�� � �C�
�� � We see easily that the values given in Theorem 	 for 	AB

solve these equation� and by Cartan�s lemma these are the unique solution�

Proof of Theorem ��

Recall that PR is by de�nition PRABAB where
PRABCD is de�ned by d	AB �

	AF � 	FB �
P'AB �

�
�
PRABCD	C � 	D� Thus it is clearly only a matter of

straight forward computation� given Theorem 	� to compute the PRABCD in terms

of the MRijk�� the F
�
ij � and the C

�
��� The trick is to recognize certain terms in the

sum PR � PRABAB as k'k� � F �
ijF

�
ij and

GR� The �rst is easy� for the second�

the formula GR � GR���� �
�
�
C�
��C

�
�� follows easily from section �	 of Milnor�s

�Morse Theory�� We leave the details as an exercise� with the hint that since we

only need component of PRABCD with C � A and D � B some e
ort can be saved�

Proof of Theorem ��

To prove that for a geodesic ��t� in P the speci�c charge q�t� � w����t�� is

a constant it will su�ce �since w�x� �
P
�
� x� e� � e�� to show that the inner

product � ���t�� e� � is constant� Now the e�� considered as vector �elds on P

generate the one parameter groups exp�te�� � G of isometries of P � hence they are

Killing vector �elds� Thus the constancy of � ���t�� v� � is a special case of the

following fact �itself a special case of the E� Noether Conservation Law Theorem��

Proposition� If X is a Killing vector �eld on a Riemannian manifold N and

� is a geodesic of N then the inner product of X with ���t� is independent of t�

Proof� If �s � I � N jsj � � is a smooth family of curves in N recall that the

�




�rst variation formula says

d

ds

�����
s��

Z
a

	

�
k���t�k�dt

�
Z b

a
�

D

dt
����t�� ��t� � dt� � ����t�� ��t� ��

b
a

where ��t� � �
�s

���
s��

�s�t� is the variation vector �eld along ��� In particular

if �� � � so that D
dt
���� � �� then d

ds

���s��

R b
a k�s�t�k�dt �� ���t�� ��t� �

���b
a
� Now

let �s be the one parameter group of isometries of N generated by X and put

�s�t� � �s���t��� Since the �s are isometries it is clear that k��s�t�k� � k���t�k�

hence d
ds

���
s��

R b
a k��s�t�k� � �� On the other hand since X generates �s

d

ds

�����
s��

�s�t� � X��t


so our �rst variation formula says � ���a�� X��a
 ��� ���b�� X��b
 �� Since �a� b�

can be any subinterval of the domain of � this says � ���t�� X��t
 � is constant�

�

Now let ���t� � uA�t�vA���t�� so (�
��t� � ui�t�vi�(��t��� From the de�nition of

covariant derivative on P and M we have

uAB	B � duA � uB	BA

(uij (	j � dui � uj (	ji

comparing coe�cient when A � i gives

uij � (uij � 	
�
u�f

�
ij�

Now the de�nition of D���

dt
is (uijvi	j�(�

��� We leave the rest of the computation as

an exercise�

GENERAL RELATIVITY

We use atomic clocks to measure time and radar to measure distance� the

distance from P to Q is half the time for a light signal from P to re�ect at Q

��



and return to P � so that automatically the speed of light is 	� We thus have

coordinates �t� x� y� z� � �x�� x�� x�� x�� in the space�time of event R
�� It turn

out that the metric d� � dt� � dx� � dy�� dz� has an invariant physical meaning�

the length of a curve is the time interval that would be measured by a clock

travelling along that curve� �Note that a moving particle is described by its �world

line �t� x�t�� y�t�� z�t���

According to Newton a gravitational �eld is described by a scalar �potential� �

on R�� If a particle under no other force moves in this �eld it will satisfy�

d�xi
dt�
�


�


xi
i � 	� �� �

Along our particle world line �t� x��t�� x��t�� x��t�� we have

�
d�

dt
�� � 	� v� v� �

�X
i��

�
dxi
dt
��

so if v � 	 �i�e� velocity is a small fraction of the speed of light� d� � dt and to

good approximation
d�xi
d� �
�


�


xi
i � 	� �� ��

Can we �nd a metric d� � approximating the above �at one so that its geodesics

d�x�
d� �

� !���
dx�
d�

dx�
d�

will be the particle paths in the gravitational �eld described by � �to a closed

approximation�� Consider case of a gravitational �eld generated by a massive

object stationary at the spatial origin �world line �t� �� �� ��� In this case � � �GM
r

�r � x�� � x�� � x���� For the metric d�
� it is natural to be invariant under SO���

and the time translation group R� It is not hard to see any such metric can be put

into the form

d� � � e�A�r
dt� � e�B�r
dr� � r��d	� � sin� 	d����

Let us try

B � �� e�A�r
 � �	 � 
�r��

d� � � �	 � 
�r��dx�� � dx�� � dx�� � dx��

�	



Geodesic equation is

d�x�
d� �

� �!���
dx�
d�

dx�
d�

d�xi
dt�

� �!i�f
dx�
d�

� 	 dxi
d�

� �g

!kij �
	

�
gk��


g�j

xi
�

g�i

xi

� 
gij

x�
�

!k�� �
	

�
gk��� � �� 
g��


xk

� �
	

�


g��

xk

� �	
�



�


xk
d�xi
d� �

�
	

�



�


xi

Comparing with Newton�s equations 
 � �� � ��GM
r

d� � � �	� �GM
r
�dt�� dx��

dy�� dz�� Will have geodesics which very well approximate particle world lines in

the gravitational �eld with potential �GM
r
�

Now consider the case of a general gravitational potential � and recall that � is

always harmonic  i�e� satis�ed the ��eld equations�� ���
�xi�xi

� �� Suppose the

solutions of Newton�s d�xi
d��
� � ��

�xi
are geodesics of some metric d� �� Let us take a

family xs��t� of geodesics with x
�
��t� � x��t� and

�
�s

���
s��

xs��t� � ��� Then �� will

be a Jacobi��eld along x�� i�e�

D

d�
�
dx�
d�
� � �R�

���

dx�
d�

dx�
d�
���

On the other hand� taking �
�s

���
s��
of

d�xs��t�

d� �
�

��xs�t��


xi

give
d��i
d� �
�


��


xi
xj
�j

so comparing suggest

�R�
���

dx�
d�

dx�
d�
� � 
��


xi
xj

��



Now � � "� � ���
�xi�xi

so we expect R�
���

dx�
d�

dx�
d�
� R��

dx�
d�

dx�
d�
� �� But R�� is

symmetric and
dx�
d�
is arbitrary so this implies R�� � �� We take these as our

�empty space� �eld equations for the metric tensor d� � � g��dx�dx�� Actually

for reasons we shall see soon these equations are usually written di
erently� Let

