School of Computing Science and Engineering B.Tech CSE

ETE - Jun 2023

Time: 3 Hours **Marks**: 100

Sem II - G2UC101B / BEE01T1005 **Introduction of Digital System**

Your answer should be specific to the question asked Draw neat labeled diagrams wherever necessary

1.	Differentiate between (a) a latch & a flipflop. (b) T flipflop & D flipflop.	K3 CO2 (5)
2.	(a) Differentiate Signed Binary number and Unsigned Binary number? (b) Represent +127 and -127 using 8-bit 1's compliment form.	K1 CO1 (5)
3.	Convert (A+B).(A+C).(B+C') into standard POS form.	K2 CO1 (5)
4.	 (a) Simplify the boolean expression Y= (A + B). (A'C' + C). (B'+AC)'. (b) Realize Y = (A + B + C + D)' using 2-input NOR gates only. 	K4 CO3 (10)
OR		
	Draw the circuit using logic gates of a T-type flip-flop. Draw its symbol and write its truth table.	K4 CO3 (10)
5.	 (a) Convert Octal (1745) to hexadecimal. (b) With neat sketch, realize the expression Y = AB + CD by NAND gates only. (c) Convert the Octal number (1072) to decimal. 	K1 CO1 (10)
6.	Explain the operation of SR latch using NAND & NOR gate.	K4 CO3 (10)
7.	Draw and explain the truth table, boolean expression and circuit diagram of a BCD adder.	K2 CO1 (10)
8.	Consider the SOP equation x=A'BC'D + A'BCD' + AB'CD' + AB'CD + ABC'D' = ABC'D + ABCD'. (a) Use a K-map to produce the simplest SOP solution. (b) How can you represent the above equation using XOR gates in combination with other gates? Draw a circuit diagram of your solution using XOR gates.	K3 CO2 (15)
9.	Minimize the four-variable logic function using K-Map, $f(A, B, C, D) = \sum m(1,2,6,7,8,13,14,15) + d(3,5,12)$. Make a K-map for the function, $f(A, B, C, D) = M(3,4,5,7,11,13,15)) + d(6,8,10,12)$.	K4 CO3 (15)
OR		
	Design a Binary to Gray code converter. Represent the decimal number 4096 in Gray code.	K4 CO4 (15)
10.	(a) Simplify the expression z= (B+BC) (B+B'C) (B+D)(b) Design a logic circuit that will allow a signal to pass to the output only when control inputs B &C are both HIGH, otherwise, the output will stay LOW.	K3 CO2 (15)