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Abstract

Abelian theorems play an important role in the solution of boundary value problems. Many
researchers have studied abelian theorems related to several integral transforms. Using the
fact that Watson Transform is the generalization of Hankel transform, authors developed
the theary of continuous Walson wavelet transform as the generalization of Bessel Wavelet

transform. Keeping this view in mind, here we are generalizing the results proved by
Upadhyay and Singh [6].




1. Introduction

With applications in mathematics, physics, and engineering, the concepl of the Fourier series

and transform is regarded as one of the most significant discoveries in science and engineering.
Ina lot of respects, Fourier series and Fourier transforms are connected. The Fourier transform
in time and frequency domains is used in 2 variety of applications, including signal analysis

and real-time signal processing. Let f(t) is representing a signal then the Fourier transform of’
itis defined as according to (7.

FU (1)} = f(w) =j exp(—i w t)f(t) dt = (f, e'wt)

As a result, the Fourier transform theory has been proven to be extremely beneficial for the

analysis of harmonic signals or signals that do not require local information.

Fourier transform analysis, on the other hand, has proven to be extremely valuable in a number
of other fields like quantum mechanics, wave motion, and turbulence etc. In these fields, the
space and wavenumber domains are used to define the Fourier transform f (%) of a function
f(x), where x represents the space variable and k represents the wavenumber. The kernel of
Fourier trapsfonnation exp(—ikx) fluctuates continuously, and so the localized knowledge of
the signal f(x) in the x-space is broadly spread among £ (k) in the frequency space, which is

one of the significant properties. Despite the fact that f (k) contains all of the information from
the signal f(x), it spreads out in k-space.

Despite some notable successes, Fourier transform analysis appears to be insufficient for
analyzing signals for at least two reasons. First, the Fourier transform of a signal lacks local
information since it does not account for variations in frequency with time or wavenumber with
space. Second, we cannot analyse problems simultaneously in the frequency (wavenumber)
and time (space) domains using the Fourier transform approach. These are most likely the
Fourier transform analyses' key flaws. It is generally required to create a single transform to

analyse the signal in time and frequency (or space and wavenumber) domain both.

Only in the early 1980s did the term "wavelets" become more widely used. This novel idea
is a synthesis of ideas from several fields, including engineering, physics, and mathematics.
The wavelet transform was invented by Jean Morlet, a French geophysical engineer, in 1982, It

provided a new mathematical tool for seismic wave research. In the beginning, wavelets were
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described by wranslations and dilations of a single lunction known as the "mother wavelet” (1)

by Morlet in the following way

Vou() = =¥ (), abeRaz0

Where a control the dilation and b controls translation. The wavelel is a compressed version of

the mother wavelet with a strong correlation to higher frequencies if |a| < 1. When la] > |

¥a.5(t) has a wider temporal window and correlalcs to lower frequencies than ¥ (t). Wavelets
have time-widths that are adjusied to their frequencies as a result. This is the primary factor

behind the Morlet wavelets' effectiveness in time-frequency signal analysis and signal

processing.
It was Alex Grossman, who noticed the importance of the Morlet wavelet transform and

defined the wavelet transform as

1 (% t—b
Wi (f1(a,b) = (f, ¥} =mj_ fO¥ (—a—) dt

where ¥ (g1 (t) will play the role of the kemel as exp(i w t) in the Fourier transform. The
continuous wavelet transformation W, is linear. For the reconstruction of the function f{t), the

inverse wavelet transform is defined by the following way:
f©) = f Wol£1(@, b) (a1 (8) @ 2da)db
provided Cy is satisfying the following admissibility condition
Cy =2m f ) ' ( )I

Where @(w) is the Fourier transform of the 'a"(t).

2. Watson Wavelet Transform

Watson transform is an integral transform whose kernel is of general nature and therefore,
several integral transforms like Hankel transform, H,, K,, etc. are the particular examples of it.
The theory of this integral transform can be extensively found in the classical monograph [5]
and we have taken it from there.

LP (0, c0) — Space: Any f € LP(0, =), if it satisfies the following norm

o B
Ifllee = [ i lf(x)lpdx] <o



L™(0, =) —Space: Any / € L™ (0, ) il'it satislies the following norm

lf|l= = esssuplf(x)] < o,0 < x < oo

FFrom [1. 2], The Watson transform of a function @ €L'(/),] = (0, o) is defined by,

W) = (W) = [ k()b (D)de 2.1
The inverse of Watson transform is defined as,
B(x) = (W'¥)(x) = [7 k¥ (©)dt &2)
From [1], we define
(2.3)

w(x,y,z) = [, k@xk(yt)k(zt)dz
provided the given integral exists under the assumption that kernel is in L(nlk=),l e
(0,00)and k(0) =1and w(x,y,2) >0Vx,y,z € (0,00).

Using inversion formula of Watson transform, we get

k(xOk(yt) = [ w(x,y, 2)k(zt)dz (2.4)
For t = 0in (4), we get
j:ﬂ w(x,y,2)dz =1 (2.5)
Watson Translation: Let € L1(1),] = (0, =), then
0<x,y<oo (2.6)

Y(xy) =1,¥ @) =5,¥0) = [ Y ()w(xy,2)dz,

represents Watson translation.
From [1], the Watson convolution of two functions f, g € L'(0, ) can be written as

(Fg)(x) = [ (129 YO f 3)dy 2.7)

or
(9@ = [, [, 9@f @) w(x,y,2)dydz,0 < x < (2.8)

Let f(x),g(x) € [*(I),] = (0,00) be two functions, then their convolution (f#g)(x)
converges for almost all x, 0 < x < co and the following inequality holds

[If#gl]. < [If1],:]191],. 2.9)

Moreover, from [2], we have
W(f#g) = Wf)(wg).

