Name				Printed Pages:01		
Student Admn. No.:						
School of Computing Science of Engineering						
Backlog Examination, June 2023						
[Programme: BCA] [Semester: IV] [Batch:]						
Course Title: Introduction to Algorithm Design				Max Marks: 100		
Course Code: BCAC2204				Time: 3 Hrs.		
Instructions: 1. All questions are compulsory.						
2. Assume missing data suitably, if any.						
			K Level	COs	Marks	
SECTION-A (15 Marks) 5 Marks eac						
	SECTION-A (15 Marks) 5 Marks cach					
1.		ecurrence relation. Draw a recurrence tree for the following recurrence $n = 2T(n/2) + 1$	K1	CO1	5	
2.	Apply the Merge sort algorithm to sort the following :15, 4, 3, 10, 8, 7, 13, 6 Also write the time complexity of merge sort in worst case		K1	CO1	5	
3.	• Create a Red Black tree given input 2, 1, 4, 5, 9, 3, 6, 7.		K2	CO2	5	
SECTION-B (40 Marks) 10 Marks each						
4.	Devise an	algorithm to insert a node in a Binary Search Tree.	K2	CO2	10	
5.	Solve the following 0/1 Knapsack Problem using Dynamic Programming. Weights: {3, 4, 6, 5}, Profits: {2, 3, 1, 4} The weight of the knapsack is 8 kg			CO3	10	
6.	Give a linear time algorithm for fractional knapsack problem?		К3	CO3	10	
7.	Explain the following graph traversal (i) Depth First search (ii) Breath First search (OR) How do you construct a minimum Spanning tree using Kruskal's algorithm explain? List any two applications			CO4	10	
	SECTION-C (45 Marks) 15 Marks each					
8.	Explain D	ijkstra's Algorithm in detail with example and analyze its efficiency	K4	CO4	15	
9.	Explain th	e chained matrix multiplication with suitable example.	K5	CO5	15	
10	examples	detail about the class P, NP, NP-hard and NP-complete problems. Give for each class. (OR) and contrast between connected components and bi connected ts.	K5	CO5	15	