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PREFACE OF THESIS 
 

It is critical for many countries to ensure public safety in detecting and 

identifying threats in a night, commercial places, border areas and public places. 

Humans, animals, and forests are extremely valuable components of our 

ecosystem but are consistently surrounded by a variety of threats. For instance, 

forest fires and large fire flames present immense risks as they can damage 

residential areas, forests, defence systems, and industries. While fires in the 

early stages can be identified by smoke detectors, sensors, and human assistants, 

these measures usually take too long and have a high false rate in detecting the 

fire flames, their range and size. Majority of past research in this area has 

focused on the use of image-level categorization and object-level detection 

techniques. As an X-ray and thermal security image analysis strategy, object 

separation can considerably improve automatic threat detection when used in 

conjunction with other techniques. In order to detect possible threats, the effects 

of introducing segmentation deep learning models into the threat detection 

pipeline of a large imbalanced X-ray and thermal dataset were investigated. In 

our proposed system, we established a novel deep learning and computer vision-

based threat detection model using transfer learning model by optimizing the 

hyper-parameters, which includes the learning rate of the model. We further 

optimized the batch size and mini-batch gradient to improve detection and 

classification of these types of threats in real-time with greater accuracy and size 

in a dynamic environment so that the system is capable of making decisions 

without human assistance. Our deep learning model was trained on a Tesla K 

80 graphic Processing Units with 2496 cores of Compute Unified Device 

Architecture (CUDA) and Video Random Access Memory (VRAM) with 12GB 

Graphics Double Data Rate (GDDR5). The training set was obtained from 

surveillance cameras, and the model was trained for classification using Mask 

Recurrent Convolutional Neural Network (RCNN). By applying the transfer 

learning technique on the Mask RCNN and Faster RCNN models, we 

significantly improved the detection and classification accuracy compared to 

traditional techniques. Specifically, our proposed technique achieved a 

bounding box score accuracy of mAP=89.2% and a classification rate of 86.2%. 
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for an intersection over the union (IoU) of 0.9 on our custom training and testing 

dataset using the transfer learning technique. Based on these promising results, 

our threat warning system can reduce fictitious alarms and more effectively save 

human lives compared to traditional sensors and vision methods.  

In order to get the final results, we combined the two models i.e Faster R-CNN 

with Mask RCNN into a single detection pipeline using the transfer learning 

technique, which outperforms baseline and end-to-end instance segmentation 

methods using less number of the practical dataset, with mAPs ranging from 

94.88 percent to 91.40 percent helps in detecting the person with guns, knives, 

pliers to avoid cross border threats. 
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CHAPTER 1 

1. INTRODUCTION 

1.1. Introduction  

Surveillance systems are vital in every country's border areas, and border 

patrolling is the most dangerous of all cross-border activities, leading to higher 

running expenses and casualties. Border patrolling still requires security 

personnel and soldiers despite the use of sensors and cameras equipped with a 

Global Positioning System (GPS), Geographic Information system (GIS), and 

wireless access to sites via Unmanned Aerial Vehicles (UAVs). Researchers and 

security organizations began designing more advanced security systems that 

reduce human lives and ammunition waste by eliminating false alarms and 

improving detection precision on a target. Numerous nations began developing 

the Comprehensive Integrated Border Management System (CIBMS), a 

comprehensive border patrolling solution. It functions based on close security 

and suggests constructing a new radar system in border zones that will provide 

a 120-degree image of the surrounding area to the control center. When the 

command center gathers information on an attempted infiltration, the specialist 

cameras at the border rapidly adjust their recording settings to capture photos of 

terrorists trying to slip into the country. The primary factor that contributes to 

the success of employing this method is the reduction in the number of false 

alerts and consequently missed hits caused by automatic weapons. In a cross-

border environment, the automatic identification of anomalous cross-border 

activities can be utilized to locate a probable threat, such as person with 

weapons, tossing a bomb and doing anything else dangerous. The Computer 

vision domain in this area is redefining and creating the revolutionary systems 

for a number of security applications that can be used in any place either in 

public or border areas. Surveillance cameras can now be found almost 

anywhere, including offices, banks, hospitals, parking lots, shopping malls, and 

airports. This is done to maintain relative peace and to reduce the crime rate. 

According to the World Population Review, poverty, unemployment, age, law 

enforcement, and other factors plays a role in a country's overall crime rate, 

which varies greatly from country to country. Given this environment and the 
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continual advancement of technology, it's simple to see why incorporating 

computer vision into security and surveillance systems is so appealing. 

In Chapter 1, We have described the overview of the Computer Vision and 

Artificial Intelligence-based areas used in carrying out the research and 

overcoming the issues, as well as the recommended approaches, which will be 

introduced in building and utilizing our own trained deep learning-based threat 

detection model. 

1.2. Computer Vision 

Computer vision is an area of both artificial intelligence (AI) and machine 

learning (ML) that aims to give computers the ability to "see" exactly the same 

thing that people do. Deep learning and neural network technologies have found 

applications in a broad number of fields, and the security sector is one of those 

fields. As a result, computer vision has seen a massive revolution as a direct 

consequence of these technologies. Computer vision appears to be a simple 

problem that anyone, including young children, can solve. However, due to the 

fact that we have a weak understanding of biological vision as well as the 

complexities of visual perception in an ever-changing and virtually infinitely 

variable physical world, this topic is still largely unresolved. The reason for this 

is because of the complexity of the environment. This thesis offers a basic 

introduction to the study of computer vision as a topic of research. 

Following in this thesis, we are going to gain knowledge in the following areas: 

• The history of, and divergence from, image processing in the field of 

computer vision. 

• To what extent does the difficulty of computer vision stem from. 

• Common goals or challenges in computer vision research. 

• Artificial Intelligence and its related algorithms used for such issues. 

1.2.1. Computer Vision and Image Processing 

Computer vision differs significantly from image processing as image 

processing is the act of creating a new image from an existing one. This is 

typically accomplished by simplifying or refining the information that is present 

inside the image. Image processing is sometimes referred to as digital image 
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manipulation. It is a subfield of digital signal processing that is not concerned 

with deciphering the information contained in an image. Image processing, such 

as picture pre-processing, may be required by a computer vision system to be 

applied to raw data. 

Image processing examples include: 

• The process of standardizing the photometric qualities of an image, such 

as its brightness and color. 

• Cropping an image, such as arranging a photograph such that an object 

is centered in it. 

• Eliminating digital artifacts from a photo, such as low-light digital 

artifacts and other types of digital artifacts. 

The majority of the photos that we use in our research come from closed-circuit 

television, often known as CCTV, cameras. These cameras are installed across 

cities as part of a monitoring system designed to make the communities safer. 

It's an effective deterrence against vandals and criminals and a useful source of 

information for police investigations. There are numerous advantages for both 

the government and local companies when it comes to city monitoring, 

including the facilitation of the planning of large-scale events, the 

administration of traffic systems, etc. Cameras positioned in busy places, for 

instance, have been shown to decrease crime and increase foot traffic to nearby 

businesses. In addition, authorities have the ability and usually exercise it to 

subsidize businesses that provide security cameras in particular locations. 

Cameras installed around a city may seem like a good idea, but they can cause 

invasions of privacy and even physical harm. One must remember that 

surveillance cameras are not aimed at homes or workplaces. In addition, bad 

recordings or general hardware damage can occur if cameras are not set up 

properly, if extreme weather occurs, or if an accident occurs in the outdoors. 

1.2.2. AI-powered surveillance 

Computer Vision with AI-powered surveillance solutions are rather common, 

and there are several examples of their use. The following is a list of the most 

common applications and benefits of this technology. 
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1.2.2.1. Reduction in crime 

It is reasonable to assume that the presence of security cameras in public spaces 

will reduce the incidence of criminal activity and vandalism. Does it not make 

sense to commit a crime in which you have a chance of being caught? On the 

other hand, closed-circuit television cameras serve just as "viewers" in the event 

of an accident, therefore they could not be enough protection. Instead, when 

paired with artificial intelligence programs for face recognition or weapon 

detection, these cameras can be an effective preventive tool. An artificial 

intelligence-powered CCTV system is designed to "see" guns, ski masks, 

criminals, and suspicious behavior. When a threat is detected, the camera can 

activate the alerts and send warning signals to law enforcement or security staff, 

preventing negative consequences. Naturally, the use of CCTV in conjunction 

with other crime-prevention and deterrence measures, such as increased 

illumination, armed guards, and defensible space, is going to produce the best 

possible results. In general, security cameras aid in the prevention of crime and 

the reduction of its severity by supplying investigators with pre-incident 

notifications and post-incident video evidence. 

1.2.2.2. Person detection 

Face recognition AI models provide computers the ability to differentiate 

between individuals. As a consequence of this, when a closed-circuit television 

camera and a facial recognition model are linked, the police are able to utilize 

an image of the offender and have the CCTVs inform them when a match is 

detected. Because of this, police enforcement and other government agencies 

will be able to take preventative actions and respond to incidents even before 

they take place. 

The same line of reasoning should be utilized when searching for lost children 

as well as adults who are disoriented due to cognitive diseases such as 

Alzheimer's disease, forgetfulness, epilepsy, or dementia. Again, technologies 

such as real-time video analysis and face recognition make it much simpler to 

identify people. 
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1.2.2.3. COVID-19 compliance 

Throughout the COVID-19 epidemic, numerous workplaces have refitted their 

existing surveillance cameras with ai - powered algorithms to monitor 

compliance with health guidelines, detect people wearing masks, monitor the 

frequency with which people wash their hands, and even recognize coughing. 

1.2.2.4. Facial authentication in healthcare 

It's no secret that the healthcare industry is struggling with patient identification. 

Between 2013 and 2015, there were 8000 instances of the wrong patient being 

treated at one of the nation's 200 hospitals, with around 9% of those errors 

resulting in damage or death. The causes of death include providing incorrect 

medication based on incorrect health data or failing to follow the patients' diet. 

Facial authentication is a technique used to protect patients from being 

misidentified during treatment. Providing AI-powered surveillance in hospitals 

also provides for fraud detection and authorisation validation. 

1.2.2.5. Biometrics analysis 

The term "biometrics" refers to any human trait, physical or behavioral, that can 

be used for digital identification and authentication. Banks, terminals, public 

buildings, and handheld devices all make extensive use of biometric 

authentication methods like fingerprint and facial recognition, as well as speech 

and typing cadence analysis. 

1.3. How does Computer Vision Work? 

To self-train and analyze visual input, computer vision relies heavily on pattern 

recognition techniques because data is widely available and corporations are 

ready to share it, deep learning professionals can utilize it to improve the 

process's accuracy and speed. Previously, machine learning algorithms were 

employed for computer vision applications; however, deep learning approaches 

have grown as a better answer for this sector. For example, machine learning 

techniques necessitate a massive quantity of data as well as active human 

monitoring in the initial phase to ensure that the findings are as precise as 

feasible. In contrast, deep learning is based on neural networks and employs 
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examples to solve issues. It self-learns by recognizing common patterns in 

instances using labeled data. 

1.3.1. What is the significance of computer vision? 

We are being inundated with photographs of all types, from self-portraits to 

landscapes. Internet trends reports that daily image uploads exceed 1.8 billion. 

One can only hazard a guess at the final tally if one takes into account the 

photographs kept on phones. Each day, we watch over 4,146,600 hours of 

YouTube and send over 103,447,520 spam emails. Once more, that's just a piece 

of the puzzle; the internet of things, mass media, and communication are also 

major factors. Analysing and comprehending this plethora of visual material is 

essential. Trained computers to "see" these photos and movies is made easier 

with the aid of computer vision. 

In addition, everyone may get online today because of improved connectivity. 

Young people are more vulnerable to "toxicity" and abuse when using the 

internet. Computer vision not only automates many tasks, but also ensures the 

moderation and monitoring of visual information on the web. Indexing is a 

crucial part of online content curation. It's simple to classify the vast amount of 

information available online because it often takes only two forms: text and 

either images or sounds. Algorithms in computer vision can read and catalog 

images. Google and YouTube, two of the most popular search engines, both use 

computer vision to quickly and accurately analyze uploaded images and videos 

before include them in results. By doing so, they not only give consumers with 

useful information but also shield them from harmful "toxicity" seen in some 

online communities. 

1.3.2. Computer Vision's Future 

Computer vision is a rapidly evolving technology that has piqued the interest of 

many industries. In the future, it will be able to handle a greater range of content. 

The domain already has a consistent market of 2.37 million US dollars and is 

predicted to increase at a CAGR of 47 percent until 2023. With the quantity of 

data we generate every day, it is only natural for machines to use that data to 

create solutions. 
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Once computer vision experts have solved the domain's existing challenges, we 

can expect a reliable system that automates content moderation and monitoring. 

With Google, Facebook, Apple, and Microsoft investing in computer vision, it's 

only a matter of time before it dominates the worldwide market. Improve your 

skills in this area to take advantage of the disruptive economy. 

1.3.3. How can computer vision help the world? 

Computer vision can benefit the world in a variety of ways: 

• In an emergency, unmanned aerial vehicles can provide supplies. 

• Facial recognition for public safety and military applications 

• Gesture recognition to raise red flags against miscreants in public 

locations Optical character recognition for text processing Disaster 

management 

• Automatic Decision support systems with more accuracy in surveillance 

systems. 

Thus, we conclude this brief overview of computer vision. 

 

1.4. Artificial Intelligence: Deep Learning with Computer 

Vision 

1.4.1. Deep Learning and the Human Brain: A cognitive Approach 

 

Cognitive neuroscientists first presented a number of brain development 

hypotheses in the early 1990s, and others have since expanded on these ideas 

(particularly, neocortical development). They were used in computing models, 

which established them as the precursors of deep learning systems. Along the 

same lines as deep learning models, the self-organization of the brain is helped 

along by a wave of nerve development factor, which is analogous to the neural 

networks that are utilized in these developmental models. At this point, deep 

learning can be thought of as an attempt to imitate the brain of a baby. The brain 

of a newborn is like a sponge, and it learns via repetition. It takes some time for 

the web of neural networks in it to grow and be able to infer or deduce several 

things from a single batch of training data. Deep learning has the potential to let 
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artificial intelligence reason, interpret, evaluate, and deduce on its own in the 

not-too-distant future. 

Deep learning uses artificial neural networks that are made to look like the 

networks in the brain. As data flows through this artificial mesh, each layer 

examines a different element of the input, filters outliers, identifies known 

things, and generates the final result. It has been hypothesized that deep learning 

operates in a pattern similar to that of the brain. Yes, the human brain operates 

in a manner not dissimilar to that of a computer, but on a much more complex 

scale. The human brain has a significantly more complicated web of varied 

neurons, with each node performing a distinct function. Our comprehension of 

things is substantially superior. 

1.4.2. Anatomy and Function of the Human Brain. 

What exactly is a brain? 

The brain is a complicated organ in our bodies that affects everything from 

cognition to memory to emotion to touch to motor skills to vision to respiration 

to temperature to hunger to almost every other activity. The Central Nervous 

System(CNS) is comprised of the individual's brain as well as the spinal cord 

that originates from the brain. 

What exactly is the brain comprised of? 

An average adult's brain weighs approximately 3 pounds and is composed 

primarily of fat (60 percent). Water, protein, carbohydrates, and salts make up 

the remaining 40% of the body's weight. The brain, in and of itself, is not a 

muscular structure. It is made up of a variety of cells, including neurons, glial 

cells, and blood vessels. 

What exactly are grey and white matter? 

The brain's grey and white matter are two separate parts of the central nervous 

system. Rather than referring to the white matter as the brain's innermost layer, 

scientists use the terms "grey matter" and "grey matter." Grey and white matter 

are arranged in opposite directions in the spinal cord compared to the cerebral 

cortex. 
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Figure 1.1 Inside & Outside of the Brain 

Neuron somas (round core cell bodies) make up the majority of grey matter, 

whereas myelinated axons (long stems that connect neurons) make up the 

majority of white matter (a protective coating). On some scans, the two appear 

as unique colours due to the changes in the composition of neuron sections 

discussed in Figure 1.1. 

1.4.3. How Does it Work? 

The human brain has around one trillion neurons, which are linked to other 

neurons to form a neural network. Let us investigate how the human brain and 

Artificial Neural Network function. 

 

Figure 1.2 Biological Neuron Vs Artificial Neuron 

The components of a human neuron are illustrated in Figure 1.2. The preceding 

diagram illustrates how dendrites receive electrical impulses, transmit them 

down an axon, and discharge them through axon terminals. It consists of the 

aforementioned layers and stages that make up an ANN. The very first layer of 

the prediction process, which also serves as the point at which inputs for the 
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prediction are obtained. The second layer, referred to as the hidden layer, 

comprises an activation function that modifies and sums our inputs. The third 

layer is our output layer, which is where we observe our neuron's observable 

output in the required format. This final element suggests that if we expect a yes 

or no answer, we have not received any other type of answer, such as a number. 

The connections of neurons provide the true power of neural networks, both 

biological and artificial. 

As a part of our nervous system, the brain transmits as well as receives chemical 

and electrical impulses. It is possible for human brain to understand all of the 

many signals that govern the various activities in your body. There are some 

that make you feel fatigued, while others that make you feel apprehensive or 

nervous. Most of the body's messages are stored in the brain, but some are sent 

to distant extremities via its enormous network of nerves and the spine, which 

are connected to each other by a network of nerves that extends from head to 

toe. This is accomplished through the use of billions of neurons in the central 

nervous system (nerve cells). 

1.5. Artificial Neural Networks to Deep Learning 

Artificial neurons, which are sometimes referred to as nodes, are used to 

construct a neural network, which is structured in the same manner in which a 

human brain performs its functions. In this particular instance, there are three 

layers of nodes placed one on top of the other discussed in Figure 1.3. 

• The layer of input 

• The output layer  

• The hidden layer(s) 

 

Figure 1.3 Artificial Neural Network 
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The family of artificial intelligence algorithms known as "deep learning" has 

undergone a revolution in recent years as a result of this transformation. It was 

previously impossible for computers to achieve human-like performance in a 

wide variety of difficult cognitive activities; however, because to recent 

advancements in algorithm design, this is now possible. Despite their 

connectionist foundation, recent advances in deep learning models have been 

driven mostly by practical engineering needs. The cognitive benefits of deep 

learning models seem to apply regardless of their application. This is an example 

of the biological process of evolution, in which a previously unsuitable 

physiological system is adapted to do the new task. We've tried to explain why 

cognitive science has to start taking deep learning seriously, and we've 

explained why the time is now. In the beginning, the pathway of deep learning 

advancement from the connectionist attempt is investigated, which displays 

great consistency as well as contrasts. Then, beginning with vision and moving 

on to language, it will be described how deep learning models may be 

advantageous for a wide variety of cognitive domains, particularly those in 

which it has achieved performance levels comparable to those of humans. 

1.5.1. Artificial Neural Networks potential drawbacks 

In spite of advances in the application of cognitive models to artificial 

intelligence, the goal of mimicking human thought remains unmet. " It takes a 

lot of training data for algorithms like neural networks, for example, to be able 

to predict what will happen in the future with similar data. Even so, they are 

only able to identify the specific problem area they were trained in. 

This is a completely different way of thinking from what we have in our human 

brains. The human brain makes generalizations about new events using context 

and more limited experience that even the most powerful cognitive models 

today cannot achieve. We still don't know everything about how the human 

brain works, even with the most cutting-edge research. However, even with this 

basic understanding, it is still a big leap to transfer human brain processes into 

computer programmes. 

When it comes to research and development, High-level interpretation of digital 

images or movies is the subject of Computer Vision, a well-established field that 
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deals with this issue. AI is being used to solve many modern-day social 

problems through automation, including object identification, smart homes, 

surveillance systems and other similar applications. Systems and concepts 

derived from human visual and cognitive intelligence are capable of simulating 

and replicating complex judgments made by the human brain, which is capable 

of making complicated decisions. 

1.5.2. A brief overview of Deep Learning 

Deep learning, a subtype of machine learning in which artificial neural networks 

recreate the inner workings of the human brain to analyze data, find patterns, 

and inform decision making, has made tremendous progress in the field of 

artificial intelligence in recent years. Deep learning can now perform 

unsupervised learning from unstructured or unlabeled data, extending on what 

the human brain is capable of. This information, often known as "big data," may 

be collected from many different places online and offline. 

These data sources are so vast that it may take humans decades to comprehend 

and extract vital information, yet deep learning allows models to detect things, 

recognize speech, translate language, and make decisions at fast speeds. Many 

firms see the immense potential that can be gained by tapping this wealth of 

information and are increasingly integrating AI systems powered by deep 

learning to gain a competitive advantage through data and automation. Lets see 

how deep learning can work on surveillance area. 

Surveillance security is a time-consuming and difficult activity. In this thesis, 

we have created a system to automate the work of video surveillance analysis 

and detection system. We have evaluated the video footage in real time to detect 

any unusual activity such as violence, theft and threats. There is a lot of study 

being done in the market about video surveillance, and the function of CCTV 

videos has expanded significantly. CCTV cameras are strategically placed 

across the area for surveillance and security. 

1.5.3. Deep Learning in the surveillance area 

 

Deep learning algorithms for deep surveillance have advanced during the last 

decade. These developments have demonstrated an important trend in deep 
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surveillance and promise a significant increase in efficiency. Deep surveillance 

is commonly used to identify theft, detect violence, and predict the likelihood 

of an explosion. We should reduce the computing and storage problems that 

need deep learning in order to get over these obstacles. The human brain can be 

utilized as a model for increasing efficiency, specifically by emulating the 

brain's early development period for deep learning. This is comparable to how 

we looked to the human brain for inspiration when developing AI.  

One of the primary areas in which most governments are working is to automate 

border and local area monitoring systems. The biggest and most common risks 

for all nations come from the border areas that they share with their neighbors. 

