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ABSTRACT 
 

Particle Swarm Optimization is a very effective Nature influenced innovation that relic widely 

used in solving many real-world problems over the years. This paper is an attempt to embed 

different mutation schemes in PSO and testing the different versions of PSO on camera 

calibration problem. One of the more challenging real-world issues in the realm of image 

processing is the calibration of cameras. The ideal parameter value for achieving the shortest 

pixel length is investigated in this research using the enlarged Particle Swarm Optimization 

approach. The results obtained in the empirical section of the paper suggest that PSO has 

proved to be a better version while embedding different mutation strategies for this problem. 
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1. Introduction 

 
Optimization is the process of selecting the best option among the available options. It provides us with a set 

of instruments, mostly drawn from computer science and mathematics, that may be applied to practically any 

field, including business, industry, biology, physics, medical data mining, engineering, and even the fine arts.  

 

Advanced matrix computation techniques and methods, graph theory, and optimization are being used more 

and more in the data mining industry. These techniques define data mining tasks as optimization problems 

with matrix variables and describe the data using a matrix representation (the graphs are represented by their 

adjacency matrix). With these, the effort of data mining is reduced to the process of minimising or maximising 

the anticipated objective function of the matrix's variables.  

 

The topic of optimization has attracted a lot of interest recently, largely as a result of the quick development 

of user-friendly software and its usefulness, as well as the emergence of fast parallel processors and artificial 

neural networks, among other improvements in computer technology. 

 

The two basic classifications for optimization issues are local and global optimization. Local optimization 

aims to find the highest or lowest value in a constrained region of the function value space. Global optimization 

is the process of determining the highest or lowest value across the entire region of the function value space. 

 

A single-objective optimization issue is formulated in the following way without losing generality 

𝑚𝑖𝑛𝑥𝜖𝑠𝑓(𝑥), 𝑥 = 𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖 
𝑠. 𝑡. 𝑔𝑖(𝑥) ≤ 0, 𝑗 = 1,2, … , 𝑗 

ℎ𝑘(𝑥) = 0, 𝑘 = 1,2 … . , 𝐾 

 

Where 𝑓(𝑥) is objective function 

x is D-dimensional decision vector 

j shows the number of inequality constraints 

k indicates the number of equality constraints, 𝐿𝑖, 𝑈𝑖 are the lower and upper bound of the ith variables, 

respectively. 

 

The aim and constraint functions can be linear or non-linear, explicit or implicit. A good algorithm will never 

transgress any of the side constraints. An unconstrained optimization problem may have side constraints but 

does not have equality or inequality constraints. One or more equality and/or inequality constraints are present 

in constrained optimization problems. 

 

Finding the design variable values that fulfil all equality, inequality, and side constraints while producing the 

optimal objective function value is the method's key step. It is important to keep in mind that many problems 

might have numerous optimums, often known as local or relative optimum. 

The following is how the paper is set up: PSO and its several suggested iterations are briefly introduced in 

Section 2. The introduction of the camera model for image formulation is provided in Section 3. The 

mathematics for the camera calibration problem are provided in Section 4 to help formulate the optimization 

problem. The Camera Calibration Problem is solved in Section 5 utilising Blended BBO and all six proposed 

PSO versions. The numerical analysis of the solution is presented in Section 6. The conclusion and some 

potential future directions are then suggested. 

 

2. Proposed Versions of Particle Swarm Optimization 

 
Academics from many different professions have drawn inspiration and curiosity from nature, which has 

evolved over a billion years, to create a wide range of nature-inspired optimization algorithms. The bulk of 

optimization problems with several non-linear constraints are used in real-world applications. 



 

 

Some of the earlier developed conventional optimization techniques, like gradient-based techniques, are 

ineffective. The heat and trail method is used to tackle those real-world problems as well as the bulk of them. 

Therefore, nature-inspired optimization methods are used to address the highly nonlinear problems. 

 

The success rate of these nature-inspired algorithms is mostly due to their adaptability and ability to address 

NP-hard tasks. Numerous algorithms have been developed by taking design cues from creatures like lions, 

fish, ants, and birds. 

 

Two basic categories of nature-inspired algorithms include (1) evolutionary algorithms and (2) swarm-based 

algorithms. Among these, PSO (Particle Swarm Optimization) is thought to be the most well-liked. The 

algorithm's specifics are provided as follows: 

 

2.1 Swarm Optimization for Particles 
 

A widely used optimization technology is called particle swarm optimization (PSO). Kennedy and Eberhart 

introduce PSO in 1995. Fishes or birds collect their food using the social and individual skills. This 

phenomenon gives rise to a stochastic optimization algorithm which is popularly known as PSO. The natural 

tendency to find the best solution among the given choices is formulated mathematically using two update 

equations, which are given as follows: 

 

Velocity updates equation 
 

In a multidimensional search space, a swarm of particles moves in quest of the ideal. Each particle in a swarm 

is influenced by its immediate surroundings and personal perception. The velocity by which the particle moves 

from one place to another is given in the following equation: 

 

𝑣𝑡+1 = 𝑣𝑡 + 𝐶1 ∗ 𝑟𝑎𝑛𝑑(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑡) + 𝐶2 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑡) 

 

Wℎ𝑒𝑟𝑒𝑣𝑡 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑜𝑓𝑥𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑎𝑡𝑡𝑡ℎ𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛. 
𝐶1 = 𝑡ℎ𝑒𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑓𝑎𝑐𝑡𝑜𝑟 

