## School of Electrical Electronics and Communication Engineering Electrical Engineering ETE - Jun 2023

Time: 3 Hours Marks: 50

## **SEM VI - BTEE4001 - ELECTRIC DRIVES**

Your answer should be specific to the question asked Draw neat labeled diagrams wherever necessary

| 1.  | Discuss constant torque and constant power operation DC motors.                                                                                                                                                                                                                                                                                                                                                                                        | K2 CO3 | (2) |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|
| 2.  | Illustrate 4-quadrant operation of 1-phase dual converter DC motor drive.                                                                                                                                                                                                                                                                                                                                                                              | K2 CO4 | (2) |
| 3.  | Determine the different load torque components.                                                                                                                                                                                                                                                                                                                                                                                                        | K1 CO1 | (2) |
| 4.  | Derive the motor thermal model for heating/cooling.                                                                                                                                                                                                                                                                                                                                                                                                    | K1 CO2 | (2) |
| 5.  | Explain slip speed control of induction motor.                                                                                                                                                                                                                                                                                                                                                                                                         | K2 CO5 | (2) |
| 6.  | Determine the components of load torques and their classification based on speed torque characteristic.                                                                                                                                                                                                                                                                                                                                                | K3 CO2 | (5) |
| 7.  | Determine the speed-torque relation and the speed-torque characteristic for three-phase induction motor.                                                                                                                                                                                                                                                                                                                                               | K4 CO6 | (6) |
| 8.  | Find the equilibrium speed and calculate the steady state stability when motor and load torque are $T = -1-2$ wm and $TI = -3$ (wm $^0.5$ ) respectively.                                                                                                                                                                                                                                                                                              | K3 CO1 | (5) |
| 9.  | Illustrate with appropriate figures speed control of separately excited DC motor using three-phase semi-converter and three-phase full converter.                                                                                                                                                                                                                                                                                                      | K5 CO4 | (8) |
| 10. | A SEDC motor operating from a 1-phase semi-converter with speed of 1400rpm has input voltage 330sin314t and back emf 80V. Every half cycle, the thyristors are triggered at 30 degrees. Armature resistance is 4 ohms. Calculate the average armature current and motor torque.                                                                                                                                                                        | K5 CO5 | (8) |
| 11. | A motor with two loads has one load having rotational motion coupled to motor with a gear having a=0.2 and efficiency 95%. The load has moment of inertia and load torque of 5 kgm2 and 20 N-m respectively. The second load has weight of 500 kg to be lifted at a speed of 1m/sec. The coupling efficiency is 90%. The motor inertia is 0.5 kgm2 and motor speed is 960 rpm. Calculate equivalent inertia referred to the shaft and the motor power. | K4 CO3 | (8) |