India shares borders with Pakistan, Bangladesh, Sri Lanka, Nepal, China, and 

Bhutan, among others. Over the previous seven decades, India has faced serious 

difficulties such as cross-border terrorism, illegal migration, narcotics 

trafficking, and arms smuggling. Every year, hundreds of military and civilians 

are killed in India as a result of these challenges. Researchers and scientists are 

working on automation-based technologies to tackle these obstacles and 

concerns. It is difficult for soldiers to keep watch on borders around the clock, 

seven days a week, in all kinds of weather, from the bitter cold of Siachin winters 

to the ferocity of storms and the scorching heat of desert summers. There are 

several forms of hazards, such as Covid-19, forest fires, and natural calamities, 

which result in deaths.  

For many years, researchers have been working on artificial intelligence, 

machine learning-based algorithms that replicate and imitate human behaviors 

such as adding a caption to images, autonomous automobiles, games, and so on. 

Artificial intelligence is the way of the future which is nearly a distinct being 

affecting every technology. Machine learning is one of the underlying scientific 

principles that underpins this phenomenon, and deep learning is the engine that 

drives the research forward. Deep learning outperforms humans' capacity to 

process and progress massive amounts of data in image analysis, face 

recognition, autonomous driving, and other areas because to a flood of data and 

the introduction of faster GPUs and TPUs. To prevent these deaths, different 

Human-Computer Interaction (HCI)-based technologies that function without 

human aid and with greater precision have been introduced.  
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1.6. Problem Definition 

1.6.1. Motivation & Goal 

The motivation behind carrying out this research work is to automate the 

surveillance systems because many human and animals are losing their life due 

to false detection and alarm. The goal is to analyze and improve the training, 

computation time, classification and tagging performance of different threats 

using fewer training datasets is the aim of this research. A deep-learning model 

hyperparameter optimization for real-time item detection and tracking of any 

form of risk will be used to achieve this goal. 

In order to accomplish this thesis's overarching goal, the following objectives 

have been outlined.:  

• To detect and recognise real-time threats by employing appropriate deep 

learning models for using a smaller training dataset and making full use of 

transfer learning methodology for multidomain usage and performance of 

the selected deep learning models in terms of categorization. 

• First, we will train a deep learning model on our data, and then we will make 

adjustments to the model's hyperparameters in order to get the model to 

perform as accurately as possible. 

• In this work, we compare and visualize how several cutting-edge algorithms 

perform in a categorization task. 

• Making use of transfer learning in addition to many other tactics in order to 

enhance and optimize the speed. 

Prior to delivering our ideas and solutions, we have provided a formal 

description of the situation which are the major challenges in computer vision 

domain. 

1.6.2. Image Classification 

The following are the major issues in picture classification: 

1.6.2.1.Intra-Class Variation 

The variance between photographs of the same class is referred to as intra-class 

variation. Having chairs of various types in our dataset is an example of intra-
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class variation. The weapon might be "Gun" "Fires" "Type of Guns," "type of 

fires," and so on. 

1.6.2.2.Scale Variation 

This is a typical issue in picture categorization. Scale variation is the use of 

numerous images of the same thing at different sizes. 

1.6.2.3.View-Point Variation 

We have perspective variation, which means that an item may be 

oriented/rotated in several dimensions in terms of how it is photographed and 

recorded in an image. Whatever angle we catch the image of the weapon, it is 

still a weapon. 

1.6.2.4.Occlusion 

There are several items in the image that we want to categorise but cannot see 

entirely. Their main role is obscured by other items. The image of the threat is 

provided, however, observe how it is hidden behind the cover, out of sight. It is 

not entirely visible, but our image classification algorithm should be able to 

detect and label it as a threat. 

1.6.2.5.Illumination 

Our picture categorization system should be able to manage variations in 

illumination as well. Both of these photographs are of the same cup, but with 

different pixel intensities. Our picture categorization system should be able to 

deal with lighting variations. So, if we offer our image classification system a 

picture of the same item with varying brightness levels (Illumination), the 

system should be able to assign the same label. 

1.6.2.6.Background Clutter 

It signifies that there are many items in the image and it is difficult for the viewer 

to find the specific object. These photos have a lot of "noise." But, we are only 

interested in one specific thing in the image; however, owing to all of the 

"noise," it is difficult to identify the specific object. It's a challenging assignment 

for people, so picture how difficult it is for a machine with no semantic 

knowledge of the image. 
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Why should we be concerned about intra-class variation? Deep classification 

networks outperform on closed datasets. They are not, however, intended to 

work well in open sets. It is feasible to examine object classes that have never 

been seen before in training in open sets. A classification network trained on 

imagenet, for example, would never have seen a goldfish. Unseen objects are 

reliably predicted to belong to one of the N-known training classes using 

classification networks. We do, however, want our network to recognise them 

as out-of-training distribution classes. The current best strategy for doing this is 

to use one-vs-all classifiers on the penultimate layer embeddings. If all of the 

one-vs-all classifiers reject a test picture, it is expected to be out-of-distribution. 

These classifiers would perform better in one-vs-all scenarios if the embeddings 

in the same class are compact and discriminative, i.e. contain less intraclass 

variation.  

Both the process of face identification and face verification have received a 

significant amount of research, with the latter garnering the majority of the 

focus. Research on face recognition has almost exclusively focused on closed-

set methods, which are based on the assumption that all of the inspecting 

photographs included in evaluation include the identities of people enrolled in 

the gallery. This closed-set assumption, however, cannot be established since in 

real systems only a fraction of probe sample IDs are registered in the gallery. 

Instead, they need to assume that there is an open collection of probe samples 

and be able to reject or ignore those that match identities that are unknown to 

them. One such significant application is face recognition. The subject identities 

of test images are often not available in the training data in this scenario.  

Organization of the thesis:  

The five sections of the thesis are described in greater depth below. 

Chapter 1: Introduction:  

The introduction part will discuss the importance of the work, gaps, and 

description of research work to be carried out on different types of threats. 

Chapter 2: Literature Survey:  

This chapter will provide a brief description of the research works that have been 

carried out by various researchers in the fields of Computer Vision and Deep 
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Learning technology. Additionally, the field in which we are carrying out our 

research work, which is object detection, will be briefly discussed along with a 

variety of different approaches. 

Chapter 3: Classification Of Threat-Detection Images: Training From 

Scratch Or Transfer Learning:  

This chapter will contain the detailed proposed methodology along with 

comparative analysis of the advance models. This chapter will describe the results 

and discussion of the observations made in regard to the objectives of the study. 

Chapter 4: Performance & Result Analysis:  

This chapter will contain the Experimental description, Dataset and methodology 

adopted for carrying out the experiment. This chapter will describe the results and 

discussion of the observations made in regard with the objectives of the study. 

Chapter 5: Summary and Conclusion:  

The findings  is summarized, and the overall conclusion of the work is presented 

in this chapter. This chapter will also explore the limits of the study, as well as 

make some recommendations and look ahead to the future of the research. 
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CHAPTER 2 

2. LITERATURE SURVEY 

2.1. Introduction  

In the Chapter 1, we have discussed about the introduction to computer vision-

based surveillance and problems related to this area. Whereas, in this chapter, 

we went through a brief examination regarding computer vision and deep 

learning by making use of neural networks, artificial neural networks (ANNs), 

convolutional neural networks (CNNs), activation functions. Following these 

principles, the chapter digs into the Artificial Intelligence based algorithms i.e 

Deep Learning and Computer Vision based object detection architecture, 

demonstrating how it varies from object tracking before going into the 

commonly used object detection models and how they have evolved over time 

as computer vision incorporates within Machine Learning. During the middle of 

the 1980s and the early 1990s, there was a decline in interest in research 

pertaining to artificial intelligence and machine learning. As a result, the 

majority of the field's advancements were splintered into subfields such as 

natural language processing, image recognition, and robotics. It is necessary to 

have a substantial amount of data on hand in order to perform computer vision. 

It repeats the data processing process until it discovers variations, at which time 

it is able to recognize individual photographs. In order to train a computer 

system to detect automated threats, it must be fed enormous volumes of 

photographs based on threats and other materials connected to threats. This 

enables the system to distinguish the many types of threats and grasp the 

differences between them. 

To train a computer about the context of visual input, a technique known as 

machine learning makes use of algorithmic models. If the model is fed with a 

sufficient amount of data, the computer will "look" at the data and learn to 

differentiate between different types of images. Algorithms allow the computer 

to learn on its own rather than having to be programmed to recognize an image. 

A convolutional neural network (CNN) is a type of network that helps a machine 

learning or deep learning model "see" by segmenting images into pixels that are 
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tagged or labeled. It performs convolutions with the labels in order to make 

predictions based on what it is now "seeing," and it does this by concatenating 

the labels (an operation in mathematics performed on two functions that results 

in the production of a third function). Convolutions will be performed by the 

neural network, and the accuracy of its predictions will be evaluated by a series 

of iterations, and this process will continue until the predictions begin to be 

realized. After that, it is able to detect or see images in a manner that is 

analogous to that of humans. 

A CNN, much like a person looking at an image from a distance, first recognizes 

sharp corners and basic shapes and then, as it goes through iterations of 

prediction, it fills in the blanks with information. A CNN is used to comprehend 

individual images. In the same manner as it is used in audio applications, a 

recurrent neural network, or RNN, is used in video applications to assist 

computers in understanding how images in a series of frames are associated to 

one another. 

An image classification process is referred to as object detection, whereas an 

object detection procedure is referred to as object classification [1][2]. It has 

been used in consumer electronics as well as human-computer interaction, 

visual computing, robotics, and security. Deep learning has been the dominant 

method for computer vision (ILSVRC) which focuses on image classification 

and object identification improvements in this section as of 2012. This thesis 

provides a quick introduction to the fundamental notions before delving into the 

most cutting-edge image categorization and object identification algorithms. 

Finally, we look at open-source object identification frameworks and the trade-

offs between various deep learning object detection methods in terms of speed 

and accuracy. Deep learning approaches have the ability to achieve cutting-edge 

results on tough computer vision problems such as image categorization, object 

detection, and face recognition. 

2.2. Artificial Intelligence and Neural Network 

2.2.1. Artificial Neural Network 

To start on deep learning, let us understand the basics of Artificial Neural 

Network (ANN), which is an olfactory system and other biological systems that 
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can be mimicked like a human brain to make decisions and classifications. 

Similar to the brain's neurons and synapses, the central processing units (CPUs) 

in brain-like neural networks are linked via neural synapses. The transmission 

of signals (properties) from one neuron to the next is made possible by weighted 

neural connections [3]. An artificial neural network, rather than being coded 

with task-specific rules, learns via observation and experimentation. They may 

then apply what they've learnt from studying handwritten instances of the 

numbers 0 through 9 to identify numbers in further, unseen data. [4]. 

Three layers are present in an ANN: the input layer, the output layer, and one or 

more hidden layers. There are fewer restrictions on output than there are on 

input. Figure 2.1 hides two levels that aren't immediately apparent. The 

information contained within the first hidden layer is communicated to the 

second hidden layer, where it is used to train the third hidden layer on the 

fundamentals of the topic at hand. Using the inputs from the previous layer, a 

second layer, for example, can learn more complicated and abstract features. 

Further layers in a network may learn more complicated features in a similar 

fashion. When confronted with challenging issues such as picture 

categorization, object recognition, other tasks of a comparable type, one 

possible solution is to employ a network with multiple layers. 

 

Figure 2.1 ANN Architecture 

2.2.2. Deep Learning Architecture 

Deep Learning is a branch of machine learning and artificial intelligence that 

studies exceedingly complicated artificial neural networks and then applies 
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them to the training of extremely complex computer models. A multi-tiered 

model known as a Deep Neural Network is the most prevalent type of artificial 

neural network. The depth of a deep neural network refers to its ability to store 

a specific amount of information. It is uncommon for deep networks to have 

more than two layers of buried neurons between the input and output levels. As 

this illustrates, deep networks are extremely complex. Images, speech 

recognition, language translation, and other areas have all seen significant 

progress due to DNN [5, 6]. DNN have a far wider range of applications than 

only pattern recognition and translation. It is possible to learn features 

(representations) from a wide range of data sets using deep learning approaches 

rather than using task-specific algorithms [7]. As per deep learning concepts, it 

is possible to learn on your own rather than any assistance. Systems must rely 

on supervised learning in order to profit from deep learning in the actual world 

[8,9]. Because deep learning systems can be taught on more data, Andrew Ng 

et.al [10] asserts that they are scalable in comparison to traditional learning 

methods that are limited in their ability to improve performance as shown in 

Figure 2.2. 

 

Figure 2.2 Performance of Traditional learning methods against Deep 

Learning 

When we talk about "feature learning," we're referring to automated feature 

extraction from raw data. There are several degrees of complexity and 

abstraction that a deep neural network must master in order to perform properly. 
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Deep learning also involves the creation of hierarchical feature sets. The primary 

layers are in charge of passing down lower-level features to the secondary 

levels. The successive layers are constructed on top of one another using the 

higher-level features that are derived from the lower-level data. Deep learning 

models learn critical functions without manual-created features [11, 12, 13]. 

They can learn in a hierarchical fashion in a manner that is analogous to how 

the human brain works, and are hence suitable for use in a diverse array of 

applications despite their low cost. To overcome this issue Convolutional Neural 

Network (CNN) came into picture to resolve over the traditional methods. 

2.2.3. Convolutional Neural Network 

There have been many different deep learning architectures that have made use 

of CNNs. CNNs, on the other hand, begin with multiple convolutional layers 

rather than just one. In addition to image categorization, object recognition, 

voice recognition, CNN is frequently employed for a vast array of many 

purposes. As a direct result of AlexNet's outstanding performance in the 

ImageNet Challenge in 2012, CNN has received broad acclaim among 

academics and practitioners working in the domain areas of computer vision. 

Let's have a look at one of  primary components belongs to CNN architecture 

that were covered in figure 2.3: 

 

Figure 2.3 Basic architecture of CNN 

• Convolution layers  

• Pooling layers 
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• Fully connected layers 

• Softmax function  

Two fully linked layers conduct the final transformation for each image after a 

convolutional and pooling layer. The softmax function is used as the final step 

in the multiclass classification. Let us discuss the layers in brief. 

2.2.3.1. Convolution Layers 

A CNN cannot be constructed without the convolution layer, which is the first 

and most critical component. Neurons in convolution layers filter out the 

information they receive in this layer. Sequentially sliding filters across the 

image is used to create feature maps. Convolution is a term used to describe this 

sliding process [14]. Figures 2.4 and 2.5 show a 3x3 convolution filter applied 

to a 6x6 feature map as input to the previous section's earlier depiction of the 

process (kernel). A 4x4 feature map is generated as a result of swiping the filter 

across the entire input. 

 

Figure 2.4 6x6 input feature map and 3x3 filter 

 

Figure 2.5 Convolution process of 6x6 input with 3x3 filter 

The above image discuss in  Figure 2.5, shows the  vectors and matrices can be 

extended to represent data using tensors, which are higher-dimensional 
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extensions. A neural network is trained using tensors, which are data arrays of 

various dimensions and ranks. 

During the training phase, deep learning requires massive data sets that are 

organised in an ad hoc manner. When dealing with multi-dimensional data sets 

such as tensors, compactness is a benefited. Neural networks employ a tensor 

representation of the input to predict the output. 

In the CNN diagram discussed in Figure 2.2, the first layer of the network is a 

convolutional layer block. Each layer receives the input image or feature map 

and acts as a separate filter to learn individual feature mappings from the image 

or feature map. Each layer is a filter. Using three convolution layers and an 

image as input, the following formulas can be used: There are three distinct 

properties in each layer's feature map: colors, edges, and forms. There are three 

dimensions (height/width/depth) of output from each convolution block (height, 

width, and depth). Figure 2.5 estimates the number of convolution layers from 

an image's length and breadth. 

2.2.3.2. Pooling Layers 

When employing a convolutional approach, the pooling layer often follows the 

convolutional layer. A pooling layer [15] reduces each feature map's dimension 

by two. The final image's file size is minimized by the use of feature map 

subsampling and compression. Pooling and convolutional layers, on the other 

hand, produce results that are still primarily three-dimensional. There has been 

a reduction in the breadth and height, but the depth has not changed. It's possible 

to combine different types of pools into one large one. Full utilization of the 

available resources is a common tactic. As far as practical applications go, max-

pooling [16, 18] is the approach of choice. When using max-pooling, the highest 

value in a feature map is selected and it is illustrated in Figure 2.6 that how to 

maximize pooling with a 2x2 window and a stride of 2. The length of a stride is 

based on the count of pixels traversed in each step by the filter or window. The 

most significant advantage of pooling is the reduction in parameters and, 
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consequently, in training time.

 

Figure 2.6 A function of max-pooling layer with 2x2 window and stride 2 

2.2.3.3. Activation Functions 

Finally, in the CNN model, the activation function is an important component 

to consider. The activation approach generates a weighted total and then adds 

bias to specify how much a neuron should be stimulated. The activation 

function's goal is to add nonlinearity to a neuron's output. Any continuous and 

sophisticated link between network variables can be taught and studied using 

this type of connection. To put it another way, it tells the network which model 

information should and should not be transmitted. Nonlinearity is injected into 

the network as a result. Many activation functions, such as the ReLU, Softmax, 

TanH, and Sigmoid, are extensively employed in computer science and 

engineering. Each of these functions has a certain purpose. The sigmoid and 

softmax functions are recommended for a CNN model for binary classification; 

however, the softmax function is typically used in a CNN model for multi-class 

classification. 

One loss function that can be used to reduce error in a CNN is the softmax loss 

function. For binary classification detection, the softmax function is 

indispensable as it provides information on the likelihood that we properly 

predicted one class over the others. When using the softmax function to identify 

multiclasses, one-dimensional vector probabilities for all classes are generated. 

As a result, the target group is the most likely to be chosen. We know that 

neurons in a neural network work in line with their weight, bias, and activation 

function. When training a neural network, the output error is used to adjust the 

network's neuron weights and biases. The process is called back-propagation. 
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Back-propagation is made possible by activation functions due to the fact that 

the gradients necessary to update the weights and biases are provided 

concurrently with the error. Without an activation function, a neural network is 

equivalent to a linear regression model. As the activation function makes 

nonlinear changes to the input, the system is able to acquire knowledge and 

perform increasingly difficult tasks. 

Table 1.1 Activation Functions with parameters 

 

 

2.2.4. Different type of Networks 

Over the last ten years, several CNN layouts have been proposed [15, 16]. A 

well-thought-out model's design is vital, and it is useful for a wide range of 

application types. CNN's infrastructure has changed significantly since the 

network's debut in 1989. This category includes reformulating the structure, 

regularizing the data, optimizing the parameters, and making other minor 

changes. However, the massive performance boost seen in CNN can be largely 

attributed to the rearranging of processing units and the addition of new frames. 
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Recent advances in CNN design have been made possible by researchers who 

took advantage of network depth. 

2.2.4.1. AlexNet 

LeNet's work on deep neural networks created the groundwork for deep 

convolutional neural networks (CNNs). (See Figure 2.7.) Previously, CNNs 

could only recognize handwritten numbers, limiting their use to a small set of 

image classes. A great majority of academics recognize AlexNet as a forerunner 

in the field of deep CNN architecture due to its groundbreaking work in image 

identification and classification [20]. AlexNet, which boosted CNN learning 

skills by raising the depth of the CNN and adding additional parameter 

optimization algorithms, was introduced for the first time and addressed in [20]. 

AlexNet was created to help CNN learn better. Figure 2.8, which can be viewed 

here, depicts AlexNet's architecture in a more reduced form. 

 

Figure 2.7 LeNet Architecture 

 

Figure 2.8 AlexNet Architecture 



30 

 

When it was first being developed, the deep CNN had a learning capability that 

was severely limited due to the constraints of the hardware. In order to 

circumvent these hardware restrictions, the training of AlexNet was carried out 

in parallel on two NVIDIA GTX 580 graphics processing units. Furthermore, as 

previously indicated, the quantity of feature extraction steps in AlexNet was 

extended from 5 in LeNet to 7 in order for the CNN to respond to a broader 

variety of image classifications. In spite of the fact that it can help enhance 

generalisation across a broad spectrum of image resolutions, depth proved to be 

the most significant limitation in our investigation. The problem was solved by 

Krizhevesky and his colleagues by applying the theory developed by Hinton 

[21]. According to Krizhevesky and his colleagues' description, during the 

training process, it was discovered that the system's learnt properties were 

improved by making random sweeps across numerous transformational units. 

ReLU [23] can be used as a non-saturating activation function to accelerate 

convergence. This avoids the problem of vanishing gradients, which is the root 

of the problem. Local response normalisation and overlapping subsampling 

were used to limit the degree of overfitting. Another modification that was made 

to enhance the functionality of the older networks was the implementation of 

large-size filters in the early levels of the network (5 x 5 and 11 x 11 

respectively). 

2.2.4.2. Network-in-Network 

This network model included two novel notions [25], which differed slightly 

from the previous models in that they were not previously considered. The first 

was to employ a large number of layers of convolutional perceptual processing. 

When performing these convolutions, a 1x1 filter is used, which allows for the 

addition of additional nonlinearity to the networks to be included. Additionally, 

this allows for the expansion of the network depth, which can then be regularised 

through the use of dropouts. The bottleneck layer in DL models is where this 

concept is most commonly used, and it is referred to as such. There are two 

revolutionary concepts here: first, the GAP can be used in place of an FC layer, 

reducing the number of model parameters that must be implemented. The 

network architecture of the organisation is also significantly altered by GAP. A 

low-dimensional feature vector can be generated from a large feature map using 
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GAP without having to shrink the original [26, 27]. As depicted in Figure 2.9, 

the network's organisational structure. 