𝐶2 = 𝑠𝑜𝑐𝑖𝑎𝑙𝑓𝑎𝑐𝑡𝑜𝑟  

𝑃𝑏𝑒𝑠𝑡 = 𝑡ℎ𝑒𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑏𝑒𝑠𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 

𝐺𝑏𝑒𝑠𝑡 = 𝑡ℎ𝑒𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 

𝑅𝑎𝑛𝑑 𝑖𝑠 𝑡ℎ𝑒 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 ∧ 1  
 

Particle updates equation 
 

The direction a particle is travelling in quest of an optimal path is determined by its velocity. The following 

is the particle update equation for PSO 

 

𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡+1 
 

These two equations will update the solution, and they will be repeated until a predefined termination threshold 

is reached. PSO is a population-based approach that optimises the answer utilising a number of potential 

solutions. Each solution is built on the local and global best results from the entire search space. This results 

in the perfect harmony between exploitation and exploration for a strong algorithm. The following are some 

of the crucial PSO characteristics: 

 

1. PSO is a very simple algorithm to understand and thus, its simplicity makes it more convenient to apply 

to real life problems. Its foundation is swarm intelligence.  

2. Hence useful to both engineering and science.  

3. It does not use mutation calculations or overlaps like GA. 

 



 

 

2.2 Version of PSO using Mutation Strategies 
 

Genetic Algorithm is one of the basic and prelim Nature inspired optimization technique. Mutation operator 

is considered as the main operator in genetic algorithm to enhance the exploring characteristic of the algorithm. 

In this paper we have investigated the aspect of incorporating mutation operator of GA in PSO.  Garg and 

Deep (2016) successfully have used real coded mutation operators. Taking into consideration the better 

performance of mutation operators in the previous work. We are investing the embedding of mutation 

operators-Cauchy, Gaussian, Polynomial, Random, Power mutation to Particle swarm optimization algorithm. 

The five different mutation operators are given as follows; 

 

2.2.1 PSO with Power Mutation (PM -PSO) 
 

Power mutation is a new form of SCA that incorporates the power mutation report-ed in (Garg&Deep,2016). 

It is recommended that the mutation operator be based on the distribution of power. It is referred to as Power 

Mutation. Its distribution function is given by 

 

𝑓(𝑥) = 𝑝𝑥𝑝−1, 0 ≤ 𝑥 ≤ 1 … (6) 
 

and the density function is presented by 

 

𝐹(𝑥) = 𝑥𝑝 , 0 ≤ 𝑥 ≤ 1 … . . (7) 
 

The index of the distribution is denoted by p. The PM is used to generate a solution y near a parent solution z 

that follows the previously mentioned distribution. The mutated solution is then created using this formula 

below. 

𝑦 = {
𝑥 − 𝑧(𝑥 − 𝑥𝑙)𝑖𝑓𝑟 < 𝑡

𝑥 − 𝑧(𝑥𝑢 − 𝑥)𝑖𝑓𝑟 ≥ 𝑡
… . . (8) 

 

Where t=
𝑥−𝑥𝑙

𝑥𝑢−𝑥𝑙

  and 𝑥𝑖 and 𝑥𝑢 are lower bound value and upper bound value of the decision variable 

respectively and r is a random number uniformly distributed between zero and one. The power distribution 

function p = 0.25 & p = 0.50. Probability of mutation used in PM-PSO is 0.5. Algorithm 2 provide the pseudo 

code for Power Mutation. 

 

Algorithm2. Pseudo Code for the Power Mutation in PSO Algorithm 

 

Power Mutation in PSO 

For each solution 

For each dimension 

Choose each position based on the probability of mutation 

If 𝑋(𝑖, 𝑗) is chosen then find a new generated position based on r and t 
 

𝑦 = {
𝑥 − 𝑧(𝑥 − 𝑥𝑖)𝑖𝑓𝑟 < 𝑡

𝑥 − 𝑧(𝑥𝑢 − 𝑥)𝑖𝑓𝑟 ≥ 𝑡
… … (9) 

 
Replace 𝑋(𝑖, 𝑗) with a new generated position based on power mutation; 

End if 

End for 

End for 

 

 



 

 

2.2.2 PSO with Polynomial Mutation (Poly -PSO) 
 

A new version of PSO proposed name Poly-PSO that incorporates in PSO displayed in (Garg & Deep,2016).  

Using power mutation on the provided solution [𝑥𝑙 , 𝑥𝑢], Mutated solution x is constructed. 

 

𝑥 ′ = {
𝑥 + 𝛿𝑖(𝑥 − 𝑥𝑙)𝑖𝑓𝑢 ≤ 0.5

𝑥 + 𝛿𝑖(𝑥𝑢 − 𝑥)𝑖𝑓𝑢 > 0.5
 

 

Where 𝑢𝜖[0,1] is a random number The values 𝛿𝑙 and 𝛿𝑟 are computed as given by the formula.  

 

 

Where 𝜌𝑚 ∈ [20,100] is user defined parameter. Algorithm 3 provide the Pseudo code for Polynomial 

Mutation. 