G�� � R�� � �
�
Rg�� where as usual R � g��R�� is the scalar curvature� Then

g��G�� � R� �
�
RS�

� � R� n
�
R so G�� � �� R � � �if n �� �� and hence R�� � �

and the converse is clear� Thus our �eld equations are equivalent to G�� � ��

We shall now see that these are the Euler�Lagrange equation of a very simple and

natural variational problem�

Let M be a smooth manifold and let 	 be a relatively compact open set in M �

Let g be a �pseudo� Riemannian metric �g an arbitrary symmetric two tensor

with support in 	 at g� � g � ��g �so for small �� g� is also a Riemannian metric

forM � Note �g �
�
��

���
���

f�g��� For any function f of metric we shall write similarly

�f � �
��

���
���

f�g���

� � Riemannian measure �
p
gdx� � � �dxn

Riem � Riemannian tensor � Ri
jk�

Ric � Ricci tensor � Ri
jki

R � scalar curvature � gijRij

G � Einstein tensor � Ric� 	
�
Rg

We put ��s on these quantities to denote their values w�r�t� g � ��g� Consider the

functional
R
�R��

Theorem� �
R
� R� �

R
�G���g

���� Hence the NASC that a metric be extremal

for �
R
� R� �for all 	 and all compact variations in 	� is that G � ��

Lemma� Given a vector �eld v in M de�ne div�v� to be the scalar function

given by d�iv�� � div�v��� Then in local coordinates

div�v� �
	p
g
�
p
gv���� � v���

��



Proof� � �
p
gdx� � � � � � dxn

so

iv� �
nX

���

��	�i	�pgvidx� � � � � �ddxi � � � � � dxn
d�iv�� �

nX
���

�
p
gv����dx� � � � � � dxn

�
nX

���

	p
g
�
p
gv�����

To see �p
g
�
p
gv���� � v��� at some point� use geodesic coordinate at that point and

recall that in these coordinates �gij
�xk
� � at that point� �

Remark� If v has compact support
R
div�v�� � �

R�
��� � !

�
��
� � !���
� � !���!��� � !���!���

Lemma� �!��� is a tensor �eld �section of T
�M � T �M � TM� and

�R�
��� � �!����� � �!������ hence

�R�� � �!����� � �!�����

g���R�� � �g
���!������ � �g���!������

�Palatini identities�

Proof� That �!��� �
�
��
!����g���� is a tensor �eld is a corollary of the fact that

the di
erence of two connection is� The �rst identity is then clearly true at a point

by choosing geodesic coordinates at that point� �

Corollary�
R
� g

���R��� � �

Proof� g���R�� is a divergence

Lemma� �� � ��
�
gij�g

ij�

Proof� Since gijg
ij � n� �gijg

ij � �gij�gij� Also �g
�gij
� g gij by Cramer�s rule�

so
�
p
g

�gij
� �

�

p
ggij and so

�
p
g �



p
g


gij
�gij � �

	

�
gij�gij�

p
g

��



� ��	
�
gij�g

ij�
p
g

since � �
p
gdx��� � ��dxn� lemma follows� We can now easily prove the theorem�

R� � gijRij�

so

��R�� � �gijRij�� gij�Rij��R��

� �Rij � 	
�
Rgij��g

ij�� �gij�Rij��

�
Z
�
R� �

Z
�
��R��

�
Z
�
Gij�g

ij�

This completes the proof of the theorem� �

SCHWARZCHILD SOLUTION

Let�s go back to our static� SO��� symmetric metric

d� � � e�A�r
dt� � e�B�r
dr� � r��d	� � sin� 	d���

� w�
� � w�

� � w�
� � w�

��������
wi � aidui �no sum�

u� � t u� � r u� � 	 u� � �
a� � eA�r
 a� � ieB�r
 a� � ir wy � ir sin 	

wij �
�ai�j
aj

dui � �aj�i
ai

duj

dwij � wikwkj � 'ij

�
	

�
Rijk�wkw�

Exercise� Prove the following�

w�� � �iA�eA�Bdt

��



w�� � w�� � �

w�� � �e�Bd	
w�� � � sin 	e�Bd�
w�� � � cos 	d�

R���� � �A�� � A�� � A�B��e��B

R���� �
A�

r
e��B

R���� � �B
�

r
e��B � R����

R���� �
e��B � 	

r�

R � ��e��B�A� � A�� � A�B� � �
A� � B�

r
�
	

r�
�� 	

r�
�

R� � Rr� sin� 	drd	d�dt

� ��	� �rB��eA�B � eA	B�dr�sin 	d	d�dt�

��r�A�eA�B��dr�sin 	d	d�dt�

�Note this second term is a divergence� hence it can be ignored in computing the

Euler�Lagrange equations� If we take for our region 	 over which we vary
R
R� a

rectangular box with respect to these coordinates then the integration w�r�t� 	� �� t

gives a constant multiplier and we are left having to extremalizeZ r�

r�
L�A�� B�� A� B� r�dr

where L � �	 � �rB��eA�B � eA	B� �One must justify only extremalizing w�r�t�

variations of the metric which also have spherical symmetry� On this point see

�The principle of Symmetric Criticality�� Comm� in Math� Physic� Dec� 	
�
��

The above is a standard 	�variable Calculus of variations problem which gives

Euler�Lagrange equations�

� �

L


A
� 



r
�

L


A� �

��



�

L


B
� 



r
�

L


B� �

� �	� �rB��eA�B � eA	B

� �	 � �rA��eA�B � eA	B

so A� � B� � � or B � �A � k� and we can take k � � �since another choice just

rescales t� then we have

	 � �	 � �rA��e�A � �re�A��

so

re�A � r � �Gm
e�A � 	� �Gm

r
� e�B � �	� �Gm

r
���

d� � � �	� �Gm
r
�dt� � dr�

	� �Gm
r

� r��d	� � sin� �d���

and this metrics gives geodesics which describe the motion of particles in a central

gravitational �eld in better agreement with experiment than the Newtonian theory�

Exercise� Let �t be the one parameter group of di
eomorphisms of M gener�

ated by a smooth vector �eld X� g a Riemannian metric in M � and show that

� �
�t

���
t��

��t �g��ij � Xi�j � Xj�i �where � means covariant derivative with respect to

the Riemannian connection� �Hint� Let g � gijdxi� dxj where the xi are geodesic

coordinates at some point p and prove equality at p��

Remark� The Einstein tensor Gij of any Riemannian metric always satis�ed

the di
erential identity Gij
�j � �� This can be obtained by contracting the Bianchi

identities� but there is a more interesting proof� Let �t and X be as above where X

say has compact support contained in the relatively compact open set 	 ofM � Note

that clearly ��t �R�g��g� � R���t �g�����t �g
 and soZ
�
R�g��g �

Z
�t��


R�g��g �
Z
�
��t �R�g��g� �

Z
�
R���t �g�����t �g


��



so

� �
d

dt

�����
t��

Z
�
R�g��g �

Z
Gij�g

ij� � �
Z
Gij�gij�

where by the exercise �gij � Xi�j �Xj�i� Hence� since G
ij is symmetric

� �
Z
GijXi�j

�
Z
�GijXi��j� �

Z
Gij

�jXi��

Now �GijXi��j is the divergence of the vector �eld G
ijxi� so the �rst termsor van�

ishes� Hence Gij
�j is orthogonal to all covector �elds with compact support and so

must vanish�

THE STRESS�ENERGY TENSOR

The special relativity there is an extremely important symmetric tensor� usually

denoted T��� which describes the distribution of mass �or energy�� momentum� and

�stress� in space�time� More speci�cally T �� represents the mass�energy density�

T �i represents the ith component of momentum density and T ij represents the i� j

component of stress �roughly� the rate of �ow of the ith component of momentum

across a unit area of surface orthogonal to the xj�direction�� For example consider

a perfect �uid with density �� and world velocity v
� �i�e� if the world line of a �uid

particle is given by x���� then v� � dx�
d�
along this world line�� then T �� � ��v

�v��

In terms of T �� the basic conservation laws of physics �conservation of mass�energy�

momentum� and angular momentum� take the simple uni�ed form T ��
�� � �� When

it was recognized that the electromagnetic �eld

F�� �

�BBB�
� B� �B� E�

�B� � B� E�

B� �B� � E�

�E� �E� �E� �

	CCCA
interacted with matter� so it could take or give energy and momentum� it was

realized that if the conservation laws were to be preserved then as well as the

��



matter stress�energy tensor T ��
M there had to be an electromagnetic stress�energy

tensor T ��
EM associated to F�� and the total stress energy tensor would be the

sum of these two� From Maxwell�s equations one can deduce that the appropriate

expression �Maxwell stress energy tensor� is

T ��
EM �

	

�
g��kFk� � g��g��g��F��F��

where g denotes the Minkowski metric� �We will see how such a terrible expression

arises naturally latter� for now just accept it�� Explicitly we get�

T ��
EM �

	

�
�kEk� � kBk�� � energy density

T �i
EM � �E �B�i � Poynting momentum vector

T ij
EM �

	

�
�ij�kEk� � kBk��� �EiEj �BiBj�

� Maxwell stress tensor�

If there is a distribution of matter with density �� then the Newtonian gravi�

tational potential � satis�es Poisson�s equation

"� � ���

we know for weak� static� gravitational �elds to be described by a metric tensor g��

we should have g�� � �	� ��� and calculation gives

G�� � "g�� � ��"��

Thus since T �� � ��� Poisson�s equation becomes

G�� � ���T ���

Now we also know G��
�� � � identically for geometric reasons� while T

��
�� expresses

the basic conservation laws of physics� Where space is empty �i�e� T �� � �� we

know G�� � � are very good �eld equations�

The evidence is overwhelming that the correct �eld equations in the presence

of matter are G�� � ��T ���

�




FIELD THEORIES

Let E be a smooth G bundle over an n�dimensional smooth manifoldM � Even�

tually n � � and M is �space�time�� A section � of E will be called a particle

�eld� or simply a �eld� In the physical theory it �represents� �in a sense I will

not attempt to explain� the fundamental particles of the theory� The dynamics of

the theory is determined by a Lagrangian� &L� which is a �non�linear� �rst order

di
erential operator from sections of E to n�forms on M �

&L � !�E�� !�%n�M���

Recall that to say &L is a �rst order operator means that it is of the form &L��� �

L�j����� where j���� is the 	�jet of � and L � J��E� � %n�M� is a smooth

map taking J��E�x to %
n�M�x� If we choose a chart � for M and an admissible

local basis s � �s�� � � � � sk� for E then w�r�t� the coordinates x � x�� � � � � xn

determined by � and the components �� of � w�r�t� s �� � ��s�� �j���x is given

by ���
i �x�� �

��x�� where ��
i �x� � 
i�

��x� � 
���
xi� Thus &L��� � L�j��� is

given locally by

&L��� � Ls
����
i � �

�� x�dx� � � �dxn

�we often omit the s� ��� The ��eld equations� which determines what are the

physically admissible �elds � are determined by the variational principle

�
Z
&L��� � ��

What this means explicitly is the following� given an open� relatively compact set 	

in M de�ne the action functional A� � !�E�� R by A���� �
R
�
&L���� Given any

�eld �� with support in 	 de�ne �A���� ��� �
d
dt

���
t��

A��� t���� Then � is called

an extremal of the variational principle �
R &L � � if for all 	 and �� �A���� ��� � ��

If 	 is included in the domain of the chart � then the usual easy calculation gives�

�A���� ��� �
Z
�
�

L


��
� 



xi
�

L


��
i

�����dx� � � �dxn

��



where L � Ls
� and we are using summation convention� Thus a NASC for � to

be an extremal is that it satis�es the second order system of PDE �Euler�Lagrange

equations��




xi
�

L


��
i

� �

L


��

�Hopefully� with a reasonable choice of L� in the physical case M � R
� these

equations are �causal�� i�e� uniquely determined by their Cauchy data� the ��

and �	�

�t
restricted to the Cauchy surface t � ��� The obvious� important question

is how to choose &L� To be speci�c� let M � R
� with its Minkowski�Lorentz metric

d� � � dx�� � dx�� � dx�� � dx��

and let s � �s�� � � � � sk� be a global admissible gauge for E� Then there are some

obvious group invariance condition to impose on L� The basic idea is that physical

symmetries should be re�ected in symmetries of &L �or L�� For example physics

is presumably the same in its fundamental laws everywhere in the universe� so L

should be invariant under translation� i�e�

	� L���
i � �

�� x� � L���
i � �

�� �no explicit x�dependence�� Similarly if we orient

our coordinates di
erently in space by a rotation� or if our origin of coordinates is

in motion with uniform velocity relative the coordinates xi these new coordinates

should be as good as the old ones� What this means mathematically is that

if � � �ij is a matrix in the group O�	� �� of Lorentz transformations �the linear

transformations of R� preserving d� �� and if $x is a coordinate system for R� related

to the coordinates x by�

xj � �ij$xi

then physics �and hence L�� should look the same relative $x as relative to x� Now

by the chain rule�




$xi
�

xj

$xi





xj
� �ij





xj

so

�� L��ij�
�
j � �

�� � L���
i � �

�� for � � O�	� ��� �Lorentz Invariance��

�	



The next invariance principle is less obvious� Suppose g � g�� is an element

of our �gauge group� G� Then ��mathematically�� the gauge $s related to s by

s� � g��$s
� is just as good as the gauge s� Since ��s� � �g���

��$s� the component

of � relative to $s are $�� � g���
�� Thus it seems ��mathematically�� reasonable

to demand

�� L�g���
�
i � g���

�� � L���
i � �

�� for g�� � G ��global� gauge invariance�� But is

this physically reasonable� The indi
erence of physics to translations and Lorentz

transformations is clear� but what is the physical meaning of a gauge rotation in

the �bers of our bundle E� Well� think of it this way� G is chosen as the maximal

group of symmetries of the physics in the sense of satisfying ���

Of course we could also demand more generally that we have �local� gauge

invariance i�e� if g�� � R
� � G is any smooth map we could consider the gauge $s �

�$s��x�� � � � � $sk�x�� related to s by s� � g���x�s
��x�� so again $���x� � g���x��

��x��

but now since the g�� are not constant

$��
i �x� � g���x��

�
i �x� �


g��

xi

���x�

and the analogue to �� would be ���

L�g���
�
i �


g��

xi

��� ��� � L���

i � �

��

for all smooth maps g�� � R
� � G�

But this would be essentially impossible to satisfy with any L depending non�

trivially on the ��

i � We recognize here the old problem that the old problem

that the �gradient� or �di
erential� operator d does not transform linearly w�r�t�

non�constant gauge transformations  so does not make good sense in a non�

trivial bundle� Nevertheless it is possible to make good sense out of local gauge

invariance by a process the physicists call �minimal replacement�  and which

not surprisingly involves the use of connections� However before considering this

idea let us stop to give explicit examples of �eld theories�

Let us require that our �eld equations while not necessarily linear� be linear in

the derivatives of the �elds� This is easily seen to be equivalent to requiring that L

��



be a quadratic polynomial in the ��
i and �

�� plus a function of the ���

L � Aij
���

�
i �

�
j �Bi

���
�
i �

� � ci��
�
i � v����

We can omit ci��
�
i � �c

i
��

��i since it is a divergence� Similarly since �
�
i �

������
i �

������i we can assume Bi
�� is skew in 
� � and write L in the form

L � Aij
���

�
i �

�
j �Bi

����
�
i �

� � ����
i � � v���

Inclusion of the second term leads to Dirac type terms in the �eld equations�

To simplify the discussion we will suppose Bi
�� � ��

Now Lorentz invariance very easily gives Aij
�� � c���ij where �ijdxidxj is a

quadratic form invariant under O�	� ��� But since the Lorentz group� O�	� �� acts

irreducibly on R� it follows that �ijdxidxj is a multiple of d�
�� i�e� we can assume

n�� � �	� nii � �	 i � 	� �� � and �ij � � for i �� j� Similarly global gauge

invariance gives just as easily that C���
��� is a quadratic form invariance under

the gauge group G and that the smooth function V in the �ber Rk of E is invariant

under the action of G� �i�e� constant on the orbits of G��

Thus we can write our Lagrangian in the form

L �
	

�
�k
��k� � k
��k� � k
��k� � k
��k�� � V ���

where k k� is a G�invariant quadratic norm �i�e� a Riemannian structure for the
bundle E�� Assuming the s� are chosen orthonormal k
i�k� �P

�
�
i�

���� and the

Euler�Lagrange equations are

��� �

V


��

 � 	� � � � � k

where � � ��

�x�
�

� ��

�x�
�

� ��

�x�
�

� ��

�x�
�

is the D�Alambertian or wave�operator�

As an example consider the case of linear �eld equations� which implies that

V � �
�
M���

��� is a quadratic form invariant under G� By a gauge rotation g � G

we can assume V is diagonal in the basis s�� so V � �
�

P
�
m�

�����
� and the �eld

equations are

��� � m��
� 
 � 	� � � � � k

��



Note these are k uncoupled equations �Klein�Gordon equations� �Remark� Clearly

the set of �� corresponding to a �xed value m of m� span a G invariant subspace

 so if G acts irreducibly  which is essentially the de�nition of a �uni�ed� �eld

theory� then the m must all be equal��

Now� and this is an important point� the parameters m� are according to the

standard interpretation of this model in physics measurable quantities related to

masses of particles that should appear in certain experiments�

Let us go back to the more general case�

�
��� �


V


��

We assume V has a minimum value� and since adding a constant to V is

harmless we can assume this minimum value is zero� We de�ne Vac� V ����� to

be the set of �vacuum� �eld con�guration  i�e� a vacuum �eld � is a constant

�eld �in the gauge s�� such that V ��� � �� Since at a minimum of V �V
�	�
� ��

every vacuum �eld is a solution of the �elds equations�

The physicists view of the world is that Nature �picks� a particular vacuum

or �equilibrium� solution �� and then the state � of the system is of the form

� � �� � � when � is small� By Taylor�s theorem

V ��� � V ���� � �

V


��
�	��

� �
	

�
M���

���

plus higher order terms in ��� where

V ���� � �

V


��
�	� � �

and

M�� � �

�V


��
��
�	�

is the Hessian of V at ��� Thus if we take �� as a new origin of our vector space� i�e�

think of the � � �����
� as our �elds� then as long as the �

� are small the theory

with potential V should be approximated by the above Klein�Gordon theory with

mass matrix M the Hessian of V at ���

��



The principal direction s�� � � � � sk of this Hessian are called the �bosons� of the

theory and the corresponding eigenvalues m� 
 � 	� � � � � k the �masses� of the

theory �for the particular choice of the vacuum ���� Now if $w denotes the orbit

of G thru �� then V is constant on $w� hence by a well known elementary argument

the tangent space to $w at �� is in the null space of the Hessian� We can choose

s�� � � � � sr spanning the tangent space to $w at �� and then m� � � � � � mr � ��

�These r massless bosons are called the �Goldstone bosons� of the theory �after

Goldstone who pointed out their existence� and physicists usually call this existence

theorem �Goldstone�s Theorem��� Massless particles should be easy to create and

observe and the lack of experimental evidence of their existence caused problems

for early versions of the so�called spontaneous symmety breaking �eld theories

which we shall discuss later� These problems are overcome in an interesting and

subtle way by the technique we will describe next for making �eld theories �locally�

gauge invariant�

MINIMAL REPLACEMENT

As we remarked earlier� the search for Lagrangians L���
i � �

�� which are in�

variant under �local� gauge transformations of the form �� � g���
� where

g�� � M � G is a possibly non�constant smooth map leads to a dead end� Nev�

ertheless we can make our Lagrangian formally invariant under such transforma�

tions by the elementary expedient of replacing the ordinary coordinate derivative

��
i � 
i�

� by rw
i �

� where rw is an admissible connection on E and rw
i means

the covariant derivative w�r�t� rw in the direction �
�xi
� We can think of r� as being

just the �at connection d with respect to some choice of gauge and rw � r� � w

where as usual w is a G�connection form on M � i�e� a G valued one�form on M �
At �rst glance this seems to be a notational swindle� aren�t we just absorbing the

o
ending term in the transformation law for 
i under gauge transformations into

the w� Yes and no� If we simply made the choice of rw a part of the given of the

��



theory it would indeed be just such a meaningless notational trick� But �minimal

replacement�� as this process is called� is a more subtle idea by far� The important

idea is not to make any a priori choice of rw� but rather let the connection become

a �dynamical variable� of the theory itself  on a logical par with the particle

�elds �� and like them determined by �eld equations coming from a variational

principle�

Let w��� as usual be determined by rws� � w��s
�� and de�ne the gauge

potentials� or Christo
el symbols�

A�
i� � w���
i�

so that

rw
i �

� � 
i�
� � A�

i��
�

so that if our old particle Lagrangian was &Lp��� � Lp�
i�
�
� �

��� then after minimal

replacement it becomes

&Lp��� rw� � Lp�
i�
� � A�

i��
�� �����

Now we can de�ne the variational derivative of &Lp with respect to w� which is

usually called the �current� and denoted by J � It is a three form onM with values

in G� depending on � and w� J��� w�� de�ned by
d

dt

�����
t��

&Lp��� rw	t�w� � J��� rw� � �w

so that if �w has support in a relatively compact set 	 then

d

dt

�����
t��

Z
�

&Lp��� rw	t�w� �
Z
J��� rw� � �w

�
Z
�w � J

� ���w� �J��

so that clearly the component of �J � the dual current 	�form are given by�

�J�i� �

Lp


A�
i�

�

��



For example for a Klein�Gordon Lagrangian

Lp �
	

�
�ij�
i�

���
j�
�� � V ���

we get after replacement�

Lp �
	

�
�ij�
i�

���
j�
�� � �ijA�

i��
�
j�

� �
	

�
�ijA�

i�A
�
j��

���

and the current 	�form �J has the components

�J�i� � �ij�rj�
�����

Thus if we tried to use &Lp as our complete Lagrangian and to determine w �or A�

by extremalizing the corresponding action w�r�t� w we would get for the connection

the algebraic ��eld equations�

� �
�L

�w
� �J

or for our special case�

���
i�
� � A�

i��
�� � ��

As long as one of the �� doesn�t vanish �say �� �� �� we can solve this by�

A�
i� �

�
� � �� �
��
i������ � � ��

A very easy calculation shows F �
ij� � 
jA

�
i� � 
iA

�
j� � �A�

i�� A
�
j�� � � so in fact the

connection is �at�

But this gives an unphysical theory and we get not only a more symmetrical

�between � and rw� theory mathematically� but a good physical theory by adding

to &Lp a connection Lagrangian &LC depending on the one�jet of w

&LC�rw� � LC�A�
i�
j� A

�
i���

�where A�
i�
j � 
jA

�
i��� Of course we want LC like Lp to be not only translation and

Lorentz invariant� but also invariant under gauge transformations g � M � G� Af�

ter all� it was this kind of invariance that led us to minimal replacement in the

�rst place�

��



We shall now explain a simple and natural method for constructing such

translation�Lorentz�gauge invariant Lagrangians LC � In the next section we shall

prove the remarkable �but very easy�� fact  Utiyama�s Lemma  which says

this method in fact is the only way to produce such Lagrangian�

Let R�
� denote R� considered as a representation space of the Lorentz group

O�	� �� and let G as usual denote the Lie algebra of G� considered as representation
space of G under ad� Then a two form on M � R

� with values in G can we
considered a map ofM into the representation space �R�
��R�
���G of O�	� ���G�
Now given a connection rw for E and a gauge� the matrix 'wij of curvature two�

forms is just such a map

F � x �� F �
ij��x� � 
jA

�
i� � 
iA

�
j� � �A

�
i� � A

�
j��

which moreover depends on the 	�jet �A�
i�
j� A

�
i�� of the connection� If we make a

Lorentz transformation � on M and a gauge transformation g � M � G then this

curvature �or �eld strength� map is transformed to

x �� �� � ad�g�x���F �x� � �ik�jkg
��
�� �x�F

�
k���x�g���x��

Thus if % � �R�
� � R
�
��� G � R is smooth function invariant under the action of

O�	� ���G� then LC � %�F � will give us a �rst order Lagrangian with the desired

invariance properties for connections� �And as remarked above� Utiyama�s Lemma

says there are no others��

As for the case &Lp let us restrict ourselves to the case of �eld equations linear

in the highest �i�e� second order� derivatives of the connection� This is easily seen

to be equivalent to assuming that % is a quadratic form on �R�
� � R
�
�� � G� of

course invariant under the action of O�	� ���G� that is % is of the form Q� �Q�

where Q� is an O�	� �� invariant quadratic form on R
�
� � R

�
� and Q� is an ad

invariant form on G� To simplify the discussion assume G is simple� so that G acts
irreducibly on G under ad� and Q� is uniquely �up to a positive multiplicative