If f(x) € IX(I), 1 = (0,00) and if (Wf)(t) € L*(I),1 = (0, ), then by inversion formula, we

(2.10)

have



@)= [ k()W) 0<x<e @2.11)
I 11x) and g(x) are in L(/) N L2(1), € (0, »), then the lollowing Parseval formula holds:
S wWHOWe®dt = [ f()g(x)dx. @.12)

Dilation D, is defined as
Dufen = ()1 G, a>0

Upadhyay and Tripathi [3] developed the theory of continuous Watson wavelet transform.

(2.13)

Some important results are as follows:

Theorem 1. If f and g € L*(I) n L2(1) and (W f)(D,a) is the continuous Watson wavelet

transform. then

Wp)(b,a) = [ k(wb)(W[)(@)(Wg)(aw) de. (2.19)
Relation between Watson Wavelet Transform with Watson convolution is given by
(2.15)

(Wyf) (b, @) = (F475) (b).
Theorem 2. Let ¢ € L?(1),] = (0, ) be the Watson wavelet which satisfies the admissibility
condition

4, = [P 4 5 . (2.16)

Then the Parseval formula of the continuous Watson wavelet transform is given by

I 2 (W) b, ) (Weg) 0.0) 22 = 4, < f,0 > 2.17)

v f,g € LX) nI*(I),1 = (0, ).

3. Abelian theorems for the Watson wavelet
transform of functions:

The abelian theorems for wavelet transform in ordinary and distributional sense both have been
studied by Prof. R. S. Pathak [4]. The main use of these theorems is to solve boundary value
problems. Many researchers studied the abelian theorems for several types of wavelet

transforms. In particular, abelian theorem for Bessel wavelet transform have been studied by



Upadhyay and Singh [6]. Upadhyay and Tripathi [3) proved that under certain conditions, the
generalization of the Bessel wavelel transform is the Watson wavelet transform. Using this
fact, e are proving the abelian theorems for continuous Watson wavelet transform which will

be the generalization of the resul proved by Upadhyay and Singh in their paper.

In this section initial and final value theorems for the Watson wavelel transform have been

proved.

We will assume that [(W¥)(w)] < A(w)" = 0* (3.0

And Ium(ww)(m)ﬂl_'ﬁ'%dw = H(q), 3 <np<pu+ 2 (32)

Theorem 3.1: Let §< N<p+2 Assume that w "EWW)(w)EL()N L) =

(0,0) ,(W¥)(w) is bounded i.e.3 K > 0s.t |{(W¥)(w)| < Kand
1

w ™" (WY (w)EL (8, 00) N L™(8,0) for all § > 0.

If lim 0™ (Wé)(w) = a (3)

Then

lim ai~"(Wi, ®)(b,a) = aH (). (3.4)

Proof: Using (2.14), we have

’ai—"(wm (b,2) - aH )|

" [“kow) WY WP @t ~a [ W)@ do
° 0

Replace w by aw in the second integral, we get

B , @ -ro‘m k(bw) (We)(w)(WY)(aw)dw ~
a [ (W¥)(aw)(aw) ™" ada|

= |7 (ai Tk (bw) (W) (@) W¥)(aw) -
a(W¥)(aw) (aw)"""}a} dw '

- 1 1 1
= ’ f a(W¥)(aw)(aw) "2 {aZ "k (bw) (W) (w)w" 2 - a)dw '
0
< f ) l( Wv) (aw)(aw)"’*’:‘, , (a);_"’k(bm)(de)(m)m"'% = "l adx
0
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< sup
N<w<h

(ﬂ‘)é—"k(bm)(Wq‘;)(w)mn—;' -
“l I l (‘IOJ)'}_"(W‘I’J(M)' adw +
Ka;_" f: Ik(bw)(WdJ)(w)m"'é — u| dw (3.5)

. . 3
In(3.3). both integrals are convergent for sufficiently large values of a and > >

Therefore, for all ¢ >0, we have

lim |02 (W, ) (b, @) - ahin)| < e.

a=m

Theorem 3.2: Letg <N <p+2, u>0.Assume that wzl'“(W‘i’)(fﬂ)‘fi-l (Hnl=(1) =
]
(0,%0) and w™ S (W¥) (w)eL1 (0,X),X > 0.

If Jlim k(bw)o™: W¥)(w) = a
Then

Li_lg a%"'(w.,,tb)(b, a) = aH(n).
Proof: From the previous theorem we have

3
e W) b, o) - at )|
=a f"’ I(W¥)(aw) (ﬂw)‘"‘% llai""k(bm)(Wd’)(m)w“';' - aldw
0
= @[ o bw) W) @)™ - a] |(awy W) a0 | do

(]
a \[
w>X

a;—"k(bw)(de) (w)m"_; - al

l(aw)"'*%(wsu) (am)I des

Sai [, a k(o) W) @)™ - af [° |@ S W) (aw)| do

+ sup
w>X

k) W)@ e [ @ 0w a0 o

Using (3.5) we get
ag"”(w.,@) (b,a) — aH (ﬂ)l



ol

3_"1.“ X .I_,’ 1
< Aaz fn ,ﬂ? R(hm)(W(b)(m)m”'i - crl o'dw +

r

(2.6) are convergent and for large X; 38 >
rst term can be made less than &/2 for any ¢ >0.

sup
>y

1
a: 'k{bw)(ww)(w)w”“%- a (a,)"’*%(wllf)(ua)) dw

(3.6)

Since both the integrals i right hand side of
0s.t whenn <§+ H the fi

Conclusion: We have proved the initial and final value abelian theorems associated with
continuous Watson Wavelet Transform in the ordinary sense in this work, which are the
generalization of the result proved by Upadhyay and Singh [7]. These results would be useful
in developing solutions of certain boundary value problems.
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