 

Algorithm 3. Pseudo Code For Polynomial Mutation In Sine-Cosine Optimization 

Algorithm 
 

Polynomial Mutation in PSO 
For each solution 

For each dimension 

Choose each position based on the probability of mutation 

If X(i,j) is chosen then find a new generated position 

𝑥 ′ = {
𝑥 + 𝛿𝑖(𝑥 − 𝑥𝑙)𝑖𝑓𝑢 ≤ 0.5

𝑥 + 𝛿𝑖(𝑥𝑢 − 𝑥)𝑖𝑓𝑢 > 0.5
 

Replace 𝑋(𝑖, 𝑗) with a new generated position based on power mutation 

End if 

End for 

End for 

 

2.2.3 PSO with Random Mutation (Rand-PSO) 
 

A new version is suggested called Rand SCA is proposed by integrated Rand mutation in SCA. Suppose x is 

any given solution than a rand mutation operator is used as 𝑥 ∈ [𝑥𝑙,𝑥𝑢]  and a random solution h is created 

using a neighbourhood of the replaced solution. 

ℎ = 𝑥𝑙 + (𝑥𝑢 − 𝑥𝑙) × 𝑟𝑎𝑛𝑑 
 

Where rand∈ [0,1] represents a uniform distribution. Algorithm 4 provide the pseudo code for Random 

Mutation. 

 

Algorithm 4. Pseudo for the Random Mutation in Sin-Cosine Based Optimization 

 

Random Mutation in PSO: 
For each solution 

For each dimension 

Choose each position based on the probability of mutation 

If𝑋(𝑖, 𝑗) is chosen then find a new generated position 

𝑧 = 𝑥𝑙 + (𝑥𝑢 − 𝑥𝑙) ∗ 𝑟𝑎𝑛𝑑 

 

Replace 𝑋(𝑖, 𝑗) with a new generated position based on power mutation; 

End if 

End for 

End for 



 

 

 

2.2.4 PSO with Gaussian Mutation (G-PSO) 
 

Gaussian Mutation causes a small random change in the population. A random number from Gaussian 

distribution N (0,1) with parameter 0 as a mean and 1 as std dev. is generated. Algorithm 5 provides the pseudo 

code for the Gaussian Mutation. 

 
Algorithm 5. Pseudo Code for Gaussian Mutation in Sin -Cosine based Optimization 

 

Gaussian Mutation in PSO 
For each solution 

For each dimension 

Choose each position based on the probability of mutation 

If𝑋(𝑖, 𝑗) is chosen then find a new generated position 

𝑧 = 𝑋(𝑖, 𝑗) + 𝑁𝑖(0,1) 

Replace 𝑋(𝑖, 𝑗) with a new generated position based on power mutation; 

End if 

End for 

End for 

  

2.2.5 PSO with Cauchy Mutation(C-PSO) 
 

Cauchy Mutation is defined in SCA as the same way as G- SCA. Suppose a random number is generated from 

Cauchy distribution and defined by 𝛿𝑖(𝑡) ,The scale parameter represented by t, where t>0. Consider the value 

t=1 as used in LX C-BBO in this paper. Algorithm 6 provide the pseudo code for Cauchy Mutation. 

 

 

Algorithm 6. Pseudo Code for the Cauchy Mutation in Sin -Cosine based Optimization 

 

Cauchy Mutation in PSO 
For each solution 

For each dimension 

Choose each position based on the probability of mutation 

If𝑋(𝑖, 𝑗) is chosen then find a new generated position 

𝑧 = 𝑋(𝑖, 𝑗) + 𝛿𝑖(1) 

Replace 𝑋(𝑖, 𝑗) with a new generated position based on power mutation; 

End if 

End for 

End for 

 

3. Formulation of the Camera Calibration Problem Mathematically 
 

Two steps make up the mathematical description of the camera calibration problem. First, the camera model 

used to create images is defined. Second, the camera calibration problem is referred to as a non-linear 

optimization problem. 

 

3.1 Model of Camera for Image Creation 
 

The pinhole camera model used in this study to define the geometry of the image is intended for binocular 

vision systems. It consists of five co-ordinate frames: World reference frame (X, Y, Z), camera frame (Xi, Yi, 

Zi) and image frame (ui,vi) for i=1,2. The origins O1 and O2 of the cameras coordinate systems coincide with 



 

 

their corresponding optical canters and their Z coordinate axes are collinear with corresponding optical axes 

which are perpendicular to corresponding image planes and intersect them in their respective principal points. 

The image plane and optical centre of each camera is at a distance fi (its focal length) i=1, 2 apart. (See Figure 

5.1) 

If an object point P has coordinates in the 3D world reference frame of (X,Y,Z ) Its world coordinates must 

be transformed into picture coordinates using the following steps: 

 

1. First, the camera coordinates are converted from the 3D world coordinates using the relation: 

(
𝑋𝑐

𝑌𝑐

𝑍𝑐

) = 𝑅 (
𝑋
𝑌
𝑍

) + 𝑇                                                                   (1)        

Where T is the translation vector that depicts the camera's position in relation to the world coordinate system 

and R is a 3 x 3 rotation matrix that depicts the camera's orientation in relation to the world coordinate 

system Another way to express R and T is as follows: 

𝑅 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] 𝑇 = (

𝑇𝑥

𝑇𝑦

𝑇𝑧

)                                         (2) 

The elements rij of the matrix R can further be expressed in terms of swing, tilt and pan angle (α,β,γ) as 

 

𝑅 = [

𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽 𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛾 + 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛾 𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛾 − 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛾
−𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛽 𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛾 − 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛾 + 𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛾

𝑠𝑖𝑛𝛽 −𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝛾
] (3) 

 