��



constant� determined to be the Killing form�

Q��x� � �tr�A�X����

If q denotes the O�	� �� invariant quadratic form �ijvivj on R
�
�� then for Q� we

can take q � q and this gives for % the Yang�Mills Lagrangian

&LC � &LYM �
	

�
k'k�� � 	

�
' � �'

or in component form

LYM �
	

�
�ik�j�F

�
ik�F

�
j��

�But wait� is this all� If we knew O�	� �� acted irreducibly on R
�
� � R

�
� then

q� q would be the only O�	� �� invariant form on R�
� �R
�
�� Now� quite generally�

if V is a vector space with non�singular quadratic form q� then the Lie algebra

�V � of the orthogonal group O�V � of V is canonically isomorphic to V � V under

the usual identi�cation between skew�adjoint �w�r�t� q� linear endomorphisms of V

and skew bilinear forms on V � Thus V � V is irreducible if and only if the adjoint
action of O�V � on its Lie algebra is irreducible  i�e� if and only if O�V � is simple

�By the way� this argument shows q � q is just the Killing form of �V ��� Now it

is well known that O�V � is simple except when dim�V � � � �when it is abelian�

and dim�V � � �  the case of interest to us� When dim�v� � � the orthogonal

group is the product of two normal subgroups isomorphic to orthogonal groups of

three dimensional spaces� It follows that there is a self adjoint �w�r�t� q � q� map

� � R�
��R�
� � R
�
��R�
� not a multiple of the identity and which commutes with

the action of O�	� ��� such that �u� v�� q � q�u� �v� together with q � q span the
O�
��invariant bilinear forms on R�
� � R

�
�� Clearly � is just the Hodge ��operator�

� � �� � %��R�
��� %����R�
��

�and conversely� the existence of �� shows orthogonal groups in four dimensions are
not simple��� so the corresponding Lagrangian in just '����'� � '�'� But '�'
is just the second chern form of E and in particular it is a closed two form and so

�




integrates to zero� i�e� adding '�' to the Yang�Mills Lagrangian &LYM would not
change the action integral

R &LYM� Thus� �nally �and modulo Utiyama�s Lemma
below� we see that when G is simple the unique quadratic� �rst order� translation�

Lorentz�gauge invariant Lagrangian &LC for connection is up to a scalar multiple

the Yang�Mills Lagrangian�

&LYM�rw� � �	
�
' � �'�

UTIYAMA�S LEMMA

As usual we write A�
i� for the Christo
el symbols �or gauge potentials� of a

connection in some gauge and A�
i�
j for their derivatives 
jA

�
i�� Then coordinate

functions for the space of 	�jets of connections are �a�i�j� a
�
i�� and if F �a

�
i�j� a

�
i�� is

a function on this space of 	�jets we get� for a particular connection and choice

of gauge a function on the base space M by x � F �A�
i�
j�x�� A

�
i��x��� We are

looking for functions F �a�i�j� a
�
i�� such that this function on M depends only on

the connection w and not on the choice of gauge� Let us make the linear non�

singular change of coordinates in the 	�jet space

(a�i�j �
	

�
�a�i�j � a�j�i� i � j

&ai�j �
	

�
�a�i�j � a�j�i� i � j

i�e� replace the a�i�j by their symmetric and anti symmetric part relative to i� j�

Then in these new coordinates the function F will become a function

$F �&a�i�j� (a
�
i�j� a

�
i�� � F �&a�i�j� (a

�
i�j� a

�
i��

and the function on the base will be $F ��
�
�A�

i�
j�A�
j�
i��

�
�
�A�

i�
j�A
�
j�
i�� A

�
i�� which

again does not depend on which gauge we use� Utiyama�s Lemma says we can �nd

a function of just the &a�i�j

F ��&a�i�j�

��



such that the function on M is given by x� F ��F �
i�j�x�� where F

�
i�j are the �eld

strengthes�

F �
i�j � A�

i�
j � A�
ij
� � �A

�
i�� A

�
j��

The function F � is in fact just given by�

F ��&a�i�j� � $F ��&a
�
i�j� �� ���

To prove that this F � works it will su�ce �because of the gauge invariance of $F �

to show that given an arbitrary point p of M we can choose a gauge such that in

this gauge we have at p�

A�
i��p� � �

A�
i�
j�p� � A�

j�
i�p� � �

and note that this automatically implies that at p we also have�

F �
ij��p� � A�

i�
j�p�� A�
j�
i�p�

The gauge that does this is of course just the quasi�canonical gauge at p� i�e�

choose p as our coordinate origin in R
�� pick any frame s��p�� � � � � sk�p� for Ep

and de�ne s��x� for any point x in R� by parallel translating s��p� along the ray

t� p� t�x� p� �� � t � 	� from p to x�

If x�t� � �x��t�� � � � � x��t�� is any smooth curve inM and v�t� �
P
�
v��t�s��x�t��

is a vector �eld along x�t�� recall that the covariant derivative Dv
dt
�
P
�
�Dv
dt
��s��x�t��

of v�t� along x�t� is given by�

�
Dv

dt
�� �

dv�

dt
� A�

i��x�t��v
��t�

dxi
dt

Now take for x�t� the ray x�t� � t���� ��� ��� ��� and v��
�t� � s��x�t��� so xi�t� �

t�i and v
�
��
�t� � ��� � Then since V��
 is parallel along x�t�

� � �
Dv��

dt
�� � A�

i��t��� t��� t��� t����i

�	



In particular �taking t � � and noting �i is arbitrary� we get A
�
i��p� � � which

is part of what we need� On the other hand di
erentiating with respect to t and

setting t � � gives

A�
i�
j�p��i�j � �

and again� since �i� �j are arbitrary� this implies

A�
i�
j�p� � A�

j�
i�p� � �

and our proof of Utiyama�s lemma is complete� �

GENERALIZED MAXWELL EQUATIONS

Our total Lagrangian is now

&L��� rw� � &L���rw� � &LYM�rw�

where

&LYM � �
	

�
' � �'�

Our �eld equations for both the particle �eld � and the gauge �eldrw are obtained

by extremaling the action integrals
R
�
&L��� r� �where 	 is a relatively compact open

set of M and the variation �� and �w have support in 	�� Now we have de�ned

the current three�form J by

�w

Z
&Lp �

Z
�w � J � ���w� �J��

and long ago we computed that

�w

Z
&LYM � ���w� ��Dw�'w��

so the �inhomogeneous� Yang�Mills �eld equations for the connection form w is

just � � �w
R &L or

Dw�' � J

��



�of course we also have the trivial homogeneous equations D' � �� the Bianchi

identity�� As we pointed out earlier when G � SO���� the �abelian� case� these

equations are completely equivalent to Maxwell�s equations� when we make the

identi�cation �J � ��� j�� j�� j�� where � is the change density and �j � �j�� j�� j��

the current density and of course ' � Fijdxi � dxj is identi�ed with the electric