 

Figure 2.9 The architecture of network-in-network 

2.2.4.3. ZefNet 

Since CNN's learning method was mostly trial and error before 2013, it was 

difficult to tell exactly what the upgrade was expected to accomplish before its 

implementation. With complicated images, Deep CNN's performance was 

hindered because of this issue. DeconvNet was introduced in 2013 [28] to solve 

the issue (a multilayer de-convolutional neural network). To appropriately 

display a network of nodes, ZefNet, the term given to this technology, was 

invented. Analysing the firing patterns of neurons in the network allowed for 

the creation of a network activity visualisation [29]. Auto-encoders (AEs) were 

also evaluated by presenting the image's generated classes utilising the output 

neurons generated by AE's neurons. Using DenconvNet, a forward-pass CNN-

like performance is achieved when the convolutional and pooling layers are 

reversed. For each level, the internal feature representation is interpreted by the 

brain as a picture form, which is then translated back into convolutional output 

and used to create the image form. ZefNet depended on a number of assumptions 

to maintain track of the learning schematic as it moved through the training 

stage. Results also revealed a flaw in the model's abilities that needed to be 

corrected. DeconvNet was employed on AlexNet to experimentally show this 

concept. Because of this, only a tiny fraction of the network's neurons were 

active at the first and second levels, while the bulk of the network's neurons 

went into sleep mode. This result also revealed that the attributes acquired 

through the second layer contained aliasing objects. Following the publication 

of these results, Zeiler and Fergus made adjustments to the topology of their 
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neural networks. Scientists have optimised parameter values and reduced stride 

and filter sizes while keeping the distinctive qualities of the two initial 

convolutional layers as a result of their work. The network's performance has 

improved as a result of this restructuring of CNN's topology. Visualizing the 

features can be utilised to uncover design problems and make necessary 

parameter changes, according to a new organisation. 

2.2.4.4. Visual geometry group (VGG) 

Following the demonstration of CNN's utility in image identification, Simonyan 

and Zisserman offered a simple and efficient design strategy for CNN's 

architecture. This ground-breaking design was the result of the labour of a 

business called Visual Geometry Group (VGG). To recreate the network 

representational capacity linkages in greater depth, nineteen additional layers 

were added than in ZefNet [31] and AlexNet [32]. However, ZefNet was a 

trailblazing network in the 2013-ILSVRC competition, claiming that small-

sized filters might increase the performance of a CNN. VGG replaced the 

previous layers of 5 x 5 and 11 x 11 filters in ZefNet with a layer of 3 x 3 filters. 

Surprisingly, our investigations shown that assigning small-size filters in 

parallel can provide the same outcomes as doing it alone. These small-size filters 

were discovered to have receptive field efficiency comparable to large-size 

filters, or higher (7 x 7 and 5 x 5). The use of small-size filters was also 

advantageous because the number of parameters used was reduced, lowering 

computing complexity. With these discoveries came the birth of a new research 

trend at CNN: the usage of small-size filters for research. VGG additionally 

modifies the complexity of the network by putting 1 x 1 convolutions in the 

middle of each convolutional layer. The features are then classified into linear 

groups based on how they are presented. In the network tuning procedure, the 

max pooling layer [33] and padding are used to maintain spatial resolution. The 

VGG algorithm performed wonderfully in picture classification and 

localisation. Due to its greater depth, more uniform structure, and user-

friendliness they did not win the competition, but it has got attention to get first 

place in 2014-ILSVRC. VGG, on the other hand, has a prohibitively large 
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computational cost due to the algorithm's utilisation of about 140 million 

parameters. Figure 2.10 depicts the network's organisational structure. 

 

Figure 2.10  VGG Architecture 

2.2.4.5. GoogleNet 

GoogleNet won the ILSVRC competition (also known as Inception-V1). 

GoogleNet's architectural design prioritizes accuracy and low computation 

costs. Because it uses merge, transform, and split algorithms for feature 

extraction, it has developed a revolutionary inception block (module) concept 

for CNNs. Figure 2.11 depicts the conception block's architecture. 

This design employs a variety of filter sizes to gather both channel and spatial 

information at varying spatial resolutions (5x5, 3x3, and one-dimensional). This 

NIN design was utilized to replace GoogLeNet's layers with microneural 

networks [35]. The GoogLeNet merge, transform, and split ideas were used to 

solve a problem involving various learning methods of variations emerging in a 

single label of different photos. We employed GoogLeNet to improve the 

learning capacity and efficiency of CNN parameters. It restricts computation by 

using a bottleneck layer of an unweighted 1 x 1 convolutional filter before 

applying big-size kernels. GoogleNet circumvented the problem of redundant 

data storage by adopting sparse connections. To reduce costs, it took the most 

direct path possible. Take care to only connect some of the inputs to the outputs. 

Rather than using an FC layer as the final one, a GAP layer was deployed to cut 

down on the total number of interconnections. After some fine-tuning, we were 

able to reduce the total number of parameters from 40,000,000 to 5,000,000. 

RmsProp optimization and batch normalization were two further examples of 

required consistency [36]. Convergence was also aided by the availability of 

supplemental learners. GoogleNet had a catastrophic flaw because to its 

complicated architecture and the requirement for constant correction as it 

expanded and matured. Outside of the representational confusion, GoogleNet 
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has some other concerns. One of these was an early layer cutback, which 

occasionally resulted in vital data being erased. 

 

Figure 2.11  Structure of Google Block 

2.2.4.6. Highway Network 

Increasing the network's depth can improve performance. As a result, network 

training becomes more difficult. It is possible for dense networks to have 

gradient back-propagation errors with low gradient values because of the 

inclusion of many layers in deeper networks. It was for this reason that 

Srivastava et al. proposed a unique CNN design termed the Highway Network 

in 2015 [37]. For this method, cross-connectivity is a key component. It is 

possible for the Highway Network layer to freely transfer information thanks to 

two gating units within the layer. LSTM-based RNNs were used in the gate 

mechanism [38, 39]. 

By providing a regularization effect, which combines the data from the prior k 

layers with the data from the subsequent k layers, the gradient-based training of 

the deeper network is made simpler. The deeper network was trained using the 

data from the previous k layers. It is now possible to utilise the SGD method to 

train networks with more than 100 layers, such as one that has 900 levels. Thin 

and deep topologies are less resistant to failure since their convergence is higher 

than that of a 50-layer Highway Network. [41] found, on the other hand, that a 

conventional network's performance suffers when more than ten hidden layers 

are implemented. Even 900-layer Highway Network converges significantly 

faster than a basic network of the same size, according to this study. 

2.2.4.7. ResNet 

For their work on ResNet (Residual Network), He et al. [42] received the 

ILSVRC 2015 award. With this network, they hoped to create an ultra-deep one 

that would not be affected by the vanishing gradient issue (vanishing gradient 
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problem). ResNet has been developed in a variety of forms with various 

numbers of layers (starting with 34 and increasing to 1202). ResNet50, the most 

prevalent form of the network, has one layer of FC and 49 convolutional layers. 

There were 25.5 million network weights and 3.9 million MACs on the network 

as a whole. In order to overcome the difficulty of training a deeper network in 

2015, Highway Nets used the bypass pathway concept, which was first used in 

ResNet (Figure. 2.12). To over power the difficulty of training a deeper network, 

the bypassing of pathway concept was first employed in Highway Nets. In 

Figure 2.12, you can see how this is done. A typical feedforward network has 

been merged with a residual connection in the center of this network.  

The (xl - 1)th outputs of the layer before it, the residual layer outputs, are those 

provided by the preceding layer (xl - 1). 

F(xl - 1) is obtained through the combination of many techniques [convolution 

with varying-size filters, batch normalization, and activation functions like 

ReLU (xl - 1)]. A mathematical expression of the final residual output is denoted 

by the letter xl. 

xl =  F(xl −  1)  +  xl −  1       (1) 

The residual network contains a number of fundamental residual blocks that are 

interconnected. Depending on the residual network design [42], different 

operations are performed in the residual block. Unlike the highway network, 

short-cuts within layers allowed for parameter-free and data-independent cross-

layer communication between different layers in ResNet. The layers that show 

when a gated highway shortcut is closed indicate functions that aren't residual. 

The ResNet network, on the other hand, never closes individuality shortcuts, 

and residual information is always transmitted. ResNet's shortcut connections 

(residual links) are also capable of eliminating gradient decreasing difficulties 

because they promote deep network convergence. In order to win the 2015 

ILSVRC, the team used more than 150 depth layers, VGG eight iterations and 

twenty times as much as AlexNet. VGG, on the other hand, has a lower 

computational complexity even though it has a greater depth. 
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Figure 2.12 Resnet Architecture 

2.2.4.8. Inception: ResNet and Inception-V3/4 

Inception-ResNet and V3/4, which were enhanced versions of Inception-V1/2, 

were provided by Szegedy et al. [43,44]. When designing Inception-V3, reduced 

computational costs were a significant priority, yet extensive network 

generalization was not compromised [45]. As a result of these advancements, 

cross-channel correlation and classic convolution are now practically similar. 

Previous NIN design work by Lin et al. made advantage of the 1x1 filter 

potential. [45] used a similar technique in response. Inception-V3 maps the input 

data into 3 or 4 smaller spaces than the original input spaces using the 1 x 1 

convolutional approach. These smaller areas are mapped using conventional 5x5 

or 3x3 convolutions. As an alternative, Szegedy et al. in Inception-ResNet use 

the residual connection in place of the filter concatenation. [45,46]. Evidence 

suggests that Inception-generalization ResNet's abilities are on par with those of 

Inception-(Inception-4 V4's with residual connections) (with larger breadth and 
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depth but no residual connections). Training the Inception network can be 

considerably accelerated by releasing residual connections. 

 

Figure 2.13 Inception-ResNet Architecture 

2.2.4.9. DenseNet 

DenseNet, like ResNet and the Highway network, was presented as a solution 

to the problem of vanishing gradients [47,48]. Despite the fact that many levels 

supply little or no information, ResNet appears to visually save information by 

maintaining individuality changes, which may be a flaw in the system. ResNet 

contains a large number of weights because every layer has its own set of 

parameters. A better solution could be found because to DenseNet's cross-layer 

connections. A feed-forward approach was used to connect the various layers of 

the network. Previous layers' feature maps were chosen as input for the new 

ones. DenseNet has l(l+1)/2 direct connections, whereas normal CNNs have l 

connections in the preceding and current layers. Using DenseNet's cross-layer 

depth-wise convolutions, one can see how deep convolutions work. By 

concatenating the previous layers' features, DenseNet is able to distinguish 

between new and conserved data. Due to DenseNet's thin layer structure and 

increasing number of feature mappings, the model is more expensive to 

implement. Loss functions allow each layer of the network to directly access 

gradient information in order to improve network performance. Additionally, it 



38 

 

has a stabilizing impact, minimizing the likelihood of overfitting to a particular 

job or training program. 

 

Figure 2.14 DenseNet Architecture 

2.2.4.10. CapsuleNet 

Conventional feature detectors are ineffective when it comes to identifying the 

properties of objects and delivering results that are well-behaved when it comes 

to object recognition. 

Due to a number of CNN limitations, CNN does not assess the correlations 

between specific features such as orientation, size, and perspectives. Due to the 

CNN's inability to take into consideration the position of numerous components 

(such as the mouth, eyes, nose, and so on), it may inaccurately recognise a face 

image with many components (e.g. a face with multiple components, such as a 

face with multiple components). It is possible to think of a neuron that contains 

the property of probability in it in addition to its other qualities like its size, 

direction, viewpoint and so on. 

Among the data that these neurons/capsules may detect is the presence of a face. 

Multiple stacks of capsule nodes are used to create the capsule network. Nodes 

in the CapsNet encoding unit fall into one of three types (the old version of the 

CapsNet). For each image in the MNIST architecture, there are 256 9x9 filters 

stride 1 and another 256 9x9 filters stride 1 contained within the same image. In 

the end, there are a total of 20 feature maps. A revaluated convolution layer now 

produces an 8-dimensional vector in the first capsule layer rather of a scalar in 

the traditional manner. It is necessary to apply Stride 2 in the first convolution 
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layer in order to begin the image processing pipeline. As a result, the output file 

is 20 9/2 + 1=6 kilobytes large. Capsules measuring 32x8x6x6 were made by 

stacking 8x32 filters together in a rectangular shape (32 for groups, 8 for 

neurons, and 6x6 for neuron size). 

 

Figure 2.15 CapsuleNet Architecture 

Figure 2.15 depicts the CapsNet encoding and decoding technology in great 

detail (right). Utilize max-pooling layers in CNNs for translation shift 

management. For instance, if a feature is still within its maximum pooling 

period, it is detectable. The method's ability to identify overlapping 

characteristics is extremely valuable for detection and segmentation tasks, 

which explains why it is so prevalent in these fields. A specific cost function is 

utilized in the training phase of conventional CNNs in order to determine how 

accurate the network's predictions are and when there is no longer any difference 

in weight between two neurons, neuronal activity will stop expanding and the 

system will return to normal. The dynamic routing of an agreement is based on 

feature parameters, as opposed to a single size given with all of its cost functions 

in mind. See [51] for more information about this architectural concept. You 

may discover more about this architectural design at [52]. This innovative CNN 

architecture improves the accuracy of distinguishing handwritten digits on the 
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MNIST. However, this design is recommended for segmentation and detection 

approaches rather than classification [52, 53]. 

2.2.4.11. High-resolution network (HRNet) 

Semantic segmentation, item recognition, and human posture prediction require 

high-resolution representations of the scene in order to be accomplished. Via 

frameworks like VGGNet and ResNet, In order to encode the image as a 

representation with a lower resolution, a connected series of convolutions 

ranging from high to low resolution is utilized. A low-resolution representation 

needs to be used as a starting point for the creation of a high-resolution 

representation. All high-resolution representations are able to be brought up to 

date by utilizing a network that is known as a High Resolution Network 

(HRNet). This network stands out for two reasons: its sheer scale and the breadth 

of its user base. In order to get the best possible resolution, a variety of 

convolutions are combined. There is also a lot of information sent between 

resolutions on a very regular basis. An even more accurate and realistic portrayal 

of the world and a deeper semantic representation are also achievable. For 

example, HRNet can be used to identify and categorize items, but this isn't the 

only use case. HRNet provides a more secure foundation for computer vision 

issues. Figure 2.16 depicts the HRNet design. 

 

Figure 2.16  HRNet 

2.2.5. Convolutional Neural Network Training: Step-by-Step Instructions 

(CNN) 

To train a CNN, a large number of tagged images are required. There are 

numerous patterns (features) in images that the network can learn by seeing 
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many of them, and as a result of all of that learning, it can make accurate 

predictions. The labelled set contains three distinct datasets: one for training, 

one for verification, and one for testing. The weights of the model are adjusted, 

and a predictive model is constructed using training data, which is then used in 

prediction. The hyperparameters of the system are only adjusted with the help 

of the validation set. The trained model is also subjected to an objective 

evaluation with the help of the test set. During training, the filter weights are 

adjusted using a technique known as backpropagation. Backpropagation 

includes the forward pass, loss function calculation, backward pass, and weight 

updating (in that order). 

Each training session starts with the weights being assigned at random. A 

training image is initially transmitted through the network as part of the forward 

pass and is then utilized to generate an output image in the next stage. When 

comparing projected and actual outputs, a loss function is constructed depending 

on the difference. Following a study of the loss function, weights can be 

modified to reduce the loss function. This process is also known as "reverse 

pass." At this moment, the weights of each participant are updated in accordance 

with the prior activities. To keep track of your weight, use the following 

equation: 

w =  wi −  η 
dL 

dW
 ,         (2) 

where w =  New weight, wi =  Initial weight,  

η =  Learning rate,
dL 

dW
 =  Derivative of loss function    (3) 

The  η parameter is known as the learning rate. In the training process, the 

learning rate is an important factor that is determined by the user [54]. Because 

the weights are assigned at random at the beginning of the experiment, the 

learning rate is generally kept high [55, 56]. With a faster learning rate, the 

model will be able to converge in less time, which means it will be able to 

minimise the loss function more quickly. Learning occurs in iterations, and each 

iteration consists of the four processes listed above. We run a predetermined 

number of learning iterations in order to reduce the loss function to its smallest 

possible value, which is the ultimate goal of the training process. The generated 
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model is then compared to the test dataset to ensure it is accurate. After 

discussion about the type of networks now we will discuss and focus more on 

the Computer vision based approaches. 

2.3. Object Recognition, Object Detection, Localization & 

Classification 

2.3.1. Literature Review 

In computer vision, for example, image processing techniques are employed 

(CV). An additional benefit is the generation of high-dimensional data that is 

congruent with the natural environment. This is why computer scientists and 

engineers are working on CV research in attempt to create the most human-like 

computer vision system that they can. While this may be true for some images, 

for others, images can be represented mathematically in number of ways, i.e 

symbolically or numerically (statistical, geometrical and learning). Computer 

vision (CV) technology has numerous applications, including pattern 

recognition, medical imaging, industrial control systems, and physics. This 

discipline's subfields include event and Object Detection (OD), tracking, object 

recognition, scene reconstruction, picture restoration, video applications, and 

motion estimation [58]. 

Object detection is required for CV applications such as video stream 

identification, categorization, event detection, and object search (OD). It has 

become increasingly difficult to recognize an object of interest in a moving 

movie or a series of photographs thanks to smartphone and other gadget 

applications. Individuals, places, structures, or anything else of interest might 

be recognized for future research and decision-making [59]. 

Recognizing things in digital images is one of several jobs that go under the 

umbrella term "object recognition" in computer vision. Estimation of class is a 

term used in image classification to describe the process of establishing the class 

of a particular item inside a picture. "Object localization" refers to the process 

of identifying and outlining the boundaries of one or more items in an image. 

Several computer vision programmes make use of it. As a result of the 

employment of a technique known as object detection, these two goals are 

brought together. 
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As a result, we can differentiate three computer vision tasks: 

• Image Classification: It's the act of determining the type or class of an 

object based on its appearance in a photograph. 

Input: Photographs, for example, are single-object pictures. 

Output: A class name (e.g. one or more integers that are mapped to class 

labels). 

 

Figure 2.17 Image Classification 

• Object Localization: A bounding box can be used to indicate the location 

of items in a photograph. 

Input: A photograph, for example, is a picture that contains one or more objects. 

Output: Boxes with a perimeter of at least one (e.g. defined by a point, width, 

and height). 

 

Figure 2.18 Image Localization 

• Object Detection: Find things in a picture using a box and the types or 

classes of objects that are found. 

Input: A photograph, for example, is a picture that contains one or more objects. 
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Output: As many or as few boundaries as you like, each with its own class label 

(such as "Width" or "Height"). 

 

Figure 2.19 Object Detection 

In a nutshell, optical object identification is still a computationally demanding 

and challenging problem to solve. In order to resolve this issue, the retina 

generates an infinite number of two-dimensional pictures of every object on 

Earth. These pictures are constantly changing depending on the viewer's 

viewpoint, direction, location, lighting conditions, and backdrops [60], which is 

a constant state of flux. It is possible to attribute the majority of these differences 

to the distortion of non-rigid visual properties. Another characteristic that 

exacerbates the situation is the presence of intra-class variations linked to form. 

The OD quality acquired by the CV is determined by the trade-off between time 

and precision (such as detection rate, error rate, time and precision metrics). The 

Figure 2.20 shows the complete flow chart of the computer vision task in which 

the object is first recognized and then followed by the image classification and 

image localization. Once the above activities gets completed it performs the 

object detection. After successful completion of object detection, the image 

segmentation process will come into the picture, which basically do the image 

segmentation for the region based images and detect the images based on the 

desired image as per classes and labels. 
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Figure 2.20 Overview of Object Recognition Computer Vision Tasks 

2.3.2. Object Localization 

In addition to image classification and object recognition, other image 

recognition tasks include object localization. In spite of common usage, "object 

detection" & "object localisation" are distinct processes. It is important to note 

that the concepts of picture categorization and image localisation are distinct. 

Image localization, a subset of CNN vision techniques, is used to find objects in 

images. In order to forecast classes, these techniques use discrete integers. There 

are four continuous numbers used in object localization: x/y coordinates (height 

and width), height and width. Convolutional neural networks are the starting 

point for CNN-based classifiers (CNNs). In order to support a variety of 

applications and processing resources, many of these networks may contain a 

few to 100 layers (for example, ResNet 101). There are so many materials to 

keep track of that it's difficult to keep track of them all. This is followed by one 

or two additional levels that are completely connected before the CNN layers 

arrive at the final one. Whether or whether an object appears in the final image 

is determined by the output layer, the last one before rendering. What might 

happen in the following scenario? In a single shot, an algorithm can detect up to 

100 distinct items. Each number in the last layer, which spans a distance of 100, 

represents the probability of an object showing up in a photograph. 
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Except for the output layer, all aspects of an image localization algorithm are 

the same. Probability values might range from 0 to 1 depending on the 

classification technique employed in the final layer. Regression problems 

necessitate that localization methods return four positive real values as their 

output. A box is drawn around the subject object by using this set of four 

numbers. 

2.3.2.1. The loss function for object localization 

Almost all machine learning algorithms aim to produce predictions as close to 

perfect as feasible given the input data. The loss function is used by every 

supervised machine learning algorithm to guide the process of learning, which 

includes modifying weights or parameters to improve performance. In this case, 

any regression loss function that can be applied to an N-dimensional array will 

work because object localization is a regression problem. The losses of L1 

distance encompass, but are not limited to, the losses of L2 distance, the loss of 

Huber distance, and so on. The L2 distance loss method is widely used in both 

industry and academics for measuring distance loss. 

2.3.2.2. L2 distance 

In some circles, the L2 distance is also referred to as the Euclidean distance. 

Using point cartesian coordinates, the Pythagorean theorem can be used to 

calculate the distance between two points in N-dimensional space. This method 

is applicable to any N-dimensional space with a positive dimension. 