2. Using prospective projection equations, the 3D camera coordinates (Xc, Yc, Zc) are then converted into 

the ideal retinal coordinates (Xu, Yu) of the camera 

 

 

 

𝑋𝑢 = 𝑓
𝑋𝑐

𝑍𝑐
,   𝑌𝑢 = 𝑓

𝑌𝑐

𝑍𝑐
                                                   (4) 

 

3. The ideal retinal coordinates (Xu, Yu) are then transformed into actual retinal  coordinates (Xd, Yd) by 

considering lens radial distortion coefficient k: 

 

𝑋𝑑 = 𝑋𝑢(1 + 𝑘𝑟2)−1 and𝑌𝑑 = 𝑌𝑢(1 + 𝑘𝑟2)−1             (5) 

 

4. Finally, the following relation is used to convert the real retinal coordinates into pixel coordinates (u, v): 

 

𝑢 = 𝑋𝑑𝑁𝑥 + 𝑢0𝑣 = 𝑌𝑑𝑁𝑥 + 𝑣0                                        (6) 

 

Here, (u0,v0) denotes the pixel coordinates of the image's centre, while Nx and Ny express the number of pixels 

that are contained in the unit distance of the image plane along the X and Y axes, respectively. The total of 

the previous four phases can be used to represent the mathematical process of creating an image of a 3D point 

P(X,Y,Z): 

𝑢 =
𝑓𝑁𝑥

(1 + 𝑘𝑟2)
(

𝑟11𝑋 + 𝑟12𝑌 + 𝑟13𝑍 + 𝑇𝑥

𝑟31𝑋 + 𝑟32𝑌 + 𝑟33𝑍 + 𝑇𝑧
) + 𝑢0 … …   (7) 

𝑣 =
𝑓𝑁𝑦

(1 + 𝑘𝑟2)
(

𝑟21𝑋 + 𝑟22𝑌 + 𝑟23𝑍 + 𝑇𝑦

𝑟31𝑋 + 𝑟32𝑌 + 𝑟33𝑍 + 𝑇𝑧
) + 𝑣0 … …     (8) 

 

Equations (5.7) and (5.7) represent the transformation of the 3D world coordinates P(X,Y,Z) into the pixel 

coordinates (u,v) for a single camera (5.8). Since this process is irreversible, it is impossible to uniquely derive 

the 3D position of point P from its pixel coordinates (u, v). The stereo images pl(ul,vl) and pr(ur,vr) of a point 



 

 

P(X,Y,Z) taken by two cameras (left and right) or by a single camera in two distinct locations can, however, 

be used to uniquely identify a point in the 3D environment. 

 

3.2. The issue of camera calibration as an optimization problem 
 

The camera calibration problem is mathematically formulated using the image formation model described 

above as a nonlinear unconstrained optimization problem with the goal of minimising the root mean square 

distance between the observed pixel positions and their corresponding calculated pixel positions of the control 

points. 

 

Given sufficient number of control points N whose world coordinates and corresponding observed pixel 

position 𝑝𝑙𝑖(𝑢𝑙𝑖, 𝑣𝑙𝑖)&𝑝𝑟𝑖(𝑢𝑟𝑖, 𝑣𝑟𝑖),( i =1,2,3….,N) in left and right cameras respectively , are known with  a 

high precision , the problem is to estimate the optimal values of the 24 camera parameters(12 parameters 

(𝑓, Nx, 𝑁𝑦, 𝑢0, 𝑣0, 𝑘, 𝑇𝑥, 𝑇𝑦, 𝛼, 𝛽, 𝛾 for each camera) so that the objective function given by following equation 

is minimized : 

 

𝐹 = √
1

𝑁
∑ [(𝑢𝑖𝑙 − 𝑢𝑖𝑙

′ )
2

+ (𝑢𝑖𝑟 − 𝑢𝑖𝑟
′ )

2
+ (𝑣𝑖𝑙 − 𝑣𝑖𝑙

′ )
2

+ (𝑣𝑖𝑟 − 𝑣𝑖𝑟
′ )

2
]𝑁

𝑖                  (9) 

 

Where 𝑝𝑙𝑗
′ (𝑢𝑙𝑗

′ , 𝑣𝑙𝑗
′ )and 𝑝𝑟𝑗

′ (𝑢𝑟𝑗
′ , 𝑣𝑟𝑗

′ )are                   

the associated pixel coordinates determined by the predicted parameters. On the basis of the camera’s inform

ation, any relevant search area for a variable can be selected. Finding the global minimum of the goal functio

n while all 24 factors are changing will be tricky because it will be considerably more difficult. 

 

4. Optimization Problem Solution 

 

A vector S is created to represent the unknown intrinsic and extrinsic properties of the left and right cameras, 

respectively, in order to solve the camera calibration problem. 

 

𝑺 = (𝒖𝟎𝒍, 𝒗𝟎𝒍, 𝑵𝒙𝒍, 𝑵𝒚𝒍, 𝒇𝒍, 𝒌𝒍, 𝜶𝒍, 𝜷𝒍, 𝜸𝒍, 𝑻𝒙𝒍, 𝑻𝒚𝒍, 𝑻𝒛𝒍, 𝒖𝟎𝒓, 𝒗𝟎𝒓, 𝑵𝒙𝒓, 𝑵𝒚𝒓, 𝒇𝒓, 𝒌𝒓, 𝜶𝒓, 𝜷𝒓, 𝜸𝒓, 𝑻𝒙𝒓, 𝑻𝒚𝒓, 𝑻𝒛𝒓) (10) 

 

Where 𝑇𝑥, 𝑇𝑦, 𝑇𝑧, α, β and γ are the extrinsic parameters which denote the location and direction of the camera 

in World Co-ordinate system (WCS).(u0, v0)Image centre, (f) focal length, (k) radial lens distortion and (Nxand 

Ny ) off- axis lens distortion are intrinsic parameters which represents camera optical and geometry features. 