�eld �E at magnetic �eld �B as described before�

These equations are now to be considered as part of a coupled system of equa�

tions� the other part of the system being the particular �eld equations�

� &Lp

��
� ��

�Note that J � � �Lp
�w
will involve the particle �elds and their �rst derivatives explic�

itly� and similarly � �Lp
�	
will involve the gauge �eld and its derivative explicitly� so we

must really look at these equations as a coupled system  not as two independent

systems� one to determine the connection rw and the other to determine ���

COUPLING TO GRAVITY

There is a �nal step in completing our mathematical model� namely coupling

our particle �eld � and gauge �eld rw to the gravitational �eld g� Recall that

g was interpreted as the metric tensor of our space�time� �That is� d� � � g��dx�dx� �

where the integral of d� along a world line of a particle represent atomic clock time

of a clock moving with the particle� Also paths of particles not acted upon by forces

�other than gravity� are to be geodesics in this metric� And �nally� in geodesic

coordinates near a point we expect the metric to be very well approximated over

substantial regions by the Lorentz�Minkowski metric g�� � ��� ��

The �rst step is then to replace the metric tensor �ij in &L � &Lp � &LYM by a

metric tensor gij which now becomes a dynamical variable of our theory� on a par

with � and rw

&L��� rw� g� � &Lp��� rw� g� � &LYM�rw� g�

��



where

&LYM � �	
�
k'wk��g

� �	
�
'w � �'w

� �	
�
�gikgi�F �

k��F
�
ij��

p
gdx� � � �dxn

and for a Klein�Gordon type theory &Lp would have the form

&Lp � �
	

�
gijri�

�rj�
� � v����

p
gdx� � � �dxn

�Note the analogy between this process and minimal replacement� Just as we re�

placed the �at connection d by a connection rw to be determined by a variational

principle� so now we replace the �at metric �ij by a connection qij to be deter�

mined by a variational principle� This is in fact the mathematical embodiment of

Einstein�s principle of equivalence or general covariance and was used by him long

before minimal replacement��

The next step �in analogy to de�ning the current J as � �L
�w
� is to de�ne stress�

energy tensors T ij � T ij
p � T ij

YM
by T ij � �L

�gij
� T ij

p �
b��p
�gij
� and T ij

M �
� �L
YM
�gij
�

�Remark� since L involves the gij algebraically� that is does not depend on the

derivatives of the gij� no integration by parts is required and
� �L
�gij
is essentially the

same as � �L
�gij
��

Exercise� Compute T ij

YM
explicitly and show that for the electromagnetic case

�G � SO���� so &LYM �
�
�
gikgj�Fk�Fij

p
gdx� � � �dxn� that this leads to the stress�

energy tensor T ij
EM described in our earlier discussion of stress energy tensors�

Finally� to get our complete �eld theory we must add to the particle La�

grangian &Lp and connection or Yang�Mills Lagrangian &LYM a gravitational La�

grangian &LG� depending only on the metric tensor g�

&L � &Lp��� rw� g� � &LYM�rw� g� � &LG�g��

��



From our earlier discussion we know the �correct� choice for &LG is the Einstein�

Hilbert Lagrangian

&LG�g� � � 	
��

R�g��g

where R�g� is the scalar curvature function of g� The complete set of coupled �eld

equations are now�

	� � �Lp
�	
� � �particle �eld equations�

�� Dw�'w � J �Yang�Mills equations�

�� G � ���T �Einstein equations�

Note that while 	� and �� look like our earlier equations� formally� now the

�unknown� metric g rather than the �at metric �ij must be used in interpreting

these equations� �Of course 	�� ��� and �� are respectively the consequences of

extremalizing the action
R &L with respect to �� rw� and g��

THE KALUZA�KLEIN UNIFICATION

We can now complete our discussion of the Kaluza�Klein uni�cation of Yang�

Mills �elds with gravity� Let P denote the principal frame bundle of E and con�

sider the space mp of invariant Riemannian metrics on P � We recall that if mM

denotes all Riemannian metric on M and C�E� all connections in E then we have
a canonical isomorphism mp 
 mM � C�E�� say Pg � �Mg� rw�� We de�ne the

Kaluza�Klein Lagrangian for metric Pg to be just the Einstein�Hilbert Lagrangian

R�g��g restricted to the invariant metrics�

&Lk�k�Pg� � R�Pg���Pg


Now since Pg is invariant it is clear that R�Pg� is constant on �bers� and in

fact we earlier computed that

R�Pg� � R�Mg�� 	
�
k'wk� � GR

��



where R�Mg� is the scalar curvature of the metric Mg �at the projected point�

and GR is the constant scalar curvature of the group G� It is also clear that

�Pg � ����Mg� � �G

where �G is the measure on the group� Thus by �Fubini�s Theorem��

Z
P

&Lk�k�Pg�d�Pg � vol�G��
Z
M

&LG�
Mg� �

Z
M

&LYM�rw� � GR�

It follows easily that Pg is a critical point of the LHS� i�e� a solution of the empty�

space Einstein equations on P

G � ��

if and only if Mg and rw extremalize the RHS  which we know is the same

as saying that rw �or '� is Yang�Mills and that Mg satis�es the Einstein �eld

equations�

G � �TYM

where T is the Yang�Mills stress�energy tensor of the connection rw� �There is

a slightly subtle point� on the LHS we should extremalize with respect to all

variations of Pg� not just invariant variations� But since the functional
R
P
&Lk�k

itself is clearly invariant under the action of G on metrics� it really is enough to

only vary with respect to invariant metrics� For a discussion of this point see �The

Principle of Symmetric Criticality�� R� Palais� Comm� in Math� Phys�� Dec� 	
�
��

Kaluza�Klein Theorem

An invariant metric on a principal bundle P satis�es the empty�space Einstein

�eld equations� G � �� if and only if the �horizontal� sub�bundle of TP �orthogonal

to the vertical sub�bundle�� considered as a connection� satis�es the Yang�Mills

��



equations and the metric on the base �obtained by projecting the metric on P �

satis�es the full Einstein�equations

G � T�

where T is the Yang�Mills stress energy tensor� computed for the above connec�

tion� Moreover in this case the paths of particles in the base� moving under the

generalized Lorentz force� are exactly the projection on the base of geodesics on P �

Proof� Everything is immediate� either from our earlier discussion or the re�

marks preceding the statement of the theorem�

THE DISAPPEARING GOLDSTONE BOSONS

There is a very nice bonus consequence of making our �eld theory ��locally��

gauge invariant� By a process that physicists often refer to as the �Higgs mecha�

nism� the unwanted massless goldstone bosons can be made to �disappear�  or

rather it turns out that they are gauge artifacts and that in an appropriate gauge

�that depends on which particle �eld we are considering� they vanish identically

locally�

The mathematics behind this is precisely the �Slice Theorem� of transformation

group theory� which we now explain in the special case we need� Let H be a closed

subgroup or our gauge group G �it will be the isotropy group of the vacuum� what

physicists call the �unbroken group��� We let H denote the Lie algebra of H�
Denoting the dimension of G�H by d we choose an orthonormal basis e�� � � � � ef

for H with e�� � � � � ed in H� and ed	�� � � � � ef in H�
Clearly every element ofG suitably close to the identity can be written uniquely

in the form exp�X�h with X near zero in H� and h near the identity in H� and

more generally it follows from the inverse function theorem that if G acts smoothly

in a space X and x� � X has isotropy group H then x �� exp�X�x� maps a

neighborhood of zero in H� di
eomorphically onto a neighborhood of x� in its

��



orbit Gx��

Now suppose G acts orthogonally on a vector space V and let v� � V have

isotropy group H and orbit '� Consider the map �x� v� � exp�X��v� � �� of

H� � T'�v� into V � Clearly ��� �� � v�� and the di
erential at ��� �� is bijective�

so by the inverse function theorem we have

Theorem� There is an � � � and a neighborhood U of v� in V such that each

u � U can be written uniquely in the form exp�X��v� � �� with X � H� and

� � T'�v� having norms � ��

Corollary� Given a smooth map � � M � U �U as above� there is a unique

map X � M �H� with kX�x�k � �� such that if we de�ne

� � M � V

by

exp�X�x������x� � v� � ��x�

then � maps M into T'�v� �

Now let us return to our Klein�Gordon type of �eld theory after minimal re�

placement� The total Lagrangian is now

&L �
	

�
�ijri� � rj� � V ���� 	

�
k'k�

where

ri� � 
i� � A�
i e��

k'k� � �ik�j�F �
ijF

�
k�

F �
ij � 
iA

�
j � 
jA

�
i � A�

i A
�
jC

���

where C��� are the structure constants of H in the basis e�� i�e�

�e�� e� � � C���e�

��



�Note by the way that if we consider just the pure Yang�Mills Lagrangian �
�
k'k��

the potential terms are all cubic or quartic in the �eld variable A�
i � so the Hessian

at the unique minimum A�
i � � is zero  i�e� all the masses of a pure Yang�Mills

�eld are zero��

Now� assuming as before that V has minimum zero �so the vacuum �elds of

this theory are A�
i � � and � � v� where V �v�� � �� we pick such a vacuum �i�e�

make a choice of v�� and let H be the isotropy group of v� under the action of the

gauge group G� Since H is the kernel of the map X � Xv� of H into V � this map
is bijective on H�� thus k�X� Y � �� Xv�� Y v� � is a positive de�nite symmetric

bilinear form on H� and we can assume that the basis e�� � � � � ed of H� is chosen

not only orthogonal with respect to the Killing form� but also orthogonal with

respect to k and that

� e�v�� e�v� ��M�
� � �

That is e�v� � M�u� where u� 
 � 	� � � � � d is an orthonormal basis for T'v� �

the tangent space at v� of the orbit ' of v� under G� We let ud	�� � � � � uk be an

orthonormal basis for T'�v� consisting of eigenvectors for the Hessian of V at v��

say with eigenvalues m�
� � �� Putting � � v� � �� to second order in

� �
kX

���

��u�

we have

V ��� � V �v� � �� �
	

�

kX
��d	�

m�
���

����

Now

ri� � 
i�� A�
i e��v� � ��

� 
i��
�X

���

M�A
�
i u��

fX
���

A�
i e��

�where we have used e�v� � M�u��� Thus to second order in the A
�
i and the

�




shifted �elds � we have

&L �
	

�
�ij�
i�� � �
j�� � 	

�

kX
��j	�

m���
���

�
	

�

dX
���

M�
��

ijA�
i A

�
j�

dX
���

M��
ijA�

i �
j� � u��

The last term is peculiar and not easy to interpret in a Klein�Gordon analogy�

But now we perform our magic� According to the corollary above� by making a

gauge transformation on our ��x� � �v� � ��x�� �in fact a unique gauge transfor�

mation of the form

exp�X�x������x�

X � M � H�� we can insure that in the new gauge ��x� is orthogonal to T'v�

fright in front of your eyes the �Goldstone bosons� of �� i�e� the component of �
tangent to ' at v�� have been made to disappear or� oh well� been gauged awayg�
Since in this gauge � � M � T'�v� � also 
j� � T'�v� � Since the u�� 
 � d lie

in T'v� they are orthogonal to the 
j�� so the 
j� � u� � � and the o
ensive last
term in &L goes away� What has happened is truly remarkable� Not only have the d

troublesome massless scalar �elds �� 	 � 
 � d �disappeared� from the theory�

They have been replaced by an equal number of massive vector �elds A�
i �recall

M�
� �� e�v�� e�v� � is de�nitely positive��

Of course we still have the f � d � dim�H� massless vector �elds A�
i d � 	 �


 � f in our theory� so unless H � S�� �giving us the electromagnetic or �photon�

vector �eld� we had better have some good explanation of why those �other�

massless vector �elds aren�t observed�

In fact� in the current favorite �electromagnetic�weak force� uni�cation of

Weinberg�Salam H is S�� Moreover particle accelerator energies are approaching

the level �about �� GEV� where the �massive vector bosons� should be observed�

If they are not � � ��


�
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