To understand the idea of L2 distance, consider two points P and Q in three 

dimensions. P and Q are expressed in cartesian coordinate systems as (p1, p2, 

p3) and polar coordinate systems as (q1, q2, q3), respectively. The distance 

among these two points can be calculated using the following formula: 

Distance (P, Q)  =  sqrt ((p1 –  q1) ² +  (p2 –  q2) ² +  (p3 –  q3) ²)     (4) 

This method is more effective when the difference between anticipated and true 

values is smaller in terms of L2. Its purpose is to reduce the Euclidean distance 

between anticipated and true values as much as possible. 
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2.3.2.3. Image Localization Algorithm Evaluation 

It is vital to test data points that have never been observed before while 

developing machine learning models for application in the actual world. In 

assessing the efficacy of various models based on real-world data, it serves the 

same purpose as previously as an assessment metric. The IoU, a commonly used 

metric for evaluating image localisation quality, can be utilised to do so. 

Intersection over Union is a term used to describe this idea (IoU). When 

computing IoU, both the current and predicted bounding boxes are taken into 

account. 

An IoU measure measures the amount by which a given ground truth bound box 

and its anticipated bounding box actually overlap, whereas a union measure 

measures the amount by which that overlap actually occurs between the two 

parties. Both bounding boxes are added together, and their combined total area 

is the union. 

It's normally between 0 and 1 when it comes to IoU For a perfect performance, 

which is a value of 1, it means that the prediction and the real-world values are 

indistinguishable. When the junction region is greater, IoU is more likely to be 

closer to one. 

2.3.2.4. Various IoU Losses for Faster and More Accurate Object 

Detection 

BBR (bounding box regression) is used by the Object Localization module to 

locate objects. 

Bounding Box Regression 

For anticipating the location of a target item, bounding box regression is a 

common method in object recognition systems. It aims to improve the 

predictability of the position of a bounding box. When the predicted bounding 

box and the ground truth bounding box coincide sufficiently, bounding box 

regression uses IOU-based losses. 

Researchers recommend either a better structural backbone [63, 64] or a better 

technique for obtaining trustworthy local information [61] from data to improve 

the performance of deep neural network-based applications. 
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Intersection over Union 

In order for IoU loss to be effective, the anticipated and true bounding boxes 

must both overlap. When there are no overlapping instances, IOU loss does not 

result in a shifting gradient. Due to the enormous quantity of IOUs, the IOU loss 

has a slow convergence rate. 

 

Figure 2.21  The predicted bounding box is red, whereas the ground truth 

bounding box is green. 

A negative result indicates that the test failed since the ground truth boxes did 

not overlap with the predicted boxes when IoU loss was expected. 

 

Figure 2.22  Goodness measure of IOU 

2.3.3. Object Detection 

The three core features of a complete optical character recognition system are 

feature extraction, object recognition, and object localisation. Each of these 

factors influences the overall performance of any OD system, regardless of its 

type. Previous study had mostly concentrated on a single aspect of the OD 

system. Supplemental variables like as scale and rotation might produce data 

imbalance, which can have a negative impact on the OD system's performance. 

Furthermore, the performance of the OD system could be enhanced by 
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employing a novel learning descriptor with rapid and unique invariant properties 

that can be used to define the environment. As ensemble-based learning 

develops and advances, it becomes less prone to data imbalance. Furthermore, 

any changes to the detector used to detect the initial interest spots may result in 

better overall detection performance. 

Face recognition and object class detection in images (for example, faces, 

automobiles, people, and so on) are two applications of object detection (OD) 

[63-64]. Item recognition, on the other hand, is the process of categorising an 

instance of an object into a specific class. Detecting objects in images can be 

accomplished by combining CV and image processing techniques [61]. 

Furthermore, machine learning could be applied to enhance an Object Detection 

system. Object detection, video object recognition and tracking, picture 

identification, image restoration, image retrieval, camera positioning, and 3D 

scene reconstructions are just some of the many uses for this 

technology[62][63]. 

 

Figure 2.23 Object Detection 

During the object detection process, the following actions must be carried out 

on a regular basis: 

1. Input is provided by a visual medium, such as a photograph or a video. 

2. Divide or segment the input visual into portions or regions by segmenting 

or dividing it. 

3. Separate each section and treat it as a single image while working on it. 
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4. These photos were analysed using our Convolutional Neural Network 

(CNN). 

5. Following classification, we can combine all of the photos to obtain the 

original input image, as well as the items that have been identified and their 

corresponding labels. 

2.3.4.  Feature Extraction 

Photographic features can be used to identify an object more quickly by looking 

for a specific portion or pattern. It is easy to identify a square because it has the 

characteristics that make it easy for us to recognise it as such: four corners and 

four edges. Some of a feature's characteristics include its corners and edges, as 

well as any notable features such as ridges or depressions. 

Traditional Feature Detection Techniques: A Sneak Peek at What They Look 

Like: 

• For detecting corners in a scene, a Gaussian window function is used, and 

this method is known as Harris Corner Detection. 

• The Researchers improved the corner detection approach by updating the 

scoring mechanism used in the Harris Corner Identification algorithm.. 

• Scale-Invariant Feature Transform- Unlike the preceding two techniques, 

this one is scale invariant. 

• Simplified Robust Features (SURF)- As the name implies, this is a 

simplified version of the SIFT algorithm. 

• Accelerated Segment Test (FAST) characteristics- When compared to 

SURF, this is a significantly faster corner detecting algorithm. 

• In order to describe binary robust independent elementary features, one can 

use this feature descriptor in conjunction with any other feature detector 

(BRIEF). By converting floating point integers to binary strings, this method 

reduces the amount of memory needed for descriptors. 

Extraction of Deep Learning Features: A Peek Behind the Scenes 

CNNs have the ability to learn the characteristics of a given task, which enables 

them to take the place of traditional feature extractors. CNNs are also superior 
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to traditional feature extractors when it comes to discovering complicated 

characteristics that more accurately reflect a picture. 

As an example, here are a few: 

• For example, SuperPoint can detect and describe interest points on its 

own. 

The Researcher' fully convolutional neural network can find interest points and 

descriptors that are similar to SIFT in just one forward pass. With a VGG-style 

encoder and two decoders, you can pull out the features you want. 

• D2-Net, a joint description and detection of local features, is a trainable 

CNN that can be used for this purpose 

One convolutional neural network is proposed by the researcher as a dense 

feature descriptor and a feature detector. 

• LF-Net: Learning Local Features from Images 

The researchers suggests an end-to-end training strategy and a sparse-matching 

deep architecture for training on image pairs containing relative pose and depth 

maps. They use the initial image as a reference after running their detector to 

pinpoint the peak activity. Changing the weights and rerunning on the second 

image yields a response map with clean maxima in the right places. 

• Deep Learning-Based Image Feature Matching 

For feature matching, they employ a Deep CNN model based on the patch 

image. Future feature matching could be made easier with the introduction of a 

graph neural network that transforms places of interest into features that can be 

more easily identified. Deep learning feature extraction algorithms are more 

resistant to scaling, occlusion, and distortion than traditional computer vision 
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approaches, however this does not mean that traditional computer vision 

techniques are no longer useful. 

 

Figure 2.24 Feature hierarchy discovered by a deep learning network 

applied to facial images 

2.3.5. Object Segmentation 

 

The method of giving a particular class to each pixel value in an image is 

referred to as object segmentation or picture segmentation. New papers and 

algorithms are being developed on a daily basis to increase the performance of 

these intelligence systems' object segmentation approaches. In order to get a 

basic knowledge of the problem of image segmentation, you can benefit greatly 

from reading this article. 

Real-world applications: 

1. Face segmentation: Computer vision systems can benefit from semantic 

segmentation for tasks like facial expression detection, age recognition, and 

determining a person's gender and ethnicity. Semantic segmentation, which 

splits facial features including the mouth, chin, nose, eyes, and hair into 

distinct attributes, enables these tasks. 

2. Medical imaging: Image segmentation is utilised in medical diagnostics, 

particularly in the evaluation of X-rays and MRI images. Semantic 

segmentation systems can assist in classifying significant portions of a 

picture, making diagnostic examinations easier and simpler. 

3. Self-Driving: Autonomous driving is a very difficult undertaking that 

involves real-time sensing, analysis, and adaptation. Semantic segmentation 

is used to recognise things like as other automobiles and traffic signs, as well 

as areas such as road lanes and walkways. In autonomous driving, instance 
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segmentation is used to segment individual autos, pedestrians, signs, and so 

on. 

4. Satellite image processing: Aerial or satellite photographs cover a huge 

region of land and include numerous items. Semantic segmentation has been 

used to analyse land utilisation, regions affected by deforestation, 

agricultural land analysis, and so on. 

Segmentation vs. Detection: What's the difference? 

Each class in the image will have its own bounding box, which can only be 

created by employing Object Detection models. However, because the bounding 

boxes are rectangular or square in shape, it will not reveal anything about the 

object's shape. Image segmentation will generate pixel-by-pixel masks for each 

item, allowing you to learn about the object's granular characteristics. 

Image Segmentation & its types: 

1. Semantic Segmentation 

2. Instance Segmentation 

In semantic segmentation, a label is assigned to every one of the pixels in an 

image. In contrast, categorization assigns a single title to the entire image. 

Semantic segmentation treats many objects from the same class as a single 

entity. instance segmentation, on the other hand, treats many objects of a single 

class as distinct entities (or instances). In most cases, instance segmentation is 

more difficult than semantic segmentation. 

 

Figure 2.25  Instance Segmentation Vs Semantic Segmentation 



54 

 

2.3.6. Object Detection Algorithms 

As self-driving cars have risen to prominence, a multidisciplinary field known 

as computer vision has grown rapidly in recent years (since CNN covered it 

extensively). Another important aspect of computer vision is the ability to 

identify objects. Pose evaluation, vehicle recognition, and surveillance can all 

benefit from object detection. Unlike classification algorithms, object detection 

algorithms draw a bounding box over an object of desire in order to locate it 

within an image. 

If you're trying to detect objects in a picture, you may not be able to build a 

single bounding box; instead, there may be a number of separate bounding boxes 

that reflect different aspects of the image. Prior to the emergence of Deep 

Learning, object detection progressed in two distinct stages: 

Traditional object detection was used up until 2014. 

1. The Viola-Jones Detector (2001), for example, laid the groundwork for the 

development of standard object detection algorithms. 

2. To begin with, there is the HOG Detector (2006), a computer vision and 

image processing feature descriptor introduced in 2006 for object 

recognition. 

3. DPM (2008), who was the first to use bounding box regression in a statistical 

analysis. 

Most important one-stage object detection algorithms 

1. YOLO (2016) 

2. SSD (2016) 

3. RetinaNet (2017) 

4. YOLOv3 (2018) 

5. YOLOv4 (2020) 

6. YOLOR (2021) 

2.3.6.1.Histogram of Oriented Gradients (HOG) 

Introduction 

A HOG was used in an early approach of recognizing items. It was originally 

made available to the public in 1986. This method wasn't widely used in 
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computer vision applications until 2005, despite incremental advancements over 

the following ten years. In order to recognize objects in photos, HOG makes use 

of a feature extractor. HOG's feature descriptor can be used to extract only the 

most important information from a given image, while discarding the rest of it. 

Using a feature descriptor, an image's overall size is transformed into an array 

or feature vector. As a result, using HOG's gradient orientation method, a 

picture's most significant elements can be detected and highlighted. 

 

Figure 2.26  HOG Architecture 

Before we can understand how HOG operates, we need to first comprehend 

what it is and how it operates. Accordingly, the gradient histogram is generated 

by taking into account both vertical and horizontal values while creating the 

feature vectors for each pixels in an image. The value of a pixel can be deduced 

from its horizontal and vertical surroundings using gradient magnitude and 

gradient angle. We'll focus on a small section of a bigger image, as indicated in 

the illustration. When it comes to calculating gradients, the entire image is 

separated into 88 gradient representations, each of which is used. We can create 

a histogram for a given area by using the 64 gradient vectors to divide each cell 

into angular bins. Using this strategy, 64 vectors can be condensed down to just 

nine values. 

After determining the size of the 9-point histogram values (bins) for every cell, 

we may determine whether or not to construct overlaps for blocks of cells. The 

necessary process in creating a HOG feature are to build feature blocks, 

normalize feature vectors and aggregate related feature vectors. 
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HOG's Achievements 

1. Creating a feature description to be used in object detection. 

2. Possibility of using support vector machines (SVMs) to detect objects with 

high precision. 

3. Utilization of a sliding-window method for determining location. 

Consider the following: 

1. Limitations: There were numerous flaws with HOG, which was innovative 

in the early stages of object identification, but it was not without its merits. 

2. It takes a long time for complicated pixel processing in photos, and it is 

unsuccessful in some object recognition scenarios with smaller regions. 

3. HOG is a good baseline for comparing the efficacy of different object 

detection methods. Regardless, HOG is an effective method for numerous 

applications in the field of object and facial identification. 

4. Due to its smooth borders, one of the most common applications of HOG is 

pedestrian detection. Detection of certain items is one of the other general 

uses. 

2.3.6.2.Region-based Convolutional Neural Networks (R-CNN) 

For the purpose of object detection, RCNN have taken the role of the more 

traditional methods of HOG and SIFT to extract the most crucial characteristics 

from the data, we use R-CNN models with selected features (often about 2000 

features). Using a selective search algorithm, it is possible to determine which 

extractions are most important and then use that information to compute the 

procedure. 

Working of R-CNN 

Using the selective search technique, we can generate multiple image 

subsegments at once and pick the best possible entries for our task, making it 

easier to zero in on the most important features. This indicates that the greedy 

technique can be used to combine smaller segments into larger segments 

frequently in order to combine the most effective entries. 
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After the background check has been finished effectively, we must extract 

essential attributes and generate appropriate projections for these new prospects. 

CNN can be used to build an n-dimensional feature vector (2048 or 4096 

dimensional) to extract features by using a pre-trained CNN model. 

Accurate picture predictions are made using R-CNN, which then labels the box 

associated with the image. For each activity, the bounding box classification is 

tweaked using a regression model that takes into account where more research 

should be conducted.  

 

Figure 2.27 RCNN Architecture 

 

Issues with R-CNN 

1. Pre-trained CNN models give good feature extraction results, but current 

methodologies are incredibly slow when it comes to extracting all area 

proposals and, ultimately, the best regions. 

2. The R-CNN model has a number of drawbacks, including its slow training 

rate and extended prediction time. As a result of the solution's reliance on 

extensive computer resources, the procedure is more readily implementable. 

As a result, the entire architecture may be judged to be extremely expensive. 

3. Due to the inability to make modifications in the introductory phase, poor 

candidate selections may frequently occur. This may cause a multitude of 

problems in the trained model. 

Consider the following: 
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1. When to Use R-CNN: The performance of object identification models 

should be compared to the R-CNN and HOG object detection techniques as 

a starting point. R-most CNN's recent version is generally recommended 

because picture and object predictions typically take longer than expected. 

2. Example usage cases: It is possible to use R-CNN to address a wide range 

of object detection problems. The use of drone cameras to keep an eye on 

objects, image recognition software to recognize writing, and Google Lens 

to identify objects are all examples. Please see the following page for more 

information. 

2.3.6.3.Faster R-CNN 

In spite of its ability to execute object identification calculations and give 

acceptable results, R-CNN has certain fundamental flaws, particularly in terms 

of speed. To overcome R-CNN issues, some difficulties had to be dealt with 

more swiftly. CNN's shortcomings were remedied with Fast R-CNN. Instead of 

examining each segment separately, we employ pre-trained Convolutional 

Neural Networks. To generate the output of a fully connected layer, RoI pooling 

employs two pre-trained models and a selective search strategy. The Faster R-

CNN network, an upgraded version of the Fast R-CNN, is the topic of this 

article. In terms of performance speed, the Faster R-CNN model exceeds its 

predecessors by a large amount. In contrast to the R-CNN and Fast R-CNN 

models, the Faster R-CNN technique generates region recommendations using 

a superior network rather than a selective search algorithm. The region proposal 

network (RPN) employs a diverse set of photos of varying sizes to produce high-

quality results. 

 

Figure 2.28 Fast RCNN object detection Algorithm 
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As opposed to taking 10 milliseconds to process a photo, the regional proposal 

network does it in just 10 microseconds! The convolutional layer of the network 

can provide feature mappings for each pixel. Feature maps' anchor boxes come 

in many shapes and sizes. A bounding box is constructed for each anchor box 

based on its expected binary class. 

Non-maximum suppression must be used to remove superfluous data from 

feature maps. Non-maximum suppression is the only difference between Fast 

R-CNN and this approach. 

Consider the following: 

1. Limitations: The degree of time delay in proposing distinct items is a key 

constraint of the Faster R-CNN approach. The design of a system can have 

an impact on its performance. 

2. When To Use Faster R-CNN?: The prediction time is quicker than with 

other CNN algorithms. Compared to R-CNN, Fast R-CNN takes about 2 

seconds to predict things in a picture, while Faster R-CNN offers the perfect 

answer in just 0.2 seconds. 

3. The R-CNN approach provides use case examples that are faster, but the R-

CNN approach also provides faster results. Faster R-CNN, on the other 

hand, allows us to accomplish these tasks faster and more successfully. 

2.3.6.4.Single Shot Detector (SSD) 

An approach known as the single-shot detector for multi-box predictions is an 

excellent example of a technique that is particularly successful for real-time 

object identification. Although excellent prediction accuracy may be achieved 

with Faster R-CNN approaches, a real-time job running at an average frame rate 

of 7 frames per second is substantially slower than desirable. 

An increase in frame rate roughly five times greater than that of the Faster R-

CNN model alleviates this issue by improving performance. Multi-scale 

features and default boxes have taken the place of the old region proposal 

network. 



60 

 

 

Figure 2.29 SSD Architecture 

In the architecture of the single-shot multibox detector, there are three major 

components. It is necessary to select all of a single-shot detector's critical feature 

maps before it can begin to extract features from them. It is worth noting that 

there are no additional layers in this particular architectural zone, which is made 

up entirely of convolutional layers. As soon as any and all relevant feature maps 

have been extracted, the process of identifying heads can get underway. A fully 

convolutional neural network (FCNN) is also included at this level of 

sophistication. 

The second stage of detecting heads is not responsible for deciphering the 

meaning of a picture's semantic significance, to be clear. However, when it 

comes to generating the most accurate bounding maps for all of the features, this 

is not the primary concern. Non-maximum suppression layers are used to lower 

the error rate caused by repeated computations of the bounding box after the two 

fundamental phases have been computed. 

SSD Constraints 

1. In spite of the SSD's improved performance, image resolution is reduced to 

a lesser standard. 

2. For small-scale objects, the SSD architecture often outperforms the Faster 

R-CNN. 

Consider the following: 

1. There are times when it's better to use the single-shot detector. When it 

comes to larger objects, where precision is less important, using a single-
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shot detector makes sense because it allows us to make faster predictions on 

a picture. For more accurate estimates of small and precise goods, however, 

other methods must be investigated. 

2. Many datasets, including PASCAL VOC, COCO and ILSVRC can be used 

to train and test the Single-shot detector. This means that they can pick up 

on larger objects such as humans and other living things such as tables and 

chairs. 

2.3.6.5.YOLO (You Only Look Once) 

If you're looking for the most extensively utilized models and object detection 

algorithms, look no further than "You Only Look Once" (YOLO). To find object 

detection algorithms on Google, the YOLO architecture is the most common 

concept that pops up. YOLO manifests itself in a variety of ways. We have gone 

into more detail about each of these manifestations in the following sections. In 

addition to having one of the most advanced neural network architectures 

available, YOLO's neural network architecture allows it to achieve excellent 

accuracy while also processing data at a high rate overall. Most of its appeal 

stems from the speed and precision with which it performs its functions. 

 

Figure 2.30 You Only Look Once (YOLO) Architecture 

In order to detect objects, the YOLO architecture relies on three fundamental 

concepts. 

This model's speed and accuracy are unmatched by any other object detection 

algorithm, and that's because of the three strategies listed above. The YOLO 
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model is based on the idea of leftover blocks. For this picture, they used the 7 × 

7 blocks that were left over from the first construction plan. 

For each of these grids, a particular prediction is prepared based on the location 

of these grids. Using the second method, each forecast's center point is taken 

into account when determining the size of the bounding boxes. The 

classification tasks for each grid work well, but it is more challenging to identify 

the bounding boxes for each forecast. As a last resort, the intersection of unions 

(IOU) method is used to find the best bounding boxes for an item identification 

task. 

The Benefits of YOLO 

1. Even in real-time, YOLO's calculation and processing speed outpaces most 

other training approaches and object recognition algorithms. 

2. In addition to its quick processing speed, the YOLO technique achieves 

overall high accuracy by reducing background mistakes present in other 

approaches. 

3. An efficient architecture allows YOLO to learn and understand a large 

number of items in little time. 

 

YOLO's Limitations 

4. The inability to notice tiny things in an image or video due to a decreased 

recall rate. 

5. Due to the restrictions of bounding boxes, it is impossible to identify two 

items that are extremely near to each other. 

Consider the following: 

1. When Should You Use YOLO? There are many ways to recognize objects 

in images and videos, but the YOLO architecture is the most often used 

method for real-time object detection. Depending on the hardware, it can 

achieve excellent accuracy in most real-time processing processes while 

maintaining a reasonable speed and frame rate. 
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2. Other significant use cases of the YOLO architecture include vehicle 

detection, animal identification, and person detection, in addition to object 

detection on a range of products. 

2.4. Hyperparameters 

One of the most challenging aspects of machine learning is determining the ideal 

model complexity. Models with a great deal of complexity can make excellent 

use of the data, but the unobserved information is not appropriately generalized 

(overfitting). To get all the information from the data may be difficult with a 

simple model (underfitting). There is a direct correlation between model 

performance and hyperparameter values in the context of deep or machine 

learning. Therefore, hyperparameter exploration aims to search through a vast 

number of different hyperparameter configurations in order to find the one that 

gives the maximum overall performance. Most hyperparameter research is done 

manually, and it takes a long time, because there is a large search area and each 

configuration is expensive to analyze. 