Extrinsic parameters give the relationship between World Co-ordinate system (WCS) and Camera Co-ordinate 

System (CCS). Then internal parameters can be used to set the relationship between the co-ordinate systems 

i.e. Camera Co-ordinate System (CCS) and Ideal Co-ordinate system. Camera calibration is an unconstrained, 

non-linear optimization problem, where objective function is given by eq. (9) and decision variables or 

independent variables are given by eq. (10). 

 

Camera calibration problem is solved by all the variants of Laplacian Biogeography Based Optimization (LX-

BBO) proposed in chapter 2 and 3 with varying number of control points. 

Through camera faults, calibration accuracy is evaluated. The Euclidean distance between the estimated value 

of a parameter and its ground truth is known as camera error in that parameter. Ground truth values are the 

intrinsic left and right camera parameter values that are utilised to generate data, i.e., the values used to 

calculate the 2D picture coordinates from the 3D grid points. The ground truth value and the parameter bounds 

are provided in Table 1. 

 

 

 

 

 



 

 

4.1 Generation of Synthetic Data 
 

The fabricated data was produced by a calibration chart with 8 × 8 grids in the X and Y dimensions. 64 grid 

points are created as a result. This chart is shifted along Z direction on eight different positions to get a total 

of 512 points Pi (Xi ,Yi ,Zi) in 3D space. 

 

4.2 Setting Parameters 
 

All algorithms' parameters have been set in accordance with Chapters 2 and 3 recommendations. But there are 

two conditions that must be met for this problem to be terminated. First, the maximum number of iterations 

(5000) must be reached. Additionally, the absolute error value is below 10-6. Absolute value in this context 

refers to the pixel error, which is taken to be the objective function in and of itself. Whichever of these two 

outcomes occurs first becomes the necessary termination criterion. 

 

5. Experimental Results 
 

On the camera calibration problem, the performance of Blended BBO and PSO is compared to that of all six 

PSO versions. The outcomes of 50 independently conducted minimal camera mistakes for varied numbers of 

control points are presented in Tables 2 and 3. 

 

Here, many simulations employ control points at 10, 50, 100, 200, and 500. PSO offers values for 6 camera 

parameters that are closer to their true values when there are 10 control points. LX-L PSO creates 4 camera 

parameters that are closer to the ground truth value for 50 control points and offers better camera error values 

for 6 camera parameters than the other LX-PSO versions. 

 

LX-Rand BBO outperforms the other versions in terms of camera error in 3 parameters when there are 100 

control points. when there are 100 control points Five camera settings that use LX-G PSO and 200 control 

points show more camera inaccuracy. LX-L PSO outperforms all other varieties of LX PSO when there are 

500 control parameters; however, for 6 camera parameters, LX-L PSO offers the lowest camera error. 

Table 4 provides the analysis based on the data produced by all LX-PSO variations. It lists the number of 

parameters that each LX-PSO variant's optimal value for. 

 

According to Table 4, Blended BBO outperformed all other LX-PSO variants in terms of performance. For 

all control points, blended PSO offers the lowest camera error among all LX-PSO variants. For camera 

calibration problems, LX-L PSO has proven to be a superior algorithm to the other version of LX-PSO. The 

best algorithm, LX-PSO with random mutation, which was demonstrated in Chapter 3 is unable to give 

satisfactory results for this issue. 

 

The results of the camera calibration show that even while Rand PSO and C PSO, which were tested against 

all other PSO versions, delivered the best results, the other PSO variants are still significant. Every version 

can be proven to be beneficial for an optimization work based on how difficult it is. 

 

For the camera calibration problem, convergence graphs for all PSO and Blended BBO versions are provided 

in Figure 5.2. The number of generations is on the horizontal axis, and the value of the objective function is 

on the vertical axis. The pixel error acquired as indicated in equation serves as the objective function value in 

this situation (5.8). For a fair comparison, all algorithms are run with the same initial population. It can be 

shown that, when compared to other PSO versions, Blended BBO has the worst convergence. L PSO 

converges more quickly than any other PSO variation. 

 

6. Conclusion and Future Scope 
 

The six PSO versions can all be used to solve any unconstrained optimization problem, according to the 

analysis above. Camera calibration problem is considered as a complex problem in computer vision study. 



 

 

Evolutionary Algorithms have not been quite successful in solving camera calibration problem. However, due 

to their wide applicability on optimization problems, present study is an attempt to solve such kind of problems 

using PSO. The problem has been solved using Rand PSO, Poly PSO, PM PSO, C PSO, G PSO and L PSO. 

