Name			Printed Pages:02						
Student Admn. No.:									
		School of Computing Science & Engineering							
		Backlog Examination, June 2023							
~		[Programme: MCA] [Semester: II Sem] [Batch: Winter 20222-							
Cou	Course Title: Data Structure Using C			Max Marks: 100					
	Course Code: MCAN1220			Time: 3	Hrs.				
Inst	ructions:	1. All questions are compulsory.							
		2. Assume missing data suitably, if any.							
			K	G 6					
			Level	COs	Marks				
		SECTION-A (15 Marks) 5 Marks ea	ch						
1.	Define dat	a structure and provide three examples of commonly used data structures.	K1	CO1	5				
2		e concept of abstract data types (ADTs) and how they differ from concrete	K2	CO1	5				
2.	data types	Provide an example of an ADT and describe its characteristics.	IX2	COI	3				
		the purpose of using asymptotic notations, in analyzing algorithm	V 1	CO1	5				
3.	_	y. Explain how Big O notation helps in comparing the efficiency of	K1						
	algorithms. SECTION-B (40 Marks) 10 Marks each								
	Explain th	e concept of a two-dimensional array and its implementation in memory							
4.	•	and column major ordering. Given A[47, -13], base address of the array	K2	CO2	10				
	(BA) = 10	0, size of an element = 2 bytes. Find the location of A[6][2].		002					
	Outline th	e drawbacks of the implementation of Queue data structure using Array.	17.0	COA	10				
5.		alar Queue overcome the limitations of basic operations involved in a queue.	K3	CO2	10				
	Compare t	he advantages of linked lists over arrays in terms of memory allocation and							
6.		Explain the process of inserting a node at a beginning in a singly linked	K4	CO2	10				
	· ·	ling the necessary steps.							
	You are given an arithmetic expression in infix notation. $A + (B * C - (D / E ^ F) * G) * H$								
	Apply the	stack data structure to convert this expression into prefix notation. Show							
		of the conversion process and provide the resulting prefix expression.							
7.		OR	K3	CO3	10				
	You are gi	ven an arithmetic expression in infix notation.							
		A - B/C D * E + F/G							
	11 0	stack data structure to convert this expression into postfix notation. Show							
	each step of	of the conversion process and provide the resulting postfix expression.	,						
		SECTION-C (45 Marks) 15 Marks ea	icn	T					
	•	and contrast the sequential representation (adjacency matrix) and linked							
8.	representa	tion (adjacency list) for graph representation.							
		2 4							
			K4	CO3	15				
	Danragant	the following graph using both adjacency matrix and adjacency list							

9.	Evaluate the time complexity of selection sort, bubble sort, insertion sort, quick sort, merge sort, and heap sort for best, average, and worst-case scenarios. Analyze and determine which sorting algorithm is the most appropriate choice when sorting large data sets or dealing with scenarios that have limited memory resources. Demonstrate the step-by-step explanation of the sorting the given elements using the Merge Sort algorithm. [12, 31, 25, 8, 32, 17, 40, 42]	K5	CO4	15
10	Examine the given sequences of pre-order and in-order traversals for a binary tree: • Pre-order: A B D H E C F I G J K • In-order: D H B E A I F C J G K Construct the corresponding binary tree based on these sequences and determine its post-order traversal. OR Examine the given sequences of post-order and in-order traversals for a binary tree: • Post-order: H I D J E B K F G C A In-order: H D I B E J A K F C G Construct the corresponding binary tree based on these sequences and determine its pre-order traversal.	K5	CO4	15