These two sorts of parameters are employed in machine learning models. They 

are: Hyper-parameters are any and all variables that a user can specify at his or 

her discretion prior to beginning the training. Modelling parameters (also known 

as learnable parameters) are parameters that the model learns during training. 

Model parameters are used to convert input data into desired outputs, whereas 

hyperparameters are used to explain the structure of the model that is currently 

being used to translate data. The most extensively used learning algorithms have 

a set of hyperparameters that must be defined before any training can occur. 

These hyperparameters are known as learning parameters. Different training 

algorithms employ hyperparameters in different ways; others, such as the 

ordinary least squares approach, do not even require the usage of a 

hyperparameter. In terms of the time it takes to train a model, hyperparameters 

can have a significant impact. The sort of hyperparameter that is best suited for 

the situation at hand must be considered while selecting one. Parameters and 

hyperparameters are distinguished by dimensionality. 

These are the machine learning hyper-parameters linked to network structures: 
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1. The algorithm's input and output are separated by a voluminous number of 

tiers. The extent to which additional hidden layers can increase accuracy 

varies depending on the situation. 

2. Dropout: This is a regularisation strategy that reduces overfitting and 

improves validation accuracy. It also displays how much of each epoch's 

neurons should be removed at random to prevent overfitting. 

3. Weight initialization: Depending on the activation function for each layer, 

different weight initializations are best employed. It is critical to specify 

initial weights for the first forward pass. 

4. Activation functions: These are used to incorporate nonlinearity into 

models. Nonlinear prediction bounds must be learned using deep learning 

models.The following strategies are used to optimise hyperparameters: 

Types of Search 

1. Manual search: Historically, hyperparameters were determined through 

trial and error. It is still done in the same way, with experienced operators 

speculating on parameter values that can result in high accuracy in deep 

learning models. It is simple and effective in the hands of skilled operators, 

but it is not a scientific method. There is always a search for better, more 

automated solutions. 

2. Grid search: Using a grid search instead of manually adjusting is a major 

advantage. For each hyper-parameter, the model is automatically trained to 

evaluate multiple values for that parameter. Grid searches, for example, can 

be used to train models automatically for 10-100 sample batch sizes in 20-

step increments. 

3. Random search: It has been shown that testing randomised hyperparameter 

values can be more successful than both manual and grid search. Rather than 

focusing on potential locations, it is preferable to select random test values 

from the whole issue space. 

4. Bayesian optimization: This approach approximates the training model by 

varying hyperparameter values. It monitors the output provided by each set 

of parameter values for the model and keeps sampling until it obtains a list 

of hyperparameter value sets. 
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2.4.1. Learning Rate 

The weights of a neural network cannot be calculated using analytical 

approaches. To compute the weights, a process known as stochastic gradient 

descent must be utilized, which will be detailed in full later in this article. 

Stochastic gradient descent is an optimization approach that uses training dataset 

instances to calculate the error gradient and then backpropagation to make any 

necessary modifications to the model weights. Our neural network's weights are 

distributed according to the gradient of our loss function based on a 

hyperparameter called the learning rate. In this case, it indicates how often the 

neural network's stored knowledge has to be reloaded. It is possible to train a 

neural network to achieve a beneficial conclusion while yet maintaining a 

relatively moderate learning rate, as seen in Figure 2.31. 

 

Figure 2.31  A slow learning rate causes the model to converge to the 

global minimum loss. 

Less rapid changes in learning rates cause more training epochs to be required 

for smaller learning rates, while larger learning rates result in fewer training 

epochs being required. Higher learning rates, on the other hand, often lead to 

weights that are less than ideal. 

Using adaptive learning rates, the training algorithm can keep track of how well 

the model is doing and adjust the learning rate accordingly. 

The model's performance may be plateauing if it slows down the rate at which 

it acquires new information. In some cases, the learning rate can be reduced by 

a factor of two or an order of magnitude. Additional learning may be necessary 

if performance does not improve as expected. 
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Neural networks with variable learning rates often outperform those with fixed 

learning rates. 

new weight = old weight - (learning rate * gradient)   (5) 

2.4.2. Momentum 

An optimization approach known as gradient descent with momentum is a 

version of this process. Only two of the algorithm's many goals are to reduce the 

number of function evaluations needed to find an optimal solution or produce a 

better final result. A major drawback of using gradient descent is that it causes 

the search space to jump around unpredictably, which is frustrating. To find a 

minimum, for example, the gradient of the individual points (groups of 

parameters) you locate during your search may lead to a downhill or uphill 

movement. 

For optimization situations where the general trend or structure of the search 

space is more essential than specific gradients along the route, this could hinder 

progress in search. 

Prior to implementing the update equation, hyperparameters determine how 

much history (momentum) the equation has, allowing it to gather momentum. 

Values in the range of 0.0–1.0 that are as close to the maximum as possible are 

preferred (e.g. 0.8, 0.9, or 0.99 being commonly used). If our momentum is zero, 

we are descending in a straight line. It is necessary to break up the gradient 

descent update equation into two components: one component calculates 

position change, and another component updates old location to the new location 

of the gradient descent update equation. 

The step size is multiplied by the point's gradient to arrive at the parameter 

change. 

change_x = step_size * f'(x)       (6) 

Simply deducting the change from the current point gives you the new location; 

this is all that is required. 

x = x – change_x        (7) 
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To maintain momentum, remember the position change and apply it to the 

position change calculation in the subsequent calculation. 

When analyzing changes throughout time, keep the following in mind When 

comparing changes across time, the update at the current iteration or time (t) 

includes the modification used at the previous time (t-1), as shown in the table 

below: 

change_x(t) = step_size * f'(x(t-1)) + momentum * change_x(t-1)  (8) 

 

After that, the position is updated in the same way it was before. 

x(t) = x(t-1) – change_x(t)       (9) 

Over the course of the search, the quantity and direction of change in position 

accrue, and the amount and direction of change are proportional to the size of 

the momentum hyperparameter. 

To illustrate this, a high momentum value shows that the prior update has a 

substantial impact on the current update, while a low momentum value (e.g., 

0.2) suggests that the previous update has very little influence on the current 

one. 

2.4.3. Dropout 

The Dropout layer is a mask in neural networks that removes specific neurons' 

contributions to the following layer while maintaining the functionality of all 

other neurons in the network.. The input vector can be subjected to a Dropout 

layer, which removes some of the vector's properties, or a hidden layer, which 

removes some of the hidden neurons' features. 

CNN training benefits from dropout layers because they prevent the data from 

being overfit. It's important to have the initial set of training data because it has 



68 

 

a big effect on the next sets. These characteristics would be lost if further 

samples or batches were collected: 

 

Figure 2.32 Dropout Neural Net Model. 

2.4.4. Batch Size 

The initial random weights and learning algorithm setup are crucial for training 

a deep neural network with tens of layers. For example, if weights are changed 

after each mini-batch, it is possible that the distribution of inputs to deeper layers 

of the network may change. This might lead to the learning process being unable 

to stop following a moving item. The consequent shift in the distribution of 

inputs to network layers is referred to as a "internal covariate shift". 

Standardizing the inputs to each mini-batch of data is the goal of the training 

method known as batch normalization, which is utilized in extremely deep 

neural networks. When this happens, the learning process is stabilized, and the 

number of training iterations needed to create deep neural networks is cut down 

by a significant amount. 
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2.5. Effectiveness of Transfer Learning on Threat Detection 

2.5.1. Training data 

Given that it incorporates representation learning as well, DL is especially data-

hungry [68,69]. For DL to be effective, a significant quantity of data must be 

gathered in order to create a performance model that is well behaved; when 

additional data is gathered, it may be possible to create a model that is even more 

appropriately behaved. The vast majority of the time, the information at hand is 

sufficient to build an accurate performance model. DL is not always necessary 

[70], for example, when the data are insufficient. There are three approaches 

suggested for resolving this problem successfully. The first phase in the learning 

process involves using the idea of transfer learning after gathering information 

from professions that are similar. 

On this issue, three different perspectives have been expressed. Putting the 

transfer-learning concept into reality comes first, followed by data collection 

and analysis from related activities. While the provided data may not have an 

immediate influence on the real data, it may help to improve how the original 

input data was represented and how its mapping function operated. As a result, 

the overall efficiency of the model improves. When you don't have enough data 

to start with, you can alter an existing model that has already been trained rather 

than starting from scratch. Several transfer mechanisms are included in the DLP 

methodology [72, 73]. In the second alternative, for instance, already-existing 

data might be augmented. Because the image label is typically unaffected, it is 

possible to apply picture translation, mirrored pictures, and rotation to 

supplement image data. When utilizing this method, bioinformatics data must 

be handled with the utmost care. When enzyme sequences are reproduced, they 

don't always match the original sequence exactly. The third technique for 

expanding the training set uses simulated data. If the issue is well-known, a 

physical process emulator may be constructed in some circumstances. All the 

data required to repeat the desired outcomes will be included in the finished 

product. Data processing for DL-based simulation is extensively illustrated in 

the reference [75]. 
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2.5.2. Overview: What is transfer learning? 

A data scientist can use the notion of transfer learning to adapt a machine 

learning model to a new problem. As an example of this form of learning, people 

might share their skills. Learn how to drive other two-wheeled vehicles is much 

easier if you've already mastered cycling. Some of the same models for self-

driving trucks could be used for self-driving vehicles. 

Use this method to train machine learning models such as deep learning and 

reinforcement learning. In a new job, the model's training will be put to the test. 

A typical machine-learning strategy differs from a transfer learning approach in 

the following way: 

2.5.3. Using a pre-trained model 

The following is an explanation of how transfer learning operates: 

Choose a source model from the list below: The source model must already be 

trained in order to transfer knowledge from one model to another. The 

alterations made to the source model are applied to the target model. In many 

instances, the training data for the target model may differ from the training data 

for the source model. Many factors should be organized before delivering 

information. Train the source model in the following ways to get the desired 

model: After the source model has been changed, the target model is achieved 

by working your way up from the source model as a starting point. 

2.5.4. Developing a new model 

The decision to build a new model for the purpose of applying their expertise to 

the main goal may be justified in certain circumstances. For example, separate 

models are required to recognise trucks and buses in photographs, but there is 

insufficient data available. Then you have the option of creating a new model 

that is the first to recognise automobiles. The model that has been created can 

be explicitly trained with the data that has been provided and used as a starting 

point for detecting trucks and buses. 
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2.5.5. When to use transfer learning? 

Prior to using a model trained on a new problem, data scientists must use a 

model trained on a previous problem. Therefore, they are unable to apply what 

they have learned in the classroom to real-world scenarios. Transfer learning, 

on the other hand, yields better results in less time when put into practise. 

Applied transfer learning can be used by data scientists in the following 

situations. 

A. There is not enough data 

There are times when machine learning models can't be trained because of a lack 

of data. To avoid poor results, data scientists should start with pre-trained 

models that have already been tested. 

B. There is not enough time to train 

Some machine learning models are difficult to train and take an excessive 

amount of time before they are capable of performing their functions effectively. 

Pre-trained models can be used by data scientists who lack the time to build their 

own models or who have too many machine learning tasks to complete. Instead 

of creating a new model, you can save time by working on the existing one. 

2.5.6.  What are the main benefits? 

According to the research in machine learning , Transfer Learning has the 

following advantages: 

• When using other methods of learning, you must construct a model from 

scratch, which requires no prior knowledge. Because of transfer learning, 

you have a stronger starting point and are able to complete tasks at a higher 

level without undergoing formal training. 

• A faster rate of learning is achieved through transfer learning because the 

problem has already been taught for a comparable task. This results in a 

faster rate of learning during training. 

• Increased accuracy after training: Transfer learning allows a machine 

learning model to converge at a higher performance level after training 

because it has a better starting point and a faster learning rate. This results 

in more accurate output after training. 
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• Faster training: Since it employs a pre-trained model, it is feasible to attain 

the target performance much faster than traditional learning methods. 

There may be little difference in the performance of transfer learning versus 

standard learning models. A target model cannot be built until transfer learning 

has had an opportunity to impact it. 

2.5.7. Examples for use of transfer learning is shown below: 

2.5.7.1.Technologies 

• Image recognition applications can benefit from transfer learning. 

Occasionally, a dog identification paradigm can be used to recognize cats. 

• Natural language processing (NLP) transfer learning applications are among 

the most common. This data can be used to train additional models, such as 

the pre-trained AI models stated earlier, to anticipate the next word in a 

sequence based on previously acquired phrase structure. 

• A German speech recognition model can be built on top of an artificial 

intelligence model developed for English-language speech recognition. 

2.5.7.2.Industries 

• Driverless Cars 

• Self-driving trucks may be able to benefit from the same paradigm as self-

driving cars, according to researchers. 

• A wide range of phenomena can be detected using transfer learning. For 

example, a model that has been trained to recognize other vehicles on the 

road can be used while driving autonomously to detect motorcycles or buses. 

2.5.7.3.Gaming  

• Chess players can put their go strategy to good use. For instance, instead of 

developing new models from scratch, AlphaGo's expertise could be applied 

to other video games. 

2.5.7.4.Healthcare:  

• The similar physical properties of EMG muscle signals and EEG brainwaves 

for gesture recognition allow for the transfer of learning between the two 

types of signals. 

• Using medical imaging as another example of transfer learning. As an 

illustration, an image analysis model trained on MRI scans can be applied 
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to CT scans as a starting point. In the field of medical image recognition, 

transfer learning, according to Google, has had little impact on algorithmic 

performance. 

• Spam filtering: Using an artificial intelligence model trained for email 

classification, it is possible to filter spam from emails.. 

AlexNet and ResNet are two examples of open-source trained models that data 

scientists can experiment with. Starting point for further development when 

dealing with machine learning challenges. 

2.5.8. What are the best practises in this area? 

• Pre-trained datasets, which are publicly available in a wide number of 

subjects, can save you a lot of time. Instead of generating new models from 

scratch, using existing source models could improve the robustness of the 

final model. This will save you time and prevent you from encountering new 

difficulties while building your target model. 

• Be aware of the model from which you drew your inspiration: Check to see 

if your source model is compatible with your target model. To achieve your 

goal model, it may take longer if your source model is more difficult or 

irrelevant. 

• Why transfer learning may not be necessary for larger datasets: With larger 

datasets and more complex tasks, transfer-learning may not have the desired 

effect. Starting with a random set of weights, classical learning gradually 

fine-tunes them until they reach a point of convergence. Transfer learning 

can begin with a pre-trained model, but larger datasets necessitate more 

iterations, making your original weights ineffective. 

• If the source model is too similar to the target model, overfitting may occur 

in jobs with a small amount of data (for example, identifying cats and dogs). 

Avoiding this issue can be accomplished by altering the training rate, 

freezing some layers from the source model, or adding linear classifiers to 

the final model before it is used in final modelling. 

2.5.9.  Techniques used in Transfer Learning 

Deep CNNs, which have the potential to revolutionize classification, have 

grown in popularity in recent years. Deep CNN models frequently require a big 
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amount of data. The most prevalent issue when employing these models is a 

shortage of data to train on, and there is currently no answer to the challenge of 

acquiring a high amount of data points. The TL approach has been utilized to 

address the lack of training data issue [74, 75]. Using this method, a CNN model 

must be trained on a large amount of data before it can be put to good use. Using 

a few user-supplied training records, the model is tuned. 

Let us understand the TL technique with the help of an example. It's a great 

technique to teach TL if students and teachers can interact. The first step is to 

do an extensive study on the topic [76]. Thus, the teacher organizes a "lecture 

series" so that the material is disseminated over a prolonged period of time. In a 

word, the instructor's role is to transmit knowledge to the pupil. Knowledge is 

passed down from one person to another, usually from one expert to another 

(student). As a result, in order to successfully train the deep learning network, 

as much data as possible must be input into the network throughout the training 

process. Using these parameters, a new model is built and put to the test to 

determine if it performs as well as the original. 

Weights can be pre-trained instead of being trained from the beginning, as a 

result. The TL technique's conceptual diagram is depicted in Figure 2.33. The 

layer1 has large amount of data labels which consist of source label, source 

model and source data. The knowledge is transferred to the next layer which has 

target model, target labels and target data using which we will get our desired 

results. Thus the knowledge transfer from one source data to another source data 

with weights transferred from 1 layer to another layer helps in deploying the 

transfer learning approach. 
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Figure 2.33  Transfer Learning Architecture 

1. Existing trained models include: CNN models like AlexNet [77], GoogleNet 

[78], and ResNet [79] have been trained on big datasets like ImageNet to 

make them better at recognizing images.. Using these models, a wide 

number of jobs may be recognized quickly and easily without having to start 

over from scratch each and every time. With the exception of a few learned 

traits, the weights are also always the same. When there aren't many data 

points to work with, these models are very helpful. Using a model that has 

already been trained can be helpful in many ways. In order to train complex 

models on big data sets, you need to use expensive computer resources, 

which can be too expensive. Second, it can take a few weeks or even longer 

to train big models, depending on how big they are. Lastly, a model that has 

already been trained can help networks become more general and speed up 

the process of convergence. 

2. Using pre-trained models to solve a research problem: To train a deep 

learning approach, a large number of pictures are needed. In these 

circumstances, it is conceivable but difficult to accomplish well. 

Multilayered deep convolutional neural networks (DCNNs) may effectively 

categorize and recognize pictures in the presence of large amounts of 

training data [72,80]. They can even outperform humans in some situations. 

In order to avoid problems with overfitting, these applications necessitate a 

big dataset and DCNN models with acceptable generalization capabilities. 
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The quantity of data that can be used to train a DCNN model has no upper 

limit. While this may seem counterintuitive, the accuracy of the model will 

be compromised by over- or under-fitting concerns if the model is developed 

with fewer layers or a limited dataset for training. Because of their lack of 

ability to take use of the hierarchical properties of huge datasets, models 

with fewer layers are less accurate. Deep learning models necessitate a 

substantial amount of training data, which can be challenging to get. 

Acquiring labeled datasets in domains such as medical imaging and 

environmental science, for example, is prohibitively expensive [72]. 

Furthermore, the majority of crowdsourcing employees are unable to 

provide correct annotations on medical or biological imaging due to their 

insufficient grasp of medical and biological terminology and concepts. To 

recognize such photos, machine learning (ML) researchers typically rely on 

field specialists, which is an expensive and time-consuming approach. The 

sheer volume of labels needed to build robust deep networks looks to be 

practically difficult to produce. The latter problem has recently been 

alleviated by the use of TL. Even though TL has been shown to boost the 

accuracy of several pattern recognition and computer vision tasks [81, 82], 

there is a fundamental difficulty with the source data type of the TL 

compared to the target dataset that must be resolved. [80] For example, 

training CNN models with the ImageNet dataset, which consists of natural 

photos, enhances their ability to classify medical images. Consequently, 

because natural photographs differ so greatly from raw medical images, the 

model's performance isn't enhanced as a result. Furthermore, TL from other 

domains has been demonstrated to have no appreciable impact on medical 

imaging task performance, since lightweight models trained from scratch 

outperform standard ImageNet-transferred models. [84] As a result, in some 

circumstances, using pre-trained models is not an option. Several 

researchers used the same-domain TL method in 2020 and achieved 

excellent results [84-86]. Similar photos are utilized as examples for training 

in the same-domain TL approach. Two approaches are to train the model on 

diverse chest X-ray images, then fine-tune and train it on COVID-19 

diagnosis images. In [86] it has more information on same-domain TL as 

well as directions for performing the fine-tuning approach. 
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2.5.9.1. Data augmentation techniques 

When the goal is to increase the quantity of data accessible while avoiding 

overfitting, approaches to data augmentation can be used [87,88,89]. These are 

data-space approaches to situations with limited information. Data 

augmentation refers to a set of approaches for improving the properties and 

amount of training datasets. As a result, when these strategies are implemented, 

the performance of DL networks considerably improves. Following that, we'll 

go through a few other methods for adding information to data. 

1. Flipping: Flipping the axis vertically is less common than the axis 

horizontally, although it is still a common technique. Flipping has been 

found to be advantageous in ImageNet and CIFAR-10 datasets. In addition, 

implementing it is a cinch. For text-recognition datasets, the transformation 

is not label-preserving as previously stated (such as SVHN and MNIST). 

2. It is common practice in the business to encode digital picture data using a 

dimension tensor (height width colour channels) because it doesn't 

necessitate any new hardware, a different approach to expanding the 

channel's color space is very convenient to implement. In order to achieve 

color augmentation, only one channel of a certain color, such red, green, or 

blue, must be isolated. It's easy to turn a picture that just uses one color 

channel into something completely different by simply dividing the matrix 

and introducing additional double zeros from the other two color channels. 

You may also alter the image's brightness using a few simple matrix 

operations on the RGB values. Creating an image-representing color 

histogram can yield even better color augmentations. Histograms, like those 

found in photo-editing software, can also be manipulated to change their 

intensity levels. 

3. Cropping: Cropping an important portion of each image is used as a 

specialized processing step when dealing with combined height and width 

dimensions in picture data. It's also possible to get the same effect as 

translations without using a translation tool, thanks to random cropping, 

Translating an image keeps its spatial dimensions while randomly cropping 

reduces the image input size [from (256, 256) to (224, 224)], which is why 

random cropping is superior to random translations. Translations are more 
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efficient than a random selection of crops. Depending on the cropping 

reduction threshold selected, the label-preserving transformation may or 

may not be handled. 

4. Rotation: A photograph can be rotated from 0 to 360 degrees around an axis 

to create rotation augmentations. Some of these parameters, such as the 

rotation degree, have a big impact on how well rotation enhancements work 

in practice. Digit identification jobs benefit greatly from the ability to rotate 

small quantities of data (from 0 to 20 degrees). Data labels cannot be 

maintained following a transformation with a higher rotational degree. 