L PSO is proved to be a better version among all the other variants considered. In future, other unconstrained 

optimization problems can also be solved by using the variants of PSO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  

Table 1:  Value of the left and right cameras' ground truth 

Parameter a left camera  Right camera  

 Ground truth value Bounds Ground truth value Bounds 

f 10 [5,15] 25 [20,40] 

Nx 200 [170,230] 144 [100,200] 

Ny 200 [170,230] 144 [100,200] 

u0 20 [15,25] 256 [200,300] 

v0 19 [15,25] 192 [150,250] 

k 0.15152 [0,0.5] 0.15152 [0,0.5] 

TX 60 [20,80] -38 [-100,80] 

TY 35 [25,45] 35 [25,45] 

TZ 1210 [1000,1400] 1210 [1000,1400] 

α 0 [-π/2,π/2] -1.90146 [-π,π] 

β 0 [-π/2,π/2] 0.20916 [-π/2,π/2] 

γ 0 [-π/2,π/2] 0.15152 [-π/2,π/2] 



 

 

Table 2: For different numbers of control points, there are left camera mistakes 
parameter Algorithm 10 50 100 200 500 

f 

Rand PSO 0.076868 0.024334 0.157513 0.124538 0.024437 

PM PSO 0.0344981 0.434759 0.121133 0.046615 0.047882 

Poly  PSO 0.04324238 0.008042 0.028207 0.01648 0.07599 

G PSO 0.048427 0.103863 0.144257 0.069504 0.006694 

C PSO 0.0030938 0.092509 0.007664 0.187033 0.139281 

L-PSO 0.0279277 0.04823 0.069935 0.022762 0.052066 

Blended BBO 0.0322 0.02618 0.00495 0.00671 0.02101 

Nx 

Rand PSO 1.67 0.385597 0.382618 0.548318 0.730356 

PM PSO 0.29898 1.159758 0.059637 0.998098 0.31041 

Poly PSO 0.08727 1.39171 0.071564 1.197718 0.372492 

G PSO 0.87745 1.670052 0.085877 1.437261 0.44699 

C PSO 0.5623 2.004062 0.103053 1.724713 0.536388 

L-PSO 0.07651 2.404874 0.123663 2.069656 0.643666 

Blended BBO 0.3934 2.885849 0.148396 2.483587 0.772399 

Ny 

Rand PSO 2.3093973 11.82527 1.319943 1.9135 0.369863 

PM PSO 0.387762 30.39693 8.714069 19.66042 22.65397 

Poly PSO 4.893 0.975087 18.41438 1.575908 38.95181 

G PSO 1.838734 0.683595 2.605886 1.110187 2.891485 

C PSO 10.3938 8.050961 28.01932 6.066603 0.534862 

L-PSO 0.873 0.490529 6.037532 5.533563 4.518829 

Blended BBO 0.40837 0.17199 0.23465 0.16406 0.16835 

u0 

LX-Rand     

BBO 
0.0292 

0.031997 0.256192 0.18951 0.073873 

LX-PM BBO 0.04847 0.2431 0.061802 0.177463 0.337853 

LX-Poly BBO 0.1983 0.21491 0.404932 0.479892 0.068281 

LX-G BBO 0.09837 0.128807 0.052503 0.354757 0.940733 

LX-C BBO 0.112938 0.024072 0.040034 0.05118 0.582759 

LX-1 BBO 0.0178398 0.000705 0.014607 0.429354 0.280561 

Blended BBO 0.08989 0.06981 0.00988 0.02119 0.00104 

v0 

Rand PSO 1.34265 0.741057 0.682209 1.015719 4.175725 

PM PSO 0.3357 4.119933 1.733164 0.481672 0.086142 

Poly PSO 0.4598 0.805775 0.251563 2.922266 3.639468 

G PSO 0.30877 0.065042 0.004492 0.007795 0.040118 

C PSO 0.6988 0.392656 1.841579 0.570943 0.191385 

L-PSO 0.9766 0.017161 0.03813 0.64016 0.021408 

Blended BBO 0.018927 0.13884 0.02613 0.17277 0.07241 

k 

Rand PSO 0.0012892 0.007537 0.005751 0.022836 0.003475 

PM PSO 0.00824 0.001756 0.002176 0.007588 0.012832 

Poly PSO 0.002872 0.00354 0.001167 0.001895 0.008437 

G PSO 0.002988 0.001249 0.022905 0.005643 0.000103 

C PSO 0.00092761 0.005876 0.004667 0.03083 0.033955 

L-PSO 0.00792 0.006664 1.17E-05 0.029757 0.003078 

Blended BBO 0.004982 0.01027 0.01677 0.01729 0.00156 

Tx 

Rand PSO 0.11972 0.026052 0.297564 0.864591 0.066409 

PM PSO 0.59272 0.065632 0.63135 0.598079 0.020628 

Poly PSO 0.735091 1.010329 0.371582 0.435924 0.032583 

G PSO 0.073639 1.21052 0.646933 0.530257 0.029168 



 

 

