School of Computing Science and Engineering

M.Tech

Summer Term - September 2023

Time: 3 Hours Marks: 100

Sem I - MATH5001 - ADVANCE NUMERICAL and STATISTICAL METHODS

Your answer should be specific to the question asked Draw neat labeled diagrams wherever necessary

1. K1 CO1 (5)

Write formula for Simpson's $\overline{3^{\rm rd}}$ rule.

2. Find $\int_0^1 \frac{dx}{1+x}$ using Simpson's $\frac{1}{3^{\rm rd}}$ rule.

3. Explain standard five-point Liebman's formula for solving Laplace equation. K2 CO1 (5)

4. Solve the following equations by Crout's method: K2 CO1 (10)

x+y+z=1,

4x + 3y - z = 6,

3x + 5y + 3z = 4

5. Find the polynomial f(x) by using Lagrange's formula and hence find f(3) for f(3) f(3)

f(x): 2 3 12 147

6. Evaluate the double integral K3 CO2 (10)

 $I = \int_0^1 \left(\int_1^2 \frac{2 xy}{(1+x^2)(1+y^2)} \ dy \right) dx$

by using Simpson's rule with h = k = 0.25

Apply fourth order Runge-Kutta method to find an approximate value of y for x = 0.2, if K3 CO2 (10)

 $\frac{dy}{dx} = x + y, \text{ given that } y(0) = 1, h = 0.2$

OR

By using modified Euler's method. Find y(1.4), given that $\frac{dy}{dx} = y^2 - \frac{y}{x}$ and y(1) = 1. K3 CO2 (10)

8. f(x) is a probability density function of a random variable X and is given as

 $f(x) = \begin{cases} x, & 0 \le x < 1/2 \\ c(2x-1)^2, & 1/2 < x \le 1 \\ 0, & \text{otherwise} \end{cases}$

then find the value of c. Also find the mean value of X.

9. Fit a straight line that best fits the following data: K4 CO3 (15)

 x
 1
 2
 3
 4
 5

 y
 14
 27
 40
 55
 68

Solve the system of equations by general iterative method $x^2 + 3x + 3y = 5$, $x^2 + 3y^2 = 4$ K3 CO4 (15)

taking initial approximation $(x_0, y_0) = (0.5, 0.5)$

OR

Solve the following equation by Choleskey method: K3 CO4 (15) 2x+2y+z=1, 4x+2y+3z=2, x+y+z=3