5. Translation: Shifting the image in order to avoid positional bias in image 

data is a key alteration. Every photo in a dataset should be in the center, just 

as a model's dataset should consist solely of photographs in the center while 

being tested. After converting the initial images in a specific direction, the 

leftover area should be filled with Gaussian or random noise, or a constant 

value such as 255 or zero seconds, as suitable. This padding guarantees that 

the spatial dimensions of the image are preserved after augmentation. 

6. The application of noise augmentation This method involves inserting an 

arbitrary value matrix into the equation. It is customary to utilize a Gaussian 

distribution to build this type of matrix. Moreno-Barea et al. [90] examined 

the noise injection on nine datasets in their investigation. They were 

retrieved from the repository at the University of California, Irvine [91], 

which can be accessible here. By introducing noise into photographs, the 

CNN can learn more robust features. 

As a result of this, geometric modifications can be used to generate solutions 

that are extremely well-behaved in the presence of training data biases. Potential 

bias sources can be used to identify the distribution of testing and training data, 

respectively. There are positional biases in facial recognition datasets, for 

example, because all faces must be perfectly centred within the frames. Because 

of this, geometric translations are the most effective option. Besides being 

simple to implement, geometric translations are effective at eliminating 

positional biases because they can do so. You can start with simple operations 

like rotation and horizontal flipping before progressing to more complex 

operations in image processing software. 
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These transformations have several disadvantages including a longer learning 

curve, higher computing costs, and a larger memory requirement. For example, 

cropping or translation must be manually checked to make sure that the picture 

label is not affected by these changes. Testing biases go far beyond simple 

positional and transitional shifts, which is an important consideration. As a 

result, deciding whether or not to make geometric changes is not an easy 

decision. 

2.5.9.2.Imbalanced Data 

The over-representation of positive samples in the biological data frequently 

leads to imbalances in the data. In contrast to regular X-ray images, COVID-19-

positive images have a substantially bigger volume. Unbalanced data can lead 

to surprising results when used to train a DL model. 

The methods described here can be put to good use in resolving the issue at 

hand. Before anything further, the loss must be assessed and the outcome 

predicted in accordance with the correct criteria. It should be possible for the 

model to deal with both tiny and big classes of observations due to the 

unbalanced data. As a result, the model should use the AUC as a resultant loss 

and the [95] criterion to determine the outcome. Weighted cross-entropy loss 

should be used if cross-entropy loss is still desired, as this ensures that the model 

will perform well when it comes to small classes. During the model training 

process, large classes can be downsampled and tiny classes can be upsampled 

simultaneously. The construction of a model for each level of the hierarchy in a 

biological system is made possible by a hierarchical label space, according to 

Ref. [96]. Unbalanced data has been studied and documented in detail in relation 

to the DL model. To help alleviate the situation, the most often employed 

strategies were compared. Keep in mind, however, that these procedures are not 

geared to address biological concerns. 

2.5.9.3.Interpretability of data 

Examine DLs if you want to know how different methods work. There are a 

number of ways to look at this. Bioinformatics [97] is one such area where it is 

widely believed that DL must be understood and evaluated in order to extract 

the network's important motifs and patterns. The diagnostic and prediction 
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findings of a trained DL model, as well as ways to improve their accuracy, must 

be fully understood in order to raise the certainty of prediction outcomes [98]. 

Because of this, the model relies on the results of the checks and balances. 

A weighted score for each section of the example can accomplish this goal, as 

seen in the following example. Back-propagation techniques and perturbation-

based approaches are used in this method [99] to correct the problem. A small 

percentage of the input is changed, and the impact on the model's output is 

tracked using perturbation-based methodologies [100,101]. Despite its technical 

complexity, understanding this notion is simple. A signal from the output layer 

propagates back into input layer to assess the relevance score of different input 

portions in back-propagation-based approaches. Procedures like this one are 

more involved. According to [102], these methods have been proven to work. 

Depending on the situation, the model's interpretability may be viewed in a 

different light. 

2.5.9.4.Uncertainty scaling 

The final prediction label cannot always be determined solely by a DL approach 

to prediction; each query's confidence score is also required. Calculating the 

confidence score takes into account a model's confidence in its predictions. In 

every application, a high confidence score is essential because it guards against 

people falling for predictions that are based on inaccurate or misleading 

information. According to some researchers, confidence scores in biology may 

reduce the time and resources required to verify false predictions. Scaling 

uncertainty can be a useful tool for evaluating the accuracy of computer-aided 

diagnosis [104, 105] and machine learning-based illness detection in the 

healthcare industry. Because multiple DL models may result in overconfident 

predictions, direct-softmax DL's output frequently does not place its probability 

score on an appropriate scale [106,107].  

2.5.9.5.Catastrophic forgetting 

As interference with previously learnt information, the process of incorporating 

new information into a simple DL model is defined. The following is a probable 

scenario example: For instance, if a model trained to classify one thousand 

species of flowers is tweaked solely for this new class, its performance with 
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other classes will decline. In terms of logic, biology and many other disciplines 

deal with the ongoing collection and regeneration of data. Fortunately, the 

solution to this conundrum is as straightforward as training a brand-new model 

employing both old and new data sources. In addition to being time-consuming 

and computationally intensive, this method results in an undesirable unstable 

representation of the original data. There are now three basic types of machine 

learning algorithms [113, 114] that can be used to solve the human brain 

problem based on neurophysiological theories. 

2.5.9.6.Model compression 

Due to the vast number of variables to examine and train, DL models require a 

substantial amount of memory and processing power [115, 116] before they can 

be implemented in production. Data-intensive tactics have been applied to 

improve outcomes in the sectors of healthcare and environmental science. These 

limits limit the application of DL in devices with limited processing capability 

in the healthcare industry, which is especially crucial. Diverse technologies for 

monitoring human health and the volume of data have gotten much more 

complex and massively larger [117,118], needing greater processing and 

resources [119,121]. 

To address the computational problems of deep learning, parallel processing 

techniques such as FPGAs and GPUs [119,120] have been created. [119–120] 

There are numerous imaginative compression strategies for deep learning 

models, all of which aim to reduce the computing load of the models from the 

start. Approaches are divided into four groups, In the first class, the number of 

superfluous parameters (parameters that have no impact on model performance) 

is decreased. Deep compression is one form of "parameter trimming" [121] 

strategies. When a smaller model is trained in the second class using the 

information collected from the larger model, this is known as knowledge 

distillation. In the third class, smaller convolution filters are utilized to reduce 

the number of parameters[124]. Lower-rank factorization is used to compute the 

information parameters required for final class preservation [125].These 

techniques for model compression are the best examples of their respective 
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classes. In addition, a more thorough explanation of the circumstance was 

offered. 

2.5.9.7.Overfitting 

Since there are so many significant factors and their complex interrelationships, 

DL models are prone to data overfitting. As a result, the model's ability to 

perform on the test dataset is impaired. This problem, on the other hand, affects 

a wide range of responsibilities, not just one. When proposing DL approaches, 

it is critical to thoroughly examine the repercussions. Overfitting concerns can 

be solved by using implicit bias in the training phase, according to study 

[128,129]. Despite the fact that the issue of overfitting must be addressed, it is 

not a top priority at this time. The problem can be classified into three categories 

based on the DL approaches that can be used to counteract overfitting. In 

addition to weight decay [130], batch normalization [131], and dropout (126) 

the model's architecture and parameters are all affected by these. [130] Weight 

decay is one of the lesser known second-class techniques Strength decay [130] 

is the most common regularization method in deep learning and is used by most 

machine learning systems. Challenges 2 addresses data corruption and 

augmentation, two common problems with models. A lack of training data may 

lead to overfitting, as seen in the illustration, because the learned distribution 

deviates from the genuine distribution. There are many ways to enhance the 

amount of training material available. Data corruption that has been relegated to 

the margins can only help the solution by offering new information. A 

discussion of how the model performs will wrap up this session with a class on 

the results. To ensure that the model is consistent, a new method penalizes 

outcomes that are too confident. Regularization of RNN and CNN networks can 

be achieved using this strategy. A lack of training data can lead to overfitting 

since the learned distribution deviates from the genuine distribution, as seen in 

the illustration. Additional information is added to training data via data 

augmentation. The solution is only made better by minimizing data corruption. 

It's up to the final class of the model to deal with the model's output, of course. 

[133] Overconfident outputs are penalized by a newly developed approach as 

part of the model regularization process. RNNs and CNNs have both been 

regularized using this approach. 
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2.5.9.8.Vanishing gradient problem 

The vanishing gradient problem occurs when utilizing backpropagation and 

gradient-based learning approaches with artificial neural networks (ANNs). 

This is a problem that arises throughout the training process and is distinct from 

other issues. As a result, the weights of the neural network are recalculated based 

on the current weight and the partial derivative of the error function throughout 

each training iteration. If the gradient is too tiny, further training will be 

impossible and the neural network will stop working, this weight update will 

not take place. It is possible to control a large input space by using the sigmoid 

function in conjunction with other activation functions, such as the sinusoidal 

one. The sigmoid function's derivative will be exceedingly small because of the 

large variation in the input. As long as these activations are only used by a few 

layers in a shallow network, this is not an issue. Additional layers during training 

reduces the gradient, yet the network is able to perform the desired tasks. Using 

back-propagation, neural network gradients can be calculated. Identifying each 

layer of the network and the network derivatives within it is done in reverse 

order, starting at the outermost layer and working inwards. First step derivatives 

are multiplied by how many network layers there are in this stage. The hidden 

layers can be activated by multiplying N tiny derivatives with an activation 

function, such as the sigmoid function. A significant decrease is seen at the top 

of the hierarchy as a result of this change. Consequently, it is impossible to 

rapidly change the biases and weights of the early layers of neural networks 

during the training phase due to the modest gradient. Due to the fact that these 

early layers are often required to recognize the most crucial elements of the 

incoming input, this scenario reduces the network's overall accuracy as well 

However, activation functions may help alleviate this issue. They don't have the 

ability to condense the input field into a small area. Since the ReLU [137] does 

not generate a small derivative, which is frequently used in mathematics, it is 

the most preferable method for mapping X to max. As an additional option, the 

layer for batch normalization [138] might be used. The derivative disappears 

when a large input space is reduced to a small one. This was made clear in the 

past. Batch normalization prevents the expression |x| from exceeding the 

sigmoid function's outer boundaries by simply normalizing the input data. This 
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problem can be fixed. When applying the normalisation approach, this ensures 

that the derivative will be large enough to be employed in later phases. It is also 

possible to address this problem with the help of graphics processing units 

(GPUs). As a result, a large number of deeper network levels can undertake 

regular back-propagation at a rate that is faster than the time needed to discover 

the vanishing gradient problem. [139]. 

2.5.9.9.Exploding gradient problem 

Problems with gradients and with vanishing points are incompatible. Error 

gradients with statistical significance are created during back-propagation 

[140,141]. As a result of the latter, the network's weights will undergo enormous 

shifts, making the system unstable. Consequently, the model will be unable to 

learn as efficiently as it once was in the future. During back-propagation, the 

gradient increases exponentially because of the network's repeated 

compounding of gradients. Consequently, weight values can be extremely large 

and may even overflow, resulting in NaN values being generated. Listed below 

are a few examples of potential remedies: 

1. There are several different weight regularisation procedures that can be 

used. 

2. The architecture of the network model is being redesigned. 

2.5.9.10. Under specification 

An under specification [142] bug was discovered on January 1, 2020, by 

computer specialists from all across the world. Machine learning models, 

particularly deep learning models, typically perform badly in real-world 

applications such as computer vision, medical imaging, natural language 

processing, and medical genomics. The unfavorable outcomes are the result of 

a lack of specificity. As shown, even minor changes can have a significant 

influence on a model's solution and predictions in various deployment domains. 

Underspecification can be remedied in a variety of ways. "Stress tests" are used 

to analyze how effectively a model performs on real-world data and to identify 

potential weaknesses in the system. Because of the model's proneness to error, 

a thorough knowledge of the technique is required. In the words of the 

researchers, "developing stress tests that are well-matched to the application 
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criteria and deliver acceptable "coverage" of anticipated failure modes is a huge 

task." A rethinking of some applications may be necessary as a result of this 

decrease in accuracy. It's imperative to pay close attention to this issue, as it 

affects applications like as medical imaging and self-driving automobiles. 

2.5.9.11. Evaluation metrics 

There are many important considerations to keep in mind when developing a 

classifier for a DL task. Training and testing are two common methods for 

categorizing data. It is feasible to enhance training accuracy by optimizing the 

classification algorithm. Evaluative measures are useful for selecting the best 

answer, assuming that a discriminator exists that can give an unusually accurate 

forecast for the incoming evaluations for a specific classifier. Model testing 

phases such as evaluator during model testing using hidden data and the 

evaluation metric are the only places where the effectiveness of a constructed 

classifier can currently be tested. Equation 20 says that there are a certain 

amount of cases that fall into the negative or positive categories. The number of 

false-positive and false-negative cases is one way to define FN and FP. This is 

followed by a discussion of the most popular assessment tools currently 

accessible. 

1. Accuracy: It is possible to calculate the percentage of correctly predicted 

classes compared to the total number of samples tested. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
       (9) 

2. Sensitivity or Recall: The percentage of successfully classified positive 

patterns can be calculated using this function. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (10) 

3. Specificity: The percentage of correctly identified negative patterns is 

calculated using this formula. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
       (11) 

4. Precision: For each anticipated pattern in a given positive class, we compute 

the positive patterns that were correctly predicted. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
         (12) 
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5. F1-Score: It is used to calculate the harmonic average of the recall and 

accuracy rates. 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
       (13) 

6. J Score: Youden's J statistic is another name for this metric. The metric is 

represented by Eq. 

𝐽𝑠𝑐𝑜𝑟𝑒 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1                 (14) 

 

7. False Positive Rate (FPR): Essentially, this statistic measures the likelihood 

of a false alarm ratio being encountered. 

𝐹𝑃𝑅 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦                  (15) 

8. The Area AUC is a common ranking type statistic in the ROC Curve 

categorization. In order to come up with the optimum learning model for a 

certain case, it is critical to compare several learning algorithms. As 

compared to probability and threshold measurements, the AUC value 

provides information about how well a classification system ranks overall. 

The AUC for a two-class issue can be calculated using the formula below. 

𝐴𝑈𝐶 =
𝑆𝑃−𝑛𝑝(𝑛𝑛+1)/2

𝑛𝑝𝑛𝑛
                         (16) 

Sp denotes the sum of all positively rated samples. The numbers 𝑛𝑛 and 𝑛𝑝 

represent the number of negative and positive samples, respectively. In 

comparison to accuracy metrics, the AUC value has been empirically and 

theoretically confirmed, making it incredibly valuable for finding the best 

solution and monitoring classifier during classification training. 

When it came to the discrimination and assessment processes, the AUC 

performed admirably. However, when distinguishing a large number of 

produced solutions, the AUC computation is largely cost-effective for 

multiclass problems. In addition, the time complexity for computing the AUC 

is 𝑂(|𝐶|2 𝑛 log 𝑛) for the Hand and Till AUC model and 𝑂(|𝐶| 𝑛 log 𝑛) for the 

Hand and Till AUC model. 
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2.6. Problem Statements identified 

The suggested research addresses these problems after brief study in literature 

survey: 

• Improving the effectiveness of image feature extraction. 

• Enhancing the efficiency with which picture features are categorized. 

• In order to circumvent ML's difficulties while dealing with large 

datasets. 

• The goal is to find the most effective DL model for threat detection. 

• Optimizing the model's hyper-parameters for better accuracy. 

• To avoid having to train several machine learning models from scratch 

to fulfill similar tasks, saving time and resources. 

• Use the weights from the pre-trained models to initialize the weights of 

the new model. 

2.7. Summary 

In this Chapter we have briefly discussed about the existing Deep Learning 

models and their merits, demerits and limitations. A brief overview of computer 

vision-based methods such as object localization, detection, feature extractions, 

segmentations and its based algorithms with hyperparameters and its way of 

optimizations. Based on the study we have found the problem statements 

discussed above and to address and resolving the above problems statements, 

we have given and proposed the appropriate deep learning models, transfer 

learning methodology, features used for our deep learning model and datasets 

used for training and testing. We also have provided with the comparative 

analysis of the deep learning models and network pipeline which helps us in 

deploying the appropriate model for our threat detection pipeline discussed in 

Chapter 3. 
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CHAPTER 3 

3. CLASSIFICATION OF THREAT-DETECTION 

IMAGES: TRAINING FROM SCRATCH OR 

TRANSFER LEARNING?  

3.1. Introduction  

In Chapter 2, we have discussed about the complete overview and comparative 

studies of deep learning based algorithms, networks and computer vision based 

task in literature survey. We have found that the traditional old methods used by 

researchers in carrying out the detection and classification of objects and targets 

in different areas, such as HOG, SIFT, and SURF which are not the state-of-the 

art methods and out dated methodology on large datasets and struggling to 

classify threat images from input photographs and time consuming. Based on 

the literature survey discussed in Chapter 2, we have found the following gaps 

and proposed a new methodology to overcome the present issues: 

• To improve the efficiency of obtaining image features. 

• To increase picture feature classification performance. 

• To handle complicated photos with variable attributes efficiently. 

• To build a Deep learning model that scales well to high-dimensional 

data. 

• To reduce the computational time, Training time and power and huge 

dataset. 

• Improving the accuracy of the pre-trained CNN model's as threat 

detection requires optimizing the model's hyper-parameters such as 

learning rate. 

• To avoid having to train several deep learning models from scratch to 

fulfill similar tasks, saving time and resources. 

• To initialize the weights of the new model, use the weights from the pre-

trained models. 

To address the above mentioned gaps, we have provided proposed 

methodologies and techniques, which helps in increasing the model 

performances and detection accuracy. 
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A decent deep learning model is built with care. To obtain good performance, 

massive training data, effective hardware, knowledgeable developers, and a 

significant amount of time are required to train and hyper-tune the model. As a 

result, constructing a deep learning model from scratch and training is nearly 

impossible for every deep learning activity. Here comes the strength of Transfer 

Learning. Transfer Learning is the process of using an already learned model 

for a related task. Each deep learning task is unique in some way. As a result, it 

is difficult to reuse a previously trained model in new problems. It may require 

some task-specific changes. As a result, we use Transfer Learning to complete 

our work. A pre-trained model is one that has already been trained and will be 

used via Transfer Learning. A pre-trained model may be cutting-edge in the 

domain. However, our challenge must be in the same domain as the pre-trained 

model. For example, a pre-trained model designed for image segmentation 

cannot be used for image classification. 

3.1.1. Transfer Learning over training from scratch.  

The major issues we found during literature survey that the deep learning based 

algorithms take weeks to train a neural network on massive datasets. To 

overcome and addressing this issue we have decreased the training time and 

computational process time by leveraging model weights from previously 

trained models - in other words, by applying transfer learning. Transfer learning 

is the act of avoiding having to train a new model from start by leveraging 

feature representations from a previously trained model. 

Typically, pre-trained models are trained on massive datasets that serve as a 

common benchmark in the field of computer vision. Model-derived weights can 

be used in additional computer vision applications. These models can be used 

to predict new tasks directly or as part of the training process for a new model. 

By incorporating pre-trained models into a new model, training time and 

generalization error are reduced. When the training dataset is tiny, transfer 

learning is extremely useful. In this case, we utilize the weights of the pre-

trained models to initialize the weights of the new model depicted in Figure 3.1.  
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Figure 3.1 Transfer Learning Flow 

3.1.2. Fine-tuning of the Hyperparameters 

Transfer learning has an extra step for fine-tuning the model accuracy because 

we are retraining the whole model to adjust the weight based on our target labels, 

which can cause the overfitting problem to our trained model. To avoid the 

model to over fit, we retraining the model and update the learning rate. This is 

critical since it prohibits large modifications to the gradient decent that may 

cause poor performance in the model. To overcome and re-training the model, 

It is also beneficial for calling back the training process to terminate the model 

at early state for training. This method will improve the accuracy of the pre-

trained CNN models by optimizing the hyperparameters. 

Now, let's take a look at how we can put what we learned in Figure 3.2 into 

practice. 

 

Figure 3.2 Steps for using Transfer Learning 
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3.2. Implementation of transfer learning 

Transfer learning can be implemented in six broad steps. 

3.2.1. Obtain the pre-trained model 

The initial step is to get our hands upon this pre-trained model that it will be 

utilized to address our target problem. A pre-trained model is a stored network 

that has already been trained on a large dataset, typically on a large-scale image-

classification problem. We can use the pre-trained model as is or modify it with 

transfer learning to fit a specific job and weights can be used as per our 

application area. 

The principle behind transfer learning for image classification is that if a model 

is trained on a large and diverse dataset, it can efficiently serve as a generic 

model of the visual world. We have employed these learned feature maps 

instead of beginning from beginning by training a large model on a massive 

dataset. 

Following two approaches adopted to modify a pretrained model: 

• Feature Extraction: To extract useful characteristics from new 

samples, use existing network representations. To reuse the feature 

mappings learnt previously for the dataset, just layer a new classifier 

trained from scratch on top of the pretrained model. The complete model 

does not need to be (re)trained. The basic convolutional network already 

provides properties that are beneficial for image categorization in 

general. The pretrained model's final classification element, on the other 

hand, is specific to the original classification task and thus to the 

collection of classes on which the model was trained. 

• Fine-tuning: Unfreeze a few of a frozen model base's top layers and 

train both the newly added classifier layers and the base model's final 

layers at the same time. This allows us to "fine-tune" the higher-order 

feature representations in the underlying model such that they are more 

relevant for the specific job. 

Transfer Learning Framework consist of 

• Analyze and understand the data. 
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• Create an input pipeline, in this example with the Keras 

• ImageDataGenerator. 