C PSO 0.1938 0.221803 0.260677 0.222334 0.104469 

L-PSO 0.31838 1.00999 0.167359 0.351686 0.112323 

Blended BBO 0.6583 0.66404 1.00126 0.89232 0.23205 

Ty 

Rand PSO 1.23983 5.142888 0.790665 0.912582 2.035849 

PM PSO 7.40292 9.213382 2.426164 2.357414 0.510078 

Poly PSO 1.89202 8.029741 1.62026 4.407579 0.419929 

G PSO 0.076939 0.72936 0.941844 1.703283 0.935087 

C PSO 6.9802 5.560166 7.603574 4.731641 0.104048 

L-PSO 0.2639839 0.394265 0.576217 0.488848 0.505852 

Blended BBO 0.1527 1.312987 0.217567 0.457192 0.14602 

Tz 

Rand PSO 0.67292 0.863252 1.301638 1.160016 0.301665 

PM PSO 1.40292 6.685754 1.027865 1.186357 2.646604 

Poly PSO 0.0919187 11.9774 3.154013 3.064638 0.663101 

G PSO 3.9282 10.43866 2.106338 5.729853 0.545908 

C PSO 6.3938 0.948168 1.224397 2.214268 1.215613 

L-PSO 0.18484 7.228216 9.884646 6.151133 0.135262 

Blended BBO 0.093983 0.512545 0.749082 0.635502 0.657608 

alpha 

Rand PSO 0.01383 1.706883 0.282837 0.594349 0.189826 

PM PSO 0.012928 1.122228 1.692129 1.508021 0.392165 

Poly PSO 
0.00008474

9 8.691481 1.336224 1.542264 3.440585 

G PSO 0.000017 15.57062 4.100217 3.98403 0.862032 

C PSO 0.030038 13.57026 2.738239 7.448809 0.70968 

L-PSO 0.024849 1.232618 1.591716 2.878548 1.580297 

Blended BBO 0.000298 9.396681 12.85004 7.996473 0.175841 

beta 

Rand PSO 0.073332 0.666308 0.973807 0.826153 0.85489 

PM PSO 0.047565 2.218948 0.367688 0.772654 0.246774 

Poly PSO 0.007292 1.458896 2.199768 1.960427 0.509814 

G PSO 0.045428 11.29892 1.737091 2.004943 4.47276 

C PSO 0.0375675 20.2418 5.330282 5.179239 1.120641 

L-PSO 0.01284575 1.458896 2.199768 1.960427 0.509814 

Blended BBO 0.0059 11.29892 1.737091 2.004943 4.47276 

gamma 

Rand PSO 0.245493 20.2418 5.330282 5.179239 1.120641 

PM PSO 0.0158373 17.64134 3.559711 9.683451 0.922584 

Poly PSO 0.0013847 1.602404 2.069231 3.742113 2.054386 

G PSO 0.00001987 12.21568 16.70505 10.39542 0.228593 

C PSO 0.008387 0.8662 1.265949 1.073999 1.111357 

L-PSO 0.03629874 2.884632 0.477994 1.00445 0.320806 

Blended BBO 0.00598 1.896565 2.859699 2.548555 0.662758 

  



 

 