• Create the model 

• Pre-train the underlying model and then load the data into it (and 

pretrained weights) 

• The classification layers should be stacked on top of one another 

• Form the model 

• Model evaluation 

3.3. Datasets, System Specification, Tools & Libraries 

After identifying the pre-trained model and weights used for our target labels, 

we have now to take a datasets which consist of the increased in crime rates in 

congested areas and suspected secluded areas which have made security a major 

source of concern in almost any location, threats of violence are a source of 

concern for human rights activists. The right to life, which is our most 

fundamental human right, is under threat today because of gun violence. 

Violence with firearms, flames from a blazing fire, masked men, and bizarre 

human behaviour are all daily tragedies that affect people all over the world. 

Every day, at least 400 people die as a result of violence perpetrated with these 

weapons, according to estimates. The availability of gun violence, fire flames, 

masked men, and anomalous human behaviour has always played a significant 

role in the stakes of crime and mayhem, and this has not changed. Only the threat 

and non-threat classes are capable of demonstrating this. We have downloaded 

datasets from various different repositories and also created the dataset and 

labelled them between various classes such as threat and non threat, Fire and 

Smokes, Guns and Non Guns etc. To develop the following approach to detect 

threats using the SSD, Mask RCNN technique and the RCNN masking 

technique. As a result, we now have the necessary dataset, which will contain 

only one type of data. Using a variety of CNN methods, this dataset is then 

trained for threat categorization purposes. Closed-circuit television (CCTV) 

cameras, which provide real-time input footage, can be used to identify 

numerous forms of threats, including weapons, once the data has been properly 

educated. When a weapon is recognized, a threat alert is automatically sent, 

allowing for the required response time. After selection and creating the dataset, 
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Now we have to select the best model which gives best results in detection and 

classification. 

Table 3.1: Dataset for fire flames and Smoke 

Repository Format Objects Resources 

Repository 

1 

Video Fire Flames, 

Smokes, 

disturbance 

Computer Vision-Based Fire 

Detection Software (bilkent.edu.tr)1 

Repository 

2 

Video dataset Fire Flames, 

Smokes and 

disturbance 

Computer Vision and Pattern 

Recognition Laboratory Homepage 

(km.ac.kr)2 

Repository 

3 

Image Dataset Fire Flames http://cfdb.univ-

corse.fr/index.php?menu=13 

Repository 

4 

Image & Video 

dataset 

Smoke Welcome to the Wildfire Observers 

and Smoke Recognition Homepage 

(Feb.hr)4 

Repository 

5 

Image dataset, 

Video 

Smoke Fire Detection Research Group 

(ustc.edu.cn)5 

Repository 

6 

Video Fire Fire | NIST6 

3.3.1. System Details and Specifications 

For carrying out the research work, following hardware and software we have 

used and proposed for training and testing the model. 

Hardware 

1. Laptop with Intel i7 processor 

2. Minimum of 8GB RAM 

3. Minimum of 1 GB Hard disk 

4. Windows 10 or Linux 

5. Webcam 

Software 

6. Anaconda,Jupyter Notebook 

7. Open CV Library used for Computer Vision (CV), DL and Images 

8. MobileNet, InceptionNet 

9. Google Colab 

 
1 http://signal.ee.bilkent.edu.tr/VisiFire/ 
2 https://cvpr.kmu.ac.kr/ 
3 http://cfdb.univ-corse.fr/index.php?menu=1 
4 http://wildfire.fesb.hr/ 
5 http://smoke.ustc.edu.cn/datasets.htm 
6 https://www.nist.gov/fire 
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10. SSD, Fast RCNN, Mask RCNN 

Raw photographs are unsuitable for analysis and must be converted to a 

processed format, such as jpeg or jpg, before being used for further 

investigation. The image size is reconstructed into a square image, and the 

photos are saved in the RGB/BGR colour format. To create the dataset, threat-

related photos such as guns, fire flames, and abnormal actions are collected and 

prepared for inclusion in the dataset. It is possible that we obtained this data set 

from the internet, and that the photographs contained within it are in the jpeg 

format. An additional Labels folder contains text-format files in which the first 

line lists various items in the matching image and where the following line lists 

the coordinates of the object. This is solely for the purpose of training. 

3.3.2. Tensorflow Deep Learning Libraries and Program Elements. 

In order to conduct machine learning and deep learning programming, a number 

of widely available libraries are available. These libraries include: The 

following are a few of the most widely used library systems: 

1. Keras  

• Francois Chollet was the one who came up with the idea. 

• Python is the programming language used to create the open-source 

library. 

2. Theano 

• The University of Montreal came up with this idea. 

• Python was used to create this programme. 

3. TensorFlow  

• Google Brain Team came up with this idea. 

• C++, Python, and CUDA were used to create the programme. 

4. DL4J 

• This product was created by the Skymind team and the DeepLearning4J 

community. 

• C++ and Java were used to produce this document.. 

5. Torch  

• Ronan Collobert, Koray Kavukcuoglu, and Clement Farabet 

collaborated to create this design. 
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• Python-based 

Access to a wide range of libraries is available to the user. This reserach, 

carried out and focuses solely on the open-source TensorFlow from 

Google. TensorFlow and Keras, another popular choice, recently 

merged. Python is by far the most appropriate and widely used of the 

many supported languages. 

3.3.3. Training and Testing using TensorFlow Google Colab 

Due to huge computation time, we have proposed and used Open-source Library 

of Google as its name implies, TensorFlow is primarily intended for use in deep 

learning applications. Traditional machine learning can also be used with this 

platform. Instead of focusing on deep learning, it was originally built to perform 

large numerical computations. In any case, Google decided to make it open 

source because it turned out to be extremely beneficial for the development of 

deep learning. 

More than one dimension can be represented by a tensor, which is a 

multidimensional array in TensorFlow. Multi-dimensional arrays come in handy 

when dealing with large amounts of data. TensorFlow uses nodes and edges to 

represent data flow. It is simple to deploy TensorFlow code across a cluster of 

GPUs because it is written as graphs. 

3.3.4. TensorFlow's purpose 

Prior to the advent of libraries, machine learning and deep learning coding was 

considerably more difficult. Creating a neural network, configuring a neuron, or 

programming neurons is simplified thanks to this library's high-level API. All 

of these duties fall under the purview of the library. TensorFlow can also be 

used with Java and R, two other programming languages. 

3.3.5. TensorFlow is compatible with both CPUs and Graphics 

Processing Units (GPUs). 

To train deep learning models, a lot of computing power is required, which 

makes deep learning applications complicated. As a result of the large amount 

of data, the process is lengthy and requires a variety of steps including iterative 

procedures, mathematical computation and matrix multiplication. On a standard 
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Central Processing Unit, these tasks would take a long time to finish (CPU). A 

high-resolution screen and picture are necessary in the gaming industry, where 

graphics processing units (GPUs) are popular. There were graphics processing 

units developed in order to accomplish this However, deep learning applications 

are becoming more and more commonplace. 

Additionally, TensorFlow can be used on both GPUs and CPUs. For machine 

learning, it is also faster to compile than other deep learning libraries like Keras 

and Torch. 

3.4. Model Selection 

After selecting the pre-trained and finetuned model, we have created our own 

dataset with our target label to detect by the model. The model is now we have 

to select which will work on top of the pre-trained model as only annotated 

images, objects, and pixels may be used to train a comprehensive object 

separation model. A comparable dataset does not exist for X-ray, thermal 

scanning, or any other type of security imaging method. For end-to-end training 

on a limited dataset, data that does not have adequate or no annotated must be 

deleted. In its place, we developed a threat detection pipeline that separates the 

task of discovering object instances from anticipating segmentation masks. The 

segmentation model is trained using all of the samples except for a small subset 

that is utilized for object identification. With the integration of these models, it 

is possible to construct an object separation model that can find and clearly 

define each instance of an object while also defining all of the pixels associated 

to that instance. The following sections of study are used to determine which 

models are most suited for the two mentioned tasks. Object recognition and 

segmentation models are trained using pixel-level data tagged with images and 

object-level annotations. These models result in a separation model that locates 

and delineates the pixels associated with an object instance by making use of 

any annotations that may be present. Because the tests below are designed to 

establish which models are most effective at achieving these objectives, the 

results are meaningful. 
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3.4.1. Detection Models 

Now as per our proposed methodology we have to discover which of the four 

most popular current detection models is the best for our proposed model.  

• Faster R-CNN: When it comes to recognizing objects, this is a CNN-based 

two-stage paradigm. An area that appears to include prospective targets for 

the algorithm's second stage is extracted in the first stage, and the objects 

identified in those extracted areas are then classified. The region proposal 

network is the first step in the method (RPN). Regression is used to improve 

localization when predicting bounding boxes based on differences in 

coordinates between the actual bounding boxes and the proposed areas. 

• You Only Look Once (YOLOv3): A dense sample of the most likely places 

is used instead of region suggestions in order to detect an object in the first 

stage. The YOLO method uses a grid of cells to determine the number of 

bounding boxes (sometimes referred to as "priors") and the associated 

confidence ratings for each photo it receives as input. A single CNN can 

make all of these predictions at once, making it one of the quickest real-time 

algorithms. This study made use of a third-generation algorithm, which uses 

shortcuts to better detect small objects. 

• The Single-shot Multibox Detector (SSD):  At each pyramidal layer of the 

CNN, this one-stage technique may be able to detect objects of varying sizes. 

SSD predicts the anchor box offset for each feature map point rather than 

dividing data into grids. As a result, grid segmentation is no longer 

necessary, saving both effort and time. The receptive fields of feature maps 

fluctuate depending on where you are in the CNN pyramid. When 

comparing feature maps, the later layers have coarser maps whereas the 

older layers have finer maps. An object in a picture's size can be predicted 

by comparing its anchor boxes to the cell sizes in which they are situated. 

• RetinaNet:  Like SSD, which uses the same principle of detection at each 

pyramidal layer in a CNN and is also a one-stage method, this methodology 

does not require any additional steps. To create more robust representations, 

the feature pyramid network (FPN) concatenates later feature maps with 

earlier feature maps. The Researcher propose a new loss function called 
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"targeted loss" for samples that are particularly challenging to classify (such 

as those with a high rate of misclassification). 

Only positive samples were utilized in the assessment of a model's ability to 

identify dangers in an image. The data was partitioned into two sets using 

training and validation. The backbone network underwent 60,000 iterations in 

order to train the models. To see how each category's detectors fared, look at the 

data in Table 3.1. Regardless of how many categories you look at, R-CNN is the 

best detector. RetinaNet has an edge over the other possibilities because its 

backbone network is already linked to an FPN. When compared to other one-

stage detectors, such as the Faster R-CNN technique, it has the best overall 

performance (see below). Because of this, we decided to adopt faster R-CNN as 

our object identification model. 

Table 3.2: Detection mean Average Precision(%) on the validation set 

 

3.5. Segmentation Models 

After selecting the detection model above now we have analyzed six cutting-

edge approaches to find the optimum segmentation model for the task at hand 

for bounding box and masking of threat based detection. 

• FCN: It is recognized as one of the earliest techniques for classifying pixels 

at the pixel level. The dense layers are said to be executing one-to-one 

convolutions due to the substitution of a convolutional layer for the fully 

linked layers in the standard CNN architecture. As demonstrated in the 

following picture, the final convolution layer is then up-sampled using 

       Mean        Gun        Knife
Wrench

     Pliers
Scissors

Faster RCNN 85.71 96.24 83.92 87.79 83.05 86.53

Yolo 83.84 94.04 76.84 86.26 78.87 81.19

SSD 85.32 96.31 79.9 86.41 81.1 82.91

RetinaNet 86.68 98.06 71.33 92.61 87.18 84.21
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deconvolution to learn non-linear upsampling and produce a feature map of 

equivalent size to the input. 

• U-Net: The FCN is improved by adding U-shaped symmetric encoding and 

decoding fully convolutional layers. To emphasize data that was omitted 

during downsampling, it builds skip links between relevant encoder and 

decoder levels. 

• PSPNet:  An other method for determining the distribution of segmentation 

classes in an image is called "pyramid pooling," which mixes feature maps 

from various backbone model layers. As part of the training process, a 

monitoring system is installed at the pooling module's input to measure an 

additional loss. 

• DeepLabV3: Atrous convolutions and spatial pyramid pooling are two 

techniques for tracing the contours of small objects (SPP). SPP use a 

technique known as layer pooling to capture data at several scales. Before 

being delivered to the next fully-connected layer in a convolutional network, 

output vectors from each pooling layer are concatenated. Dilated 

convolutions, also known as atrous convolutions, are widely utilized to 

enlarge the receptive fields of filters. It is possible to incorporate a broader 

background without increasing the employed parameters. 

• PAN: Two additional modules, FPA and GAUS, have been added to the 

segmentation framework as complementary additions (GAU). Applying 

global average pooling to high-level data generates a global context, which 

is then used to direct the low-level characteristics. The output of the 

backbone model can be more accurately represented when using FPA, 

global pooling, and a spatial pyramid. 

• MA-Net: The point-wise attention block and the multiscale fusion attention 

block are two additional blocks that the system uses to implement an 

attention mechanism (MFAB). For finding channel linkages between any 

two feature maps, PAB uses multi-scale semantic feature fusion in the global 

view, while MFAB relies on the local view's multi-scale semantic feature 

fusion. 

The segmentation models were evaluated using only annotated pixel-level data. 

As part of a previous exercise in selection, we were able to extract patches or 
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areas of interest from samples that would be utilized to train segmentation 

models. By running negative samples through a detection model, background 

regions or patches that are free of hazards can also be introduced. A training set 

and a validation set were created once the data was gathered. All 60,000 model 

iterations were trained on the same backbone network (ResNet-50). Table 3.2 

shows the results of the validation set, which included a variety of criteria for 

evaluation. 

Table 3.3: Performance of Segmentation on the validation set using several 

assessment 

 

3.6. Threat Pipeline proposed model 

After analysis from the base models, The initial step is usually to instantiate the 

underlying model using one of the architectures, such as ResNet or Xception. 

We also used the pre-trained weights that best fitted for our application using 

transfer learning. If we are not using the pre-trained weights, we have to train 

our model from scratch using the architecture, which is a time taking task. 

Remember that the final output layer of the base model will frequently contain 

more units than we require. As a result, when generating the base model, we 

must remove the final output layer. We have later added a final output layer 

compatible with our problem as discussed in figure 3.3. 

 

Unet PSPNet MANet PANet FCN
Deep Lab

V3

mIoU 84.32 82.54 81.81 83.28 84.42 87.77

DC 87.64 86.71 84.46 86.62 88.48 90.54

Precision 94.16 94.68 95.87 96.38 96.48 93.89

Recall 87.04 85.05 83.69 84.82 86.86 91.52
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Figure 3.3 Pre trained weights 

3.6.1. Freeze layers so they don’t change during training 

In order to avoid overfitting concerns, which were covered in the subjects that 

came before this one, we need to freeze the layers of the pre-trained model 

during the first stages, which is very important. This is because we do not want 

the weights in those layers to be re-initialized, which is the reason why this is 

happening. If that is the case, we are going to lose all of the information that 

we have gained in the past. This will be the same as starting the model's training 

from the very beginning. 

3.6.2. Train the new layers on the dataset 

In order to train the new layers on the dataset, it is highly likely that the final 

output of the pre-trained model will be different from the output of our model. 

For example, models that have been pre-trained using the ImageNet dataset will 

be able to produce one thousand classifications. On the other hand, our model 

might only contain two different classes. In this particular instance, the model 

was trained with an additional output layer already in place. 

As a result, we have built multiple more dense layers as needed, but most 

importantly, a final thick layer with units equal to the number of outputs required 
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by our model. After selecting the base model and transfer learning method, now 

we have to train the model on our own dataset for classification between threat 

and nonthreat classes. Classification between Fire Flames and Smokes. 

3.6.3. Improve the model via fine-tuning 

Following the completion of the preceding procedures, We have proposed a 

model capable of making predictions on our own dataset. We fine-tuned it to 

increase its performance. Fine-tuning is accomplished by unfreezing the 

underlying model or a piece of it and retraining the entire model on the entire 

dataset at a very low learning rate. The slow learning rate will improve the 

model's performance on the new dataset while limiting overfitting. 

Since the dataset is small and the model is big, the learning rate must be low. 

This is an example of overfitting, that is why the rate of learning is so low. After 

we've made these changes, we'll need to recompile the model to make sure they 

work. This is because when the compile method is called, the behaviour of a 

model is locked. This means that we have to recompile the model every time we 

want to change how it works. The model will be trained again while callbacks 

are used to make sure it doesn't overfit, as shown in figure 3.4. Threat detection 

as it appears in the final stages of the pipeline. When we first started 

photographing, we used to pre-process all of our images, deleting extraneous 

white space and keeping only the most important data from the raw file. The 

detection model projected the position of the alleged harmful objects using the 

clipped image. 

Final pipeline included the introduction of Faster R-CNN model. Segmentation 

models were used to anticipate how each pixel in the projected areas would be 

classified after the projected areas were cut out of the image. DeepLabV3+ was 

applied as a final step in the pipeline to improve the model's segmentation 

discussed in 3.5. 
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Figure 3.4 Performance and Freezing through fine-tuning 

Arouse depthwise convolution and depthwise separable convolution concepts 

are coupled for the most recent iteration of the technology, which considerably 

reduces network parameters while preserving or even boosting network 

performance. Convolution in depth is arousing. Squeeze-and-excitation (SE) 

blocks from the ResNext-50 architecture were also added to enhance the 

encoder model. To ensure that only pixels with strong detections were 

considered for further examination, a 95 percent prediction threshold was 

applied. Sections that lacked pixel-level annotation were skipped. The 

segmentation strategy serves as a verification model, ensuring that all forecasted 

zones include potentially hazardous items. The below images discussed in figure 

3.5 and figure 3.6 shows the complete threat detection/weapon detection 

framework clubbed with pre-trained model using transfer learning approach 

using COCO dataset. The SIXray dataset is used and pre-processed such as 

tagging and annotating the images as per the labels required for our threat 

pipeline using annotation.ai and open-source software. The images after 

annotations and labellings are then fed into model and Faster RCNN is implied 

on it for training. After no. of epochs and loss found in training time the model 

classifies between the weapons and non-weapons. After that we have merged 

and used the weights and pre-defined weights using transfer learning for 
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complete the Human threat detection model and figure 3.6 shows the detection 

and labelling done at the time of training and deploying of the models. 

 

Figure 3.5 Threat detection pipeline using transfer learning approach 

     

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 3.6  Exemplar images of verified detections (a) Person with gun (b) 

Person with knife (c) Person with gun (d) Thermal imaging person with 

gun (e) Person with plier 

Similarly, we have used the same approach for the FireNet model. The transfer 

learning approach is used to merge the FCN+ Faster RCNN to create the Mask 

RCNN for detection of fire flames and classification between Smoke and Fire. 

After comparing all the base models and segmentation models we have came up 

with the conclusion that the Faster RCNN and Mask RCNN model will address 

all the gaps with less computation power for our proposed methodology and 

areas in which we proposed to work upon. 
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Figure 3.7 Faster RCNN + FCN(Fully Convolutional Network) -> Mask 

RCNN 

The essential idea behind mask RCNN is that faster RCNN gives two outputs 

for each candidate item: a class label and a bounding-box offset. We extend this 

by adding a third branch that provides the object mask. This is a binary mask 

that determines the pixels in the bounding box to which the item belongs. The 

additional mask output, on the other hand, is not connected to the class or box 

outputs in any way. Instead, it requires the extraction of a significantly more 

precise spatial arrangement of an object. This is achieved by the Mask RCNN 

through the utilization of a Fully Convolutional Network (FCN). In conclusion, 

Mask RCNN is a huge architecture that combines Faster RCNN and FCN into 

a single unit. The loss function of the model is a representation of the total loss 

that occurs during the classification process, the production of bounding boxes, 

and the development of the mask. In the following chapter, we will discuss the 

experimental setup, the process of selecting the learning rate, the approaches for 

augmenting data, and the process of optimizing the hyperparameters along with 

the training and testing functions that are utilized in our suggested models. 

3.7. Summary 

In this chapter, we have covered the problem that we have found in the detection 

of threats, as well as the problems that are associated with training the model 

from scratch. After that, we talked about the transfer learning approach, which 

is the most important component of our model. After talking about transfer 

learning, we next covered the implementation of transfer learning on the data 

set as well as the fine tweaking of the pre-trained model. After that, we did a 
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comparison analysis of the network and the models, found the model that works 

the best for our application areas, and suggested a new model for the threat 

detection pipeline. In the following chapter, we are going to talk about 

evaluating and analyzing the performance of the given model, and then we are 

going to provide the conclusion part in the sections where the results are 

presented. 
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CHAPTER 4 

4. PERFORMANCE AND RESULT ANALYSIS 

4.1. Introduction  

In chapter 4, we have addressed the execution and performance analysis on two 

approaches, namely mask and non-mask, fire and smoke, and weaponry, based 

on the proposed techniques presented in chapter 3. Our original contribution 

consists of training the deep learning model using a one-shot training strategy 

on photos collected from current video input resources. These images include 

identification of crowds and mass gatherings in addition to mask and non-mask 

faces. Researchers have yet to make use of the trained model, despite its 

potential to significantly delay the spread of an epidemic like corona covid-19. 

Using an inductive transfer learning method, we have also enhanced and fine-

tuned the pipeline's hyperparameters for this covid-19 application. Through the 

utilization of this method, the overfitting issue that was present in our trained 

model can be mitigated using the pre-trained model as a base job. We have 

finished improving the most essential hyperparameter of the model, which is the 

dropout value, as part of the process of perfecting the model. In certain quarters, 

this method is referred to as the regularization technique. The first step involved 

training a pre-trained model with TensorFlow and OpenCV, as well as 

implementing an object detection algorithm called single shot multi-box 

detector and Mobilenet as a classification model over the MSCOCO dataset, 

which shares features across 90 classes and detects and performs multiple 

bounding boxes around objects. Faster Regional Convolutional Neural Network 

model training took much longer than a single-shot multi-box detector model. 