Table 3: Camera mistakes using the appropriate camera for various numbers of 

control points 

parameter Algorithm 10 50 100 200 500 Average 

F Rand PSO 0.044406 0.18 0.11172 0.052761 0.043144 0.0864062 

PM PSO 0.074132 0.079752 0.080253 0.106694 0.014889 0.071144 

Poly PSO 0.066342 0.159004 0.007878 0.149157 0.101876 0.0968514 

G PSO 0.05697 0.056588 0.025016 0.100576 0.022319 0.0522938 

C PSO 0.034158 0.139876 0.077253 0.18627 0.059315 0.0993744 

L-PSO 0.478059 0.045168 0.015363 0.001168 0.162348 0.1404212 

Blended BBO 0.31616 0.33453 0.133498 0.000769 0.271253 0.211242 

Nx Rand PSO 1.373803 0.044301 0.197815 0.164958 0.129119 0.3819992 

PM PSO 0.004764 0.084025 0.976119 0.815793 1.198443 0.6158288 

Poly PSO 0.477428 0.100776 0.172758 0.487176 0.06959 0.2615456 

G PSO 0.312556 0.41266 0.231014 0.113208 0.299791 0.2738458 

C PSO 0.262216 0.036426 0.088562 0.241455 1.205115 0.3667548 

L-PSO 2.27699 0.219725 1.106474 0.240857 0.25447 0.8197032 

Blended BBO 0.26576 0.00432 0.424428 0.518146 0.122522 0.2670352 

Ny Rand PSO 0.193095 1.06913 0.317453 1.553951 0.387519 0.7042296 

PM PSO 0.42701 0.883951 0.844218 1.545705 0.079553 0.7560874 

Poly PSO 0.520066 1.239188 1.031169 0.595897 0.628988 0.8030616 

G PSO 0.020741 0.352441 0.316507 0.672235 0.914089 0.4552026 

C PSO 0.188418 0.128667 1.190323 0.398805 0.923642 0.565971 

L-PSO 1.417966 0.475952 0.121807 0.99797 1.566333 0.9160056 

Blended BBO 0.19728 0.18135 0.416902 0.346858 0.05602 0.239682 

u0 LX-Rand BBO 0.967718 0.477842 0.065884 2.642091 3.782402 1.5871874 

LX-PM BBO 0.020769 0.066174 0.429793 0.173863 1.01068 0.3402558 

LX-Poly BBO 0.382444 0.56381 0.460645 2.242422 0.881862 0.9062366 

LX-G BBO 0.151233 1.192916 0.674603 1.118233 0.143079 0.6560128 

LX-C BBO 0.353092 1.189723 0.197002 0.611511 0.321765 0.5346186 

LX-l BBO 1.684685 0.113715 1.654228 0.499089 1.230732 1.0364898 

Blended BBO 0.26704 0.32139 0.213977 0.30217 0.494239 0.3197632 

v0 Rand PSO 0.189348 0.243143 0.283194 0.667557 0.206054 0.3178592 

PM PSO 0.711386 0.960224 0.126378 0.057336 0.228718 0.4168084 

Poly PSO 0.311976 0.07163 0.354237 1.536039 0.121138 0.479004 

G PSO 1.030991 0.158625 143.2231 0.861066 0.315927 29.117942 

C PSO 0.306065 0.619149 0.774449 0.278219 1.236844 0.6429452 

L-PSO 0.535554 0.719699 0.148611 0.021479 0.34391 0.3538506 

Blended BBO 0.15408 0.15939 0.044477 0.524075 0.821402 0.3406848 

k Rand PSO 0.001876 0.000481 0.000738 0.006913 0.001189 0.0022394 

PM PSO 0.004312 0.001092 0.005227 0.012322 0.000652 0.004721 

Poly PSO 0.002155 0.006408 0.001389 0.000578 0.005187 0.0031434 

G PSO 0.000886 0.00783 0.00995 0.000677 0.003373 0.0045432 

C PSO 0.010874 0.000252 0.007142 0.00085 0.002382 0.0043 

L-PSO 0.004796 0.013398 0.001453 0.008632 0.002341 0.006124 

Blended BBO 0.01096 0.00108 0.003254 0.019105 0.000546 0.006989 

Tx Rand PSO 0.655016 0.921915 0.385354 0.776072 0.484104 0.6444922 

PM PSO 0.502832 0.023805 0.159177 0.440791 0.136339 0.2525888 



 

 

Poly PSO 0.220064 0.033263 0.162125 0.06153 0.207657 0.1369278 

G PSO 0.486602 0.186402 0.200331 0.075301 0.443852 0.2784976 

C PSO 0.376899 0.403617 0.282945 0.57978 0.195036 0.3676554 

L-PSO 0.009539 0.163548 0.223046 0.270093 0.089128 0.1510708 

Blended BBO 0.72184 0.03222 0.113701 0.067198 0.237947 0.2345812 

Ty Rand PSO 0.348973 0.112831 0.121461 0.464107 0.214681 0.2524106 

PM PSO 0.058383 0.602893 0.101501 0.016955 0.094817 0.1749098 

Poly PSO 0.404024 0.052901 0.133641 0.708794 0.410576 0.3419872 

G PSO 0.032359 0.123519 0.154569 0.276816 0.138895 0.1452316 

C PSO 0.077124 0.042046 0.062864 0.63851 0.120051 0.188119 

L-PSO 0.027562 0.058642 0.096728 0.240211 0.165829 0.1177944 

Blended BBO 0.00296 0.00702 0.035731 0.013615 0.010156 0.0138964 

Tz Rand PSO 4.558761 1.423436 4.806374 3.697145 0.909133 3.0789698 

PM PSO 1.558562 0.160899 0.263311 6.910535 3.17732 2.4141254 

Poly PSO 0.906546 7.254022 1.185153 3.026315 2.322818 2.9389708 

G PSO 0.637114 3.056054 6.319311 4.290712 3.641515 3.5889412 

C PSO 2.812785 8.606612 0.132218 1.825775 5.913478 3.8581736 

L-PSO 0.519471 1.312794 3.318024 0.965552 2.608121 1.7447924 

Blended BBO 0.14104 0.29457 1.555332 1.102941 0.027628 0.6243022 

alpha Rand PSO 0.264531 0.297598 0.226021 0.366034 0.361085 0.3030538 

PM PSO 0.264531 0.297598 0.226021 0.363069 0.361085 0.3024608 

Poly PSO 0.264531 0.297598 0.226021 0.366034 0.361085 0.3030538 

G PSO 0.264531 0.297598 0.226021 0.366034 0.361085 0.3030538 

C PSO 0.264531 0.297598 0.226021 0.366034 0.364033 0.3036434 

L-PSO 0.264531 0.297598 0.226021 0.366034 0.361085 0.3030538 

Blended BBO 0.1748 0.03852 0.018035 0.021191 0.00819 0.0521472 

Beta Rand PSO 0.217726 0.253488 0.115886 0.1006 0.483546 0.2342492 

PM PSO 0.213613 0.511743 0.194694 0.775676 0.23811 0.3867672 

Poly PSO 0.24171 0.380763 0.170667 0.347232 0.147447 0.2575638 

G PSO 0.246247 0.527518 0.474766 0.747659 0.780586 0.5553552 

C PSO 0.238898 0.648911 0.268385 0.104427 0.219637 0.2960516 

L-PSO 0.225727 0.640835 0.48925 0.867623 0.822768 0.6092406 

Blended BBO 0.01392 0.00072 0.004543 0.024705 0.008408 0.0104592 

Gamma  Rand PSO 0.000946 0.00022 0.000057 0.000121 0.010253 0.0023194 

PM PSO 0.010277 0.001793 0.000175 0.00033 0.012286 0.0049722 

Poly PSO 0.002064 0.001163 5.76E-05 0.000182 0.011406 0.0029745 

G PSO 0.009871 0.013056 0.000168 0.000272 0.010915 0.0068564 

C PSO 0.002473 0.000184 4.14E-05 0.000386 0.011693 0.0029555 

L-PSO 0.006225 0.013733 1.42E-05 0.000586 0.010614 0.0062344 

Blended BBO 0.00176 0.00288 0.00061 0.004502 0.005023 0.002955 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

Figure 1: Pinhole Model Image Formation by Two Cameras (Adapted from Kumar et al., 2008) 

 

 
 

Figure 2: Convergence Behavior for Stereo Camera Calibration Problem solved by PSO 
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