We used the data augmentation method in addition to the transfer learning 

technique to help our model overcome the necessity for a large dataset as a 

prerequisite for the deep learning model. We used less data, but this method 

meets our needs for converting it to a large dataset with a variety of viewpoints, 

such as rotating images, flipping them, padding them, cropping them, and 

transforming them with color changes such as brightness, saturation, hue, and 

contrast to train our deep learning model. We changed the code that drives our 
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deep learning model and integrated the required data augmentation algorithms 

to accommodate data augmentation. 

4.1.1. Overview Mask and Non Mask detection  

The deep learning model's initial training phase consisted of using a single set 

of still images acquired by real-time video cameras. This collection of 

photographs displayed individuals with and without masks, as well as large 

groups of individuals gathered together. If a Corona Covid-19-style outbreak 

occurs in society, researchers will need to employ the trained algorithm to detect 

potential hazards early on. Weapon detection using X-Ray images and Fire 

flame detection is also discussed as different application areas. At this time, no 

one is using the model in their study. An inductive transfer learning strategy was 

used to fine-tune the hyperparameters of the pipeline that was constructed for 

all different kinds of application domains. This was done to mitigate the 

overfitting issue produced by a pre-trained model. 

The dropout value, commonly known as the regularization process or procedure, 

was optimized to improve the model. A pre-trained model was built with 

TensorFlow and OpenCV, and then used to recognize objects as they moved 

across a real-time surveillance system, while another model, Mobilenet, was 

used to classify the MSCOCO dataset using common features from 90 classes. 

To compare these results, a more advanced neural network, the FRCNN, was 

used. This model took longer to train than a single-shot multi-box detector 

model because it required more computational time. 

 It was possible to reduce the classification system to just two categories by using RMS 

prop for gradient descent on a dataset of 450 training examples of people wearing cloth 

over their faces to simulate a mask and not wearing a mask, and by using RELU as the 

activation function in a CNN layer with a minimum depth of 16 and a batch size of 100. 

The dataset consisted of people wearing cloth over their faces to simulate a mask and 

not wearing a mask. In the realm of machine learning algorithms, hyperparameters are 

an essential component. It is possible to enhance the precision of the deep learning-

based object identification model by adjusting the hyperparameters that are detailed 

below. 
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Table 4.1: Hyperparameters & Values for training a Model 

 

The hyperparameters and the values that should be used for them are listed in 

Table 4.1. These are decided upon before the training process begins so that the 

model can be optimized to its full potential. In order to achieve a higher level of 

precision with the model, in addition to the parameters that have already been 

discussed, such as the number of epochs, dropouts, hidden layers, and units, 

activation functions are also incorporated as hyperparameters. This was done in 

order to improve the precision of the model. Because it has the appropriate 

learning rate, our model is able to train rapidly and accurately while 

simultaneously reducing the amount of loss function it sustains. This is made 

possible by the fact that it regulates the weights after each batch size. When we 

optimize batch size, we train our model on less sample data points, so we need 

less memory than when we train it on a bigger data set. Our memory simply isn't 

big enough to hold all of that information. 

We used data augmentation in conjunction with the transfer learning method to 

assist our model in overcoming the requirement of a huge dataset, which is an 

essential requirement of the deep learning model. This requirement is a 

fundamental necessity of the deep learning model. For the purpose of training 

our deep learning model, we made use of a smaller amount of data, and this 

approach satisfied our requirements for expanding it into a large dataset with a 

variety of viewpoints by, for example, rotating photographs, flipping them, 

padding them, cropping them, and altering their color in various ways, such as 

by adjusting brightness, saturation, hue, and contrast. For the purpose of data 

augmentation, the code for the deep learning model was modified to include the 

appropriate data augmentation algorithms. 
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A direct correlation exists between the amount of time lost and the number of 

steps taken (see Figure 4.1). Learning rate in terms of localization loss is the 

hyperparameter that governs the weight values in deep CNNs and is adjusted in 

our network in terms of loss gradient. Changing the learning rate affects the 

model's accuracy, and the value of the learning rate dictates the rate at which we 

descend the slope of the function: a low value means slow descent, while a high 

value means rapid descent. When figuring out the rate of learning, it is essential 

to be aware of any local minima that may be present. As a result, a low rate of 

learning is preferable in order to ensure that local minima are covered. 

 

Figure 4.1 Localization Loss for training a model 

In order to compensate for all of these different aspects, our initial training is set 

at a relatively fast pace. There is a compelling justification in favor of utilizing 

large learning due to the fact that the initial random weights assigned by the 

network are not ideal. When compared favourably to a SSD & FRCNN that 

takes use of loss functions, as shown in Figure 4.2, the model has been 

adequately trained if it can be considered superior to both of these methods. 
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Figure 4.2 Classification loss for training the model 

 

 

Figure 4.3 Total loss for training the model 

The training loss is calculated using the loss function, which is a mechanism for 

describing a loss function to determine how much an algorithm earns (17) (18). 

It is a means of determining how effectively a certain algorithm mimics the 

training data. We can see in figure 4.3 that the initial loss value is fairly 

significant, but it steadily declines and approaches 1 after a given step. It is an 

indication that a reduction in loss results in an improvement in the classification 

accuracy. 

𝐿(𝑥, 𝑐, 𝑙, 𝑔) =
1

𝑁
(𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) +  𝛼𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑙, 𝑔)    (17) 
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𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) = − ∑ 𝑥𝑖𝑗
𝑝 𝑙𝑜𝑔(𝑐𝑖

𝑝) − ∑ 𝑙𝑜𝑔 (𝑐𝑖
0) 𝑤ℎ𝑒𝑟𝑒 𝑐𝑖

𝑝 =𝑖∈𝑁𝑒𝑔
𝑒𝑥𝑝(𝑐𝑖

𝑝
)

∑ (𝑐
𝑖
𝑝

)𝑝

𝑁
𝑖∈𝑃𝑜𝑠 (18) 

 

Figure 4.4 Comparative accuracy between both the models 

As depicted in Figure 4.4 this system's ability to detect and identify a covid-19-

avoidant face mask was demonstrated during validation testing. To train and 

achieve accuracy, as well as to detect the mask, an RCNN with a lower cycle 

time takes too long. Training the model from scratch or employing the Faster 

RCNN are both suboptimal choices compared to the recommended 

SSD technique in terms of accuracy, learning rate, classification loss and time 

spent in training. 

This allows the model to conduct automatic mask identification on our own 

dataset with an IOU value of 0.75, and it also allows the model to annotate any 

type of threat. The SSD mobilenet v1 model presented in figure 4.5 benefits 

from the application of transfer learning techniques and hyper parameter 

optimization and tuning. The training processes that we have chosen are superior 

to those that were used in the past in terms of picking acceptable bounding 

boxes, sampling from a variety of different places, scaling, and aspect ratio. 
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Figure 4.5 Flow diagram of experimentally implemented transfer learning 

4.1.2. Overview of Fire Flames detection  

Following to the fruitful results of the classification between person with masks 

and those not wearing masks. We trained our models using predefined subsets 

of both our own dataset and some of the dataset used in the Kaggle competition. 

It was recommended that the segmentation model should be trained using only 

the pixel-level annotated photographs from the training subsets, meanwhile the 

detection model should be trained using all of the photographs that are included 

in the training subsets. As noted earlier in the part preceding this one, we created 

the patches that were used in the training of the segmentation model detailed in 

the next section. All of the patch's spatial dimensions were brought to the same 

level, which is 192 pixels on each side. 

The training of Faster-RCNN required 80,000 iterations of stochastic gradient 

descent (SGD), with a batch size of 2. The learning rate was set at 0.001, and 
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after forty-odd iterations, the learning rate was decreased linearly by 0.10 

between the third and fifth decimals. The Adam optimizer was used for 250 

epochs and 32 batches with a batch size of 2, and the stochastic gradient descent 

(SGD) algorithm was utilized for 80,000 iterations with a base learning rate of. 

These were the parameters that were used to train DeepLabV3+. The learning 

rate decreased by a factor of 0.1 after each of the 75th, 150th, and 200th epochs, 

respectively. Take, for instance, the fact that the DeepLabV3+ is capable of 

learning at an epoch rate of 0.001. In order to evaluate the quality of our findings 

in relation to those obtained by the baseline model, we trained Mask R-CNN 

using the entire dataset, each and every case, and all of the annotations included. 

The Mask R-CNN was trained using parameters and CNNs with an R-backbone. 

4.1.3. Transfer Learning Method 

A huge amount of data must be collected and stored in order to train CNN-based 

algorithms. Small-scale picture and video fire databases, on the other hand, are 

now unable to meet demand. Table 4.2 contains a few small-scale fire 

image/video databases that were created for research purposes. As a result, this 

study acquired 30,180 photos from local public fire image/video databases, huge 

public image/video data sets, historical experimental data from academic 

organizations. Images which were obtained from a variety of sources and are of 

varying sizes, are included in the data collection. The horizontal images are 

approximately 500375 pixels in size, while the longitudinal images are 

approximately 375500 pixels in size. The object classes "fire" and "smoke" in 

each picture are separated by a separation of two disturbance classes ("fire" and 

"smoke") ("fire-like" and "smoke-like"). 

Table 4.2 Statistics for Fire and Smoke Images 

Locations Targets Disorders Images 

 Smoke Fire Similar to 

smoke 

Similar to Fire flames  

Indoor 4375 5640 1240 3275 7640 

Outdoor 3065 4055 2750 3950 5760 

Total 7440 9705 3990 7225 13400 
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Table 4.3 Images/video repositories 

Repository Format Objects Resources 

Repository 

1 

Video Fire Flames, 

Smokes, 

disturbance 

Computer Vision-Based 

Fire Detection Software 

(bilkent.edu.tr) 

Repository 

2 

Video 

dataset 

Fire Flames, 

Smokes and 

disturbance 

Computer Vision and 

Pattern Recognition 

Laboratory Homepage 

(km.ac.kr) 

Repository 

3 

Image &  

Video 

dataset 

Smoke Welcome to the Wildfire 

Observers and Smoke 

Recognition Homepage 

(Feb.hr) 

Repository 

4 

Image 

dataset, 

Video 

Smoke Fire Detection Research 

Group (ustc.edu.cn) 

Repository 

5 

Video Fire Fire | NIST 

 

Table 4.3 displays the statistics for the fire photos in the collection : Statistics 

for Fire Images A total of 13,400 fire photographs were included in the data 

collection. Total image data collection was 9705 "fire" elements & 7440 

"smoke". Apart from that, there are 15800 photos in the collection that do not 

depict any fire at all. A total of sixteen different types of programme settings 

were used to create these images, which contain 49,600 disturbances altogether. 

There is at least one interruption in each image. It was determined that 

approximately half of all images in the dataset would be used in this study, and 

approximately half of all images would be used in this study. 

4.2. Experiments 

Due to the fact that the four CNNs had been trained on a massive picture dataset 

(COCO), they performed exceptionally well when it came to identifying visual 

http://signal.ee.bilkent.edu.tr/VisiFire/
http://signal.ee.bilkent.edu.tr/VisiFire/
http://signal.ee.bilkent.edu.tr/VisiFire/
https://cvpr.kmu.ac.kr/
https://cvpr.kmu.ac.kr/
https://cvpr.kmu.ac.kr/
https://cvpr.kmu.ac.kr/
http://wildfire.fesb.hr/
http://wildfire.fesb.hr/
http://wildfire.fesb.hr/
http://wildfire.fesb.hr/
http://smoke.ustc.edu.cn/datasets.htm
http://smoke.ustc.edu.cn/datasets.htm
https://www.nist.gov/fire
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objects. In this research, the pre-trained networks are exported to COCO for 

further analysis. The front end of the feature extraction network is immobilized 

when the transfer learning technique is utilized, and the networks were only 

fine-tuned using the training and validation data.  

1. A workstation with a 3.6 GHz Intel Core I7-7700 processor, 16 GB of DDR4 

RAM, and an NVIDIA Titan X Pascal GPU that has 3840 compute units 

(CUs).  

2. Ubuntu 16.0.4 is the operating system.  

3. The momentum of the asynchronous SGD is set at 0.9.  

4. The maximum quantity of IOU is 0.9.  

5. The starting rate of learning is 0.001.  

6. The learning rate decreases by a factor of ten after 120 thousand iterations, 

and by a factor of ten more after 160 thousand iterations. There have been 

roughly 200 thousand iterations in total. 

 

When annotation results from numerous annotation sessions were stored in 

different JSON files, the same picture identification numbers appeared in 

various JSON files. To create a one-to-one link between used photos and 

identification numbers, the annotation results were integrated by assigning 

unique image identification numbers. One JSON file was prepared for training 

and the other was created for validation. The polygon vertices' coordinates were 

then imported and recorded in the AxisFireDataset object, which was 

subsequently linked to the picture identification internally. 

In order to calculate the training loss, you must first specify the loss function for 

the method in question (21) (22). This method can be used to evaluate the 

performance of an algorithm. As a result, the loss amount was overly high at the 

beginning. As opposed to other loss function hinges, the cross-entropy loss 

function has a higher convergence rate. Classification can be used to predict the 

output from a limited collection of categorical values based on photographs of 

fire and smoke if you have a large database. 

𝐿(𝑥, 𝑐, 𝑙, 𝑔) =
1

𝑁
(𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) +  𝛼𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑙, 𝑔)    (21) 
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𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) = − ∑ 𝑥𝑖𝑗
𝑝 𝑙𝑜𝑔(𝑐𝑖

𝑝) − ∑ 𝑙𝑜𝑔 (𝑐𝑖
0) 𝑤ℎ𝑒𝑟𝑒𝑐𝑖

𝑝 =𝑖∈𝑁𝑒𝑔
𝑒𝑥𝑝(𝑐𝑖

𝑝
)

∑ (𝑐
𝑖
𝑝

)𝑝

𝑁
𝑖∈𝑃𝑜𝑠 (22) 

4.3. Evaluation Procedure & Techniques 

By manually reducing the learning rate and supplementing the training data, the 

Mask R-CNN model was improved. Decreased learning rate during training is 

predicated on the premise that a high learning rate leads to a faster approach to 

the loss function's minimum; nevertheless, reduced parameter changes may 

result in a faster settling into the approaching minimum after a few epochs. A 

scheduler for learning rate was developed, which began at a learning rate of 0.01 

and decreased linearly with each training session. Keras callbacks can now be 

scheduled. In the data augmentation stage, the current batch of images was 

transformed using a pipeline of transformations. As a result, the model is trained 

with slightly different data at each level. Four augmentation techniques were 

utilised with the Python package 'imaging.' 

All augmenters were applied to a random half of the images in a batch in the 

following order: 

• Horizontal flip 

• Vertical flip 

• Cropping. 

• Gaussian noise or blur is used. 

• A change in contrast or brightness 

• The affine transformation is used. 



120 

 

4.4. Results 

 

Figure 4.6 Mean AP for Smoke & Fire at IOU=0.5. 

 

Figure 4.7  Mean AP for Smoke at IOU=0.5. 
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Figure 4.8  Examples of the results of fires with bounding box masking 

In terms of quantitative indicators, our suggested strategy increased 

performance for fire extraction and segmentation tasks, particularly fire 

detection. However, we feel the performance might be enhanced further by 

addressing the following issues. 

• There are more and more different types of fire examples. Deep neural 

networks require a large number of training examples to function properly, 

which other algorithms do not. Even though we classified hundreds of fire 

flames in order to train our network, more examples can significantly 

improve performance. Aside from that, the size and shape of the fire flames 
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can be customised. When it comes to things like fire and smoke, the size, 

aspect ratio, and shape can all vary widely. An exhaustive collection should 

include as many samples as possible. Distracting objects, such as vehicles, 

ships, highways, and other similar structures, can cause the detector to lose 

focus when faced with a busy background. Figure 4.7 shows an illustration 

of this. It is preferable to designate a specific number of fire flames when 

dealing with complex backgrounds. 

• The bounding box can be rotated in any direction you prefer. The value of a 

rotated angle is regressed against a fixed value using RPN. As there is only 

one type of fire to identify, the RPN network ROIs should be as close as 

possible to the detection branch ROIs. As a result, the final rotation angles 

are determined by the RPN network. But we thought the second stage, which 

is similar to bounding box regression, might be able to further enhance them. 

We plan to focus on two possible solutions in the future. 

• Network compression is commonly used to compress networks. A huge 

number of parameters in the Mask R-CNN architecture necessitates a large 

quantity of computational resources, which will reduce inference time. 

Because of the fast growth of mobile devices and the necessity for real-time 

processing, researchers have been focusing on lowering the size of deep 

models while retaining their performance. Light network design, network 

pruning, and kernel sparseness are all taken into account by these methods. 

Both the Mask R-CNN and the suggested technique rely on residual 

networks for their backbones, which can be pruned to lighten their overall 

architectures. 

4.5. Summary 

As in this chapter we have discussed about our proposed methodology and 

implementations. We have addressed and filled up the gaps which were the 

objectives for us in carrying out the research work. We have discussed the result 

comparative analysis along with the optimization technique in both the 

applications we have discussed as a test case for our proposed methodology i.e 

weapon detection, mask detection and fire, smoke detection. In next chapter we 

will provide with brief summary and conclusion about of research work. 
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CHAPTER 5 

SUMMARY AND CONCLUSION 

5.1. Conclusion 

In this work, We reached a conclusion regarding our work after implementing 

the experiment and identifying the accuracy and best models for our application. 

In this study, we explored the impact of incorporating pixel-level analysis 

throughout the threat detection workflow of a large-scale and unbalanced 

security picture dataset. We re-introduced object separation as an unique task 

area for analyzing security images generated from x-ray machine, answering the 

first half of the challenge, which was to accurately differentiate target object 

instances from X-ray images, including pixels shared by overlapping objects. 

We developed a simple and effective item separation technique that comprises 

of a detection model for detecting prospective risk zones and a segmentation 

model for confirming the presence of threats in the projected regions. We chose 

the top detection and segmentation models after closely studying existing state-

of-the-art deep learning algorithms. 

The application of a deep learning-based Mask R-CNN model and transfer 

learning to our own trained data set obtained from online sources such as Google 

Research and Kaggle results in 100% success in identifying known dangers. 

Because the model did not need to be built from scratch, the transfer learning 

strategy was used to train it with fewer data sets, and weights were taken from 

a pre-trained model on the MS COCO dataset. With an average accuracy score 

of 0.89 and segmentation masking of 0.85 for a set threshold of 0.9, the deep 

learning model efficiently segmented and detected the fire. We provide an 

autonomous fire extraction strategy based on an upgraded Mask R-CNN 

framework that identifies the rotating bounding boxes of flames while also 

segmenting them from exceedingly complex backgrounds in this study. The 

rotation anchor with an inclined angle is used in the RPN stage to regress the 

rotation bounding box of buildings. Following anticlockwise rotation and ROI 

Alignment with Data Augmentation, the feature maps are given to the multi-

branch prediction network. RFB modules are also introduced to the 

segmentation branch to manage multi-scale variability, while other branches 
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produce classification scores and horizontal rectangle coordinates. Finally, the 

inclined angle is used to rotate the mask and rectangle bounding box clockwise 

in the final instance segmentation result. Experiment results on a new dataset 

with different flames and backgrounds show that our technique may yield good 

results. As a consequence of our training and testing, the fire detection model 

will protect society from all fire-related hazards by providing early warnings 

and essentially eliminating the loss of living or non-living assets. Our findings 

on a deep learning-based segmentation model, namely Mask RCNN and transfer 

learning, demonstrated state-of-the-art accuracy for recognizing fire flames and 

smokes in any scenario. The proposed approach and technique do not need to 

be developed from scratch because the weights were taken and transferred from 

a pre-trained model on the MS COCO and were used for training a model with 

datasets having less data with the help techniques known as data augmentation 

as it will reduce the computational time with an average accuracy score of 82.6 

percent for detecting smoke and 89.4 percent for detecting fire flame on a set of 

threshold IoU 0.9, the trained deep learning mode. Furthermore, the suggested 

autonomous fire extraction approach, which is based on an improved Mask 

RCNN framework, can identify the spinning bounding boxes of flames while 

also segmenting them from exceedingly complex backgrounds. The rotation 

anchor with an inclined angle was used in the RPN stage to regress the rotation 

bounding box of buildings, and the feature maps were then passed to the multi-

branch prediction network after anticlockwise rotation and ROI Align. In 

addition, to control multi-scale variability, RFB modules were added to the 

segmentation branch, while other branches produced classification scores and 

horizontal rectangle coordinates. Finally, based on the inclined angle, the final 

instance segmentation result rotated the mask and rectangle bounding box 

clockwise. Experiment results on a new dataset with different flames against 

different backdrops show that our strategy could deliver good results for 

detecting fire, which is critical for protecting society from all fire-related threats 

by providing early warnings and virtually eliminating the loss of lives and non-

living objects. To improve the accuracy of our technique, we propose that future 

studies study sample annotation, network structure optimization, and 

compression by merging the model with IoT-based devices. Future research 

could focus on sample annotation, network structure optimization, and 
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compression by merging the model with IoT-based devices for instant utilization 

with more accuracy, which will aid in overcoming any loss of life. 

5.2. Major Contributions of the Work 

The most significant contribution of the research mentioned in this thesis is that 

it presents an automatic threat recognition and detection system based on 

Transfer learning methods, X-Ray image detection, and data augmentation 

techniques. The following are the thesis's significant contributions: 

• Our proposed system has high detection rate with less training set 

required. 

• Optimization of Learning rate for best results. 

• Integration of Mask RCNN with Faster RCNN and SSD for transfer the 

predefined weights. 

• Data Augmentation technique for boosting up the limited data set.   
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